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. TIME SERIES ANALYSIS

0 Introduction

Time sertes: Observations ordered in time; here in particular
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Figure 0.1: International airline passengers per month in thousands of passengers from
January 1949 to December 1960 (Box and Jenkins (2]). Annual Canadian lynx trappings
from 1821 to 1934 {Brockwell and Davis [3]).

Time series analysis is concerned with extraction of information from time series data.

In time series analysis the order of the observations contajns important information.
This is contrary to the case of “classical” i.i.d statistics, where a permutation of the data
leaves the results unchanged.

A common approach to time series analysis {TSA)is toassume an underlying stochastic
orfand dynamic model generating the time series. The problem then is to determine such
a model from time series data (statistical inference, inverse problem}.

0.1 History

(1) Search for hidden periodicities and trends: unobserved compouents.  Astronomy:
Search for “secular changes” in the orbit of the planets and the moon; Laplace
(1787), Luler, Lagrange.
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(ii) Periodogram: Stokes (1879); used by Schuster (1898) for the analysis of sunspot
data and by Beveridge (1921, 1922) for economic data.

(iii) Theory of stationary processes: Cramer, Kolmogorov, Wiener, Wold (1930-45).

Spectral theory; prediction and filtering. Probability theory; no statistics (in the
narrow sense).

(iv) Early econometrics: Cowles Commission, T.W. Anderson, Haavelmo, Kle:m, Koop-
mans (1940-50). Simultaneous equation systems; identifiability and (Gaussian) Max-
imum Likelihood (ML) estimation. Subsequent: Two stage and three stage least
squares (Theil, Zellner).

(v) Spectral estimation. Tukey (late 40ies, 50ies); for economic times series: Granger,
Hatanaka,

(vi} Asymptotic Theory for AR and ARMA systems (T.W Anderson, Hannan, Walker,
60ies and 70ies).

(vii) Kalman filtering (1960), State space models.

(viii) “Box-Jenkins” approach: “Integrated” approach: Differencing, order estimation,
ML-algorithms, 1971.

(ix) Automatic order estimation, information criteria AIC, BIC: Akaike, Rissannen
(1969-85).

(x) Causality tests
(xi) Rational expectations

(xii) Cointegration, integrated processes

(xiii) ARCH-processes

0.2 Main uses for TSA

* General analysis: Search for general features such as trends, cycles or linear depen-
dencies.

¢ Testing of (conflicting) theories and for estimation of parameters {which are theo-
retically meaningfull).

+ Prediction {unconditional or conditional}, Simulation.

ECONOMETRICS i
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¢ Control
* Preprocessing of data such as seasonal adjustment or the construction of stylized
facts.
0.3 Main areas of application

* Engineering: Signal processing (speech processing, radar and sonar applications);
control engineering (control of missiles, airplanes, ships, chemical or technical
plants); modeling of technical parts (e.g. engines, cars, ...} e.g. for simulation;
monitoring (e.g. of oil platforms).

¢ Economics: Forecasting and policy simulations (in particular for macrovariables like
GNP, unemployment,...); “Verification” of theories, estimation of “deep” parame-
ters; Analysis and forecasting of finacial data (e.g. stock market prices, exchange
rates); Forecasting on a microlevel, (e.g. of sales or inventories of z firm).

+ Biology and Medicine: e.g. analysis of EEG data, circumdianic rythms,

» Geophysics: e.g. Exploration for oil, propagation of earth quakes.

The Prague Lectures 20/01/92-15/05/92 -3-
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1 Descriptive Analysis of Time Series

In this short chapter we introduce and discuss some descriptive measures for time series.
Here descriptive means that we have no underlying probability model. As will be seen
later, however, if we have an underlying probability model, these sample measures can be
interpreted as estimates for their population counterparts. Our focus is on the description
of levels, trends, linear dependencies and on hidden periodicities.

1.1 Means, Covariances and Correlations

The most common measure for the level is the (arithmetic) mean

1 T
:Ezj‘]":?le
t=1

For the case of two scalar (i.e. n = 1) time series z = (2,,...,27) and y = (y1, ..., yr)
the covariance is defined as

.
&;uﬂ)=%§]n—me—m

The interpretation of the covariance can be seen from picture 1.1,

x x

(0,0) *

x

Figure 1.1: Interpretation of the sample covariance.

In particular the vartance of z, Var(z) is defined as Cov{z, r).
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The noncentral covariance is defined by
l T
T Z: LeYe
t=
and has an analogous interpretation as (‘IB:J(::, y). We have (see exercises)

1 & .
T Z:r,y; = Cov(z,y) + z§.
=1

Covariances are measures of linear dependence. They are scale dependent. For this reason,
the correlation as a normalized measure of linear dependence is introduced:

Cori(z,y) = 2V
Var(z) Var(y)

(Here we have tacitly assumed \7’5._{'(::) >0, @(y) > 0.)

Clearly Cov can be interpreted as the inner product of the two vectors # — (z, —
I,....zy —%)and § = (y, — %,...,yr — §) and Corr can be interpreted as the cosine of
the angle between these two vectors. From the Cauchy-Schwarz inequality (see exercises)
for vectors in R" we directly obtain

~1 < Cori(z,y) < |

——— -f -
and | Corr(z,y)| = 1 if and only if § = az where a = &4 holds. Analogous results Lold for
the noncentral correlation

T
Zt:l I[y‘
T T 2
Y (Z!:l IE)(E::x vi'}
For a given univariate (i.c. scalar) time series Tyy....z7, the autocovariance function
Y :Z — R is defined by
1 min(T T —3)
Vsh=% 3 (xin - £)(z, - F)
t=max(t.1~1)

Note that §(s) = 0 for [s| > 7", 7{0) = Var(z) and ¥(s) = 5(s).
The autocorrclation function p:Z — R is defined by

ooty A s)
ﬂ(S] = == = T
Var(r) ¥{0)
The Prague Lectures 20/01/92-15/0%:92 -5-
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The functions 4 and p are measures for linear dependence in time. In a completely anal-
Ogous way we can define the corresponding noncentral functions.

Despite of the fact that these descriptive measures are defined using practically no
assumptions on the “nature” of the time series, one has to be careful with the interpretation
if there is no underlying model.

For two scalar time series z,t = 1,...,T and y,t = 1,...,T we define the cross-
covartance function Fey bY

1 min(T T —1x)
Fey(8) = = z (Zeys — )y — 7)
! T t=max(1,1~4)

and the cross-correlation function p_ by

o as)
Pl = T

where 7, and 9, denote the autocovariance functions of z and y respectively. ¥, (s) and
P:,(s) are measures for linear dependence between the two time series at fag s.

For a vector time series z,, ¢ = 1,...,T, z. € R", the autocovariance function v, defined
by
1 min(T,T~3) )
¥(s) = = Z (T4, — )z — 2,
T t=max(l,}~-3)

can be considered as an n x n matrix § = (7,,) of functions 3, : Z — R, where the 4,; are

the autocovariance functions and the '%-‘1' t # j are the cross-covariance functions of the
respective component series.

1.2 Trends

Vaguely speaking, trends represent the long term behaviour of a time series or the depen-
dence of levels on time. The aim may be estimation and/or elimination of trends or the

decomposition of the time series in a numher of (unobserved} components, one of which
represents the trend,

Trendregression using least squares is a counmon procedure for estimation and extrac-
tion of trends. For the case of polynomial trends m, = 8y + 3,4 + - - + A3at7 we have

Te= Jo+ it o 300+ o, (1.1)
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where f,,0,,...,0, are the (linear, ordinary) least squares estimates. Check that the

matrix
1 1 1 -+ 1
2 4 ... 9 e
1 T T* ... Tr

is of full rank p+ 1 for T > p.

Clearly also other functions, as e.g. exponentials or logistic functions can be used
for trend fitting by least squares; however in most cases this will give nonlinear normal
equations,

Differencingis a common procedure for trend elimination: First differences are defined
by

Ary=z,—z_y; fort=2,...,T

and p-th differences are defined by
APz, = A(AP'z,) fort =p+1,...,T.

As is easiliy seen, first differences of a linear function give a constant and more generally
p-th differences of a polynomial of order p give a constant. It should he noted that by
differencing some information concerning the trend is lost (differencing is a non invertible
operation, if the “initial values”, e.g. z, for first differences, are not known).

Differencing may also be used to eliminate scasonal patterns which are very common
for economic time series. E.g. for quarterly data we might use

Agyzy=z,—-2_4 ; t=5,...,T.

Note that for a time series z, = G, + 5t + s¢, where s, is a periodic function of period
4 (ie. 5, = s,_4, for all t) we have Auz, = 443,. To eliminate a quadratic trend plus a
seasonal we could use a combination of first and seasonal differences, eg. AAyz,.

In order to estimate trends, moving averages are often used. A simple example is of

the form
| A
= Teoy, 3 t=h+1,...,T -1
RS Fz_h = * '
The idea here is to estitnate local means for the time series. In a weighted moving average
we have
3 A
m, = Zb}'rl--j vob=h+ 1, T - bJ:b_J and Zb;:l,
1=-h j=—-4
where usually the weights will be smaller at the tails of the sum. (See exercises.)
The Prague Lectures 20/01/92-15/05/92 -7-
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1.3 Hidden Periodicities

If we suspect hidden periodicities in a scalar time series one approach is to start from

b
Iy = Z(a,- COS/\,’t'}-bj sin z\,-t)-l(-u( (12)
J=1
where A; € [0, r] (see section 2.2). The unknown parameters in (1.2) are a;, b; and A,
7= 1,...,h If the angular frequencies Aj are a priori known (e.g. in the case of seasonal
or weekly cycles) the a; and b; can be determined by least squares in a linear way:.

For special frequencies , namely for the so called Fourier frequencies
2w .
/\,-:]? v J3=0,1,...,(T/2)

the regressors in (1.2} are even orthogonal. Here [z] denotes the largest integer that is
less or equal to z. Thus |T/2] is T/2 for T even and (T - 1)/2 for odd T. We have

Tisinht = 0

T i _ 0 for )‘j #U
Zimeoshl = py Do
T
T (i) vz 7 for A, £0,7
Zt:l(slll ’\;t) - 0 for ’\j =0,x (l 3)
TiosinAtsin At = 0 for A; # A '
Lofor X £0,x
T Y = 2 J »
Lazi{cos A;t) { Tfor A, =0,n
T cosAtcosA;t = O for A # A
[ 7 ]

So1., sin A;t cos At o= 0

Note that sin0t = sinnt = 0 for all t € Z and therefore we will omit sin 0¢ and sinxt
from the set of regressors. Note also that cos0f = 1 and therefore cos (¢ carresponds to
the intercept. IU is easy to see that with these restrictions we have exactly T canditate
regressors, since only for even T the frequency 7 is a Fourier frequency (i.e. for T even
and j = T/2 we have A\; = 7}, Due to the orthogonality of the regressors, the least squares
coeflicients in (1.2) are given by

Gy = T
(;0 = 0 since sin 0t is omitted
arjp = 3 ZLI(I, ~z)eosArppt - (for even T')
br;z = 0 since sinmi is omitted - (for even T
a, = 722;!:1(1', - Z)cos Ajt - olse
[:) = % ZrT:](-Tr ~ T)sin At - olse.
The Prague Lectures 20/01/92-15/05/92 -9-
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If the angular frequencies of the hidden periodicities are unknown, the covariances
between z,,t = 1,...,T and sin Al or cos At,t=1,....T:

c(A)y=41 ):;r:,(z, — Z)cos At
s(A) = ;Zal(z, — Z)sin At (1.4)

are of interest. The idea here is that the linear dependence will be large for strong hidden
frequencies. Equation (1.4) can be written (using e** = cos At + isin At) as

T

(M) = e(A) — is()) = % S (20 — £)e=i (1.5)

t=1
which is a more compact notation. The periodogram then is defined by
1) =T|z(A)* = T(c(A)* + 5(A)?) ; A€ (-m,x] (1.6)
The periodogram may be interpreted as a (frequency) dependent squared complex covari-
ance. We have '

1 T . 1 T ) T=-1 »
I(A) = T(5 >z - f)e"“’")(~T—- YAz —2)eM) = 3 f(s)emin (1.7)

=1 1==T+1

Thus the periodogram is the Fouriertransform of the covariance function ¥. The peri-
odogram has the following properties

I(Ay > 0
XY = (=)
I(0) = 0 (1.8)
SL D = 2r3(0) = 2n Var(z)
I iN)ed = 2r3(s)

If we “extend” the Fourier frequencies to the interval {(—m,x],ie. if we define

A = %’f% D oi=-UT =1)/2),....0,...,|T/2

the following “orthogonality” retations hold:

T .
] -1 T for ] = I}
tA,t (YT _
Z,e ¢ - { 0 else.
- 1.9
lT,zJ th,s  —1ht _ 7‘ for s =1 ( )
Z e B G else.
J=-UT-1)/2)
1 ECONOMETRICS 11
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The first equations of (1.9) (summation over time points t) are the complex counterpart
to the (real) equations (1.3). From these relations we get

(T/2 ,
(z,— 3) = o z(K)eM
,-:-[(Ti-;,)ﬁl (1.10)
W) = = 3 1)
j:—l(T—l)/?j

Together (1.7) and (1.8) show that the sample autocovariance function 4(s) and the peri-
odogram are in a one-to-one relation. Both contain the same information, but display it
in a different way. According to (1.10) (and (1.9)) the ratio 27(A;)/ ¥(0) (for A #£0)is
the coefficient of determination if we regress z, on e'*+* and e~*** (respectively on cos Ajt
and sin A;t). Thus I(A;) shows how much of the sample variance of z, (of the “energy” of
the signal z,) we can explain by a harmonic oscillation of frequency Aj.

Womthe s MsnEpOUs fus bt alo* Perioudogram of the sunapals s mbes
169, 3 v -
140F
1}
110
oo V3
w0
“ 1
40
os
2
] 0
LT3 1780 1790 1800 (810 1020 10D B8O 1850 1EsD (N0 o el [ LB o4 as ¢é LR e LA ]

Proquancy

Figure 1.3: Wlier sunspots numbers from 1770 to 1861 (Brockwell and Davis [3]) and the

periodogram of this time series.

1.4 Autoregression and Autoregression with Exogeneous Variables

A rather obvious way for describing dependence in time for a time series is to approximate
T, by its “past until t — p”, te. by z,_,,. .. JIi—p tn the linear least squares sense. Consider
the scalar (i.e. n = 1) case. Then

Ty Tt o b or, + o, (1.18)

The Prague Lectures 20/01/92-15/05,62 -11-
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where @ = (ay,...,a,) are the OLS estimates satisfying the normal equations

(X'X)a= X'y
with
0 0 T
Iy 0 0 Iy
X = : ’ y =
Tr_ Ir-p Ir

Equation (1.11) may be used e.g. for prediction. Note that z, is not defined by equation
(1.11}), since nothing is assumed about the structure of u, (in particular we have no prob-
ability structure structure for (uc) in contrary to the case of AR systems in section 2.2.).
Therefore, in particular, X'X is not necessary nonsingular (although this is very likely).
Note that here we have defined the OLS estimator by putting zo = z_, = -+ = zy_, = 0;
other ways are possible.

For the vector case, n > 1, we can procede analogously. An extension of (1.11) is to
approximate z, by its own past up to time t—p (z,_,,...,z,.,) and by exogencous variables
(inputs) z,.. ., Z_y

Ty =T+t a,Ty_p+ oz + Fro + ot Beaig +ou (1.12)

The OLS estimators ay, . . 2@, B0, ..., B, are defined in an analogous way as before.

1.5 Choosing the Number of Regressors

In many cases in regression, the number of regressors is not given a priori and may be
choosen from the data., E.g. we might be interested in determing the order of a polynomial
trend in (1.1) or the order of an autoregression (1.11) from data.

Here for simplicity we assume that we have already a fixed list of regressors of candidate
regressors which are ordered according to their importance. So choosing the number, p
say, of regressors means to choose the first p regressors from the list. We then write

To= Dz + -+ Bpzep + u

clearly there are two dangers involved in choosing p: p may be too small, such that we
miss out important features for the description of our time series (underfitting); or p may

be too large (overfitting), such that we might “overinterprete” the noise tern and have to
estimate too many paraimeters.

-12- ECONOMETRICS i
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Clearly in such a situation, optimizing criteria of goodness of (miss)fit such as the
residual sum of squares are inappropriate for estimating p, since, in general they will lead
to overfitting. E.g. for a sample size of T', a polynomial trend of order T — 1 will give a
perfect fit. In general, if 6%(p) denotes £ ¥ u? for given p, we will get a picture as shown
in figure 1.4.

Caasdian Lyns - AR(p}

2

(B3
osf P

a".-
-,.

os}
o4}
o1}

o

[ 1 4 6 3 10 i7 L] 15 12 0

Figure 1.4: For the Canadian Lynx data AR(p} models for orders p = 1, ..., 20 were fitted
by OLS. The figure shows the “in sample fit” &% (p) (solid curve), the prediction error o%(p)
(dashed-dotted curve) and the information criteria AlIC(p) and BIC(p) {dotted curve) as a
function of p. The two dotted lines are the “penalty terms” 2p/T and In TplT of the AIC

and BIC criterion respectively.

One possibility is to compare one-step-ahead prediction error variances for “honest”
predictors, i.e. where 3,,. - -y Pyin are the OLS estimates for t = [,.. ., n and we define
un+l[n(p) = Ingr — ﬁl!nzn+l,l + -+ ﬁp|nzn+1,p (113)

and o*(p) = L5, u2 1.~ This in general would give a picture like in figure 1.4

Now minimizing a?(p) as a function of p gives a way to determine p. The basic idea
behind this procedure is that in “honest” (i.e. out of sample) prediction, a model which
has too many variables, in average will perform worse compared to a mocdel with the right
number of parameters {despite the fact the “in sample fit” of the first model is better).

Our problem may be seen as making a decision invalving two conflicting goals namely
to

The Prague Lectures 26/01/92-15/05/92 -13-
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* mazimize goodness of fit of an equation to the data

* minimize the “complezity” of the equation used; here we measure complexity by the
number of parameters p.

One approach then is to define a criterion which defines a certain trade-off between

these goals and to determine p by optimizing such a criterion. Two common criteria are
the AIC criterion

2
AIC(p) = log &*(p) + % (1.14)
and the BIC criterion
plnT
T

For both criteria, p is determined by minimizing. (See e.g. figure 1.4.) The criteria

have been introduced by Akaike (1973, 1978) and they may be justified by stochastic
considerations. )

BIC(p) = log 6*(p) +

(1.15)

1.6 Exercises

(1.1) Prove the Cauchy Schwarz inequality for vectors in R", i.e. for two vectors z,yeR"
we have

'yl < ll=liltyl]

and equality holds if and only if z and y are linearly dependent. (Hint: Consider
the OLS estimate of regressing y on z.)

This inequality also holds for random variables z and ¥ in the sense that |Eay} <
VEZTE 2.

(1.2) Let z,,... 2, Yi,- -, yr_be two scalar time series. Repeat the definition of z, 7,
Var(z), CT)V(T., y) and (pfc—);(r.y). Prove the following statements:

(a) Cov(z,v) = L 0T, 2oy - 27
(b) Fora,b € R and « # 0 we lhave |a|:-r(ax +b,y} = lé‘c_)hr_;(r,yﬂ

{c) If [(/fc;?}(x,y)| = 1 then there exists a perfect linear relation between z and y
in the sense that there exist a,b € R such that y, = arg+bforal ¢t =1, . . T.

(1.3) Consider the (scalar, non random} process z, = a + bt, where a,b are two real

constants. Show that the sample autocorrelation p(8) converges to +1 if the sauiple
size T converges to infinity.

-14- ECONOMETRICS I
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(1.4) Prove that the matrix ['r is always nonnegative.

0) - HT 1)
FT —_ E .'. E 2 0.
HW-T+1) --- 7(0)
Note that this is in general not true for the autocovariance function defined by
‘y(.s) = T"II-I ZI’;",‘,SI;(’;]’_’,)(z, —Z)ze4, —Z) for|s| < T
0 else

(1.5) Suppose that m, = ¢o + ¢t + c2t?, t € Z. Show that m, = T2 __ b;m,_;, where

bz=b_2=-—§:-’-5-,b|=b_1=;',-§andb0=;—;.

(1.6) Analyze the “Austrian industrial production” using the programm RATS. Proceed
along the following guideline:
¢ plot of the time series
¢ basic statistics of data (mean, variance, ...)
* estimate and plot the autocorrelation function
s estimate trend- and seasonal- component by OLS
s plot of time series, trend, season, ...
s plot of residuals
» basic statistics of residuals
* cstimate and plot the autocorrelation function of the residuals
(1.7) Given a realization (with 100 observations) of an AR-process. Trv to estimate the
order of this process by comparing the “in sample fit”, the “out of sample one-step-

ahead” prediction error and the information criteria AIC and BIC. (Hint: the true
order is less than 10!)
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2 Stationary Processes in Time Domain

In this chapter we introduce some basic ideas for stochastic processes; thereby emphasis is
layed on the concept of (wide sense) stationarity and on the properties of the covariance
function. We give a number of examples which describe important classes of stationary
processes. The analysis of stochastic processes considerabely benefits from using Hilbert
space formulation although this is not necessary for understanding our lecture. Therefore
we introduce some basic Hilbert space terminology and results. This section is addressed
mainly to mathematically oriented part of the audience. The last section is concerned
with probabilities on the space of all trajectories and with strict stationarity.

2.1 Basic Definitions

From now on we will assume that the time series are generated by an underlying stochastic
mechanism, by a stochastic process. This makes time series analysis part of inferential
statistics and we can evaluate the quality of estimation procedures and tests.

We commence from an underlying probability space (2, A, P) and we consider random
variables z, : 0 — C" (i.e. measurable functions) or z, : 8 — R"; to be more precise for
the observed process we restrict ourselves to the real case, the complex notation is choosen
for reasons that will become clear later, We write r, = (zfi))‘='-'-'-“; 20~ .

Definition 2.1 A stochastic process is a family of random variables (z(|t € T) defined
on (01, A, P).

For us in most cases, a stochastic process is a model for random phenomena evolving
in ttme. Then T ¢ R is understood as a set of time points. We almost exclusively deal
with the discrete time case here, where T=Z = {...,~1,0,1,..} or T= N = {L2,..}
(equidistant points).

Definition 2.2 A function (zdw)lt € T) (for fized w € Q) is called a realization (or
trajeclory or sample path) of (z,]t € T).

If we assume that a given time series z,,¢{ = 1,...,T is generated by an underlying

stochastic process (z,]t € T) we have to equate 2, € R" with the realization z,(w) of the
random variable r,.

Unless the contrary is stated explicetely the limit of a sequence of random variables
will be understood in the mean squares sense which is defined as follows:

Definition 2.3 Let (z,]k ¢ N) be a sequence of random variables. We will say that
(ze[k € N) converges to Zo tn mean squares sense tf

ISI(.)IQ < D
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and
kh_nolo E(ze — 20)'(z —20) = 0
holds. We then use the symbol

Zo = Li.m xz,
k—co

Note that the limit z, is unique a.e. (i.e. on a subset A of  with P{M) = 1). Proof:

Suppose that there are two limits zo and z of the sequence z,. Then

E(zo — z)*(2o - z) =

E((zo - z¢) = (2 ~ 24))"((zo -~ 22) ~ (z — 24)) =
E(zo — z:) (20 — z4) = E(zo — 24)"(2 — z)
—E(z - z:)* (20 — 24) + E(2z — 2,)"(z - Zy)

Now by assumption and by the Cauchy-Schwarz inequality all terms on the right hand side
of the above equation converge to zero for £ — oo. Thus we have E{zy — z)*(z4 - z)=0
and therefore z, = z a.e.

The expectation is continuous with respect Lo limits in the mean squares sense i.e.
E(limy_ z,) = lim; _oo(Ezy)if 2, is a convergent sequence of randoin variables. (See
exercises. )

The following theorem gives an important criterion for the existence of a limit in the
mean squares sense:

Theorem 2.1 (Riesz-Fisher Theorem) Given a sequence of random wvariables z, with
Tizy < 00. There ezist a random variable Lo such that zo = Limz, if and only if
hm E(zy - 2;)* (2, - ) =0 for k,{ = oo.

For the proof see for example Brockwell & Davis [3, p. 68-69]. The theorem above
says there exists a limit in the mean squares scnse if and only if z, is a Cauchy sequence,
where the distance between i and z; is defined by E{z, - )z, — z)).

For many cases, important properties of a stochastic process are described by the first
and second moments.

Definition 2.4

(i} Let E|1‘f"]| <00, Vi= 1. nt €T, then (Ex,t € T} 1s called the (population)
mean function of (z,|t € T).

(it) Let Ex}z, < 0o, t € T; then the function
¥: TxT: — (C**°
(s, t) v (s, t) = Vloy— Er {r, — Ez e
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(where * denotes the conjugate transpose) is called the (population) covariance func.
tion of (x|t € T).

7 €an also be interpreted as a matrix (-yl-}-).-_,-ﬂ,___..1 whose entries are functions o I
TxT — C. (For real valued processes, of course all these entries are realvalued.) The
function ¥ may be interpreted as an “address book” for linear dependence relations; in
patticular v;,(s,t) = Cov(z{),z0?) = E(z{? — Ez{?)(z) - E2{) describes the lincar
dependence between z{'} and 2V, Clearly (E z|t € T) describes the levels of the process.

Note that Ez}z, < oo implies that E z, exists and that v exists. (See exercises; the
existence of v is a consequence of the Cauchy-Schwarz inequality.)

Unless the contrary has been stated explicetely we let T = Z; then the process is
written as (z,).

We now consider a special class of stochastic processes, namely those that are station-
ary (in the wide sense), i.e. whose first and second moments are invariant to translation
on the time axis T (= Z in our case).

Definition 2.5 A4 stochastic process is called (wide sense) stationary if
(t) Ez}z, < o0 forallt € Z

(i) Ex, = m = const Jorallt € Z and

(iit) v(s,t) = Y(s + 1,1 4 r) holds forallr s teZ.

For a stationary process in particular the covariances only depend on time diflerences.
As v depends on one argument we write

7(‘5) = 7(510) = ‘T(‘S + T,T‘)

and use ¥ for a function Z — C"*"

The function Yo ' Z — Cis called the autocavariance Junction of the i-th component
process (zﬁ")lt € Z). The funtion Y 'L = C v # jis called the cross-covariance function
between the i-th and the 7-th component process.

We may alternative write (z.) as double infinite vector
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and T as its (double infinite) covariance matrix

7(0) ¥(~1) v(-2)
F=Ezz" —(Ez)(E2)" = | . 4(1) 4(0) ~(-1)

72) (1)  x(0)

Note: (0,0) element has to be assigned. I is a Block-Toeplitz matrix; i.e. all block entries
in the main diagonal are identical, the same holds for parallel diagonals.

Finite parts of this matrix are e.g.

Iy —m I, —m
r'r = E =
ITp —m I —
v(0)  A(-1) - (=T +1)
‘T(l) 7(0) : c CnTKﬂT‘ where m —= EI(-

In most cases we assume Ex, = 0; 1.0, we replace the original process (z,} by a centered
one: z, =z, — E£,. The assumption of constant mean for stationary processes turns out
to be of no importance for the theory.

Stationary processes occur in stable random “mechanisms” driven with constant energy
if they are in steady state.

The theory of stationary processes however is important also for nonstationary time

series; such series are often transformed {e.g. by trend regressions or differencing) to
stationary ones.

The tmportance of stationary processes for statistics is that for a wide class of such
processes (the class of ergodic processes, see chapter 6) a single trajectory of such a [process

displays the whole probability law of the process. Thus averaging over time gives the same

resuit as averaging over population: the sample moments converge Lo their population
counterparts. In particular:
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1 T
lim T §z, = E=x a.e.
min(T T ~s)
lim T Z (zews —2) (2~ %) = Ez,z] ae.

t=max{l,1-4)

(i.e. on a subset of 0 of probability 1)

(2.1)

Equations (2.1) define invariants for almost all trajectories. Such trajectories will be called
typical.
2.2 Examples for stationary processes
2.2.1 White Noise Process
A stochastic process (¢,) satis{lying
(i) E¢, =0
(ii)) Ee, ¢ = 6,2 (2>0)

is called white noise.

Clearly (e,) is stationary. A white noise process has no (linear) “memory”™ and constant
variance.

Trmectary of 2 whine sammc procesy Al e O Ll MwTsan of  whilc a0l precens
— ‘
LhJ
?
&1
.
]
7]
* o3
LK
i
43
L] g
1
L] |
) L] —d
L] 1] w » -y so (2 13 (1] o 10d . 1 1 3 3 L3 1 L] v L]
e s g
Figure 2.1: “Typical” trajectory and the autocorrelation lunction of a white noise process
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2.2.2 Moving Average Process

Let (¢,) be white noise; a process given by
'
o= big; ; b €R™", forallt (2.2)
) =0

is called a moving average (MA) process (of order ¢ if be # 0 and b, # 0).
We have
Ez{z, < 0o (see exercises), Ez, =0

and
3y osisy b Lb;_, 4

DSI-—

s t) = BQY_bie,-)(Q_biers) =
i=0 J=0

(-—-:t-: 0 ﬁJrlS —'tl >q

TNy

depends on (s — t) only. Thus an MA process is stationary. An MA process has a finite
(linear) memory (i.e. y(s) = 0 for some g and all |s| > ¢). Thus T is a band matrix.
Conversely every stationary finite memory process has an MA representation (2.2} with a
suitably white noise process (¢,)} (needs proof).

2.2.3 Infinite Moving Average Process
Let (¢} be white noise; a process given by

T, = Z bye—y v b, € R™™" forall ¢ (2.3)

j=-oo

i called an infinite moving average process.
We interpret the infinite sum (2.3) as the {mean squares sense) limit of the sequence
(of partial sumns) (Z}'.V:_N bie;IN € N) We have for ¥ > M >0

Af
E (Z,N:_N biee; — Z,M:-M bl("‘J) (Zjv:gfv’blff‘] - zj:w\f bj‘l—;) =
Lnrcpyien b5 L,

and thus, since for a sequence of random variables Vi

Eyiye <ooand E(ye —~w) {ye — ) — 0 lor k! = oo

s equivalent Lo the existence of a random variable y such that Liany, = y the infinite
sun (2.3) exists iff
+ca
Z f)}'f-jbf‘( 2] (2.4)
rm e
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holds.
Prove: If £ > 0 then

+oo +co
Y bjTb; < oo = Y bjb; < o0.
J==o00 j==—o0
We further have
Ez;z, < oo

(by definiton of the infinite sum in (2.3))

EII =E i b,‘f;_,‘ = Z b,' E(‘_j =0

J=-oo j=-o0

(by the continuity of the expectation) and

Bzozl =BE( ) b, ) biens) = 3 biBbi,,
i=—o00 Jjz—o00 ;;:f:;{)'=_m

and thus z, is stationary.

b, =0 for j < 0 holds, (z,) is called a one sided (or causal) infite moving average of
white noise.

Infinite moving averages represent aliready a wide class of stationary processes; in
general they have infinite (linear) memory, which however fades.

2.2.4 Autoregressive Process

Consider the lincar difference equation of the formn

Yet @Yoy + -+ Ay, = €, (2.5)

where a; € R"*" and ¢, is white noise. Then {2.5) is called an AR system. A solution on
Z (oron Z,) of (2.5) (i.c. a process y, satisfying (2.5) for all t € Z (or all t € Z,) for
given a, and (¢)) is called an autoregressive (AR) process (of order p if a, # 0 lolds).
The name comes frow the fact that Y. depends on his own past. AR processes will be
discussed in chapter 3 in detail. We only consider a special case, namely scalar (i.e. n=1)
AR processes of order one: these are generated by

Ww=ayo + ¢ (2.6)
where we always assume a? = Eel > 0 (note that a in (2.6} corresponds to —a, in
equation (2.5).)
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First we consider solutions on Z,, starting from an initial value yy: From iterative
(foreward) substitution we obtain

t—|

Y = Zajf;-j + a'yy

j=0

Assume that y, is nonstochastic for the moment. Then

Ey. = @'y _
Vary, = Y ga¥ ,
Covlyny) = E(Til d'e, ) (Tilhale;) = o St gtos-2,

We can distinguish the following cases

()
(ii)

(iii)

(iv)

If @ = 0 then clearly y, = ¢,; in all other cases (v:) is nonstationary.

For la] < 1 we have
Eyy—=0fort - o
and
t=1 ) 1 R
v = ¥ for t — oo.
=3t o

For these reasons, this is called the stable case,

For |a| > | we have
[Ey] = lal'|yo] — oo for t — oo
and
-1 ) I ,
Vr’tl‘ = a?? = U‘*OOfO[‘[—POO.
v }-2 1 —a?

This is the exponentially unstable case.
For |a| = 1| we have

[Eyd = |yol
and

Vary, = o?t.

2.7)

(2.8)

This is still unstable {the variance is exploding) but not exponentially unstable. [n

particular for a = | we get the random walk

t—1
Ve= D o, + oy
;=0
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Trajeciories of & rendowm walk procese

° m Aa

1o 0 Jo 40 30 60 ks | L] b LLiv

Lidne anche s

Figure 2.2: Some “iypical” trajectories of a random walk process.

Now we do not start the system at time { = 0 with y,, but at time { = —T with initial

value y_r. Then for the stable case, in the limit for T — oo we will get a solution on Z of
the form

¥ = Za’(,_)- (2.10)
j=0

(Note that sum on the right hand side of (2.10} exists since Yo7iea¥ < oo holds.) This
solution is called the steady state solution since it is the solution of the stable system
“started in the infinite past™. It is clear that every y, {(independent of yq) of the form
(2.7}, {or |a| < 1, will converge to y, defined by (2.10) for t — oo.

Note that the set of all solutions of (2.5} on Z can be written as the particular solution
(2.7) plus the set of all solutions of the llomogenous equation

w—ay., =0

ilere, almost exclusevely, we consider the steady state solution (2.10). Note that (2.10)
gives a one sided, infinite moving average and thus has mean zero and is stationary

Pusitive autocorrelation (a > 0) gives “clustering”™. AR(1) processes have a geometri-
cally fading (lincar) memory.
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Figure 2.3: “Typical” trajectories and the autocorrelation function of the AR({1) processes,
vi=08y_y +e¢cand y = —0.8y-; + ..
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2.2.5 ARMA Process

Consider a linear difference equation of the form
wtayye +---+ ApYi—p = boee + bieey + -+ - +b'€|-' (2-1 1)

where a;, b, € R"*" and (e:) is white noise. Then (2.11) is called an ARMA system and a
solution of (2.11) is called an ARMA process. ARMA systems will be discussed in detail
in chapter 3.

2.2.6 Harmonic Processes

Consider a process (z.) defined by

A
Ty = EC"A"ZI (2.12)

1=1

where z; : 2 — C", j = {,. .., I are (genuine complex) n-dimensional random variables
satislying
Ezjz; <oo ; j=1,...,h

Worgweassumed, < A, < --. ¢ An. Processes of this form are called eyclical or harmonic
processes. They are mainly interesting because of the insights and interpretations they
provide, rather than as (complete) models for time series. From ¢'** = cos Ajt+isin At it
is clear that () is the sum of a finite number of tri§0nometric thime functions (in discrete

. . . . - { .
time) with random weights z;. The entries of z;, zf— 181 — C can be written as

L (1)
A = (]

where [z)(-‘)l and cbg” are random variables and describe the amplitude and the phase shifts
for the time function e'**. The A, is called the angular frequency; it is related by T; = iﬁ'
to the period length T;. Note that we may restrict ourselves to the interval (=n, 7] for the
angular frequencies A,- This is a consequence of the fact that we consider Linme functions
on Z and is casily seen as follows: For arbitrary A, € R, we write A= k2r 4 A; where

Ay €(=m,r]and k € Z. Then
CIA‘! - cl(k'_’l"’*’;)l — (_‘";‘lt ror a“ { € Z

as " = | forall ¢ € Z. In other words we could never distinguish between the time

function ¢'"*" and ¢ defined on Z. The frequency © which is the highest {requency

which can be observed is called the Nygust frequency. The Nyquist frequency evidently
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Sems irnjectkonias of U Aarmonic provess y(tpe !

umc wnde s

Figure 2.4: “Typical™ trajectoties of the harmonic process 1, = 1, Clearly such a process
is not ergodic for the mean.

corresponds to a period length of 2; thus e.g. for quarterly data we can at best observe
sinusoids (or cosines) with a period length of 2 quarters:
Now let us investigate under which conditions (z:) will be stationary. We have

h
Ez, =% ¢ Eg (2.13)

;=1

Note that the class of functions e'** ; Z — C, A, € {=#,n} arelincarly independent. This
can be sliown as follows: (,onSlder the linear combmatlon

che“‘":() COAL < A < A,

1=1

This implies

0= Z(‘} IEH ZCJJ\ o —fAt (214)

J=1
Now since
1 Z P { 11 i for ] = !
TL"—" fOI' J ?{ {

(=0 EUSTENE Y
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we have |
gy e {4t
Therefore, we have from (2.14)
¢;=0 ; j=1,....h

which proves the statement. But then (2.13) immediateley implics the mean is constant
if and only if Ez; = 0 holds for all A; # 0. We thus have {rom (2.13):

B:;.:{ Bz ford; =0 (2.15)

0 if all A; are unequal to zero.

Next, consider the (noncentral) covariance function

Ez,z; = D(Ee‘* 'z )(Ze""z) Ze‘("""‘") Ezz

J=1 I
If we assume in addition
Ez;zf =0 forall j£1 ' (2.16)
then
h .
Ez,z; = ZC'A’(’-”EZ! z; (2.17)
J=1

and thus (z) is stationary. Conversely if (2.16} does not hold, then looking at Ez, z;
again due to the linear indepency of the e, we see that {z.)1s not stationary. Note lhat
¥ 15 a periodic function (on Z) for rational A, /(27) and then in particular we have perfect
correlation (i.e. the correlation is either I or ~1) al certain lags.
[n particular a harmonic process has an infinite and in particular not fading memory:,
Since we are only interested in real time series, we are only interested in R™-valued
tandom vaniables z,. This implies:

0=S{D ™2} =3 (S{z)cos At 4+ R{z)sin A1)
J b]

{here 3 and R denote the ; unaginary and real part respectively). This holds if and only if

Aty = — Ay, and forp =0, Jih /2 (218

llf} = zh—j
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F‘igure 2.5: Autocorrelation function of the hatmonic process r, = rye'*1t 4 o ettat g 3+

zee'Mt 4 256" where Ay = -\ =2x/3, M = ~X = xf6, E2F7 = E2%5 = 0.5 and

Enz = ExnZi=Ez75 = 1. The picture shows perfect correlation at lags 12k, k € Z.

Thus we may write (2.12) as
h
T, = Z(S?{zj} cos A;t — {2, }sin Ajt) (2.19)
r=1

If we define “new” frequencies vp= Ajapga 1= Lo (4 1)/2) (v, € [0, 7]) we may
rewrite (2.19) as

LA+ 1)/2)
r, = Z a; cos vy b+ by sinwgt
3=1
where
a; = N{zuin} - forodd
b = 0 - for odd L
a, = 2R {z,a2i} foreven horj > |
b, = 23{z;41as5} -Toreven horj > 1

(Note that for odd &, Atheryz = v = 0 and Ziwarys2 miust be real. For f even the frequency
0 is not contained in the set of frequncies.)

Clearty from (2.15) and (2.17) we see that the first and second moments of Lhe z;

J}
7= 1 huniquely determine the first and second moments of (z,).
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Conversely, from E(z,z;), s € 2 (and Ez,) the F; = Ezjz; (and Ez;, Aj = 0) are
uniquely determined, by (2.17) (and (2.15)); thus there is a one to one correspondance
between the non-central covariance function of (z() and the function (F|j = 1,.. . h)or
the so0 called spectral distribution Junction

F: (-x,n): — R
A — z:j:A,-gA‘F}

Now let us give some additional interpretation for a harmonic process, first for the
scalar case (n = 1):

From (2.12) it is clear that, that for Aj #0, F; = Varz; = E|z[? is a measure for the
expected amplitude of the frequency component ¢**. For Aj =0 wehave Fj = E|z)? =
Var z; + | Ez,|? which has an analogous interpretation.

Thus the spectral distribution function F(A), which is in a one-to-one relation with
the (noncentral) covariance function and therefore contains the same information, displays
this information about the underlying process in a different form. In particular we see that
F'is a monotonic, nonnegative, right continuous step function; the values at which jumps
occur show the frequencies of the underlying process and the step sizes are measures for
the expected amplitudes.

Specyal distnbuuon funceon of & Aarmonic proceas

Qs F*ﬁ
0
08 a4

-1 04 02 o az G4 [2- os 1

frequency

Figure 2.6: Spectral distribution function of the scalar harmonic process defined in fig-
ure {2.3)

[n the multivariate case (Leo > 1), the interpretation of the ofl diagonal elements of

the spectral distribution funetion £ cat be seen from the following considerations: The
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t-th entry of the complex matrix F} is given by
Fuy = B

where z,m denotes the i-th component of z;. It provides a ineasure of the linear dependence
between the i-th and the /-th component at {requency A; in terms of its absolute value
and an measure of the expected phase shift between the two components in terms of its
phase.

2.3 Properties of Covariance Functions

[n this short section some properties of covariance functions are given.

Definition 2.6 A function y:Z — C"*" is called nonnegative definite if

T
Y 88,7, (L — 1) 2 0 (2.20)

p.g=I

holds for arbitrary chosenT € N, ay,...,ar €C,1,,...,ir € {1,...,11} andt,,... tr € Z.

Note that a function 7 is nonnegative definite iff the matrices

r0) - (=T + 1)
Fr = : :
Wr-1) - 7(0)

arc nonnegative definite. Note also that in the complex case {as opposed to the real case)
a nonnegative matrix is hermitean, i.e. Ty = '} holds.

The following theorem provides a mathematical characterization of a covariance func-
tion (and thus also for correlation functions).

Theorem 2.2 A function y : Z - C"*" is a covariance function of a stationary process
f and only if v 1s nonnegalive.

1

Proof:  For the “«=" part see e.g. Rozanov [5]. We here will ounly prove the easier “="

pari; we have
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where the last inequality holds since the integrand is a monotoric functiona! (i.e, { > 0

implies [{dP > 0).

Note that the theorem above is a “natural” extension of the fact that a matrix &
is a covariance matrix iff T is symmetric and nonnegative definite. For an arbitrary
nonnegative function, the corresponding process may be chosen as Gaussian.

In particular, we have the following properties of the covariance function

(i) 10)>20;v(0)=0c 2z, =0 as.

(i) ¥(s) = Ez,z; = E(zo2])" = 7(~s)"

2.4 Hilbert-spaces

Hilbert spaces are important for understanding the geometry of stationary processes and
they provide powerful tools in particular in connection with linear approximation problems.
The reader should know that the complete lecture could also be understood without the
knowledge of Hilbert spaces. However even a basic knowledge of Hilbert spaces make the
understanding of a number of things easier.

Definition 2.7 A mapping < .- >: Hx H — C where H is a lincar space ts an inner
product if

(1) <aiz; + a1,y >=a, < T,y > tay <12,y > forallaj,ay € Candr,,z,,y € H.
() <z,y>=<y.z>
(1) <r,z>>0and < 7,2 >= 0 <= 1 = 0.
Definition 2.8 A set H is a Hilbert space if
(1) H is a lincar space
(11) with an tnner product

{tii} which is complete in the norm defined by the inner product.

Here complete means that every Cauchy sequence (ie. asequence z,, € H whick satisfies

o n oo |0 2. = 0) converges; .o, there exists an rz € H such that i, s flr -z, =
0 holds,
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2.4.1 Examples

(i} R” together with the innerproduct defined by < z,y >= 3., .y is a Hilbert space.
(i1) C" together with the innerproduct defined by < z,y >= 37, z;¥; is a Hilbert space.

(iii) Consider the probability space (2, A, P)and let £,(, A, P) be the set of all random
variables z :  — C defined over this probability space which are square integrable
(i.e. Elz|? < 00). We define an equivalence relation z = y on £, byrzrsyiffz=y
a.s. The set of these equivalence classes is denoted by L,(2, A, P).

It is easy to prove that L, is a linear space and that < z,y >= E zy is welldefined
and an inner product. (It is clear that < z,y > defined over £, is not an inner
product since Ez? = 0 does not imply that z = 0.)

From the Riesz-Fisher Theorem we also know that L, is complete and thus is a
Hilbert space.

From the definition of the inner product it is clear that < z,y > is the (non central)
Covariance of the two random variables and that [[z]]* =< z,z > is the (noncentral)
variance of the random variable z. The limit in “Hilbert space” sense is nothing else
than the limit in the mean sguares sense.

Consider a stationary scalar proces (z(). The stationarity conditions imply that

Ez, =< z,,1 >= const
Ez! =<z,z,>= ||z|* = const
Ezz,_, =< z,,2z,, >= const

This means that all z, are vectors in the Hilbert space Ly of the same length and
the angle of z, and random variable | and the angle between z, and r,_, is constant
and does not depend on ¢ and the same holds for the angle between z, and z,_,.

Therefore there exists a unitary operator U (which is the generalization of an or-
thonogal watrix in R™ and corresponds to rotations or reflections) such that U/
generates the process (z,) by:

r, = U'x,.

The next theorem provides an extremly useful tool for the solution of linear approxi-
mation problems. For its proof see .g. Brockwell and Davis {3, p.51f].
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Theorem 2.3 (Projection Theorem) Let H be a Hilbert space and M be a subspace (i.c.
a subspace which is a Hilbert space of its own). Then for every x € H there ezists unique
decomposition

T=i+4+u

such that £ € M and ul M (ie. <u,y>=0 forallye M). In aeddition % is the unique
element of M satisfying

lz - £I| = min {lz - y||
ye M

2.5 Exercises

{2.1) Discuss the terms: probability space, random variables, expectation, variance, dis-
tribution function and probability density function.

{2.2) Let z, y be two scalar (real) random variables. Repeat the definition of Var(z),
Cov(z,y) and Cors(z, ). Prove the following statements:

(2) Cov(z,y) = Exy - (Ez)(Ey)
(b) Fora,b€ R and a # 0 we have [Corr{az + b,y)| = [Corr{z, y)|

(c) tf|Corr(z,y)] = 1 then there exists a perfect linear relation between z and yin
the sense that there exist a,b € R such that V=2az +ba.e.

(2.3) Prove the following statcments: (r is an n-dimensional random variable.)

(a) Ez°z < 00 = Ex exists and is finite.

(b) Ex'z <00 = Ezz° < 0o,

(2.4) Consider a white noise process (¢,). Prove that the process
g
o= br, ;b ER™" forallte 7
=0

is a stationary process. For the scalar case 6 €ER, b € R and g =1
I =boxo + bz, ; forallte Z

compute the autocarrelation function plsyoflz,. What is the possible ratige of values
of p{1)?
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(2.5) Prove the “continuity” of the expectation, i.e.. if (z;) is a sequence of random
variables which converges in the mean square sense then

E(lk.i.m ) = t1im (Ez,)
holds.

(2.6) Consider a sequence of (vector valued) random variables (z,) (z, € R" ). Prove that
(z¢) converges in mean squares sense if and only if each component (xE‘)) converges
In mean squares sense:

Limz, = z4 <= Li.m zf) = J:f,” forali =1,...,n

Please discuss the stochastic processes defined in the next four examples. Compute their

mean- and autocovariance- function. Are they stationary? What does a “typical” trajec-
tory look like?

(2.7} Discuss the (scalar) stochastic process (w, |t € N) defined by

Wy = 1]
w = we_,+¢fort>0

where (¢,) is a (scalar) white noise process. (E¢ = 0%) (w) is called a random
walk process.

(2.8) Given two (scalar, real) random variables z, y with Ez = Ey = 0, Ez? = Ey’ =1
and Ezy = 0.5. Consider the process (w,) defined by

z for even !
uw, =
‘ y for odd t

(2.9) Given a stationary process (z¢) with Ex, = m and autocovariance function T(s)-
Consider the process (y) defined by
N I, for even ¢
o = .+ 1 forodd!

(2.10) Given two white noise process (€} and (se) with E¢? = Ey? = 1. Consider the three
processes (z), (¥) and (z,) defined by

I = € + blfg_|
Ye = & +be_, . b eR
v = blllr + e
The Prague Lectures 20/01/92-15/05/92 -35-

DRAFT April 13, 1994



(2-11) Consider an MA(1} process y, = bo¢, +b,¢,_;, where (¢,) is an unobserved white noise
process with E¢] = 1. Assume that you know the autocovariance function ¥(s) of
(w) (or that you have a very good estimate ¥(s) for ¥(s)). What can you say about
the parameters by, b; € R of the MA process? (Note that E¢? = 1 and that you
can’t observe ¢, so that you have no information about Cov(y,,e)")

(2.12) Compute the autocovariance function v of a scalar AR(1) process (y} defined by
Yo + @y, = ¢, where (¢) is a white noise process with E¢? = ¢2.

(2.13) Suppose that the autocovariance function 7(s) of an AR(1) process is given. Try to
determine the parameters a,0? of the AR process from 7(s). Can you interpret your
results. (Compare the exercise above.)

(2.14) Consider the scalar ARMA(1,1) process defined by y, +ay,_, = ¢, + be,_,, where (¢)
is a white noise process with E¢? = o?.

+ Calculate the steady state solution of the above difference equation. Is the
corresponding process (y,) stationary?
+ Calculate its autocovariance function.
+ Given the autocovariauce function y{s). Try to determine the parameter a.
{2.15) Consider the difference equation y, = 5y,_, + ¢, where ¢, is a white noise process
with variance o?. Find a solution for this difference equation by backward substitution

beginning from a terminal value y,. Does there exist a “steady state” solution, if we
start from the “infinite future™?

(2.16}) As we have seen in the fecture, a harmonic process
— .
Yo = 2 ettty
)

is real valued il for every frequency A, # 0 there exists a frequency A, = —A;
and z; = z, holds. Is this condition a contradiction to the “stationarity condition™:
Ez,zl = 0forall X, # A (In other words: Are there real valued stationary harmonic
processes?)

{2.17) Consider a stochastic process () defined by y, = acos{At +@), where A e (—r, n]is
a (fixed) angular frequncy, a, ¢ are tndependent random variables and ¢ is uniformly
distributed in (0,27]. Is (y,) stationary?

(2.18) Consider two {scalar) stationary processes (z,), (y,) which are uncorralated, ie.
Loryye = 0forall ¢ s, with mean zero and autocovariance functions 5, (s} and 7,(5).
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Show that the process z, = z, + i is stationary and compute its autocovariance

function.

(2.19) Is the function

nonnegative definite?
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3 Stationary Processes in Frequency Domain

The spectral representation is one of the center-parts of the theory of stationary processes;
both from the point of view of methods and the interpretation of the process. From the
spectral representation of a stationary process, the spectral representation of the covariance
function and the spectral density as the Fourier transform of the covariance function are
obtained. The spectral density turns out to be extremly important for the understanding
of the process. Finally we consider linear transformations of stationary processes and the
corresponding transformation of the second moments, which shows a further advantage of
spectral representations.

3.1 The Spectral Representation of Stationary Processes

The main result of this section implies that every stationary process (z,) can be approx-
imated with arbitrary accuracy by an harmonic process. Or more precisely there is a
sequence {(z., |t € Z) | n € N) of harmonic processes (zenlt € Z) such that

l.i.m Il,ﬂ = I (3.1)

n— 0

holds for every 1.

In order 1o state this result we have to introduce an appropriate integral. For thijs
reason we define:

Definition 3.1 A stochastic process (z(A)| A € [=7, 7)) with random variables 2(A) :  —
C" is called o process of orthogonal increments tf the following conditions are saltisficd:

(i) 2(~7) =0 a.e. and 2(x) = z, a.c.

(1) Limgo2(A + €) = 2(A) for A€ [=x, 7). (right continuity)

(111) Ez(A) 2(A) < oo for all A ¢ [~7, x]

(10) E{(2(A4) = 2(2)) (2(A) = 2(M) =0 for all A, < Ay € Ay < A,

If we define the function F - [=m. 7] = C"" by F(A) = E2(Mz(A) the following
relations hold:

o B ]

(3.2)

2
p
TN

£(A) = F(A))

]

(0] = (A (2(A2) = 2(A0)) for Ay < A,

Thus F(A) is a nondecreasing right continous function on. (Here nondecreasing means
that the difference F(Ay) = F(A)) is a nonnegative definite matrix {or all AL <Ay

y
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Note that (2(A)| A € [-rx, x]) is a stochastic process with a continuous index set [, r)
and we will interpret these indices A not as time points but as (angular) frequencies!

Suppose we have given a (deterministic, scalar) function g : [-m,x] = C: A o g(A)
and a partition -xr = A% < Al < -+ < A" = x of the interval [-7,x]. ‘We then define a
(finite) sum

1(8) = 3 807) (M) - 2(0)).

If for all sequences of partitions with max;(Afy; = A?) — 0 for n — oo the limit in mean
squares sense of I,(g) exists and is the same, then we define

Ke) = [ g(A)e(d) = Lian L(g) (3:3)

I(g) is called the stochastic Integral of g with respect to the process 2(A). Note that this
definition is a “natural” extension of the definition of a Riemann or a Riemann-Stieltjes
integral. But instead of weighting the value of g();) with the length of the interval {A;, A, ;]
or the measure of this interval with respect to some nonstochastic distribution function, we
weight g(A;} with the increment of the stochastic process z(A)} which may be interpreted
as a stochastic distribution function. Of course I{g) is in general a random variable.

[ 2{A) = F(A)is a {nonstochastic) distribution function defined over [r, =] then the
integral with respect to z{A) is of course the integral of g(A) with respect to the matrix
valued measure defined by F(A).

The integral {(g) defined above has the following properties:

(i)
Elg) =
ELim 2050 ((A0) = 2(A7)) = lim 575 g(A") (E 2(A%, ) = E #(A") =
[T, 6(AAE(2(N))
(ib)
El(g) I(1)" =

E {lim 505 g(A0) ((00,,) — 2(A%)) p e BT (2007, - _"()‘?)).} =
lim 327720 g AR E{(2(A%,) = 2(An)) (20500 - 200) '} =
lirn ZI‘:‘J_&Q?)h(A.’-‘) (F(’\?+|) = F(AT)) =

J2L g(RANAF(A),
where F(A) = Ez(A)z{))".
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Here we have used the continuity and linearity of the expectation and the properties of
z(A).

Theorem 3.1 (Spectral Representation Theorem) For every stationary process (z.) there
ezisls a process (z(A)| A € [—x, 7)) with orthogonal increments such that

I, :/ e*dz(A) a.e. (3.4)
holds. The process (z(A)) is a.e. uniquely determined from (z,)

Proof: We do not give a proof of this theorem here. For a proof see e.g. Rozanov {5}
or Brockwell and Davis [3]. One way to prove this result is to show that every stationary
process is associated with an unitary operator in an Hilbert space and to use the spectral
representation of unitary operators.0

As a direct consequence of the theorem above (and of the definition of a stochastic
integral) we now see that every stationary process {z,) can be approximated by harmonic
processes:

z, = /' eMd:(A) = lim ’ilci)‘:' (l('\;‘u) - z(A?)) :
. j=0

Note that this is a “pointwise” result holding for every fixed ¢ € Z and that in general the
convergence cannot be made uniform in ¢,

Il 2(A) is the (orthogonal inecrement) process corresponding to (z,) we call F()) =
E2())z(A) the spectral distribution function of (z(). Il there exists a function f : [, m] —
C™™" such that

A
FO) = [ 1w,
where v denotes the Lebesque nicasure, then f is called the spectral density (function) of

(z¢).

Il we assume (for simplicity of notation) that Ez, = 0 we have

Y(s) = Ez,z] = E/ f?'“dz()\)f FELFAEY :] eMdF( ), (3.5)
which is the spectral representation of the autocovariance function. If {(A) exists, we
further get

+(x) —/ A YD (3.6)
40- ECONOMETRICS (1

ORAFT April 13, 1994



Note that not for every stationary process the spectral density exists. .One condition
(which is not the most general) to ensure the existence of the spectral density, is

5 Hv(s)l < co.

1= =00

Under this condition we can represent f(A) (using the inverse Fourier transformation) as

o

1 .
f(A)= — e y(s). 3.7
M= 57 X e™ats) (3.7)
In the next theorem we give a mathematical characterization of spectral distribution
functions and spectral densities. (This Theorem corresponds to the characterization of
covariance functions we gave at the end of the last section.)

Theorem 3.2

¢ Fi[-%,x] = C"*" is a spectral distribution Junction if and only if

F(-x})=0 ; F(r)<oo
bmo F(A +¢) = F(X) (right continuity) (3.8)
(F(X2) = F(A)) >0 for A, < A, (F is monotonically non decreasing)

e =7, 7] — C"™" is a spectral density function if and only if

f{Ay=o0 (A ae.)
[7 1) < oo (3:9)
Proof:  We only prove the “=m - part. If F{A) is a spectral distribution function, we
know from (3.2) that all of the above conditions are fullfilted. For a spectral density {(A)
we only have to prove that it is nonnegative. This follows from the fact that for every
intervall [A,, A,] the integral f:]’ [{(A)d = F(A)— F(A) > 0must be a nonnegative matrix.
This implies our proposition. 0

One way to prove the opposite direction is to consider the function y(s) = [ e MdF(A).
From (3.2) it is possible to show that y(s)is a nonnegative definite function and therefore

there must exist a corresponding stationary process (z¢) such that y(s) is the covariance
function of (z,).

For real processes we have in addition

1 & 1 = 1 =
f /\ [ — AT AL - 1Ay — - 'I.\.I : i - Y ‘
(A) 2Zw i(s) JZC Y(-s) .h}_mr y{s) = (=X
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and thus in particular in the scalar case f(A) = [(~A). Thus it is sufficient to consider the
spectral density on the intervai {0, x}.

Contrary to the simple case of harmonic processes we here in general deal with an un-
countable set of frequencies; Correspondingly instead of summing over frequencies we have
integrals over frequencies. We therefore consider always intervals of frequencies (frequency-
bands) rather than single points. But nevertheless the interpretation is similar to the case
of harmonic processes.

Let us consider the scalar case first. From (3.2) we see that the increments of the
spectral distribution function over a frequency-band is equal to the (noncentral) variance
of the increment of the process z(A) over the same frequency-band. If the spectral density
density (\) exists we have from (3.2)

/:’r(,\)d,\ = E(z(A2) - 2(A))Z00) = 2(0)) (3.10)

and thus the area under f from A, to A; is a2 measure how much this frequency-band
contributes to the process (z.). In addition as f{{A)d\ = Var(z,) the ratio

o I(A)d\
Var(z,)

is a measure of the relative importance of this frequency-band. In this sense strong in.
creases in the spectral distribution and peaks in the spectral density indicate the tmportant
frequency-bands.

Consider the following four examples:

* For a harmonic process z, = Z;‘:l etz the corresponding orthogonal increment
process z(A) is given by z(A) = 2oya,<x % Itis casy to see that the stationarity
conditions for {z;{7 = 1,...,h) imply that z(A) is a stochastic process with orthog-
onal increments. Of course we Lave z, = ):;':l e™Miz; = [e™Mdz(A) as in this case
the stochastic integral with respect to the “step-process” z(A) is nothing but a finite
sum over the frequencies A,. We also want to stress the fact, that in this case the
spectral density function does not exist!

* For a white noise process (&) we have ¥ || v(s)l| < oo since 7(s) = 0 for s £ 0
and thus the spectral density (unction exists and js given by f(A) = =3 eth Y(s) =
5= 7(0). In this case the spectral density is constant and thus frequency-bands of the
same length equaly contribute to the process {z,). Since this property resembles to
the property of white light where all colors are contained, these processes have heen
called white nojse. Seo figure 3.1.
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¢ Now consider a scalar AR(1)} process
Vi = ay + €.
For || < 1, we have 177 _ . |[7(s)|| < oo and

i iAs = 02
)= 2. e 10) = s o+ @)

j=—oo

(See also next section.) As we can see from figure 3.1, in the case ¢ > 0 the
spectral density has a peak at A = 0 and thus the low {requencies are dominating
the behaviour of the process (z,). This gives “smooth” trajectories. In the case
a < 0 we have a peak at m and thus the high frequencies dominate and the process
shows a very erratic behaviour.

Specwal densines of ot AR(1) proces ses

osf 4

03 - i

J

]

] 01 0 R} 04 0% L o7 oE o9 1

frequency

Figure 3.1: Spectral density of a white noise process {solid), of the AR{1) process y, =
0.9y~ + ¢ (dashed) and of the AR(1) process y. = —09y_1 + . (dotted) Al threce

processes are scaled such that they have the same variance ¥(0) = |.

» For an AR(4) process y, = 0.95y,.4 + ¢, we have a spectrum as shown in figure 3.2
Here we have very high peaks at frequency A = 2x/4 which corresponds to a period
of 4 and at frequency A = 27/2 which is the first superharmonic. Thus a process
of this form could be a good model for quarterly data with a “random” secasonal

pattern.
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Sprod devaitiy of on AR{4) peocenss

o L
-1 0.7 o

] 01 02 [ 3} 04 [ E]

-~

frequency

Figure 3.2: Spectral densily of the AR(4) process y. = 0.95y,¢ + ¢..

The cross-spectral density f;y between two scalar processes (z.) and (y} is in general
a complex valued function also for real processes. In polar coordinates we write f,:(A) =
ye(A)le =) It is easy to see from (3.10) that [, (A)] is a measure of the linear
dependence between (z¢) and (y,) at frequency A. (In order to be completely precise we
have to consider frequency-bands again.) The phase $y:(A) is a measure for the expected
phase shift between the frequency components of (z,) and {y.) at frequency A. As the
¢ross spectrum is scale dependent a normalized measure for linear dependence the so

called coherence 1y
[y:
I_y_(._)_i_ .‘{"‘ﬂ"'ﬂ'] — f()‘ ]]
(A}, ()
may be considered. The coherence is a frequency specific squared correlation.
Suppose we have given a vector process (z,) and we split this process into two (vector)

components as
z,:(I‘) . L €RY y e RT

CHA) =

Y

where e.g. z, contains the exogenous variables and y, the endogenous variables at time
{. This induces a corresponding partitioning of the covariance function ¥(s) and of the
spectral density f{A) of the process (z;):

sy = [ Yelsh oy (s) . N AR YR PPy
7()_(“@,(&) m.«)) o ”“‘(fw(/\) [iA) )
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We will call 4, (resp. f.) the autocovariance function (resp. the autospectrum) of the
process (z,} and v, (resp. f.,) the cross covariance function (resp. the cross spectrum)
between the processes (z,) and (y,). Analog notions will apply to Ty Ty ¥y and .

Let us repeat that there is a one-to-one relation between the covariance function and
the spectral distribution function and if it exists also for the spectral density function.
Therefore these three functions contain the same information about the underlying process.
However the information is displayed in a different way and the information may be easier
to read from the spectral density function.

3.2 Linear Transformations of Stationary Processes
If (z,) is a stationary process then
yl = Z a,-:r,_j ' aj E Rmxn (3411)
j=-oo

is called a finear transformation of (z(). In order to guarantee the existence of the
sum (3.11) for all stationary (z,) we assume

> el < oo, (3.12)

)=—o0a

where | - || is an arbitrary matrix norm. (a;l7 € Z) is called the weighting sequence of the
linear transformation.

Theorem 3.3 If(z,) is stationary and (3.12) holds then {y!, 2!} is stationary.

Proof: Straightforward. O

We have from the spectral representation theorem

z, = f_" c““dz,(A}
b = Z:;ﬂ:—oo @ Le; = Z;}J:—m a; f_'g E'A(!Hj)dzr(’\) (313)
= [7 e (Z;’i_wajc‘“\")(b,{/\),

where 2,.(A)is the orthoganal increment process associated witl (z¢). By assumption (3.12)
the infinite sum Yoo @je™M exists and we define the transferfunction k : [—n,x] —
C™" corresponding to the linear transformation {3.11) by

L‘(/\): i (,:Ic_"”_ (}14)
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The transferfunction k(A) and the weighting sequence (a;lj € Z) are in a one-to-one relation
as we have o; = 3L [ Mg (A)a.
If we replace (3.12) by the more general condition

2 Mgl < oo (3.15)

J==00

then the sum on the right hand side of (3.11) does not necessarily converge for all stationary
(z¢) but it does converge for example for white noise processes. Whereas under (3.12) the
right hand side of (3.14) converges pointwise and uniform in A under (3.15) the convergence
can only be guaranteed in the mean squares sense.

Let us give a system theoretic interpretation for linear transformations: A linear trans.
formation which is sometimes also called a linear filter can be interpreted as a linear system
relating the inputs (z,) to the outputs (y,). Thereby the inputs (exogenous variables) rep-
resent the influence of the “outside world” on the outputs (endogenous variables).

(z) (a;l € Z) {¥e)

input k{A) output

The action of the system L is described cither by the weighting sequence (a;|j € Z)
or by the transferfunctjon k(A}). Both are equivalent, but (a,) describes the filter in time
domain whereas L()) describes the filter in frequency domain.

Next we want to explain some important notions. Let us write {vo) = L(z,) as a short
form for (3.11). (iere L denotes an operator which operates on stochastic processes.)

The “system™ (3.11) is linear since L{byz,, + byry ) = bhL(z,,) + baL{z4 ), which
states that the output of a linear combination of two inputs (z,,) and (z,,) is Just the
corresponding lincar combination of the two outputs L{z, ) and L{z,,).

The system (3.11) is time invariant, i.e. L(r, )t e Z) = (Y4t € Z) which means
that the output of the shifted thput s Just the shifted output. This s an CASY consequence
ol the fact that the werghting sequence (o, 7 € Z) does not depend on time ¢
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By our assumption (3.12) bounded inputs generate bounded outputs. This is one
possible definition of stability.

The system (3.11) is in general dynamic. A static system is defined by the property
that the present output y, only depends on the present input z, whereas for a dynamic
system also future and/or past inputs influence y,. Thus the system (3.11) is dynamic
unless a; = 0 for all 7 £ 0.

A system is called causal if the present output y, depends only on present and past
values of the inputs (2,_,|5 > 0). This means that (3.11) is causal iff y, = a0 ;T

We now have from (3.13)

I

S, eME(A)dz ()

Ve
2, e, (3), Y

where z, is the process with orthogonal increments associated with (¥e) From the formula
above we can give an interpretation of the transferfunction &. For simplicity the case
m=n-=]:

for [k(A)] > 1 the frequency A is amplified.

for {k(A)] < 1 the frequency X is diminished.

for |k{(A})] = 0 the frequency A is cancelled.

If we write (A} = |k(A)|e**) then we sce that @(A) indicates the phase shift at
frequency A.

Theorem 3.4 Let (z,) be stationary with spectral density {,. If y, = Z;"z_w a,z._; holds
then the spectral density [, of (y,) and the cross spectral density {,. between (y,) and {z,)
erist and are given by

[, = k(A) L(AK(A)"
[ye(A) = &(A) £, (A)

where k(A) = 370 _ ™M, is the transferfunction.

(3.17)

Proof: For the first part we will use an intuitive but mathematically not exact proof.
From equation (3.16) we see that the “increments” of the orthogonal increment process
corresponding to (y,) are given by

dz, (A) = k{A)dz ().
From this we have

M = E(dzy (A2, (3)7) = K(X) E(dze(A)dzo(A)) £(A) = k(X) [, (A)k(A) .

I EST:
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In order to prove the second part we proceed as follows.

Evz, = Y. e Ez_;z;
7.:(‘) T.-(‘“'i)
7,:(‘) = :'n::—m aj 7.:(‘ _J) o
Loe™ . (0)d = Eiieo @ [I, MDA = [ i 2. aeT N (D
FEET )
E(A)

Here we have used the spectral representation of the cross- and auto- covariance func-
tion (3.6). Since the last equality in the last line holds for all ¢ {(and the functions (e
form an orthogonal basis for the space of all square integrable functions over [-x, 7)) we
have proven that fye = k(A) £.()) holds.

Note that the idea of the proofl of the first part can be applied also to the second part
and vice versa. O

We now give two examples how the transferfunction can be used to control the effect
of linear filters:

Example 1: Consider first differences defined by yo = Az, =z, - z,_;. We have

k(A) = 1—¢r

RAP = (1= e=™)(1 - o) = 2(1 ~ cos(A))
#{A) = arctan l—f—'-:—o‘s—t)ﬂ = arctan 2"2;;’,&‘;’; 2 = arctan :::((:::)/i) = 132

From figure (3.3) we can see that the zero frequency component is comnpletely cancelled,
the low frequencies are attenuated and the high frequencies are amplified. In addition
there is 2 phase shift depending on frequency, ¢.g. the business cycle component in the
original series and the differenced series will have different phase.

Example 2: Consider fourth differences defined by yo = Oz = 1, - Iz, 4. We have

k(A) = | -2
AN = (1 - emhyp  pon
H(A) = arctan 20BN x-g

1—cos(41) = 2

I
I

2(1 - cos(4X))

rd

From figure (3.4) we see that for quarterly data fourth differences eliminate trend, seasonal
fluctuation (corresponding to a period of 4 quarters) and the first superharmonic (corre-
sponding to a period of 2 quarters). For theses reasons fourth differences are often used to
remove seasonal patterns from time series. Note however that also the other frequencies
are affected by the differencing operation and that there is a phase shift.

In & number of applications it is desirable to have no phase shift in the adjusted
series. Think for instance of unemployment data, where seasonal adjustinent is performed
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to check wether “real” unemployment goes up or down. A linear transformation (3.11)
leaves the phases unchanged iff the transferfunction is real for all A € [-x,x]. One can
easily prove that this is the case if and only if the filter weights are symmetric, i.e.

EA)= 5 ae™eR VA 4= g =a_; VjeZ.

J=—x

Therefore onesided (causal) transformations y, = Yivea;z,_; will allways cause phase
shifts unless a; = 0 for all j > 0. Of course the disadvantage of symmetric filters is that
(for a; # 0 for at least one j # 0) they will never provide us with the most recent seasonal
adjusted data.

If the spectral density f, of the input process (z,) and the cross spectrum {,: be-
tween the outputs and the inputs is given we can use cquation (3.17) to compute the
transferfunction of the system:

k(A) = £, (A IHA).

This formula is called the Filter Formula and will be discussed in more detail in section???.
Note also that this formula is in a certain sense the generalization of the OLS-formula to
an infinite number of regressors.

Note that the spectral approach provides™a powerfull tool; both for understanding and
calculating the effect of a linear transformation and of the associated transformation of the
second moments. This tool can also be used for the design of filters with certain desired
properties. For example given (3.17) can be used for the design of seasonal adjustment fil-
ters. A “good” procedure for seasonal adjustement should essentially satisfy the following
conditions:

(i) the gain [£{))| should be as close as possible to an ideal gain as depicted in figure 3.5.
Thus the filter should cancel the seasonal frequencies on the one hand and on the
other hand leave the other [requencies almost unchanged. Note however that such
an ideal filter gain as shown in figure 3.5 can not be achieved by a finite filter.

(i) almost no phase shift. lere we Lave to make a compromise between the conflicting
aims of zero phase shift and the desire to have also the most recent values for the
filtered process (i.e. one sided filters).

Formulas (3.17) also provide an clegant way to compute the spectral densities of jy.
finite MA processes z, = Y b, where (€¢) is white noise with variance % The
transferfunction of the filter (0,7 € Z) is of the form k(A) = >t bye™™ and thus
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Figure 3.5: Optimal seasonal filter (dashed curve) in comparison with symmetric MA.
filters of orders 10, 20 and 50.

since 3-T is the spectral density of the white noise process (€).
Now consider two time invariant lincar filters Ly and L, in series i.e. we successively
apply two filter to the process (z.):

(z.) () (= ) g L)

Let y, = Z,‘ ay;z,_; be the first filter and z, = 2_;a2,Y-, the second one. Then it is
easy Lo prove that

o [ M OO0 ()
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holds. Here z, is the orthogonal increment process associated with (z.) and k; and k, are
the transferfunctions of the two filters respectively. Thus the transferfunction of these two
systems in series is
k(A) = k!(A)kl(’\)
i.e. the overall transferfunction js the product of the two transferfunctions. In time
domain the overall weighting sequence is obtained from the discrete convolution of the two
weighting sequences. This shows that in frequency domain the overall transferfunction is
the product of the two transferfunctions. The mathematicians among the audience are well
aware of the fact that for Fourier transformations convolutions translate to multiplications.
Inverse Systems:
If we have a filter L, we might ask if there exists a filter Ly such that

L2L| = L|L2 =1 (identity)

holds. In this case L, is called the inverse systemof L,. With an inverse system we are able
Lo reconstruct every stationary input of the original system from the outputs. We see that
for the casem = n (i.e. the number of outputs equals the number of inputs and therefore
ky is square) if k,(A) is nonsingular for all A € [—x, x| then ka(A)ki(A) = k((A)ko(A) = 1
holds with ky(A) = k;(A)-!. Thus

2 = /_' e"‘”kl’(/\)kl('\)dzz('\) — ’/—' e"“[dz,(t\) =z,

and the inverse system exists and its transferfunction is given by
ka(A) = kTH(A).

Let us consider three examples:

For the “differencing filter” Az, = . — Z,_; there exists no inverse filter since the
transferfunction k(X)) = | — e~ s singular for A = 0. These means that we can’t recon-
struct the inputs from the differenced series, since the information about the mean is lost
due to differencing,

Let us consider a scalar AR(l)-process defined by z, —~ az, , = ¢, where |af < | and
(¢.) is white noise with variance o2. In this case the transferfunction a(A) = | — ge=* s
nonzero for all A and thus invertible. The inverse is given by k{)) = —i— and we have

l—ar
z —/' e ()
f . I —ge-r 70

To compute the corresponding weighting sequence of this inverse transferfunction we sub-
stitue z = ¢~'* and from the formula for geometric series we get

l x>
= g al 2t = E @M
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which converges since |az| < 1. Thus the corresponding weighting sequence is (a’l5 € zY)

and we get
oD
I, = Za’c,_,-
=0

which is our well known steady state solution. We also immediately get for the spectral
density of (z,)

1 o? 1 ol ot
f:(A) = ( ) -

—ae-* 2 \1—ae-*/) ” 21|l — ae-fA2 2n(1 —2acos A + a?)’

Let us consider a scalar (i.e. n = 1) AR(p) process of the forn
Bty + -+ Aoliup = €

where (¢,) is white noise and define the transferfunction a(z)=1+a;z4@a32% -+ a, z¥
over C rather than on the unit circle {z]12] = 1}. (Note however that every rational
function defined on the unit circle can be uniquely extended from {z||z] = 1} to C and
thus from an abstract point of view there is no difference between the transferfunction
a(e**) and a(z).} If a(z) # 0 holds for all fz] = 1 then by what was said above the inverse
system exists and its transferfunction is given by k(z) = a(z)"". Since a(z)is a polynomial
and has no zeros on the unit circle there exists an annulus containing the unit circle such

that a(z} # 0 in this annulus. Thus there exists a Laurent-series expansion of k(z) defined
on this annulus of the form

k(z) = Z kjz'.
] =—o2
which corresponds to a weighting sequence (k;|; € Z). The steady state solution to the

difference equation above is obtained by applying this inverse to both sides of the difference
equation which gives

mun(p,l)

oo r o0 o)
Zki(za)yl—-ﬂ) = Z( Z k,,,a,)yht = Yo = Zkifu—--
1=0 7=0 i=a ;=0 1=0

The Laurent series expansion may be calculated as follows. [f Z1,..., 2, are the roots
of the polynomial a(z) (i.e. a(z;) = 0} we have a(z) = ¢(z - 2, }o- (2= 2,) where ¢ is some
constant. It is now easy to invert each of this factors, using the formula for the geometric
series:

—y=1
1 —:—._“—_l—:/:. :—Zj";oz" 22 Hor |z > 1
- -t
.l-h—zi‘.": = ZJ':li-lz(J1 = for !zl{ <
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Note that by assumption the case |z;] = | is excluded. The Laurent series for k(z) is now
obtained as the product of the inverse of all these factors times l/c.

In the case p = 1, we have a(2) = 1 + a,z = a,{z — (-1/a;)) and therefore the case
|211 > 1 corresponds to the case |a,| < 1. Thus we have for jay| < 1

1 & =1\ = :
r, = — (—) Gy = E(—GL)JQ—;‘
J=0

a; J=0 a)

which is our well known causal solution.
For the case |z,| < 1 (Ja;| > 1) we have

B )£ G

a ;o V4 i=1

which is a noncausal solution.

In general we have for the case {z:] > | for all t, a causal solution and in the case
|z:] < 1 for at least one i a noncausal solution. If we have roots inside and outside the unit
circle, then the corresponding solution is a twosided infinite MA process. In other words
tl we impose the restriction

a(z) # 0 for all 2} <1 (3.18)
we restrict ourselves the stable causal case. The assumption {3.18) is often called the
stability condition.

[n the causal case the actual calculation of the weighting sequence (a,) is done in a
different way: From a comparison of coeflicients in the equation a(z}k(z) = | we obtain

the following simple recursive system for the coefficients of the inverse k(z) = 3777 k;2':
Zo: (lok():l ikgzl/ﬂozl
' ke + agky = 0 = ki = —a/(ad) = —a,

22 agke 4 a kg 4 agk, = 0 => ky = .

(Note that a(z) = ag2® + ay2' + - - + a,z" i1s a polynomial and that q, = i.)
This method of computing the solution is called the z-Transform or discrete Laplace-
Transform.

3.3 Exercises

(3.1) Given a (real and scalar) harmonic process (z,) defined by
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where z;, j = 1,2,3 are three complex random variables. What do the assumptions
that (z) is real and stationary imply for the frequencies A; and the random vari-
ables z;?7 Give an alternative representation of this process in terms of cosines and
sinusoids.

We now define a stochastic process on {—#, 7] by

{A)= 3 3

JiAEA

Prove that z() is a stochastic process with orthogonal increments. Give an inter-
pretation of

f2. eXde(A)

F(A) = Ez(A)z(A)" and

I, e dFP(A).

(3.2) Compute the spectral density of the AR(1)-process y, = ay,_, + ¢, where ¢ is white
noise with E¢} = o2. Consider the two special cases ¢ = 0.9 and a = —0.9 and try
to interpret the corresponding spectral densities.

(3.3) Discuss the AR(4)-process defined by z, = az,_¢+¢,, where |a| < 1 and (€)1s a white
noise process. Prove that the steady state solution is given by z, = 3 j2oa’€_y; and
is therefore stationary. Compute the spectral density of this process.

{3.4) Consider a (scalar) filter y, = Z?’:_w a;z,_; whose transferfunction is given by

k(A) = 3077 a;e™™ = [k(A}e'® M) Prove that for a deterministic process
T = cos(At + ¢} the output of this filter is given by y = 352_ ez, =
[K(A) cos{At + ¢ + #(A)). (Hint: What is the effect of this filter to the complex

process z, = ' +9)7)
(3.5) Consider the filter y, = z,_,. Discuss the properties of its Lransferfunction.

(3.6) Discuss the properties of the MA-filter y, = g(:c,,? + 20, 422, + 2100+ Zega)
(You can can do this either analytically or by using RATS to make a plot of the
transferfunction.) For which type of data is this filter especially useful.

{3.7) Given a (scalar) linear filter y, = Y it GTe .

(a) What is the output of the filter to an input of the form 4 = | and z, = 0 for
all ¢ £ 07 (fmpulse reponse)
(b) What is the output of the filter to an input of the form z, = 0 for ¢ < 0 and
T, = L for t > 0. (Step responsc)
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(3.8) Let {z,} denote the Wélfer sunspot numbers and let {y,} denote the mean corrected
series, y, = ,-46.93,¢ = 1,.. -+ 100. The following AR(2) model for {y:} is obtained
by OLS regression

yl — I-3ly|_| + 0-63y;._2 = fl'r
where (¢;) is white noise and has variance 289, 3.

Determine the spectral density of the fitted model and find the frequency at which it
achieves its maximal value. What is the corresponding period? (You can use RATS
to make a plot of the spectral density.)

(3.9) Consider an AR(2) process (z,) defined by
z,+a.x._|+azl’:-z=fr ' E(f:' 1.

where a(z) = 1 + a2 4 a,2? # 0 for all |2 < 1. Prove that z, has a representation as
an causal infinite MA-process i.e. z, = 2o bic_;. Prove that the autocovariance
function Y(s) of (z,) satisfies the difference equation:

v(s) + a, y(s - I +arv(s —2)=01forall s>?2

Show that if z, and zy are the roots of a{z) and z, # 2 then the general solution
of the difference cequation fo, + a;h,_, + a0y = 0 is of the form he = az;' + b2y
where a,b € C.

What does this result imply for the autocovariance function of AR(2) processes?
{(Consider the case when a(z) has two real roots and the case when «{z) has a pair
of complex conjugated roots.)

{(3.10} Consider a bivariate AR(1} model defined by
To- A= AeR™ Bl =% e R

where (¢, € R?) is a white noise process. The (matrix) transferfunction a(z): C —
C™? is defined by a(z) = I — Az, where f denotes the 2 x 2 identity matrix. Ip
addition we assume that det(a(z)) # 0 for all {z] < 1.

Prove that the inverse transferfunction k(z} = a™'(2) exists for all fz} = 1 and that
k(z) has a causal Laurent serics expansion ie. k(z) = 220 B2 for all |z] < 1.
(Hint: the inverse of a matrix can be computed as the adjoint of the matrix divided
by the determinant of the matrix.) Show that &(z) = J}m:n A7 by using the identity
alzik{z) = [,

56. ECONOMETRICS ||

DRAFT April 13, 1994



e e e ey <

(3.11) ** Compute.the spectral density of (z,) defined in the above example for the numer-

ical values:
0.1 -0.5
A_(O.B —0.1 ) and ¥ = 2x/.

Make a plot of the two autospectra of the two component processes of (z,), of the
cross spectrum (absolute value and phase) and of the coherence {using RATS).

(3.12) Construct an AR mode! for a quarterly time series that shows a strong seasonal
pattern and a business cycle with a period of § years.

(3.13) Computer example: (Differencing and Periodogram). Choose one of the time series
in one of the RATS data files. Compute the first differences and seasonal differences
of this time series. Compute the autocorrelation function and the periodogram of
these three series. Investigate the effect of this differencing operations by looking at
the plots of the time series, of the autocorrelation functions and of the periodograms.
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4 Linear Vector Difference Equations

Linear vector difference equations (VDE) are frequently used as models for time series and
for the relation between time series. In many cases VDE’s arise from the use of a priori
theory. The importance of VDE's for modeling is caused by two reasons at least:

(i) Only a finite number of parameters is needed for the description (and thus in esti-
mation we are in the realm of parametric statistics).

(ii) VDE's have good approximation properties for general classes of stationary processes
and linear systems.

In this chapter we will deal with the following problems: solutions of VDE's, ARMAX
and state space systems and their mutual relation and finaly with the problem of the rela.
tion between the second moments of the observed processes and the underlying ARMAX
or state space systems.

4.1 Solution of VDE’s
Consider the linear VDE

Q%+ -+ apy_, '—fbouz+“'+bqur—g . (4.1)

Here (3} denotes the n-dimensional oulput process and (1) the m-dimensional tnpul
process. The parameters are the (real) matrices a; € R"™" and 4, € R"*™ and e.g. the
two integers p and gq.

A solution on Z {or on N) is any process (y,) satisfying (4.1) for given parameters and
inputs.

We define the backward shift operator z on Z by

z(y,l! S Z) - (y4_1|f €Z)

The backward shift operator is finear and bijective. (Note that the backward shift defined
on N is not bijective.)
Using this operator we now can write (4.1) as

a(z) = Ao+ @32+ -+ a,:" and

a(z)y, = b(2)u, where { b() = by + byz 4 - 4 b, 2. (4.2)

Note that the notation above is a little bit sloppy since we have written a(z}y, instead
ol a(z)(yit € Z). {The backward shift z operates ot processes nol on random variables.)

The matrices a(z) and b(z) are polynomial matrices in the shift operator.
The following thearem characterizes the set of all salutions of {41).
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Theorem 4.1 The set of all solutions of ({.1) is of the form: one particular solution plus
the set of all homogenous solutions (i.e the set of all processes (w) satisfisfying a(z)y, = 0).

Proof: See exercises. O

We will mainly consider one particular solution the socalled steady state solution which
is stationary for stationary inputs.

A method obtaining such a solution of (4.1) is the socalled “z-transform” method
which may be derived as follows. The basic idea is to multiply the system (4.2) by the
inverse of a(z) if this inverse exists. Clearly in this case we obtain

ye = a=(2)b(z)u, (4.3)

We have to consider two problems in this context. The first is under which conditions
does the inverse transformation of a(z) exist and the second is the representation of this
inverse in terms of z.

From section 3.2 we sec that the inverse of the linear transformation a(z) exists if for
its transferfunction a(z), where z now is a complex variable, the condition

det{a(2)) #0 V|z| =1 (4.4)

holds. Note that we use z both for the shift operator and for a complex variable. Basically

because Laurent sertes -
kz)= > k2

j=-o00

in the shift operator z and Laurent series in the complex variable z are isomorphic with
respect to the rules of multiplication. This is a rather complicated way to express the
simple fact that for successive application of lincar translormations as well as for the
multiplication of (inatrix-) Laurent series in the complex variable z the relation

hz) = k(2)(z) = (D k)Y 42) = Z( S okl = Z h; 2
r= -0 1=-o I=—o0 j=-ou [ Bl 5]
lholds.

The inverse of the linear transformation a(z) (here = denotes the backward shift op-
erator) exists if the polynomial matrix a(z) (here z denotes a complex variable z € C) is
nonsingular for all |z = 1,

The inverse of a{z) is given by

1
—~1 _ . . .~
o (2) = det(a{z)) adifalz)) = ceC (4-5)
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where adj(a(z}) denotes the adjoint of a(z). Note that adj(a(2)) is by definition a poly-
nomial matrix but a~!(z) in general is no polynomial matrix since det(a(z)}~! is not
polynomial in general.

From (4.5) we get the Laurent series expansion of a~'(z) as follows: The assumption
det(a(z)) # 0 for all 2 with |z] = 1 implies that there exist two constants 0 < r, < | < ra
such that det(a(z)} # 0 holds for all z's contained in the annulus ry < |z] < ry. (Note
that det(a(2)) is a polynomial and thus has only a finite number of zeros.)

R

Figure 4.1: Roots of det{a(z)).

Therefore we can expand det{a{z})™" in a Laurentserics whicl is convergent on Lhis
annulus, i.e.
l o
S — 2/ forall ry < |2] < ry.
det{a(z)) Z !

P =—m

Tlus expansion can be obtained by factorizing det{a(z}) as det{a(z)) = ¢z ~ 2 )z —
) (2 - z4), where Zty..., 24 are the roots of det(a(z)), and inverting each of this
factors which gives a geometric series of the form

?lT Z;:l_m(z._*‘)z’ for all [2] > |z} in the case [2] < 1 (4.6)

& — Z;

P { —}Z;”:O(Z,—")z’ for all |z] < |z in the case EA

By nwttiplying these Laurentseries for (z—2,)7" weget the Laurent series for det(a(z))-".
Note that the coefficients iy will geometrically converge 1o zero [or 3 — 400 and 7 -

200 From {4.5) we get a Laurent series expansion [or alz)™' = () = }:Jm:_m {2
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for z € C. Thus using the isomorphism mentioned above 22; ;2" is the inverse of the
linear transformation a(z) where z now denotes the backward shift operator. Due to
the geometrically decreasing norms ||l;}} for j — +oo the output of the inverse linear
transformation I(z) exists for every stationary input. Here |Jl;]| denotes some matrix
norm, for instance the norm defined by il = supyy=s Miz(l. (Let fju || = vEulu, denote
the norm of u, in the linear space L}, where L, is the Hilbert space of section 2.4. If
(u.) is stationary then lluell does not depend on the time ¢ and we have 32, uejll <
Zi el € 55 M libwesslh = ludl S, 114 < 00.)

It is clear from the formula (4.6) that under the condition
det(a(z)) £ 0 for all |z < 1 (4.7)

{j = 0 for all j < 0 holds and thus in this case the solution will be causal.
In this way we have proved the following theorem:

Theorem 4.2

(1) If det(a(z)} # 0 for all [2| = 1 then the steady state solution ezists and is obtained
by ezpanding det(a(z))~" as a Laurent series

o0 | )
y = _Z kiu_; = k(z)u, where k(z) = m adj(a(2))b(z2)
J=—= S

Ejﬂ:ﬁm h,:i

(1) If det{a(z)) # 0 for all |z] < U then the steady state solution ezists and is causal.

Y = ik}-u,_)- = k(z)u, where k(z) = (-le—t(i—(z—)j&dj(a(z))b(z)
1=0 —

oo
Z h,e
;=0

Let us make some remarks to this theorem:

(i) Let us consider the homogenous solutions, i.e. the solutions of a{z}y, = 0. Let z; be
a root of det{a{z)) and let v denote any vector v ¢ C", v £ 0 which satisfies a(z,)v =
0. Note that det(a(z,)) = 0 implies that a(z,) is a singular matrix, By inserting
ye = 2 v in a(2)y, we get apz v + qz7 o pa ey = z7Ya(z)v) = 0 and
thus y, = 27 'vis a homogenous solution.
For the case of simple roots every solution of the howogenous equation can be
represented as a linear combination of sotutions of the above tyvpe.
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Note that the assumption det(a(z)) # 0 for all |z| = 1 implies that all homogenous
solutions except for the zero are non stationary. Therefore it is straightforward to
show that the steady state solution defined above is unique.

For |z| > 1| we have y, = z7'v — 0 for { — oo, which implies that under the
assumption (4.7) each solution of (4.1) converges to the steady state solution if ¢
goes to infinity.

(i} Consider the scalar first order VDE
Ye =ayi + (4.8)

Note that the condition det(a(z)) # 0 for all fz] < I in this case corresponds to
la] < I and then the steady state solution is given by y, = 3°7 ja'u,_;. For fa] > 1
e.g. for inputs (u,) satisfying u, = 0 for t < 0 we have a causal nonstationary (non-
stable) solution of the form y, = Yice@’u,_;. The steady state solution described
above however is different and of the form Yy = — 371 a7y, and this solution
Is noncausal and stable (and stationary for stationary inputs). This solution is the

steady state solution for backward substitution in (4.8).

The condition (4.7) is calied the stability assumption, since if we consider only causal
solutions then (4.7) ensures that this causal solution is stable; i.e. bounded inputs
generate bounded outputs. On the contrary if we a priori impose the condition that
the solution is stable, then (4.7) tmplies that the solution is causal.

(i) If a(z) has rank less than n for all z € C (i.e. if det{a{z)} = 0) then the system is
incomplete or inconsistent, e.g.

Yeao + 09y, = u, 1 0.5
' ' ‘ voalz) = ay = , M2Y=tby = T
le,l + Via = U ( ) ¢ ( 2 { (2) a

In this case the steady state solution (ve) is not unique (if u,, = 2u,, a.e.) or there
exists no solution of this VDE.

(iv) if det{a(z)) # 0 for all but a finite number of z's but if det(a(z)) = 0 for some lz| = 1
then the steady state solution may not exist! E.g. for the difference equation

W=V =¢ 5 oafz)=1-2z | a(l) =0
there exists no stationary solution for white noise input ¢ £ 0.

The stability condition (4.7) inplies det{(a(0)) = det{ay) # 0 and thus (g must be
4 nonsingular matrix. This enables us to compute the power series expansion of a”{z)
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and thus the coefficients of the transferfunction k(z) = a~'(2)b(z) by the following block

recursive equations which we get from a comparison of coefficients on both sides of the
equation a(z}k(z) = b(z):

20 kgag = by ,::-ko'-'-a[,"bo

' 1 kea; + kiap = b, => k= 051(61 - ﬂlﬂglbn)

z: koaj+"'+kjao=bj = k; = ...

From the results of section 3.2 we can easily compute the second moments of the steady
State solutions. If the spectral density f, of the inputs (u,) exists then we have

[y(A) = k(e . (A)k(e=)"
fyu(A) = k(e™) 1, (A)

where & = ¢~ 1},

4.2 Representations of VDE'’s

In this section we distinguish between two kinds of inpuls
(i) observed inputs (z) and
(ii} unobserved white noise (€).

We will always assume that the noise process (¢} is orthogonal to the input process
(z.)ie.

Exe, =0 Vi, s, (4.9)

The Prague Lectures 20/01/92-15/05/92 -63-

ORAFT April 13 1994



The above block diagram represents how the output (y,) is generated from the inputs
(z¢) and (¢). The output (ye) may be written as

W= "(Z-)J:t + k(2)ec = 4 + u,. (4.10)

Thus (y) is the sum of the “true outputs” g, and the “noise” (u,) which e.g. can be

interpreted as a measurement error. There are two key assumptions in this representation
of the output:

(i) the inputs (z,) are observed without noise and
(i) the errors (u,) (respectively (¢,)) are uncorrelated with the inputs (z,).

The ARMAX representation (Autoregressive Moving Average with exogenous variables)
is defined as

a(z)y‘ = d(Z)zg + b(z)f( (4.11)
where (z,) are the observed inputs (&) is white noise and a,b and d are polynomial

matrices. We always will impose the stability assumption (4.7) and thus the steady state
solution (y,) is given by

yo =(z)z, + k(z)e, , where I(2) = a~Yz)d(z), k(z2) = a~'(z)b(z).

Note that under our assumptions k(z}, I(z) are two causal, stable and rational transfer-
functions.

The most important special cases are defined as follows:

AR system a(z)y, = ¢ the corresponding AR process
MA system ve = b(z)e, MA process
, steady state
ARX system a(z)ye = d(z)z, + ¢, solution is called
ARMA system a(z)y, = b(z)e, ARMA process

Note that an AR system has a representation as an MA system iff det(a(z)) is constant.
On the opposite an MA system has a representation as an AR system if and only if det(b(z))
is constant,.

The spectra for AR, MA and ARMA processes are given by

AR: fy - 2L"(‘[’l(C_‘)*)>J‘(a—I(Cﬁl'A)).
MA: f, = ﬁb(c"‘*)zb(c’“‘)'
ARMA: f, = "%{1_i(C_"\}b(e—"\)xb(ck'f\)'(aﬁl(C—xA))A
WhQr(’. E - [;:(_r(’l_
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One advantage of AR-systems over MA-systems is that they are good for the modelling
of peaks in the spectrum. We may interpret the spectral density f, as function defined
on the unit circle {z € C ||z} = 1} of the complex plane by identifying the frequency
A € [~w, 7] with the point z = €'* on the unit circle. This spectral density defined on
the unit circle can be extended in an unique way to a rational function defined on the
complex plane C by substituting z for e=** and more generally =/ for e=**_ (Note that
we substitute 1/z for ¢ = =™ = 1/e~**.) Using the same symbolf f, for this spectral
density defined on C we have e.g. for a scalar AR process

o? 1
() = 2x a(z)a(1/2)

A poleof f,(2), z; = |z;|e™** say, which is close to the unit circle (i-e. |2;] = 1) will generate
a “peak™ of the spectral density approximately at the {requency A; which corresponds to
the phase of z;. This peak will be the higher the closer this pole is to the unit circle, In
this way the shape and the location of the peaks of f,(A) are closely related to the location
of the poles of [,(z).

The poles of f,(z) of the above scalar AR process correspond to the zeros of a(z) and
a(1l/z). Since a(z) has real coefficients all zeros of a(z) must occur in conjugate pairs, i.e.
if z; is a zero of a(z) then also Z; must be a zero of a(z). It is also immediate to see that
if z; is a zero of a(z) then l/z; is a zero of a{1/z) and vice versa. Note that the stability
assumption excludes the case that z = 0 is a root of a(z). Thus we see that the complex
poles of f,(z) occur in “quadrupels” (2, %, 1/2;,1/%) and the real roots in pairs (z;, 1/2).
See also figure 4.2. In other words the poles of [ {2} are symmetric to the real axis and
they are reflected at the unit circle where we interpret the transformation z - l/z as a
reflection at the unit circle.

For an AR(1) process, a(z) = 1 —-a, 2, we can have ouly one real root for a(z) and thus
f,(A} can have only one peak at 0 or at r.

If for an AR(2)-process a(z) has two complex roots, z; = re'* and z, = 77 = re-*? say,
then the spectral density (as a function on [0, 7] wilt hiave a single peak at the frequency
A and the peak will be the higher the closer these two roots are to the unit circle. Thus
by choosing the parameters of the AR(2) model we can choose the frequency of the peak
and the shape of the peak. If a(z) has two real roots then [, may have a single peak at
A =0 or a single peak at A = 7 or two peaks at A = Qand A =« respectively.

The State space representation is defined as:

S = As D f
t41 ‘r+ Tyt e, (4.12)
o = Cs +¢
Here s, € B denotes the state vector. A cR™ Der" 1 €ER™ and C € R™™ are
constant matrices. An integer parameter is the dimension { of the state vector and the
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real parameters are the entries of the matrices A D, B, C.

The state contains all information about the past that is necessary to generate the
present and future outputs. In other words s, is a sufficient statistic for the “past”.

The steady state solution (v.) may be computed as follows:

(Z_E[ - A)S‘ = D:, + Bf;
and thus

se= (27" - A)~Y(D, B) ( e )

€

vi=C(z7"' - A)"(D,B) ( f' ) + ¢

The stability condition (4.7) is equivalent to the condition that all eigenvalues of the matrix
A have modulus less than one, j.e.

[Amax(A)] < 1 (4.13)

where A,...(A) denotes an cigenvalue of A of maximal modulus.  Using this stability
condition (4.13) we have (270 — A)~' = (7 - Az)™' =237 A’z and thus the steady

solution is given by
v=Scar( D B)(j«ﬂ—l)ﬂ,
i=0 '

-F=1
We now have three different represcntations of VDE’s namely
(i) transferfunction: y, = I(z)z, + Mz)ee where I(z2) = $% 120 and k(z) = Ljmok, 2

are causal, stable and rational transferfunctions. This Lransferfunction representa.
tion is described by a pair of transferfunctions (I, k).

(i) ARMAX: a{z)y, = d(z)z, + b(z)e, which may be described by a triple of polynomiat
matrices (a, b, d).

fl

As, + Be,
Cse + ¢,

v
(A, B,C, D).

(iii} Sp: ( Sian

) which may be described by a quadruple of real matrices

We now want to proof that these three representations are equivalont in a certain sense.
For simplicity of notation we will do this for the case withoyt exogenous variables, e.g. we
restrict us to the case of ARMA systems,

We have already shown that every stable ARMA and Sp RYSEcan be represented
by & causal rational transferfunetion
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We next give a state space representation. for an ARMA system. (Note that the same
idea also applies for ARMAX systems.) From

oYt ot @Yoy = boey + -+ be,_,
and det(a(0)) = det(a,) # 0 we have
W= ﬁIyl-l +--+ ﬁpyt—p + 50‘! +-+ quf—'\

where 4, = ~az'e;, j = I,...,p and (;j =ag'b;, 7 = 0,...,q. Thus we can rewrite this
ARMA system as a state space system of the form

8¢+l = A3|+B((
o = Cs, + De,
where
[ ve-r (&1 odp | by 5,\ (bu
; { 0 - 0lo0 0 0
0 .
. 0 R 0 .
o= | A= T 00 0 | B=|—
[ : 0
0
. 0 0| o0 0 I 0 0
(—q+t
C={(a .. - G b o b ) D=l

Note that this in general will not be an “optimal” state space representation for the ARMA
system, since in gencral the dimension of the state vector will be too high.

We now consider the inverse problem: Given the transior function &(z), how can we
determine the ARMA representation (a,b}? We assume that &(z) is a rational function
which implies that the entries &,,(z) of k{z) have a representation as kii(z) = ‘;—%—{ where
d,,(z)and £,(z) are polynomials which without of restriction of generality hiave no common
¢eros. I ¢fz) is the feast common multiple of all £, ’s then we have k,(z) = f{)?t,}(z)

with polynomials n, {:}. If we write k(z) = m(2) we bave ininediately an ARMA

representation of the form « = o(2)f and blz) = n(z).
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If the transferfunction has a convergent powerseries expansion within the unit circle
{zI1z] < 1} then the ARMA system constructed above is stable, i.e. it satisfies the
stability conditon (4.7): If the transferfunction k(z) has no poles for Izl <1 then none of
the f;;'s may have a zero within the unit circle. Therefore also ¢(z) has no zero within the
unit circle and thus det(a(z)) = det(c(z)/) = c(z)" # 0 for |z| < 1 holds.

In general this representation will not be “optimal” as the degrees of a(z) and b(z)
will be too high in general. Note also,that without further restrictions the ARMA system
(a,b) is not uniquely determined from the transferfunction &(2) = a~1(2)b(z).

Let us discuss this point for the scalar case n = 1: Clearly the two ARMA systems

h = €
nw+ay_, = €+ age_,

have the same steady state solutions, since for both systems the transferfunction k(z) =
-E%l = 1. But the first one is nonredundant whereas the second one is redundant since
it {las too many parameters. Note that the transients of both systems in general will be
different since the homogenous solutions are different.

Thus (in the scalar case) we always will assume that ¢ and b have 10 cominon zeros,
which gives us a nonredundant ARMA representation. Note in addition that with thjs
assumption a, b are uniquely determined from the transferfunction & = % up to a constant.
If we for example impose the normalization ap = | then ¢ and b are uniquely determined
from the transferfunction.

We have shown

* how to construct the transferfunction (1, k) from a ARMAX or state space system
* how to construct an ARMAX system from given transferfunctions
* how 10 construct a SP system from an ARMAX system.

Putting these results together we have the following theorem:

Theorem 4.3

(i} Every (stable) ARMA system and every (stable) state space system has a rational
transferfunction which has a convergent powerscries ezpansion within the unil circle

{ze Cllzf< 1}
{1i) Conversely for cvery rational transferfunction which has ¢ convergent power serics

ezpansion mn {2 € C ||z] < |} there is q (stable) ARMA and o (stable) state space
representation,
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4.3 Identifiability

In this section we will pose the question how the underlying ARMAX system can be
determined from the second moments of the observations (inputs and outputs).

For a stable ARMAX-system where the inputs are orthogonal to the errors, see (4.9),
and the spectral density of the inputs {, exists, the autospectrum of the outputs and the
cross-spectrum between the outputs and the inputs are given by

fye(e™™) = He™) M (em)
fy(e=) = I(e=™ (em*)l(e*) + sk(e= ) Ek(e= 2y (4.14)
where I = a~'d,k = a7'8,Z = E¢,¢,.

This is an easy consequence of the fact that because of (4.9)

I

Eyz, = Egz, +Evyz = E gz

]

0
Ewy, Edd, + Edenl + Ewg, + Euer) = E§,§ + Ew,u!
\—\o,_/ T
holds.
These equations show the relations between the external characteristics f,, {, and fyr
and the internal characteristics i.e. the degrees of the polynomial matrices a, b and d and
the entries of the coefficientmatrices a;, b; and d; and L.

Definition 4.1 Two ARMAX systems (a,b,d) and (ii,l_z,rf) are called observationally
equivalent if for given {,, for given £ and a suitably chosen % they generate the same
fye and {,. This must hold for all © 2 0and allf{, > 0. Thereby T and & are the variance
matrices of the respective white noise processes.

Note that we here defined observationally equivalence in terms of the stationary so-
tutions and their second moments only. We don't use the mformation coming from the
homogenous solutions or from higher order moments.

We also want to stress the fact that we here assume perfect knowledge of the second
moments of the obeservations, i.e. of the spectra {,, f,, and {,. We liere don't deal with
the problem of estimation of the parameters of the underlying ARMAX system or SP
system from a given {finite} time series. But of course we first have to answer the question
whether the ARMAX system can be identified in such an idealized situation. If this is not
the case then of course estimation based an a “lmited information” makes not too much
sense!

In the following we will always assume that

[:(e7'*) > 0 {persisient ercitation condition)
KO (4.15)
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hold.

Definition 4.2 A claxs of ARNMAN systoins is called ide nliftable if it docs nol contain
two different obscrvativnalty cquivale ud sgsic s,

(b )] T (1T
We are looking lor restrictions on {u. b d) ~uel that the

=" ol the above relation is
defined.

In general this “iuverse prroblem™ s splic o twa steps:
(i) Given (f,,1,,.0,) try 1o determine the transterfunetions { = a 'l and ko= amty.

(i) Given the transferfnmetions b and /o ry o determine the polynomial imatrices (a, b, d).

From equations (111} and the prrsistent cxciation condition (4.15) we immediatly
get
f=utl = I, 1':[

SO =, =, T, = e (4.16)

In Y R 4 gy

¥

—_ . . . e ' . . -

Here £77 is a short notation lor (0, = (1) Note that the lelt band side of the last
equation is Kuown (oo the spectral densities af Uhe alisery
The |)l'0])|(’t|| How s to determine b Do B4

problem.

ations, se Chat we know LY/,

whielois Kinown as Uie spectral faetorization

We first consider sonee (siinplc) special Cosess
Scalar MA systems: ¢, = b( - ),

The spectral densin FoCo ) = b b ke atiomad Tinction delined on the
uit circle,

The waipine cational cxiciusion ol s inctien ta C s wivor by I‘y(:) =
e? L
._,'b(Z)[}(x. ]
There are two Urivial woriadivaton probloaisssociared with s spectral factorization
proble:

It s triviad Lo see ot S0y wnd iy - U bothe wive The sane f,. This is a
consequence of the fact that (o, ) ol feear) e ol white

notse processes with the sane
VAAANCE. SHice woe cant aliserve Flic o

e s ao way Lo distinguish bhetween these
oo Pherelore wome W Can assune L by # 0 halds.

Tt is Casy Lo Lo ~ee that b o towethior waorle the vadianee a7 and n’)f‘) = cb{z) together
with a noise vivianee 0 = aff ! deverase Lothe Tl e i spect e [, This
transformation of 4 Cotiespand e g

two noise processes lrom viven

TR TR T B T \\lwlh‘ A N ‘\‘\"l‘ L||(‘El‘fl0|‘(‘
assume by o= |
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From the representation of the output spectrum f, it is easy to see that if z; is a zero
of [, then also z, ‘l and ‘é must be zeros of f,. (Note that by the condition bo = 1 the
» ’

point z = 0 can’t be a zero of {,.) This is a consequence of the fact that b(z) has real

coefficients (and thus the roots must occur in conjugate pairs) and that f, is the product
of b(z} and b(1/z).

&2

on o
o i TR

;z"j

nfj °

Figure 4.2: Roots of the spectral density [,{2) of an MA(?) process.

Thus if we want to (re)construct b(z) from given f, we have to make a decision which
of the (pairs of) roots of fy correspond to roots of b(z) and whicl to roots of §(1/2). To
make this decision unique we impose the condition

b{z) # 0 for all |z] < | (tiniphase assumnplion) (4.17)

With this condition we have b(z) = ¢(z — alz ) (2 - z. ), where Tly--., 2, are the

zeros of f, which have modulus greater than one. The scaling factor ¢ s determined from
. . 2
bo = | and o? is determined from f,(2) = S20(2)b(1/2).
Note that by this miniphase assumption we lhave

l la =]
= —0>7, = fe,y, .
“Tam T L

and thus the white noise process (e,) is a causal lincar transformation of the outputs.

It this way we have shown: The class of sealar MA svstems witl, by =1 and b{z) £ 0
for all |2] < s identifiable
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Scalar AR systems: a(z)y, = ¢,.

It is easy to see that the normalization aq = | together with the stability assumption
a(z) # 0 for |z] < 1 guarantees identifiability:

Instead of looking at the zeros of f,(z) we here deal with the poles of {(z) = ;—:m
which are the zeros of a(z) and a(1/z). Here the stability assumption gives us immediately
the possibility to decide whether a pole of {,(z) corresponds to zero a of a{z) or of a(1/z2)

Thus the class of stable AR systems with ay = | is identifiable.

Scalar ARMA systems: a(z)y, = b(z)e,.

Theorem 4.4 The class of (scalar) ARMA syslems salisfying
(1) a(z) # 0 for all |z} < | (stability assumption)

(13) b(z) # 0 for all [z} < | (miniphase assumplion)

(1) ag = by = 1 and

(iv) a(z} and b(z) have no conunon zeros

s wdentifiable.

Proof: The spectral deasity of (y,) is given by

_ o b(z)b(1/2)
fylz) = 2re(z)a(l/z)

By assumptions (iv), (i) and (ii) none of the zeros of the denominator of {,(z) can cancel
with a zero of the nominator, Thus collecting all zeros of fy(2) outside the unit circle gives
us the MA part 0{z) and the poles of f {z) outside the unit circle define a{z). The scaling
factor of @ and b and o? are determined by the normalization condition (). O

Note that the assumptions of the above theorem are shightly to restrictive since not
every spectral density may be factorized under these conditions (i)-(iv). By (i) we exclude
spectra which have zeros on the unit circle. This is called overtdentifiablity since not all
ARMA spectra allow for a factarization satislying these identifiability restrictions.
Vector ARX systems: alz)y = b(2)z + €

From equation {4.16) we have

|
f, 1. 4" = Q—Q"I(z))j(z"(z)

g
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where the left hand side of this equation is known. Suppose that we have two observa.
tionally equivalent ARX systems (a,d) and (&,d). Then for cach L there must exist 5 b3
such that

a™!(2)La"*(2) = a~"(2)5a " (2)
holds, which implies
da”'L = La~"a.

By the stability assumption we can expand r(z) = a(z)a='(z) in convergent Taylor series
r(2) = 52,7, for |z} < r, where ™1 > 1. Since @a"a* = (a@~')* and a(z) is stable we

have é~*a* = }:;?:_m t;2' for |z| > ry where T2 < L. Putting this together we have for
re < IZ' <y

oo [ _

2nkd = 3 B

=0 1=—-00

By a comparison of the coeflicients of these two Laurent series we can conclude that r; =0
for all j > 0 and ¢; = 0 for all J < 0. (Notethat L > ¢ holds.) Thus we have

a(z)a™'(2) = r(z) = ry = a(z}) = rea(z).
Now since ty = a~*a" = (@a=')"" = r7* we have

= ToXty ' = ToLT,.

Of course ry must be real and nonsingular. This together with I S T a'd
implies d = rod. Thus we have shown:

Theorem 4.5 Let {,(A) > 0 forall X € [~n 7], & > 0 and det(a) £ 0 for all |2] <
L. Then two ARX systems (a.d) and (&, d) are observationally cquivalent ff there 15 a
constant nonsingular (real) matriz r such that

G=ra d=rd and v = rer’

holds.

This theorem of course tmplies that under the normalization condition ag L owe fave
entifiability for ARN SYAlOns,
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4.4 Structural Identifiability

[n many cases (economic) theory (or some other a priori knowledge) gives us relations of
the form

oy + -+ QolYe_p = bozy + -+ + b':,_, + €

where ag # I but where there are some other restrictions on the coefficients of the matrices
a; and b;. Especially we often know that some of these entries are zero, e.g. because some
variable z; does not influence y’.

The question here is, are the structural parameters (deep parameters which have an
economic meaning} identifiable from the second moments of the data and from the a priori
restrictions.

The simplest restrictions on the parameters in this structural form (i.e. the form which
directly comes from economic theory) are given in the form of “zero restrictions”. if we
transform this structural form to a final form by multiplying by a;' and thus obtaining
ag = [ these restrictions are transforined to nonlinear restrictions on the final form pa-
rameters in general. Thus it is often more convinient to estimate the parameters in the
structural form.

But although the parameter restrictions in the structural form are given in a very simple
form there are other problems associated with the estimation of structural parameters.
Consider the following simple Keynesian model

Il

C, 0+ﬁ}’,+(,
Y, Ce+ [,

It

where C, is consumption Y, is income and /, denotes the investments. /, is considered as

an exogenous variable whereas €, and Y, are endogenous variables. By substituting C,
from the first equation into the second one we get

Vi = t (0+ﬁ[|+(r}-
1 -7
Thus using OLS to estimate 4 from the first equation will give a biased estimate since the
regressor Yy is correlated to the noise ¢! (Haavelmo Bias) From a system theoretic point
of view this bias is caused from the tnstantaneous feed back between ' and Y.

This little example shows that in general QLS is not a suitable method to estimate
sunultaneous equations systems in structural form.

We now want to consider the problem of structural tdenificbility; e, the problem
whetlier there is enough a priori inforination in order to niquely deterinine the underlying
system from the second moments of the observations and thus frot the data? As we have
seen in the case of ARX systems two svstems, (a,d) and (rzr!) say. are observationally
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equivalent if and only if there exists a nonsingular constant matrix such that (a,d) = r(a,d)
holds. This equation is equivalent to

(&0,...,&,,,Jo,...,cf,) =r(ao,...,a,,dq,...,d,).

We now assume that there are at least (n — 1) zero restrictions in the first equation. Let
C and C be the matrices which contain all columns of (do,...) and (@o,...) respectively
corresponding to these zero restrictions then we have

C=rC

(Of course by construction the first row of C and € Jjust contain zeros.} From the first
row of this matrix equation we have

0=5|=7':C=(’"n ’"lz)(gz)-frtzcz

where ¢; denotes the first row of C, ¢y denotes the first row of C, C, the matrix consisting
of thelast n — 1 rows of C and r, = (riir12) is the first row of r. Note that C> has (n - 1)
rows and by assumption at least (n — 1) columns. If we assume that C> has full rank (n- 1)
then ry; = 0 must hold. If the analogous conditions hold for every equation, then r must
be a diagonal matrix. If we in addition tmpose the shimple normalization condition that
the diagonal elements of ay are equal to one then r = [ must hold. (This normalization
means that we express in the i-th equation the i-tl endogenous variable in terms of its
own lags and in terms of the other endogenous variables and exogenous variables.) Tlus
under these conditions we have identifiability.

Note that the normalization a, = [ of course satisfies all the conditions for structural
identiflability.

In practice often only the condition that the i-th equation contains at least (n — t)
a priori zeros is checked, since the condition that (7, has full rank will be salisfied in
“gencral™. (If it is no contradiction to the a priori zeros!) This condition for structural
identifiability is often called the counting condition.

4.5 ARMAX and state space systems

The problem of finding the internal parameters (a,d,b) from the external characteristics
f,, {o and f,, is split into two parts.
[n a first step the transferfunctions { and & are determined fromn the spectra. Under

the persistent excitation condition we have | = foe 177 Thus we know spectrunt of the
“error term™ a7z 2 ), which is given by ;;!:kl:!c'. The next theorem states under which
condition the transferfunction L is aniquely detormined from o3
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Theorem 4.6 Under the Jollowing conditions

det k(z) £ 0 for all |z| < 1
k(z) has a Taylor series expansion in |z| < 1

k(0) = 1 (4.18)
[:(A) > 0 for all A € [~n, x]
E>0

the transferfunction ! and k are uniquely determined from f_, fy and (..

Proof: For the transferfunction ! the statement is immediate {rom {4.14).
Suppose the two transferfunction & and k are observationally equivalent, i.e. for every
L > 0 there exists a ¥ such that .
kXL = KXk
holds. From this equation we get
k='kE = Sktk-.

From our assuinptions we can conclude that &~ '% has a Taylor series expansion for bzl < 7y
for some r; > 1, since det k(z) # 0 holds for all |z} < 1 and since & has a Taylor series
expansion within the unit circle. Let £-'k = 3 i2oriz’. By analogous consideratios
we can conclude that k*k=* has a convergent Laurent series expansion for |zl > r, for
some ry < I and thus this expansion may not contain any positive powers of z, i.e,
bk = E?z_w t;2). By a comparisan of coefficients of both Laurent series expansions
we see that r;X = 0 and thus i = 0 must hold for all j > 0 since T > 0 holds. We now
have shown that k~'k = r = ro and thus & = &rp holds. Since &(0) = k(0} = I we have
shown that ry = f and thus & = L holds. O

Il we start from an ARMAX system satisflying the conditions from the above theorem
then the transferfunctions are uniquely determined from the spectral densities of the ob-
servations. Of course every ARMAX systems generates rational spectral densities. The
next theorem now states that also the converse is true. This is one reason why ARMAX
Systems are that important.

Theorem 4.7 Any rational and (a.¢j] nonsingular spectral densily may be uniguely fac-
lorized as

f = 'L;\ZL.
2

where k(z) 1s rational. has a Taylor series crpansion for fz| < 1, det{k(z)} # 0 for all
|2l < L A(0) = 7 and £ > 0 hold.

For a proof of this theorem seo e.g. Hannan and Deistler {4].
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4.6 Exercises
(4.1) Given a linear VDE
a(2)y, = b(z)z,
and let (y/) be an arbitrary but fixed solution {particular solution). Prove that (w)is
a solution if and only if y, = v +3 holds, where (y°} is a solution of the homogenous
difference equation; i.e. a(z)y? = 0.
(4.2) Consider a scalar AR(p) model defined by
Vet oy + -+ QoYip = &
and a corresponding state space model
St = FS( + Bfr
Y = Csi + ¢
where
Yoy —& -4z - e g I —ar \'
Voo | 0 ... ... P 0 —a,
§p = A= 0 1 B = C = '
y‘;,. 0 0 1 G 0 —a,
Prove that the stability condition for the AR model (det{a(z}} # 0 for all lz] < 1)
is equivalent to the stability condition for the state space model (|A,.,(A4)] < 1).
{4.3) Prove that the normalization condition ag = [ satisfies all of the conditions of
structural identifiability for ARX systems.
{4.4) Compute the steady state solution of the bivariale AR(1) system
, (00 -
P = 2 0 t-1 G
where (¢,) is white noise.
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5 Prediction and Filtering

In this chapter we are concerned with prediction i.e. with approximation of future values
of the observations by past values and with filtering i.e. with approximation of one process
by an other.

To be more precise in our context the problem of prediction can be described as follows.
We commence from a stationary process (z.) and we want to approximate the future value
Zeen (R > 0) by a function of some present and past values z,,s < t, where { denotes the
present time. In order to make the problem well posed we have to specify the class of
feasible approximation functions and the approximation criterion. Here we consider linear
(or more generally affine) approximation functions and the approximation criterion is the
least squares criterion.

Thus we have to solve the following minimization problem:

terl?i?r" E(zoen — (b + z @2 i)} (Feqn — (b + Z a;z;_;))
! ieg Jes
where 7 is either of the form 7 = {0,1,...,r}or T =2Z* = {0,1,2,...}. Accordingly we
speak about prediction from a finite past or from the infinite past respectively.

In filtering in our context we commence from two Jointly stationary processes (r,} and

{(v.) {of dimension n and respectively). We want to approximate y, by a linear (affine)

function of (z,). Again we are looking for the best approximation in the least squares
sense. Thus the problem is as follows: -

6“_111i2v“ Ely, - (b + Z a,z, ;) (g~ (b + Z a;xe_;))
g, j=—ov J=—co

The standing assumption in this chapter is that we know the population (first and)
second moments of the processes under consideration. Clearly in applications in most
cases these moments have to be estimated. Hlowever the analysis presented in this chapter
Is an important step for prediction and fittering commencing from data. t will turn out
that the knowledge of the first and second moments is sufficient to solve the linear least
squares problems described above.

Clearly in general the restriction to lincar approximation functions is a proper restric-
tion. Note that the (general) least squares approxumation {i.e. when the class of approxi-

mation functions is the class of measurabje functions) is the conditional expectation. E.g.
for predicting from Lhe finite past we have

J::,_,;, = E{zpnlz, oz,

This approximation problem is significantly more complicated compared ta the linear
problem. Note that for Gaussian processes the conditional expectation is a linear funetion.
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Thus for such processes, approximation by linear functions is no restriction of generality.
Vaguely speaking the best least squares approximation will differ from the linear least
Squares approximation the more the distributions differ from the Gaussian distribution.

5.1 Prediction from a Finite Past

Here we want to approximate Zien by an afline function of a finite number of past and
present values z,,z,_,,...,z,_,. Thus we have to solve the following minimization prob-
lem: .

min E(zegn — Zen) (2egn - Zia) where z,, = b4 Zajz,,j. (5.1)

bER,a, ER "~ j=0

The minimizing Zain (5.1) is called the predictor of Togn from z,, ..z, (Tegn — 2,4)
is called the prediction error and En = E(zgn - TaNZogn ~ Zo4)" is called the prediction
CIror variance matrix.

It is clear that this minimization problem may be decomposed into n independent
problems (corresponding to each component z} of z,) of the form

,
b.en.:.l.li,l;n'“ E{zi,, ~ £/,)"  where 2, = b+ zﬂ:a,-,jz,Hj. (5.2)
' . 1=
Here b, corresponds to the i-th component of b in (5.1) and a:; to the i-th row of ay
in (5.1).

We could solve this problemn either by setting the first derivative of the criterion funec-
tion equal to zero or by uwsing the projection theorem (2.3) in chapter 2. We use the
second approach. Let H(zoz, (... z,_,, 1} be the Hilbert space spanned by the com-
ponents z,_ .t =1, . ,nand 7 =0,....r and by the constant 1. If (z,) 1s a stochastjc
process defined on (2, A4, ) then of course H(r., .., 1)is a subspace of t]e Hibert space
Lo(92, A, P). The nunimizing I, in (5.2) by the projection theorem is the projection of
Toenon H{zo, ... 2, 1) and of course putting these z}, together into a vector T¢h Eives
us the solution of (5 1). We will often use the notation

- _ bl
Teh = [I{(:,, oo 1 Tegn

to indicate that 7., is the vector whicl 15 obtained by projecting cach component of z,,,
onto the space H{z,, T 1),

We now want to show how to actually compute the coeflicients and a,.

Without loss of generality we may assumne that F T, = 0 bolds. This can be seen as
follows: Let (1) be some stationary process with | Ve = g0 # 00 The hest affine predictor

of yiyw miven the values of Voo poe s the progection (in thie COMPONCRL Wise sense 4
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described above) of y,,, on the space spanned by the yf_,., t=1,...,n,j=0,...,r and
the constant 1. If we define a new {centered) process {z,) by z,= y, ~ i, then it is clear
that the z:'_,-, i= l,...,n,7=0,...,r and 1 span the same space.

Since < ::';_j,l >= Ez:'_,- -1 = 0 we also see, that H(z,,...,z,_,,1)is the orthogonal
sum of the spaces H(z,...,z,_,) and H(1). Thus the projection on H(z,,...,z,,,1)is
the sum of the two corresponding projections on H(z,,...,z,_,) and H(1). (See exercises.)
Therefore we have

r
Zop = Pn(:.,_,.,;._,,l)zuh = Pn(r,, reae) Tegn + Pll(l)rwh = za;‘x!—j-
\_.?;.._/ i=o
Since Ez, = 0 the best affine predictor for z,,, is a linear function of the z,_;'s. Given a
representation of Z; in terms of the z,_;'s, it is easy to give the representation of Yo in
terms of the y,.;’s:

g:,h = Pll(r,_.‘,,x,_,,l)ywh = PII(n ..... :‘_,.I)It+hl+£|l(r.. By, L)
-l"::. 7

= Y a0 @Teejtp= Yl oy + (1= Xi_gajn).

Analogous considerations also hold for the prediction from the infinite past and for the
filtering problem. We therefore will from now on assume that the mean of all processes
considered is equal to zero.

From the projection theorem we immediately see that Typ = Z:‘:‘] a,x,_; is the best
linear predictor if and only if the components of (z,4s — Z,,) are uncorrelated with the

components of all z,_;, j = 0,...,s. Thus we have the following equations:
B,y -2\ )zi_, =0 foruj=1,...,nand s =0,...,r &=
E(I,M~5:,.,,)I:” =0 fors=0,...,1 =

YieatYW{s=F)=y(h+s) Tors=0,...r

10 ()
(oo oa )| 0 = )
y(=r) o 3(0)
I,

This gives us an easy way to compute the coeflicients a, by solving the above matrix

equation. Note that the second moments are sufficient to determine this best linear least
squares predictor.
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If T', is nonsingular then
(ao e a, ) = ( v(h) - (h+71) )p:l

We now want to discuss the case where T, is singular. From the projection theorem we
know that %, , exists and is unique in any case. If T, is singular, then there are in principle
two possibilities:

(1) Equation (5.3) has no solution. But by the projection theorem this cannot occur.

(ii) There are infinite many solutions for (ao,...,a.). But although the “coefficients”
are not unique the projection z,, is unique.

Lemma 5.1 Let z be a random vector and £ = Ezz'. The matrizr © ts singular tf and
only if there ezists a vector a R", a # 0 such that a'z = 0 holds a.e.

Proof: Ifa'z = 0 a.e. then a’(zz') = 0 a.e. and thus 0 = Ed'(zz') = ¢’ Ezz' = ¢'%.
Il T is singular then there exists a vector a € R", a # 0 such that ©q = @ holds.
Therefore we have 0 = ¢'Sa = a’(Exz')a = E{a’z)?. Since (a'z)? > 0 we have 'z = ( .0,

0
This lemma shows that I, is singular if and only if there exists a vector a such that
Zy
a =0 ac
Ziwr
This means that the random variables z,, ..., z,_, are linearly dependent and thus form no
basis. Thus the representation of ., as a linecar combination of these random variables
is not unique; i.c. the coefficients (o, ...,a,) are not utiquely determined.
[n general we will have
Tign — i n # 0 ace.
te. we will have no perfect prediction. The variance

Ly = E(Iwh - i'r_h}(zuh - ix_h)l

of the prediction errors is a measure for the quality of the prediction.

Note that for this derivation the stationarity of (7,) s not needed. Statimlarity however
inplies that the matrix [, is a (block) Toeplitz matrix and that the cocflicients «, and ¥,
do not depend on the time ¢
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Example: Consider an AR(p) process
a(z}r,=¢ ; ag=1 and det(a(z)) #0 V|zf <1

We have

Teg)r = —Q1T¢ 0 — QpTep + €4

The one-step ahead predictor for r 2> pis given by
ey = —QZc = GpZ_py

since Z,, is a linear combination of the z,_;'s, 7 =0,...,r and since the prediction error
Tegl =y = €4y IS orthogonal to all z,, 5 = ¢,..., L~ r. The last statement follows from
the stability assumption which implies z, = Yilokie ;.

The two step ahead predictor is given by

Ty = T Ty Q2T - AT _pya

because z, , is a linear combination of thex,_;'s,7=0,...,rand Tip2 =Ty = €42 — @) €4,
which is by the same argument as above orthogonal toall z,, s = ¢, ... t — r.
In a completely analogous way we can also compute the “gencral” fi-step predictor.

5.2 Prediction from the Infinite Past: the ARMA Case
Consider an ARMA process

det(a{z)) £ 0 V|z] < |
a(z)z, = b(z)¢, where det(b(2)) # 0 V|z| < |
g = by = f

The stability and miniphase assumptions imply that

e =a ()b 2)e, = h(2)e, = Yiro ke, and
€ =b"H2)(z)z, = r{2)z, = 2T T,

Let H (t} be the Hilbert space spanned by all !, v =}, .. u, s < I, te. the set of all
linear combinations of oot = 1, .. n, s < tand their liiting elements. [u an analogous
way let H.(t) be the Hilbert space spanned by all € ,4 = 1,.. 5 s <t Then the above

equations Linply
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Let us write x,,, as

o h=-1 o0
Tegn = ijft-}h—j = ijfuh-j +Zk;'€l+h—j
=0 =0 J=h
T T
Then the last term (B) of the above equation is contained in H.(!) = H,(t) and thus is
a linear combination of past and present values zf, i = |,.. -»1, 5 < t. The last but ope
term (A) is orthogonal to all elements in H,(t) = H.(t) since (¢,) is white noise. Thus
using the projecion theorem, we have proved that the h-step predictor %, is given by
the term (B). But we still have to express Zen in terms of the z,_;%, j > 0. We have
& = b '(z)a(z)z, and thus

A=
T, = (k(z2) - z iz )b~ (2)a(2)z 4
where k(z) = a~!(2)b(2).

5.3 Wold decomposition

In this secion we deal with a very important result concerning the structure of stationary
processes.

Definition 5.1 A stationary process (z¢) ts called singular f

Tyn = I (5.4)

holds for some t and h > 0 (and thus Jor all t and it > 0.

It is casy Lo see, that if this equality (5.4) Lolds for one ¢ and # then it is fullfilled
for every ¢ and &, The above condition that z, is exactly predictable from its own past
might also be represented in the form Toen € H (L) Singular processes are sometimnes also
called deterministic processes, not because they are nonstechastic but because prediction
ts deterministic.

An important class of singular processes are the harmonic processes introduced in
chapter 2. For simplicity we consider only scalar harmonic processes. The equation
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can be written in the form

z, et gt z
oy | = | el L eing-n

Zn

—

A

From the proof of the linear independency of the functions e'* : Z — Cin chapter 2,
we see that the matrix A has full rank . Thus the z;'s may be expressed as a linear
combination of the z,, s < t. This implies that all z;, 7 = 1,..., h are contained in H.(t)
and since z,,, = 32} e'/(+1)z; is a linear combination of the z,'s also Z(41 is contained

in H ().
Definition 5.2 4 stationary process (z,) is called regular, if
kL Fur =0

holds for one t (and thus for all t).

ARMA processes are examples for regular processes. This is easily seen from:

o X
Toon = E hyeon_, and z,4 = E €ene; — 0 for h — oo
y=0 J=h

The predictor is just given by the “tail” of the infinite sum which represents r,,,. Since
this infinite sum converges, the tail must converge to zero if & converges to infinity.

Theorem 5.2 (Wold decamposition)
(1) Every stationary process (z,) can be represented v an UNIGUC way as
Iy =y + 2, {5.5)

where (y,) is regular, (z,) is singular, (y.) and (z,) are orthogonal (i.c. Eyz, =0
Jorall t,s) and y,, 2, € K. () holds.

(11) Every regular process (ye) can be represented as
vo=3 ke, o Y IKIP < (5.6)
1=0 =0
where (¢,) s white noise and H,(t) = H,(1) holds.
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Proof: We here give just a short sketch of the essential idea of the proof.
Define the one step ahead prediction errors by

€@ =Te— Iy = L, — PH,(I-I)II (5.7)

where H,(t — 1) is the Hilbert space spanned by the past values z/, 1 = L...,n, s <t
and Py, _1)z, denotes the component wise projection of z, onto this space H,(t — 1).
Clearly we have ¢, € H,(t) and ¢, is orthogonal to all elements of H.(s) for all s < t. Thus
Ee¢¢, = 0 for all £ # s and since the above construction of € is time invariant we can
conclude that the process (¢,) is white noise.

Let y, = Pg )z, be the projection of z, on the space H (t) spanned by all ¢, i =
I,....,n, s < t. Since (¢) is white noise y, has a representation as a causal infinite MA
process

[+ =)
Ve = ) kjec,
Jy=0

and thus is a regular process. Note that ko = / holds, since z, = ¢, + Ti-1y and &,y is

orthogonal to .
In general y, will not be equal to z, and we therefore define

Iy = Iy~ Y = Iy — PH,(:)'Ir (58)

Since z, € H.(t) we have Ez.¢, = 0 for all s > ¢ and because of the definition (5.8) of z,
also Ez,¢, = 0 for all s < ¢ holds.
To show that z, is a singular process we use Lhe fact that

H.(t) = H(¢,)®H{t-1)
Hie ) H(e,  YBH (t-2)= ...
= H{)dD D H{cpp ) H{t - 1)

which tmplies that z, € H (¢ = &) holds since 2z, € H {1} and 2z is orthogonal to all TRPR

7= 1, . h—~ 1. Thus we have 2z, € H,(s), s < { and
€ ﬂ H (¢}
1<t

Because of 2, = y + 2, and the orthogonality of (¢,) and (20} we have H,(t) = H (1) &

H.{0). where H,(t) denotes the Hilbert space spanned by all 2001 =1, n, s <t Thus
T pu,mlu[ = [)H‘(!) ot P
\—1f—/
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which completes our proof. O

The prediction error ¢, is by definition (5.7) the part of z, which cannot be explained
by the past and thus the ¢,'s are called the fnnovations of the process (z,).
Let us make some remarks to this theorem:

(i) By (5.6) regular processes have a spectral density, which is given by
1
= —k(A)Tk(A)
f, = 5-k(VEK()

where k(A) = 3= k;e™*™ and & = E¢e,. Note that 2 Ik < oo implies that
the transferfunction k(A) (defined on the interval [—x,x]) exists in the sense of
a limit in the mean squares sense. (Note that the space of all square integrable
functions defined on [—x,x] form a Hilbert space if we define an inner product
< fig >= [I f(M)g(N)dr. Similar to the Hilbert space L, of square integrable
random variables we have to consider equivalence classes of functions which are
identical on a set of Lebesques measure one, Le. f =g & f(A)=g(A) A.a.e.) In
general 3. k;je™*Y will not converge pointwise.

Note that the opposite of the above statement is not true in general. Not every
stationary process with a spectral density is regular.

(ii) I the representation (5.6) is known, then the prediction problem is straightforward.
Let g = 3°72  kjepr—;. Then g, is an clement of H (t) = H,(t) and yoyy - 3, , =
kotey, is orthogonal to H (t) = H,(t). Thus g, is the one step ahead predictor.

The problem is to find the representation (5.6). For the ARMA-case k(z)is given by
a”'b, but in general computing k from the spectral density {, may be quite compli-
cated. The problem of finding & given fy again is the socalled spectral factorization
problem.

(iit) Lvery regular process can be approximated with arbitrary accuracy by an (AR)MA

process since:

N o0
. o
l.I.m E kj(,“j = z k)":—; =%
y=0

N — oo
)=0

Note that this approxnnation is uniform in ¢, wheras the approximation of a station-
ary process by harmonic processes is in general not uniform jn ¢.

For a regular process the influence of a shock in ¢y will decrease over time.  The
wifluence of a shock at thwe ¢ = 0 on ye is given by b oand since Uie sum (5.6) converges
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we must have [|&|| — 0 for £ — oo. Thus the influence of shocks for regular processes is

nol persistent.
In economics it is often desirable to have processes where the effect of shock does not
vanish with time. Qne simple example of such a process is a random walk process

]
X, = E f}'
=0

Here of course the effect of a shock, in e.g. €, will never vanish. Thus here the shocks are
persistent.

5.4 Filtering

The filtering problem may be stated as follows: Let (27,3t} be a stationary process. We
are looking for the best linear approximation of y, by (z¢) in the least squares sense, i.e
we have to solve the minimization problem

min  E(y, ~ L{z,)) (v, - L(z(?))

L. is hinear

If H, denotes the Hilbert space spanned by all z,,t = 1,...,n,5 € Zthen by the projection
theorem we know that the best linear approximation ¥ 1s given by

3}': = PH, Y.

The problemn now is to express the projection as a linear funetion of the T¢'s. In practically
all cases the linear function L may be represented as an infinite sum

L{z) = Y Lz,

We thus can write y, as

Yo=Yt (v~ o) = Z Lo+ u.

U J=-

By the projection theorem we know that the approximation error u, is orthogonal Lo H,
and thus Ez,u) = 0 holds for all ¢, s.

Thus we can consider the filtering problem as an “infinite” linear least SQUATCS TCLTOS-
sion problem  Bul we can also think of the hltering problem as Anding the “hoest” Lnear
system relating the Tupiuts (0,1 ta the outpuats {y,
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(u.)
__(_)__z, L _(}L')(L_(m

Theorem 5.3 Let (z],y]) be stationary with spectral density

f. f.,
(e )

with [, >0 for all A € [-x,x). Then the transferfunction for the best linear least squares
filter is given by

(=1,.0;". (5.9)

Proof: It is easy to see that the optimal filter L does not depend on time since the
Lwo processes (z,) and (y,) are jointly stationary. Thus we can define a process (3) =
L(z) by g, = i oo jz,_;. For g, to be the best lincar approxitnation we must have
E{yi - §)z) = 0 for all 5. This gives

0= E(y - g)z; = Yyt = 5) - Yoe(t — s) forall se Z,

where v, and V4. denotes the cross covariance function between (y) and {z\) and (g,)
and (z) respectively. This implies

fy, = fy'r = H‘,

lor the corresponding cross specteal densities. Iere we have used te formula (3.17) in
chapter 3. O

Of course there 1s a one-to-one relation between the transfecfunction l{z) = 3 42
and the corresponding filterweights , so that we can actually construct the filterweights
{, [rom the formula (5.9).

In general the best lincar approximation will not be causal. If however ,=0,7<0,
e if g, = sool,7o,, then we sav (.} is causing (y,). Of course this not causality in a
stricl seuse because of the problem of the socalled post hoc ergo propter hioc fellacy (i.c.
the fellacy of concludig from precedence to causal influence).

Note that the filter formula {5.9) is a natural generalization of the OLS formula to the
case of an infinite number of regressors. By stationarity of course the linear Rlter £ {and
thus the fillterweights £, do not depeud on time ¢
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In chapter 3 we defined the coherence C¥A)asa frequency dependent squared correla-
tion coefficient. Using the filter formula we can give an additional interpretation. Consider
two scalar processes (z,) and (y,). Then it is easy to sec that
If,,["'__lf,l' f;

¥
f, T, [, 1’

CHA) =

where ! =, /1, and [; is the spectrum of the optimal approximation y, = I(z)z, of Y.
Let us define u, = y, — Ye as the approximation error, then by the projection theorem (u,)
is orthogonal to (z,) and thus the spectrum {, may be decomposed as fy =1; +f,. From
this decomposition it is clear that 0 < C*A) <1 holds and that we may interpret C¥(A)
as a frequency dependent coefficient of determination (R?}. If C?(A)is close to one then
for this frequency (-band) g is a good approximation fo vi. HC*(A) is close to zero then
at this frequency (-band) y, cannot be well approximated by a linear function of (z/).

5.5 Exercises

(5.1) Consider the prediction problem for an n-dimensional stationary process {z(} and
let I, r be two positive integers. Prove that

r r r r
B(zien - ZGFI'-J)-(I'“‘ - ZG?I'-J) < Bziya - Z“J’Irvj)'(l'u-h - Z(l,l’:ﬁ;)
j=0 j=0 T

1=0
for all a; € R"™", j = 0,...,r holds il and only if
E{zepn ~ ZG?I,_,')(I,+,, - ZG?I«—;)- < E(zon - Zﬂ,xrﬂ')(l‘uh - Zﬂjrz—;).
;=0 J=0 1=0 j=0

foralla, ¢ R"™", ;= 0,....r Lolds.

(5.2) Let H, and H, be two orthogonal subspaces of some Hilbert space Hote, <z y >=0
for all r € H, and y € H, wlere < - > denotes the inner product in H. Prove that
the projection on the sum of H, and H; is equal to the sum of the two projections
on these spaces:

Paou, ¥ = Pu, v+ Pu,y YyeH

(5.3) Let (y,} be some stationary process with Ey, = 1. Define the “centered” process
() by r, = y, — yi, and let Tyy = Y .o,z , be the best affine predictor of z,,,
given ., .. x._.. Prove that best affine predictor for yy, given Yoo Meoys o Yo, 15
given by

r r

I;'(‘h = erjyt_J 4 og0 = Lu;;(

) =0 IEL
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(5.4) Prove that the normal equations for the best lincar predictor always have a solution.

(5.5) Consider the steady state solution of the AR(1) system z, = az,_, + ¢ where (¢,)
is white noise and [a| > 1. Compute the best linear predictor for Zi41 Eiven I, and
the best linear predictor for z,,, given ., z,_,.

(5.6) Coasider the MA(1) process defined by z, = ¢, + be.., where {¢) is white noise.
Compute the best linear predictor for z,,, given z, and the best linear predictor for
I¢yy EiVen I,,Z,_,.
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6 Estimation of the Mean and of the Covariance Function

Estimation and inference in the context of time series analysis is an essential generalization
of classical i.i.d analysis. In time series analysis in most cases finite sample properties are
difficult to obtain analytically. Therefore in the next chapters the emphasis will be on
asymptotic theory in order to obtain some indications of the properties of estimation and
test procedures for large samples. It should be noted that besides the analytical results
also simulation results are important for the evaluation of estimation and test procedures.

In this chapter we consider estimation of the mean and the covariance function. The
estimation of the covariance function () is a nonparametric problem since there are
infinite many values to be estimated.

6.1 Convergence Concepts

In this preliminary section we will repeat concepts for the convergence of random variables
and some related properties.

Definition 6.1 A sequence x, of scalar random variables is said to converge in probability
to zo tf for every e > 0
tlim P{lz, — 24| > ¢} = 0 holds.

. . r B . Ly
We will use the notations r, L z, and plim,_, 7, = zq for convergence in probability.
In the vector case we define the convergence in probability component wise, i.e.

_ ) . .
I, = : Lz, = : P T, =1y for i=1, .. . n.

[£]
¢ Ty

Convergence in probability s alse called stochastic convergence.

[t is easy to see that the limit z4 is uniue a.c.
Lemma 6.1 [fz, = Lim, Lo 1, then x4 = plim, _  z,.
Proof: Woe can proof this lemma component wise. By the Chebyshev inequality we have
PRz agl > o} S ERr - 1) - 0.0
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Definition 6.2 A sequence of random variables z, with distribution functions F, is said
lo converge in distribution to a rendom variable zo with distribution function F if

lim Fi(z) = Fo(z)

holds for all continuity points z of Fy. We will use the notation z, % z, for convergence
in distribution.

Of course this definition of convergence in distribution is related to the convergence of
measures rather than to the convergence of random variables. The limit z4 is not unique
which can be seen from the following example: Let (z.) be a sequence of i.i.d. (independent

and identically distributed) random variables then z, LA z, holds for every z,.

Lemma 6.2 If plim,__ z, = z, holds then z, 2 z,.

Proof: We only prove the scalar case. For each ¢ > 0 we have

Fi(z) = P(z,<z)
P(IOSI+(.’£0—I,)and ]I,—IOI S()+

A
Plzg € x4+ (0 — z,) and |z, — 34| > ¢)

I

SP(lri—rol>}—0

For the term A we have

A < Plrzg<r+eand |z, — 14| < ¢) =
Plzg <z +6e)+ P{lze— 20| €)= Plzg <2+ cor|r, - x¢] < )
—1 —1
and
A > Plzg <r-cand |z, ~ 19l € ¢) =
Plzg Sz -} + P(lzy — 2o} <)~ Plrg <7 —cor |z, — 29} < ¢)

Thus we have
Folz —¢) < i F{z) < Fy(z + ¢€)

which proves the lemma. 3
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Definition 6.3 A sequence r, of random variables is said to be asymptotically normal
with “ezpectation” yu, and “variance” L,, if £, is nonsingular from a cerlain ¢, onwards
and if ‘

E'—III(I‘ — ) LI
where z ~ N(0,1). We will use the notation z, ~ AN(p,, £0).

Note that in general we do not impose the condition that Ez, = #. and Varz, = %,
must hold.

Each nonnegative definite matrix £ > ¢ may be factorized as & = AA’. Such a factor
A is often denoted by A = E'/2. Thus -2 = (T'/?)-! satishies L-\rg(-vry = g,
Furthermore if 4, = Ez, and Varz, = £, holds then I, = E““(z:, — 4.) has mean zero
and variance [.

Lemma 6.3 (Slutzky) Let z, be a sequence of random vectors with plim,__z, = zy € R"
and g : R" — R be a function which is continuous in z,. Then

plimg(z,) = g(Plim z,) = g(zo)
t—oca — 00
holds.

Proof: Since g is continuous in zy there exists for every € > 0 ad > 0 such that
| 8(z) - g(20)] < ¢ holds for all z € R" with {z* — 23| <6, i=1,....n. Thus

Ple(zd) —glzoll > ) < D Pllz{ - il > 6) — 0.0

i=]

6.2 Estimation of the Mean

A natural estimate of the population mean of the process is the sample mean

| T
1—:7' = — Z X,-
T &=
1=1
Since the estimation of the mean is done component wise we will restrict ourselves to the
scalar case in this section.
It 1s trivial to see that
Leo=Ezx, = p

holds for every stationary process and thus thoe satmple mean is an unbiased estimate of
the population mean.
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Theorem 6.4 Let (z,) be a scalar stationary process with Ez, = y and ¥(s)
Then

(1) imy_ o, Varzy = limp_ E(Zr — p)* =0 if lim, .o 7(s) = 0 holds and
(1) limy_ oo T Varzr = 552 9(s) if 5% __ 17(s)] < 0o holds.
Proof:

TVarzr = TE(Er - ) = 3 E(TLi(z— 0) Sz, - )
F b Wt =8) = & ST ()T - Is)
= E|:|<T v(s)(1 - 111"1)

If v(s) — 0 then also y(s)(1 — l%l) — 0 and thus

. - . 1
7!1_{1;0 Varis = Th_[z;o -fmz(:-r r{s}1 -

|si
Phy_p
T)
which proves (i). (See exercises.)

If 3°,1%(s)| < oo holds then for every ¢ > 0 there exist 0 < /f <T <™
HiT 3, 1v(s)] < ¢/2 and Lisss | 7($)] € ¢/2 holds. Thus we have

[T Varip - 5% ¥(s)|

|_ lel(r L'JFI 7(s) ~ Emg'r 7(5)|

Il

% Do 7(8)] + ):H<|s| Fy(s)l

€

IACIACIA

which implies T Var7y —— oo x(splor T - 0. OJ

Let us make some remarks to the theorem above:

4 et e e mbanade stk

= E:x:,:co.

such that

(
Zinen PV + Srcpaer B + 5o | 10)]

(1) The essential condition in this theorem is that the memory of the process is fading

e ¥(s) > 0for s — oo

(i1} The first part (i} of the theorem states that Li.m 7 = p and thus also plim 24 = 4,
which means that the sample mean is a weakly consistent estimate for the population

mean (if lim, _,, y(s) = 0).

(iii) The second part (i1} of the theorem states that the speed of convergenee is VT if
2_, ¥(s) # 0 holds
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(iv) The assumption Y_, | ¥(s)| < oo implies that the spectral density of the process exists
and js given by f‘(A) — (2x)—l Z‘ ,r(s)e-u')u and thus T Var Tr — Z. ‘7(5) =2nr r,_-(O).
Since T Var Z1 is a measure of the quality of the estimate Z1 we see that the estimate

is the better the smaller .(0) is. E.g. if {,(0) is high then the process contains big
“slow variations” and therefore it is difficult to estimate the mean of the process.

(v} I {.(0) = 0 then we may have a higher rate of convergence as the following simple
example shows. Consider the MA(1) process z, = ¢, — ¢,_,. The spectral density is
given by f.(A) = 2|1 - e |2 = 32(2 — 2cos A) which is zero for A = 0. The sample
mean is given by

. 1 T 1
It = F g(fc - f:-t) = T(f'r - fo)

which of course converges to zero at rate which is faster than vT.

(vi) For an infinite MA process z, = Y7 oo Kj€io; where 3 ; lk;| < o0 holds the spectral
density is given by I, = |k 2;_:_ and 2x {,(0) = (I, k;)?0. This formula again shows
that f.(0) is a measure for the memory of the process.

The following theorem gives us a more general result, stating that the sample mean
always converges in the mean squares sense to some random variable and gives us a nice
condition under which the sample mean converges to the population mean.

Theorem 6.5 [or every stationary process {z,} we have
Limzy = 2(0) — 2(0-)
T —eo

where z(A) is the process with orthogonal increments assoctated with (z¢) and z(0-) de-
notes the left imit of z(A) at the frequency A = 0, f.c. HO0=) = Liam, o 2(0 - ¢).

Proof: From the spectral representation of the process (z,) we immediately get
r

g [ e [ S e
(=)

r=1

JriA)
Since |e***} = 1, we have |J#{A) < 1. Furthermore by using the formula for (finite)
ZeOMeLric suimns we get
I(5) = { 11 . f_ur by - 0
.;r:(" T:"T foe v 40
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From this formula it is easy to see that Jr(A) converges to the indicator function K(0){A)
which is defined by

1 forA=0
k(o) (A) = { 0 else.

Finaly we have

i.m / Jr(A)d(A) = / lim J2(3) d=(A) = 2(0) - 2(0-)
- -

£{0} (M)

This theorem has a very nice interpretation. It states that the sample mean converges
to the jump of the spectral process z(A) at freqency 0. For a stationary process we also
have

u=Ez, = E(2(0) - 2(0-)
and thus the mean is just the expectation of this jump of z(A)} at frequency zero. Therefore
the sample mean will converge to & if and only if the variance of this jump is zero, i.e. if
z(0) - 2(0-) = y holds. If this jump is not a degenerated random variable, i.e. if it has a
nonzero variance, then the sample mean will not be a consistent estimate of pu.

Let us decompose the process (z¢) into two parts of the form

7, = [ M do(\) = f e M (A) + 2(0) ;'2(0—)

Iy

where 2(A) is defined by

) _ 2(A) for A <0
2(A) = { 2(A) = (2(0) - 2(0-))  for A > 0

By construction 3(A) has no jump at A = 0 (ie. #0) - 2(0=) = 0) and thus (Z,) has
tmean zero and the sample mean of z, converges to zero. The second part of z, namely
my = (2(0) — 2(0-)) is a stochastic process whose trajectories are constanl. Thus given
only one trajectory we never can consisteatly estimate the mean of m, unless (2(0) - 2(0-)
is a constant random variable which in other words means that its variance is zero. {See
also figure 2.4.)

We can check this condition for consistency of the sample mean also by looking at the

spectral distribution function. Since z{A} is process with orthogonal increments and by
Steiner’s lemma we have

POy - F(0-) = 1

2(0) = 2(0=)1 = Var(2(0) = 2(0-)) 4 ( B(2(0) — =(0-)))?

]
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Thus the sample mean is consistent ifl the jump of the spectral distributjoq function equals
the square of the mean u. If the jump of F(A) at frequency 0 is larger than u? then the
variance of z(0) - z(0-) is not equal to zero and therefore Zr is not consistent.

From this formula above it is also clear that if the spectral distribution function has
no jump at A = 0 (e.g. if the spectral density exists) then 2(0) — z(0-) must be zero and
therefore the mean # of the process must be zero and the sample mean wil] converge to
zero too.

The next theorem gives a set conditions under which the sample mean js asymptotically
normal.

Theorem 6.6 Let (2.} be a stationary process with x, = 4 + Z}‘;-m bi€e;, i 1651 < oo,
(¢) ~ 1ID(0,0%) and 2256 #0. Then 3p ~ AN(p, T 'v) where v = e (s) =
o e —e b))%

For a proof of this theorem see e.g. Brockwell and Davis [3).

Here we used the notation (&) ~ [ID(0,0?) to indicate that (&) is a sequence of
indipendent and identically distributed random variables with mean zero and variance o2,
Of course this assumption implies that (¢,) is a white noise process,

Results of asymptotic normality and thus also the result of the theorem above can be
used for the construction of tests and confidence intervals,

6.3 Estimation of the Covariances and Correlations

In chapter 1 we have introduced the sample covariances

'3'7"(5) = 'rl T:?J(Ir-n - :ET)(II - zr) for s >0

Trls) = Fp(~s) fors <0 (6.1)

which are of course estimates for the (population) covariances. By some simple algebra
we obtain the following expression for the sample autocovariance for s > 0:

T~s 3 T
- I r e — 7 l -2 — 7
77‘(3): P Tiss Ty _zTIT'F'—(E :IIIT + E : ITI:)-
T & T =
t=1 t=1 =T -5 41
if 4 = Ez, denotes the mean and L, = E(fy - #NZr — 1) denotes the variance of

the sample mean then using Steiner’s lemma we obtain for the expectation of the sample
autocovariance y,(s):
Eyr(s) = If—’('y{c:) o) - (T 4+ ppd Y+

R R OONND SN O (R IR U

ro ;\—,:(:TL,‘H(FT(T. - 1)+ f"f",))
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This expression for E¥,(s) is quite complicated and indicates that the sample autoco-
variance in general is a biased estimate for the -autocovariance function. But if z, is
a consistent estimate for the mean in the mean squares sense, i.e. il Limy_ Ty = u
holds, then ¥..(s) is asymptotically unbiased, i.e. limy_,, E¥7(s) = ¥(s). This can eas-
ily be seen, since all summands in the last term of the above equation are bounded, i.e.
Hv(k) + pp’ll < M for all k and since Li.mr_ o Zr = p implies £, — 0.
The matrix
¥r(0) - Fr(=N+1)

-
z
I

(N =1) - §r(0)

is an estimate of the corresponding matrix 'y (where the block entries are the y(s)’s).
[y is non negative definite since y(s) is a covariance function of a stationary process. It is
easy to prove that also [y is non negative definite. (See exercises in chapter 1). Thus ['y

(¥7(s)} is a proper estimate of ['y (7(s) respectively) since it satisfies the same restrictions
as ['y. Note that this is not true for the estimate ¥(s) defined by

i(s) e To(Zygs — Er Nz — Z7)  fors >0
¥(s) ¥(—s) fors <0

since the corresponding matrix [y is not non negative definite in general.

The estimate ¥,(s) is equal to zero for s > T, which in many cases might not be a
good estimate for y(s).

The quality of the estimate ¥1-(s) depends on the lag s. For small s there will be more
summands in the sum (6.1) than for large s. Thus the estimate will be more reliable for
small s than for large s (for given T).

For simplicity of notation and because of the importance of the scalar case we will
from now on consider the scalar case only. :

We now want to give sufficient conditions under which the sample covariances are
consistent. The essential idea here is to define an artificial process (y,|t € Z) by

Vi = TegsZy 3 LEZ

The mean of this process is equal to the noncentral autocovariance E z,,,z, at lag s and the
sample mean of this process (v, ) is essentially equal to the noncentral sample covariance of
the original process (z,). Thus if (¥} satisfies the conditions for cousistency of the sample
mean then the sample autocovariances for (z,) will be consistent too. We state this result
in the following theorem.
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Theorem 6.7 Let (z) and (y = z,4.2,) be stationary. If

re—oo | 7(r}] < 00 and
e oo |E(¥r — Eye )y — Ew)l < oo

then plimy_, 7, +(s) = 7.(s) holds where v_(s), ¥:.1(3) denote the autocovariance and
the sample autocovariance function of the process (z() respectively.

Proof: For simplicity we consider only the case where Ez, = 0 holds.
The sample mean gr_, for the artificial process () based on a sample 1,..., T - s is
given by
) I T—» T X
Vr-« = 75 Z:IH--:! = «‘?___—37:.7'(5)

Since the assumptions imply that the spectral density of the process (y:) exists we have
from the results of the last section that the sample mean Yr-, and thus also ¥, ;(s) is a
consistent estimate of y_(s). O

The condition that (y,) = (z,4,z,) is a stationary process is mainly a condition on the
fourth moments of the process (z,). They must exist and have a “stationary” structure.
Lemma (6.3) mplies for v(0) # 0 that the estimate

e

r(s
Y7 (0

is a (weakly)} consistent estimate of the autocorrelation p(s) at lag s if 4, is a (weakly)
consistent estimate for the autocovariance function.
The next theorem states that the sample autocovariances arc asymptotically normal

pr(s) =

under fairly general assumptions.

Theorem 6.8 [f(z,) is stationary and of the form z, = ;1+ZJN:_N bye; ., where 2, <
00, (¢} ~ lID(0,07) and E¢! < oo then

pr(l) p(1)
Pur = : ~ AN(p,, T™'W) where Pu =

pr(I) p(H)
and where the v j-th entry of W is given by

wy = 3ok A ) plk v 3) 4 plh ~ D pk 4 5)+
2p(a) () p A = 2p() p(k) plk 4 7) = 2 p(5) plle) pl ke + 1)}
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For a proof of this theorem see e.g. Brockwell and Davis [3]. .
Example: Consider white noise (¢.) which in addition satisfies (¢,) ~ [1D(0,0?%). Thus
the ¢,’s are not only uncorrelated but also independent. In this case we have

_ 1 fori=j
Yii=9 9 else.

Thus Pur ~ AN(0,T-'J).
Now it is easy to construct a test for white noise. The test statistic

Q=T Zﬁr(s)z

should be close to zero for white noise. Under the Null hypothesis that (¢,) is white noise,

the test statistic Q is asymptotically Chi squared with # degrees of freedomn, i.e. Q3 x
where X ~ X2 This test is very often used and is called a Portmanteau test.

In a similar way we could also test wether a process is an MA process of order less
than or equal to ¢ by using a test statistic of the form

H
Q=T 5" pp(s)?

1=g+1

But in this case the asymptotic varianee W of p,, 1 is much more complicated to compute.

6.4 Exercises

(6.1) Given a covariance function 7(s) where lim, ., 7(s) = 0. Prove that

. l
Jm y(s) =0
fsl<T
holds.
(6.2) Consider a stationary process (z,) defined by z, = ft + ¢, where (¢,} is white noise
and E¢e¢; = £, Prove that
— 1L
Varz, = a— Z(I: —zr){z, —z7)
f=t
is an unbiased estimate for Var s = Vare, = 8,
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(6.3) Show that for every time series z,,...,zy, the sample autocovariances satisfy
L ¥r(s) = 0.

(6.4) Compute the asymptotic variance of (1) for an AR(1) process z, = az,_, + €.

(6.5) For an AR(1) process z, = az,_, +¢, the sample autocorrelation pr(1)is AN(a,(1-
a?)1). Show that VT (p,(1) ~ a)/ /(1 — a?) is AN(0,1). If a sample size of T = 100
from an AR(1) process gives pr(1} = 0.638, construct an 95% confidence interval for
a. Is the data consistent with ¢ = 0.7?
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7 Estimation of the spectrum

7.1 Properties of the Periodogram

In chapter | we have defined the periodogram by

T
z :r:,e_'“
=1

We mainly considered the socalled Fourier frequencies

Ir(A) = %

273 }
N=F e 5 5= (T - 1)/2) 0, (T/2)
because the vectors
ethil
i eihe?

G=—=| . | i 5=-UT—-1D/2....0,...,[(T/2)]

form an orthonormal basis for C7. This may be seen by

b oforg=k (A = A
LT Y RRTE VT |
7 T ey = 0 else

L e
< €,6 >= Ze”"\"e'“‘ =
Tl:l

since e'{A =27 — o2a(k-))) = ¢

If we define z(T) = (z,...,z7) then Ip(},) = | < ¢;,z(T) > |*. Since < ¢;,¢0 >=0
for all ;7 # 0 we also have for an arbitrary @ € C that < ¢;,z(T) - al >=< ¢;, z(T) >
where 1 = (1,...,1) = V/Te, € CT. This gives for a Fourier frequency A #£0

Ir(A)) = | <« ¢,,o{T) > |2 =|<e,o{Ty-z71 > |?
= KT etz - 2p)?
= ML et o - 2 DT ez, - 7))
= 15T eMU (g~ ir)(z, ~ i7)
= EIMT«‘/(S)C*'*".

The periodogram I+(4,) for A, # 0is the Fourier transform of the sample autocovariance

function. A comparison of this representation of tr(A,) with the representation of the
spectral density f{A) = &£ 5% y(s)e™'* suggests that the periodogram is an estimate

2

for 2z {(A). For the frequency zero we have

(0) = | < g, x(T) > |7 = T72
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In our analysis we restrict ourselves to the Fourier frequencies. This has the following
reasons: Because of the orthogonality of the e;'s the analysis for the Fourjer frequencics
is simple. For increasing T the grid of the Fourier frequencies becomes finer and thus we
may approximate every frequency A arbitrary close by a Fourier frequency.

Note that the property for a frequency to be a Fourier frequency depends on T. So for
T going to infinity a fixed frequency A may be a Fourier frequency for some T and not for
others. However if A = A; is a Fourier frequency for a given T, then clearly it will also be
a Fourier frequency all T = kTy, k € N. In the following we will use the symbol T — oo in
the sense that we are considering indices T = kT, with & — oo. Since for a fixed Fourier
frequency the index j is going to infirity with T — 0o we in the following use A to indicate
a Fourier frequency.

The next theorem investigates the asymptotic mean of the peridogram:

Theorem 7.1 Let (z¢) be a stationary process with Ez, = #oand let $2° [7¥(s] < oo
hold then

(i) E(1y(0)) - Te? — 21 {(0) and
(i1) E(Ir(A)) — 27 f(2) for T — oo.
Proof: We have
E(Ir(0)) = Tw® = TE(27)* = T = T Var £y + Tp? ~ Ty? —— 95 £(0)

due to our assumptions using theorem (6.4).
For the second part we use < i 2(T) >=< ¢, z(T) - il > which gives

N -]
]T(’\)) = Z (Tl Z (I!+|JI _”){I! - ”}) C—M}.‘

and thus

| Nb .
Elir(ah = 5. (T 2 7(3)) D DY (I = P R A
lsl<T

I,!(T (=1

Due to the assumption oL iv(sY < oo using a similar argument as in the proof of the
second part of thearem (6.4) we have EIr(A)) — 370 y(s)e—r = o f(A). O

Tlis theorem shows that the periodogram is an asymptotic unbiased estimate for the
spectral density (for A 2 0) Boy as the fallowing simple example shows Uk variance of
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the periodogram does not converge to zero. .Thus the periodogram is not a consistent
estimate of the spectral density.
Example: Let (z,) be Gaussian white noise, i.e. white noise where each finite vector
(Z:—m,...,z,) has a normal distribution N(0,0?/).

We define the vectors

cos A;l 9 sin A;
CJ'I—— . 'SJ_7T- . ,rorl:_:j(T/Q
cos ;T sin A; T
and
€os Aol | €os Atz
Cg = —= : ; and foreven T cryp = — :
- T .
vT cos AT vT €0s Az T

It is easy to prove that these T real vectors form an orthonormal basis for RT (and C7).
Thus the inner products a; =< ¢;,z(T) > and Bj =< $;,z(T) > are uncorrelated random
variables which are N{(0, ¢?) distributed and thus also independent. We can easily express
the periodogram by these random variables a; and fi;:

for A; = 0,1

2

a

. —_ b
Ir(4;) = { %(a? +ﬁ‘f) for0< A; < n

Note that because of the symmetry of the spectral density we here consider only the
frequencies 0 < A < =. From this result we get the distribution of the peridogram as
follows

Ip(A) ~ A7 for A; = 0,7
%IT(AJ)wf\'S for0 <A <r
where [7();) and I7:();) are independent for 7 # k. Note that the Chi square distribution
with two degrees of freedom is an exponeutial distribution.

The expectation and the variance of the peridogram are given by

E(lr(A,)) = o = 2 ((A,)

and
_} 20t =202 0(A,)) for A, =007
Var(Ir(A;)) = { ot = (27 ((A,))? forGt <A, <r

[n addition we have in this case

(,’(,)V(IT()\))‘ IT(’\l ]) = 0 for A} }‘1— /\&
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This shows that the standard deviation of the peridogram is (essentially) equal to the
spectral density and does not depend on the sample size T' and thus does not converge Lo
zero for T — co. Therefore the periodogram is not a consistent estimate of the spectral
density. The essential reason for this is that in Ir(A;) = Ziojer 7(s)e™™** we always have
summands ¥(s), |s| = T which are only poor estimates of 1(s).

For a very general class of stationary processes these results hold asymptotically.

Theorem 7.2 Let (z,) be a scalar stationary process of the form

T, = E b,'(._j ' (ﬂ) ~ [ID(O,OJ) ) Z leI <

Js-—oo Jj==00

(1) If ((A) > 0 for all A € [-x,x] and if 0 < A, < Azoe- < AL < 7@ then
(Ir(M), Ir(A2), - . ., [ (Am))’ converges in distribution to a vector of independent and
exponentially distributed random variables whose i-th component has mean 2r ()
(and variance (27 f();))?).

(6) I 377 o 16;1V17] < 00 and E€! = o' < oo holds then we have Jor ;A >0

2027 )2 0(N)? + (T~} for Aj = Ay = 0, &
Cov(lr(A:), Ix (X)) = { (27)20(\) + O(T-Y2y  forQ < A=Ay < (7.2)
O(T—l) IOI' /\J # Al‘

For a sequence (z;) the statement z, = O(k~7) means that |z,.&°] is bounded. Thus
e.g. lor A; # A, the covariance Cov(Iz(A;). Ir(AL)) converges to zero with the same rate
as T

For a proof of this theorem see e.g. [3].

Note that the condition T2 oo 01V17] < 00 is eg. Tullilled for ARMA processcs.

Using the result of this theorem we can write the periodogram in the form

Ir(A;) = 2m £( X)) + v,

where the u,’s are asymptotically uncorrelated and have asymptoiically mean zero. Thus
we may interpret the estimation problem of the spectral density as a regression problem in
the frequency domain, since we cannot observe the “trie valyes” f{A,) but only the true
values corrupted with some noise u; which gives the periodogram.

This representation also suggests that we tmay diminish the variance of periodogram
by averaging over frequencies and thus instead of using the peridograim as an estimate we
use a simoothed periodogram as an estimate for f{x),
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7.2 Smoothed Spectral Estimates

We define a direct spectral estimate by

- 1 2xu
f(x) = P z w, rlr(A; - 'T) (7.3)
usmy N e
Aj-u

We will always assume that the filter weights w, r are symmetric and nonnegative, i.e.
Wur = w., 7 and w,r > 0. By this assumption f(z\j) > 0 holds. In the formula (7.3) we
used the periodic extension of the periodogram {rom the interval (-x,r] to R. Thus for
example [T(fﬂ%’)) = Ir(22).

Often we use the notation m and w, rather than mr and w, 7.

A simple example for such a direct estimate is the Daniell estimate where the weights

w, are defined by

1
w =] T for |[uf < m
. =
0 else.

Thus the Daniel estimate is a simple moving average of the periodogram.
From the equations (7.2) it is easy to obtain the following results for the asymptotic
behavior of the direct estimate f(A). We use the symbol ayr Z a if limy_., ar = a.

Ef(A)= 3 w.(20)'ELr(A )= (A S w,

lut<myp

lulgmr ={(A,_.}r(A)
Here we have used the assumption that the spectral density [{A) is continuous and that

my /T is couverging to zero for T — o0o0. For the variance we lave under the same
assumptions

Var(f{A)) = Lujcmy e Var((2n) 7 2 (A 0 )) +

(A, - )4}

Zlul.lUiSmrm#v wow, Cov{(2r) ' Ir{A;_u), (27) 17042, )

>0

~ 2 ?
- f (A)Zhlgmr tw,
From these considerations we can conctude that f(,\) is a consistent estimate if
(i) Ziu{SmT w, = ly
(ii) ZE — 0 and

(i) ZE.,L(,,,_T w' — 0 holds.

u
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E.g. for the Daniell estimate this conditions are equivalent to my — oo and 2L, 0 for
T — oo.
Let us state this result in a formal theorem

oo

Theorem 7.3 Let (z:) be a stationary process of the form z, = 00 bj€i.; where
(€) ~ 1ID(0,0?), it oo 10;1VT7] < 00 and E¢! < 00 holds. If fr(/\,-) ts direct estimator
with my [T — 0, wer 20, wer =w_,7, Elulsmr w.r = | and EIUISmr wz_.r — 0 then

(1) imy_ o Efr(A) = £(2)
(1)
. ) 2f(/\)2 fOFA=w=0,r
im ( z wz_'r)—l Cov(fT(A),fT(u)) = f(/\)z JorO<A=wcern

T—oo
Jul<my 0 Clse.

For a proof of this theorem see e.g- Brockwell and Davis [3].

Spectral windows and the finite sample bias;

In addition to the asymptotic properties finite sample considerations are important
for the design of the filter weights w,. First let us look at the expected value of the
periodogram (for Fourier frequencies unequal to zero).

Theorem 7.4

; :
By ) = [ H@)gFO —wido Jor A, # 0

where ;
g;(u) = { ? llﬂ2!wa2! [O’l w=90
T smi{uw /1) clse

ts the socalled Fejer kernel.

Proof: From equation (7.1) and the spectral representation of the autocovariance func-
tion we get

Bl r(A)) = 7 Dyerll - lq':l)‘r(.s)e"“f’
= 2 Direrlt = B, fw)e du)emrins
f

" 1 S
= f—'r(‘”‘) :2_ (I—T‘I}C"(A;-W)J d(_‘_}
4 [4leT
—
BRA, -
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For the Fejer kernel gf(w) we further get

T-1

2 T
1 Is] ) l . I forw =10
F —fwa Tws —

gr(w) = — (1-"F)e = — € = e |2

T 2x !-lgr T , 2xT .go 5—’; 'ﬂ—_;—-,—,—l else
which gives us the desired result since 1 — e® = —~2¢2/2gjp af2. 0

Let us list some of the most important properties of the Fejer kernel (see also fig-

ure (7.1)):

(i) gf is symmetric and non negative, i.e. gf(w) = gf(—w) and gfi(w) > 0.

(i) gr{w) is zero for the Fourier frequencies w = A;, 7 £ 0.

(iii) gf(w) converges to zero for T — oo and w # 0. (This together with (iv) again shows
that the periodogram is asymptotically unbiased.)

(iv) [2, gf(w)dw = 1.

Fejer Kernel for Tal2
mw

10* 3

frequency

Figure 7.1: Fejer kernel 7" = 32.

This result can easily be generalized to direct spectral estimators
Theorem 7.5 For the direct spectral estimator f(A) we have
BT = [ fre, i, - o) (7.4)
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where
2ru
gr(w) = E w, g;(“’ - T

le|<mr

Proof: The proof of this is immediate.

These functions g, are called spectral windows. Of course also the Fejer kernel is a
spectral window since the periodogram is one special type of direct spectral estimators (it
is the Daniell estimator for my = 0).

Trwe specarum and Expecied Valee of the Paiodogrum (or Tal2

109 -

frequency

Figure 7.2: True spectral density {solid) and the expectation of the periodogram (dashed)

for T = 32. The Fourier frequencies unequal Lo zero are marked by stars.

From the formula (7.4) we can sce that there are two sources for the finite sample bias
of a direct spectral estimator. See also figure (7.2).

(i) Resolution problem: First let us introduce a measure for Lo width of the main lobe
of the spectral window. The bandwidth for the Danjell window is defined by & =
2m(2m+1)/T. For geueral windows the bandwidtl is defined by B = 2n(T5, w?)~t
Now it is casy to see from {7.4) that, if the spectrum has two peaks with a distance
less than the bandwidth, the estimate cannot distingwish these two peaks. In other
words the estiinate cannot resolve these two peaks. In addition a single sharp peak

will be made smaller and broader due to the nonzero handwith, The bias caused by
the nonzero bandwidth is <ometimes called the narow band bias,
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(i) Leakage: If side maxima of the spectral window g(A; — w) concide with a peak of
the spectral density at w this may have a big effect on the bias at the frequency A;.
This sometimes is called the broad band bias.

It is easy to see that problems of (non)resolution and leakage are less severe in case
of flat and smooth spectral densities. This is the reason why one often applies a linear
transformation to the data in order to make the underlying process similar to white noise.
Such a procedure is called prewithening.

In order to reduce the bias, the filter weights w, should be designed such that the side
maxima of the spectral window are small and the bandwidth is small. The bandwidth can
be decreased by decreasing the filter length mq for given T. However this is done at the
cost of increasing the variance of the estimator. So high resolution and low variance are
two conflicting aims in spectral estimation. This is reflected in the socalled uncertainty
relation in spectral estimation:

z P 1
B(f(2)) Var(f(A)) = TS, wi & s
The problem is now how to choose in actual computations the filter length my. This is
often done by a procedure called window closing where one compares by visual inspection
the direct estimators for different mr's and one chooses that one that is on the one hand
not to smooth (the bias is not too large) and on the other hand not to erratic (the variance
ts not Loo large).
The main use of spectral estimates in the case of economic time series are:

(i) “second look™ on data in order to learn the main [eatures of the tiime series before
parametric models are used.

(i1) Analysis of underlying cycles such as business cycles and scasonals.

{ui) Controlljng the action of (nonlinear) transformations of the data.

Final remark:

[n chapters 6 and 7 we have treated the problem of the estimation of the second
moments i.e. the estimation of the autocovariance function and the estimation of the
spectral density. Note that e.g. under the assuniption 3, [ v(s)] < oo the autocovariance
and the spectral density are in a one-to-one relation. In the next chapter we will consider
estimation for parametric models.

These approaches to estimation of second woments may be classified as in the following
Ltable:
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Time Domain

Frequency Domain

A(s) = “.Il? lehzt

2(s) = 1(8)
P2 = 26)

l(’\_r) = ?Izz‘e— k;l'l'l

() = 5= Y wI(3,)

non parametric approach
(We do not assume that the co.
variance function (spectral den-
sity) may be described by a finjte
number of parameters.)

¥(s) = ) f(A)e*

-

. a? 1
W= g et

parametric approach

(E.g. AR(p)} model. The coeffi-
cients a; may be consistently es-
timated by OLS. These estimates

@; then give estimates for ¥(s)

and f(A).)

[n the parametric approach more a priori information is needed compared to the non
parametric approach. E.g. we have to assume that the underlying process is an AR{p)
process. But as we know every regular process can be approximated with arbitrary accu-
racy by an AR process and we can estimate the order p from the data. In the latter case
we could speak of a semi parametric approach.

The non parametric approach needs less information and can handle a wider class of
processes. But on the other hand we loose efficiency. Tlus parametric approaches are of
particular use for economic time series where typically the sample size is small.

7.3 Exercises

(7.1) Computer example: {Spectral estimation - continuation of Example 9.9} In example
9.9 you had to compute the periodogram of a differenced time series. In this example
you start from this periodogram to compute an estimate of the spectral density {of
the differenced process). Compute the Daniell estimate of the spectral density for
different window widths and try to find an “optimal™ window width.

There are several possible variations for this task:

o Take the log of the data and then difference it These transformation of the
data give a measure for the growth rates.

o Use seasonal differepces instead of first dilforenges.
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¢ Plot the log of the-spectral estimates. This has the advantage that the very

high peaks in the spectrum caused e.g. by seasonals do not hide the rest of the
spectrum.
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8 Identification of Linear Systems

In this chapter we are concerned with the problem of determining an AR, ARX, ARMA,
ARMAX system from data. This problem may be decomposed into four main steps.

(i) Preliminary data transformations to make the underlying processes stationary, e.g.
detrending, nonlinear transformations e.g. taking the logarithm of the data, ...

(ii) Specification of the model class, e.g. for an ARMA model we have to determine p
and ¢ from the data. (Estimation of integer paraineters.)

(iii) Estimation of the real valued parameters of the model, e.g. for an ARMA mode] we
have to estimate the a;s, b,'s and o2.

(iv) Evaluation of the estimated model.

8.1 ARIMA processes

Definition 8.1 A process (z:) is called an ARIMA(p,d,q) process f (1 — 2%z, is an
ARMA (p,q) process, i.e.

a(z)(1 — z)%z, = b(2)e, for t > d and a(z) # 0 for all |2{ < |

and (1 - 2)¥ 'z, 15 not stationary. Such processes are also called integrated processes of
order d.

Consider for example an integrated process (z) of order d = |-
a{z)(1 - z)z, = b(2)¢,
This gives

(L=2)z = a (2)b(e)e = S kyer, = 4
1 =0

If we for example assume that Tp = ¢ = const then we have

t
T, = Zyl + ([t — 1}
=1
which gives a linear trend in mean and atrend in variance,
ARIMA models in some sense are very special models, since we allow only roots of
a(z} which lie ontside of the unit cirele and roots whicl are equal to 1. But nevertheless
these models can explain many features which are very commeon for economic data.
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The sample autocorrelation function of such an ARIMA process (with d > 0) shows
typically a very slow decay. Thus as a rule of thumb one can determine the integration
order d by iteratively differencing the data until the sample autocorrelation function shows
a “nice” geometrical decay which is typical for ARMA pocesses.

8.2 Identification of Scalar AR Systems

From now on we assume stationarity, i.e. we assume that the data have been transformed
in a way that makes the underlying process stationary.

There are two problems related to the identification of scalar AR systems. We have
to determine the order p and for given p we have to estimate the real valued parameters
ai,...,a8,,0° of the model.

Let us first consider the estimation of the real valued parameters given the mode!
specification, i.e. given the order p. We suppose that (z,)is an AR(p) process defined by

Ty = QT+ apTp T 6 (81)
where (¢.) is white noise with E¢? = 02 and the stability condition
a(z)=l-az2—...—ayz" #0 V]z| <1

holds. Thus z, has a representation as a causal infinite MA process
I, = Zk,'f:g, = k{z)e, where k{(z) = a™'(2). -
1=0

Il we multiply both sides of equation (8.1) with z, and take the expectation on both sides
we get the following relations:

Yt=s)y=ay(t=1-s)+-+a, 7t —p-3s)+ Lz,
Since (¢) is white noise we have
= ko Ee? = 0% fors=1!
EI’(!:ZOk)E(J-J(!_{ 0 f()r s <!
1=
Note that a(0) = @y = | implies that &{0) = kg = 1. These relations for s = t—1,.. ., 1 »
give the following linear equations for a,,a.,. .. L,
0 (1) o x(p - 1) a ¥(1i
() y(0) : | e (8.2)
5 : (1) :
yip-1y o A1)y ¥{(0) T (p)
S —— —_——
R 53 Y,
p
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and for s = t we obtain for o?
o? = 5(0) — a', (8.3)

Here we used the symmetry of the autocovariance function 7(:). The equations (8.2)
and (8.3) are called the Yule-Walker equations.

Note that the equations (8.2) are the same as the normal equations for the linear
prediction problem from a finite past (z._l,...,z,_p) and the normal equations for the
theoretical regression problem.

The Yule-Walker equations enable us to determine the parameters a; and o7 given the
population second moments. If we assume I, > 0 then we have

a=TI"v, ; ot =(0) -, I, ',

If we substitute the sample moments for the population moments we get moment estima-
tors for the parameters. Let us define

¥0) A1) - Fp-1) (1) a,

P Hoox0) 5 . _ | 7@ ndao | @
() 5 ;

yip-1 - 31 $(0) ¥(p) a,

then we have (for f‘,. > 0)
. -l - - PR
a=T, v, ; a’= 7(0)——7pr ¥, {8.4)

a, 62 defined by the equations (8.4) are called the Yule-Walker estimates. [t casy to
express the Yule-Walker estimates by the sample autocorrelation function as

- - -1 ry — - - - - . — -
a=T, v, =R"p 02:7(0)(l—pr_ ' p)
where R, = 5(0)-' T, and Pp = 5(0) %, = (p(1), .., plp)).

Lemma 8.1 If (z,) is a (scalﬁar) stable AR(p) process with Y(0) > 0 then I'. is non
singular and for (0) > 0 also I, is nonsingular for cvery r.

We will first prove a more general result:

Lemma 8.2 For a scalar stationary process (r,) with F0) > 0 and T, _ o y(8) = 0 the
covarianes matir Uyds positive definile
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Proof: Suppose that Iy is singular. for some p. Then there exist an integer r > 0 such
that I, > O holds and I, is singular. Thus by lemma (5.1) there exists a vector a € R'*"
such that z,,, = ax(r) a.e. where x(r) = (z4,...,z.). Consequently by stationarity of
(z¢) for all ¢ > r there exist-real vectors a() such that z, = a%(r) a.e.
Thus
7(0) = Ez,z, = 0" Ex(r)x(r)a = o), o > flat")12a,

where A, is the smallest eigenvalue of ',. (Note that T, > ¢ implies that A, > 0 holds.)
Thus the vectors a{*) are bounded.
We also have

10) = Bz = Bz, 3 aflz;) = el (e - ) € 37 o(t - 5)

But this inequality is a contradiction to the boundedness of the ¢()'s and the assumption
¥t} - 0.0

Proof of lemma (8.1): For a stable AR(p) process (with E¢? = ¢? > 0) the auto-
covariances converge to zero with a geometrical rate which gives I, > 0 by the lemma
above.

Since ¥(s) = 0 for all |s| > T we also have ¥(s) — 0 for s — o00. Since the sample
autocovarance function is nonnegative definite, there exist a stationary process (y,) such
that the autocovariance function of Yo is equal to the sample autocovariance function ¥(s).
This implies T', > 0 by lemma (8.2). O

Lemma 8.3 If plimy_ (s} = y(s) holds for s = 0, . .. p then plimp_ a = a holds.

Proof: This result holds by the Slutzky lemma {6.3) since the inversion of a nonsingular
1

. . . - L -1
matrix s a continuous function and thus g = [‘,, I, . r,, Y = C.

Theorem 8.4 If(z.) is a (stable) AR(p) process with (6.}~ 1ID(0, ¢?) then
VT(a - a) = N(0,0T]").

For a proof of this theorem see c.g. Brockwell and Davis [3].

In addition the Yule-Walker estimatars @ can be shown to be be asymptotically effi-
cent, i.e, g? r;' is the smallest covariance matrix of the limiting distribution of VT(d—a)
for any estimator a.

1

Lemma 8.5 {f [-‘,, ts non singular then the Yule- Waller estimate gives a stable AR-
polynomial, ie. the transferfunction a(z) = 1 ~ a2 — ... a, 2" salisfics the stabiity
condition a{z) # 0 for all fz] < 1.
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Proof: Let us define £, = z, - Iy and

(5. \ ( 0 0\
£ :,
Zy
y= 0 andX= i.r e '0
0 ". ﬂ—:l
L 0 L0 0 5 )

P . .
It is easy to see that & = I, ¥, =(X'X)"Y(X'y) holds. Therefore 4 s the OLS estimate
for these “data matrices” y and X and minimizes the residual sum of squares u'u for
u=y—Xa If(1/c)isarootofd(z) = 1—d,z—--- ‘=@, 2” then we have a(z) = b(z)(1-cz) =
(I ~byz~. ..~ b1z ') (1 — cz). If we define by = (1, =by,..., ~bp_1,0)' € R**' and
baay = (0,1, by, ..., —b,_1) € R”*' we may write & = v—Xa = (y, X )bty ~ ey, X)ba =
ﬁ(;) - C‘l:[(g) and

I}‘ﬂ = t..l.E”l}.(l) — 26&2,)11(2) + CITEE-“'&('_J).
Since 1'% is minimal the derivative of this expression with respect to ¢ must be equal to

zero which gives
CfLE?)!}(g) = ﬁzl)ﬂ(z}

By the assumption f‘n = 2(X'X) > 0 we have Uytigzy > 0. ILis immediate to see that Uy,
is the vector i, shifted by one catry. Thus we have by the Cauchy-Schwarz inequality

TR TON
le| = i (1Y )| <
= P
\/(u(l)u(,))(uu)u(?))
We also kuow that the case le| = 1 can only occur in the case when ey and fg, are

linearly dependent, which by the special structure of these two vectors would imply that
they are equal to thie zero vector which is a contradiction Lo oty > 0.0

Thus the Yule-Walker estimates are proper estimates for the AR-parameters in the
sense that they always give a stable AlR-polynomial.
The OLS estimate b for the AR(p} parameters a is given by

- f l
b [';-F XY 7 X'y

The Prague Lectures 20/01/82-15/05/92 -117-

DRAFT April 13, 1994



T AR ) b b b L Ll
VA b P I el Pt L N Sl ste, MU il LA D0 Sl N

where , . } -
( 0 0 . 0 \

I, 0 0 ( I, \

- Iy

Iq I, . .

X = 0 y =

: I :

\ T }

\:ET—! Ir-2 - IT—p)

Note that here the matrix X corresponds to a special choice of starting values z,, s < 0,
namely where these starting values simply are set equal to zero. It is easy to see that the
matrices £ X'X and X X'y converge to the matrices I, and v, and thus the OLS estimates
b are consistent. Since plim \/T(%:X’X - T,) = 0 and plim \/T(%X'L’ - ¥,) = 0 it can
be shown that the OLS estimates b is is asymptotically equivalent to the Yule-Walker
estimates. (In the sense that they have the same asymptotical distribution.)
Problems of missspecification

We assume that the data generating process is an AR process of “true order” py and
thus we have

ao{z)z, = ¢

where ag(z) is a stable polynomial of order Po and {¢,) is white noise.
If we specify a order » there are two possible cases for missspecification

* Underfitting p < pgy or
* Overfitting p > py.

Let us first discuss the problem of underfitting. If (z,) is a general stationary process
(not necessarily an AR(p) process) then the Yule-Walker equations define a parameter
veclor a by

- - -
Cpa=-, a=10""~,

if we in addition assume Uhat [, > 0 holds. This parameter vector also defines the best
lincar least squares predictor for z, given the PASt T _y, ..., L ,.

[ the sample estimates for the autocovariances are consistent then the Yule-Walker
estimate will converge to a. Thus in the case of underfitting the Yule-Walker estimate
will converge to the AR madel whicl gives the best prediction within the class of AR(hY,

o< psystems. Thus even in Lhe case of underfitting the Yule-Walker estimates have soe
optimality properties
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Consider e.g. a regular process (z,). By the Wold decomposition (5.6) we know that
z, has a representation as a causal infinite MA process of the form

Iy = Zb,‘([_,‘ - b(z)fg
=0

where ¢, are the innovations of the process z,. Il a@(z) denotes the optimal AR(p) model
in the sense defined above then the residuals
€ = a(z)b(2) e, = I(2)e,
e
iz)

in general (i.e. for the case of underfitting) will not be white noise and the variance

o0

E¢g =0 1!>0°
j=0

will be greater than the variance of the innovations €. (Note that &(0) = 1 and b(0) = 1
imply that {(0) = I, = 1.) Thus due to underfitting the residuals €, will not be uncorrelated
and have a higher variance than the predicion errors from the infinite past. These facts
can be used for a test of not having underfitted, e.g. by testing €, for white noise,

In the case of overfitting the specified order pis larger than the true order py. Dut as
the following theoremn shows overfitting is not that troublesome as underfitting.

Theorem 8.6 Let (z,) be a stable AR(po) process with (¢,) ~ 1ID{0, 0?) and let P> opo,

(_LP.‘ a,
, a, sl a, .
atr) = L e =, ¥ and a'f} = ol =Ty
a P 14 0 P P
rro+l
y p ¢

then VT(al! — alr?) = N(0,02T ).

For a proof of this theorem see e.g. Brockwell and Davis (3].
Note that the last entries of the true parameter vector el are zero since we have
assumed that the data generating process is an AR(po) process and that Po < p holds.

This theoren can be used to construct a test wetlher ot = - = a, = 0 holds.
Order Estimation

There are three commonty used procedures Lo detennine the true order Pt
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(i) Looking at the partial autocorrelation function
(ii) Sequence of tests for AR coefficients
(iii) Information criteria

(ii) Partial autocorrelation function

Definition 8.2 Let (z,) be a scalar stationary process then the partial autocorrelation
function (pacf) a : Z — R is defined by

a(0) = 1 =p(0)
a(l) = Corr(zg,z,) = p(1)

afs) = Corr(zg ~ Pyt e, 2oy Ton T, — Putt ey ey Ts)  fors > 1
a(s) = a(-s) fors <0
where Py, .. .r.-.) denotes the projection on the Hilbert space spanned by 1,z,,. .. v Loy,

Lemma 8.7 Let(z,) be a (scalar) mean zero stationary process with aulocovariance June-
tion y(s) such that y(s) — 0 as s — oco. If Py(ra. o0 Ty = 3j_y bz, _;, then ofs) = b,.

Proof: Let z,, %, denote the projections of zo and z, onto the Hiibertspace spanned
by zy,....z,_,. Ifb = (v, 0,y and oy = (¥(s = 1},..., (1))’ then we have from

equation (5.3}
[‘s—l st a = 7:—!
Wy (0) 7(s)

Note that by our assumptions I',_, > 0 holds. By Cramer’s rule we get

I

det( PSR ) |
- 1 1(s) N (det P v(s) =g Py _ yis) =4, r:-||7s-l

’ del( VT ) (et D, )(3(0) = g O ) A (0 S T e

i

‘Ns—l 7(0)

By equation (5.3) we also get

. =1
I, = {I]1'-'1Il—l}[1—l Tj-l

and by analogous computations

) 1
To = (1., R SRR N O VO
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Thus

Var(z,oi - 2,) = 9(0) - 7., I}, 7,2, = 1(0) ~ o T sy = Var(z, — 2,)

and
+ -1

COV(IO - i?o,I, - .’l-'.',) = EIOIJ - EIOI'A'I = 7(5) — M,y =1 ‘T.—l .

a

Consider for example the pacf of an AR(p) process
Te=mT g+ a2 ,+¢ (l-az-... -4, 2°) £ 0V|z[ < 1
: For s > p we have

a(s) = Corr(zy — Pa(ie,, . e._\) 2o, 2, - Paite,. en_y2,) =0

€EH, (s-1) =,

Here H.(s — 1) denotes the Hilbert space spanned by all ¢;, j < s — I. (Sece the section
9.1 on the prediction from a finjte past.) For s = p we have by the above lemma (and the

Yule Walker equations)
a(p)=a, # 0.

Thus the pacf of an AR(p}) process is equal to zero for Is| > p and not equal to zero
for s = p. {Note the duality between AR(p) and MA(q) processes. For MA(q) processes

the autocovariance function v(s) is equal to zero for sl > ¢.)

This fact can be used Lo construct a test wether the true order is simaller or less than

Po by testing a(py + 1) = --. = a(H)=0.
(1i) Test procedures for AR coeflicients

We can use a sequence of likelihood ratio tests to determine the order py:

Bottom up test sequence:

Iy, a =a, = o=, =0
”0‘2 1y #Onﬂzz"':a;.io
Top down test sequence:
o, a, =0
p-t =

![0‘2 (1, _ "(.’,‘:0

For adetaiiod discussion seo Anderson [
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Figure 8.1: Autocorrelation function (dotted) and Partial autocorrelation function (solid)
of the AR(4) process y, = —0.1y—1 +0.66yc.2 — 0.14y,_3 + 3.024y, ¢ + ..

(iii) Information criteria
A class of information criteria is defined by

A = 6% + <10y (8.5)

Here ¢%(p) is the Yule Walker estimate of the variance, when the specified order is. p. In
more generality the first term on the r.hus. of (8.5) is a measure for gOOflncs oilgmnss)ﬁt,
wheras pis a measure of the complexity of the model class (i.e. its dimeusion). = defines
a certain trade off between these two measures. The order Po is estimated by

pr = argmin, A(p)

For ¢(T) = 2 we get Akaikes information criterion AIC and for ¢{7) = In T we get the
BIC criterion.

Theorem 8.8 (Hannan) {/nder a certain set of assumptions the following hoids:
(1) BIC gives a strong consistent estimator of po, t.e. pr — pg a.c.

(1) AIC qives no consistent estimator of po, tl tends to overestinnate the true order,

For a compiete set of assumptions and the proof sce e.g. Hannan and Deistler {1].
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8.3 Identification of Vector ARX systems

Vector ARX systems include (linear) simultaneous equation systems of the form

CoYt = @1¥ioy + o O Yep +doze + -+ do2, + ¢ (8.6)

This form which often comes from some economic theory is called the structural form. In
many cases (especially for macro economic models) there are many a priori restrictions on
the entries of the matrices a; and d; in the form of simple zero restrictions,

We will always assume

Eee=E£>0, Ez€,=0 and deta(z) #0 Viz] <1
The stability assumption implies det @y # 0 and thus we can rearrange this equation to
give ) )
W=ay+ ot ayop, tdoz -+ doz_, + & (8.7)

which is callied the reduced Jorm. Here a; = ag‘a,—, d—J = a;'d,— and & = a;'¢,. If
we define the vector z, = (vi_1»- Y _pr Z - Zi_,) and the stacked parameter matrix
B = (@,...,@,,dp,...,d,) then we have

v =Pz, + €

The vector z, is often called the vector of predelerniined vartables. Since the exogeneous
variables 2; are orthogonal to the noise ¢, and since a(z) is stable we see that z, is orthog-
onal to ¢, i.e. Ex,¢, = 0.

We may split y, into two (orthogonal) parts:

yo=a ' 2)d(z)z + a7 (2} e =y, 4y,
————— ——
i(z) k(z)

whicl gives a corresponding split of the vector Iy

Ye Yeuon Yoo
I, = Vi-p = Yetos + Yerop
z, Z, 0
20, Z_. {
— — —_———————
Iy I
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Lemma 8.8 If£ = E¢€¢ > 0 and M,, = E(z, ...,z )20, . 220) > 0 holds then
M.. = Ez,z{ is non singular.

Proof: We first prove for a stable AR process with T > 0 that [, > 0 holds. We can
compute the autocovariance function 7(s) from the transferfunction k(z) = a='(z) by the
following infinite matrix equation

y0) (1) . ... ko ki oo .- S0 .. ..
(1) ~+(0) - =| 0 k& 0 £ 0 K
K

Since we can assume that ko = I holds and by the assumption £ > 0 al three matrices
on the right hand side of this equation are nonsingular. Thus also matrix on the left hand
side is nonsingular. Thus the matrix T, is nonsingular since it is a finite section of this
infinite matrix.

Now we have

— z € Mlzl Mlzi Ml!l 0
M,,_M+M_(M?,] M, + 0 0

where M* and M* arc the covariances of the vectors z,, and z,, which we have partitioned
conformingly. We have M{, > 0 by the above considerations and My, = M,, > 0 by
assumption.

Let ¢ = (¢}, ¢})" be a vector which is partitioned conformingly. Then 0 = ¢'M,, ¢
implies ;M7 ¢, = 0 and thus ¢, = 0. Thus we furtler get M e, =0 and ey, = 0. O

From equation (8.7) we get
My =Eyz, = Bz,x + Eéz) = fM,, + 0
and thus by the above considerations
=M. M

We now introduce a more compact notation, which is similar to usual notation for
simple regression models. We define:

[ n) ’ (1) {n})
Y v’ UE ¢ 6o “
1 n ] | "
Y = ]/2 - U()) i le ) i = (‘2 - (;) ’ (2 )
!/}‘ y(r}} _U'(,rt]) fff‘ (.[Il ] f(iill
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F=ay, B'=(ay a --- ap do d, --- d, ),
z
X = i =
=
0 - 0 ... 6 0 Mo g 0 .. o0
. 1 . }
U R . A . _
- Mo SR
' : ; S - i .
y‘S"lll . y,g_‘n_)l _____ y,(r_)p v y;?_)p z;" ) - Z;. J ...... Z»Sn_)r P Z-g-__.)r

Here we have replaced the unknown “starting values” ¥, 27 s < 0 by zeros. Using this
notation we may write the structural form as

YI=XB4+ U (8.8)
and the reduced form as
_ -1 -1
Y= XBr'4+yr (8.9)
il Voo

Note that 1 = Br-! = (ay, e )(ag") = (a5 '(ar, -+ ¢.)) = 3 and that the t-th row
of V contains €,(az') = (a5'¢,) = &. The OLS estimate for I is given by

M= (X'X)""{X'V)

If the sample moments T (X'X), T'(X'Y'} are weakly consistent estimates of their
population counterparts M,, and M., respectively then the OLS estimate [1is a consistent
estimate of [f:

. l s
= (?X’X) (TXlY) _P* Mr_-rerv = (My:M:HrI )’ = '6; =N

[l we use the normalization condition @, = t and rearrange the i-th equation of (8.8)
such that all variables except y!*? are on the right hand side, using the a priori zero
restriction in the structrural form, then we may write the i-th equation in the form

Y, = }i7l + /\’(ﬁ| + u, = "11101 + u,

Here y, denotes the t-th column of ¥, and u, the i-th column of {/. Thus e.g. y, contains
all observations of the first cndogenons variable from tme ¢ = | (o time { = 7. 5, and
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Bi are the i-th columns of (~T) and B respectively, where ali elements which are a priori
zero are ommited. Y; and X; are the corresponding columas of ¥ and X, W; = (Y, X;)
and o; = (v, 8.

The OLS estimate of o, then is given by

& = (WiW0) ™ (W]y:) = (WiW,) " (Wi(Waai + W) = aq + (W/W,)" (W)
The (probability) limit of the estimation error (& — a;) is given by

plim(é: — a;) = plim(:W;W;)~! plim(:W/u;) =

plim(z W W)~ plim(4 ( ;3 )) = plim(3 W;W;)~! ( p“‘“("('r)“'f'“f) ) (8.10)

Here we have assumed that the sample moments arc (weakly) consistent estimates of
their population counterparts. Thus T-'W!W, will converge to its population counterpart
and thus to some (constant) nonsingular matrix. Since the predeterinined variables are
orthogonal to the errors the sample covariance T-!'X{u; will converge to zero. We may
write Y; = Y 50) and [, = Ue;, where S0} is a “selection matrix”, which picks out of Y
the columns corresponding to ¥; and ¢, is the i-th unit vector. Using this notation we get

plim L(SOY(IVX" + V')Ue,
(SOYIU pim (T~ X 'U) e, + (SEY(T'Y phim(T™'U'U ) e,

plim 3 ¥y,

1l

0 =

It

(SOY(T-1)Te,

This probability Limit is not equal to zero in general. Therefore the OLS-estimate &, in
general will be asymptotically biased. The essential reason for this asymptotic bias is that
the “regressor™ ¥, contains present vaues of y, which are in general correlated with the
noise €',

We now want to give two examples of tinear simultaneous equation systems:

h . . .
Example 1: Consider the simple Keynesian modet

O = aY, +
i = C+G,

where

€y --- Consumption (endogenous)

':_’: -+ {disposable) income (endogenous)
G - private investients and goverment expenditures (exogeneous)
By substituting €, = ¥, = G, into the first equation we get Y, = (G, + ) and
!
P Yo = B (G4 wu) = —— Bl £90
l — o I~
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using the orthogonality of the noise and the exogenous variable (EG,u, = 0). Therefore
OLS will give a biased and non consistent estimate for a in the first equation, since the
noise u, is not orthogonal to the regressor Y;! We have

o 1 e
plim{é - a) = plim(= 3 7 ¥;?)~" plim 72 You #0

E¥,u,
Example 2: The Klein model I:
Co = cotaQit Qs + csW, + ulV
le = do+ 0Qi+ 62Qeey + i3k, + u®
W = wo+wE + wo By +wy(t — o) + uf”
Yo = Ci+ 1, +G, - Tind
Q: = Yl - Wr
Ke = Ko, +1,
W, = W,pr + W‘G
Er — Yc + 'I'\‘md _ W:G

The endogenous variables are

Cr -+ consumption

I <+ oinvestiments

WP - wages in the private sector

Y, -~ - Income

Q¢ - profits

K, - capital stock

W, .. wages

E, ... net social product of the private sector

and the exogenous variables are

WS ... wages in the govermental sector

77"+ indirect taxes

(:, <o goverment expenditures

L~ 1y - time

1 ©oconstant
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The vector y, of endogenous variables and the vector z, of exogenous variables are

(€
I
e we
f "r"md
Y = Y and 2, = G,
Q: 1 —1
» u
K, 1
W,
\ E

The orders are p = 1 and r = 0 and the coefficient matrices a; and d; of equation (8.6)
are given by:

[(1 0 0 0 -, 0 -cg 0} {0000 ¢ 00 0)
0 1 0 0 -4, 0 0 0 0 0 0 0 ¢ 43 0 0
0 0 1 0 0 0 0 —w 0000 O 00 w
aq = -1 -1 0 1 00 0 V] 70 — 0 000 0 0090 0
0 0 0 -1 1 0 1 o{" 0000 0 00 O
0 -1 0 0 0 1 0 0 6000 0 1 0 0
0 0 -1 0 00 1 0 0O ¢ 0.0 0 0 0 0
\ 0 0 0 -1 0 0 0 i 0000 0 6 0 OJ
0 0 0 0 ¢
4] 0 0 0 1
0 0 0 wy wy
0 -1 1 ¢ 0
dy =
0 O 0 0 0
0 0O 0 0 0
! 0 0 0 0
-1 1 0 0 o
For the first equation (consumption) we have
C u(l)
1 1 Ql Wl 0 l
y bl Q. W, ) Q1
Y = . U, = . Y= i ) and X, = ) .
'y wlt Qr Wo Qr_y 1
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and the corresponding parameter matrices are

<

_ <y _ C2 _ 3
‘n—(cJ). ﬁl—(co) and a, = X

€o

o 0N

The Klein model [ satisfies the counting conditions for structural identifiability: The
diagonal elements of a, are equal to one and each row of {(ao,a;,do) contains at least
(n — 1) = 7 a priori zeros.

Estimation of the Structura! Form:

Note that IT is uniquely determined from the second moments of the observations.
Thus in the identifiable case we may uniquely determine B,T from the equation B = [IT
or I = BT~! using the a priori restriction on B and I'. Since I may be consistently
estimated by OLS, this is a possible way to estimate 8 and T.

The problem is that usually we have much more a priori restricions than are needed
for identifiability. (See e.g. the coefficient matrices a;, d; of the Klein model.) Thus the
set P of all I[1 = B! where B, I’ satisly the restrictions is a very “thin” subset of the
set P of all II's. Thus the OLS estimate IT will not be contained in the set P, allthough
the true Il is contained in P, and IT is a consistent estimate of TI. Thus in general there
will not exist B and I' satisfying our restrictions and Il = B-'. {Overidentifiability)
Recursive systems:

If £ = Ee¢. is diagonal and T (alter possible reordering of endogenous variables) is
tower triangular then (equation wise} OLS will give consistent estimates:

n — th equation: Yo = X.0.+ u,
{n - 1) - th equation: y,_, = “Yan-t¥a + X Buo) Fuay
(n —2) - th equation: Yn-2 = “Tnoim-2¥nor F = Tan-2Yn + Xaofa_s + Up g

Note that by assumptions the entries vi; of the matrix ' satisfly v, = | and Yij = 0 for
7 > 1. OLS gives consistent estimate in the n-th equation since the predetermined variables
are orthogonal to the noise ¢,. The regressor y, = X/, + u, in the (n - 1}-th equation is
orthogonal to the noise u,_; since X, is orthogonal to u,_, and because by assumption
the n-component of ¢, is uncorrelated to the (n ~ 1)-th component of . Proceeding in a
stmilar way we can see that also the other equations may be consistently estimated.

2-Stage Least Squares Estimator (Theil, Basemann)
As the above considerations show the bias is caused by the regressors contained in Y.
Thus the idea here is Lo use some instrumental variables £ for Y. These instruments
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must satisfy the following conditions:

.1 ' .
plim T(P-.X-) (Y,-,X.-)—pllm—" X:Y. X:X.-

L { PY, PX,
T

) exists and is non singular

and .
plim =(Plu;) = 0.
Under these conditions the instrumental variables estimate
& = (B Xa)'(Ye, X1 [(Pry XYy

is (weakly} consistent as can easily be seen.

It is easy to see that £, = XT1SO) satisfies these two conditions for consistency. But II
is not known and thus P, is not a feasible instrument. It can be shown that Pi= X1sH
is a feasible instrument for ¥, satisfying the above conditions. Here IT denotes the OLS
estimate of [T (which, as we know, is consistent for ).

Therefore the whole estimatjon procedure is as follows

1. step: Compute the OLS estimate I for the reduced form parameters II.

2. step: Compute the instrumental variable estimate using P, = X115() as instruments
for ¥,.

8.4 Identification of ARMA systems
Under a Gaussian assumption 27! times the logarithw of the likelihood is (up to
constants) given by
l
lr{a,b,T) = %—]og det Ty +30x(T) Iy x(T)
where x(T) is the stacked vectors of observations

T
x(T}) =
rr
and 'z is the covariance matrix Ex(T)x(TY). 'y and thus the likelihood depends on the
ARMA parameters a,b and 5. (r{a,b,%) is often called the pscudo likelihood, because

we use a Gaussian distribution for the noise process, although we do not “believe” on
normality.

By maximizing the likelihood (or by minimizing {r{a, b, L)} as a function of @, b and %
the parameters a, b and may be estimated.
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