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1 INTRODUCTION

The nonlinear magnetohydrodynamics (MHD) involves a variety of complex phenomena. It is
well nigh impossible to construct physically nontrivial theory from a direct analysis of the basic
cquations. To elucidate a specific phenomenon, we must apply a reduction of the model with
appealing to scale separations, singular perturbations, coarse-graining (averaging), etc.

In this paper, we discuss a slow motion (or a steady state) of a low-pressure magnetized
plasma. In more specific terms, we consider the following singular limit. The general MHD
equations read, in the standard normalized units,

v = —(v-VIv+e2(VxB)x B—pVp+erAv, V.v=0, (1)
B = Vx{(vxB)-e¢Vx(VxB). (2)

Unknown variables are the magnetic field B, the flow velocity v and the pressure p. The Alfvén
number ¢4, Lundquist number ezl, Reynolds number eﬁ‘, and the beta ratio 8 are nondimen-
sional positive parameters. The incompressibility condition (V - v = 0) may be replaced by an
evolution equation for the pressure p in a more sophisticated model.

This system of nonlinear parabolic equations (1)—(2) is a close cousin of the Navier-Stokes
system describing neutral fluids (see [1, 2] and papers cited therein). The MHD system includes
coupling between the magnetic field and the flow velocity through the nonlinear induction effect
and its reciprocal Lorentz force, which adds a considerable complexity to the usual Navier-Stokes
system. Surprisingly, however, we observe a more regular and ordered behavior in some MHD
systems. Such phenomena are highlighted by a singular perturbation of €% — 0, with fixing the
time-scale, in the momentum-balance equation (1). This limit is amenable to slow motion of a
strongly magnetized low § plasma. The determining equation becomes the force-free condition
(V x B) x B = 0, which is equivalent to the Beltrami condition

Vx B=JB. (3)
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Here A is a scalar function. By the solenoidal condition (V- B = 0) and identity V-(V x B) = 0,
taking the divergence of the both sides of (3) yields

B.Vi=0. (4)

Since (4) means that the function A should be constant along the streamline (field line) of B,
analysis of the system of equations (3)-(4) requires integration of the streamline equation

d

| 7.2 = B(=). (5)
The solenoidal condition (V - B = 0) parallels Liouville’s theorem for the Hamiltonian flow,
and hence one can formulate (5) in a canonical form [3]. For a general three-dimensional B,
the solution of (5) exhibits chaos. Hence, the general analysis of the system (3)~(4) includes an
essential mathematical difficulty. Two special cases, however, can be studied rigorously. Ore is
the case where B has an ignorable coordinate (two-dimensional). Then, (5) becomes integrable,
and the system (3)—(4) reduces into a nonlinear elliptic equation [4, 5]. The three-dimensional
problem involves the non-integrable streamline problem (5), however, it is decoupled from the
Beltrami problem (3)-(4), if we assume a constant A that make (4) trivial.

The plan of this paper is as follows. In Sec. 2, we give a concise review of the physical
background of the Beltrami condition in plasma physics. The constant-\ Beltrami field is
considered to be a “ground state” of a turbulent plasma. We define a mathematical problem
that characterizes such an equilibrium, and discuss its implication in the “dynamo theory” of
astrophysics. Section 3 is devoted to the mathematical analysis of the constant-A Beltrami
field. In Sec. 4, we develop a statistical mechanics of the MHD equilibrium that is amenable to
the constant-A Beltrami condition. Interactions among elements with inhomogeneous A yield
chaotic oscillations. In Sec. 5, we introduce a reduced finite-dimension model of such nonlinear
dynamics, and present results of numerical analysis. The reduction from PDE into ODE uses
2 unique technique based on the singular perturbation, which differs from the usual mode
truncation.

2 CONSTANT-LAMBDA BELTRAMI FIELD

The constant-A condition for the Beltrami field is a strong ansatz based on the following physical
reasons. The streamline equation (5) in a three-dimensional magnetic field is generally non-
integrable, and hence, we may assume that streamlines (magnetic field-lines) are embedded
densely in a volume. Since (4) demands that A is constant along each field line, it is natural
to assume a constant A over such a volume. The theory of energy relaxation also derives the
constant-A condition. Woltjer [7] pointed out the importance of the magnetic helicity

K=—1-/A-de.
- 2Jq

Here VX A = B, £ is the entire volume of the plasma and dz is the volume element. The
viscous dissipation does not change the helicity K, while the magnetic energy diminishes to-
ward a “ground state”. The magnetic field self-organized through this energy relaxation is
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characterized by a minimizer of the magnetic energy W = f;; B*dx/2 subject to a given helic-
ity. This variational principle reads as §(W — AK) = 0, where A is the Lagrange multiplier.
The formal Euler-Lagrange equation, under appropriate boundary conditions, is identical to
(3). Taylor [8] formulated an equivalent variational principle, however, his model is based on
a different hypothesis to justify the preferential conservation of the helicity. The energy dissi-
pation proceeds faster than the change of the helicity, if the resistive dissipation is dominated
by spatially concentrated fluctuation currents (see also Hasegawa [9]). Both effects, the viscous
dissipation, resulting in ion heating, and the resistive dissipation, resulting in electron heating,
were compared for a specific relaxation process [13].

There are many different observations suggesting the creation of constant-A force-free fields
in astrophysical, space and laboratory plasmas. Magnetic flux tubes (flux ropes), in which field
lines are twisted, are produced through interactions between the magnetosphere and interplan-
etary magnetic fields [10]. In a laboratory plasma, detailed measurements of magnetic fields
showed that the field produced after self-organization through turbulence is closely approxi-
mated by a solution of (3) [8]. Galactic jets are also considered to have similar configurations
of magnetic fields [11].

The Beltrami field plays an essential role in the so-called “dynamo theory”. To understand
the rapid generation of magnetic fields in astrophysical systems, we have to invoke a “fast
dynamo action” that has a growth rate of the magnetic energy independent of the resistivity
(see {6] and papers cited therein). In a highly conductive plasma the evolution of the magnetic
field B obeys Faraday’s law (2) with ¢, — 0. A plasma flow v with chaotic streamlines (maps
with positive Lyapunov exponents), which may have a large length-scale, bring about complex
mixing of magnetic flux, and the length-scale of the inhomogeneity cascades toward a small
scale, resulting in amplification of the magnetic field. If the length-scale reduces down to the
dissipative range, and the resistive damping becomes comparable to the induction effect, then
the magnetic field energy turns to diminish. In this classical picture of the kinematic dynamo,
the magnetic field energy accumulates into small scale fluctuations, and the life-time of the
amplified magnetic field is limited by the time-scale of the cascade process. To obtain a larger
length-scale and a longer life-time of amplified magnetic fields, an appropriate limitation for the
scale reduction should occur. The nonlinear effect of the amplified magnetic fields, that is the
Lorentz back-reaction, plays an essential role in this “post-kinematic phase”. Here we assume
that the plasma achieves a quasi-steady state through the energy relaxation process. Then, the
momentum balance equation reduces into (3), and the flow v must be chosen in such a way
that B satisfies (3) implicitly. The parameter A characterizes the length-scales of B. Hence,
the condition (3) imposes a bound for the length-scale of the field, if the magnitude of A is
restricted by some reason. This bound avoids scale reduction down to the resistive regime, and
extends the life-time of the amplified magnetic field.

Through the kinematic dynamo process, the current (< V X B) tends to concentrate in
small volumes, which may be disconnected. When the sectional length-scale of such a volume
becomes small enough, the Lorentz force dominates (e} < 1). Let § to be such a “clump”
of the magnetic field. Its length-scale is denoted by £.. This f2 may have a complex topology.
We want to find a constant- Beltrami field in 2. If the parameter A can be chosen such that
[A] € Ac = O(£;1), then equilibration of the clump into such a Beltrami field results in a lower



bound for the length-scale. Here we solve the Beltrami condition (3) for a given helicity and an
“external magnetic field”. The external component of B is defined by decomposing B = Bg+h,
where V X h = 0 and V -h = 0, This k, which represents the magnetic field rooted outside £,
is assumed to be a given function. Its complement By, is the unknown variable. We define the
gauge-invariant helicity by

IC=./QA-B}:J$ (6)

We prove the existence of a solution with |A] < A. = O(£;!) for every k # 0 and X in the next
section (Theorem3). The nonvanishing h plays the role of symmetry breaking.

3 EXISTENCE THEOREM AND COMPLETENESS THE-
OREM

The constant-A Beltrami condition (3) is regarded as an eigenvalue problem with respect to the
curl operator. Interestingly, the topology of the domain plays an essential role in this eigenvalue
problem.

To study the spectrum the curl derivatives, we need the fundamental theory of vector function
spaces, Let Q (C R®) be 2 bounded domain with a smooth boundary 95 = Ur T (T is a
connected surface). We consider cuts of the domain 2. Let £y,.-+,E,, (m > 0) be cuts such
that Z; N Z; = @ (i # ), and such that Q\ (U, £;) becomes a simply connected domain. The
number m of such cuts is the first Betti number of . When m > 0, we define the flux through
each cut by

‘I’}:,.(u)z'[sln-uds (i=1,2,-++,m),

where 7 is the unit normal vector on I; with an appropriate orientation. By Gauss’s formula,
®y5,(u) is independent of the place of the cut £;,if V.-u=0in 2 and n-u = 0 on 89.

We denote L?(12) the Lebesgue space of square-integrable (complex) vector fields in £, which
is endowed with the standard innerproduct (a,b). We define the following subspaces of L2();

L3() = {w; V-w=0inQ, n-w=00naqQ, Pz, (w)=0{(i=1,---,m)},
Li(Q) = {Ri V-h=0,YXxk=0in®, n-h=0on o0},

LE(Q) {V¢; A =0in 0},

LHQ) = {V¢¢é=c(€C)onT;(i=1,--,n)}

We have an orthogonal decomposition [15]

L) = LE(Q) & Ly (Q) o LE(Q) & LI(Q).
The space of solenoidal vector fields with vanishing normal component on 89 is

L3 () = LE(2) © Ly ().



The subspace L} () corresponds to the cohomology class, whose member is a harmonic vector
field and dimL%(2) = m (the first Betti number of ). When £ is simply connected, then
m = 0 and L}() = #. We have the following expression

L) ={Vxw; we H(Q), V-w=0in , n X w=0on 30}
z

This implies that a member of L1(f2) can be expressed as the curl of a vector potential with
the boundary condition » X w = 0. We note that a member of L2(f2) may not allow such an
expression. We also note

LX(Q) = LX) & {Ve; ¢ € AY(N)},

which implies that L2(£) is the orthogonal complement of the space of potential flows. This
relation is called the Weyl decomposition. The gauge-invariance of the helicity X defined by (6)

follows from this orthogonality.
We now study the spectra of the curl operator. A key step of the theory is finding a self-adjoint
curl operator {14]. We have the following theorem [14].

Theorem 1 Let & C R3 be a smoothly bounded domain. We define a curl operator S in the
Hilbert space L%(SY) by
Su=Vxu DGS)={uelld); VxueclIli()].

Then S is a self-adjoint operator. The spectrum of S consists of only point spectra o,(S), which
is a discrete set of real numbers.

If  is multiply connected (m > 0), it is interesting, both mathematically and physically, to
extend the domain and range of the curl operator to the space L2(1} [14]. As an intermediate

step, we consider another curl operator

Tu=Vxu, DT)={ueli(®); Vxueli(Q)}

Lemma 1 For every A € C\ 0,(S) and for every f € L2(R), the equation
(T-Au=F ™

has a solution.

(proof) First we show the existence of 77, i.e., for f € L2(Q) we solve Tu = f. Let f be the
0O-extension of f in R3, i.e.

f(z)= { f%‘”) :: ;g’



By f € L2(f), one observes V - f = 0 in R®. We denote by (~A)~! the vector Newtonian
potential. We define wg = V X [(—-A)™? f] in ¥, We denote by Pg the orthogonal projection in
L*(Q) onto L%(Q), and define ug = Prwy. Since L%(Q) is orthogonal to Ker(curl), we observe

Vxug=Vxw=Vx{Vx[-A)"F]
Since V- [(~A)~1f] = 0, we obtain V x {V x [(~A)~1f]} = —A[(-A)~'f] = . We thus have
a solution 771 f = V x uo.

Next we solve (7 — Nu = f, for f € L2(2). We decompose f = g + h with g = Pgf and
h € L} (). Let ug = T-'h and w = u — ug. Then (7) reads

(T-Xw=g+Iup € LE(Q). (8)

For A € 0,(S), we may define w = (5§ ~ A)~!(g + Auo) € D(S), which solves (8). In summary,
we have a solution of (7)

u=T"Th+ (S~ XN (Pef + AT"1h).
(Q.E.D.)
Theorem 2 In L2() we define a curl operator § by
§=Vxu, DE)={uel?Q); VxueclIL(Q)}.

(i) When dim L}(Q) =0, i.e. if Q is simply connected, then § = S, and hence, the spectrum
o(8) = op(5).

(i) When dim L} (Q) > 0, ie. if Q is multiply connected, then $ is an extension of S. The
spectrum or(S) consists of only spectra ap(S ), and 0,(8) = C. Hence, for every A € C,

(S-Nu=0 (9)
has a nontrivial solution.

(proof) The first part is straightforward. We prove the second part. For A € a,(S), this has a
solution as shown in Theorem 1. We assume A ¢ 0,(S). For a given h € L%(92), the equation
(T~-ANv=2Ak

has a solution (Lemma 1). Then, the function u = v + A [€ L2(2) n H1{11)] solves (9).
(Q.E.D.)



Theorem 2 proves the general existence of the constant-A Beltrami function for every A € C,
if §2 is multiply connected. In the next theorem, we solve the constant-A Beltrami equation (3)
for a given helicity X and harmonic field A € L}(2). Now ) is an unknown variable. This
problem is related with the magnetic clump discussed in Sec. 2.

We assume that Q is multiply connected. Let {tp_,-} be the complete set of the eigenfunctions
of the self-adjoint curl operator S (Theorem 1). The corresponding eigenvalues are numbered
as

eSS <0< S pp S (10)
For every B € L(f2), we have an orthogonal-sum expansion
B(:l:,t) = Z cj(t)‘Pj(z) + h(zvt)! (11)
J

where h € L%(?). The harmonic field k is a given function, which plays an important role of
“symmetry breaking” in the following discussion. The first summation in the right-hand side
of (11) is denoted by By. The energy of B is given by

1
W= 25 e+ oIkl (12)
J

There exists g such that A = V X g (Lemma 1). The vector potential of B is given by
c:
A=Y 2o +g. (13)
; b

Denoting D; = (¢;,g), the gauge invariant helicity (6) becomes
1 1, c?
K=-(A,Bg)=< Z(-—- + Dje;). {14)

For given K and h, we can solve (3) by the variational principle §(W — AK) = 0, and obtain
Al

;= ————D; (V7). 15
€; 2(}1.«; — /\) 2 ( J) ( )
The energy and the helicity become
Ml 2, 1z Auj(2p5 — A) )
W=2 8- a0t Ihll K= E 8(uj — A)? (1)

We can show that KX is a monotone function of A in the range of p_; < A < g1 (see definition
(10)), if D; # 0 (35), viz., if we have a “symmetry breaking” h # 0. For every x € R, the
equation K(A) = x has a unique solution in this range of A. Now we have the following theorem.

Theorem 3 Let @ (C R?) be a multiply connected bounded domain. Assume that b (€ L} (92))
is finite. For every k (€ R), the Beltrami condition (3) has a unique solution B such that its

kelicity K = k, and A such that p_; < A < py.
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4 STATISTICAL EQUILIBRIUM

The complexity of the nonlinear dissipative dynamics of a plasma invokes a paradigm shift to
a “coarse-grained” model. Using the phenomenological variational principle (W —-2K)=0
(Sec. 2), we develop a statistical mechanical mode! that reproduces the constant-A Beltrami
field at the “zero temperature limit". A finite femperature (in the sense of MHD fluctuation)
equilibrium includes fluctuations. The statistical theory predicts the spectra of macroscopic
physical quantities such as the energy, helicity, etc.

A key step is to find an invariant measure of the temporal evolution equation. It corre-
sponds to Liouville’s theorem in the Hamiltonian dynamics. Montgomery et al. [16] used the
“Chandrasekhar-Kendall functions”, which are the eigenfunctions of the curl in a cylindrical ge-
ometry [17], to expand the solenoidal vector fields B and v, and defined an infinite-dimensjonal
phase space spanned by the expansion coefficients. The formal Lebesgue measure is shown to be
invariant against the nonlinear ideal (¢g,€;, — 0o) dynamics. The completeness theorem of the
eigenfunctions (Theorem 1) gave a mathematical justification of the expansion, and generalized
the Hilbert-space approach for an arbitrary geometry. An important development in recent
work [18] is the treatment of the harmonic magnetic field, which brings about a symmetry
breaking associated with a topological constraint. When we consider a multiply connected do-
main, the harmonic magnetic fields, which are rooted outside the domain, are represented by the
cohomology class. If we impose the ideal conducting boundary conditions, these harmonic fields
are invariant. The rest orthogonal complement spans the dynamical phase space. The invariant
harmonic component plays the role of an externally applied symmetry breaking. Interestingly,
this term yields “power-law spectra” of the energy, helicity and helicity fluctuation.

In this section, we give a brief sketch of the statistical mechanics of MHD.

Proposition 1 (Invariant Measure) Let v(z,t) be a smooth vector field in 1. Suppose that
B(z,t) obeys

6B =Vx(vxB) inQ, (17)

nX{vxB)=0 on . (18)

Using the eigenfunctions of the curl operator ®; and the harmonic field ke, we write (cf. (11))
m

B(z,t) = 3 _ci(the;(z) + 3 érl(t)he(z). (19)
i =1

Then, dC = dé; -+ dé,, H,’ dc; 18 an invariant measure,

(proof} By the boundary condition (18), we observe dé,/dt = 0 (V¢). Using (17) and (18), we
obtain

d -
75 = (Vx(vxB)p))=(vx B,V xg;)= (v x B, |
= Aj [): k(v X @p,0;) + 3 &u(v x ht,‘P,-)] . (20)
k =1
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Since (v X ;) - p; =0, we find 8(de;/dt)/8c; =0 (V¥j). Hence the measure dC is invariant.

(Q.E.D.)

The ansatz of the variational principle (W — AK) = 0 suggests that two additive quantities
W and K are the relevant state variables that characterize the statistical equilibrium. The
possible ensemble consistent with this variational principle is the Boltzmann distribution

P(W,K)  exp|—A(W —~ AK)] (21)

where 8 is interpreted as an inverse temperature of the magnetic field. The helicity and the
energy of each mode is (¢/u; + Djc;)/2 and ¢2/2, respectively. The Boltzmann distribution
for the amplitude ¢; is

[ ﬂ 2 A 2 hY
P; o< exp __E ¢ — -#—jcj - ADje; |}, (22)
The ensemble averages of W and K over the phase space become
i ' 32,2
B of 2
W) = + D, 23
W= 2|50 -0 ¥ 8- ] 9
[ 1 M (205 — X)
Ky = 4 =R D3 . 24
) ZJ: 48(pi —A) ~ 8(ui—A)? (24

These results are compared with (16). The first term of the right-hand side of (23) and that
of (24) are the contributions of the fluctuations. In (23), the energy of the harmonic field,
which is constant here, is omitted. This classical statistical model suffers from the Rayleigh-
Jeans catastrophe, viz., when we pass the limit of the infinite summation over the all modes, the
fluctuation terms diverge. To avoid this divergence, we can appeal to the Bose-Einstein statistics
with second-quantizing the mode amplitude ¢; and defining bosons MHD fluctuations [18].

5 REDUCED MODEL OF WEAK INTERACTIONS AND
CHAOS

In this section, we consider nonlinear interactions among plasma elements with inhomogeneous
). Each element satisfies the constant-A Beltrami condition (3). Different elements are separated
by a thin layer where the magnetic field lines are weakly chaotic. Hence, the connection lengths
among different elements are considerably long. If we consider a small deviation from the

Beltrami condition (3), and write

VxB=AB+a, (25)

then (4) receives a small correction and becomes

(B-V)A=-V-a. (26)

9
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Figure 1: Feigenbaum diagram for R in the range of 2.0 x 10 — 3.8 x 104,

Integrating (26) along a field line, we obtain a finite inhomogeneity in A after a long distance.
This allowas us to assume inhomogeneous A in the following discussion. We consider a cylindrical
plasma with radial inhomogeneity.

We introduce a reduced ODE system. The basic idea of the reduction is the use of the
Beltrami condition (V x B = AB) to convert the spatial derivatives in the PDE system (1)-(2)
into the multiplying of A. We note that this procedure differs from the Fourier decomposition
and truncation, which are usually used to derive reduced models in different problems. For each
mode of Fourier decomposition, we can replace derivatives by multiplying of wavenumbers. In
the present method, the conversion applies to the exact function, not to expansion modes.
The X is a dynamical variable to be determined by the evolutions equation. Here we invoke a
quasilinear turbulence model of MHD fluctuations (see [19, 20, 22] and papers cited therein).

Magnetic field B is decomposed into the fluctuating component b and the ambient component
By. For the plasma velocity v, we also assume two components; One the a uniform flow V
and the other is the fluctuation ¢ driven by the MHD instabilities. Assuming a quasilinear
turbulence of resistive instabilities, we may write the ensemble average of the nonlinear term
(® x b) in terms of the growth rate of the instability, the energy of fluctuations, and some
geometric factors. The parallel (with respect to the mean magnetic field Bg) component of
(% % b} makes an essential contribution, which is denoted by —El(lz). The quasilinear turbulence
theory [20] yields :
B = -V - (nVjiy0),
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where n{?) is the hyper resistivity given by

q(g) E |b F ( f‘z ) (27)
o (“), R NI R yTE N

Here the subscript & indicates a Fourier component of the fluctuation, v; is the growth rate
and k) is the parallel wavenumber with k(i) = 0. The ensemble average of Faraday’s law (2)

becomes

b= —eLV x (V xb)+ V x (V x b~ E[Vz), (28)
We assume By = Vz. The Beltrami condition reads V x & = A(b + By). We obtain

Vx(Vxb) = A%+ VAx(b+ Bg),
Vx(Vxb) = -(Vxb)xV==XbxV.

We consider a low pressure plasma, so that the parallel component of b is neglected. In the
cylindrical coordinates such that Vo x Vr = V2 ( and r are the angle and radial coordinates,
respectively), we write p = b, and ¢ = b,. Inhomogeneity of the plasma is assumed in the
direction of Vr, We may write the ¢ and r components of (28) as

8p = =~ Np-Vig, (29)
8, = —egXlq+Vip—0, El(f’ (30)

The last term in the right hand side of equation {30) represents the effect of the MHD fluctua-

tions. We can write (2)
SE™ 2 99282

“8r T po Or ort

Two unknown variables p and ¢ represent the amplitude of the magnetic perturbation b. The
third unknown variable A characterizes the “curl” of b. The equation obeyed by A, which is also

derived from (28), becomes [22]

8

8iX = C(p)*A?3 "+Eh,\2

where E}, is the external driving electric field.
We note that the factor 82A/8r? represents the diffusion of the helicity induced by the MHD

fluctuations. We discretize the radial coordinate into points where some different instabilities
are resonant. Replacing the spatial derivatives of the helicity diffusion by difference quotients,
we obtain the reduced model equations

Pn = "‘GL’\npn ~VAngn, (31)
gn = —eLAnq,, + VaAnpn + Qu(?n—ls?n«{-l ) ’\n 11 Ans ’\n+1) (32)
An = ’\1?1 (Ln(pﬂ': n—la)\ﬂr’\ﬂ'{‘l) + Eh)’ (33)

11



10 -

final value ——
average —+—

sk

st

)

4F

1F

o A A 'l i

Za

Figure 2: Dependence of the Ljapunov dimension on N.

where n (= 1,2,--- N) indicates the nth radial position,

2C (pﬂ+1)2 _ (pn—1)2 An-i-l + A1 — 2\
A A2 !
2’\n+1 + An—1 ~ 2A,
A? ’

A is aradial distance between the radial grid points, and N is the number of interacting islands
with different helicities.

The model equations (31)-(33) generate chaotic orbits of the solution. The typical parameters
are

Qn(Pn—thH: Al'l—-:ly Am An-i-l) =

Ln(?m An=1) An, ’\n+1) = C(Pn)

A= 1000 ~ 1, pl, gl =107 ~ 1073, ¢, =10"% ~ 10°F,
C =101 ~1, A~10" V=105 ~ 1073, E,=10"% ~ 10~7.

Changing the Lundquist number R = ¢;! (magnetic Reynolds number), we observe bifurca-
tion and inverse cascade in the chaotic behavior of the solution. Figure 1 shows the Feigenbaum
diagram, where we plot peak points of the time series with changing R. Here we fix other
parameters as N =3, C = 1.0, A=0.1,V = 7,72 x 10~% and E; = 1.0 x 10~%, We observe
two branches bifurcate into chaos. For a larger R, the chaos quenches and periodic attractor
appears.

The total number N of modes defines the freedom of the model equations, which is 3 x V.
Figure 2 shows the dependence of Ljapunov dimension D son N,
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Part II
Simultaneous Beltrami Conditions in Coupled Vortex Dynamics

1 INTRODUCTION

The Beltrami condition, an expression of the alignment of a vorticity with its flow, describes
the simplest and perhaps the most fundamental equilibrium state in a vortex dynamics sys-
tem (Sec. II). The resulting Beltrami fields constitute a null set for the generator of the evo-
lution equation describing the vortex dynamics. It is also believed that the Beltrami fields are
accessible and robust in the sense that they emerge as the nonlinear dynamics of vortices tends
to self-organize the system through a weakly dissipative process.
The simplest example of a Beltrami condition is provided by a three dimensional solenoidal
field (flow) u obeying
Vxu=Au (in ),
(1)
n-u=0 (on 89),

where ) is a real {or complex) constant number, £ (C R3) is 2 bounded domain with a smooth
boundary 8§ and n is the unit normal vector onto 8Q. This system of linear equations is
regarded as an eigenvalue problem with respect to the curl operator, The spectral theory of
the curl operator reveals an interesting relation of this problem with the cohomology theory [1].
We have the following theorem.

(i) If Q is simply connected, then (1) has a non-zero solution for special A included in a set
of discrete real numbers; these numbers represent the point spectrum of the self-adjoint
part of the curl operator.

(ii) If 2 is multiply connected, then (1) has a non-zero solution for every A € C [2].

The aim of this paper is to generalize this theory for “coupled” (or higher-order) Beltrami
conditions [3] that describe structures far richer than the ones contained in the single curl
Beltrami equation (1). In an ideal plasma, the coupling between the magnetic field and the
plasma flow yields the “double curl Beltrami equation”

Vx(Vxu)+aVxu+pu=0 (in ),
(2)

n-u=0, n-(Vxu)=0 (on 8%1),

where u is either the magnetic field or the flow velocity of the plasma (Sec. IIT). Applying the
spectral theory of the curl operator, we will show that (2) has a non-zero solution for arbitrary
complex numbers a and §, if the domain £ is multiply connected (Sec. IV). The method of
present theory applies for general multi-curl Beltrami equations obtained from simultaneous
Beltrami conditions in coupled systems.



2 VORTEX DYNAMICS AND BELTRAMI CONDITIOS

We start with reviewing the prototype equation for vortex dynamics. Let w be a three-
dimensional vector field representing a certain vorticity (contravariant vector field) in R3. We
consider an incompressible flow U that transports w. When the circulation associated with the

vorticity is conserved everywhere, this w obeys the equation
i
E—w——Vx(wa)=0. (3)

In R?, the vorticity becomes a pseudo-scalar field w, and the vortex dynamics equation can be
cast in the form of a Liouville equation

a
-8_t-w + {¢,W} =0, (4)

where ¢ is the Hamiltonian of an incompressible flow and { , } is the Poisson bracket, i.e.,

_{ 9¢/0y _9¢0w 8¢ 0w
The Beltrami condition with respect to (3) is
U = pw, (6)

where 4 is a certain scalar function. This condition assures the vanishing of the generator of
the vortex dynamics equation (3). For (4), the Beltrami condition is simply

¢ = f(w)v (7)

which implies the commutation of the vorticity and the Hamiltonian of the flow.
The simplest example of the vortex dynamics equation is that of the Euler equation of in-
compressible ideal flows. Let U be an incompressible flow that obeys

SU+(U-V)U = ~Vp, (8)

where p is the pressure. Taking the curl of (8), we obtain the evolution equation for the vorticity
w = V x U, which reads, in R3, as (3), and ir R?, as (4). In the Beltrami flow, w parallels U,
ie.,

VXU =pU. (9)

We note that (9) is not Galilean invariant. We thus consider a bounded domain and impose
a boundary condition (see (1)) to remove the freedom of the Galilei transform. Taking the
divergence of (9), we find that the scalar function x4 must satisfy

U.-Vu=0, (10)



demanding that 4 must remain constant along each streamline of the flow U. An analysis of the
nonlinear system of elliptic-hyperbolic partial differential equations (8)-(10) involves extremely
difficult mathematical issues. The characteristic curve of (10) is the streamline of the unknown
flow U, which can be chaotic (nonintegrable) in general three-dimensional problems. If we
assume, however, that x is a constant number, the analysis reduces into a simple but nontrivial
problem, i.e., the eigenvalue problem of the curl operator. In this paper, our analysis is restricted
to this mathematically well-defined subclass of Beltrami fields.

We end this section by reviewing another example of vortex dynamics; the magnetohydrody-
namic (MHD) description of a plasma. The two principal equations of the ideal (dissipation-less)
conducting-fluid model are

E+Ux B =0, (11)
%U+(U-V)U=%(Jx3-vp), (12)

where U, J, E and B are, respectively, the flow velocity, the current density, the electric field
and the magnetic field measured in a certain fixed coordinates, and p is the fluid mass density
that is assumed to be constant. We may write

9

E = -5 A-V (13)

J = Lluxnm (14)
Ho

in terms of a vector potential A (such that V x A = B) and a scalar potential ¢. Using
Faraday's law
0B/8t= -V X E,

and taking the curl of (11) and (12), we obtain

%B—Vx(UxB):O, (15)
%w—Vx(JxB-i-wa):O, (16)

where w = V x U. The Beltrami conditions for this system of vortex dynamics equations are
J =B = paU = pzw. (17)
Using (14) in the first equality of (17), we get
VxB=uB, (18)

which implies that B parallels its own vorticity (cf. (9)). This configuration, for which the
magnetic stress J X B vanishes, is aptly called “force-free”.

In order to characterize the stellar magnetic fields, solutions to (18) were intensively studied
in 1950s [4, 5, 6]. For u # 0, the magnetic field B has a finite curl, and hence, the field lines

3



are twisted. The current (proportional to V x B), flowing parallel to the twisted field lines,
creates what may be termed as “paramagnetic” structures. Such twisted magnetic field lines
appear commonly in many different plasma systems such as the magnetic ropes created in solar
and geo-magnetic systems [7], and galactic jets [8). Some laboratory experiments have also
shown that the “relaxed state” generated through turbulence is well described as solutions of
the force-free equation [9, 10]

In the next section, we will show that a more adequate formulation of the plasma dynamics
allows a much wider class of special equilibrium solutions. The set of new solutions contains
field configurations which can be qualitatively different from the force-free magnetic fields.

3 DOUBLE CURL BELTRAMI FIELD

The two-fluid model for the macroscopic dynamics of a plasma differentiates between the elec-
tron and ion velocities. Denoting the electron (ion) flow velocity by V.(V;), the macroscopic
evolution equations become

7] -e 1
-EIVC‘I"(Vc'V)Vc-—;;(E'*‘VexB)‘_mvpci (19)
i) e 1

where E is the electric field, p. and p; are, respectively, the electron and the ion pressures, e
is the elementary charge, n is the number density of both electrons and ions (we consider a
quasineutral plasma with singly charged ions), m and M are, respectively, the electron and the
ion masses. In the electron equation, the inertial terms (left-hand side of (19)) can be safely
neglected, because of their small mass (m < M) [11]. Therefore, (19) reduces to

E+V,><B+£1-I-Vpg=0. (21)

When electron mass is neglected, V; = V, the fluid velocity. We introduce the following set of
dimensionless variables,

x=M& B =BoB,
t= (A'/VA)fi p= (Bg/#(!)fj: V= VA‘}’ (22)

A= (MBo)A, ¢=(VariBo)d,

where the ion skin-depth

is a characteristic length scale of the system, and the Alfvén speed is given by V4 = By//iioMn
(we assume n = constant, for simplicity) with By as an appropriate measure of the magnetic

field.
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Writing E = —8A/8f — V§, the dimensionless version of (21) and (20) now read as

%g=(v_§xa)x3_v(q‘s+ﬁ,), (29)
%(f/-;-,&):f’x(B+f’xf’)-'¢'(172/2+ﬁ;+43)- (24)

In what follows, we shall drop the hat for a simpler notation. Taking the curl of (23) and
(24), we can cast them in a revealing symmetric form

& ,
Et-w,'—V)((U_,‘ij)=0 (i=1,2) (25)

in terms of a pair of generalized vorticities .
w1=B, w2=B+VxV,

and the effective flows
Ui=V-VxB, U=V,

The simplest equilibrium solution to (25) is given by the “Beltrami conditions”
Uj=pw; (j=1,2), (26)

which implies the alignment of the vorticities and the corresponding flows. Writing ¢ = 1/,
and b = 1/u2, and assuming that @ and b are constants, the Beltrami conditions (26) read as a
system of simultaneous linear equations in B and V

B =a(V -V x B), (27)
B+VXV=bV, (28)

These equations have a simple and significant connotation; the electron flow (V — V x B)
parallels the magnetic field B, while the ion flow V follows the “generalized magnetic field”
(B + V x V). This generalized magnetic field contains the Coriolis’ force induced by the ion
inertia effect on a circulating flow.

Combining (27) and (28) yields a second order partial differential equation

Vx(VxB)+aVxB+pB =0, . (29)

where
a=t_p p=1-2L.
a a
The double curl Beltrami equation (29) encompasses a wide class of steady-state equations
of mathematical physics. The conventional force-free-field equation (18), which describes para-
magnetic fields, is included in this system as a special case; a = 0 and 8 < 0. On the other
hand, when a = 0 and 8 > 0, (29) resembles London’s equation of super conductivity with its
well-known fully diamagnetic solutions. We note that, in this version of the London equation,
the characteristic shielding length for the magnetic field is the ion skin depth c/wy;, instead
of the usual electron skin depth ¢/w,., because it is the ion-dynamics that brings about the
coupling of the magnetic field with the collective motion of the medium.
In the next section, we will study the mathematical structure of the double curl Beltrami
equation with arbitrary complex a and 8 [12].



4 BELTRAMI FIELD AND HARMONIC FIELD

The single Beltrami condition (1) is known to have a non-zero solution for arbitrary complex
number A, if the domain Q is multiply connected {1}. The harmonic field which represents the
cohomology class of the differential forms in §2 plays an essential role to generate the Beltrami
field. Similar relation holds in the double curl Beltrami equations (2). Here, we study the
relation between the topology of the domain  and the degree of freedom in the solution of the

double curl Beltrami fields.

It is convenient to denote the curl derivative Vx by “curl” to use it as an operator. Let us
rewrite the differential equation of (2) in the form

(curl = Ag)(curl = A )u =0, (30)

where

e = % [~at (o? - 48)7]. (31)

Because the two operators (curl — Az ) commute, the general solution to (30) is given by a linear
combination of two Beltrami fields. Let (4 be the Beltrami field such that

(curl— Ap)Gy =0  (in ),
n-Gy=0 (on 89).
Then, for arbitrary constants ¢4, the sum
u=c Gy +ec_G_ (32)

solves (30). Since n+-(VX Gy4) = Azn-Gi = 0 on 9Q, u satisfies the boundary conditions given
in (2). Therefore, the existence of a nontrivial solution to the double curl Beltrami equations
(2) will be predicated on the existence of the appropriate pair of single Beltrami fields (cf.
Appendix B). Let us briefly review the mathematical theory of single Beltrami fields [1].

Suppose that Q (C R?®) is a bounded domain with a smooth boundary 8§t = U]_Ii. We
consider cuts of the domain Q. Let Z;,-++,Z, (v > 0) be the cuts such that Z;nX; = 0 (3 # j),
and such that @\ (U¥_, Z;) becomes a simply connected domain. The number » of such cuts is
the first Betti number of 2. When v > 0, we define the flux through each cut by

Qj(ﬂ.):/nn-uda (G=1,---,v)
3

where n is the unit normal vector on Z; with an appropriate orientation. By Gauss’ formula,
®;(u) is independent of the place of the cut £;,if V-u = 0ir £ and n - u = 0 on 99

Let L*(Q) the Lebesgue space of square-integrable (complex) vector fields in §2, which is
endowed with the standard innerproduct

(a,b)='/;la-3d£. -

6
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We define the following subspaces of L3(Q):

I2(Q) = {w; V-w=0in N, n-w=00n8%, $;(w)=0(j=1,---,v)},
L} () {h; V-h=0,Vxh=0inQ, n-h=0o0n80},

LE(9) {Vé; A¢=0inQ},

LA = {V¢; ¢=ci(eC)onT;(i=1,---,n)}

in terms of which we have an orthogonal decomposition [13]
L3(Q) = LE(Q) o LL(Q) ® LE(Q) @ LE(R).
The space of the solenoidal vector fields with vanishing normal components on 81 is
LY(R) = LE(Q) © L ().

The subspace L};(£2) corresponds to the cohomology class, whose member is a harmonic vector
field and dimL%(Q) = v (the first Betti number of ). When  is simply connected, then v = 0
and L};(Q2) = 8. We have the following expression

L3 ={Yxw; we H(N), V-w=0in Q, n X w=0o0n 0},

where H1(Q) is the Sobolev space of first order. This says that a member of L(£) can be
expressed as the curl of a vector potential with the boundary condition n X w = 0,

The spectral theory of the curl operator provides the basic understanding of the mathematical
structure of the Beltrami equations. We repeat Theorem 1 of Yoshida-Giga [1].

Theorem 1. Suppose that Q is a smoothly bounded dornain in R?. We define a curl operator
S in the Hilbert space L%(Q) by

Su = Vxu,
D(S) = {ueli(Q); VxueLi(Q)}.

The S is a self-adjoint operator. The spectrum of S consists of only point spectrum o,(S) which
3 a discrete set of real numbers.

This theorem says that the Beltrami equation (1) together with the zero-flux condition (see
the definition of the space L&(f2)) has non-zerc solution only for special discrete real numbers
A € 0p(S). If 0 is simply connected (v = 0), the topological flux $;({ ) does not exist, so that
Li(Q) = L2(Q). If Q is multiply connected (v > 1), however, we can remove the zero-flux
condition assumed in Theorem 1, and consider a wider set of functions to find solutions of (1).
This is done by considering the curl operator defined in the space L2(Q). Let us trace the
method of Yoshida-Giga [1].

Lemma 1. For every f € L2(R), the equation
Vxu=f (inQ) (33)

7



has a unigue solution in LE(9).

Proof. Let f be the O-extension of f over R3, i.e.

e ={ 1 158

Since f € L2(f), we have V. f = 0 in R®. We denote by (—A)~! the vector Newtonian

potential. We define }
’ ' wo =V x[(-A)"1f] in Q.

We denote by Pg the orthogonal projection in L2(£2) onto L&(2), and define ug = Prwy. Since
L%(9) is orthogonal to Ker(curl), we observe '

Vxup=Vxw=9Vx{Vx[(-Aa)y'f]}.
Since V- [(=A)~1f] = 0, we obtain
v x{V x[(-4)7f]} = -Al(-4)' f]= F.

We thus find that o (€ LE(R)) is the solution of (33). Since LL(2) is orthogonal to Ker(curl),
this ug is the unique solution. O

This lemma shows that every solenoidal vector field (member of L2(f2)) has a unique vector
potential in the space L%(2). We apply this result to determine the vector potential of the
harmonic field (member of L%(Q)). Let v (> 1) be the dimension of L%(Q) (first Betti number
of ), and h; (j = 1,---,v) be the orthogonal basis of L} () such that

®,(k;) = -/;: n-h;ds=246;. (34)

By solving (33) for f = hj, we obtain the corresponding vector potential which we denote by

g_‘i' i.e.,
v Xg; = h.i (in Q)? g; € L?E(n’) (.7 = 11"'!”)'

Let us consider an arbitrary harmonic field and its vector potential, and write them as
[ 4 v
h = E{,h_’, g= EfJgJ (35)
=1 i=1

For every A ¢ 0,(S), the resolvent operator (§ — A)~! defines a unique continuous map on

L%(Q). We consider
v=Ag+ A{S - )7 g.

This v is the unique solution (in L}(2)) of

(curl = A)v = AR (in Q). (36)



liL

Now we find that ¥ = v 4+ h solves
(curl —=A)u=0 (in Q),

n-u=0 (on 89),

Since h (€ L%(92)) and v (€ LE(Q)) are orthogonal, u # 0.

We have shown that the single curl Beltrami equation (1) has a non-zero solution for every
complex number A, if the domain 2 is multiply connected. For A ¢ o,(S), the solution is
uniquely determined by the harmonic field k. Although (1) appears as a homogeneous equation,
the harmonic field (member of the kernel of curl) plays a role of a hidden inhomogeneous term;
see (36). On the other hand, for A € 0,(S), the solution is given by the eigenfunction of the
self-adjoint curl operator S. Therefore, the solution is a zero-flux field, and h must be set to
zero. The solution is not unique in the sense that any constant multiple of the eigenfunction is
a solution.

Because of (32}, it is now straightforward to generalize the theory for the double curl (and

multi curl) Beltrami equations.

Theorem 2. For a multiply connected smoothly bounded domain Q, and for all complez
numbers Ay and Az, the equation

(curl = Ap)(curl = AJu =0 (37)
has a non-zero solution,

Let us examine the relations among the solutions, the harmonic fields and the fluxes. If
A1, Az & 0,(S), then the solution is given by

u c1uy + cauy,

h+Aig+A{(S-X)7"g (j=1,2),

where b € L}(2), VX g = h and g € LL(R). Let us decompose h in terms of the normalized
bases as (35). The coeflicients ¢1,¢c2,£1,--,& are related to the fluxes of u and V x u by

(e1 + e2)65 = Qi(“)t

Uj

(.7 = 11"':”):
(011\1 + 02/\2){,‘ = Qj(V X 'u.)

where ®;( ) is the flux through the cut £;. When v = 1 (as in the case of a simple toroid),
we can give the fluxes of both u and V X u independently to determine £ and c¢; with setting
¢z = 1 —¢; (cf. Appendix B). For v > 1, the fluxes of V X u are not totally independent.

If Ay € 05(S) and Az & 0,(S), we take u; to be the eigenfunction corresponding to A;. Then,
uy is a zero-flux function, and hence, ¢; is an arbitrary constant. The other component u;
carries fluxes. Taking ¢; = 1, we can determine

§=2i(u) (G=1,0)

If A1, A2 € 0,(S), then both u; and u, are the corresponding eigenfunctions. Solution exists
only for§; =0(5=1,---,v).



5 SUMMARY

The study of the solvability of the double curl equation is warranted both by physical as well
as mathematical considerations. A more adequate modeling of plasma dynamics, containing a
coupling of the magnetic and fluid aspects of a plasma, necessarily leads to a departure from
the conventional single Beltrami equilibria (1) which are restricted to only force-free equilibria.
This departure, then, leads to an immensely larger class of physically interesting equilibria
which can be constructed by a superposition of several different Beltrami fields. In the example
dealt with in this paper (where the coupling is introduced by the Hall term), a superposition
of two Beltrami fields suffices. Notice that in the nonlinear vortex dynamics models such as (3)
with coupled w and U, a linear combination of Beltrami fields is no longer a Beltrami field.
Hence, a finite pressure and coupled flows can exist in conjunction with the magnetic field, and
the structures that are far richer than those of single Beltrami fields come within the scope of
the theory [3].

The mathematical content of the paper may be summarized as follows: We have elucidated the
general relation between the (double curl) Beltrami fields and the harmonic fields which, being
members of Ker(curl), play the role of a hidden inhomogeneous term in the Beltrami equations.
The existence of harmonic fields invokes the multiply-connectedness of the domain. For every
A € C\ 0,(5) (point spectrum of the self-adjoint curl operator), a harmonic field generates non-
zero unique Beltrami field corresponding to A, When A € g,(S), the corresponding eigenfunction
gives the Beltrami field. The linear combination of two Beltrami fields yields the double curl
Beltrami field.

A Examples of Solutions

Some explicit forms of the Beltrami fields may help understanding of the structures of the

solutions.
When we consider a cubic volume that has sides of length a and assume the periodic boundary

condition, we have the so-called ABC flow. Let A, B and C be real (complex) constants and
A =2xn/a (n € N). In the cartesian coordinates, we define

Asin Az + Ccos Ay
u=1| BsinAz+ AcosAz |. (38)
CsinAy+ Bcos Az

We easily verify that (38) gives an eigenfunction of the curl belonging to an eigenvalue A. The
lirear combination of two ABC flows give the double curl Beltrami flow.

Solutions with the zero-normal boundary conditions are known for a cylindrical domain. In
the (r, 8, z) cylindrical coordinates, the Chandrasekhar-Kendall function [6] is defined as

u=AMVyxVz)+Vx(VpxVz) (39)
with
A= (u?+ KOV (40)

10



¥ = Jm(pr)e"("“""k’), k=2rnf/L, m,n €N, (41)

where Jp, is the ordinary Bessel function and L is the length of the periodic cylinder. We find
that u is an eigenfunction of the curl corresponding to the eigenvalue A (€ R). The eigenvalue
is determined by the boundary condition that the normal component of u vanishes on the
surface of the cylindrical domain. This condition becomes trivial when k£ = m = 0. For these
axisymmetric modes, we impose the “zero-flux condition”

®(u) = ]En ‘uds = 0, (42)

where X is a cut of the cylinder (cf. Theorem 1).

When we do not impose the zero-flux condition, however, the eigenvalue 4 can be an arbitrary
real (and even complex) number for the ¥ = m = 0 mode [2]. Therefore, we have non-zero
Beltrami fields for arbitrary A. For such a solution that has a finite flux ®(a), the flux can
be regarded as the variable of state. The double curl Beltrami field is 2 combination of two
Beltrami fields, and hence, the degree of freedom is two and two fluxes $(u) and ®(V x u) can
be assigned.

In a two dimensional system, we can apply the Clebsch representation of solenoidal vector
fielde (cf. (4) and (5)). For example, let us assume that the fields are homogeneous in the
direction of z in the cartesian coordinates z-y-z. We write B in a contravariant-covariant
combination form

B=V¢Yxe+de, (43)

where e = Vz. The 9 and ¢ are scalar functions of z and y. We have

Vx B Véxe+ (—Aype,
Vx(VxB) V(-AyY) x e + (—Ad)e.

Using these expressions in the double curl Beltrami equation (29), we obtain a system of coupled
Helmholtz equations

—Ay+ad+ Y =C,

(44)
~Ad— 0P + ¢ = 0,

where C is a constant. Biasing the potential ¥ with —C/fB, we can eliminate this constant. The
system (44) can be casted into a symmetric form

8(%)=( 2 o ) (3) )

Similar algebra applies for the case of axisymmetric (toroidal) systems, where we must take
e = V@ in (43) and assume that 9 and ¢ are functions of r and z in the r-6-z cylindrical
coordinates. Then, the Laplacian A is replaces by the Grad-Shafranov operator

4 (19 a?
L"”Za?(?“é?)*?ﬁ‘
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The coupled Grad-Shafranov equation of the type (44) was derived previously for the analysis
of toroidal equilibrium in a plasma-beam system, where the inertia force of the beam particles

brings about coupling of the magnetic field and the beam flow [21]
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