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WHY ARE WE INTERESTED IN THIS SUB-
JECT?

(BIASED) OVERVIEW: In general, the
world works according to systems of continuous
laws.

(eg death, disease, rain, football, shares, radios,
food, sex.....)

Thus the world is governed by

e ODEs (Ordinary Differential Equations)
e PDEs (Partial Differential Equations)

e [Es (Integral Equations)

e IDEs (Integro-Differential Equations)

e cte. ete. ete.

Assume that WHENEVER WE DEAL WITH
SUCH EQUATIONS we non-dimensionalize them
first (anybody who does not, we judge as being
insane).



OK then, we END UP with a lot of terms, all
multiplied by dimensionless parameters.

What is the probability that these are all about
17

If you think about it, it’s almost zero!

This is confirmed by practical experience: al-
most always we find that some parameters are
large or small.

For ease, let’s think only about small parame-
ters (if one is large: consider its reciprocal!)

THE KEY QUESTION:

How can we take advantage of the smallness of
some of these parameters?

This 1s what we will discuss here.



NOTE: for simplicity we will confine our discus-
sion only to ODEs. But all the other important
sorts of equations can be similarly dealt with
(though things may get a little more compli-
cated).

NOTATION: we will always try to find y(z), a

dash will represent d/dz, and the small param-
eter(s) will be € < 1.

Historical: Methods started to be developed in
the 1950’s and 1960’s by people like Julian Cole,
Bob O’Malley, Joe Keller etc.

Many advances since.........

Note also: typical books:
A_H. Nayfeh, Perturbation Methods, John Wiley, 1973.

M. Van Dyke, Perturbation Methods in Fluid Mechanics, Aca-
demic Press 1964.

A. Erdelyi, Asymptotic Expansions, Dover 1956.

E.J. Hinch, Perturbation Methods, Cambridge University Press,
1991. B




Everybody will tell you that “there are many
many different sorts of asymptotic methods”.
This is true, but it complicates things.

Basically all asymptotic methods are “refine-
ments” on the following simple example:

y+ey=0, (y(0)=1)

—€X

This has exact solution ¥y = €™, and a nice

smooth solution.

NOTE: Usually we will illustrate things with
equations that can be solved EXACTLY. This
is so that we can compare the asymptoptic to
the exact solution. But all of these asymptotic
methiods STILL work even when the equations

CANNQT be solved in closed form.
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To solve the equation asymptotically:

Assume that since € is small, there i1s a nice
simple power-series solution:

y(z) = yo(x) + eyr () + Eya(z) + ...
Put this into the equation:
(4 + e+ €245) + elyo + v + %) = 0
Equate powers of e (AND THE BC!)
O):9p=0, 0 =1 |yp=1

O(€) : th+yo =0, 1$1(0)=0 |y =-2x

CEQ

O(€%) : Yo+ = 0, 12(0) =0 |y = 5
O(e) e

So the “perturbation solution” is:
y =14 (—z)e+ (—2*/2)* + ......
OF COURSE this is right, since if we expand

the exact solution, we get
72
e =1—ex+ 625—’ + ...



This is known as the “method of regular per-
turbations” .

NOTE: this is NOT an “approximate method”.
It’s a carefully controlled asymptotic procedure.

At every stage we knew the approximations that
were being made, the errors involved, etc. etc.

If we'ed wanted to we could have computed
many more terms.

We stress again: THIS VERY OFTEN WORKS
WHEN THE ODE *CANNOT* BE SOLVED
IN CLOSED FORM!

P, — SO L SETT—

This is very nearly all there is to asymptotic
methods for ODE’s......



[EVERY THING]is really based on the previous
example.

The procedure is basically the same for every
sort of equation that we have to deal with.

Any fool could do it!

But there are some questions that we have to
ask. Most importantly,

WHEN DOES THIS ALL GO WRONG?

We shall take a slightly unorthodox approach:
we shall propose equations that can be solved
exactly, (or numerically) look at graphs of their
solutions, and try to see if we might expect to
reproduce these graphs with a regular pertur-
bation method.



(v

consider this problem:
e’ +y+y=0 (y(0)=1, y(1)=0)

Here’s the exact solution:

exp(z(—1+ v1 —4€)/2¢) — k2 exp(—z(1 + /1 = 4€)/2¢)

y(z) = e

oo (45

2e

Not easy to interpret........

Here’s a graph of the exact solution for a very
small value of € (actually € = 1/100)
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It's clear that some thing funny i1s going on
here. But let’s just try regular perturbations
anyway..... We put

y(z) = yo(z) + ey (z) + €ya(z) +
into
ef +y +y=0 (y0)=1, y(1)=0)

and straight away we find that we get

o) [brw=0. w©=1 ()= 0]

So we need yp = Ae “with A=0AND A = 1!.
Oh dear.

What has happened here is that there is a bound-
ary layer. This is a thin region where things
change very rapidly.

12



For the moment, let us forget about the “bound-
ary layer” and ignore the boundary condition at
z = 0. If we do this, then we just need to solve

Yo+ 1y =0, wyo(l)=0.

EASY - the solution is yo = 0!

Looking at the graph of the exact solution we
know that this is correct.

We call this the OUTER solution
i.e. AWAY from the boundary layer.

But what’s going on near x = 0 where somehow
we have to “save ourselves” and allow ¢(0) = 1

to be satisfied?

3



To sort things out we have to look INSIDE
the boundary layer (“mathematical magnifying
glass”). Obviously from the picture of the exact
solution the boundary layer is near z = 0.

So put X = x/e. (Then when z is small X is
order 1).

The equation becomes

d’y | dy
YV —
e + 5% + € 0
and so to leading order
d’y dy

ax? dx

0

which has solution (call it the “inner” solution)

y; = A+ Be ™.

Now near to x = 0, we of course want to satisty
y(0) = 1. So

yi = A+ (1—Ae™*

14



The question is: How do we choose A?

We do NOT use the boundary condition at x =
1, since this is FAR away from the boundary
layer. Instead, let’s plot the outer solution and
the inner solution for some choices of A.
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NOTES:

e This is the method of “matched asymptotic
expansions”

e The matching can be taken up to higher or-
ders of € if required.

e By combining the inner and outer solutions
we can form a uniformly valid solution

—z/e

y=e¢

e This happened because the small parame-
ter multiplied the highest derivative in the
problem.

e [t may not be clear where the boundary
layer 1s!

e This is a “singular perturbation” problem.

V7



Here’s another thing that can mess us up.....

VAN DER POL OSCILLATOR

(nb change from variables y(z) to z(t) as it’s
supposed to be a model for a real oscillator)

i+et(z’~1)+zx =0, 2(0)=1, £(0)=0
(OSCILLATOR WITH NONLINEAR FRIC-
TION)

No general exact solution is known. (But easy
to solve numerically).

So let’s look at the numerical solution:

E
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OK so let’s just do it by regular perturbations.
We have

z = zo(t) + exy(t) + za(t) + ... -

so that when we put 1t 1nto

itet(z’—1)+x =0, =z(0)=1, z(0)=0

we get

(Zo+ei1) +e(zo+edy) (e — 1)+ (zo+exi) =0

equate coefficients:

O(EO) : Totxg = 0, .’130(0) = 1, 560(0) = ()
O(e)) . i1+zo(z5—1)+z1 =0, 21(0) =0, £:(0) =0

and so

3 1 .
Ty = cost, Ty = é(t cos t—sin t)—~§§(sin 3t—3sint)

so how does this asymptotic solution perform?
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Oh dear. The asymptotics are OK until ¢ gets
large, at which point the amplitude of the oscil-
lations goes all wrong.

PHYSICAL OBSERVATION:

From looking at the “exact” solution we can see
that there are really TWO time scales here:

(i) time between oscillations

(i) time over which amplitude grows.

Some how we have to take account of BOTH of
these.

To do this, introduce
(Fast) oscillation time 7 = ¢
(Slow) aplitude drift time T = €t

Now we have (for example)

and so (e.g.)

. 2
T = XTrr + 267 + € TT

2%



Actually, we are proceeding by “simplifying”
and ODE to a PDE!

we seek
z(t;€) = xo(7,T) + ex1(7,T) + ...

Putting it in and equating power of e:

O(e% : ?;_if+:zo=0, (zg = 1, %:0 at t=0)
this gives
zo = R(T) cos(t + 6(T"))
where R and 6 satisfy R(0) = 1 and 6(0) =0

but are otherwise unknown.

General rule: if things are not determined, go
to the next order!

This gives:
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O(e) :

with initial (t = 0) conditions
8:1:1 . _?ﬂ . OR
or 9T  oT

NOW HERE’s THE KEY POINT:
When we substitute z( is the RHS of the above,

1‘1:0,

.00 OR 1 _, : I 5.
5,2 T = QREI? cos(’r+9)+(2ﬁ+4R —R) Sln(T+9)+zR sin 3(7+6)

Now we KNOW that the cos and sin terms with
argument (7 +6) will give rise to terms propor-
tional to 7 which will mess things up for large
time. So we conclude (“Poincare condition”)

that
a0 .
-é?_ 1

dR 1

= —R(4 — R?
oT 8( R

This gives
=0 R=2(1+3eT)"1/?
and now everything is OK; the amplitude comes
out right.
IMETHAD of MULTIPLE ScAES™



Here’s one final wrinkle.......

Suppose we consider high frequency vibrations
of a variable density string.

Equation:

'+ i@y =0 y(0)=y(1)=0.
We want to consider w? large. (= 1/¢)
We want to find the eigenfunctions.

There’s a simple trick here:

although exact solutions are known for hardly
any r(x), between any two successive zeros of
the eigenfunctions 7(x) is nearly constant for
large w.

If  WAS constant then we'ed have
y = Aeﬂ:iwxﬁ-
So the trick is to try

y(z,w) = eI

where

1 1
9=Gg+—g1+—5g2+....
W w

26



This is the WKB method

(Named after Wentzel, Kramers, Brillouin, but

invented by Green, Jeffreys, Carlini and Liou-
ville!)

We find that 1t is most convenient to set
g=/h
and then we find that

ho = Fivr(z)

ete etc

Analysis of this method can be extended to
Stokes lines, hyperasymptotics, and all sorts of
very complicated things!
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Other methods to deal with various problems
(No time to explain them)

e Method of strained coordinates

e Lighthill technique

e Averaging methods

e Krylov-Bogoliubov-Mitroploski technique

e ctc. etc. ete.



