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Solar wind: dynamics of the low and MHD fluctuations
Lectures, ICTP November 1999

M. Velli

Dipartimento di Astronomia, Universiti di Firenze
Largo E. Fermi 5, 50125 Firenze Italy

1  Hydrodynamics of the solar wind expansion: why the solar
wind is supersonic

Although knowledge of a solar influence at the earth’s orbit dates back from Lord
Carrington’s observations that aurorac often oceurred several hours after white light
solar flares in the sccond half of the last century, the first divect indication of a con-
tinuous outflow of fast particles from the sun came from Biermann's investigation in
the fifties of the shape of the cometary ion tails, from which he deduced amn average
speed of around 475 km/scc for this flow. In 1957 Chapman showed how a static
conductive corona starting at 10% K at the sun should maintain o high density out,
to far distances (in fact, after an initial decrease, the density should increase outward
again!), and in 1958 Parker argued, on the basis of the unreasonably high pressures
that static solutions yielded at large distances, that “probably it is not possible for
the solar corona, or, indeed, perhaps the atmosphere of any star, to be in complete
hydrostatic equilibrium out to large distances”. He then proceeded to show that a
viable solution yielding negligible pressures at infinity consisted in a flow accelerat-
ing continuously and becoming supersonic at large distances. Consider hydrostatic

balance for a spherically symmetric atmosphere with gravity

Ip g
5‘; = —Tﬂpﬂﬁ, (1)

where g/ Rg is the gravitational acceleration at the solar surface (Ro the solar radius)
and we have normalized distances with solar radius. Also my is the proton mass so

that the mass density p = m,n. Recalling that p = n&T we may integrate to find that

nkT = ngrTy exp(—/ dr %%) (2)
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so that a static spherically symmetric extended atmosphere with a temperature profile
decreasing with distance Iess rapidly than 1/r requires a finite pressure at infinity to be
confined, the same being true if the atmosphere 'evaporates’ a subsonic flow, or breeze.
The subsequent Parker - Chamberlain debate on supersonic/subsonic evaporation was
cut short by the in situ measurement of the steady, supersonic wind by the Luna 2
(1959} and Explorer (1961) spacecraft Hundhausen, (1872). However, Mestel (quoted
in Roberts and .Soward, 1972}, first remarked that it would not take a large fall
in coronal temperature for the pressure of the local interstellar medium (ISM) to
be sufficient to suppress the solar wind entirely. Indeed, the pressure of the ISM,
prsy =~ 1.24 10712 dyne/ em? would suffice to confine a 4 10° K static corona with
base density 10° em~3. So although correct, the argument for a supersonic wind does
not appear to be as strong on the basis of pressure arguments only. In reality, the
dependence of spherically symmetric, non-rotating atmospheres with flows on changes
of the external conditions is somewhat mnore subtle, as shown by Velli {1994), and it
is worthwhile to discuss the problem in detail. For the sake of analytical simplicity,
we will consider only isothermal flows, i.e. a flows for which the temperature may be

considered constant out to great radial distances.

1.1 Stationary isothermal flows: breezes, winds, accretion

r

The equations of motion for one-dimensional, spherically symmetric, stationary isother

mal flow neglecting self-gravity may be written in the form

d .
E (pvr‘!) 2 (3)
v 19p g

Yor = Tpor 2 )
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where v is the velocity, ¢ the constant sound speed. For a static atmosphere, the
pressure profile is given by p = pgexp(—g/c® + g/rc?) which, as discussed above,
implies a non-vanishing asymptotic value for the pressure at large distances pi, =
poe™9/¢°. In terms of the mach number M = v/c the flow equations may be written
(a prime denoting radial derivatives throughout this section)

1 2 g
(b= 57)p=2- o (®)



which may be integrated and expressed in two equivalent ways

1 M g g

S(M? - M3) - log (=) =2 I _9

2( 12 — M) lob(Mo) !ogr+rc2 = (6)
M2+ logp — TZ? = M2/2 + logpo - ciz (7)

where My is the base Mach number, The second form is essentially the conservation
of energy flux, where for an isothermal atmosphere the enthalpy is expressed as logp
instead of yp/(v — 1). Eq.(5) has a singular point at the sonic point, » = g/2c% M =
1. Solutions to the above cquations may be represented in the (M,r) phase plane
illustrated in fig.(1), which, following the symmetry of ¢q.(5) is symmetric in the sign
of M. The diagram is divided into 4 (8, considering positive and negative M) areas
(labeled I-IV) by the two critical (transonic) solutions which cross at the sonic point
r=g/2¢* M = 1. Single valued continuous flow profiles M(r) which are subsonic for
all 7, the breezes, lie below both transonic curves (region I). Among flows which arc
subsonic at the atmospheric base the accelerating transonic has the special property
that density and pressure tend to zero at large distances: because of the small but finite
values of the pressure of the ambient ’external’ medium, a terminal shock transition,
connecting to the lower branch of the double valued solutions filling region 11 will in
general be present (sce e.g. Holzer and Axford, 1970). The jump conditions across such
a shock are found from conservation of mass and momentum across the shock, which
read {superscripts -,4+ denote the solution immediately upstream and downstream

from the shock respectively)

pTMT = pt Mt (8)
2 a2, -
PEMTY +p% = p™ (M) +p7, (9)
from which one find immediately M*M~ = 1. This gives a way to graphically con-

struct shock transitions; it is sufficient to plot the curves corresponding to 1/M for
the transonics (dashed lines in fig. (1)), and connect the transonic with the double
valued curve in region IT where the dashed line intersects them: such solution is given
by curve W. The downward transonic in itself is not a possible solution for outflows,
since a continuous transition from supersonic to subsonic flows is unstable. However,
it plays the same role the Parker wind solution plays for inward directed accretion

flows: for negative M solutions, the same construction leads to accretion shocks in
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the flow (McCrea, 1956), this time in the region labeled IV, and one such transition
is shown in fig.(1) (curve A). For given base values of the pressure, the position of
the shock is uniquely determined by the pressure of the interstellar medium, and
the distance from the critical point to the shock decreases as the pressure increases:
conservation of mass across the shock immediately gives the asymptotic pressure in

terms of the upstream Mach number M~ as

1
Poo =j_r;u(,}'vf_exp(M.z-—2012 Y M_z)/2, (10)

where M, is the base Mach number of the upward transonic. peo is a monotonically
decrcasing function of M, which is itself, obviously, a monotonically increasing func-
tion of the shock position 7y, so that increasing pe decreases rg. When peo reaches
a value pS, = mo exp(M.?/2 ~ g/c*), the shock distance 7, = 1 = ¢/2¢? and the
discontinuity in the flow velocity reduces to a discontinuity in the derivative of the
profile. This is the fastest possible, or critical, breeze, made up of the scction of upward
transonic below 7, and the section of downward transonic beyond r.. For the breeze
solutions, with a base Mach number My such that M, > My > 0, the asymptotic

pressure is casily calculated to be
Poo = Puexp(M§/2 — g/c*) 2 Pl (11)

It follows that the pressure required to confine a breeze increases with increasing base
Mach number and is greater, if only slightly,than that of a static atmosphere. The
limiting value of po is again pS,. For a given base pressure and asymptotic pressurcs
PS> Poo > P it therefore appears that two possible stationary outflow solutions
exist, a supersonic shocked wind and a subsonic breeze.

When such conditions occur, it is frequently the case that one of the solutions may
be unstable, i.e. that any small perturbation may lead the flow to evolve away from
stationarity. In this case, it is the breeze solutions that are unstable: to prove this we
introduce small perturbations (sound waves) and linearize the equations of motion
around the stationary state. We will apply boundary conditions which allow the con-
figuration to evolve from one to the other of the stationary solutions we have found:
i.e., the perturbing sound waves will leave the pressure (and density) unperturbed at

the atmospheric base and infinity, i.e. they will be standing waves. It is convenient
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Fig. 1. The {M,r) phase planc. The continnous curves are appropriate both for positive and
negative M. The dashed line intersection with double valued curves defines the shock position
for winds (region 11, curve W) or accretion flows (region IV, curve A).

to introduce characteristic variables y* = i + P, where p = p/p is the adimensional
normalized pressure perturbation and i is the mach number (velocity) fluctuation.
In these variables an outward (inward) propagating sound wave has y~ = 0 (y* = 0).
Assuming a time dependence yt = y(r)ezp(—iw + )t the linearizec:l equations be-

come

!
(M £ 1)y —ifw +iy)y® + %(y:t + y*)%(M F1) =0 (12)

Problem : prove eq.(12), and show that in a uniform flow one has stable propagating
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waves with dispersion relation w® = (M £ 1)k where k is a radial wave-number, i.c.
a spatial dependence ~ exp(ikr) is assumed.

In the presence of a nonuniform but stable flow, cq.(12) describes wave propagation
and reflection, and a conserved flux, the wave action flux, exists (in a static medium,
the wave encrgy flux is conserved; when there are mass motions, this is replaced by
the wave action flux: see, ¢.g. Kadomtsev, (1983) §4 for a discussion of wave energy
and Velli, 1993 and references thercin for a discussion of wave-action conservation).
When 7 # 0 the wave action evolution equation becomes

(M +1)°

M

+2 (M_l)2 -2' Y +2 -2
7 _.._..——-J —_— 1 — —_— J fed ,
| M ly~| +2M (M+1)|u | (M 1)|1 | 0, (13)

the first square bracket being proportional to the wave action.
Problem : prove eq.(13). Hint: one must multiply the cquations for inward and outward

waves by the appropriate factor and then sum to remove the y¥, ¥~ coupling terms.

Notice that for [M] < 1 the term in the second square bracket is positive definite.
Integrating this cquation between 1 and » and imposing the boundary condition that
the pressure perturbation vanish at the extrenes, we find the following estimate for
v

2(|y+lﬁ - ly+I3)
[T M= (0 4 )y = (M - 1)l

(14)

where |y*|2, [y |? are the fluctuation amplitudes at the atmospheric base and 7 re-
spectively. It follows then that if the perturbation amplitude is non vanishing at the
base but tends to 0 at great distances, the flow is unstable. Now for w =0 and large

r eqs. (12) have, for breeze velocity profiles, leading order asymptotic solutions

c:FTr 1 e:F'Tr
(e ),

y o~ Yy~ o~ i27r2 (15)

E'y_r
so the boundary conditions are satisfied either by the first solution, if v is positive,
or the second, if 7 is negative. In both cases the amplitudes tend to zero at great dis-
tances, the numerator of eq.(14) is always positive, v is also positive, and, provided
eigenmodes cxist, breeze solutions are unstable. Numerical solutions show that this
is indeed the case: in fig.(2a) we plot the growth rate of the instability as a function

of base Mach number. The growth rate is largest for high values of the base Mach
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numbers but both the static atmosphere (Mp = 0) and the critical breeze (Mg = M,)

ity

are marginally stable. In the latter case the perturbation equations become singul

at the sonic point, because the phase speed of the inward propagating wave vanishoes

there: an additional regularity condition must be imposed in the stationary cqua-

tions, effectively isolating the region below the sonic point from the region beyond

it. This is the mathematical reason behind the stability of flows with a continuous

subsonic/supersonic transition.
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Fig. 2. left: Growth rate v of breeze instability as a function of base Mach number
(¢/c? = 5.0). Marginal stability is obtained for My = 0, Mo = M.. Right: Maxiinal growth
rate for breezes (continuous line) and subsonic accrotion (dotted line) as a function of the
position of the outer boundary r, The two lines join in 7y = 7,, where v = 0.

The breeze instability is driven by the unfavorable stratification (eq.(11)). Imagine
a static atmosphere, and let the pressure at infinity increase: clearly an inflow, not an
outflow, is expected to result. That accretion breezes are stable follows immediately
from the analysis presented above; the denominator in eq.(14) changes sign, so the
only consistent way to satisfy the boundary conditions is to choose the second solution
in eq.(15), implying a negative value for 7. In fact, the stationary equations are
symmetrical in M, while the perturbation equations are invariant under a change

in sign of both A and 7.
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Given that breezes are unstable, we see that even in the pressure range pg, > Poo 2
P’ the only stable outflow is a supersonic wind with a terminal shock. What happens
if the pressure difference between the coronal base and the distant medium varics? As
Poo increases, the shock moves inward, decreasing in amplitude as the critical point
is approached. When the critical breceze is reached, there is no neighbouring outflow
solution capable of sustaining a higher pressure at infinity. The only possibility for the
flow is to collapse into its symmetrical (M — —M) critical breeze accretion profile,
which is also marginally stable. As the pressure is increased further. an accretion
shock is formed below the sonic 1)011.1t, connecting the symmetrical of the downward
transonic to one of the double valued curves in region IV, (as shown by the curve
labelled A in fig. (1)). For pas > pS, there is a unique shocked accretion flow (McCrea,
1956), and the shock position moves inward from the critical point as the pressure
is increased beyond pS, (if the pressure is too high, the shock may occur below the
normalization radius chosen). Consider now what happens if, starting from a shocked
accretion flow, the pressure at the surface increases, or alternatively the pressure of
the ISM decreases. The shock moves outwards, but this time, as peo ducreases below
pS,, the flow can evolve with continuity into subsonic accretion. As peo decreases
further, the accretion-breeze velocities decrease, but when pe, decrcases below pi,
the flow must accelerate again into a supersonic shocked wind.

The stratification produced by breezes, though globally unstable, is not locally
unstable everywhere: for example, below the critical point the pressure in breezcs
docreases with height more rapidly than in the static case. Inspection of eq.{7} actually
shows that this is true out to the radius r, where the Mach number of the flow has
decreased to the same level as the base Mach number, which may be calculated by
imposing M = My in eq.(7), i.c. 2logrs +g/r,—g = 0. This equation is independent of
base mach number, which also means that at this height the pressure is the same for
all breezes, while below this radius, the pressure at a given height is a monotonically
decreasing function of base Mach number. As the the boundary conditions are imposed
at closer and closer distances 7 the growth rate of the instability is reduced, and
marginal stability is obtained when ry = r,. Imposing boundary conditions below
this radius stabilizes the breezes, but consequently destabilizes subsonic accretion, as

is shown in fig. (2b), where the maximal growth rate for breezes (continuous line)
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and accretion (dashed line) as a function of ry 1s plotted. For large values of ¢ this
marginal stability radius depends exponentially on g as 75 > exp(g/2) — g/2.

When the boundary is at 1, < 7, the equilibrium flows still present an hysteresis-
type cycle in terms of the enthalpy jump between rp and the coronal base, but in a
reversed order with respect to that previously described: supersonic accretion is blown
into supersonic winds as the base pressure is increased beyond a critical value, while
an outflow breeze phase exists before the collapse to accretion as the pressure at the
outer boundary is increased beyond the value appropriate to a static atmosphere.

In generalizing to polytropic or other more realistic equations for the energy, some
attention is necessary since the density and pressure may fall to 0 at a finite distance,
and transonic flows do not. exist for all polytropic indices (v < 3/2 below the sonic
point is a necessary condition Parker (1963)). With thesc caveats, the discussion of
the isothermal case is casily generalized. The energy equation now becomes (as the

sound speed varies, ¢g is its base value)
24+ (= 1) —gfr =24 B/ (v - 1) -
v /(v 9ir =4 /2 + p/(y—1) - g.
For breezes the asymptotic behavior 4 ~ 1/r% still holds, so that in fact we Hay write
Sl =1) = v+ ey - 1) -
Co/ (v = 1) = vi/2+ /flv-1)—g

which shows that the tempoerature at great distances from the central object, increases
with the base Mach number, up to the value which, for a given base density and
pressure, gives a transonic flow (Holzer and Axford, 1970). Conservation of energy
across the shock then implics that independently of the asymptotic pressure, co is
always the same. It is still true that given the base density and pressure, for a range
of pressures at great distances between that of the static atmosphere and that of the
critical breeze there are two solutions, an unstable breeze (or stable accretion) and a
shocked wind, but now the thermodynamic state of the distant medium is different,

the breeze having a higher density and lower temperature,

2 Kinetic models of the solar wind expansioh

In fluid models of the solar wind, a fundamental role is played by transport cocfficients

such as the heat conduction, whose properties are well defined only if there are small
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gradients in the system and the distribution function do not depart significantly from
a Maxwellian. For example, the conditions for the applicability of the K ~ roT?/*
thermal conduction law, which relies on collisions, is that the mean free path be much
smaller than the characteristic scale of the temperature gradient, a cordition which
is verified below about 15 solar radii. Also, we have seen that the conditions for the
clectric field to become greater than the Dreicer electric field are easily overcome in
the solar coroﬁa. Finally, distribution functions in the solar wind, shew significant
anisotropics in temperature as well as aceclerated populations (sce e.g. Marsch 1991).

To begin the study of kinetic models of coronal evaporation consider first the
separate behavior of clectrons and protons with identical temperatures in the solar

gravitational ficlds. From hydrostatic equilibrium one finds that

ap. g

B = -—mcnc;.;, (16)
ap; g
W = —Tn,inir_.z, (17)

from which it follows that the electron scale height is much larger than the proton

scale height

e 1

e = Hcg(}.\'])(—g;; (1 - 1—)), (18)
; 1

Ty = nz-oexp(-—g’:;: (1- F))' (19)

and thercfore quasi-neutrality is violated. What happens is that the charge scparation
creates a polarization electric field, known as the Pannekoek-Rosseland (PR) field,
which lifts the protons and pulls the electrons back in order to ensure quasi-ncutrality.
Problem : show that the PR ficld is given by

Mp = Me §

Ern = he 17

(20)

Because the mean-free path of particles increases with height due to the decrease in
density, one may estimate a radius above which collisions will no longer be impor-
tant. This leads to the separation of the solar corona into two regions: a collisional
barosphere and a collisionless exosphere, whose base is taken to be at that distance
ro where the mean free path A is equal to the scale height H. For typical coronal val-

ues, this exobase is located between 2 and 10 solar radii. One may now use Vlasov's



11

cquation and a Maxwellian distribution function at the exobase to determine how the
distribution evolves with height.

Problem : show that the solution is given trivially by the fact that F is only a function
of the constants of the motion, so that F{r, v) = Fo(ro, vg).

Using the PR field and a 10® K temperature Chamberlain obtained a mean flow
speed at the carth’s orbit of around 10 km/scc., and this was the main reason he
defended the "breeze” hypothesis against the Parker "wind” model. Subsequent mod-
ifications which allowed for an energy-dependent exobase, yielded an increase of the
speed to about 140 km/see but still much less than the speed obscrved. A major
breakthrough was however made by Lemaire and Scherer, {1971) and Jockers (1970),
who realized that the polarization field in a flowing atmosphere must be much larger
than the PR ficld. The reason s that otherwise the sun would contimously charge

itsell: compare the proton and clectron escape velocities

g e@p(ro)y1/2

v, = (22 - p0El)y /2

F ( To 7”,]; ) (21)
7 egr(ro)\1/2

P — L =

v, (21.0 2= ) , (22)

where the potential from the PR clectric feld {which vanishes at infinity) is given by

_ Mp — e g
d(r) = LTl (23)

It follows that 7n, Ve2 = m,,sz in 7 = 79; one may then integrate over the Maxwellian
distribution function to find the fux of particles which have v > V and therclore
contribute to the mass flux in the wind. The result is that the ratio of clectron to
proton flux is F,/F, = \/mvm—e ~ 41 and the sun would become positively charged.
Problem : prove the result above.

In reality one must adjust the electric field so as to satisfy both quasi-neutrality and
conservation of current, instead of taking as a given the PR field (which was derived
assuming a static stratification). The Vlasov equation is again a function only of the
constants of notion, which, taking the radial magnetic field into account, are the total
energy (sum of kinetic, polarization potential, and gravitational) and the magnetic
moment. Charge conservation and the Vlasov equation are solved iteratively until

convergence is achieved. Lemaire and Scherer showed that for an exobase at 3.5R,
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and the usual 106 K corona the actual potential was about, twice as large as the PR
potential (600 Volts vs 270 Volts), and that with such a potential in fact the effective
escape speed for protons falls to zero, i.e., all outgoing protons escape, while clectrons
are divided into three categories: escaping, ballistic, and trapped. They obtained an
outflow velocity of 240 km/scc at carth's orbit. The major pitfall of such models
as compared to observations is the dramatic decrease in perpendicular to parallcl
proton and clectron temperatures, which comes from the conservation of magnetic
moment in a radially expanding magnetic ficld (B ~ 1/r%). In reality, the same
problem would arise also in the abscnce of magnetic fields because of conservation
of angular momentum, which would also lead for individual particles to vy ~ 1/r.
Nonetheless, Hundhausen (1972) was able to conclude his discussion by saying that
the predictions of the exospheric models “are in better agreement with obscrvations
than the predictions of basic fluid models™. Unfortunately, while in the subsequent
twentyfive years much attention has been given to fluid modcling, little has been done
to overcome the temperature anisotropy problem in exospheric models, a problem
which must find its solution in the interaction of the plasma turbulence chserved in
the wind with the distribution functions.

Recently, the Lemaire and Scherer (1971) model has been updated by Maksimovic
et al. (1997a), in that a distribution function for protons and clecirons more closcly
resembling those observed in situ has been taken as initial condition for the Vlasov
equation. This class of distribution functions, the & distribution, has, with respect to
a Maxwellian, an extended high energy tail. Interest in this kind of distribution has

been sparked by the possibility of explaining the question of the heating of the corona

and expansion of the wind via a very straightforward process known as velocity-

filtration (Scudder, 1992 a,b). For a Maxwellian distribution function, which scen as
a function of kinetic and potential energies is separable as well as self-similar, the
temperature (second order moment of the distribution) does not change with height
(gravitational or electric potential). If on the other hand there is an excess of high en-
ergy particles, these will climb through the gravitational potential and preferentially
survive at greater heights, leading to a wider (hotter) distribution. Though the ques-
tion of whether such distributions may be created at chromospheric levels remains

an open one, it is true that « function distributions fit the solar wind electron distri-
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butions remarkably well, as shown in Maksimovic et al. (1997b), and the correlation
distribution-width wind speed has the proper sign, i.c. wider distributions “go faster”,
as predicted by the theory, which can casily produce speeds at 1 AU in excess of 500
kin/see, with all the drawbacks and simplifications discussed above. It therefore Seemns
that kinectic solar wind models are reaching a competitive stage, though the ultimate
aim should be to construct a theory which converges to fluid closures and is both
in agreement with present observations, and predictive as concerns possible future

missions, such as the solar probe.

3 Alfvénic Fluctuations and the Solar wind

Fluctuations in the high-speed solar wind streains with periods below a few hours,
and down to periods of minutes and less are found to be dominated by what is
known as Alfvénic turbulence, that is a well developed turbulence spectrumn which
has all the propertics of a flux of large amplitude, constant magnetic field magnitude
Alfvén waves propagating away from the sun. The properties of such fluctuations
have been summarized in Grappin ot al, (1993) as far as Helios observations arc
concerned, while the observations within the high speed flow at polar latitudes by
the Ulysses spacceraft are described in Horbury et al. (1996) . Denoting the magnetic
fluctuations and velocity fluctuations by b and v respectively, and defining z*¥ =
v Fsign(B)b/\/mp, (we have incorporated changes in the sign of the average field
in the definition of Alfvén waves), we may characterize Alfvénic turbulence by the
relations 8|BJ* << |b]?, i.c. small total magnetic intensity fluctuations; [z*| >> [z,
i.c. outward propagating waves dominate ;l6p/p|? << [v/Cs|? = M2, where C, is the
sound speed and My the turbulent Mach number. In standard MHD turbulence on
the other hand, all the <<, >> above become ~. With little exceptions, at at least
at solar minimum, solar wind turbulence varies continuously between the Alfvénic
state (in the polar wind and in trailing cdges of high speed streams in the ecliptic
plane) and the standard state (slow wind at magnetic sector crossings). Incompressible
MHD turbulence predicts Alfvénic turbulence as the asymptotic outcome when initial
conditions have u =~ 6b/\/(47p) (u being the absolute value of velocity fluctuations).
There is somne indication that this result is also valid in compressible MHD, while the

observed evolution with heliocentric distance is such that Alfvénic turbulence decays
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towards "standard”: the power index of the transverse magnetic ficld spectrum is
typically a ~ —1 for lower frequencies close to the sun, decreasing to the Kolmogorov
value a ~ —1.6 at higher frequencics. The bend in the spectrum moves to lower
frequencies with increasing distance from the sun, the evolution being somewhat faster
within high-speed streams in the ecliptic plane and slower in the polar wind. Together
with the evolution in the shape of the spectrum, the specific energy in the fluctuations
also variés with distance from the sun, in a way which is roughly consistent, e ~ r!
(r being heliocentric distance, normalized to the solar radius), with the conservation
of wave action at the lowest frequencics (~ 10~*Hz). Suggestions to solve this paradox
have included nonlinear cvolution due to the in situ gencration of inward modes in
the solar wind (such modes are necessary, in incompressible MHD, to have nonlincar
interactions) and the interaction of the waves with the large scale magretic field and

velocity shears in the current sheet and between fast and slow streams, as will be

discussed further below in the section on turbulence.

3.1 Propagation through a static atmosphere

The basic equations for transverse magnetic ficld (b) and incompressible velocity (v)
fluctuations may be written in terms of the Elsasser variables (defined above) which
in a homogeneous medium describe Alfvén waves propagating in opposite directions
along the average magnetic field Bo:

oz * + . F 1os_t
7t +V, - V¥ Fz -VVG:!:§(Z -z*)V-V, =0, (24)

where V, is the mean (large-scale) Alfvén velocity. The first two terms in eq.(24)
describe wave propagation; the third term describes the reflection of waves by the
gradient of the Alfvén speed along the fluctuations (which vanishes for a vertical
ficld in a planar atmosphere, but is different from zero in the more realistic case of
a spherically or supraspherically diverging flux tube); the fourth term describes the
WKB amplitude variation (which occurs because energy flux must be conserved in
the medium with variable wave speed) and the isotropic part of the reflection. In
eq.(24) gravity and terms involving the gradients of the average density along the
Auctuation polarisation are absent: this is because the average magnetic field and

gravity are assumed to be collinear. Eq.(24) then describes the parallzl propagation
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of fluctuations in the plane perpendicular to B, or in the case of spherical or eylindrical
symmetry, the propagation of toroidal fluctuations in the equatorial plane. In more
general cases the magnetic, velocity and density fluctuations arc coupled together via
magnetoacoustic modes, a process we neglect here but will come back to in subsequent

sections. Conservation of net. upward energy flux may be written ag
St~ 8" =S5., 8% =FV,zt/s, _ (25)

where S, is the constant flux and F = pr? (r is the normalized radial distance from
the base of the atmosphere and o is the infinitesimal flux tube expansion factor: g=0,
2 in a plane and spherical atmosphere respectively). One may then define the
transmission coefficient across an atmospheric layer bounded by regions of constant
Alfvén speed by applying the boundary condition that only an outward propagating
wave should exist above the layer in question: T is then given by T = Seo/ S, where
See coincides with the energy flux carvied by the outwardly propagating wave, while
S& is the outward propagating encrgy flux at the atmospheric base. Note that for
waves of frequency w and wavevector & = w/Va, €q.(24) becomes, after elimination of

the systematic amplitude variation of z¥ througl the renormalization 2% = /1%
Y I g !

2 ket 1k—lz:F =0, (26)
2k
(a prime denotes differentiation with respect to 7). With the propagation equation
written in this form, it becomes obvious that the relative importance of reflection (the
term coupling of z* and 27) and propagation are determined by the non-dimensional
ratio €, = |k'/2k%| = {V//2 :|. Velli (1993) Velli, 1993 discusses the properties of
q.{26) in detail, and develops a gencral formalism for obtaining approximate analyt-
ical solutions by dividing the region of propagation into intervals where €, < 1 (prop-
agation dominates over reflection), and regions where ¢, > 1 (reflection dominates).
An important point to recall is that for very long wave-length waves propagating over
a region with varying Alfvén speed the transmission cocfficient may be simply written

as
. 4VatVar
B (Vat + Var)2,

where V. indicate the Alfvén speed on either side of the layer.

(27)
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For an isothermal, static, spherical corona and a radial magnetic field the Alfvén

speed depends on radius as

V; o 1 GM
V, = %ﬁexp((i(l——;)); a=-ﬁ(é, I<r <o, (28)

where C; is the isothermal sound speed, Ry the coronal base raiuds. The parameter
o, for the sun, typically lics hin the range 4 < a < 15 for coronal iemperatures
botween 8.0 10° — 3.0 10° °K. For this family of profiles, the Alfvén spced first
increases exponentially, has a maximuminr = a /4 and then decreases asymptotically
as V, ~ r=2. The general behaviour of T may be gleaned from the low frequency
approximation eq.(27) if onc is carcful to remember that the thickness of the reflection-
dominated layer depends on the frequency and extends from r = 1 (for frequencies

such that e(r = 1) € 1 to the distancery where € = 1. Writing 2 = wRy/ Ve one has
=1 — 2 = 1/r2exp(a/2). (29)

In othier words the corona becomes transparent to Alfvén waves at a distance r, =~

(:xp(a/G)Q‘1/3, where the value of the Alfvén speed is
_ v 0280 (&
Ve = Vapf? cxp(a). (30)

Substitution into eq.(27) then shows that transmission for very low frequencies should
incroase like 2273, reach a maximum where V, = Vjo and then dccrease again as
-2/3. This was shown in Velli, 1093, where the value of the transmission at the
maximum was computed both numerically and analytically (its value is not 1, but
about 0.6). The above result holds true provided a is large enough (& > 8) so that the
region where the Alfvén speed reaches a maximum (and where propagation always
dominates) is small enough (in fact, it is the presence of the maximum and hence of
two distinct non-propagating regions on either side of the maximum to yield the factor
0.6 mentioned above). For smaller values of  one only sees a monotonic increase of the
transmission with frequency going as £22/3 _ For the range of temperatures compatible
with the solar corona wave periods below 15 minutes are completely trensmitted, and

even for periods of a few hours transmission is above 50%.
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3.2 Propagation in the solar wind

In the above discussion the presence of the solar wind, which becomes fundamental
above a few solar radii. In this case the wave propagation cquation becomes (Heine-

mann and Olbert, 1980),

+
1
-g-? +(U£V,) Vz* 427 . QU FV,) + 57 ~2h)V (V. ¥ %U) =0, (31)

where U is the average wind velocity. The wind and Alfvén speed profiles correspond-
ing to the previous isothermal atmosphere are now (introducing the mach number

M =U/C,)

1, 2
(M= )M === 50 V= Vo (U U2 (52)

For waves propagating in the wind, the energy flux is no longer conserved since the
wave pressure does work in the expansion. The wave-action however is still conserved,

+ V,)?
§* -5 =S, st=plUEV) = ) [2%1°/8, (33)

where I is the geometrical factor defined previously. With a conserved flux (in this
case the wave action) one can still associate a transinission cocfficiont as long as there
is a position where there is no “inward propagating” wave. Itom ¢q.(33) it follows
that the inward flux vanishes at the Alfvénic critical point where the solar wind speed
cquals the Alfvén speed, so that T = S, /57, where now however the wave action
flux is determined by the amplitude of the outwardly propagating wave at the critical
point as Soe = S = Flz*|2/2. Remarkably, the transmission 7T for moderate to high
frequencies in this case parallels the static computation exactly, and the conclusions
of the previous paragraph remain valid. At the lowest frequencies instead one finds a
transmission coefficient which is significantly enhanced. This may be understood by
rewriting eq.{31) in the low frequency case in terms of yt = (U £V,)z%:

yi’__l.ﬁﬁ__l. v Y

+
hlll =0 34
37,0 TElg Ty (34)
which has the two solutions (as in the static case) yt = 4y, Imposing that y-
vanish at the critical point then gives (Heinemann and Olbert, 1980,Leer E. ct al.

1982, Hollweg, J.V., & Lee, M.A., 1089)

1 Usap, V,
£y o+ U
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and the subscript denotes quantities calculated at the Alfvénic critical point. For the
low frequency limit of the transmission we obtain

4U0Vag Z+§ _ 4Vu0Vac

T= = .
(Uo + Vo) 2ty (Vao + Vac)”

Thus we see that it is possible to have perfect transmission at low frequencices, if the
Alfvén speed at the coronal base and the critical point are ‘tuned’ close to the same
value. We remark that the above result is independent of the position of the coronal
base, provided the geometry allows for the propagation of a pure Alfvén-type wave.
The meaning of the transmission coefficient into the wind requires sorae discussion
however since we have scen that it is calculated exactly at the Alfvén critical point.
Beyond this point both “inward” and “outward” modes are carried together outwards
because the wind speed is greater than the mode propagation speed, so that in this
sense it is a good definition. However it is not true that at greater distance the
amplitude of the inward mode vanishes, on the contrary, the normalized cross-helicity

2 __2
2t -2

(35)

O = ——
2
2+ 2

which in the static case is by definition equal to one when there is only an outward
propagating wave {in which case the specific encrgy in velocity and magnetic ficld
fluctuations is the same) continues to evolve. In the spherically expancing case, the
behaviour of . beyond the critical point depends on the frequency. This may be
seen using a particularly simple model for wind velocity and Alfvén speed at large
distances: U = Uwo, a constant, so the radial Alfvén speed goes as Ve = Vao/T.
Eq.(31) may now be rewritten as

VCI.OO VGOC

T

(U £ ) =0. (36)

)z*’ — iwRgz* + 21—r(2+ +27 ) U F

An eikonal expansion which treats the boundary condition at the critical point
correctly (sce e.g. Barkhudarov (1991) , Velli et al. (1991) ) then shows that at large

distances
-1
A -((1 - 4w2meR§/U;‘°)% - 2inmR0/Uoo) 2~ +0Q/r)z". (37)

For all frequencies greater than wy = U2 [2V,c Ry the normalized cross helicity o,

increases with distance beyond the Alfvén critical point to a frequer.cy-dependent
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limiting value which tends to one at, high frequencies as 1 — (wo/w)?. At frequencics
below wp however o, decrcases with distance and tends asymptotically to 0, i.c., we
have total reflection at infinity. This critical frequency has a straightforward physical
interpretation, in terms of the relatjve strength of the wave coupling and gradient,
or rather expansion effects. An Alfvén wave is a coupling of transverse magnetic and
velocity fluctuations in which the underlying field-line tension provides the restoring
force. In the presence of a wind, the equations are modified by the outward flow,
but the angular momentum and magnetic flux must be conserved. This translates
into the appearance of a decaying terim in u/r for the transverse velocity fluctuation
u in the momentum cquation, and a decaying term b/r for the transverse maguetic
field & in then induction cquation, which disappears if § is renormalized with the
square root of the density (i.e. one writes it in terms of the transverse alfven velocity
b=b/\/T4np) as was done carlicr in defining the Elsasser variables). The equations

for the fluctuations then become

0 7 ‘/;lm U
_0’: + Ugoti! — —= v+ :ou =, (38)
I/IICM.\ !
g%) + Unob' — 7 w =0, (39)

which are the same as ¢q.(36) where we have neglected the gradients of the Alfvén
speed with respect to the divergence of the bulk velocity field in the last term in
parentheses of eq.(36).

At large distances and to lowest order oscillations with frequency w have a wave-
number given by kRy = w/Uy (first two terms in eqs.(38,39). If the Alfvén speed
is vanishingly small (i.e. low-frequency oscillations) the magnetic and velocity fields
are decoupled entirely, the transverse velocity decays as u ~ 1/r while the magnetic
field is constant. This translates into a cross-helicity which tends to zero at great
distances. If the Alfvén speed is not negligible, one may substitute for the terms of
type Voo b’ /7 the value obtained with the wave-number £y to get Vaoo Rowb /Uy r.
This term depends on r in the same way as the angular momentum conservation
term U u/r in eq.(38), the relative magnitude of the two being given dimensionally
by wVacoRo/UZ, = w/2uwy. Therefore, for frequencies much larger than the critical

one, the Alfvénic coupling is important, and in this regime u,b are constrained to
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evolve together (i.e. reflection may be neglected), both fields decaying asymptotically
u,b~1/ \/fr). For frequencies below the critical one, the ficlds of course decouple as
shown more rigorously by the expansion ¢q.(37).

The critical frequency is a number of some importance: in the high-speed solar
wind streams, where U ~ 800 km/scc, and assuming a typical value for the Alfvén
speed V, =~ 50 km/sec at R =1 AU, we obtain wp ~ 4.27 10~ %sec, corresponding to
a period of about 41 hours. This is quite a long period, while Alfvénic turbulence is
seen at periods substantially lower, from several hours to a few minutes, and indeed

the specific energy in this range appears to fall as r—!, which is consistent consistent

with u, b~ 1//(7).
4 Turbulence in the solar wind

The shape of the velocity and magnetic ficld spectra observed in situ are strongly
sugmestive of a nonlinear cascade, where one expects to find energy on all possible
wavevectors, although not uniformly distributed: a specific property of turbulence is
the scale invariance of the energy spectrum, which manifests itself in the form of a
power-law speetrum. This viewpoint was first adopted by Coleman (1968). The large
scales show a dominance of kinetic energy over magnetic energy (f < 1071 Hz) while
at smaller scales both kinetic and magnetic energies are approximately of the same
order of magnitude. In this last range, the spectral index is between 1.5 and 1.7: these
values are comnpatible with the spectral slopes that one expects on the basis of cither
fluid or MHD turbulence (as will be shown below). Moreover, density fluctuations are
usually weak, 8p/p < du/c, (where ¢y is the proton thermal speed): this means that
the amplitude of compressible waves is small. It is this range, between 10-1 Hz and
1 Hz, which we shall call the Alfvénic domain. On the other hand, Belcher and Davis
(1971), observed that, dﬂring a substantial portion of the time (the so-called " Alfvénic
periods”), the velocity u and the magnetic field fluctuations b not only are of the same
magnitude, but are almost completely correlated: z¥ = u £ b/y/ dnp is often very
small, depending on the polarity of the average field Bg, so that the waves propagating
away from the Sun appear to dominate. This suggests that the fluctuations consist

of linearly propagating waves, a possibility confirmed (Dobrowolny, Mangeney, Veltri
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1980a) by inspection of the incompressible MHD equations in a uniform ficld in static

cquilibrium which may be written formally as

Oz* + lo o ¥ +
.Bt_..:{:vn-'('/'z =-—;V}) —(Z -Vz —'); (40)

where Vo = By/(4dmp) is the Alfvén velocity and p? is the fluctuation in the total
(kinetic and magnetic) pressure; introducing the Fourier amplitudes of z%, 2%, the

Fourier transform of equ. (40) may be written as

Oz : +
(E_ F i‘,k'VﬂZk) = _/;_Hrk Akpqz;fzgfdsq, (41)
where the tensor Ay, has components
kg ki k
Akpq“,,, =k ((5,'[ - _.1..:.2_) + Ky (‘L’m - ;sz) + Kby, — Koy bt (42)

It is clear from ¢q.42 the nonlinear interactions vanish when cither 2t or 2= s
zero. The existence in the solar wind of a well established, scale-iuvariant spectrum
made up of non-interacting waves is problematical, as remarked by Dobrowolny ot al.
(1980a): given a solar source of outgoing waves, the observed spectrum should reflect,
its properties, as well as the filtering of the intervening medium, and hence gaps in
the spectrum or peaks at some typical generation frequencies (or harmonies) should
appear, which is not observed in the data.

However the standard situation is that of a mixture of both types of Alfvén waves,
with moderate dominance of outward propagating waves, so that the nonlinear cou-
plings are not vanishingly small. For cxample, on the average, the ratio z¥ /2 cal-
culated between 107* and 102 Hz, was about 0.6 during the first three months of
the Helios mission (at heliocentric distance between 0.3 and 1 AU and at solar mini-
mum). Consider first this quasi-symmetric regime (z* ~ z7), which one may attempt
indeed to describe by "standard” MHD theory,as first proposed by Coleman (1968).
Just as in any wind tunnel, one can not expect to observe fully developped turbu-
lence too close to tunnel entry; some time must be allowed to let the non- lincar
effects to develop significantly. This time is the turnover-time 7, which for an eddy
of size { depends on the rms energy contained around this scale, about u? if u is the

velocity fluctuation amplitude within the eddy: 7w ~ {fu= (U/w)T,if T = /U is
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the typical timescale measured in the spacecraft frame. At a given heliocentric dis-
tance R, the transport time by the average flow is T¢r = R/U . A third time scale,
Tad ~ 1/(V-U) = =(1/p)Dp/Dt, describes the rate of change of the plasma specific
volume 1/p associated with the geometry of the expansion, and does not depend on
the spatial scale of the eddies. The adiabatic and transport times are of the same order
of magnitude in the supersonic region of the wind (they are identical for a spherical
cxpansion with constant speed ) For example at R =0.3 AU, the distance of closest
approach of the Sun by the Helios spacecrafts, 7 = R/U =35h; an inspection of
figure 1 shows that in the Alfvénic range of periods 1h > T > 3 mn, u/U =~ 0.05,
and thus 1, < T ~ taq. If we follow a plasma parcel which is convected with the
wind, nonlinear cffects will strongly affect. only the part of the spectrum for which
thie average turnover time is smaller than the transport time. Therefore the width of
the inertial range, if one does exist, must depend on the radial distance. Except if the
spectrum is very steep, the nonlinear time decreases with the scale; hence there will
always be a critical scale L(R) ~ (u/U)R below which nonlinecar effects dominate (Tu
et al. 1984). As heliocentric distance R increases, the adiabatic time also increases,
and so does L(R), as long as u does’nt decrease as fast as R}, i.c., as long as the
turbulent specific energy does not decrease as fast as R_». The nonlincar interactions
are thus free to redistribute the energy among the degrees of freedom available be-
twoeen the scale L{R) and a dissipation scale lg ~ lg. A fully developed tarbulent state
is expected when several orders of magnitude separate the two scales (L(R) > la).
According to the Kolmogorov (1941) theory, two properties characterize such a state.
First, the cnergy dissipation rate is independent from the viscosity of the fluid, i.e.,
it reaches a finite value in the limit of zero viscosity.

Since the nonlinear interactions respect the conservation of energy, the dissipation
rate must be given by the energy injection rate 9 = ¢, which either comes from an
external source, or from the largest, energy-containing eddies (here at scale L{R)).

Sccond, the energy is not transfered directly from the largest scale down to the
dissipation scale, but instead is transfered via successive interactions between smaller
and smaller (but at each step comparable) wavenumbers (ie., in equ.(1b), the domi-
nant contribution to Aypq comes from interactions with |p| ~ lq] ~ {k| ) whence the

name "energy cascade”. During this cascade, eddies of a given size | break into smaller
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eddies, but are regenerated by the larger eddies, and so on; since all scales are in ener-
getic equilibrium, the energy dissipation rate of cddices of size 1, J1(1), is independent
of the scale [, i.e., it is equal to elI(l) =19 = ¢ Let 7*(l) be the characteristic time

for an eddy of size ! to transfer its cenergy E(l), so that
1I{l) ~ E(O) /(1) (43)

Since the energy transfer in an ordinary fluid results essentially from the self-distortion
of the eddy, the transfer time is simply equal to the turnover-time Tt Assuming that
the interactions are local in wavenumber space, it may be written as 7,;, ~ L/u(l).
Using E(/) ~ u®(1), we finally obtain that E(l) ~ (c)*/3, or since {with k ~ 1/0)
E(l) ~ [kE, dk' ~ kE,:

o, ~ KV = ¢ (44)
and the scale-invariance of the flux leads then to By ~ 52/3k_5/3, which is well known
the Kolmogorov spectrum. Now, consider the case of a conducting fluid imbeddwl
within a uniform magnetic field |, and assume that there are incompressible flue-
tuations, in the form of Alfvén waves. The essence of the Iroshnikov’s (1963) and
Kraichnan’s (1965) theory is to recognize that the sclf-distortion, in a large-scale
magnetic field, is replaced by weaker intoractions between propagating Alfvén waves,
The propagation introduces an additional timescale, the Alfvén time 74 ~ 1/Va, and
the cffective energy transfor time 7+ is no longer equal to the eddy-turnover-time r,,.
Indeed, noting that, to lowest order, the nonlinear terms couple linear solutions (i.c.
Alfvén wavepackets) propagating in opposite dircctions, the coherent interaction time
is reduced to 74, which is smaller than the eddy-turnover-time by the factor dB/Bs.
The amplitude change during a typical "collision” is proportional to 6B/By. Assuming
that successive collisions of wavepackets are independent, it is found that the tirne
7" for a full interaction is such that 7, - Tt T 0T @ls0: 7% ~ (7 /70 )Ty ~ (Bo/dB) T,
which may be much longer than 7. Now, replacing the turnover-time by the effective

transfer time 7* in the expression of the energy transfer rate IT of equ.(43) , we obtain

Iy ~ kE*/V, = K*E} )V, (45)

and again imposing a constant dissipation rate ¢, this leads to E(I) ~ (eV,)!/2, or

Ex ~ (¢Va)!/?k=3/2, which is the Iroshnikov-Kraichnan spectrum.
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Although the solar wind is neither incompressible, nor isotropic, or homogencous,
the observed slopes are close to those inferred by the above arguments. While Cole-
man (1968) argued in favor of an Iroshnikov-Kraichnan spectrum (-3/2 slope), most
of the observational evidence seems to be for spectral slopes in the solar wind turbu-
lence very near the Kolmogorov slope, as soon as the heliocentric distance is larger
than about 1 AU (see for example Bavassano B., and E.J., Smith, Radial variation of
interplanctary Alfvenic fluctuations: Pionnier 10 and 11 observations between 1 and
5 AU, J. Geopliys. Res., 91, 1706, 1986). The present state of numerical simulations
does not help to clarify the situation: even when the conditions are favcrable (an in-
compressible, homogenous fluid with large scale magnetic ficlds) it is difficult, because
of the limited resolution available, to mecasure spectral slopes accurately enough, and
thus to determine which of the Kolomogorov or Iroshnikov-Kraichnan phenomenology
is valid (sec,c.g., Biskamp and Welter, 1989).

The preceding arguments assume implicitely that both field amplitudes 7t and
»~ are comparable. As remarked before, in » Alfvénic " situations this is not the case.
From the MHD cquations (la), one sces that the turnover times for z+ and 27 eddies

in reality depends on the amplitude of the other ficld (see Dobrowolny ct al 1980b):
% = 1fz¥. (46)

Nonlinear interactions conserve separately the cnergies EX in both fields. It is thus
legitimate to consider the possibility of separate energy cascades, via distinct fluxces
IT+ and IT—. If one assumes that the Iroshnikov-Kraichnan decorrelation cffect holds,

then equal JI* and /T~ fluxes are obtained:

I} = 17 = KEFEg /Va. (47)

This formula again leads to the Iroshnikov-Kraichnan spectrum (proportional to
k—3/2) when both amplitude are comparable . When the z* asymmetry becomes large,
eq.(46) does not provide a unique determination of the spectral slopes m*,m™; it only

predicts that their sum should be equal to 3 (Grappin et al, 1983):

m* +m” =3 (48)
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In order to obtain a relation between the slopes and the fluxes a more claborate
theory is needed: we shall come back to this point in the next section. On the other
hand if one assuines the interactions to be coherent as in Kolmogorov's theory (sce
Matthacus ct al. 1983), i.e., assumes the transfer times % to be equal to the turnover

times, then the transfer rates are distinet:

IIE = K*PEFES (BF)/2 = o+ (49)

In this case, the constraint of constant fluxes leads to the Kolmogorov spectra for
both fields, whatever the asymmetry in the fluxes %,

As scen in the paragraphs on lincar evolution of waves in the solar wind, the
expansion effects appear as supplementary tertns in the equation, which involve the
“average” Allvén and advection velocitios Vi and U and their radijal derivatives. The
definition of the timescale T over which the full equations are averaged in order to
separate the large-scale wind expansion from the small-scale fluctuations is somewhat
arbitrary. The basic requircinent is that T~ should be less than the lowest, frequency
considered. The amplitude can then be split in two parts, an average < z > and a
Hluctuating z. Upon substraction of the time average from the original MHD equations
and assuming incompressible fluctuations, one obtains now the full equations (Whang,

1980):

+ 1 1
_{);T +(V,*) vaF 4 2F. v(V,F)+ i(zi - ﬁ)(iv-U £ V-V,) = (50)
= —lva — (2¥ - Vzt— < 27 . vy >,
P

where Vyi = UxV, is the linear group velocity . An equation for the evolution of the
quadratic quantities, such as the energy spectrumn, may be obtained by multiplying
equ.{50) by z*(x', ¢, averaging and then Fourier transforming with respect to the
“fast” variables x — x', ¢t — ¢'. Assuming isotropy and time stationarity of the spectral
quantities, one obtains equations for the specira which‘depend both on wavenumber
k (fast variable) and distance r (slow variable) (Marsch and Tu 1989):

1 oIt
VA(VEEE(@D) + Ef(r)EV-U +ME(r) = a—kk (51)
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where the derivatives in the lhs denote derivatives with respect to the slow variable
r. In eq.(51) the first term is the wave cnergy flux, the second term is the work done
by the waves in accelerating the bulk flow. The third term M¥ represents the linear

coupling between the two wave specics, due to the large scale inhomogencities:
1 1.
ME(k,r) = -2z © (VV;’: - Eéij(V-Vﬂ + EV-U)) (52)

and effectively couples the £ equations with that for the residual energy EF = z% -
z— = (u? — b?). Its order of magnitude may be estimated as ~ E"/74¢. In the lincar
case of transverse Alfvén waves, M* and the nonlincar terms may be reglected,(the
distinction between energy spectral densitics and encrgics at a given scale may in
this case be dropped without altering the equations), and eq.(51,52) raduces to the

equation of conservation of the adiabatic invariant §* = EX/(k.Vy):
V-(VESE) = 0.

In the solar wind the Alfvén speed may be neglected compated to the wind speed, so

that we obtain from eq.(52) (Jacques, 1077):
V- (UpE*) + pEEV-U/2=0

which in a spherical expansion at constant speed gives E* oxr~! {recall that BY is
the specific energy; the result usually quoted is pE* o r7%). Both specira Et and
E- thus decrease with distance in a sclf-similar way, i.e., without changing their
shape. The observations confirm that this simple linear description i valid at low
frequencies, between (2- 10~4, 2-10~?) Hz, while at larger frequencies they show that
total turbulent energy decays more rapidly than simply predicted by the adiabatic
change, suggesting again that turbulent dissipation (and thus nonlinear interactions}
are at work (Bavassano et al, 1982; Schwenn 1983).

These considerations apply only in the inner heliosphere. Indeed, at larger dis-
tances from the sun, the encrgy decay rate appears to be roughly frequency inde-
pendent (Bavassano and Smith, 1986). The radial dependence, however, is o 773.5,
which is slightly steépef than the WKB dependence. In order to explain the changes
in spectral shapes in the inner heliosphere, Tu et al (1984) and Tu (1988) developed a
model in which the nonlinear flux on the rhs of eq.(51) is calculated following dimen-

sional analysis as described in the previous section {eq.47) or eq.(49): isotropy in k
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Is necessarily assumed, so that the flux depends on the wavevector amplitude only).
To close their equations, they assume the residual energy to be negligible, (M* = 0).
Morcover, the ratio @ = E*/E~ is chosen to be a constant, fitting an average ob-
served value, and a spherically symmetric background wind is assumed, so that they
finally obtain from eq.(51) a single equation for the spectral evolution of E1, with the

nonlinear flux term given by one of the two expressions:

H;j- =A -—-————akgE: ()

v,

for the cases of strong magnetic ficlds (IK) and Kolmogorov’s theory respectively (A

(@, I} = Bak®2E¢ ()2 (1), (53)

and B are coustants of order unity). The model describes the two regiiaes on cither side
of the critical scale L(r) at which 7,;; Tad. At small wavevector the noulinear cffocts
are negligibly small, the only modifications are limited to the WKB decay u? oc ™t
at larger wavevector they dominate so that locally an equilibrium spectrum ju k=53
is maintained (or k=32, depending on the form (a) or (b) of the nonlincar flux (11))
the WKB effects acting to fix the cuergy level at a given frequency. In this way, when
starting with a flat (k=1) spectrumn as similar to what, is observed at 0.3 AU, one
obtains the steepening towards cquilibrium spectrum, first at high frequencies, and
later on at low frequencies.

The model by Tu et al (1984) and Tu (1988) approximates the ratio E*/E~ by an
observational constant. However, both E* and B- obey coupled evolution equations,
the coupling occuring through expansion and nonlinear effects. Hence there is no rea-
son to expect that the ratio remain constant. Then one may speculate on whother the
situation found in the Alfvénic periods, where 2~ <« z¥, is the result of the evolution
of the turbulence, or is a distinct property of high speed winds. A particular MIID
mechanism, called “dynamic alignment” was proposed by Dobrowolny et al (1980b)
to explain why the spectra were well-developed even when the inward mode encrgy
E™ is very small. They suggested that in MHD turbulence, the velocity and magnetic
field become more and more aligned due to nonlincar interactions, thus enhancing
with time any initial imbalance between both inward and cuward component. The ar-
gument, which follows directly from the IK theory, is that the turbulent dissipation of
both encrgics is the same (eq.(47)), so that the energy difference, i.e. the v.b correla-

tion C = (E* — E~)/2 stays constant while the total energy E = (E* +E~)/2 decays,
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and the proportion v = C/E of the initially dominant (z*) species indecd grows with
time during the nonlincar interactions. However, the evolution towards alignment is
very stow, in fact too slow to take place in the solar wind between, say, 0.3 and 1 AU
(Grappin et al., 1982). Sccond, and most importantly, the evolution actually scems
to proceed in the reverse way in the solar wind: Roberts et al. (1987) found that
in the average, the outward dominance tends to decrease rather than increase with
heliocentric distance in the 0.3 AU-20 AU range. The explanation of the decrease of
outward dominance at long distances may be that, in the solar wind, most of the
energy is initially stored in the velocity shears due to the coexistence of high speed
and low speed streams (Sturrock and Hartle, 1966): the nonlinear transfer of this
pure kinetic energy towards small scales should sweep out any initial outward/inward
anbalance of smaller scale eddics (sce the closure calculations by Grappin ct al. 1983,
the simulations by Roberts et al. (1990), and the analysis by Roberts et al. (1987}).
Another difficult question is to understand why the relative density fluctuations
arce an order of magnitude lower in the Alfvénic periods than in the non-Alfvénic
periods, while the turbulent Mach numbers are comparable or higher. This contradicts
the known fact that a compressible flow naturally develops density fluctuations whose
amplitude depends essentially on the turbulent Mach number (see Passos and Pouquet
1087 for numerical experiments in the hydrodynamic case, and Montgomery et al.,
1087, Shebalin and Montgomery, 1988 in the MHD case). One often invokes the larger
damping of magnetosonic waves to explain the low level of density fluctuations, in the
Alfvénic periods, but then why is it that the same damping does not work in the slow
winds? Or is it because there is not cnough time to couple compressible and solenoidal

fluctuations in the fast wind?
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