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Chapter 6

Collective behavior of vortices in a

cylindrical plasma

In this chapter collective behavior of vortices based on the modulated point vortex model is studied in
a cylindrical plastna for which the diamagnetie drilt, direetion is azimuthal and therefore vortices remain
in a finite region in the course of time developtnent. The results are compared with the observations by

Antipov et al [1] and by Grilliths and Hopfinger [2].

6.1 Drift wave vortices

The Hasegawa-Mima equation in a cylindrical plasma is written as
2 ,
L Tl va - Vi =0, (6.1)
it

where ¢ is an electrostatic potential and

M= -V, (6.2)
2 ]
V. = %zxvlhmo. (6.3)

When the background density is assumed to be a Gaussian, ng o< exp(—r*/r5), then the modulated point
vortex model gives a sel of cquations as
dr I 21Z X (Fn —Tpg)

® = Z[ij —U.Tﬂ]-——-—-ﬂ——fﬂ(lrﬁ —-l‘ﬁl), (G.fl)

eft 2 fd Ite — gl

where v, is given by v. = v /Qrf, and K; is the modified Bessel function of the second kind.
Numerical simulations are performed to see dynamnics of a cluster consisting of like-signed vortices
(ke = K} In Fig.6.1 one hudred vortices distributed randomly in o rather small region at wy initial

moment are shown to rotate in accord around the cylinder axis and re-distribute to form an ordered state
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Figure 6.1 Redistribution of vortices to formn an ordered state in the course of Lime evolution: (a)

& =100, and (D) & = —100, where & is normalized by ¢..
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Figure 6.2 Time cvolution of (a) cyclone (& = 10), and {b) an anticyclone {x = -10). The & is

normalized by r,.

inside the cluster for (a) x = 100 and (b) & = ~100, where & is norinalized by z.. The direction of the
rotation around the cylinder axis is clockwise and does nol depend on the sign of Lthe vorticity, while
the direetion of the rotation inside the cluster depends on the sign of the vorticity, that, is, clockwise Tor
K > 0 (referred Lo as a eyelone) and anti-clockwise for » < 0 {referred to as an anti-cyclone). When
the magnitude of & becomes comparable 1o ¢, ry where v is a average size of the cluster, the cyclone is
unstable and the outer part of the cluster is left behind the core as Lhey rotate around the eylinder axis,
while the anti-cyclone is rather stable as is shown in [Mig.6.2.

Like-signed clusters collide to conlesee into one cluster when Ixf is farge and to remain themselves
dependent, when |s] is not, larse cnough (I"ig.6.3). For the vortices with relatively small [&], only the
core of two clusters with & > 0 fuse, being undressed (Fig.6.4(a)), which can be compared wilth the

laboratory experiments by Griffiths and Hoplinger [2} who simulated coalescence of geostrophic vortices,
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Figure 6.3: Coalescence of the like-signed clusters: (a) eyclone-cyclone {8y = xy = 100}, (b) anti-cyclone-

anti-cyclone {(ky = wp = ~100). The & is normalized Ly ..

s, et T g
orlt o ot
J:V' Y : P ”‘f} gm0t o 0
. k . 4 }".. PO R TR
X ?@,ﬁi 0 ks Rk AtHe s
B LR A Doghiys on BN AN
d‘;_.x,‘* .":f . N
. Y S .
. . v e
(a)
/.-o{ . 2 .:: R M ;_o:
s | S || ma )] w
= in T LERr
o = R - 1
o ”b’.{ > L R
*
(b}

Figure G: Interacting clusters with relatively small |s]: (a) cyclone-cyclone (k) = ny = 10), and (L)

cyclone-anticyclone (ky = —ry = 10).

It should be noted that coalescence of vortices has been nuimericalty obtained by Christiansen |3 who
used the clowd-in -eell {(CIC) method based on the point vortes model Tor the Buler equation. owever
the CHC method inevitably introduces an effective viscosity responsible for the coalescence of the isolated
vortices. On the other hand, the coalescence presented here is dynamical. While clusters with £ < 0 wre
inclined to coulesce into one though it takes rather tong. The nolion of clusters with opposite signs of &

is simply a superposition of the mnotion of the individual cluster (Fig.G.4(DL)).

For dynamics of a cluster consisting of like-signed vortices (s, = &), denoting the coordinate of the

center of mass by R and the deviation of the vortex position {rom it by s, that is,

1
re =R+s, R=— Zrm (6.5)
o
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and using the identity

R? R?

we obtain from eq.(6.4)

dR R-(sa — Sﬂ)

dt - 47rN — ﬂ;ﬂ(r’ rﬂ)[ Rls | R +ncpH]Kl(]s° “Sﬁ,)

Sq — 8
v xR S Boleeall e, oy, (6.6)
o fra
where
Nag =2 X {[R x 2 —2A] R

|sa — sgl ‘R
Equation (6.6) indicates that the center of mass revolves clockwise around the cylinder axis, being agitated

in the radial direction. Subtrncting eq.(6.6) from eq.(68.4), we have

_ sp _dR
dt 21‘.2(5 v.rﬂ | p|K1(|sa s3)) e (6.7)

The last term on the right hand side of eq.(6.7) is neglected when |x| > v,7¢. For the vortices to satisfy
the relation |[sq —sg|/R << 1, we may approximate eq.(6.7) as

Ba 2yeSe(Ba=5p)  Sa e
dt ;IK*UJR-*-S )" oo — oo 2% 5o +€ap M1 (f5a — sgl)
1 s
o _Z_W[n“v'(R+sa)2]E{‘STH x—+5a,a—-}K1(|sa_5ﬂD, (6.8)
B#a o |Sa

where

_ Sq — 5p Sa
E‘,,,_«;—zx{[sc,><—5—"_—5-};--]><sc,}.._2T

I a | 5

From eq.(6.8) the direction of the internal rotation depends on the sign of k — v, (R + 5q)? since what
remains of eq.(6.8) is positive definite when the vortices are distributed densely in the small region.
When the sign of x — v, (R + s4)? is definite during the motion, that is, « is large enough, then the
internal rotation is clockwise for & > 0, while counterclockwise for k¥ < 0. For relatively large «'s , that
is, K > v.(R + s,)? constituent vortices redistribute themselves quite orderly as is shown in Fig.6.1.
Equation (6.8} indicates that the vortices are subject to rotation for large x and at the same time are
pushed/pulled in the direction parallel to their displacements. The rotation velocity and the magnitude
of the push/pull depend on the configuration of vortices. When the vortices are close each other, those
rotation velocity and push/pull become large. Since the vortices are confined densely in the small region
under the constraint 3~ s« = const, they eventually redistribute themselves to separate from each other
with an equal distance. This may be a mechanism behind the formation of the ordered state.

Another interesting point eq.(6.8) implies is that as x > 0 decreases so that the sign & - v. (R + 5,4)2
changes for outer vortices, they rotate in the dircction opposite to the core. Since the center of mass

motion is always clockwise, the outer vortices for & > 0 are left behind the core, while the cluster with
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Figure 0.5: The axis along the gravitational force and the rotation axis: (a) laboratory and (b) planet

k < 0 are absorbed into the core as is shown in Fig.6.2. Thus a cluster with x > 0 is not long lived
while a cluster with « < 0 is long lived. These are the same at underlying physics of the observation by
Antipov ct al {1] who originally designed the experiment Lo explain the motion of drift wave vortices in
an inhomogencous magnetized plasma and the Giant Red Spot of Jupiter as well as atmospheric cyclones
known as hurricanes and typhoons.

The problem is to sce whether the many vortices with different polarities grow into a large vortex-
pair. The vortices with the same polarity are confined in a finite region in the phase space because of the
conservation law, although they exhibit complicated behaviors such as exchange scattering and mutual
trapping. For the vortices with different polaritics the confinement is not guarantecd by the conservation
law. The repetition of the pair formation and exchange scattering scem to lead to mixing, which may

not preferable to sell-organization.

6.2 Monopole vortex dynamics

Since the stationary solution of the Hascgawa-Mima equation is a dipole vortex and not a monopole
vortex, it has been discussed that the Hasegawa-Mima equation is not responsible for the gaint red spot

of Jupiter and some other equations are necded for a monopole-like solution. One candidate discussed so

far [4-6} is
?E
at

A rotating two dimensional system of shallow water with a free surface is described by the Euler

+ [, 0]+ ve - (z x V)¢ — ay®) = 0. (6.9)

equations in the geoid plane where the coordinate y is taken in a meridian direction and x is taken

perpendicular to y on the geoid plane:

%u+(u-V)u+fixu+th=O, (6.10)

where H and h are a fluid depth in the direction of gravity and the deviation of free surface, respectively,
that is,
H = Ho + h(z,y,t).
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and f is the Coriolis parameter. The continuity equation is written as

a—ath-{—v-(Hu):O. (6.11)

From eq.(6.10) we have

1, 4]
u = -fzx{th+(u-V)u+—(,)—tu}
~ 94 9 (s vvn-12qn
% f{szh fz[(szh) V|Vh fi)!v’t} (6.12)

This shows that the pressure gradient, with the Coriolis force induces geophysical flow as the lowest flow.

Substituting the resultant equation 1o eq.(6.11) gives a generalized Charney-Obukhov equation [4,5):
a o . ’?,2 2
;)E(V h=h) +(Vinf)-(z x V)(h -+ —2-) +[h, V] =0 (6.13)

where A is normalized by 1y, and the space and time are normalized by the Rossby radivs rp = oo/ f
and the Coriolis frequency f.

The motion of 2D fluid in a magnetized plasma is described by

)
vy Vn=0, (6.14)
N
v, = E";z x (Vi) — %vmm, (6.15)
V2 = —dne(n — npe®/T), (6.16)
These equations are combined 1o give
2 1
(V2% = %) = (TInp) - (2 x V)(w + S8+ 9, VRl = 0, (6.17)

where the space and time are normalized by the Debye length Ap (Ap = T/1mnee?) and (1/Q)(\p/p)
{p=Cy/0, Cy=T/M, and Q = eB3/Mc), respectively. An electric potential 4 is normalized by e/T and
[, ] denotes a Poisson braket. Equation (6.17) is the same as is derived above for a planetary fluid and
is derived by Tasso [6).

I ¢q.(6.17) the scalar nonlinearity (Vinp)- (2 x V)$?/2 gives a solitary structure of the K-dy type
(a monopole vortex) and a vector nonlinearity [15, V2¢)] describes a dipole vortex, If the scale length of

the structure is given by a, the order of magnitudes of these two terms are estimated os

2 52
(VInp)- (2 x V)% o [V]np|%,

2
W
W, 2]~ I
[, Ve =3

For a Gaussian pressure profile p o exp(— 2/2R?), when the following inequality holds,

Ly, (,\i,ff?

1/3
[V Inp| a >

a>

[
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that is,

Ap
> Ryf22 ,
a T (6.18)

the scalar nonlinearity dominates the vector nonlinearity, indicating that the monopole type of vortices
are excited.

For the planetary atomospheric motion, the Coriolis parameter is estimated in the F-plane, being
expressed as

[=2Msing fo+py, f= e,

where € is the angular [requency of the system rotation, ¢ is the angle between the axis of the systemn
rotation and the normal to the fluid surface and I is the diameter of the Earth, The 4 plance approximation
is Lo treat the fluid rotating around the direction of gravity with the angular velocity of 20sing, for which

cq.(6.18) is rewritien as

a< rn(:; tan ¢) /3, (6.19)

Equations (6.17) and (6.13) are intensively studied concerning the confinement, and transport of
magnetized plasmas and the large scale planctary atmospheric motions. So far, however, those work are
rather limited to studies of nonlinear evolution of initially given monopole or dipole type of vortices, and
the process in the sell-organization emerged from randomly excited lar we nunber of vortices has not. been
studiced.

The large scale motions characterized by eq.{6.18) are dominated by the monopole type of vortices

for which a long wave approximation can be nsed 1o eqs.(6.17) and (6.13) 10 give
Ed’* Vo {5 X V) TP+ S — [, V¥ =0, (6.20)

where ve = Vinpor Vin f, depending on which vorlices are concerned.

The core part, of the ionopole vortex may be described by a localized function I as
zhc, (Jr ~raf), (6.21)

which is substituted into cq.(6.20) to give

Zhnlr-—[‘ I C,{ df, *Z ﬁ

Here the unknown function £ is deterinined so as for the nonlinearity to balance with the dispersion,

) -fh'

——— i o, (1+ +anFg (6.22)

that is, the following equation holds:
— AL+ Y A KaFFl =0, (6.23)
This equation is readily solved to give

(6.24)

48\
i —raf), Aa= 18

- ) A e
Fallr —Ta]) = Assech®( 12 !
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where A is a parameter to represent the spatial extent of the localized funection of F. Then the motion of

the center of the monopole vortex is described by

d o
_Es _,Z ,,”(" ‘!'f’) Fi'llra —ral) + (14 A+ 3 kg Fa(Ira — ra]))2 x v.. (6.25)
B#a

Here we cousider the case of the like-signed vortices ko = &, and introduce the coordinate of the center

0[' mass R Ellld t.he deviat,ion fmm it‘ S as
ra = R +s R= —1 E r
o xy N a-

Then we simply have

R 1
dr “"'““JFN“ZZH:F(ISQ—Ssm, (6.26)
dsnr _ Z X Sﬂ S‘g) S
dt hz S — Sg| F(Isa — spl)
— s” (sn - Sﬁ) n ig ‘IH _
= A,Z salm — 55| ———2"2 X Sp En.gsﬂ]f' (|Se — sl). (6.27)

‘The center of mass rotates in the direction of the diamagnetic drift, while the vortex positions deviated
from the center of mass behave similar to those in the previous case of the drift wave vortices. Since
the motion of the like-signed monopole vortices are conflined in a finite region becanse of the constant, of
motion 3" s, = const, the vortices behave as a single large vortex whieh rotates in the direction of the
diamagnetic drift around the eylinder axis, while the vortices are subject, to rotation in accord inside the

single large vortex. This could be a picture behind the Giant Red Spot in the Jupiter.
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Chapter 7

Spiral structures in magnetized

rotating plasmas

Coherent, structures have been recently observed in laboratories [1-5] and are subject Lo theorotical
analysis for understanding underlying physics. In both ECR plasmas and gun-produced plasinas, twvo-
armn spirals are commonly observed, and in particular the spiral structures observed in the RCR plasnias
[1] have interesting features: (1) the stationary structure is observed in acerlain range of the backgroumnd
pressure, (2} the diveetion of the arm stretching is reversed when the magnetic field is reversed, and (3)
the anm winding is identified with the Archimedes spiral, thal is the carve spiraling into the origin whici)
in polar coordinates is given by the equation r o ().

hy the ECR plasmas, the ratio of the ion collision [requency with neutral particles to the ion eyclotron
freqeuncy is small as 14/€; ~ 0.05, and the azimuthal rotation due to the E x B drift, which is 0.2¢, ~
0.4C, (Cyr ion acoustic velocity), dominates the radial drift, due to collisions.  Furthermore, the ratio
of the nonlinear term to the Lorenz foree term Co/raQ is as small as 14/, where 1y s the blasia
radius. Thus, the radial structure of spiral formed in an azimuthally rotating plasma can be analyzed
with a linear cigen-value problem. Ou the other hand the ratio of the electron axial drift to the clectron
azimetthal drift is of the order of Ara(Qe/1e) where ks a characteristic axial wavenumber. Since Q. /14
is as large as 10%, mode-mode coupling has to be taken into account, for the Muctuations with a long wave
in the axial direction.

In this section, we show that low frequency perturbations in an azimuthally rotating plasina inay
develop into spiral structures, which, in a particular case, are stationary. Low frequency instabilitics such
as the collisional drift, wave instability, the centrifugal instability and the Kelvin-Ilelinholz instability arc
taket into account, and the linear eigen-value problemn for the ECR plasinas is numerically solved to show
the existence of spiral solutions.

The spiral structures in the gun-produced plasmas [5], in which 14 is comparable with £, and Lhe

59
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ion azimuthal flow is supersonic, will be discussed separately since full nontinear treatiment is required
because of no sinallness paraineters,

Plasmas in a cylindrical vessel are inevitably driven to rotate with the Ex B drilt due to the ambipolar
potential. Then the jons are subjeet to centrifugal force and their rotation lrequeney is alfected by an
cllective gravitational drift, while the electrons are driven by a dimnagnetic dvift, The difference of those
velocities induce charge separation which cannot Le fully cancelled by electrons whose axial motions are
dragged by collisions with neutral particles. Thus Nuctuations are excited and azimuthal motions are
organized in such a way that the core part of the plasmas is almost rotating rigidly while the outer part,
lags behind the core part because the azimuthal velocities do not increase in proportion to the radius,
producing a spiral structure. In the axial dircction, however, the nonlinear frequency shift induced by the
mode-mode coupling could be balanced with the dispersion of the modulated fluctuations, which gives
localized structures of the type of an envelop soliton,

In Sec.7.1 we express the ambipolar potential in terms of the background density from the balance of
the divergence of electron and ion fluxes, In See.7.2 we derive an equation deseribing fluctuations and In
Sce.7.3 the localization along the magnetic fields is shown by deriving the Ginzburg and Landau equation
for the modulated amplitude of the spiral. In See. 7.4 an cigenvalue equation in the radial direclion is
solved to give spiral structures which are compatible with the observitions, Discussions are given in the

last section.

7.1 Structure of background rotating plasmas

Equations for ions and clectrons in a magnetized plasma read

E)al:' '*‘ V(nava) = 0, (7’ ]')
IV e !

f—,v— +Va Vvg = C—(—qu + -1—v,, X B) =80 e=Via — 1/gVa- (7.2
at Me ¢ 7t

where n,, vq and 1/, { @ = e or i) are the density, velocity and collision frequency with neutral particles
of electrons and jons, respectively, and ¢ is the potential.

In the following physical quantities are divided into the stationary part and fluctuating part:

7 no(r, 2) - nf."‘) (r,zz, gt, &%)
) = do(r, z) + Z: Z £™m ¢E‘m)(r, ez, .s.f.,azt) g0 kes—wel) o ce.,
t#0 m=1
vo(r, 2) Vi (r ez, et,£21)

where € is a smallness parameter associated with the fluctuations and is of the order of krg(r, /). The
amplitude modulations in both ¢ and z are due to nonlinear mode-inode couplings.
The ion drift is expressed in terms of cylindrical coordinate vo=(uo, vo, wo) as

C%; Oy

e g R (7.3)

ti 0 X
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- C¥Y Oy Culli 51 g0

fio = Q412 Or - (Qf + u'?) ;_()—r_}' (74)
CZ 9o

Wio = T (7.5)

where C? = T, /M and Q; = eB/Me. The e¢/Ty has been replaced by ¢ as well. The second term of
o (7.4) is an effective gravitational drift due to a centrifugal force. The effect, of the centriflugal force on

the radial drift. is negleeted sinee 15 /€% << 1. The dlectron drift, is given in a similar way as

2 :
e &)

Heo = Wa(@ﬁg - lllne,O): (76)
30

Teo 0 ?273-7() (¢ — lnngpl, (7.7)
75 6

oo = 2L (60 tungo), (7.8)

e &z
where v = T/m and Q, = cl3fme. Here the dimmagnetie drift, is taken into account, bul, s gravitational
drift from the centrifugal force is omitted since e/, << 1

The rotation frequencies of the ion and clectron azimuthal dvifl, now read

wr

wh > wi(1 - b W b, (7.9)

where wg and w, are the frequencies associated with the Ex B drifl, and the dimnagnetic drift, respectively,

defined by

Czl(f(,ﬁo .',,ldlnmo
Wi = ' wWe = —,
Q, r Q T odr

The space potential produced by the jon radial transport is short-circuited by the electron axial

transport so thal we have

V(niovio) = Vi{neoveo) = Sneg, (7.10)

which determines the profile of the cquilibrium density and potential, Since the solution of this equation
is sensitively dependent, on the Loundary conditions at the oud of the field lines unless the plasina is so
long that parallel dilfusion cin be neglected altogether, it is unlikely to obtain a self-consistent, solution
nio(r, 2), Neolr, 2) and @olr, 2) 1o the problam of ambipolar diffusion across inagnetic field. Instead, in
the foliowing we take a phenomenological approach to assume Lhe densi ty profiles compatible with those

of laboratory plasinas and determine the potential profiles from themn. Equation (7.10} is now rewritten

as
Conlo ody CIO . Ok
0 ) A (52 = i, .
o 1‘r)r( 1o (')r) 1 O (s r)z) .05 (7.11)
vl 1 Y a o 2 19 17
éf ;EF(SHC’OE(% = nngp)) T’_r)—h( le OFJ_::(QU —Inng o)} = Sngo. (7.12)

Invoking charge neutrality n; o = 2, o = nig we have from the clectron continuity equation
f=) =] it N c, ] l

d. oy, 1 Prg 12 19 P
Oz 0_4.-) h t’:f‘sno * 9zt Qfrir 5 no, (¢o — Inne}}, (7.13)
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which is substituted into Lthe jon continuity equation to give

2oL d déy, ? P2y Qive a1 &, Iny
(I i ﬁz)f—ﬁ Tnt)(’s") dr ) = ?{Q‘no - G2 }_ (Qc"i) -'J:;)_T‘ r o )r (7‘1'1)
where
i ey o
= (5;2- - ;%:)-5

The profile of ¢ is determined [rom the above equation for a given np(r, z) as

C ) — Qive s ..
oolr,z) = *(m—ﬂc:q) lnng(r, 2)
Q? T 1 r N 1 ‘5)2”0(7'”»3)
+T’F£ ot m‘/; ar'’s {GHQ(T’ ,..)——,_zz"—}, (715)

where we have used that, (14,/Q,)? << 1. The ion azitmuthal drilt velocity is given by

. Ci 5)650“ Cfldéo)
= Q; dr Qfr dr
C? Qi adinng(r,z) Q1 T NP
= -Gy +EMD(T,3)L dr'v'{o = S hnol’, ), (7.16)

The background density observed in the ECR plasia is a menotonically decreasing function of r and

homogencous in the axial dircetion, and the best-fit is given by

nolr, 2) = ¢~ IO Ir®

which is shown in Fig.7. 1{a) together with the experimental data. The jon azimubhal drift vilocity
obtained from this density profile through eq. (7.16) is depicted in Fie. 7.1{b} where the observed jon

drift veloeity is represented by dots for comparison.

0.
0.
0. »
0.1 .
0 0.2 0.4 0.6 Or.s

Figure 7.1: The radial profiles used in the ealeulations: (1) the radial profile of the density approximated

by a Gawssian together with the experimental data (a dotted line) and (b)the £ x B drift frequency

normnalized by €.



7.2. EQUATION FOR THE MOTION OF FLUCTUATIONS (3
7.2  Equation for the motion of fluctuations

The first order fluctuating clectron velocitics given by eqs.(1) and (2) are

. )
uf} = E:’(‘i‘,)l—'m‘:&‘“) + Tolur) 267 - 5L,
W) = oy, g Teny 0T el - et
' Eeluwy) dr “or o
(1) vy 1y _ et
Wep = Tl )ikc(¢g 'y ),
where
Pofw) = e =il = ), Beloo) = (e = 2) (e —e§ — 22) 1w
Substituting these into the equation of electron continuity we have
nﬁ‘,’ JTulwe) @ 1 d oy @
[i{we — fu§) —5] = UTEc(Wr) a—,&--!‘[T—_-}-(d—’rlnm ]a
- L i Delen) | d o 2’“0 et — 2t
2 ngle(we) dr >-'e( no
(1)

On the other hand the Mictuating parts of ton velocities are given by

”(I[) _ _ C? IIE(Q; % 2w0)¢)(1) ( ) )()(I{)“)
b Yilwe) r igr
2 T
A G i, dud dg” _l{we) (1)
ST Sy et T F ek
c? .
u;f”,) = - m ik ¢§,I ),

where
Pi) = b4 =il = ), Bale) = (% + 208) (% + s + 22) 4 (o

Substituting these into the ion continuity equation we have

(1) .
ny C?ly(we) O ! d np d
flwe — fuy) + 8 :—"—-—-—,~—--—I--—,—
ilese = ) = 515 - i) o T G sy e
_ I‘ﬂ_z.“f Ei(w,r) d no(Q {_Qwo))]}qf)(”
2 rnglilwe) dr 0 i{we)
C?
+ k2 (. (7.18)
! I l("‘"f) f
Substituting the above velocitics into the clectron and ion countinuity equations, invoking charge

. 1
neutrality nE ) = n( 3 = ”r ), we have

d? f.l) . [l N dIunoIdQS
dr? r dr

3(r) ~ 2]¢‘” (7.19)




G4 CHAPTER 7. SPIRAL STRUCTURES IN MAGNETIZED ROTATING PLASMAS

where
E2Q0 0 Lu,
Alr) r (wg)I‘,- (we) we — I.’wg)
{4 ELENTH dlo {2, )dluno 4+ i d:.u.;o ; aﬂv }
T ( ¢ we —lwg’ dr dr

where we have neglected terms of the order of or less than O(§; /€, and O(wf)/Q;) and used the following

approximation derived from the electron or ion continuity equation,

ﬂ o va 9, Idinng )y _  lw.
= 3

g mﬂ_ﬁwg —Lw§ ~w.)r dr

= o AL (7.20)

Equation {7.19) describes low frequency fluctuations excited by both the collisional drift, wave instabil-
ity(the first, term of #) and the flute mode instability such as the gravitational instability due to the
centrifugal foree acting on ions (the second term of £) and the Kelvin-lelmholz instability (the thivd and
fourth terms of §). The difference between oq.(7.19) and the equation derived by Rosenbulth and Simon
[G] is that the charge neutrality is assumed and the collisional drag is taken into account, in eq.(7.19),
while the fon diaunagnetic drift is taken into account, instead of the electron dizmagnetic drift, in Ref.[6).

Putting that qbf.”(r, £z, 6L, 6%L) = Y (r)gelez, et, €28}/ /), eq.(7.19) is transformed Lo

e 1dyy i
d.,.zf +ogr AR = e =0, (7.21)
where
) 1,dlnung 1.dInng
= [r - = .
Alr) Alry - fl( dr ) (d: } dr
_i"f Qch we — ﬂwo
Ao~
D I s Py e - Jor k~1,
i ] ;e fwj, . dlnng duf dP
~ T e+ —= - 3 == )
T [‘,—(u;;){( 0 r F W —[’w;.;) dr Tdr T dr? p for &

The ratio of the contribution from the drift wave to that [rom the flute mode js estimated to be

KE(Qe/ve)(rdfi/Cy). Therefore the collisional drift wave instability is dominant when &2 > (1,/Q)(C, /raS%)

is satisficd. The quantity (1. /Q)(Cy/rS%) is of the order of 107 to 1075 for the laboratory plastnas
and thus we only consider the cases of fluctuations due to the collisional drift wive instability:

AQQ Q; we — fuwf

A( )N F (Lu()[ (.u() wy —-l.’w[.;'

7.3 Localization along the magnetic field

The jon velocities in the sccond order of £ are dominated by conveetion terms and are aiven by

) (1)
@ C' Reekeg (1yD9 e
e C“ (e )’»r'ﬁr £ 00 gD
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@ _ LrC" kekepr
1‘”;‘ £ - = N B
' I ilwe) 7 Ui wee )l i(we_p)

ol et (7.24)

On the other hand the electron velocities are dominated by the pressure nonlinearity in the radial amnd

azituthal directions and by the convection term in the axial direction. Thus we have

LB 0 (£ = t)u? (1) (1) -
c ¢ N Q ()I Z (w[r - E’L&JB)(L‘J(“(I — (C — E')WE) o vt (?-2‘,)
) ibv} 0~ ')t (1)
= ' ' 2
Vet {2, ; (we — lwp)weee — (€ — w )¢t Pe-e: _ (7.26)
(2) 'I:A‘r‘b‘:‘;- f’((’ - (.”)u..'_ (1) (1
;) = = ’e 7.27
S x5 DI vy ety gy o L & (727)

From the continuity equations for bolh the jons and clectrons and invoking asain the charee neutralit
[ o (&) o
condition, we shinply have
é)

el %) = 0, 7.
BT -4 tyd Yoe{s £) = 0, (7.28)

(s

where
. 20 )y )
v = IS If(-‘..u(") — u,(‘)) - :(1; — )]

From the third order equations in £, we have

) ’.J' ] u’l"'l P
) f l‘])f ) ZJ':' ! Z Lr wr f,}f i ! ‘ (!',lC’yﬁﬂ)g['gf"g('—f"-wf” - 0, (?_2[})
e Vir
where

1 dv,

) = ———

P 2 de’

V(f 1z f’”) Pr't\'{'k{_f"—("’fffu({-, 'N’) : (-J-fl’ - p“f.’“)
A

(wr — Lw§)(we — Owp)(wer — f—’”wf;)(w—rur" == = )wy)
Equation (7.29) is reduced to the Ginzburg-Landan equation when only the self-interaction of £ mode is
considered; "

aatﬁf +pe ;) sz de +acloe*ge = 0, (7.30)
where
qe = ’/Ord[‘/(f_’, £, =E) - VAL, €, 0)] {4 (r} dr.

Equation (7.30} is known to have a solitary wave solution [7] given by

gr(ez,2t,2%t) = goe™ ¥ [sech(Kz))' 7, (7.31)

where pr and gy are expressed as p, 7y m D and q§ + zqg ), and

(ry (r (i) (t))
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o= =SS 42, §= (P{M I,; ) 71'

2(p, e "‘Pf ‘!r }

2 -1 4 3pl ) K r ;
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7.4 Radial spiral structure of Aluctuations

Now the characteristic features of the spiral structures can be examined as follows. The solution is
approximated in the case of weak r-dependence of the zero-Uh order quantitics by $e(r) o Je(r/A(r)),
where Je is the Bessel function of the first kind., The rea part. of the argument of the Bessel function
should be positive to give a convergent, behavior while the imaginary part, is responsible Tor o spiral
structure, which comes from the imaginary part of wy, Pelwe) and Iifwe). Multiplying ¥ to eq.(7.21)
and integrating the resultant equation from the center Lo the edge of the plasina under the boundary

condition ¥ (0) = 4fie(ry} = 0, we have

! dife ” . p
| SUSE® + Gluel? - Ay = o, (7.32)
"b S

where r is normalized as £ = r/ry. From the imaginary part, of this cquation we have

/ SA(E)E[pe(€) [2de = 0,

which corresponds Lo the Rayleigh condition.  For o collisional drift, mode, we have at the inarginal
instability (v ~ ) .
1k Qi (i — fw§ M w, — fwh)w, — fwg)

e ()0 ()2 [(wr — L) b 2]

[rom which the Rayleigh condition lolds even when wy = 0 indicating the formation of stationary spiral

SA(E) =

structures. The winding direction of spiral aems is reversed when the maghetic ficlds is changed in sign
sinee the imaginary part, of A(S) is proportional 1o the odd power of the magnetic fiekd Tor w, = (.

Certainly rotaling spirals exist as well.

Figure 7.2: The numericad results for a stationary spival solution for M/m = 80000, & = 0.0225,v/Q; =
0.024: (a) the radial prolile of the potential: a solid line is the real part, and dotted line the imaginary

part. (L) the density perturbalion contour.

lfere we solve oq.{7.19) numerically with the boundary condition ,(0) = {1} = 0. Ve have
both stationary (w, = 0} and votating (wr # 0) spiral solutions for & given profile of the density and

the potential. The numerical results for the stationary solution are shown in Fig.7.2, where e 7.2(n)
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is the radial potential profile {eigen function), and Fig.7.2(b) the density perturbation contour calcu-
lated by ¢q.(7.20). The spiral structure is identified with the Archimedes spiral, which is scen from an
cikonal approximation for the solution of ¢q.(7.19), in the case of weak S-dependence of 3(€), that is,
(€Y explith) ~ expli f AV/BIAE 4 il0) ~ exp(iQ{/BE)}E + il0) Tor £ # 0. The contour structure is
similar to the observed spiral.

The vector field plol of the jon velocity field associated with the spirat strueture exhibits the similar
spiral structure, which well explained by the E x B drilt due to the perturbed potential ¢;. It should be
noted that the pattern of the perturbed flow associated with this spiral indicates a material cireulation
between the core and peripheral regions.

The imaginary part of the cigenvalue  decreases with an azimuthal mode nuinber [, which corresponds
to the fact that the observed stationary spiral are always with two armns.

Even when we negleet. the contributions from the centrifugal and the Kelvin-ITelmholz instabilities,
there is no change in this pattern. Thus, the spiral structure for this choice of parumelers is identificd
due to the collisional drilt wave instability.

In the above we have used a special profile for the density and potential sinee we need to compare
numerical spiral structures with those observed in Ref.[4]. However, the spiral solutions of ¢q.(7.19) have
been checked insensitive 1o the spatial profiles of wi.

For different. parumneters granulated density structures ave obtained, which is regirded as formation
of vortex erystallization.  Although the vortex crystallization has been reported to be experimentally
observed in pure electron plasinas [2], this type of structares inay be general entitics exeited in magnetized

plasimas.

7.5 Discussion

Formation of spiral structures is a rather general characteristic in magnhelized rotating plasimas since the
energy stored in a form of plasma inhomogenicty such as density and velocity shear is released to give
an instability which canses a phase difference between the real and imaginary parts of cigen-functions,
driving aspiral structure, Instabilities conld be the collisional drifi, wave instability, centrifugal instability,
add Kelvin-Helmbolz instability, although the collisional drift wave instability is dominant Tor ordinary
laboratory plasmas.  Even in stable cases, collision plays the same role as instabilities in producing
phase difference between the real and imaginary parts of the cigen-function. Therefore collision is also
essential to the fornation of spiral structures. Under the special condition that the potentiad is such that
wg beeones zero soinewhere in the rdial direction within the plasing the stationary spiral structure
becomes similar to those observed in the experiment. For a wide variety of density and potential profiles
rotating spiral structures are normally excited.

We have obtained lincar eigen-functions to show the spiral structure formations in magnetized rotating
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plasmas. The next step is to study the nonlinear stage of evolution and show why spiral structures are
so robust. We are also planning to develop our theory to understand the formation of spiral structures

observed in a gun-produced plasma [5]. It is worth noting that our study may contribute to understanding

the mechanisim of spiral galaxy formation.
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