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ABSTRACT

Recently, Fan & Lou considered the excitation and time evolution of hydromagnetic density
waves in a differentially rotating thin gascous disc cmbedded in an azimuthal magnetic field.
The authors found that both fast and slow hydromagnetic density waves are amplified while
they ‘swing’ from leading to trailing configurations, and gave a detailed description of the
phenomenon. Fan & Lou noticed that the results of their numerical study indicate the
existence of a ‘coupling’ between slow and fast waves.

In this Letter we prove, in a simple and exact analytic way., that the coupling between slow
and fast waves, presumed by Fan & Lou on the basis of their numerical study, indeed exists.
We show that the coupling is induced exclusively by the presence of the velocity shear in the
gascous disc, and tha it leads to the mutual transformations of the different density wave
maodes. We argue that the shear-induced wave transformations may play a significant role in
the overall dynamics of galactic MHD density waves,

Key words: MHD — galaxics: magnetic fields — galaxics: spiral — galaxies: structure -

radio continuum: galaxics.

I INTRODUCTION

Currently it is well-acknowledged that galactic gaseous discs are
magnelized, and hence the density waves sustained by them
should he of magneto-acoustic origin. Therefore the theoretical
study of hydromagnetic density waves in a thin magnetized
paseous disc is quite important in the context of general galactic
dynanics and, in particular, in the context of its relevance to large-
scale magnctic field structures in spiral galaxics. The pace of
theoretical rescarch in this arca is driven by advances in
synchrotron radio obscrvations of the magnetic field structures
in nearby spiral galaxies [for a recent review of the current state of
the art in theoretical and observational domains sce, for example,
Lou & Fan (1998)].

Obscrvations show (hat some galaxies (e.g. M51, M31 and
NGC 2997) feature magnetic licld spiral structures that are almost
coincident with the oplical spiral arms, while there are examples
(c.g. NGC 6946) in which the magnetic ficld spiral arms lie
hetween the optical spiral arms. This puzzling circumstance
suggests that, in these two classes of galaxies, magnetic spiral

* On leave from Abastumani Astrophysical Observatory and Department
of Physics, Thilisi State University, Thilisi, Georgia.

 Research Associate of the Belgian National Fund for Scientific Research
{NFWO).

t Research Assistant of the Belgian national Fund for Scientific Research

(NFW).
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patlerns are related 1o density waves of a different origin. Galactic
gascous discs are cssentially sell-gravitating, differentially rotat-
ing magnetoltydrodynamic (MED) plasima shear Nows, sustaining
two modes of acoustic oscillations — slow magnetosonic waves
(SMWs) and fast magnetasonic waves (FMWs). It is reasonable (o
suppose, therefore, that the above-specificd classes of spiral
structures are somchow associated with these two density wive
modes.

Fan & Lou (1996, 1997) and Lou & Fan (1998) suggested this
idea, and studied in this context last and slow hydromagnetic
(MHD) waves in a gascous thin rotating disc embedded in an
azimuthal magnetic field. Their study revealed that for fast MHD
density waves the surface gas mass density perturbation is
approximately in phase with the azimuthal magnetic icld pertur-
bation. so that, if the density waves in a galaxy are of a
predominantly FMW origin, the optical and magnetic spiral
structures should be roughly coincident. As regards slow MHD
density waves, there is a substantial phase difference between the
oscillation phascs of these disturbances, which means, in wrn, that
the waves of SMW origin may account for the rough antic-
orrelation between optical and magnetic spiral arms. Thus these
authors argued { Fan & Lou 1997, hereafter referred as FL97) that
galaxies of M31 type appear to carry signatures of fast waves,
while galaxies like NGC 6946 bear features of slow waves.

Fan & Lou alse noted that their numerical results reveal the
coupling between slow and fast MHD density waves in
magnctized, self-gravitating, differentially rotating  gaseous
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discs, This circumstance, if true, implics the coupling of the two
kKinds of MID densily waves in spiral galaxies. However, Fan &
Lou did not consider and/or comment upon this intriguing issue in
any morc detail.

Are MHD waves in galaxies really coupled? In this Letier we
give a simple analytic proof of the affirative answer to this
question. In particular, we show that the problem considered by
FL97 is genuinely governed by the canonical sysiem of ordinary
differential cquations describing a standard coupled oscillating
system with two degrees of frecdom. We show that the coupling is
induced solely by the presence of the velocity shear in the sysiem,

* The coupling leads to the mutual transformations of slow and fast

density waves, The phenomenon is analogous to the one disclosed
recenly by Chagelishvili, Rogava & Tsiklauri (1996) for the
paratlel shear MHD flow. This kind of coupling is fairly universal,
since it arises in many different kinds of shear flows (even without
rotational andfor self-gravity ceffects) sustaining more than onc
mode of wave motion (Rogava, Mahajan & Herezhioni 1996;
Rogava & Mahajan 1997, Mahajan, Machabeli & Rogava 1997,
Chagelishvili, Rogava & Tsiklari 1997; Pocdls, Rogava &
Mahajan 1998).

2 THEORY

Tt should be noted that the significance of shear-induced coupling
between SMWs and FMWs in differentially rotating, magnetized
pascous discs is not connected exclusively with the idea that the
magnelic spiral patterns in galaxies are associated with density
waves of different origin. Essentially, what we prove below
implics that, in various kinds of cylindrically symimelric
magnetized astrophysical shear Qows (dusty plasma rings around
plancts and stars, protostellar dises, accretion discs. etc.), velocity
shear readily provokes mutual transformations of different MID
wave modes into one another. This circumstance may have
profound consequences for a number of important physical issues
associated with these Mows,

Onc well-known cxample is the enigmatic problem of
turbufence in acerction discs. Generally speaking, accrelion
dises provide kinematically complex, three-dimensional shear
flows, which may be embedded in both toroidal and poloidal
large-scale magnetic ficlds. All three kinds of MHID wave modes
- Alfvén waves (AWs), SMWs and FMWs — may be excited in
these complicaled astrophysical plasma systems. However, even if
ane adopts a certain kind of ‘minimalistic” approach, making a
number of simplifying assumptions and admitting that the disc
sustains a certain kind of ‘internal’ mechanism producing only a
certain kind of MHD wave, the existence of shear-induced wave
couplings ensures transformation of initial ‘secd’ waves into other
kinds of MHD oscillations, cstablishing the regime of a
perpetually oscillating ‘sea’ of mixed MHD waves. This implies
that one should be quite careful when speaking about a particular
kind of plasma turbulence (c.g. Alfvénic trbulence) in these
systems. Rather, in the ‘reaim’ of an accretion disc shear flow,
the wrbulence that may develop is likely to be of the ‘mixed’
type.

In FL97, the awthors considered a thin, differentially rotating
gascous disc, embedded in a large-scale azimuthal magnetic field
and sustaincd by its self-gravity. Below we give a brief account of
their analysis. For the local analysis of the cxcitation and time
evolution of compressible MHD perturbations, FL97 used the
formalism of so-called ‘shcared comoving coordinates’ [sce

Goldreich & Lynden-Bell (1965), where the methad Wils
employed in an astrophysical context for the first time']). The -
starting sct of equations within this formalism is written in the ~
locally small arca of the disc, and perturbations are ordered 1o lie
in the disc plane. The Iatier restriction excludes Alfvén waves
from the dynamics of 1he system. All equations, except the ~
Poisson cquation, arc written in terms of surface quantitics
(Elmegreen 1987) (D, = 3, + (V-V)V]:

D%+ IV.V =), ()

pv= -LVP+—I—('V>':B))<B—?_QXV—V‘I’. (2
p 4mp

DB = (B-V)V - B(V-), (3)

where p is the mass density, X = ph is the surface mass density; &
is the disc thickness; and W is the gravitational potential. Here,
V = ¢g,0, + e,y stands for he two-dimensionat gradient operalor,

The cquilibrium state of the system is specified by the constant
veetors of the angular rotatisn velocity €2 = (0,0, £} < 0) and the
large-scale background azimuthal ficll By = (0, 8y, 0, und by the
lincarized (locally planc-parallel) mcan velocity lield V=
(0,2A4x,0), with A = (r/2}0,£) > 0 being the first Qort constant,

The lincar perturbation equations that come out of (1)-(3} are
(LY7) | Dy = 3, + 24x0,|

Dyor + Sg(du + 0,0 = 0, {4)
o,
Dt = 2= -,y + — (il — it eh)), (S5a) -
¢ dapy :
Do+ 2Bu = =, X, (5h)
Drh, = ”(;ﬂ,.ll, (6)
b + by, =0, {7)

where a, 0, by, v b, and  arc the perturhations of surlface mass
density, velocity, magnetic field radial and azimuthal CONpONCMS
and gravitational potential, respectively, The second Qort constant
is B=0+ A and y= ClafS + o, where €, is (he sound
speed. These cquations constitule a closed set together with the
three-dimensional Poisson equation:

(a2 +ﬂ,2 +a§),}, = 4nGuod(z), ®

where G s the gravitational constant and &(z} is the Dirac delta
function in terms of the ventical coordinate 7.

The essence of the ‘non-modal approach® is that the system
sustains, together with conventional exponentially  evolving
disturbances, a class of salutions with non-cxponenlial time
cvolution. Jn this simple case, when the background flow is plane-
parallel and the spatial inhomogeneity in the equations is linear
and onc-dimensional, Kelvin’s transformation of variahles @' = ER
Y =y—2Au, z' =z 1 = is sufficient to recover thal class of
non-exponentially evaelving pzrturbations, which is overlooked in
the framework of the standard normal-mode approach. The switch
1o these variables transforms the initial spatial inhomogeneity of .
the system to a time inhomogeneity, because D, — 3 and 8, —
dz — 2Ar'a,. This cnables onc to look for solutions in the form of
spatial Fourier harmonics (SFHs) (Chagelishvili, Rogava & Segal
1994), bearing the form exp[ik,.x’ + kwy')l. Employing this

'In the hydrodynamical literature, a similar approach was originally
introduced by Lord Kelvin (1887) in the study of the linear stability of the
planc Couctic MMow,



ansatz, one can effectively reduce the sysiem Lo a set of first-order
ordinary differential equaiions with time-dependent coefficients
(FL97) for the perturbation amplitudes (ﬂ',ﬁ'.i)“'i}. fn,,jr) ol the
relevant Fourier components (the superseript ' is hereafter

dropped):
ik,
A6+ - ‘:4 (& — iy =0, )
i a=th ok T (0 + 7 (10)
= U= i : Fao
AY T 2A™ T 24,
1o+ B iky (n
dyo 4+ — = — =y,
At TagX
. kB
dib, = ‘i‘A“ i (12)

Here the Maxwell equation
by = b, (13

is already used to express !;‘. in terms of f:,. and the dimensionless

time varinble of FILY7, r=2Ar - & /k;, is introduced. The

closure of the set is achieved by the solution of the Poisson

cyuation which relates Jr o o (FLL97):
2n(idar

k(L+ )

This is the set of equations derived by FLY7. Further, they
derived from these equations a complicated, fourth-order differ-
ential equation for the surface mass density Fourier amplitude &,
andd performed in the rest of their paper a numerical analysis of the
system on the basis of that equation, Among other interesting
qualitics of the hydromagnetic waves, they noticed that MIiD
wiaves come inte view as being coupled. Although neting this
phenomenon, FLYT did not give a physical explanation, an explicit
mathematical proof and/or a deseription of it. Does the coupling
really exist? What is its physical nature? Docs it lead to any new
physical effects? The purpose of this Lener is 1o give answers Lo
these questions.

First, let us simplily the notation and make our equations totally
dimensionless. This is possible by introducing new dimensionless
parameters: K = A/Ck,, By =k fky, £ = CafCy (with Cq the
Alfvén speed), @ = Q/Ck,, 8= —2mGYa/Clk,; und new
dimensionless variables 7 = 1Ok, B(T) = B, — 2RT, ofT) =
B/ + BV S =[Sy, U=0fC,, V=1D/C, b= ib/Ba.
Taking into account (13) and {14), we can rewrile (9)—(12) in the
following tolally dimensionicss lorny

(14)

IﬁlT—

SV=pgu+v, (15)
UD = =81 + m)S + 2aV + £(1 + BHb, (16)
V= —(1 + )5 ~ Aw + RN, {17)
M= -Uu, (18)

where /M = «’J'} denoles the nth-order time derivative of F. Note
that the dimensionless parameters used here are in direct one-10-
one correspondence to the parameters used by FL97. In particular,
Bo=—m w= 1 m m. R=1/2mny/m, &€= /m/n, and
& = —m/mmy. The dimensionless time variable T in FL97 is
related to our Tas T = mmg /(7 — 7o)

The next important step in our proofl is to introduce the new
auxiliary variahlc

£=8+ BTk, (19)

© 1999 RAS, MNRAS 307, L31-136
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to find out that
£ =y - 28h, (20

and taking onc more derivative of £ to reduce, eventually, the st
(15)-(18) 10 the following pair of coupled, sccond-order
cquations:

L+ WiL = 2" + Ch, 21a)
BV + Wib = =2l + CL, (21b)
wilh

Wis=l+a, (22a)
Wi= 20+ 8O+ (1 + o + 4wk, (22h)
C=(+ap (22¢)

These equations ulready bear features of equations for coupled
oscillatory systems. The coupling is exclusively evoked by the
non-zere shear, i.¢, by the dilferential character of the motion,
This is obvious, since only the presence of the shear (R 40,
leading 1o o = ofT) and B = B(T)] makes the coclficients of the
system (21)-(22) time-dependent. 1o the absence of shear the
system is decoupled in terms of effective normal coordinites
(Morse 19813, and it possesses (wo uncoupled Tundamental
fnormal) frequencies, the solutions of the Tollowing higuadritic
couation:

W —fde’ + (B0 4 ap + e, + (18 ) B =0,

(23)

[
which correspond to Tast and slow MHD density waves (ay = oy
and w- = w,), respectively. 1t s relevant to note that, in the limit

of non-rotating (w=0) and non-self-gravitating (8 = a =0)
shear flow, the system reduces to the one considered by
Chagelishvili et al. (1996), where the effect of the shear-induced
wave coupling was originally disclosed.

The system (21}-(22) is not yet in the canonical form for the
standard  oscillating  system with two  degrees of - freedom,
becouse of the appearance of first-order  denvatives in the
coupling terms. However, the system may be Tormally reduced
10 the canonical form by employing the Tollowing rotational
transformation:

L= Acosel + YsinwT, (24:)
b= —Vsinwl + Ycosw!, (24h)
which, after some laborious but stratghtforward algebra, leads to

the following canonical system [or coupled oscillations with two
degrees of freedom:

AN+ CY =), (25n)
VALY +CX =0, (25h)

The eigenlrequencies (€1 and (3;) and the coupling cocfficient
(C) appearing in this system are expressed through W, Wa, and ¢
in the following way:

02 = o? + Wicos’wT + Wisin®wl + Csin2eT, (26a)

2} = o + Wisin®wT + Wicos’wT — Csin2wT, (26b)
1

C=3 (W} — Wlisin2wl — Ceos2wT. {260)

Thus we have succeeded in reducing the initial systen o the
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Figure 1. Dispersion curves w,(1) and w7} exhibiting adiabatic variation of SMW and FMW frequencics, The geaph is drawn for §, = 10, R = 0.05

w=—-02£=03and §= ~ 1.4,

above form, distinctive for coupled escillations with two degrees
of freedom. We have proved that the two wave modes sustained by
the system — SMW and FMW - are actually coupled. The
presence of shear in the disc flow (R # 0) ensures temporal
variahility of ee(7) and B(1) and makes the fundamental modes of
oscilltion physically coupled (Chagelishvili et al. 1996). Under
certatn circumstances the coupling leads 10 encrgy exchange
between the waves, and to the transformation of waves into cach
other.

When the system parameters vary slowly (adiabatically), as
they do when 2R/B, <€ |, the standard thcory of coupled
oscillations (Morse 1981) may still serve as a useful guide in
understanding and interpreting the inherent physical processes. In
particular, one can still operatc with the roots of (23) as
adiabatically varying charactenistics of oscillations, replacing
ays by a(T)s and Bgs by B(T)s. Fig. 1 displays the dispersions
of SMWs and FMWSs, given by the functions w- (T} = w(7) and
w4 (T) = wi(T). The graph is drawn for the case when the ratio of
wavenumbers is By = [(; the dimensionless first Qort constant
and dimensionless angular rotation velocity are R = 0.05 and
@ = —{.2, respectively; and £= 0.3, § = —1.04. Notc that in this
particular case sell-gravity causes, for SMW, the appearance of
the limiled instability interval around the moment of time
T, = By/2R. :

The uscfulness of these phenomenaological dispersion curves is
associated with the general property of this kind of systems. The
‘adiabatic hehaviour' of the modes implies that they should
normally follow dispersion curves of their own: the spectral
cnergy density of cither the FMW or SMW should be propor-
tional to its corresponding normal frequency E.(T) ~ w.(T)
(Chagelishvili et al. 1996). For the problem under discussion, the
wlal energy density of a penurbation, being the sum of is
kinctic, magnetic and internal (compressional) energics, may be
written as

E(T)y = (4 + V)2 + £(1+ BB /2+ (1 + )5%/2, (27a)

and this is an exactly conserved quantity in the ‘zero shear
(R = () case. This circumstance is apparent frenn the equation for *
E'? whichereads

EV = R[—JA) + T8 2| (27h. -
1+ "
When ransformations sre absent, the time evolution of F(7) it
indecd adiabatic with E. () ~ w. (7). However, when a wave
undergoes transformation its evolution is ner adiabatic inside the
so-called *degeneracy region® (Chagelishvili et al. 1996), where
clficient transformation of the initial wave into the other one takes
place. If the degencracy region overlaps with the region of
transient instubility, then the deviation from adiabalicity becomes
more pronounced. Figs 2 end 3 vividly illustrate these remarkable .
circumstances, They are drawn for the same sample of parameters
as Fig. 1, and the initial perturbation is chosen 10 be an SMW, Fig, 2
shows the temporal progress of the perturbation energy. Compir-
ing the course of the evolution of the £(T) with the (Iispcrsinn_;
curves given in Fig, 1, one can casily sce that onginally the energy
is evolving via the E(7) ~ w_(T) law, remaining almost constant
until it *enters’ the ‘degencracy region”. Here it hecowes partially,
transformed into the wave mode with a significant FMW,
component. ‘The remaining SMW component is boosted by the
transient instability. The result is that the perturbation that leaves
the 'degeneracy region’ is a karger amplitude mixture of SMW and
'MW modes, dominated by the FMW mode. The energy of the
perturbalion continues 1o evolve adiabatically, but this time with -
E(T) ~ w, (T): it Tolows the dispersion curve of the FMW,
implying that al this stage of its evolution the perturhation steadily
extracts energy from the background shear flow, Fig. 3 displays
the temporal evelution of S(7), and clearly shows how the initial,._
almost constant low-frequency SMW is transformed into Lhe
FMW.,
Yet another interesting phenomenon associated with the shear-
induced wave couplings is the appearance of shcar-heat waves:
(Rogava & Mahajan 1997; Pocdts et al. 1998). Our preliminary
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Figure 2. Temporal evolution of E(7) corresponding to the example given by Iag. 1.
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Figure 3. An example of a igure representing the SMW- FMW transformation event, depicted for S(T). The values of the parameters are the same as in Figs

L and 2.

numerical results (see Fig. 4) show that shear-beat waves are
excited in this system too: in disc layers with low shear rates and
for the perturbations with R <€ f§, <€ 1.

These beat waves acquire a significant phase  difference
between surface density and magnetic ficld perturbations, and
hence they may potentially account for the appearance ol the
magnetic Neld spiral structures anticorrelated with the optical
spiral arms,

It is reasonable to assume that shear-induced wave couplings in
the magnetized, sclf-gravitaing, differentially rotating gascous
disc should have a considerable “share’ in the establishment of the
overall physical dynamics of the MIID waves. The wave coupling
naturally leads to mutual transformations of waves. In simple

© 1999 RAS, MNRAS 307, L31-L36

MIID systems the transformations are strongly pronounced when
the Alfvin speed and the sound speed are approximaicely of the
same order, i.e. when =1 (Chagelishvili et al. 1996). Tt is
interesting to cxamine whether this criterion remains the same or
whether it is somehow aflected by the presence of the self-
gravitation (8 - () and Coriolis parameter {(w # 0). These two
physical factors {self-gravity and non-zero Coriolis parameier)
lead to the appearance of the transient Jeans instahility and
‘epicyclic shaking’, respectively. The interweaving of these
physical effects with the shear-driven wave  transformations
demands carcful, detailed examination and is beyond the scope
of this Letter,

At the present stage of this study it scems clear that the
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Figure 4, Shear-beat waves, shown for the density perarbation S(7). The set of parameters is 8, = 1070 R= 0", o= ~10 3, = Land §= ~10°%,

problem, considered by FLY7, heing of high theoretical and
observational importance, necds Lo he revisited and considered in
the light of this new knowledge about the velocily shear induced
wive lransformations. By saying this we have no desire 1o
diminish the importance of the resuits obtained by Fan & Lou. On
the contrary, we think that, by providing rigorous analylic
evidence for the MHD density wave couplings in spiral palaxics,
we emphasize the sipnificance of the problem, and hopefully take
a step towards the understanding of galactic magnetic spiral
SUuCIures,
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