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NONRESONANCE RADIATIVE PIERCE
INSTABILITY AND ITS SATURATION—CHAOS
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General Physics Institute, Russian Academy of Sciences
Vavilova 38, Moscow, Russia
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The review of theoretical investigations of a nonresonance stimula-
ted Pierce radiation by the relativistic electron beam (REB) in a waveg-
uide is presented. REB is supposed to be stabilized by an infinitely
strong longitudinal magnetic field. Using the analytical methods of the
linear theory the conditions of arising the radiative Pierce instabilities,
its growth rate and the radiation spectrum are determined. By numeri-
cal modeling of the problem the efficiency of a beam energy transforma-
tion into electromagnetic field energy as a function of the beam current,
its relativism and geometry are calculated. The physical nature of the
instability is clarified and its saturation mechanisms are discussed. In
particular, in the saturated state the chaotic motion of beam particles
and chaos in the radiation spectrum are observed.
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I. Introduction.

The mostly wide-spread device is ofthe Cherenkov microwave type
using the slowing electrodynamical structures, such as: metallic wavegu-
ides with rippled walls or modulated guiding magnetic fields. It is just
due to this reason in the vacuum microwave sources that the radiation
breaks when the power exceeds 100 MW. The point is that the electric
field in the vacuum microwave sources reaches its maximal value near
the walls of waveguids and initiates surface discharge if the radiation
power is sufficiently high. As a result the high power vacuum sources
are working during no more then ~ 10ns.

In this sense the nonresonance microwave sources based on the sti-
mulated Pierce radiation of REB in the smooth waveguids seem to be
very perspective. Such type of sources using nonrelativistic electron
beams were first theoretically proposed in 1940 in papers [1] and were
called as monotrons. The first monotron oscillator with superconducting
cavity has been realized in [2] having been used cylindrical waveguide
with equal radius R and length L (R = L = 3,8 cm). Microwave gen-
eration of three types has been reached: T Moo , TMyi1 and T My -
The experimental results turned out to be in a good agreement with
theory [1]. In particular the radiation condition, which is

0 = wL _ (2n+ %)ﬂ', (1)

was confirmed. Here n is an integer, w is a radiation frequency and
u is an electron beam velocity. Under this condition in the system the
positive feed-back arises, which leads to the instability, or radiation.
On the other hand in 1944 J. Pierce predicted quite another insta-
bility [3], which also was provided by the positive feed-back between the
input and output electrodes in a diode. Later the another treatment of
Pierce instability was given in [4, §50]. It was shown that when the beam
current in a diode is higher than critical one (which was called Pierce
current), in the beam the backward wave arises and provides the feed-
back in the system. So the existence of a new type of feed-back process,
stimulated by the wave was indicated. It is quite natural to consider
two apparently different instabilities as one with two regimes. The first,
potential regime is possible when the beam current is higher than Pierce
current, or wyy~3/2/kiu > 1; in this case the electric field is purely
potential and increases aperiodic in time. The second, radiative (wave)
regime occurs at frequency above the critical waveguide frequency, when



3

the beam current is less than Pierce current, and when the electromag-
netic waves propagating counter to the beam can exist in the system.

The aperiodic (potential) Pierce instability was studied in suffici-
ently detail [4-9]. Moreover some papers [10, 11] were devoted to inves-
tigating this instability and chaos in a Pierce diode. At the same time,
the radiative Pierce instability, which provides monotron working, has
been investigated relatively weakly up to day by several reasons.

Resonators in experimental devices were usually short (L=R)or
very short (L < R) and nonrelativistic beams with very small current
were used. So, in experiments [2] the beam current was of the order
of I = 1,25mA and accelerating voltage was varied from 3,5kV up to
15kV. As a result the radiation power and efficiency turned out very
small. The only advantage reached in [2] was high stability of radiation
frequency, which was less than 2,2.10-10 during the working time equal
10s. But very complicate cryogen technology of the monotron oscillators
with superconducting cavity makes them uncompetitive in comparison
with the quartz oscillators.

The growing requirements in the high power and frequency wide-
band radiation sources stimulated the theoretical investigations of re-
lativistic monotrons using the REB. As follows from formula (1), the
efficiency of monotron increases with beam energy due to the broadening
of radiation conditions. Besides, by increasing the beam current the
radiation power and its frequency band also increase.

First attempts of developing the relativistic theory of monotron were
carried out in papers [12,13]. However authors of these works neglected
the beam waves as well as backward electromagnetic wave, that led to
the incorrect description of the phenomenon. At the same time, in pa-
pers [14,15] taking into account the wave transformation on the unho-
mogenities in the nonequilibrium beam system, it was shown, that the
new instabilities appeared. This phenomenon was treated as stimulated
transit radiation of beam electrons at the entrance and outlet of the
resonator. This treatment turned out to be incorrect for monotron, but
nevertheless these papers may be accepted as the first consideration of
stimulated radiative Pierce instability.

The complete theory of the phenomenon based on the solution of
self-consistent problem was developed in the papers [16-19], where the
role of boundary conditions was clarified as well as the beam waves were
accounted. Bellow we will present results of these papers using general
methods of plasma microwave electronics developed in [4].

The content of this paper is following: At first, using analytical
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methods we study the linear stage of the non-resonant, stimulated emis-
sion of electromagnetic radiation by a rectilinear relativistic electron
beam in a smooth cavity. A detailed investigation of the cylindrically
symmetric case, i.e., when only azimuthally symmetric modes are ex-
cited in a cavity with a circular cross section, is made. Then, in Sec.
V11, using numerical methods we study the nonlinear stage. Phase por-
traits of the beam electrons are obtained which can be analyzed to reveal
the physical nature of saturation mechanisms for the instability. In the
last part of the paper we examine the dynamic instability of the beam
particles in the field of the excited waves.

II. Basic Assumptions and Equations.

Let us consider a smooth cylindrical waveguide with radius R, along
the axis ( Oz -axis) of which a straight-line REB propagates. The REB is
injected into the resonator at the entrance, z = 0, where a thin metallic
foil or a mesh, transparent for REB and reflective for electromagnetic
waves, is located. From the outlet of the resonator, z = L, the incident
electromagnetic waves partially or completely reflect, whereas the beam
electrons pass over. In the region z > L the radiation horn is located.

In unperturbed state the REB is homogeneous along the z -axis,
but may be inhomogeneous in the radial direction. Moreover the az-
imuthal symmetry of the problem is supposed, i.e., only symmetrical
modes of electromagnetic perturbations will be considered . The system
is placed in a strong homogeneous longitudinal magnetic field Bo | Oz,
which completely prevents the transverse motion of beam electrons. Un-
der these conditions beam electrons can interact only with field pertur-
bations of E-type (TM-modes of waves), for which E, component is
nonzero.

In this case the Maxwell’s equations for the nonzero E., FE,. and
B, field components can be reduced to the equations for the single Hertz
polarization potential 1 [6]

| 1
0,(82 + AL - c—z—af)d; = 47p, (2a)
1 .
8,(07 + AL - 9—8?)1/; = —4mj. (2b)
Where A, is the transverse part of Laplase operator, p and 7; = j6i,

are densities of charge and current perturbations respectively ( ;. is the
Kronecker symbol). The field components can be expressed in terms of



1 by the relations
2 1.5 1
Ez = (az - Z’iat )¢’ Ef- - azarw, B"P — —Zaiarw (3)

Under the above accepted assumptions the following boundary con-
ditions take place

Bilr=p = Brl,op = 0. (4)

Besides, for the monoenergy electron beam the perturbed charge
density and the perturbed current density can be presented as (See Ap-
pendix A)

p = eny(r) [/ 5z — 2(t, 20)] dzo — 1), (5a)

d

j = eny(r) {/ v.8[z — z(t, z0)] dzo — U: - (5b)

Here ny(r) = nypy(r) is the radial distribution of beam density, py(r)
is the profile of this distribution and z(t,z) is the electrons trajectory,
given by equations:

dz dv, e _,
o5 = 3 — = = z Ez, 6
dt Yz dt m’Y (v-) (6)
with initial conditions v, (¢t = 0) =u, =z(t=0)=2z. Here y(vz) =
N\ —1/2
1 -2 is a relativistic factor.

e
The beam charge is assumed to be neutralized. When an electron
enters the cavity its unperturbed velocity is u. The beam leaves the
cavity without hindrance, carrying away the acquired perturbations.
The theory of monotron presented bellow is based on the system of

Egs. (2)-(6).

I1I. Field of TM-waves in the resonator with REB.

Let us begin with the analyses of the linear field structure in the
resonator with beam. To derive the characteristic equation we represent
polarization potential in the form

Y(ryz,t) = ) (r)e itk (7)
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and trajectory z(t,zo) and uv(t,zo) in the form z = Zo+ut+dz, v, =
u+8v . Here 6z and 8v are small perturbations of motion and therefore
the Eq.(6) can be solved in the linear approximation. In this case the
small perturbatlon of charge and current densities are

3 w?_ -k,z,
P—"*—Pb E
k2

_ -3
= S s

y1,by( ) —zwt-l--ik,,z, (88,)

-~

¢V(r)e"iwt+ik"z. (Sb)

As a result we obtain the linear equation for transverse structure P(r)
of polarization potential [4]

. 2 2.,~3 -
Ay, — (kﬁ — %) (1 - rm——)gpb(ﬂ))% =0, (9)

w— kyu
ame?ny\? , X
where wp = is the Langmuir frequency of beam electrons,
and vy = (1 —u?/c?)~1/? is an unperturbed Lorentz factor. Besides the

first boundary Eq. (4) becomes 9, (R) =0.

Now, for simplicity we consider the beam that is uniform over the
cavity cross section, i.e. when py(r) = 1. Another geometry of beam
is considered in Sec. VIIL In this case we have ¥(r) = A,Jo(k17),
and A ¢ = —kiJ) . Then, from the Eq.(9) we obtain the characteristic

equation
2 2,,—3
o (-2 1o =22 =0 10
J_+(V cz)[ (w—-k,,u)z ) ( )
in which k; = M;z,o and p, o is the s—root of Bessel function (Jo(ps,0) =
0).

The algebraic Eq.(10) determines four quantities k,(w) , that allows
us to represent ¥(z,r,t) as

4
P = Jo(kj_r)e_"‘”“' Z A,,eik"z, (11)
v=1

where A, is a Hertz potential amplitude of wave with longitudinal wave
number k,(w). In the limit of low density beam, when the Pierce pa-
rameter is small, i.e. when

X—‘ k527 2 << 1! (12)
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all k,(w) can be find out analytically. It must be noted that X is
the ratio of beam current to limiting Pierce current [4]. Introducing a
notation

W
a® = — — k2, (13)

under the conditions (12) we have approximate solutions of Eq. (10)

_ Pra o Kiy=®
k1,2 = +a & —ia—wb, ﬂ1'2 = '—-m—a{l’)—z, (14&)
~5/2
_ Y _Y_7
k3.4 = a’ :l:awb, o = " \/m (14b)

The first two solutions kj, correspond to the electromagnetic waves
(“1” — forward and “2” — backward), whereas the solutions k; 4 are
connected to the beam waves, slowing and fast respectively.

From the conditions that there be no perturbations in the charge
densities and beam current at the entrance of the waveguide, z = 0, one
can obtain two equations, coupling the wave amplitudes A, :

4 4

D (k2 -a®A, =0, Y k(K2 -a®)4, =0. (15)

v=1 v=1

The third equation following from the second boundary condition (4) is

4
> kA, =0. (16)
r=1
These three equations allow us to express the forward waves amplitudes

Ay, A; and A4 in terms of backward wave amplitude Aj:

Al A34 kiUQY_Uz
—_ = = :FLUb .
A, A; (w? — aZu2)3/2

(17)

Note that the amplitudes of beam waves are small, but in spite of this
they can’t be neglected. It will be shown that neglecting leads to the

significant mistake.
"The phase velocity of forward electromagnetic wave in waveguide

is higher then light speed c, i. e. Upp = c\/l + (h/a)2 > ¢, and as
consequence, Upp > u. As a result, in this system the accompanying
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beam phase modulation by the forward wave is impossible and therefore
the wave amplification is impossible too. Thus the stimulated Cherenkov
radiation of REB is absent. Besides, as a consequence of the condition
(12) aperiodic Pierce instability also is absent in the system.

At the same time in the system the radiative Pierce instability can
develop when the positive feed-back process is realized by the backward
wave A, , which is possible only if the wave frequency is higher than the
cut off frequency of waveguide, that is w > k. c.

IV. Linear Theory of Radiative Pierce Instability.

In order to reveal the mechanism of transformation of the directed
beam energy to the electromagnetic field energy, let us consider the work
done by the longitudinal component E. of the radiation field on an
electron as it passes through the resonator,

L
W= e/E,,(t[z],z) dz. (18)

The component E, is expressed, with the aid of Eq.(3), in term of the
potential 1, which is given by the real part of expression (11).

If we average the work W of the field over the phases of the elec-
trons or, equivalently, over the initial time Zo of coming into the cavity
electrons,

(W> = %/W(to)dto, w‘l g T S ((SUJ)_]‘, (19)

then summing over the phases of the unperturbed electrons makes no
contribution to the radiation. In order to obtain nonzero coherent ra-
diation, it is necessary to account the radiation field influence on the
motion of beam electrons. When the beam is modulated, the velocity
and trajectory of an electron are slightly perturbed, so that

v=u+7, t[z]=t0+§+f. (20)
Here the © and f are the solutions of the linearized Eq. (6) of the
characteristic system of Vlasov equations, '

di 7 do ey™3

L@ LT m e (21)
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The solution of Eqs. (21) with the potential (11) has the form

U= %7*37’23(1-) ; w—%; sin [wto + (% — k,,) z] (22a)

t = %7-3,;3@) i (w_:%,?)? cos [wto + (-Z—J — k,,) z] . (22b)

v=1

w?

Here F, = = kﬁ) A, is amplitude of longitudinal component E,
of wave with wave number k., .

For a beam that is uniform over the cavity cross section, and for
a cylindrical waveguide the transverse structure of potential is ,(r) =
Jo(kysr). But if the geometry of beam is another ¥s(r) and corre-
spondingly %k;, must be taken as eigenfunction and eigenvalue of this
geometry of system.

The work averaged over the phases of the electrons is

)= £ FREX Y e {(w _lkm)z - —lk,-u)zJ o (23)

i1<g

where

E,E; cos(k; — k;)L — 1
= E;, a;=-"2" o : 24

X 2y G4y E22 kj — ki ( )

The averaged work done on the beam electrons per unit time is

Wb = (W)nb(r)u dS_L. (25)
s{ |

The integral is taken over the transverse cross section of the cavity.
The concrete value of W, depends on ratios A;/A; . Therefore, in
order to calculate a specific value of the work Wy , it is necessary to use
the boundary conditions. In the case of small beam current (condition
(12)), the ratios A;/A, are given by the relations (17), following from
the left-hand boundary condition. But even in this case the quantity
W turned out undetermined, since the parameter a, which appears
in (25) after substituting Eqs. (23), (24) and Eqgs. (14), (17), remains
undetermined. In the absence of beam quantity a coincides with wave
number k, of the forward wave A; . This means that this quantity
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as k, must be determined from the left— and right-hands boundary
conditions of cavity.

At first let us consider the high quality Pierce resornator supposing
the electromagnetic field is completely closed in the cavity. Then using
the relations (17) and condition of mirror reflection from the outlet of
waveguide, which looks as

4
>k, Ayett =0, (26)
r=1

we obtain ( under the condition (12) ) equation sin(aL) = 0, which
gives a =mn/L.
Now we can calculate the final expression for W :

2
Wy = (—-1)”+1wbl—2-2-—.]12(;t3'0) sin(awy L) sin (%) X.
(27)

It is seen from (27) that the main contribution to the work W, is
given by just crossed electromagnetic-beam terms a;; . Namely, when
the beam is modulated by the electromagnetic waves of the radiation
field, most of the work is done by the beam waves and, on the con-
trary, when the electron trajectories are perturbed by the beam waves
the electromagnetic waves give the main contribution into the radiation.
Thus, the two oscillatory systems are coupled : the beam and the elec-
tromagnetic field in the resonator. As a result of their coupling, or more
correctly, their interaction, the frequency shift dw arises, which repre-
sent the growth rate of the radiative Pierce instability. It is obvious
that this instability has the collective character or, in other words, it is
Raman type instability[4].

To calculate the growth rate we write down the balance equation
for the energy of the cavity

wzu,},—l/z

(w? — a2u2)3/2

d
EE(Q) = —Ws, (28)

where (Q) is the sum of the average kinetic energy of beam electrons
and average electromagnetic field energy (Q) = (Qf)+(Qs) - Under the
condition (12), when the Pierce parameter is small, the varying part of
energy is mainly determined by the electromagnetic field energy. Acco-
unting this we can rewrite Eq. (28) as

dX lcﬁ_czﬂ;f_l/2 )

wL
22 (-1 Y Dysin [22)x. (2
o 2(—1)"ws (7~ 2@PR T sin{awy L) sin ( ” ) X (29)
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X is quadratic in the field, so that

dX
E. = 25wX, (30)

and therefore dw representing the growth rate of the instability is

k2 o2oy—1/2 I
27 E‘r'-sin(c:mubL) sin (L) (31)

(w? — a?u2)3/2 [ u

bw = (=1)"w,

at the frequency

w:ws,n=C\/(%)~)2+ (%)2 (32)

The condition for the development of the instability is

(—1)™ sin(aw, L) sin (%) > 0, (33)
which generalizes Eq. (1) and determines parameters of the beam-wave-
guide systems for which the electromagnetic waves can be excited in the
cavity. In accordance with Eq. (31) in general the lowest longitudinal
and transverse modes have the maximal growth rate and they must be
excited first of all. This conclusion agrees with experiment results [2].
Very important function is the dependence of growth rate (31) on

the geometrical parameter ¢ = ik In the sufficiently long systems when

§>1 wehave w~k,c and

-1/2 L L
(1) BT in( 22 -5/2 ) g YL 34
dw = (-1) W~ " sm( — )sm( ” ) (34)

The maximal value of dw is of the order dw ~ wy (%) 7“1/2% . In the

opposite case of short systems when ¢ < 1, we obtain w =~ ac = wne/L
and

£\ 2
bw ~ w? (—GJL) ~ Wi, (35)

A comparison of Eq.(34) with Eq.(35) permit to conclude that the
optimal parameters for wave excitation correspond to £ ~1 and v =

\/?::::1,7.
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The considered in this section radiative Pierce instability in high
quality (ideal) resonator has no current threshold. But this statement
lose its force as soon as the emission of radiation from the cavity will be

account.

V. Dispersion equation.

In this section the dispersion equation of nonresonance radiative
Pierce instability is derived in the most common form. Our considera-
tion deals with only two geometries of electron beam: a beam that is
uniform over the cavity cross section and a beam that is infinitely thin
tubular with radius rp. In first case, the amplitude A, is determined
by Eq.(11), in the second case A, = 1,31,(1'5) , where transverse structure
of the field 4, (r) is given by Eq.(7).

The conditions, that there be no perturbations in the charge den-
sities and current of beam in the entrance of cavity z = 0, give two
equations

4 k2 — 2; 4 L2 — %31
Z mkUAV = 0, Z mAV = 0, (36)
v=1 v=1

which are obtained from Egs.(8). The boundary condition (4) leads to
the third equation

Z kv'd;:z(r) =0, (37)

which can be rewritten in the form

>k ( Y f) A, =) ko (f)A, = 0. (38)

v=1 1,;,,(7'5) .

Here f = f(r) is an arbitrary integrable function. The scalar product
is determined by

(F-9)= [ F0)a(r)dS (39)

The integral is taken over the transverse cross section of the cavity S .
The Eq.(36) and Eq.(38) determine transformation coefficients of
waves on the left — hand (input) electrode. In case, when the beam



13

current is small, the lows of waves dispersion in the cavity are defined
by the following equations

k]_'z = ta + 5’61,2 (40&)
ksq = % + 6k;. (40b)

Here the following statement, that is 0ky2 = O(x) and 6k; 2 = O(/x),

takes place. Therefore t;(r) = ¥2(r) + O(x), and as a consequence
#1(f) = p2(f) + O(x) . Under these conditions the coefficients of wave
transformation on the input electrode are

Ry = j—: =1 (41a)
A5 (% —a®)u? ,ubk -
RLzA—':—= S 2 w3 (41b)
A
Rl = ﬁ = —RE. (41c)

Let us consider situation when the part of radiation leaves the cavity.
In this case three forward waves A;, A, and A, in the plane z = L
partially reflect transformating into the backward wave A4, and partially
emit transformating into the output radiation. In the most common form
this process can be described by

4
Agetkal — Z s, A, e*l (42)
2
where s, = 31 34 are the wave transformation coefficients in the bound-
ary z = L, and what’s more 33 and 3, are concerned with the beam
waves transformations and ; represents the reflection coefficient for
the forward electromagnetic wave. It is the most difficult to calculate
coeflicients s, . Today it can be done only for cavity with low density
beams, when condition (12) takes place. In this limit the quantity of
coincides approximately with the value of reflection coefficient of elec-
tromagnetic wave in cavity without beam. Moreover in this limit the
difference between 33 and 34 turns out to be of the order of wp and
therefore in the first approximation we can accept 3r3 = 34 = 315 .
Having substituted Egs.(41), in Eq.(42) we obtain the dispersion
equation of the nonresonant stimulated Pierce instability

D(w) = Do(w) + D (w) = 0. (43)
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Here _ _
Do(w) = xle‘“L - e""L (44)

is unperturbed part of dispersion equation. Equation Do (w) =0 deter-
mines the spectrum of cavity frequencies, namely

] .
a(w) = -7%1“ Eargx1+§%1n]x1|, (45)
where reflection coefficient s can change within the limits || <1,
—m < arg(s) < 0.
The perturbed part of dispersion equation

(“c’—: —a®)u? ,ubks

Di(w) = —2is sin(Loks)et ™, (46)

w? ~ a2u? w
determines the shift dw in the frequency, that is

Dl((.U)
8Dg(w} '

Sw

(47)

Sw = —

Under condition a%2 < 1 from Eq.(46) and Eq. (47) we obtain the
finish result ‘

A ] (“;—:?—az)uz o dw udks

] ted
) YiEN w? — a?u? T da Lw

Sw = (- sin(LJk;.;)e"e. (48)

Here I .
6 = “’7 + arg() = zarg(1) (49)

is a transformed electron drift angle.
Eq.(48) shows that development of instability is determined by shift
§ks ‘in the longitudinal wave number of slow beam wave.

VI. Linear Theory of Oscillator. Starting Current.

From the application point of view the most interesting case is the
system with open resonator, or in other words, with a radiation horn at
the outlet z = L. As the electromagnetic energy losses by the output
emission is compensated by the development of the stimulated radiation
instability, in the system the stationary state is established. A beam
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Langmuir frequency corresponding to this state is called starting Lang-
muir frequency w; ,; and corresponding beam current is called starting
current [, .

In this Sec. we consider the device with beam that is uniform over
the cavity cross section. In this case the low of dispersion k, = k,(w) is
given by Eqs.(14). Then, a shift dw in the frequency, whose imaginary
part is nothing other than the growth rate of the instability, is

n D] ac® k224172

mwbwL (w? — a2y2)3/2

A frequency of emission is

dw = (-1) sin{awy L)e*?, (50)

w=C\/('uEO)2+(Rea)2. (51)

From Egs.(45) under condition Re(a) > Im(a) one can obtain
decrease rate due to emission from cavity

1 Ow 1
= = 2
2L 5%, " Tt (52)

The condition for the development of the instability Imdw > §
looks as

(—=1)" sin(awy L) sin § > “’;:‘, (53)

and determinés the current threshold. Here starting beam Lengmuir
frequency is

1/2 2 2 \3/2 5
wher = ket (3) (1+—a—) el 1 (54)

2 U ki’yz EN |5¢1]

Corresponding starting beam current is

3,2 2
I, = me® [0 E(Sb) (wbst) (55)

e 4 c\ S5, ke

3

Note that, the quantity =~ has the units of current and equals to 17,03

kA.
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The Eq.(54) generalizes Eq.(33) and gives the half-width of electron

drift angle
Wh st
= . 56
A arccos(wbl sin(awa)I) (56)

within limits of which the instability develops. Here we supposed, that
wp ot < wp|sin(awpL)|.

From the linear theory one can estimate the radiation efficiency of
the oscillator. Giving energy to the electromagnetic field the beam elec-
tron decelerate, and the condition (53) is violated. It is this mechanism
for the instability saturation that is typical of the Raman regime. The
maximum change in the velocity for which the wave amplification no
longer occurs is

fu= A 57
u= ol (57)
In this case, the power pumped out into the wave energy flux is
u

P = npumc?6y = nyuimy® EA’ (58)

From Eq.(58) we obtain an upper bound for the radiaticn efficiency 7
3y u\? ¥ u
= ——= | — —A. 59
7 v-1 (c) v— 1wkl (59)

For v > 1 we have  ~ y*A/{. We can see that relativistic -
electron lasers are more efficient than nonrelativistic ones. In addition,
from above presented estimation one can conclude, that the beam current
ought to exceed the starting current more than two times to give effective
generation. However this statement is only approximate. The exact
calculations of optimal beam current can be done only by numerical
simulation of nonlinear problem of wave excitation in considered system.

If the cavity is closed, that is the mirror reflection in the plane z = L
takes place, then »; =1 and s =w/au>1.

The simplest model of the open resonator with radiation horn is a
half-infinite cylindrical waveguide fulfilled in space z > I by an uniform
dielectric material with permittivity e(w) = &'(w)+¢"(w) . By choosing
e(w) one can simulate any radiation horn. Supposing that the dielectric
is transparent for REB one can easily obtain

£a — A

(60a)

M} =
£a+ ag

e—1w ac+ =y~
e au(l+ %) (as+ﬂ)’

u

2

(60b)

My =
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where a? = E(w)‘:—: — k2 . For high quality resonator, when ec(w) > 1,

w 1 w
~]—-2—— R —, 1
1 ac e T qu (61)
In this limit the starting current is equal
mc® #2 oY
[ = — 221 62
*t e 4 | (62)

VIIL Inhomogeneous beam system.

Finally, we consider thin annular beams that are most widely used in
real experiment [22] to obtain high efficiency in exploitation of beams.
Let us supposed that the waveguide is only partially fulfilled by the
beam in the region r; < r < 72 < R. The thickness of the beam is
A = ry; —ry, the average radius of beam is T = (r1 4+ 7r3)/2. If the
condition for thin annular beam A, < rp takes place, then we can take
the profile of the beam as Po(r) = Ayé(r — 1) . In this case Eq.(9) leads
to the boundary conditions

2w
I} c?

1;:»(7'5 + 0) - &L(Tb - 0) = —wé?”)’_s(w—_"WAHZu(rb)- (63)

Here 1,5,,(7") is continuous. Below we consider electromagnetic and
beam waves separately.
The electromagnetic waves (v = 1, 2 ) are volumetric and therefore

the solution of the Eq.(9) can be represent as

_ ng(k_L,,T), (R
Yu(r) =S Jo(ki,ms) (64)
mgo(/ﬂlu’f‘), >
where bR
gn(kJ_VT') = Jn(k_Ll,T') — L(—J-Llyn(klv’r‘). (65)

}/b (kJ.VR)

Substituting Eq.(64) into the Eq.(63) we obtain the equation for wave
number k;, to define

k2 w?

JO(k_LuR) T o _3 v — %
SOy | .
Yo(ki, R) 2 b7 (w — Ky )2 ApryJol(k1,rs)Go(ki,ms) (66)
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This equation can be approximately solved under following condition

2
wi ApTp
s <1 (67)
which is equivalent to Eq.(12). In this limit one can represent ki, =
k., +8ky, ,where ki, = s 0/R is the solution of Eq.(66) in the absence
of the beam, and &k, is a small correction being equal

w” k2 G

2. -3_c* lv G
5kJ-u = @b (w - k“,,u)z 2]6_1_3 . (68)

Here A 20k 20k
G, =278t JE(kiems) _ Sy JolkLraTs) (69)

R? J3{pep) Si Jilpao)

Taking into account Eq.(68), from Eq.(9) we obtain the character-
istic relation

2 2,3
2 2 w Wy _
k_Ls + (k”" - ?2'—) |:1 - ( )2 Gs] = 0, (70)

W — k”,,u

The solution of this relation under conditions (67) is

k|!1,2 = ta ﬁzl; Gswf, (71)

The quantities a and fi,2 are determined by Eqgs.(13).(14).
Quite another situation takes place for beam waves (v = 3,4),
which turn out to be surface, and therefore their transverse structure is

Io(kiym), 0Lr<r

bo(r) =< Io(ki,rs) | (72)
- -7 <
Ho(k_[_u'f‘b) Ho(kj_,,?”), Tb \<,_ T R

Here
Hn(k_f_,,r) = In(k_LyT)KU(kJ_UR) — Io(k_{_,,R)Kn_(k_L,,’r'). (73)

Substitution Eq.(72) into Eq.(63) leads to the characteristic equa-

tion )
2_..,-3 2
w __ wb’)’ 9 w
(knu - ;) = W(knu - Zz")’ (74)
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determinating the ki, . Here parameter 2 is given by the expression

2 Ko(kiyrs)  Ko(ky,R) -
| = ,:TbAb( Io(k_j_,/f‘b) - Io(k,LuR) )Ig(klym)} (75)

The solutions of Eq.(74) under the condition (67) are

—5/2
W - - w

k”,,=——:!:awb, a=—7 .
U U Hju

(76)

Using the dispersion equation for cable waves in vacuum we find quan-
tities k1, = 247! & Gyw,. Now we can calculate the parameter s,
which turns out to be approximately equal for both fast and slow beam
waves.

The growth rate of instability is equal Imdw , where the shift in
frequency is

n |7 wb’Y_l/zau k3 ,c e i6
V0l il w? — a2u?

The frequency is given by Eq.(51).
The condition for development of the instability Imdéw > § can be
rewritten in form

Sw = (~1) (77)

(—1)" sin(GwyL) sin 8 > “’u’::‘, (78)

where starting Langmuir frequency is

' 3/2 2.,—2
_ 1Vl 1 7 (1+” ) (79)

Wp s M) _—
R R PR PPN B S e g}V k2,

The corresponding starting beam current is given by Eq.(55).

In conclusion let us consider some numerical parameters for mi-
crowave oscillator based on the radiative Pierce instability. We will
take beam parameters very close to the experimental ones: [ = 1kA,
Ty = 2,0cm, Ay =0,2cm and V = 450kV.

Then w = 18100571 and v = 1,9. If R =4,0 cm then the
radiation frequency is wy, = 1,76 - 101°s~1 . For this parameters the
inequality (78) looks as

(—1)"sin(0,016L) sin(0,71L + ) > 6,0A, (80)
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where A = —+/[31]]35| " In |5r1| ; L is given in centimeter (cm). Starting
Langmuir frequency is equal wpq; = 1,06 - 101 A(s™1). The calculation
using Eq.(80) shows that excitation of wave must be only for A £ 0,05.
Thus the instability develops in cavity with high Q-factor. For L=
33238 cm and L = 4247 cm the even longitudinal modes may excited,
whereas for L = 31 +33cm and L = 38 + 43 cm the odd longitudinal
mode may excited.

VIII. Nonlinear theory of instability.

The nonlinear system of Maxwell — Vlasov equations can be studied
only by numerical simulation of the instability. According to the linear
theory, several modes with similar frequencies are excited at once in the
cavity. The absence of a distinct frequency, as well as wavelength, makes
it impossible to separate the field into slowly and rapidly varying compo-
nents with subsequent averaging over time or position. Thus, we found
it necessary to use the methods described in Ref. 21. The Maxwell’s
equations are solved directly using by finite - different elements. The
beam electrons were simulated by a Particle In Cell (PIC) method [21].
In our case, the Maxwell’s equations are solved under ideal boundary
condition E.|, = 0, when the radiation is closed in the cavity. The ini-
tial conditions for particle of beam are v,(z = 0) =0, t;(z =0) =to.
The following unitless quantities were used in the numerical simulation:

U Pz el
o _ Pz — .. 1
Lt’ P= e ¢ mc2'y3E (81)

T =

Here p, = my(vz)vz, ¥ = (1 —~u?/c?)~*/? is a nonperturbed relativistic
factor of beam electrons.

In the numerical calculation, we considered an infinitely thin tubular
beam and used a soft regime for its entry into the cavity (the beam front
was very smooth). The Pierce parameter x was defined as the ratio of
the working current I to the limiting Pierce current fo, which is

b= (%)3 - Z@) (82)
b

for considered configuration. In all the calculations we chose ry/R =
0,4. Here the instability saturated after 10 — 10000 transit times T,
depending on the beam current and the cavity geometric parameter £ =
L/R. In most cases the first transverse mode s=1 was exited. For
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very short systems £ ~ 1 and for some values of £ in long systems,
higher transverse modes were exited. For short systems, with £ < 12,
the instability regime was mainly single-mode; for certain values of ¢
two longitudinal harmonics corresponding to the selection rule (33) were
exited, In long systems (£ > 12), a multimode regime sets in. In fact,
for large £ (&> 1), the relation

c ® ni-n?

'l_LP"s,O Ag

1
£= (83)

holds, where n; is the longitudinal mode number. Two modes with
the same growth rates can be exited if the difference between their drift
angles obeys Af < 7. Since Eq.(33) implies that either even or odd
harmonics can be exited simultaneously in long systems, we find that
for v =2, when £ > 3, a two-mode regime exists and for £ > 12, a
three-mode regime.

We have distinguished two pictures of saturation of the instability.
The first scenario occurs in short (¢ < 12) systems with single-mode
regimes. In this case, the nonlinear shift of longitudinal wave number
kv = k,(A,) takes place. In addition, the parametric instability devel-
ops [23]. In particular, confluence-decay process

Wi,n + Win = Win-1+ Win+1, (84)

which results in pumping of energy from the wave back into the beam
in accordance with the condition (33), can occurs in the system.

Figure 1 shows the results of a calculation for £ = 6 ;¥ =2 and
x = 0,05 (which roughly corresponds to a current I =~ 2,4 kA). Regular
oscillations in the field amplitude with a modulation frequency on the
order of éw in a steady-state saturation regime can be seen clearly. The
position of the beam electrons in the phase plane is represented by Fig.
1b. For time 7 = 45, when the instability is still linear, the modulation
of the beam is purely harmonic. As the instability is develops, nonlinear
distortions appear, which cause breaking; the electrons begin to overtake
each other and the beam stratifies in velocity. Breaking occurs when the
instability passes into a stationary regime. As the instability becomes
saturated, changes in the electron density acquire the character of a
deep modulation. This corresponds to an increase in the ratio of the
amplitudes of the beam waves to the electromagnetic wave and to a
shift in the longitudinal wave numbers k%, (v = 3,4) toward larger
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values. The beam remains cold, despite the rather long time after the
radiation amplitude reaches its stationary level.

In long systems (€ > 12) when the instability is multimode from
the outset the mechanism responsible for saturation is the randomization
of the beam particles in the field of many waves. As a result of the
stochastic motion of the beam electrons, the modulation of the beam
becomes uniform, i.e. the phases of the electromagnetic field relative to
the electrons are distributed completely random in the phase interval
[0,27]. Thus the contribution to the stimulated emissicn goes to zero.
As the numerical studies showed, saturation of the instability sets in
simultaneously with the chaos of the beam particles. Fig.2 shows the
calculations for £ = 18, v =2 and x = 0,05. The phase plane of beam
electrons is shown for the time of instability saturates, 7 = 40. By
the middle of the cavity the beam is completely randomized. Although
the beam is highly chaotic it is still modulated at the initial level. For
this operating regime of the generator the field in the cavity has a broad
spectrum of longitudinal harmonics. Beam bunching was absent for both
instability saturation mechanisms.

In order to estimate the degree of chaos in the motion of electrons
at the time when the instability began to saturate two test particles
separated by a rather small distance in the phase plane with velocities
roughly equal to the beam electron velocity u were Jaunched into the
cavity. The maximum distance by which particles could separate in the
phase plane as they pass through the cavity was chosen as a measure of
the chaos of the beam electron motion. Fig.3 is a plot cf the maximum
phase separation between the probe particles, D = J(z/L)? +p?, as
a function of the controlling parameter which is the gecmetric factor £
for v =2 and x = 0,05. This graph shows clearly the existence of two
saturation pictures for the instability which appear in regions consistent
with the above estimates.

As the beam current is raised and the Pilerce parameter Xx ap-
proaches unity (or greater) Pierce potential aperiodic instability devel-
ops in the system. Fig.4 shows a phase pattern of the beam at the time
the instability saturates when 7 = 10 holds for { =18, x = 0,95 and
v = 2. A virtual cathode is observed to form at the cavity entrance
and the beam electrons are partially reflected from it. In the meantime
the chaotization of the beam corresponds to the presence in the cavity
of a radiative instability whose development is somewhat suppressed by
the potential instability. As x is increased further the growth rate of
the aperiodic Pierce instability increases more rapidly than that of the
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radiative instability. As a result the potential branch suppresses the ra-
diative branch. Thus the aperiodic and radiative Pierce instability can
be regarded as two regimes of a single instability which are realized for
different values of x.

At last let us consider the question of the generator efficiency. Since
the radiation is trapped inside the resonant cavity we take the conver-
sion efficiency of the beam electron energy to electromagnetic radiation
energy be the ratio of the radiation flux of forward electromagnetic wave
to the incident beam energy flux, |

() 55

= — ,
meénuy

where (|S]) is the magnitude of the Pointing vector of the forward elec-
tromagnetic wave near the right boundary of the waveguide averaged
over a long time interval t >> 2m/w. Fig.5 shows that the function
n = n(£) attains its maximum in relatively long systems with 2 < £ < 8.
When the cavity length is increased further the conversion efficiency falls
off rapidly in agreement with the linear theory. Therefore ¢ of order
-6 is the optimum. The dependence of n on the relativistic factor v of
the beam is consistent with the linear theory. As v increases the energy
conversion efficiency 7 initially increases quadratically with v but then
saturates for v > 5 (Fig.6). This is similar for that of the Cherenkov
instability [24],

IX. Dynamic instability of the beam particle motion.

After the instability reaches the nonlinear stage the field amplitude
continues to rise slowly. The regular amplitude modulations in the field
are replaced by random oscillations. The alternation in the system takes
place (Fig.7). This is because as the instability develops further, the fre-
quency spectrum of the oscillations broadens (Fig.8) owing to nonlinear
many-wave processes which cause a redistribution of the energy in the
radiation spectrum

Win + Win — Win—-m + Wintm (86)

in terms of the integer m < n.

Even under ideal boundary conditions a Pierce oscillator is an open
system since it exchanges energy with the surroundings by means of an
electron beam. The development of an instability assumes the existence
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of strong positive feedback. Naturally, in such systems there is a dynamic
instability of motion — an exponential spread in the particle trajectories
[25] which was observed in the nonlinear stage of the nurnerical calcula-
tions for long systems with £ > 8. It is development of dynamic chaos
that causes broadening of the spectrum of the oscillations.

Since the time of residence of particles in cavity is limited by value
having magnitude in the order of L/u to make use of k-entropy as a
feature of dynamic chaos is difficult. Therefore the following alternately
approach is made use of. Under conditions being defined by external pa-
rameters as x, £, u the evolution of test particles motions is studied in
phase and coordinate spaces. In small vicinity of initial point (2o, u) the
ensemble of 50 + 60 points corresponding initial conditions of launched
particles is taken.

Since the initial conditions for trajectories of electrons are almost
similar the test particles can be considered as ensemble. And therefore
we can obtain the ensemble — averaged characteristics such as

R(t) = (k162 (to, 1)]) (87a)

D(t) = <\ﬂkl6z)2 + (Ti%)z> : (87b)

where brackets {...) mean taking an ensemble average; 8z and dp are
phase coordinates being defined by

§z = z(to,t) — u(t — to), &p=p: — myu (88)

Using numerical calculation we find (Fig.9) that the exponential scat-
tering of particles is replaced by oscillations of R(t) and D(t). The
oscillations of D(t) means that in system the electrons of beam are
confused and this process is similar to the "baker’s transformation”.
During the numerical calculations for some values of £ an inter-
mittence between the ordered and chaotic regimes was observed in time.
Besides the regime instability stratification of the beam into two compo-
nents was observed: cold, in which the particle motion was ordered, and
hot, in which the particles were subject to a dynamic instability. Here
the transit time through the cavity for the cold particles was considerably
shorter than the residence time in the cavity for the hot particles.

X. Conclusions.
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The nonresonance radiative Pierce instability can develop in the
systems with sufficiently strong positive feed-back effect. It is this feature
that makes Pierce instability to be universal unlike resonance instabilities
(Cherenkov or cyclotron ones). The same feature discards the creation
of amplifier working with this effect but allows to create the wide class
of oscillators.

Some advantages of radiative Pierce instability ought to be noted.

1. The wave slowing structures are not needed for the device to

operate which is very important for realization of high power microwave
oscillator.
- 2. Existence of two different instability regimes allows to realize
both narrow and wide band microwave oscillators. The fact that the
regimes depend only on the geometric parameter £ of the cavity makes
an attempt to construct a tunable generator tempting.

3. Numerical simulation showed that for optimum generation the
device efficiency can be on the order of 20-30%,.

4. The Pierce oscillator with beam is the open self-oscillatory
spreading system. Naturally, in this system the dynamic chaos develops.
To understand this phenomenon is very important from the fundamental
science of view and therefore this instability ought to be studied very
carefully as soon as possible.

Appendix A.
Let us consider one—dimensional Vlasov equation for collisionless

plasmas

(9f af € _3 3f
- o = LA A
ot +vé’z + m7 Ez@v 0 (A1)

The solution of Eq.(A1) can be represented in form

f(t,z:,v)=//f0(v0)5[z-—z(t,zg,vo)]5[v—v(t,zo,vg)]dzodvo. (A2)

Here fo(vo) is an initial distribution function for beam electrons; z(t, zp, vo )
and v(t,20,vp) are solutions of the characteristic system (6) for Vlasov
equation; zp = 2(t = 0), vy = v(t = 0).

For monoenergy electron beam the initial distribution function is

fo ('Uo) = nbpb('r)é'(vo — u). (A3)

In this case it is easy to obtain the perturbed parts for charge and current
densities, namely Eqgs.(5).
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FIG 1. (a) Wave amplitude dynamics in a short resonator for E=6,
Yy=2 and x =0,05.

(b) Phase plane of beam electrons in a cavity at different times (1)
T=40;(2) 7=45;(3) T=60;(4) r=65.

FIG 2. Phase plane of beam electrons in a long cavity at the time
saturation setsin { =18, y =2 and yx = 0,05.

FIG 3. The maximum distance between two probe particles in the
phase plane as a function of parameter £ at the time moment the the
instability enters the nonlinear stage.

FIG 4. Phase plane of the beam electrons at the time of saturation
for £ =25, x=0,95 and v=2.

FIG 5. Energy conversion coefficient n as a function of the geome-
try parameter £ of resonator for y =2 and y = 0,05 .

FIG 6. Energy conversion coeflicients as a function of the relativism
of electrons v for x = 0,05 : (1) €=4;(2) €=5;(3) £=6.

FIG 7. Wave amplitude dynamics in time.

FIG 8. Fourier spectrum of the electromagnetic oscillations at dif-
ferent tims: (a) at the time the instability saturates, (b) in the nonlinear
stage and (c) advanced nonlinear stage.

FIG 9. The average radius of probe particles ensemble as a function
of time (1) in coordinate plane; (2) in phase plane for £ =14, v =2
and x =0,05.
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METHODOLOGICAL NOTES

PACS numbers: 52.25.-b, 52.25.Dg, 52.90. +2

On the quantum description of the linear Kinetics of a collisionless

plasma

M V Kuzelev, A A Rukhadze

Abstract. It is demonstrated that the linear kinetics of a colli-
sionless quantum plasma can be described in a simple and
cffective way by means of a sclf-consistent-field scheme in
which the quantum hydrodynamic equations are derived di-
rectly from the Schridinger equation,

I. We show that the known system of cquations of cold
hydrodynamics in the Eulerian form !

on
-a—’ + V(MV) = 0,

9(%+(V><V)V=£{E+%[V><B]} n

can also be used with profit, at least in the lincar approxima-
tion, for describing the kinetic properties of u plasma with a
thermal scatter in the particle velocities {a Vlasov plasma),

Let some group of particles with number density # in a
homogencous isotropic plasma (without an external magnetic
ficld By) possess a velocity V. A small perturbation of this
state by a weak clectromagnetic field E, B will give risc to
perturbations of density 8n and velocity Y, which are found
from the lincarized system (1). Since 7 and V are constany, the
quantitics 81 and 8V can be sought as exp( =it + ikr). On
determining &n, 8V and then the current density

Ji = endVi4 e8nl; = a(w, k)E;, (2)

we shall find the conductivity o and the diclectric constant of
the particle group under consideration:

ai
ey, k) = 8 + —ga,-,(w, k)

kiVi+ Vik;
=§; - ’J.(BJ

w—kV

4reln sz,-V,.-
me? |V (

- kV)?

! For brevity of the foliowing presentation, we consider only one plasma
component, for instance, the electron component,
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Now we can go over from a group of particles to the entire
plasma by averaging over the momentum distribution
function fo{p) with the substitution » — fo(p} dp and subsc-
quent integration

n— Jdpﬁ,(p)[...]. (4)

The last bracketed factor of the integrand stands for the
factor in expression (3) cnclosed in s¢uare brackets. In
conscquence we find the known expression for the permittiv-
ity tensor for an isotropic plasma, which is usually obtained
by selving the kinetic Viasov equation [2]:

kik kik
ei{m, k) = (BU - —’,‘—_-z—j)c"(w, k) + —P-ia'(cu, k),

where
ane? (kafy/2p
| =] - | 2P
£(w, k) =1 5 Jw—k\/ P, (5)

" _ _4J'cr.‘2J‘ m 2 kdfy/op
(e k) = | me? dr OU))+W .

Naturally, the outlined method is applicable not only for
calculating the dielectric constant of an isotropic plasma. The
substitution (4) is appropriate whenever the plasma with a
thermal velocity scatter can be treated as a collection of
groups of particles described by Egns (1). In this case, the
square brackets under the integral in {4) should cnclose all
cxpressions dependent on the hydredynamic characteristics
of cach group of particles.

2. We shall generalize the outlined method to the case of a
quantum plasma. In doing this, we proceed from the
Schrdinger equation for the clectrons without a spin,
following Ref. [3]in the derivation:

2 2
in% = Ay == {—%A+ih%AV +-2;7A2 +ccp}u’l. (6)
Here A and ¢ arc the vector and scalar potentials of the fields
E and B, with

18A
E=—--——_Vp, B=[VxA], (VA)=0. (7)
c ot
We represent the wave function as
v = ate.exp Lt 0] ®)
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and draw on Lhe definitions of charge and current densitics

p=en=cyf =ed,
ich et
P o = LI AL v — A .
=V P.mwvw vov) me 44
0 ¢
=—-(VS—-A). (9)
m c

10 obtain the system of equations

on
sk v %) V) R
3 4+ V(n¥} =20,

oV e 1
Er"‘i'(VXV)V =E{E+;{VX B]}

+iv 1 An--l-(vn)2 (10)
4m? | 2n

from the Schrédinger equation (6).

The first of these cquations coincides with the equation of
continuity, and the second with the Euler cquation of system
(1). Therefore, by analogy with system (1), system (10) will be
referred to as the guantum equations of cold plasma
hydrodynamics.

Eqns (10) differ from Eqns (1) in that the Euler equation
includes the quantum force resulting from the Hcisenberg
uncertainly principle. This is casily verified by considering
small perturbations of the uniform state with n = const and
V = 0. In the limit 2 — 0 when the sclf-consistent ficlds E and
B can be neglected, for solutions of the type exp{—imt + ikr)
the lincarized system (10) yiclds the dispersion rclation

bl

m:%zm‘l, (11}
which describes the oscillations of a single clectron. This
expression relates the temporal (proportional to 1/w) and
spatial (proportional to | /k) domains of localization of a frec
clectron, or the cnergy hw and the momentum hk, The
guantity {11) is the frequency of the quantum oscillations of
a {rec clectron.

Following the outlined procedure, we can now derive the
dielcctric constant of a quanium isotropic plasma with a
thermal scatter in electron velocitics. First, for any group of
plasma particles we obtain the corresponding quantum
diclectric constant, i.c. the quantum analog of tensor (3).
Assuming the perturbed quantitics to be of the florm
exp(—iwt + ikr), from Eqn (10} it follows that

] kk

£g(m, k) = 5{w, k) - -cﬁ&f:‘(w, k) _;;TV'BEE: w, k)

2 -1
wy Kk,
x [1 -i-;;q——‘ki-—&:f"‘,(w,k)] , (12)
L.

where wy_ = /4ne?n/m is Lhe electron Langmuir frequency,
and sfj' =6, + 55,‘;,! is the classical dielectric constant lensor
defined by expression (3). In the derivation of expression (12),
we drew on the obvious substitution

B9 = B9 — kg~ | (13)

which follows in the linear approximation from the Euler
equation (10).

We next substitute expression (3) into (12) and pass on to
the kinetic description with the help of change (4) to obtain by
straightforward calculations the known expressions for the
quantum longitudinal and transverse diclectric constants of
an isotropic plasma (2]

4ne? d . Ik hk
Cl(wok) =1 +%Jﬁ[lﬁ(p+%)*ﬁ( ”%)]r

2 2
wi,  2ne
CI‘JI s

<o 2snfa(e+E )R (e-5)] 00

Notice that in Ref, [2] expressions (14) were derived by solving
the Wigner quantum kinetic cquation, which involved tedious
calculations. In the limit & — 0, formulas (14) obviously
transform to formulas (§).

3. Now consider a homogencous magnetoactive plasma.
Let the external magnetic ficld Eg be aligned with the OZ-uxis.
For simpticily, we shall restrict our consideration to the case
of a potential ficld E = -V, A = 0. As above, we consider a
group ol particles with number density », which possess
fongitudinal velocity ¥; and rctate about the magnelic lincs
of force with the Larmor [tequency Q = eBp/me and Lhe
Larmor radius R, = ¥, /9. The longitudinal dielectric
constant of this classical cold nlasma (group of particles) is
casy 1o obtain from the general formula given in Ref. [1]. Itis
of the form

£ (w,k)=1-

Kk w2

cfw, k) = —k—zic,»j(w, K)=1-- ?':2.'.
8 Z[ [STHG) 25k Jo(2)J(2)

T (U)—k:V:--S.Q):! 2w -k V. —3Q)

» (15)

where J,(z) is the Bessel function of the real argument
= kJ_ RL.

We average cxpression (15) over the distribution function
fu(p) according to the above recipe (4) to obtain the known
cxpression for the longitudinal dielectric constant of a
classical magnetoactive plasma [1]

ew, k) =1+ 4ne’ J de Ji(2)

mk? et~k V. — 582
o s ’
g Yo | 552 Qo )
x( T2 an) (16)

It is also an ecasy matter to write out the longitudinal
diclectric constant of a quantum magneloaclive plasma. To
accomplish this, it should be recognized that the total forccin
the right-hand part of the Euler cquation (10) does not
depend on the type of plasma at all. Consequently, relation
(13) is universal in character too, and with it formula (12}.
Hence, the longitudinal dielectric constant is given by

wf 8w, k)8e!(w k)
o}, 1+ (wl/of )8 (0, k)’

w, k) = Hw,k) - (17

where ¢! = 1 + 8¢ is defined by expression (15).
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Therefore, cxpression (17) refers to the longitudinal
diclectric constant of a cold quantum plasma. As above, the
passage to the kinctic description is accomplished by
averaging expression (17) over the distribution function
Jo(p) with the help of substitution (4). Substitution of
cxpression (15) into (17) with subsequent averaging results
in cumbersome expressions, which we omit here,

Itis more expedient to address the question of the fo(p)
distribution itsell over which the averaging is performed. The
point is that, in general, account must be taken of the cnergy
of quantization of the transverse clectron motion in a
mignetoactive plasma. This has no effect on the magnitude
of wq but substantially affects the shape of the distribution
function fy(p).

In the case of Maxwellian statistics (nondegenerate
clectrons) [4], onc obtains

Jolp) =~ exp - L - L (18)
Joip) = ry 1 712E, P LT 3mT mky J°
where
i L 1) T, h§2 < 2T,
[_,J_ __3*('0”12_’?‘"'{/19/2, hQ»?.T (]9)

is the average encrgy of the transverse clectron motion. The
condition for nondegeneracy is written as
. -2/}

by < TREN, (20)
where £ = (3r2) 12123 is the Fermi energy for B, = 0.

When incquality (20 is violated, the degencracy should be
taken inlo consideration and the function f(p) becomes more
complicated. Nevertheless, in the Hartree approximalion it
has the simple form [5]

Jolp) = —=— (-1

(2mh)* 4

Li(p; /mhQ)cxp(=p? fmh2)
] +cxp{T-1 [/)__3/2m+hQ(.s'+ 1/2) ~ C]} ,

where L,(x) is the Lapuerre function, and { is the chemical
potential, which coincides with the Fermi energy Ey for free
clectrons. The summation in expression (21} is extended over
all the Landau levels 5.

Notice that the extension of the results derived in the
foregoing to a multicomponent plasma medium is apparent
and reduces to a simple summation over the components in
formulas (3). (5), (12), {(14)~(17). 1t is significant that the
plasma dielectric constant in a quantized magnetic field can
equally be derived through the direct solution of the Wigner
cquation with the distributions (18) or (21). However, this
procedure is found to be very complicated owing to the
arduous mathematical treatment [6, 7). The application of
formulas (16) and (17) may prove to be preferable.

Thus, with the appropriate averaging over the distribu-
tion [unction, the simple cold hydrodynamic model describes
the kinctic properties of a quantum plasma as fully as of a
classical one. This was demonstrated above in the lincar
approximation. But nonlinear processes call for special
consideration.

(21)

X
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