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Foreword

The present volumes contain notes of the lectures delivered at the Sixth
College on Microprocessor-based Real-time Systems in Physics, held at the
Abdus Salam International Centre for Theoretical Physics, Trieste, [taly from
October 9 till November 3, 2000. It is hoped that these notes provide a
readable record of the College.

The “Realtime Colleges” are an outgrowth of the “Microprocessor Col-
leges” which were organized since 1981 under the impulse of late Professor
Abdus Salam and Professor Luciano Bertocchi, and of which several were
held in developing countries. All these Colleges were sponsored by UNESCO,
TAEA and UNU.

From the beginning, laboratory exercises and projects formed an essential
ingredient of the course. They made use of equipment developed in-house
until 1994, when a shift was made to the use of the Linux operating system
and PCs.

Over the past few years, a number of changes and improvements were
made to the programme of lectures, exercises and projects. Particular at-
tention was given to configuring the Linux operating system to present a
nice-looking and user-friendly interface. More emphasis was put on the de-
velopment of embedded systems. To this end new boards were designed and
produced in Turkey and Malaysia and the necessary resident software and
tools for cross-development implemented. Another change was the distribu-
tion of lecture notes in book form, instead of copies of transparencies.

The preparation of all these courses required a large effort from a number
of people. We gratefully acknowledge the essential contributions of Chu Suan
Ang, Paul Bartholdi, Manuel Gongalves, Ravindra Karnad, Carlos Kavka,
Anton Lavrentev, Ulrich Raich, Pablo Santamarina, Olexiy Tykhomyrov and
Jim Wetherilt. Without their great efforts, it would not have been possible
to constantly develop and implement new ideas and to keep the College up
to date. We also wish to mention that in the past and present some 70-80
people, lecturers and instructors, have contributed to shaping this College
into its present form. We gratefully acknowledge also their contributions
and assistance.

We hope that the participants will enjoy the College and that they will
benefit from it for their future activities.

Abhaya S. Induruwa,
Catharinus Verkerk,
Directors of the College,
Trieste, October 2000.
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Abstract

We examine the operating system support needed for a real-time
application. We’ll see to what extent Linux satisfies the requirements
and what has been done to adapt it.

*At present visitor at the Abdus Salamn International Centre for Theoretical Physics,
Trieste, Ttaly







Toward Real-time Linux Verkerk, Catharinus

1 Introduction and a few definitions

A real-time system is defined as a system that responds to an external stim-
wlus within a specified, short time. This definition covers a very large range
of systems. For instance, a data-base management system can justly claim
to operate in real-time, if the operator receives replies to his queries within
3 few seconds. As soon as the operator would have to wait for a reply for
more than, say, 5 seconds, she would get annoyed by the slow response and
maybe she would object to the adjective “real-time” being used for the sys-
tem. Apart from having unhappy users, such a slow data-base query system
would still be considered a real-time system.

The real-time systems we want to deal with are much more strict in
requiring short response times than a human operator is, generally speaking.
Response times well below a second are usually asked for, and often a delay
of a few milliseconds is already unacceptable. In very critical applications
the response may even have to arrive in a few tens of microseconds.

In order to claim rightly that we are having a real-time system, we must
specify the response time of the system. If this response time can be occa-
sionally exceeded, without any real harm being done, we are dealing with
a soft real-time system. On the contrary, if it is considered to be a failure
when the system does not respond within the specified time, we are having
a hard real-time system. In a hard real-time system, exceeding the specified
response time may well result in serious damage of one sort or another, or in
extreme cases even in the loss of human life. A data-base query system will
generally fall in the first category: it will make little difference if a human
operator will have to wait occasionally 6 seconds, instead of the specified 5
seconds response time, and nobody will dare to speak of a failure, as long
as the replies to the queries are correct. This does not mean that all data-
base systems are soft real-time systems: a data-base may well be used inside
a hard real-time system, and its response may become part of the overall
reaction time of the system.

Data-base systems are not at the centre of our attention in this course;
we rather are interested in systems which control the behaviour of some ap-
paratus, machinery, or even an entire factory. We call these real-time control
systems. We are litterally surrounded by such real-time control systems:
video recorders, video cameras, CD players, microwave ovens, and washing
machines are a few domestic examples. In the more technical sphere we will
find the contro! of machine tools, of various functions of a car, of a chem-
ical plant, etc., but also automatic pilots, robots, driver-less metro-trains,
control of traffic-lights, and many, many more. Several of those systems are
hard real-time systems: the automatic pilot is a good example.

Sixth College on Microprocessor-based Real-time Systems in Physics 3
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We implicitly assumed that the systems we are dealing with are computer
controlled. We are in fact interested in investigating the role the computer
plays, what constraints are imposed by the part of the system external to
the computer, or the environment in general, and what these constraints
imply for the program that steers the entire process. We will pay particular
attention to the role the underlying operating system plays and to what
extent it may help in the development and or running of a real-time control
system.

At this point we should define two classes of real-time systems. On the
one hand we have embedded systems, where the controlling microprocessor
is an integral part of the entire product, invisible to the user and where
the complete behaviour of the system is factory defined. The user can only
issue a very limited and predefined set of instructions, usually with the help
of switches, push-buttons and dials. There is no alpha-numeric keyboard
available to give orders to the device, nor is there a general output device
which can give information on the state of the system. On a washing machine
we can select four or five different programs, which define if we will wash
first with cold and then with warm water, or if we skip the first, or which
define how often we will rinse, if we will use the centrifugal drying or not,
etc. If we add the control the user has over the temperature of the water,
we have practically exhausted the possibilities of user intervention. The
microprocessor included in the system has been programmed in the factory
and cannot be reprogrammed by the user. Cost has been the overriding
design consideration, user convenience played a secondary or tertiary role.
These embedded systems run a monolithic, factory defined program and
there is no trace of an interface to an operating system which would allow
user to intervene. This does not mean that such an embedded system does
not take account of a number of principles, which should not be neglected in
a system that claims to operate in real-time. All real-time aspects are folded
into the monolithic program, indistinguishable of the other functions of the
program.

The other class of real-time control systeins comprises those systems that
make use of a normal computer, which has not been severed of its keyboard
and of its display device and where a human being can follow in some detail
how the controlled process is behaving and where he can intervene by setting
or modifying parameters, or by requesting more detailed information, etc.
The essential difference with an embedded system is that a system in this
second class can be entirely reprogrammed, if desired. Also, in contrast
to an embedded system, the computer is not necessarily dedicated to the
controlled process, and its spare capacity may be used for other purposes.
So, a secretary may type and print a letter, while the computer continues to

Sixth College on Microprocessor-based Real-time Systems in Physics 4
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control the assembly line.

It is obvious that the latter class of real-time control systems needs to run
an operating system on the control computer. This operating system must be
aware that it is controlling external equipment and that several operations
initiated by it may be time-critical. The operating system must therefcre
be a real-time operating system. We will see in these lectures what this
implies for the design and the capabilities of the operating system. We should
keep in mind that we speak of generic real-time systems and generic real-time
operating systems. The real-time control system does not necessarily use all
features of the operating system, but the unused ones remain present, ready
to be used at a possible later upgrade of the control system. This again
is in contrast with the embedded system, where the parts of the operating
system needed are cast in concrete inside the controlling program and where
all other parts of it have been discarded.

2 The ingredients of a real-time computer
controlled system

In order to investigate to some extent what the ingredients of a real-time
control system are and what the implications are for a supporting operating
system, we will take a simple example, which does not require any a-priori
knowledge: a railway signalling system.

Safety in a railway system, and in particular collision-avoidance is based
on a very simple principle. A railway track, for instance connecting two
cities, is divided into sections of a few kilometers length each (the exact
length depends on the amount of traffic and the average speed of the trains).
Access to a section — called a block in railway jargon — is protected by a
signal or a semaphore: when the signal exhibits a red light, access to the block
is prohibited and a train should stop. A green light indicates that the road is
free and that a train may proceed. The colour of the light is pre-announced
some distance ahead, so that a train may slow down and stop in time. Access
to a block is allowed if and only if there is no train already present in the
block and prohibited as long as the block is “occupied”. Normally all signals
exhibit a red light; a signal is put to green only a short time before the
expected passage of a train and if the condition mentioned above is satisfied.
Immediately after the passage of the train, the signal is put back to red. The
previous block is considered to be free only when the entire train has left it.

We will try to outline briefly —and rather superficiously —~what would be
required if we decided to make a centralized, computer controlled system

Sixth College on Microprocessor-based Real-time Systems in Physics 5}
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for the signalling of the entire railway system in a small or medium-sized
country, comprising a few thousand kilometers of track, with hundred or so
trains running simultaneously. This would be a large-scale system, but it
would be conceptually rather simple. The basic rule is: if there is a train
moving forward in block ¢ — 1, and block ¢ is free, the signal protecting the
entrance to block ¢ shall be put to green and back to red again as soon as
the first part of the train has entered block 7. For the time being we consider
only double track inter-city connections, where trains are always running in
the same direction on a given track.

From the rule we see that we need to know at any instant in time which
blocks are free and which are occupied. So we need a sort of a data-base
to contain this information. This data base must be regularly updated, to
reflect faithfully the real situation. In fact, whenever a train is leaving a
block and entering another, the data-base must be updated.

How do we know that a train moves from one block to the next? Trains
are supposed to run according to a time table and at predefined speeds, so a
simple algorithm should be able to provide the positions of all trains in the
system at any moment. Unfortunately this assumption is not valid under all
circumstances and we need a reliable signalling system, exactly to be able
to cope with more or less unexpected situations where trains run too late,
or not at all, or where an extra train has been added, or another ran into
trouble somewhere. We conclude that it is better to actually measure the
event that a train crosses the boundary between two blocks. We could put a
switch on the rails, which would be closed by the train when it is on top of
the switch. We could scan all the switches in our system at regular intervals.
How long — or rather how short — should this interval be? A TGV of 200
meter length and running at close to 300 km/h, would be on top of a switch
for 2% seconds. A lonely locomotive, running at 100 km/h would remain
on top of the contact for much less than a second. So we must scan some
thousand or more contacts in, say % second. This can be done, but it would
impose a heavy load on the system and we would find the vast majority of
the switches open in any case. We could refine our method and scan only
those contacts where we expect a train to arrive soon. This would reduce
the load on the system, as only hundred or so contacts have to be scanned,
but it still is not very satisfactory, as we will continue to find many open
contacts. Note that instead of contacts, we could have used other detection
methods: strain gauges on the rails, or photo-cells.

A better way of detecting the passage of a train, is by using hardware
interrupts '. We could generate an interrupt when the contact closes and

'For those who may have forgotten: a hardware interrupt is caused by an external
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another when it opens again, indicating the entrance of a train into block
i and the exit of the same train from block i — 1, respectively. We don’t
lose time then anymore for looking at open contacts. We also simplify the
procedure, for we do not have to look anymore at the data-base before the
start of a scan, to find out which contacts are likely to be closed by a train
SOOM.

We have discovered here a very important ingredient of any real-time
control system: the instrumentation with sensors and actuators. In our case
we must sense the presence of a train at given positions along the tracks, and
we must actuate the signals, putting them to green and to red again. Gen-
erally speaking, the instrumentation of a real-time control system is a very
important aspect, which must be carefully considered. Usually, apart from
sensors which provide single-bit information, such as switches, push-buttons,
photocells, which can also be used to generate hardware interrupts, we will
need measuring devices, giving an analog voltage output, which then has to be
converted into o digital value with an analog-to-digital converter. Conversely,
output devices may be single bit, such as relays, lamps and the like, or digital
values, to be converted into analog voltages. Accuracy, reproducibility,
voltage range, frequency response etc. have to be considered carefully.
The operation of a system may critically depend on how it has been instru-
mented. The interface to the computer is another aspect to take into account
for its possible consequences. Speed, reliability and cost are some of the
concurring aspects. We will not dwell any further on these topics in these
lectures, as they are too closely related to the particular application, making
a general treatment impossible.

For our railway signalling system we mentioned the timetable, claiming
that we could not rely on it. We can however use it to check the true
situation against it in order to detect any anomaly. These anomalies could
then be reported immediately. For instance, we could tell the station master
of the destination, that the train is likely to have a delay of z minutes.
Another useful thing is to keep a log of the situation. This can be used
for daily reports to the direction (where they would probably be filed away
immediately), but they could prove valuable for extracting statistics and for
global improvement of the system. Operator intervention is also needed. For
instance, when a train, running from station A to station B, leaves station
A, it does not yet exist in the data-base of running trains. Likewise, when
it arrives at B, it has to be removed from this data-base. This could be

electrical signal. The normal flow of the program is interrupted and a jump to a fixed ad-
dress occurs, where some work is done to handle the interrupt. A “return from interrupt”
instruction brings us back to the point where the program was interrupted.
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done automatically, in principle, but what do we do if it has been decided
to run two extra trains, because there is an important football match? We
conclude that data-logging, operator intervention and some calculations (to
check actual situation against predicted one) are also essential ingredients of
a real-time control system, in addition to the interrupt handling, interfacing
to the sensors and actuators and updating of the data-base reflecting the state
of the system.

This idyllic picture of our railway signalling system might stimulate us
to start coding immediately. A program which uses the principles outlined
above does not seem too difficult to produce. We simply let the program
execute a large loop, where all different tasks are done one after the other.
The interrupts have made it possible to get rid of a serious constraint, so all
seems to be nice and straightforward. Once we would have a first version of
the program ready, we would like to test it. Hopefully we will use some sort
of a test rig at this stage, and abstain from experimenting with real trains.
During the testing stage, we will then quickly wake up and find that we have
to face reality.

In our model, we assumed double track connections between cities, where
on a given track, trains always run in the same direction. But, even in
the case that the entire railway network is double track between cities, we
must nevertheless consider also single track operation, because a double track
connection may have to be operated for a limited period of time and for a
limited distance as a single track, repair or maintenance work making the
other track unusable.

Assume that, on a single track, we have two trains, one in block k + 1,
the other in block & — 1, running in opposite directions, both toward block k.
If we would apply our simple rule, they would both be allowed to enter block
k (supposing it was free) and a head-on collision would result. The problem
can be solved by slightly modifying our rule: If a train is moving forward in
block 7 — 1 toward block 7, then access to block 4 will be allowed if blocks
¢ and ¢+ 1 are free. So both trains will be denied access to block & in our
example. We have eliminated the possibility of a head-on collision, but we
now have another problem. Assume that our two trains are in block k — 9
and & + 1 respectively and running toward each other. Applying our new
rule, they would be allowed to enter block k — 1 and k& respectively and both
trains would stop, nose to nose at, the boundary between these two blocks.
We have created a sort of a deadlock situation.

The true solution is of course not to allow a south-bound train into an
entire section of single track, as long as there is still a north-bound train
somewhere in this entire section, and vice-versa. A section consists of several
blocks and inside a section there are no switches enabling a train to move
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from one track to another, nor to put it on a side-track. South-bound and
north-bound trains compete for the same “resource”, the piece of single
track railway. They are mutually exclusive and only one type {north-
hound or south-bound) of train should be allowed to use the resource. If
the stretch of single track is long enough, and comprises several blocks, more
than one north-bound train can be running on that stretch of track. Now
assume that several north-bound trains are occupying the stretch of single
track and that a south-bound train presents itself at the nothern end of the
stretch. It obviously has to wait, but while it is waiting, do we continue to
allow more north-bound trains into the stretch? This is a matter of priority,
which should be defined for each train. A scheduler should take the priorities
into account and deny the entrance into the stretch for a north-bound train
if the waiting south-bound one has higher priority. As soon as the stretch
has then been emptied of all north-going trains, the south-bound one can
proceed, possibly followed by others.

A similar situation, where two trains may be competing for the same
resource, arises when two tracks, coming from cities A and B, merge into
a single track entering city C. Obviously, if two trains approach the junc-
tion simultaneously, only one can be allowed to proceed, which should be
the one with the highest priority. It should be noted that the priority as-
signed to a train is not necessarily static. It may change dynamically. For
instance, a train running behind schedule, may have its priority increased at
the approach of the junction and allowed to enter city C, before another train
which normally would have had precedence. This latter example illustrates
a synchronization problem: some trains may carry passengers which have to
change trains in city C; the two trains should reach the station of C in the
right order.

We have thus discovered some more ingredients (or concepts) for a real-
time control system: priorities, mutual exclusion, synchronization.

We started off by considering our railway signalling problem being con-
troiled by a single program, which guides all trains through all tracks, junc-
tions and crossings. We have gradually come to have a different look at
the problem: a set of trains, using resources (pieces of railway track), and
sometimes competing for the same resource. We can consider our trains as
independent objects, more or less unaware of the existence of similar objects
and of the competition this may imply. In order to get a resource, every train
must put forward a request to some sort of a master mind (the real-time op-
erating system), who will honour the request, or put the train in a waiting
state.

At this stage, we realize that we better abandon our first version of the
program, because it would have to be rewritten from scratch in any case. We
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have become aware that our particular real-time control system may have
many things in common with other real-time systems and that it would be
advantageous to take profit from the facilities a real-time operating system
offers to solve the problems of mutual exclusion, priorities, etc. Once we have
mastered the use of these facilities, we can build on our experience for the
implementation of another real-time control system. In case we would obsti-
nately continue to adapt our original program, we would probably find, after
months of effort, that we have rewritten large parts of a real-time operating
system, but which have been so intimately interwoven with the application
program, that it will be difficult, if not impossible, to re-use it for the next
application we may be called to tackle.

Other aspects we have not yet considered may also build very nicely on
the foundations laid by a real-time operating system. For instance, we have
the problem of dealing with emergencies. A train may have derailed and
obstructed both tracks. Such an unusual and potentially dangerous situation
must be immediately notified to the operating system which can then take
the necessary measures. If they cannot be notified, a mechanism for detecting
potentially dangerous situations must be devised: in our particular case, the
system should be alerted if a train does not leave its block within a reasonable
time. In other words, a time-out could be detected.

Now that we mentioned time, we are reminded of the fact that time may
play an important role in any real-time system, either in the form of elapsed
time, or of the time of the day. It is difficult to think of a system that could
operate without the help of a clock. A real-time clock and the possibility
to program it to generate a clock interrupt at certain points in time, or after
a given time-interval has elapsed, are therefore indispensable ingredients of
a real-time control system.

Reliability of the entire system is another item for serious consideration.
You certainly do not want a parity error in a disk record to bring your system
to a halt or to create a chain of very nasty incidents.

In many cases, we are not dealing with a closed system, so there must be
a means of communicating with other systems (our national railway network
is connected to other networks, and trains do regularly cross the border).
User-friendly interfaces to human operators, which usually implies the use
of graphics, are also very likely to be an essential ingredient of our real-time
control system. A large synoptic panel, showing where all trains are in the
network, would be the supervisor’s dream, not to speak of makers of science
fiction films.

In the following lectures, we will investigate in more depth the various
features a real-time operating system should provide. Making use of thesc
features will prevent us from re-inventing the wheel.
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The question then arises: which real-time operating system should I use?
There are several on the market: 0S-9000 for Motorola 68000 machines,
and QNX or LynzOS for Intel machines, Solaris for Sparc processors, to
mention only a few of the older ones. These systems are sold together with
the tools necessary to build a real-time application: compiler, assembler,
shell, editor, simulator, etc. A minimum configuration would cost US$
2000-2500, a full configuration may push the price up into the 10 K$ range.
This would cause no problem whatsoever for a railway company, but what
about you?

Another solution is to use a real-time kernel, useful for embedded sys-
tems, which you compile and link into your application. VzWorks, MCX11
and pCOS are examples. They are much cheaper —or practically free:
MCX11 and pCOS %, but you will need a complete development system
in addition. This development system could of course be Linux.

The ideal would be to be able to use Linux for development of a
real-time control system, as well as for running the application. We
will see shortly to what extent this is possible at present. Before proceeding,
however, we will make sure that we understand the fundamental concept of
a process.

3 Processes

In our example we have seen that a real-time system has a number of tasks to
accomplish: besides ensuring that trains could proceed from block to block
without making collisions, we had to log data, keep the data-base up-to-date,
communicate with the operator, cater for emergency situations, etc. Not all
of these tasks have the same priority, of course.

When we analyze a real-time system, we will almost invariably be able
to identify different tasks, which are more or less independent of each other.
“Independent of cach other” really means that each task can be programmed
without thinking too much of the other tasks the system is to perform. At
most there is some intertask communication, but every task does its job
on its own, without requiring assistance from other tasks. If assistance is
required, the operating system should provide it. The system designer should
identify and define the different tasks in such a way that they really are as
independent of each other as possible. Some synchronizetion may be needed:
certain tasks can only run after another task has completed. For instance,
if some calculations have to be done on collected data, the data collection
tasks could be totally separated from the calculation task. In order to make

2RTEMS is a more recent, very complete real-time executive, also available for free.
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sense, the latter should only be executed when the data collection task has
obtained all data necessary for the calculation. This implies that some inter-
task communication is needed here. The true difficulty of dividing the overall
system requirement up into different tasks consists of choosing the tasks
for maximum independence, or —-in other words— for minimum need of
inter-task communication and synchronization.

These various tasks can now be implemented as different programs and
then run as different processes.

What exactly is a process and what is the difference between a program
and a process? A program is an orderly sequence of machine instructions,
which could have been obtained by compilation of a sequence of high-level
programming language statements. It is not much more than the listing
of these statements, which can be stored on disk, or archived in a filing
cabinet. It becomes useful only when it is run on a machine and executing
its instructions in the desired sequence, thus obtaining some result. It is only
useful when it has become a running process.

A process is therefore a running (or runnable) program, together with its
data, stack, files, etc. 1t is only when the code of a program has been loaded
into memory, and data and stack space allocated to it, that it becomes a
runnable process. The operating system will then have set up an entry in
the process descriptor table, which is also part of the process, in the sense
that this information would disappear when the process itself ceases to exist.
The operating system may decide at a certain moment to run this runnable
process, on the basis of its priority and the priorities of other runnable pro-
cesses. This would happen in general when the process that is using the
CPU is unable to proceed — e.g. because it is waiting for input to become
available -, or because the time allocated to it has run out.

We should emphasize that we are considering only the case of a single
processor system, where only one process can run at a time. The other
runnable processes will wait for the CPU to become free again. If the different
processes are run in quick succession, a human observer would have the
impression that these processes are executed simultaneously.

The consequence of this is that we can write a program to calculate
Bessel functions, without having to think at all about the fact that when
we will run our program, there may already be fifty or more other processes
running, some of them even calculating Bessel functions. In as far as we have
written our program to be autonomous, it will not be aware of the existence
of other runnable processes in the computer system., Consequently, it cannot
communicate with the other processes either: its fate is entirely in the hands
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of the operating system?.

There may exist on the disk a general program to calculate Bessel func-
tions and on a general purpose time-sharing computer system several users
may be running this program. A reasonable operating system should then
keep only one copy of the program code in memory, but each user process
running this program should have its own process descriptor, its own data
area in memory, its own stack and its own files. All users of the computer
system will presumably run a shell. Command shells, such as bash or tcsh
are very large programs and it would be an enormous waste if every single
user of a time-sharing system would have his own copy of the shell in memory.

In general, we will have a number of runnable processes in our unipro-
cessor machine, and one process running at a given instant of time. When
will the waiting processes get a chance to run? There are two reasons for
suspending the execution of the running process: either the time-slice allo-
cated to it has been ezhausted, or it cannot proceed any further before some
event happens. For instance, the process must wait for input data to become
available, or for a signal from another process or the operating system, or
it has to complete an output operation first, etc. ‘The programmer does not
have to bother about this. At a given point in the program, where it needs
to have more input data, the programmer simply writes a statement such as:
read(file,buffer,n);. The compiler will translate this into a call to a library
function, which in turn will make a system call, (or service request),
which will transfer control to the kernel. Qur process becomes suspended
for the time the kernel needs to process this system call. In the case of a
read operation on a file, the kernel will set this into motion, by emitting the
necessary orders to the disk controller. As the disk controller will need time
to execute this order, the kernel will decide to block the execution of the
process which was running and which made the system call. This blocked
process will be put in the queue of waiting processes, and it will become
runnable again later, when the disk controller will have notified the kernel
—by sending a hardware interrupt— that the /0 operation has been com-
pleted. The kernel makes use of the scheduler to find, from the queue of
runnable processes the one that should now be run. The kernel will then
make a context switch and this will start our suspended process running.

A context switch is a relatively heavy affair: first all hardware registers
of the old (running) process must be saved in the process descriptor of the
old process. Then the new process must be selected by the scheduler. If the
code and data and stack of the new process are not yet available in memory,

3 And luckily so: the operating system will also provide protection, avoiding that other
processes interfere with ours.
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they must be loaded. In order to be loaded, it may be necessary first to make
room in mermory, by swapping out some memory pages which are no longer
needed or which are rarely used. The page tables must be updated, and the
process descriptors must be modified to reflect the new situation. Finally the
hardware registers of our machine must be restored from the values saved at
an earlier occasion for the process now ready to start running. The last
register to be restored is the program counter. The next machine instruction
executed will then be exactly the one where the new process left off when it
was suspended the last time.

The execution of a program will thus proceed plecemeal, but without
the programmer having to bother about it: the operating system takes care
of everything. So the application programmer can continue to believe that
his program is the only one in the world. The price to be paid for this
convenience is the overhead in time and memory resources introduced by the
intervention of the operating system.

For our Bessel function program we are entirely justified in thinking that
we are alone in the world. There are however situations where this is not the
case and where different processes interfere with each other, either willingly
or unwillingly. Here is my favourite example of such a case of interference?.

Assume that we have three separate bytes in memory which contain the
hour, minutes and seconds of the time of the day. There is a hardware device
which produces an interrupt every second and this will cause the process that
will update these three bytes to be woken up. Any process which wants to
know the time, can access these three memory bytes, one after the other (we
assume that our machine can address only one byte at a time). Now suppose
that it is 10.59.59 and that a process has just read the first byte 107, when
a clock interrupt occurs. As the process that updates the clock has a higher
priority than the running process, the latter is suspended. The clock process
now updates the time, setting it to 11.00.00. Control then returns to the first
process which continues reading the next two bytes. The result is: 10.00.00;
which is one hour wrong. What happened here is that fwo processes access
the same resource — the three memory bytes — and that one or both of
them can alter the contents. No harm would be done if both processes had
read-only access to the shared resource.

The reader should note that the concept of a process has allowed us to
speak about them as if they were really running simultaneously. We do not
have to include in our reasoning the fact that there is a context switch and
that complicated things are going on behind the scenes. We only have to be

*The reader should be aware that the example describes a primitive situation; no
modern operating system would allow this situation to occur.
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aware that access to shared resources must be protected, in order to avoid
that another process accesses the same resource "simultaneously”. On a
multi-processor system "simultaneous” can really mean "at the same instant
in time”, on a uni-processor machine it really means ”concurrently”. The
processor concept is equally valid for a uni- and a multi-processor machine.

The places in the program where a shared resource is accessed are so-
called critical regions. We must avoid that two processes access simulta-
neously the resource and this can be done by ensuring that a process cannot
enter a critical region when another process is already in a critical region
where it accesses the same shared resource. The entrance to a critical region
must be protected with a sort of a lock.

Two operations are defined on such a lock: lock and unlock. The lock
operation tests the state of the lock and if it is unlocked, locks it. The test
and the locking are done in a single atomic operation. If the lock is already
locked, the lock operation will stop the process from entering the critical
region. The unlock operation will simply clear a lock which was locked,
and allow the other process access to the critical region again. That these
operations must be atomic means that it must be impossible to interrupt
them in the middle. Otherwise we would get into awkward situations again.
If the lock operation would not be atomic, we could have a situation where
process 1 inspects the lock and finds it open. If immediately after this,
process 1 gets interrupted, before it had a chance to close the lock, process
2 could then also inspect the lock. It finds that it is open, sets it to closed,
enters the critical region where it grabs the resource (a printer for instance)
and starts using it. Some time later process 1 will run again, it will also close
the lock and it will also grab the same printer and start using it. Remember
that process 1 previously had found the lock to be open and it is unaware
that process 2 has been running in the meantime!

The lock and unlock operations must therefore be completed before an
interruption is allowed. This can be done —primitively-— by disabling inter-
rupts and then enabling them after the operation. No reasonable operating
system would allow a normal user to tinker with the interrupts, so most ma-
chines have a test-and-set instruction. The test-and-set instruction tests a
bit and sets it to "one” if it was "zero”. If it was already "one” it is left un-
changed. The result of the test (i.e. the state of the bit before the test-and-set
instruction was executed is available in the processor status word and can
be tested by a subsequent branch instruction. The test-and-set instruction
is a single instruction; a hardware interrupt arriving during the execution of
the instruction will be recognized only after the execution is complete. This
guarantees the atomicity of a test-and-set operation.

What do we do after the test-and-set instruction? If the lock was open,
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vou can safely enter the critical region. If. on the contrary, process A finds the
lock closed, it should go to sleep. The operating system will then suspend the
execution of process A and schedule another process to run, say C, or E. The
process B, which had closed the lock in the first place, will also be running
again at some instant and eventually will unlock the lock and wakeup® the
sleeping process A. The system will then make process A runnable again.

Now suppose that process A gets interrupted immediately after doing
its — unsuccessful — lock operation and before it could execute the sleep()
call. Process B will at some stage open the lock and wakeup A. As A is not
sleeping, this wakeup is simply lost. When A will run again, it will truely go
to sleep, this time forever.

The solution to the problem was given in 1965 by Dijkstra, when he
defined the semaphore. A semaphore can count the number of such “lost
wakeups”, without trying to wake up a process that is not sleeping. It can
therefore only have a positive value, or "0”. Two atomic operations are
defined on a semaphore, which we will call up and down®. Once an operation
on a semaphore is started, no other process can access the same semaphore.
Thus atomicity of a semaphore operation is guaranteed. The work done
for a down (and similarly for an up) operation must therefore be part of the
operating system and not of a user process. The down operation checks the
value of the semaphore. If it is greater than zero, it decrements the value
and the calling process just continues execution. On the contrary, If the
down operation finds that the semaphore value is zero, the calling process
is put to sleep. The up operation on a semaphore increments its value. If
one or more processes were sleeping, one of them is selected by the operating
system. The selected process will then be allowed to run can now complete
its down, which had failed earlier. Thus, if the semaphore was positive, it will
simply be incremented, but if it was ”"0” — meaning that there are processes
sleeping on it — its value will remain ”0”, but there will be one process less
sleeping.

We have described the general form of a semaphore: the counting sema-
phore, which is used to solve synchronization problems, ensuring that
certain events happen in the correct order. A binary semaphore can only
take the values ”0” or ”1” and is particularly suited for solving problems of
mutual exclusion, which explains its other name: mutex.

To illustrate the use of mutexes and counting semaphores we show an
example of the Producer-Consumer problem. Suppose we have two col-

®Process B itself does not directly wakeup A, of course. The operating system takes
care of doing it.

SVarious other names are also used: post and signal, P and V (the original names given
by Dijkstra}, and possibly others. For mutexes, lock and unlock are often used.
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laborating processes: a producer which produces items and puts them in a
buffer of finite size, and a consumer which takes items out of the buffer and
consumes them. A data acquisition system which writes the collected data
to tape is a good example of a producer-consumer problem. Ii is clear that
the producer should stop producing when the buffer is full; likewise, the con-
sumer should go to sleep when the buffer is empty. The consumer should
wake up when there are again items in the buffer and the producer can start
working again when some room in the buffer has been freed by the consumer.

#define N 100 /* number of slots in buffer */

typedef int semaphore; /* this is NOT POSIX !! */

semaphore mutex=1; /* controls access to critical region */
semaphore empty=N; /* counts empty buffer slots */
semaphore full=0; /* counts full buffer slots*/

void producer(void)

{

int item;

while (TRUE) { /* do forever (TRUE=1) #*/
produce_item(&item); /* make something to put in buffer */
down (&empty) ; /* decrement empty count */
down (&mutex) ; /* enter critical region */
enter_item(&item); /* put new item in buffer */
up (§mutex) ; /* leave critical region */
up (&full); /* increment count of full slots */

}
}

void consumer(void)

{

int item;

while (TRUE) { /* do forever */
down (&full); /* decrement full count */
down (&mutex); /* enter critical region */
remove_item(&item) ; /* take item from buffer */
up (gmutex) ; /* leave critical region */
up (&empty) ; /* increment count of empty slots */
consume_item(&item) /* use the item */
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In order to obtain this synchronization between the two processes, two
counting semaphores are used: full which is initialized to 0" and counts the
buffer slots which are filled, and empiy, initialized to the size of the buffer and
which counts the empty slots. Access to the buffer, which is shared between
the two processes, is protected by a mutex, initially ”1” and thus allowing ac-
cess. The example is taken from Andrew Tanenbaum’s excellent book”. The
reader should study carefully the listing of the Producer-Consumer problem
on the previous page. He should be aware that the example is simplified:
instead of two processes and a buffer structure in shared memory, the listing
shows two functions, using global variables. Also the semaphores are not ex-
actly what the standards prescribe. Using semaphores and mutexes remains
a difficult thing: changing the order of two down operations in the listing
below may result in chaos again.

4 What is wrong with Linux?

UNIX has the bad reputation of not being a real-time operating system. This
needs some explanation. Time is an essential ingredient of a real-time system:
the definition says that a real-time system must respond within a given time
to an external stimulus. Theoretically, it is not possible to guarantee on
a general UNIX time-sharing system that the response will occur within a
specified time. Although in general the response will be available within a
reasonable time, the load on the system cannot be predicted and unexpected
delays may occur. It would be a bad idea to try and run a time-critical real-
time application on an overloaded campus computer. Nevertheless, before
discarding altogether the idea of using UNIX or Linux as the underlying
operating system for a real-time application, we should have a critical look
at what the requirements really are, to what extent they are satisfied by off-
the-shelf Linux, and what can be done (or has been done already) to improve
the situation.

The UNIX and Linux schedulers have been designed for time-sharing
the CPU between a large number of users (or processes). It has been designed
to give a fair share of the resources, in particular of CPU time, to all of
these processes. The priorities of the various processes are therefore adjusted
regularly in order to achieve this. For instance, the numerical analyst who
runs CPU-intensive programs and does practically no I/O, will be penalized,

"Andrew 8. Tanenbaum, Modern Operating Systems, Prentice Hall International Edi-
tions, 1992, ISBN 0-13-595752-4. The reader is encouraged to read the chapter on Interpro-
cess Communication, which provides a much more detailed treatment of synchronization
problems than is possible here.
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to avoid that he absorbs all the CPU time.

Such a scheduling algorithm is not suitable for running a real-time appli-
cation. If the operating system would decide that this particularly demand-
ing application had consumed a sufficiently large portion of the available
CPU time, it would lower its priority and the application might not be able
anymore to meet its deadlines.

A real-time application must have high priority and — in order to be
able to meet its deadlines — must run whenever there is no runnable program
with a higher priority. In practice, the real-time process should have the
highest priority, and it should keep this highest priority throughout its entire
life®. Another scheduling algorithm is therefore required: a certain class
of processes should be allocated permanently the highest priorities defined
in the system. The normal scheduler of Linux did not have this feature,
but another scheduler, designed for mixed time-sharing and real-time use is
available and is usually compiled into the kernel.

Time being a precious resource for a real-time system, overheads imposed
by the operating system should be avoided as much as possible. Some of the
overheads can be avoided by careful design of the real-time program. For
instance, knowing that forking a new process is a time-consuming business,
all processes which the real-time application may need to run, should be
forked and exec’ed (the fork and ezec system calls will be illustrated in
section 5) during the initielization phase of the application. Other overheads
cannot be avoided so simply and need some adaptation or modification of
the operating system.

Context switches may be very expensive in time, in particular when the
code of the new process to be run is not yet available in memory and/or
when room must be made in memory. All code and data of a real-time
application should be locked into memory, so that this part of a context
switch would not cause a loss of time. Locking everything into memory will
also prevent page faults to happen, avoiding this way other memory swapping
operations. Originally Linux did not have the possibility of locking processes
into memory, but again, memory locking is now compiled into all recent
kernels.

A further help in reducing the overheads due to context switches is to use
so-called light-weight processes or multi-threaded user processes. Linux
as such does not provide these, but library implementations do ezist to im-
plement the standard POSIX pthreads.

1t would be wise to run a shell with an even higher priority, in order to be able to
intervene when the real-time process runs out of hand. This shell would be sleeping, until
it gets woken up by a keystroke.
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Other places where to watch for lurking losses of time are Input/Output
operations. Normally, when a file is opened for writing, an initial block of disc
sectors 1s allocated — usually 4096 bytes — and inodes and directory entries
are updated. When the file grows beyond its allocated size, the relatively
lengthy process of finding another free block of 4096 bytes and updating
inodes and directory entries is repeated. A real-time system should be able
to grab all the disc space it needs during initialization, so that these time
losses may be avoided. Linux does not allow this at present.

Allinput and output in Linux is synchronous. This means that a process
requesting an I/0O operation will be blocked until the operation s complete
{or an error is returned). Upon completion of the operation, the process
becomes runnable again and it will effectively run when the scheduler decides
so. However, “completion” of an output operation means only that the data
have arrived in an output buffer, and there is no guarantee that the data,
have really been written out to tape or disc. When the process is only
notified of completion of the I/O operation when the data are really in their
final destination, we have synchronized 1/0, which may be a necessity for
certain real-time problems. Linux does not spontaneously do synchronized
1/0, but it can be easily imposed by using sync or Sfsync.

Asynchronous 1/0 may be another real-time requirement. It means
that the process requesting the I/O operation should not block and wait for
completion, but continue processing immediately after making the [ /O system
call. The standard device drivers of Linux do not work asynchronously, but
the primitive system calls allow the option of continuing processing. A special
purpose device driver could make use of this and thus do asynchronous /0.
The process will then be notified with an interrupt when the 1/O operation
has been completed.

The designer of a real-time system should of course also be aware that
no standard device drivers exist for exotic® devices. They have to be written
by the application programmer. In a standard UNIX system, such a new
device driver must be compiled and linked into the kernel. Linux has a very
nice feature: it allows to dynamically load and link to the kernel so-called
modules, which can be — and very often are — device drivers.

We have shown before that it would be wise to divide a real-time SYS-
tem up into a set of processes, which can each care for their own business,
without excessively interfering with each other. Nevertheless, some commu-
nication between processes may be needed. Qld UNIX systems had only
two interprocess communication mechanisms: pipes and signals. Signals

“With exotic I really mean very weird non-standard devices. The list of devices Sup-
ported by Linux is indeed incredibly long!
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have a very low information content, and only two user definable signals
exist. System V UNIX added other IPC mechanisms: sets of counting
semaphores, message queues, and shared memory. Most Linux kernels
have the System V IPC features compiled in.

Probably no real-time system could live without a real-time clock and
interval timers. They do exist in off-the-shelf systems, but the resolution,
usualy 1/50 th or 1/100 th of a second, may not be enough. The user-threads
package can work with higher resolutions, if the hardware is adequate.

The IEEE has made a large effort to standardize the user interface to
operating systems. The result of this effort has been the POSIX 1003.1a
standard, which defines a set of system calls, and POSIX 1003.1b, which de-
fines a standard set of Shell commands. Both were approved by IEEE and by
SO and thus gained international acceptance. Also real-time extensions
to operating systems have been defined in the POSIX 1003.1c-1994
standard, which has also been accepted by ISO. All the points discussed
above are part of this POSIX 1003.1c standard, except for the multiple
threads and mutexes, which are defined in a later extension. To
the best of my knowledge, the so-called “pthreads” are now also an part
of the international standard. Linux is POSIX 1003.1a and .1b compliant,
although it may not have been officially certified.

In summary, Linux used to be weak on the following, and may still be on
a few items:

¢ Mutexes. A simple mutex did not exist in the original Linux ker-
nel. The System V IPC semaphores can be used, although they are
overkill, introducing a large overhead. Atomic bit operations are de-
fined in asm/bitops.h and can be used more easily, but care should be
exercised (danger of priority inversion). Mutexes are defined in the
pthreads package. They will work between user threads inside a sin-
gle process, and for some implementations also between threads and
another process.

e Interprocess Communication. System V IPC is usually part of
the Linux kernel and adds counting semaphores, message queues and
shared memory to the usual mechanisms of pipes and of signals.

¢ Scheduling. A POSIX 1003.1c compliant scheduler for Linux exists
and is part of the kernel in most Linux distributions.

e Memory Locking. Memory locking is part and parcel of the more
recent Linux kernels (at least above 2.0.x and maybe earlier).

Sixth College on Microprocessor-based Real-time Systems in Physics 21
Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 200C.




Toward Real-time Linux Verkerk, Catharinus

¢ Multiple User Threads. A few librarv implementations exist. The
more recent Linux distributions have Leroy’s Pthread library, which
makes use of a particular feature of Linux: the “clone” system call. Tt
is entirely compliant with the POSIX standard. You will scon get into
close contact with it.

e Synchronized I/0. Can be obtained easily with sync and fsync.

® Asynchronous I/0O. Not available in standard device drivers. Could
be implemented for special purpose device drivers.

e Pre-allocation of file space. Not available to my knowledge.

e Fine-grained real-time clocks and interval timers. They are part
of the available pthreads packages and could be used if the hardware
is capable.

95 Creating Processes

Creating a new process from within another process is done with the fork()
system call. fork() creates a new process, called the child process, which
s an exact copy of the original (parent) process, including open files, file
pointers etc. Before the fork(} call there is only one process; when the Jork()
has finished its job, there are two. In order to deal with this situation, fork()
returns twice. To the parent process it returns the process identification
(PID) of the child process, which will allow the parent to communicate later
with the child. To the child process it returns a 0. As the two processes are
exact copies of each other, an if statement can determine if we are executing
the child or the parent process.

‘There is not much use of a child process which is an exact copy of its
parent, so the first thing the child has to do is to load into memory the
program code that it should execute and then start execution at main().
A child is obviously too inexperienced to do this on its own, so there is a
system call that does it for him: ezecl(). The entire operation of creating a
new process therefore goes as follows:

/* here we have been doing things */
child=fork(); /* PID of new process --> child */
if (child){ /* here for parent process */
/*continue parent’s business*/
}

else { /* here for child process */
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execl("/home/boss/rtapp/toggle_rail_signal",\

"toggle rail.signal", N_sigs, NULL);
perror{"execl”); /* here in case of error */
exit(1);

}

/* here continues what the parent was doing */

ezecl() will do what was described above, so in our example it will load the
executable file /home/boss/rtapp/toggle_rail signal and then start execution
of the new process at main(arge,argu). The other arguments of execl() are
passed on to main(). ezecl is one of six variants of the exec system call: evec/,
execy, execle, execve, eveclp, execvp. They differ in the way the arguments
are passed to main{): | means that a list of arguments is passed, v indicates
that a pointer to a vector of arguments is passed. e tells that environment
pointer of the parent is passed and the letter p means that the environment
variable PATH should be used to find the executable file.

This completes the creation of a new process. On a single CPU machine,
one of the two processes may continue execution, the other will wait till the
scheduler decides to run it. There is no guarantee that the parent will run
before the child or vice versa.

The new process can erit() normally when it has done its job, or when
it hits an error condition. The parent can wait for the child to finish and
then find out the reason of the child’s death by executing one of the following
system calls:

pid_t wait(int *status); /* wait for any child to diex/
or: pid_t waitpid(pid-t which, int *status, int options)
/* wait for child "which" to die */

These wait calls can be useful for doing some cleaning-up and to avoid
leaving zombies behind. When the parent process exits, the system will do
all the necessary clean-up, childs included.

We can now understand what the shell does when we type a command,
such as cp filel dir. The shell will parse the command line, and assume that
the first word is the name of an executable file. It will then do a fork(),
creating a copy of the shell, followed by an ezecl() or ezecv() which will
load the new program, in our example the copy utility cp. The rest of the
command line is passed on to cp as a list or as a pointer to a vector. The
shell then does a wait(). When an & had been appended to the command
line, then the shell will not do a wait, but will continue execution after return
from the exec call.
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The following gives a more complete and rather realistic example of a
terminal server and a client'®. The reader is invited to study this example
in detail.

The code for the server looks like:

#define POSIX_C_SOURCE 199309

#include <unistd.h>

#include <stdio.h>

#include <sys/types.h>

#include <sys/wait.h>

#include <signal.h>

#include <errno.h>

#include "app.h" /* local definitions */

main{int argc, char **argv)
request_t r;
pid-t terminated;
int status;

init_server(); /* set things up * /

do {
check _for_exited_children{();
r = await.request(); /*get some inputx/
service.request(r); /*do what wantedx/
send reply(r); /*tell we did it*/
} while (r !'= NULL);

shutdown server(); /*tear things down*/
exit(0);

void
service request(request_t r)

{
pid-t child;
switch (r->r_op) {

'%the example is taken from Bill O. Gallmeister, POSIX 4, Programming for the Real
World, O’Reilly, 1995,

Sixth College an Microprocessor-based Real-time Systems in Physics 24
Abdus Salam ICTP, Trieste, Italy. October 9 - November 3, 2000.




Toward Real-time Linux Verkerk, Catharinus

case OP_NEW:

/* Create a new client process */

child = fork();

if (child) {
/% parent process */
break;

} else {
/* child process */
execlp(“terminal","terminal \
application","/dev/com1" ,NULL);
perror("execlp");

exit(1);
}
break;
default:

printf ("Bad op %d\n", r->r op),
break;

}

return;

The terminal end of the application looks like:

#include <unistd.h>

#include <stdio.h>

#include <sys/types.h>

#include <sys/wait.h>

#include <signal.h>

#include "app.h" /% local definitions */

char *myname;

main(int argc, char **xargv)
{
myname = argv[0];
printf ("Terminal \"%s\" here!", myname);
while (1) {
/* deal with the screen */
/* await user input */
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exit (0);

Presumably request_t is defined in app.h as a pointer to a structure.
await_request() is a function which sleeps until a service request arrives from a
terminal. The operations performed by the other functions: init_server, ser-
vice_request(), check _for_exited_children(), send_reply() and shutdown_server()
are implied by their names.

6 Interprocess Communication

In the case where we have a real-time application with a number of pro-
cesses running concurrently, it would be a normal situation when some of
these processes need to communicate between them. We said already that
the classical UNIX system only knows pipes and signals as communication
mechanisms. Interprocess communication, suitable for real-time applications
is an essential part of the POSIX standard, which adds a number of mech-
anisms to the minimal UNIX set. In the following we will briefly describe
the various IPC mechanisms and how they can be invoked. We will follow
as much as possible the POSIX standard, except where the facilities are not
implemented in Linux. In that case we will describe the mechanism Linux
makes available.

6.1 UNIX and POSIX 1003.1a Signals

The old signal facility of UNIX is rather limited, but it is available on every
implementation of UNIX or one of its clones. Originally, signals were used
to kill another process. Therefore, for historical reasons, the system call by
which a process can send a signal to another process is called kill(). There is
a set of signals, each identified by a number (they are defined in <signal.h>),
and the complete system call for sending a signal to a process is:
kill(pid_t pid, int signal);

The integer signal is usually specified symbolically: SIGINT, SIGALRM or
SIGKILL, etc., as defined in <signal.h>. pid is the process identification of
the process to which the signal shall be sent. If this receiving process has not
been set up to intercept signals, its ezecution will simply be terminated
by any signal sent to it. The receiving process can however be set up to
intercept certain signals and to perform certain actions upon reception of
such an intercepted signal. Certain signals cannot be intercepted, they are
just killers: SIGIN'T, SIGKILL are examples. In order to intercept a signal,
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the receiving process must have set up a signal handler and notified this to
the operating system with the sigaction() system call. The following is an
example of how this can be done:

A structure sigaction (not to be confounded with the system call of the
same name!) is defined as follows:

struct sigaction {
void (*sa_handler) (};
sigset_t sa. mask;
int sa_flags;
void(*sa_sigaction) (int,siginfo t *,void *); }i

This structure encapsulates the action to be taken on receipt of a signal.

The following is a program that shall exit gracefully when it receives the
signal SIGUSRI. The function terminate_normally() is the signal handler.
The administrative things are accomplished by defining the elements of the
structure and then calling sigaction() to get the signal handler registered by
the operating system.

void
terminate normally(int signo)
{
/* Exit gracefully */
exit(0);

}

main(int argc, char **argv)
{
struct sigaction sa;
sa.sa_handler = terminate_normally;
sigemptyset (ksa.sa_mask);
sa.sa_flags = 0;
if (sigaction(SIGUSR1, &sa, NULL)) {
perror("sigaction");
exit(1);

The operating system itself may generate signals, for instance as the
result of machine exceptions: floating point exception, page fault, etc. Signals
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may also he generated by something which happens asynchronously with
the process itself. The signals then aim at interrupting the process: 1/0
completion, timer expiration, receipt of a message on an empty message
queue, or typing CTRL-C or CTRL-Z on the keyboard. Signals can also be
sent from one user process to another.

The structure sigaction does not only contain the information needed to
register the signal handler with the operating system (in the process descrip-
tor), but it also contains information on what the receiving process should
do when it receives the registered signal. It can do one of three things with
the signal:

— 1t can block the signal for some time and later unblock it.
— 1t can ignore the signal, pretending that nothing has happened.
— it can handle the signal, by executing the signal handler.

The POSIX.1 signals, described so far, have some serious limitations:
— there is a lack of signals for use by a user application (there are only two:
SIGUSRI and SIGUSR2).
— signals are not queued. If a second signal is sent to a process before the
first one could be handled, the first one is simply and irrevocably lost.
— signals do not carry any information, except for the number of the signal.
-~ and, last but not least, signals are sent and received asynchronously. This
means in fact that a process may receive a signal at any time, for instance
also when it is updating some sensitive data-structures. If the signal handler
will also do something with these same data-structures, you may be in deep
trouble. In other words, when you write your program, you must always keep
in mind that you may receive a signal exactly at the point where your pencil
is.

Linux is compliant with this POSIX 1003.1a definition of signals.

6.2 POSIX 1003.1c signals

From the description above, we have seen that the POSIX 1003.1a signals
are a rather complicated business (in UNIX jargon this is called flexibility).
The POSIX 1003.1c extensions to the signal mechanism introduces even more
flexibility. POSIX 1003.1c really defines an entirely new set of signals, which
can peacefully co-exist with the old signals of POSIX 003.1al. The historical
name kill() is replaced by the more expressive sigqueue().

The main improvements are:
- a far larger number of user-definable signals.
- signals can be queued; old untreated signals are therefore not lost.
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- signals are delivered in a fixed order.
- the signal carries an additional integer, which can be used to transmit more
information than just the signal number.

POSIX 1003.1c signals can be sent automatically as a result of timer
erpiration, arrival of @ message on an empty queuve, Or by the completion of
an asynchronous 1/0 operation. Unfortunately, the POSIX 1003.1c signals
may not be part of Linux, so we will not dwell on them any further.

6.3 pipes and FIFOs

Probably one of the oldest interprocess communication mechahisms is the
pipe. Through a pipe, the standard output of a program is pumped into
the standard input of another program. A pipe is usually set up by a shell,
when the pipe symbol ( | ) is typed between the names of two commands.
The data flowing through the pipe is lost when the two processes cease to
exist. For a named pipe, or FIFO (First In, First Qut), the data remains
stored in a file. The named pipe has a name in the filesystem and its data
can therefore be accessed by any other process in the system, provided it has
the necessary permissions.

A running process can set up a pipe to communicate with another process.
The communication is uni-directional. If duplex communication is needed,
two pipes must be set up: one for each direction of communication. The two
“ends of a pipe” are nothing else than file descriptors: one process writes
into one of these files, the other reads from the other.

Setting up a pipe between two processes is not a terribly straightforward
operation. It starts off by making the pipe() system call. This creates two file
descriptors, if the calling process still has file descriptors available. One of
these descriptors (in fact the second one) concerns the end of the pipe where
we will write, the other descriptor (the first one) is attached to the opposite
end, where we will read from the pipe. If we now create another process, this
newly created process will inherit these two file descriptors. We now must
make sure that both parent and child processes can find the file descriptors
for the pipe ends. The dup? system call will in fact do this, by duplicating
the “abstract” file descriptors pipe_ends(0] and pipe_ends[1] into well-known
ones. dup2 copies a file descriptor into the first available one, so we should
close first the files where we want the pipe to connect (usually standard out
for the process connected to the writing end and standard in for the process
which will read from the pipe). Here is a skeleton program for doing this in
the case of a terminal server, which forks off a terminal process to display
messages from the server:
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/* First create a new client %/
if (pipe(pipe_ends) < 0) {
perror ("pipe");
exit (1);

}

global_child=child=fork();
if (child) {
/*here for parent process*/
do_something();
}
else {
/*here for the child*/
/* pipe ends will be 0 and 1 (stdin and stdout) */
(void)close(0);
(void)close(1);
if (dup2(pipe_ends[0], 0) < 0)
perror ("dup2");
if (dup2(pipe.ends([1], 1) < 0)
perror("dup2");
(void)close(pipe_ends[0]);
(void)close(pipe_ends[1]);
execlp(CHILD_PROCESS, CHILD_PROCESS, "/dev/coml", NULL);
perror("execlp");
exit(1);

The terminal process, created as the child could look:
#include <fcntl.h>

char buf [MAXBYTES]

/* pipe should not block, to avoid waiting for input */
if (fentl(channel from server, F SETFL, O_NONBLOCK) < 0){
perror("fcntl"):
exit(2);
}
while (1) {
/* Put messages on the screen */
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/* check for input from the server */
nbytes = read (channel_from server, buf, MAXBYTES);
if (nbytes < 0) &% (errno != EAGAIN))
perror("read");
else if (nbytes > 0) {
printf ("Message from the Server: \"%s\"\n", buf);

In this example!, the server process simply writes to the write end of
the pipe (which has become stdout) and the child reads from the other end,
which has been transformed by dup2 into stdin. To set up a communication
channel in the other direction as well, the whole process must be repeated,
inverting the roles of the server and the terminal client (the first becomes the
reader, and the second the writer) and using two other file descriptors (for
instance 3 and 4 if they are still free). Note that the dup calls must be made
before the child does its exec call, otherwise, the file descriptors for the two
pipe ends would be lost.

The use of named pipes is simpler: the FIFO exists in the file system and
any process wanting to access the file can just open it. One process should
open the FIFO for reading, the other for writing. A FIFO is created with
the POSIX 1003.1a mkfifo() system call.

6.4 Message Queues

When we have compiled the System V IPC facilities into the Linux kernel,
we have message queues available, which however do not conform to the
POSIX 1003.1¢ standard. We will nevertheless describe them briefly, as they
are the only ones we have at present.

In system V the message resource is described by a struct msqid _ds,
which is allocated and initialized when the resource is created. It contains
the permissions, a pointer to the last and the first message in the queue,
the number of messages in the queue, who last sent and who last received a
message, etc. The messages itself are contained in:

struct msgbuf {
long mtype;
char mtext[1]; }

U'Which was also taken from Gallmeister’s book.
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To set up a message queue, the creator process executes a msgget system
call:
msqid = msgget(key t key, int msgflg);
The msqid is a unique identification of the particular message queue which
ensures that messages are delivered to the correct destination. The exact
role of the key is complicated; in most cases the key can be chosen to be
IPC_PRIVATE. The use of IPC_.PRIVATE will create a new message queue
if none exist already. If you want to do unusual things or make full use of
the built-in flextbility, you may fabricate your own key with the ftok(char*
pathname, char proj) library call and play with msgflg.

A process wanting to receive messages on this queue must also perform a
msgget call, in order to obtain the msqid.

A message is sent by executing:
int msgsnd(int msqid,struct msgbuf *msgp,int msgsz, \
int msgflg);
and similarly a message is received by:
int msgrcv(int msqid, struct msgbuf *msgp, int msgsz, \
long msgtyp, int msgflg);
msgtyp 1s used as follows:

if msgtyp = 0 : get first message on the queue,
> 0: get first message of matching type,
< 0 : get message with smallest type which is <abs(msgtyp).

Finally, the msgctl calls allow you to get the status of a queue, modify
its size, or destroy the queue entirely.

The message queue can be empty. If a message is sent to an empty queue,
the process reading messages from the queue is woken up. Similarly, when
the queue is full, a writer trying to send a message will be blocked. As soon
as a message is read from the queue, creating space, the writer process is
woken up.

6.5 Counting Semaphores

System V semaphore arrays are an oddity. The semget call allocates
an array of counting semaphores. Presumably, and hopefully, the array
may be of length 1. You also specify operations to be performed on a series
of members of the array. The operations are only performed if they will all
succeed!

Counting semaphores can be useful in producer-consumer problems,
where the producer puts itcms in a buffer and the consumer takes items away.

Sixth College on Microprocessor-based Real-time Systems in Physics 32
Abdus Salam ICTP, Trieste, Italy. Octeber 9 — November 3, 2000,

D | o Ui . O




Toward Real-time Linux Verkerk, Catharinus

Two counting semaphores keep track of the number of items in the buffer
and allow to “gracefully” handle the buffer empty and buffer full situations.

Producer-consumer situations can easily arise in a real-time application:
the producer collects data from measuring devices, the consumer writes the
data to a storage device (disk or tape).

Another example is a large paying car park: There is one counting sema-
phore which is initialized to the total number of places in the car park. A
separate process is associated with each entrance or ezit gate. The process
at an entrance gate will do a wait on the semaphore, e.g. decrement
it. If the result is greater than zero, the process will continue, issue a ticket
with the time of entrance, and open the gate. It closes the gate as soon as it
has detected the passage of the car. If the value of the counting semaphore
is zero when the decrement operation is tried, the process is blocked and
added to the pile of blocked processes. This is just what is needed: the car
park is full and the car will have to wait, so no ticket is issued, etc.

The processes at the exit gates do the contrary: after having checked the
ticket, they open the gate and then do a post or increment operation on the
semaphore, effectively indicating that one more place has become free. This
operation will always succeed.

The System V counting semaphore mechanism is rather similar to the
message queue business: You create a semaphore (array) as follows:
int semid = semget(key_t key, int nsems, int semflg) ;

The key IPC_PRIVATE behaves as before. All processes wanting to use
the semaphore must execute this semget call. You can then operate on the
semaphore:

int semop{int semid, struct sembuf #*sops, unsighed nsops) ;

(here is the oddity, you do nsops operations on nsops members of the array;
the operations are specified in an array of struct sembuf). This structure 18
defined as:

struct sembuf
ushort sem.num; /*index in array*/
short sem_op; /*operation*/
short sem_flg /*operation flags*/

Two kinds of operations can result in the process getting blocked:
i) If sem_op is 0 and semval is non-zero, the process sleeps on a queue,
waiting for semval to become zero, or returns with error EAGAIN if either
of (IPC_.NOWAIT | sem_flg) are true.
i) If (sem_op < 0) and (semval + sem.op < 0}, the process either sleeps
on a queue waiting for semval to increase, or returns with error EAGAIN if
(sem_flg & IPC_NOWAIT) is true.
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Atomicity of the semaphore operations is guaranteed, because
the mechanism is embedded in the kernel. The kernel will not allow two
processes to simultaneously use the kernel services. In other words, a system
call will be entirely finished before a context switch takes place.

Note: If you want to use a semaphore which takes only the values 0 or 1
(for instance for mutual exclusion), you are better off by using the atomic bit
operations, defined in <asm-i386/bitops.h>: test_bit, set_bit and clear_bit.

6.6 Shared Memory

Shared Memory is exactly what its name says: two or more processes access
the same area of physical memory. This segment of physical memory is
mapped into two or more virtual memory spaces.

Shared Memory is considered a low-level facility, because the shared seg-
ment does not benefit from the protection the operating system nor-
mally provides. To compensate for this disadvantage, shared memory 1is
the fastest IPC mechanism. The processes can read and write shared
memory, without any system call being necessary. The user himself must pro-
vide the necessary protection, to avoid that two processes “simultaneously”
access the shared memory. This can be obtained with a binary semaphore
or mutex.

A mutex can be simulated by performing the set_bit(int nr, void * addr)
call, which sets the desired bit nr and returns the old value of the bit. The
short integer on which this operation is performed must also reside in shared
memory, in order to be accessible by both processes.

The shared memory facility available in Linux comes from System V, and
is may therefore be not conforming to POSIX.1c. The related system calls
are similar to the System V calls we have already seen:

There is, of course, a shared memory descriptor, struct shmid_ds.
Shared memory is allocated with the system call:
shmid = shmget(key t key, int size, int shmflg);

The size is in bytes and should preferably correspond to a multiple of the

page size (4096 bytes). All processes wanting to make use of the shared

memory segment must make a shmget call, with the same key.

Once the memory has been allocated, you map it into the virtual memory

space of your process with:

char *virt_addr;

virt addr = shmat(int shmid, char *shmaddr, int shmflg) ;
shmaddr is the requested attach address:

if it is 0, the system finds an unmapped region;
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if it is non-zero. then the value must be page-aligned.
By setting shmfle = SHM_RDONLY you can request to attach the segment
read-only.

You can get rid of a shared memory segment by:
int shmdt(char #*virt_addr);

Finally, there is again the shmct! call, which you may use to get the status,
or also to destroy the segment (a shared segment will only be destroyed after
all users have detached themselves).

If you are using shared memory, and you need malloc as well, you should
malloc a large chunk of memory first, before you attach the shared memory
segment. Otherwise malloc may interfere with the shared memory.

A word about the Linux implementation of the System V IPC mechanisms
is in order. All System V system calls described above make use of a single
Linux system call: ipe(). A library of the system V IPC calls is available,
which maps each call and its parameters into the Linux ipc() call. An example
is:

int semget (key.t key, int nsems, int semflg)

{
}

return ipc (SEMGET, key, nsems, semflg, NULL);

The constants are defined in <linux/ipc.h>

7 Scheduling

The original scheduling algorithm of Linux aimed at giving a fair share
of the resources to each user. It therefore was a typical time-sharing
scheduler. A time-sharing scheduler is based on priorities, like any other
type of scheduler, but the system keeps changing the priorities to attain its
aim of being fair to everyone.

For timne-critical real-time applications you want another sort of scheduler.
You need a high priority for the most critical real-time processes, and
a scheduler which will run such a high priority process whenever no process
with higher priority is runnable'”.

Less critical processes of the real-time application can run at lower pri-
orities and other user jobs could also be fitted in at priorities below.

2Remember that you need a sleeping shell at a still higher priority.
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SVRE (System V, Release 6) has a scheduler that does both time-sharing
and real-time scheduling, depending on the priority assigned to a process.
Critical processes run at priorities between, say, 0 and 50, and benefit from
the priority scheduling. Other jobs run at lower priorities and have to accept
the time-sharing scheduler. This aspect of Systermn V has not been ported to
Linux.

A POSIX.1c compliant scheduler has been ported to Linux. In order to
make use of it, you must make patches to the kernel code and recompile the
kernel together with this POSIX.1c scheduler. At the time these notes were
prepared, we had not yet had a chance to try it.

The advantage of a POSIX.1c scheduler is, of course, that your application
program will be portable between different platforms.

What does a POSIX.1c scheduler do? Here is what it provides'3:

#include <unistd.h>
#ifdef _POSIX_PRIORITY_SCHEDULING
#include <sched.h>

int i, policy;
struct sched_param *scheduling parameters;
pid_t pid;

sched.setscheduler(pid.t pid, int policy, \
struct sched param *scheduling parameters);
int sched_getscheduler(pid_t pid);
int sched_getparam(pid t pid, \
struct sched param *scheduling parameters);
int sched_setparam(pid_t pid,
struct sched param *scheduling parameters);
int sched_yield(void);
int sched_get_priority_min(int);
int sched_get_priority.max(int);
#endif POSIX_PRIORITY_SCHEDULING

You see that you define a scheduling "policy”. You have a choice:

SCHED_FIFQO: pre-cmptive, priority-based scheduling,
SCHED_RR: pre-emptive, priority-based with time quanta,
SCHED_OTHER: implementation dependent scheduler.

With the first choice, the process will run until it gets blocked for one
reason or another, or until o higher priority process becomes runnable. The

13 Again from Gallmeister’s book.
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second policy adds a time quantum: a process running under this schedul-
ing policy will only run for a certain duration of time. Then it goes back to
the end of the queue for its priority {each priority level has its own queue).
Thus, at a given priority level, all processes in that level are scheduled round-
robin. In future, deadline scheduling will probably have to be added as
another choice.

There is a range of priotities for the FIFO scheduler and another range
for the RR scheduler.

After a fork(), the child process inferits the scheduling policy and the
priority of the parent process. If the priority of the child then gets in-
creased above the priority of the running process, the latter is immediately
pre-empted, even before the return from the sched_setparam call! So be care-
ful, you may seriously harm yourself.

On the other hand, you may "yield” the processor to another process.
You cannot really be sure which process this is going to be. As a matter of
fact, the only thing yield does, is to put your process at the end of the queue
at your particular priority level.

All this is nice, but we are still stuck with the fact that the kernel itself
cannot be pre-empted. This is usually not too much of a problem. Most of
the system calls will take only a short time to execute.

Usually, the system calls that may take a considerable time (such as
certain 1/0 related calls), should be relegated — as far as possible — to
those tasks that Tun at a lower priority level. Also some common sense will
help: it is much faster to write once 512 bytes to disk than to write 512 times
a single byte!

Other system calls do take a long time. fork and exec for example. You
should therefore create all necessary processes during the initialization
phase of your application. Let the processes that you only need sporadically
just sleep for most of the day.

8 Timers

You may want to arrange for certain things to happen at certain times, or
a given time interval after something else happened. So you will nearly
always have the need for a timer and/or an interval timer.

Standard UNIX (and Linux) has a real-time clock. 1t counts the num-
ber of seconds since 00:00 a.m. January 1, 1970. (called the Epoch). You get
its value with the time(} function:

#include «<time.h>
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time ¢ time(fime t *the time now):
ot canr abso cadl e with o NULL poiniee.
Linux also has the gettimeofday call, which stores the time in a structure:

struct timeval {
time_t tv_sec /* seconds */
time_t tv.usec } /* microseconds */

gettimeofday returns a 0 or -1 (success, failure respectively).
You can make things happen after a certain time interval with sleep:
unsigned int sleep(unsigned int n_seconds);

The process which executes this call will be stopped and resumed af-
ter n_seconds have passed. The resolution is very crude! As a matter of
fact, many real-time systems would need a resolution of milliseconds and, in
extreme cases, even microseconds.

'To overcome this drawback, Linux has also interval timers. each process
has three of them:

#include <sys/time.h>

10T setitimer (int which.timer,
const struct 1timerval *new_itimer_value, \
struct itimerval *old_itimer_value);

int getitimer(int which_timer, \
struct itimerval *current_itimer_value):

The first argument, which_timer, has one of three values: T TIMER_REAL,
ITIMER_VIRTUAL and ITIMER_PROF. setitimer() sets a new value of the
interval timer and returns the old value in old_timer_value. When a timer
expires, it delivers a signal: SIGALRM, SIGVTALRM and SIGPROF
respectively. The calls make use of a structure:

struct itimerval {
struct timeval it_val /* initial value */
struct timeval it_interval } /* interval */

The ITIMER_REAL measures the time on the “wall clock” and there-
fore includes the time used by other processes. ITIMER.VIRTUAL mea-
sures the time spent in the user process which set up the timer, whereas
ITIMER_PROF counts the time spent in the user process and in the kernel
on behalf of the user process. It is thus very useful for profiling.
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The resolution of these interval timers is given by the constant HZ, defined
in <sys/param.h>. On Linux machines, HZ=100, so the resolution of the
interval timers is 10000 microseconds.

POSIX.1¢ extends the timer facilities to a number of implementation
defined clocks, which may have different characteristics. Timers and intervals
can be specified in nanoseconds.

9 Memory Locking

As we already pointed out before, the real-time processes — at least the critical
ones — should be locked into memory. Otherwise you could have the very
unfortunate situation that your essential task has been swapped out, just
before it becomes runnable again. Faulting a number of pages of code back
into memory may add an intolerable overhead.

Remember also that infrequently used pages may be swapped out by the
system, without any warning. Faulting them back in again may make you
miss a deadline. Thus, not only the program code, but also the data and
stack pages should be locked into memory.

A POSIX.1c conformant memory locking mechanism is available for Linux.
Unfortunately, we have not yet been able to test it. It does the following:

#include <unistd.h>
#ifdef _POSIX_MEMLOCK
#include <sys/mman.h>

int mlockall(int flags);
int munlockall{void);
#endif /* _POSIX_MEMLOCK */

mlockall will lock all your memory, e.g. program, data, heap, stack and
also shared libraries. You may choose, by specifying the flags, to lock the
space you occupy at present, but also what you will occupy in future.
Instead of locking everything, you may also lock parts:

#include <unistd.h>
#ifdef _POSIX_MEMLOCK_RANGE
#include <sys/mman.h>

int mlock(void *address, size.t length);
int munlock(void *address, size_t length);
#endif /* _POSIX_MEMLOCK_RANGE x*/
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Finally, you may want to lock just a few essential functions: a signal
handler or an interrupt handler, for instance. You should not do this from
within the interrupt handler, but from a separate function:

void intr_handler()

{
}

void right after_intr_handler()

{

/* do your work here */

/* this function serves to get an address */
/* associated with the end of intr_handler() #/

void intr_handler_init()

{

1 = mlock(ROUND_DOWNTO _PAGE(intr_handler) A
ROUND.UPTO_PAGE(right.after_intr_handler - \
intr_handler));

The function right_after_intr_handler() does nothing. It serves only to get
an address associated with the end of the interrupt handler. This is needed
to calculate the argument length for the mlock() call.

10 Multiple User Threads

All we have seen so far happened at the process level and kernel intervention
was needed for every coordinating action between processes. The overall
picture has become quite complicated and a programmer must master many
details or else he runs into trouble.

Is there not another solution, where the user has more direct control over
what is going on? Fortunately, there is: multiple user threads. POSIX 43
(or POSIX 1c if you prefer) standardizes the APT (Application Program-
mer’s Interface) for multiple threads,

Threads are independent flows of control inside a single process. Each
thread has its own thread structure — comparable to a process descriptor
--—, 1ts own stack and its own program counter. All the rest, i.e. program
code, heap storage and global data, is shared between the threads. Two
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or more threads may well execute the same function simultaneously. The
services needed to create threads, schedule their ezecution, communicate and
synchronize between threads are provided by the threads library and run
in user space. For the kernel exists only the process; what happens inside
this process is invisible to the kernel.

Lightweight Processes, as in Solaris or SunOS 4.x, are somewhere mid-
way: a small part of the process structure has been split off and can be
replicated for several LWPs, all continuing to be part of the same process,
using the same memory map, file descriptors, etc. The split-off part is still a
kernel structure, but the kernel can now make rapid context switches between
LWPs, because only a small part of the complete process structure is affected.
[nside a LWP, multiple threads may be present.

Multiple threads offer a solution to programming which has a number of
advantages. The model is particularly well suited to Shared-memory Multiple
Processors, where the code, common to all threads, is executed on different
processors, one or more threads per processor. Also for real-time applications
on uniprocessors, threads have advantages. In the first place, the fastest,
casiest intertask communication mechanism, — shared memory — is there
for free!

There are other advantages as well. The responsiveness of the process
may increase, because when one thread is blocked, waiting for an event, the
other can continue execution. The fact that threads offer a sort of “do-it-
yourself” solution makes the user have a better grasp of what he is doing
and thus he can produce better structured programs. Communication and
synchronization between threads is easier, more transparent and faster than
between processes. Bach thread conserves its ability to communicate with
another process, but it is wise to concentrate all inter-process comimunication
within a single thread.

Multiple threads will in general lead to performance improvements on
shared memory multiprocessors, but on a uniprocessor one should not ex-
pect miracles. Nevertheless, the fact that there is less overhead and that
some threads may block while others continue, will be felt in the per-
formance.

It sounds as if we just discovered a gold mine. Well ..., there are a few
things which obscure the picture somewhat. For threads to be usable with
no danger, the library functions our program uses must be threads-safe.
That is, they must be re-entrant. Unfortunately, many libraries contain
functions which modify global variables and therefore are not re-entrant.
For the same reason, your threaded program must be re-entrant, so it has
to be compiled with _REENTRANT defined. In addition, for a real-time
application, you still need at least a few facilities from the operating system:
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memory locking and real-time priority scheduling'*.

Threads can be implemented as a library of user functions. The standard
set of functions is defined in POSIX.1c, but other implementations also exist.
The package we are using'® implements the POSIX.1c pthreads. There
are come 50 service requests defined. They are briefly described in Annex IT1
and in more detail in the man pages. We will illustrate only a few of them,
the most important ones.

pthreads defines functions for Thread Management, Mutexes, Condition
Variables, Signal Management, Thread Specific Data and Thread Cancella-
tion. Threads, mutexes and condition variables have attributes, which can
be modified and which will change their behaviour. Not all options defined
by the various attributes need to be implemented. <pthread.h> defines eight
data types:

Type Description

pthread_attr_t Thread attribute
pthread mutexattr_t Mutex attribute
pthread_condattr.t Condition variable attribute

pthread mutex_t Mutual exclusion lock (mutex)
pthread_cond_t Condition variable

pthread_t Thread ID

pthread once_t Once-only execution

pthread key_t Thread specific data key

Attributes can be set or retrieved with calls of the following type:

int pthread attr setschedpolicy( pthread_attr.t *attr, \

int newvalue);

or:

int pthread mutexattr_getprotocol( pthread mutexattr_t *attr, \
*protocol) ;

See Annex I for the complete list. The scheduling policy can be one
of: SCHED FIFO, SCHED_RR and SCHED_OTHER, as for the POSIX.1c standard.
The scheduling parameters can also be set and retrieved.

When the process is forked, main(arge, argv) is entered. In the main pro-
gram you may then create threads. Each thread is a function, or a sequence
of functions. At thread creation, the entry point must be specified:

" Alternatively, you run on a dedicated machine, where you have killed all daemons, so
that your application is the only active process in the system.

X avier Leroy’s implementation, called LinuxThreads, which is part of many recent
Linux distributions (Xavier.Leroy@inria.fr).
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int pthread create( pthread_t *thread, \
const pthread_attr_t *attr, void *(*entry) (void %), \
void *arg );

void pthread_exit( void *status );
does what is expected from it. {t should be noted that NULL may often be
used to substitute an argument in the function call. This is notably the case
for pthread_attr_t *attr and void *status above.

An important function is:
int pthread.join( pthread t thread, void **status )

When this primitive is called by the running thread, its execution will be
suspended until the target thread terminates. If it has already terminated,
execution of the calling thread continues. pthread_join() is therefore an im-
portant mechanism for synchronizing between threads. So-called detached
threads cannot be joined. You specify at creation time or at run time if the
thread has to be detached or not.

Mutexes can have as the pshared attribute PTHREAD_PROCESS.SHARED or
PTHREAD_PROCESS PRIVATE, meaning that the mutex can be accessed also by
other processes or that it is private to our process. Private mutexes are de-
fined in all implementations, shared mutexes are an option. The two usual
operations on a mutex are:
int pthread mutex_lock( pthread mutex_t *mutex );
and
int pthread mutex_unlock( pthread mutex t *mutex )
but you can also try if a mutex is locked and continue execution, whatever
the result:
int pthread mutex trylock( pthread mutex.t *mutex )

All memory occupied by the process is shared among the various threads,
which we said was an important advantage of threads. Nevertheless, some-
times a thread needs to protect its data against attacks from other threads.
For this reason a few primitives which allow to create and manipulate thread
specific data are defined. For details see the man pages.

We have not yet met condition variables, which are another feature
of pthreads. Condition variables are always associated with a mutex. A
condition variable is used to signal a thread that a particular condition has
been satisfied in another thread. The first thread — the one receiving the
signal — will then be allowed to proceed if it had blocked on the condition
variable (CV). It works as follows:
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Thread 1 Thread 2

lock the mutex
test the condition
FALSE! unlock mutez

sleep on CV
lock the mutex
change the condition
signal thread 1
unlock mutex

lock mutex

test condition again
TRUE! do the job
unlock mutez

Translated into code, this becomes:;

Thread 1 Thread 2

pthread mutex_lock (&m) ;

while ('my condition) {

while (pthread.cond wait(&c, &m) != 0) { ;
pthread_mutex_lock(&m) ;
my_condition = TRUE ;
pthread cond_signal (&c);
pthread mutex unlock (&m) ;
do_thing();

}
}

pthread_mutex_unlock{&m) ;

Note that pthread_cond_wait() will automatically free the mutex for you
and your thread will go to sleep on the condition variable.

pthreads is really a subject in itself and our quick review has been very
superficial. Threads are well suited for implementing Server-Client prob-
lems. Due to the shared memory, the communication between the server
and the — possibly many — clients is easy.

We close this section with a complete code example!®. The example con-
cerns an Automatic Teller Machine, e.g. one of those machines that distribute

'%This and the following example are from B. Nichols et.al., Pthreads Programming See
Bibliography, item ii)
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banknotes. The main program, which is the server, receives requests over
a communication line from ATMs scattered all over town. For each request
received, the server spawns a worker or client thread which undertakes the
actions necessary to satisfy the request. This example mainly illustrates the
creation of several threads.

typedef struct workorder {
int conn;

char req_buf (COMM_BUF_SIZE];

} workorder_t;

main(int argc, char *¥argv)

{
workorder_t *workorderp;
pthread_t  *worker_threadp;
int conn, trans_id;

atm_server_init(arge, argv);

for(;;) o
/**¥* Wait for a request *¥x/
workorderp = (workorder_t *)malloc(sizeof (workorder_t));
server_comm_get_request (¥workorderp->conn,
gworkorderp->req_buf) ;

sscanf (workorderp->req_buf, "%4d", ktrans_id);
if (trans_id == SHUTDOWN) {

break;

¥

/**% Spawn a thread to process this request *¥k /

worker_threadp = {(pthread_t *)malloc (sizeof (pthread_t));

pthread_create (worker_threadp, NULL, process_request,
(void *)workorderp);

pthread_detach(*worker_threadp);
free(worker_threadp);

}

server_comm_shutdown() ;

}
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The worker thread (the client) looks as follows:

vold process_request(workorder_t *workorderp)
{
char resp_buf [COMM_BUF_SIZE];
int trans_id;
sscanf (workorderp->req_buf, "%d", &trans_id);

switch(trans_id) {
case WITHDRAW_TRANS:
withdraw(workorderp->req_buf, resp_buf);
break;

case BALANCE_TRANS:
balance (workorderp->req_buf, resp_buf);
break;

defaunlt:
handle_bad_trans_id(workorderp->req_buf, resp_buf) ;

server_comm_send_response (workorderp->conn, resp_buf);
free(workorderp);

}

There are two points to note in this example. The first concerns the passing
of arguments to a child thread. The standard allows a single argument only.
Encapsulating several arguments in a single structure and passing a pointer
to this structure to the child is a way to program around the restriction. The
second point is a subtle one and concerns the use of malloc. Using static
storage for the workorder does not work: for every newly created thread
the workorder would be overwritten and most threads would work with a
corrupted workorder.

The following example, taken from the same source, illustrates the use
of a mutex and a condition variable. Two of the threads created in this
example simply increment a counter and check if it has reached a limit value.
In that case they signal the condition variable. The third thread waits on
the condition variable and prints its value. The main thread will exit when
all three threads it created have “joined”.
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#include <pthread.h>
#define TCOUNT 10
#define WATCH_COUNT 12

int count = 0;
pthread_mutex_t count_mutex = PTHREAD_MUTEX _INITIALIZER;
pthread_cond_t count_threshold_cv = PTHREAD_COND_INITIALIZER;
int thread_ids[3] = {0, 1, 2};
main()
{

pthread_t threads[3];

pthread_create((&threads[0], NULL, inc_count, &thread_ids[0]);
pthread_create((&threads[11, NULL, inc_count, &thread_ids[1]);
pthread_create((&threads[Q], NULL, watch_count, &thread_ids[2]);
for(i = 0; i < 3; i++)
pthread_join((&threads[i], NULL);
1

void watch_count(int *idp)
{
pthread_mutex_lock(&count_mutex);
while (count <= WATCH_COUNT) {
pthread_cond_wait(&count_threshold cv, &count_mutex) ;
printf ("watch: Thread %d, Count is %d\n", *idp, count);
}
pthread_mutex_unlock(&count_mutex);

}

void inc_count(int *idp)
{
int 1i;
for{(i = 0; i < TCOUNT;, i++)
pthread_mutex_lock(&count_mutex) ;
count++;
printf ("inc: Thread “d, count is %d\n", *idp, count);
if (count == WATCH_COUNT)
pthread_cond_signal(&count_threshold_cv);
pthread_mutex_unlock(&count_mutex) ;
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In this example the reader should note that two threads share identical code
and that only one copy of this code is present in memory. The program
counter and the stack are of course private property of each individual thread.

A brief resume of the POSIX 1003.1c¢ definitions is given in Annex ITI.
For more details, the reader is referred to the “man pages”.

11 Real Time Linux

In October 1996, we learned that a Real-time Linux had been developed at
the New Mexico Institute of Technology and that a beta-version was available
for testing. Since then Barabanov et. al. have released updated versions of
RTLinux, and during this College participants can again experiment with
it.

It is based on a different principle from what we have described so far: it
uses the concept of a virtual machine. RTLinux embodies a small, real-
time executive, and standard Linux runs underneath it, as a low priority
task. The time critical parts of the application run directly under RTLinux
and are scheduled by RTLinux itself. “Classical” Linux is run only when
there is no real-time task ready to run.

The real-time executive intercepts the interrupts and therefore it can react
fast. Interrupts which have nothing to do with the real-time tasks are passed
down to Linux. When Linux disables interrupts (with the cli() call), RTLinux
will stop passing interrupts to Linux. But those interrupts remain available
to RTLinux for a later time. Linux is used for the lower priority and slower
tasks, such as file manipulation. But still all facilities of normal! Linux are
available.

Communication between a real-time task and an ordinary Linux process
is done via a special IO interface, called a real-time fifo.

A real-time application should be split into small and simple parts, which
have real-time constraints on the one and larger picces for more complex
processing on the other hand.

The real-time component is written as a dynamically loadable Linux ker-
nel module. A complete example '7 follows. In this example the real-time
part reads periodically data from an external device and puts it into a real-
time fifo. The Linux process reads the data from the fifo and can process it.
In the example, the data is simply written to stdout.

#define MODULE

""The example is taken from: M. Barabanov and V. Yodaiken, Introducing Reol-Time
Linuz, Linux Journal, February 1997, page 19-23.
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#include <linux/module.h>

/* always needed for real-time task */
#include <linux/rt_sched.h>

#include <linux/rt_fifo.h>

RT_TASK mytask;

/* This is the main program */
void mainloop{(int fifodesc)
{

int data;

/% in this loop we obtain data from the */

/* device and put it into fifo number 1 */

while (1) {
data = get_data();
rt_fifo_put(fifodesc, (char#*)&data, sizeof(data));
/* give up the CPU until next period */
rt_task_wait();
+

}

/* This function is needed in any module #*/
/* Tt will be invoked when the module is loaded */
int init_module(void)
{
#define RTfifoDESC 1
RTIME now = rt_get_time();

/* ‘rt_task_init’ associates a function */

/* with the RT_TASK structure and sets parameters. */
/* Priority=4, stack size=3000 bytes, pass 1 to */
/*‘mainloop’ as an argument */

rt_task_init (&mytask, mainloop, RTfifoDESC, 3000, 4},

/* Mark ‘mytask’ as periodic */

/* Tt could be interrupt driven as well */
/% Period is 25000 time units. It starts */
/% 1000 time units from now */
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rt_task_make_periodic(&mytask, now+1000, 25000);
return 0;

¥

/* Clean-up routine. It is called when the */
/* module is unloaded */
void clean_up(void)
{
/* kill the real-time task */
rt_task_delete(&mytask);
return;

}

The ordinary Linux process executes the following program:

#include <rt_fifo.h>
#include <stdio.h>

#tdefine RTfifoDESC 1
#define BUFSIZE 10
int buf [BUFSIZE] ;

int main()
{
int i, n;
/* create fifo number 1, size 1000 bytes */
rt_fifo_create(l, 1000);
for (n=0; n<1000C; n++) {
/* read data from fifo and print it */
rt_fifo_read(l, (char*)buf, BUFSIZE * sizeof(int)):
for (i=0; i<BUFSIZE; i++) {
printf("%d ", buflil);
}
printf("\n");
}
/* destroy fifo number 1 #/
rt_fifo_destroy(1);
return 0;

The latest version of RTLinux can be obtained from http://luz.nmt . edu/Ft1inux
and besides the executive, it contains kernel patches, documentation, exam-
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ples and installation tips. Recently, shared memory has been added as a
means of communicating between RTLinux and standard Linux.

In order to build RTLinux, the Linux kernel must be recompiled. A user
can then run either RTLinux or normal Linux at his choice, if 1ilo.conf is
adjusted accordingly.

RTLinux is used at various Institutes around the world. At the Humboldt
University in Berlin it is used for data acquisition with an ADC. On a 33
MHz 486 machine, a rate of 3000 samples/s is achieved, using a cheap ADC
board connected to the PC via a serial line. At the Universidad Politecnica
di Valencia, it is used to develop earliest deadline first schedules, including
a comprehensive graphical display. Also NASA is using it, but its web sites
are not accessible, and we were unable to obtain more information. The New
Mexico Institute of Technology itself uses RTLinux in a teaching environment
and in the Sunrayce Project (an embedded control system for a solar car?).

The authors of RTLinux say that they could run a repetitive task at a
rate of once every 150 useconds on a 133 MHz Pentium. Tasks can be
scheduled within a precision of 10 useconds.

12 RTAI

Paolo Mantegazza and his collaborators at the Dipartimento di Ingegneria
Aerospaziale of the Politecnico di Milano have done a lot of work to improve
RTLinux and make it more versatile and user-friendly. The result is a com-
pletely new package, RTAI, the Real Time Application Interface. The
package is available from www.aero.polimi.it /projects/rtai. It comes with a
large amount of documentation, including explanations of the internals of
RTAL, detailed installation procedures, a sort of tutorial and several example
programs.

RTAT implements a hard realtime system that coexists with Linux. It
can run periodic tasks with a frequency exceeding 10 kHz, with a jitter of
+5 psec. It can also run in one-shot mode.

RTAI has a number of interesting features. It can run on a single pro-
cessor machine or on a Symmetric Multi Processor PC. In the case of SMP,
RTAI can be confined to a subset of the processors, or even to a single one.
One can also choose to have the realtime interrupts handled by one specific
processor, without affecting the interrupts intended for Linux. Pentium or
better processors are prefered, but RTAl can run quite reasonably on a 486
machine. To get the most out of it an APIC timer should be available in the
processor, besides the usual 8254 timer.

The scheduler functions are also available for the normal Linux processes,
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which means that you have at your disposal an uniform API for all your
applications, be they hard, firm or soft realtime. You may use messages,
semaphores, shared memory and time intervals for communication from
Linux to Linux, RTAI to RTAT and also between Linux and RTAI

When you build RTAI and install it, the realtime application will run
in kernel mode. You can also make your application run in user space,
without the need of being the superuser, once the superuser has installed the
necessary kernel modules for you.

RTAI in fact presents itself in the form of kernel modules. Three
are required for a basic configuration {(comparable to the one provided by
RTLinux): the rtai module (rtai), the scheduler (rtl_sched) and the fifo mod-
ule (rtlfifo). The application program is added as a fourth module, for
instance: rt_process. The latter must be written by the user. A simple ex-
ample will be shown below. The fifo (First In First Out buffer} model is the
same as for RTLinux: the realtime task or tasks write to a fifo and read from
another fifo. Processes on the Linux side see these fifos as normal character
devices.

Linux maintains all its features and can thus be used to post-process the
acquired data, display the data and archive them, in case we are speaking
of a data acquisition system. Likewise, Linux can do also the necessary
calculations in the case of a control system. The authors assure that it is
possible to run a remote data acquisition system at a rate of one sample
every 100 usec, complete with the network, X11 for displaying results, etc,
without Linux falling flat. The authors also suggest that you may use the
interrupt trapping mechanism on its own, without the scheduler and the rest
of the RTAI machinery. This would give you much closer control over the
bare hardware, which could be useful for writing a driver module.

The following example'® shows a simple data acquisition application, run-
ning in periodic mode at a 10 kHz sampling rate:

#define MODULE

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/version.h>
#include <asm/io.h>

#include <rtai.h>

#include <rtl_sched.h>
#include <math.h>

#include "acquisition_lib.h"

"8taken from the “Beginners Guide” in tho RTAI package.

Sixth College on Microprocessor-based Real-time Systems in Physics 52
Abdus Salam ICTP, Trieste, [taly. October  — November 3, 2000.




Toward Real-time Linux Verkerk, Catharinus

#define STACK_SIZE 2000
#define LOOPS 1000000000

static RT_TASK acquisition_task;

/% This is the function that performs data-acquisition by reading from the
specific board at a frequency of 10000 Hz */

static void fun_acquis(int t)
{
unsigned int loops = LOOPS;
while(loops—-){
read_adc();
rt_task_wait_period();
}
}

int init_module{void)
{
RTIME now, tick_period;
int period = 100000;
rt_set_periodic_mode(); /* The periodic mode is set because
we have only one task with a fixed period */
tick_period = start_rt_timer((int)nano2count{period));
/* Conversion of timer period from
nanoseconds to internal count units */
rt_task‘init(&acquisition_task,fun_acquis,period,STACK_SIZE, 1, 1, 0);
now = rt_get_time();
rt_task_make_periodic{&acquisition_task,now + tick_period,tick_period);
return 0;

}

void cleanup_module(void)

{
stop_rt_timer();
rt_task_delete{&acquisition_task);

}

The reader should note that the routine read_adc() has to be written to
satisfv the requirements of the specific acquisition board used.
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13 KURT, the Kansas University Real Time
Linux

Very recently, Balaji Shrinavasan of the Information and Telecommunications
Technolgy Center (ITTC) of the University of Kansas announced another
version of real-time Linux.

It is called KURT, for Kansas University Real Time Linux.

The author calls it a firm real-time system, somewhere between a hard
and a soft real-time system. It is based on a different principle from RTLinux.

KURT allows the explicit scheduling of real-time events, instead of just
processes. The event scheduling is done by the system.

Once KURT has been installed, Linux has acquired a second mode of oper-
ation. The two modes are: normal-mode and real-time mode. In the first the
system behaves as normal Linux, but when the kernel is running in real-time
mode, it executes only real-time processes. All system resources are then
dedicated to the real-time tasks. There is a system call that toggles between
the two modes.

During the setup phase the schedule of events to be executed in real-
time mode is established and the processes that must run in this mode are
marked. The kernel is then switched to the real-time mode. When all tasks
have finished, the kernel is switched back to normal-mode.

In order to obtain this behaviour, KURT consists of a Real-Time Frame-
work which takes care of scheduling any real-time event. When such an
event is to be executed, the real-time framework calls the event handler of
the associated RTMod (Real-Time Module). The RTMods can be very sim-
ple; calling them according to a defined schedule is the responsibility of the
real-time framework. This framework provides the system calls that switch
the kernel between the two modes.

The RTMods are kernel modules, which arc loaded at runtime. An RT-
Mod registers itself with the real-time framework. It then provides pointers
to functions for the event handler, initialization and clean-up.

When a RTMod must be invoked is defined in the Real-Time Schedule,
which is just a file. This file can be built beforehand. It can be copied entirely
into memory, or it can remain on disk. In the latter case, the timing of events
may become distorted by disk access times.

In addition to the Real-Time Schedule, processes can be run periodically
in a round-robin fashion.

Events can be scheduled with a high time resolution, when another pack-
age has been installed: UTIME, for usecond time. This package was de-
veloped at the same Institute as KURT. If it is not installed then the time
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resolution is only the usual 10 ms.

To install UTIME and/or KURT, the Linux kernel must be recompiled.

A more detailed description and sample programs are available. The
reader should look for them in the directory /usr/local/tarfiles.

The packages together with the necessary Kernel patches can be obtained
by anonymous ftp from the WEB page:
http://hegel.ittc.ukans.edu/projects/kurt for KURT and
http://hegel.ittc.ukans.edu/projects/utime for UTIME.
http://hegel.ittc.ukans.edu/projects/posix has extensions to the Linux
kernel for better POSIX 1003.1c¢ compatibility.

14 Embedded Linux

With portable telephones, handheld and palmtop computers, wireless connec-
tions to Internet, automated home appliances and what not, there is a need
for embedded operating systems. A year or so ago efforts have started
to develop these. Several manufacturers have turned to Linux, having recog-
nised that the availability of open software bears many advantages, not
only to individual developers, hackers and other maniacs, but also for indus-
try. Linux Journal has a regular review on this topic and the September 2000
issue concentrates on the topic. Just to show how active this field is, [ cite a
few examples from this issue.

e The first example concerns a network of home infromation appliances,
with a central server and wireless connections to clients scattered through
the home. The server obviously runs Linux, but also the clients have an
embedded Linux system with a reduced (small footprint) X11. Hook-
ing a keyboard, a monitor and a mouse to such a client box, you use
it as a PC. Hooking high-fi speakers to it, you listen to music, etc. All
the work is done on the server, and data is passed over the network to
and from the clients. (http://www.adomo.com}.

e Yopi is a handheld computer, 12.5 x 7.5 em? with a color display and
a 206 MHz StrongArm CPU with 32 Mbyte DRAM. Anocther 32 Mbyte
of flash ROM stores the Linux system and the core set of applications.
The object has no keyboard and looks like a gameboy.

e There is a commercial realtime system based on Linux on the mar-
ket: Linuz/RT from TimeSys Corporation (email: info@timesys.com).
Linux/RT is based on the Carnegie Mellon University Linuz Resource
Kernel, Linuz/RK. There is support for Robust Embedded (RED) Linux
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syvstem event logging. Linux/RT also contains RTAIL You run one or
the other at any one time. The product may not yet be very mature.

¢ Aplio bets on voice transmission over Internet ( VoIP). Their boxes plug
into a telephone as simply as an answering machine and the other side
of it plugs into an Ethernet port. The boxes run an embedded Linux
kernel. It is really based on pClinux, a Linux version for microcon-
trollers without a memory management unit.

e The lirm that produced LynxOS (see section 2) changed name. It
now calls itself LynuxWorks., They released BlueCat, a version of
Linux tailored for embedded applications. There LynxOS real time
operating system will become binary compatible with Linux, so that
any exccutable that runs on Linux can also run on LynxOS.

e Compaq produces iPag, a handheld computer running Linux. The
project to develop iPaq originated at Digital Equipment Corporation,
which has been bought by Compaq.

e RedHat, in collaboration with Cygnus is working on the development
of EL/IX, a Linux-based operating system for embedded applications.

¢ Lineo is another firm working on Linux for embedded applications.

e To my shame, I don’t know where yClinux comes from and what it can
do.

15 Conclusion

We have tried in this course to give a brief overview of the requirements
of a real-time application and we have investigated to what extent Linux
can do the job. We have also mentioned the improvements to Linux which
have already been made. Among these improvements, RTLinux and KURT
are of the greatest importance for the development of real-time applications.
Recent developments in this direction include RTAI and the various projects
for embedded Linux.

Also the pthreads package does contain a major part of the improve-
ments a user would like to see. When a real-time application has been writ-
ten using pthreads, the only essential features the operating system has still
to provide are memory locking and real-time scheduling.

The important thing to remember is that you should analyze your prob-
lem very carefully, before deciding that you can {or cannot) use such or such
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an operating systemn. Hopefully, this course has shown you the points to
consider, and where to search for existing and acceptable solutions.

All depends therefore on your application. If you expect high data rates
or high interrupt rates or if you are otherwise pressed for time constraints,
or if you must meet stringent deadlines, then you will need many of the
mechanisms described and you should have resort to RTLinux or KURT or else
you may have to accept acquiring a true real-time operating system.

This can be the case in physics experiments, in particular in Particle
Physics and in Nuclear Physics.

There will however be situations where you don’t need the heavy guns and
where the standard Linux system will do the job. To give you an idea: Ulrich
Raich runs a real-time application on a 66 MHz 486 machine, concurrently
with X11. The machine sustains a rate of 200 external interrupts per second,
in addition to the 100 Hz clock interrupts. It obviously all depends on what
has to be done as the result of an interrupt.

With prices of PCs and PC-boards going down, there is now a tendency
to use a PC-board also for an embedded system, where before you would
have used a small, dedicated microprocessor. Using a PC-board has the
obvious advantage of portability: you can develop your application on a
large configuration, and then download it to the embedded system.

Many people may be just interested in hooking up existing instruments,
for instance those which are equipped with an interface to the GPIB bus,
This situation arises routinely in chemistry labs, or medical analysis labs,
etc. There is good news for those people as well: Packages for controlling in-
struments with GPIB and Camac exist. The first parts of these were released
already in 1995. It has graphical interfaces, uses X11 and is extensible!’®. And
they are free!. Such packages will certainly deliver the ideal solution for
laboratories using standard equipment.

Device drivers for VME crates and modules are part of some off-the-shelf
Linux distributions (SuSE 6.3 for instance).

To end, I wish you a happy time programming your real-time applications!
Now that many more tools are available than a few years ago, there is a good
chance that this wish comes true.

Enjoy!

1%You can ftp these packages from koala.chemie fu-berlin.de.
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16 Annex I — Annotated bibliography

The last four or five years have seen a flood of books on Linux. A number of
them are nothing but collections of HOW-TOs from the Linux Documen-
tation Project. Others are specific for certain Linux Distributions, e.g.
Slackware, RedHat, Caldera Desktop, Yggdrasil Plug and Play Linux. These
books generally contain one or more CD-ROMs, or the CD-ROM set is sold
separately (the Linux Developers Resource from InfoMagic is an example).

Below is an annotated bibliography of the books I found most useful and
which is limited to those publications which are not specific to a distribution,
or just collections of HOW-TOs. Unfortunately the list has scarcely any item
more recent than 1998,

1. Matt Welsh and Lar Kaufman, Running Linuz, Sebastopol, CA95472,
1995, O'Reilly & Associates, Inc; ISBN 1-56592-100-3
An excellent book, very complete and very readable. Contains exten-
sive indications on how to obtain and install Linux, followed by chapters
on UNIX commands, System Administration, Power Tools (including
X11, emacs and BTEX), Programming, Networking. The annexes con-
tain a wealth of information on documentation, ftp-sites, etc. One of
the most readable books on Linux.

2. Marc Ewing, Running Linuz Instellation Guide and Companion CD-
ROM, O'Reilly & Associates, Inc.; no apparent ISBN.

3. Matt Welsh, Linuz Installation Guide, 1995, Pacific Hi-Tech, 3855
South 500 West Suite M, Salt Lake City, Utah 84115,
email: orders@pht.com; No ISBN found.
The book is thin (221 pages) and cheap ($ 12.95). It contains a few
extra chapters on XFree86, TCP/IP, UUCP, e-mail and usenet.

4. Olaf Kirch, Linuz Network Administrator’s Guide, Sebastopol CA95472,
1995, O’Reilly & Associates, Inc; ISBN 1-56592-087-2
Another excellent book on Networking for Linux. Covers not only lo-
cal networks and TCP/IP, but also the use of a serial line to connect
to Internet, and other chapters on NFS, Network Information System,
UUCP, e-mail and News Readers. Essential reading if you want to use
your Linux box on the network.

ot

Stefan Strobel and Thomas Uhl, Linuz, unleashing the workstation in
your PC, Berlin, 1994, Springer Verlag; ISBN 3-540-58077-8
This book is good to whet the appetite of someone who has no idea of
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what Linux is or what it can do. It has many illustrations, in particular
of graphics applications and it mentions many software packages which
are not part of the usual Linux distributions, together with indications
on how to obtain and install the package.

. Linuz Bible, 1994, San Jose, Yggdrasil Computing. No apparent ISBN.

I know about this book only from the advertisements.

Kamram Hussain, Timothy Parker et al., Linuz Unleashed, 1996, SAMS
Publishing, ISBN 0-672-30908-4

Approx 1100 pages of text, covering Linux and many tools and ap-
plications: Editing and typesetting (groff and Tex), Graphical User
Interfaces, Linux for programmers (C, C++, Perl, Tcl/Tk, Other lan-
guages, Motif, XView, Smalltalk, Mathematics, Database products),
System Administration, Setting up an Internet site and Advanced Pro-
gramming topics. The book contains a CD-ROM with the Slackware
distribution.

Randolph Bentson, Inside Linuz, a look at Operating System Devel-
opment, 1996, Seattle, Specialized system Consultants, Inc; ISBN 0-
016151-89-1.

This book provides some more insight into the internal workings of op-
erating systems, with the emphasis being placed on Linux. It is written
in general terms and does not contain code examples.

John Purcell (ed.), Linuz MAN, the essential manpages for Linuz, 1995,
Chesterfield MI 48047, Linux Systems Lab, ISBN 1-885329-07-5.
Indispensable for those who cannot stare at a screen for more than 8
hours a day, or who like to sit down in a corner to write their programs
with pencil and paper, but want to be sure they use system calls cor-
rectly. As the title says, 1200 pages of “man pages” for Linux, from
abort to zmore, and including system calls, library functions, special
files, file formats, games, system administration and a kernel reference
guide.

M. Beck, H. Bohme, M. Dziadzka, U. Kunitz, R. Magnus, D. Verworner,
Linur Kernel Internals, 1996, Addison Wesley, ISBN 0-201-87741-4.
There is at least a second edition: ISBN 0-201-33143-8, 1998. For the
real sports! A translation of a german book, revealing all the internals
of the Linux kernel, including code examples, definitions of structures,
tables, etc. The book contains a CD-ROM with Slackware and kernel
sources. Indispensable if you want to make modifications to the kernel
vourself.

gixth College on Microprocessor-based Real-time Systems in Physics 59
Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000.




Toward Real-time Linux Verkerk, Catharinus

11

Alessandro Rubini, Linuz Device Drivers, 1998, O'Reilly & Associates,
ISBN 1-56592-292-1. This book is a real must for anyone wanting to
write or modify a device driver for Linux. Before publishing this book,
the author had written many articles in the kernel corner of Linuz
Journal. The book leads the reader step by step through every corner
of a Linux device driver. No secrets are left unveiled,

Having mentioned Linuz Journal, I should add that you can subscribe
via one of the following addresses: e-mail: subs@ssc.com, or on the web:
www.linuxjournal.com, Fax: +1-206 297 7515 and by normal mail: SSC,
Specialized System Consultants, Inc., PO Box 55549, Seattle, WA 98155-
0549, USA. From some thirty pages back in 1994, Linux Journal has grown
to around 200 pages monthly. A good fraction of the pages is nowadays
occupied by advertisements, but there remain still some 120 or more pages
of interesting reading.

Also note that the last few years a number of periodicals on Linux have
seen the light in languages other than english.

The following books concern real-time and POSIX.1e:

i)

iii)

iv)

Bill O. Gallmeister, POSIX.{: Programming for the Real World, 1995,
O’Reilly & Associates, Inc.; ISBN 1-56592-074-0.

This book gives an in-depth treatment of programming real-time ap-
plications, based on the POSIX 4 standard. Several of the examples in
the present course were taken from this book. In addition to approxi-
mately 250 pages of text, the book contains 200 pages of “man pages”
and solutions to exercises.

Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrell, Pthreads
Programming, 1996, O'Reilly & Associates, Inc, ISBN 1-56592-115-1.
Probably the best book on Pthreads published so far, concentrating
on the POSIX 1003.1c standard and written with a good didactical
structure.

Bil Lewis, Daniel J. Berg, Threads Primer, A Guide to Multithreaded
Programming, 1996, Sunsoft Press (Prentice Hall);

ISBN 0-13-443698-9.

An introduction to threads programming, mainly based on the So-
laris implementation of threads, but containing comparisons to POSIX
threads and a full definition of the Applications Programmer’s Interface

to POSIX.4a pthreads.

S. Kleiman, Devang Shah, B. Smaalders, Programming with Threads,
1996, Sunsoft Press (Prentice Hall; ISBN 0-13-172389-8. This book
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contains a more in-depth treatment of threads programming than the
previous title, It is also more pthreads-oriented.

Andrew S. Tanenbaum, Modern Operating Systems, 1992, Prentice
Hall; ISBN 0-13-595752-4.

This excellent book is not specifically tuned to real-time, but it pro-
vides a comprehensive introduction to the features of modern operating
systems and their implementation. An older edition of the book con-
tained a complete listing of the minix operating system. The reader
may appreciate that Linux was born when Linus Torvalds set out to
improve minix ...

Last minute addition: O'Reilly is expected to issue a community written
book on Linux realtime. The editor is Phil Daly of realtimelinux.org.
The announcement says: “The volume will be the definite guide to
the installation and use of real time Linux and will feature a bootable
CD-ROM to help “get you going” with this exciting technological de-
velopment. The text will be made available under an Open Content
License agreement with content under constant review.”

Note that there are many more books available, in particular from O'Reilly,
which may be of relevance to topics treated in the present course. Finally,
there is a paper on Real Time Linux:
M. Barabanov and V. Yodaiken, Introducing Real-Time Linuz, Linux Jour-
nal, February 1997, pages 19-23.

For RTAI, there is a large amount of documentation available from:
http://www.aero.polimi.it/projects/rtai/.

To conclude, some mailing lists which may be useful. To subscribe to
any of the lists, send an email to: missdomo@realtimelinux.org with
subscribe ‘listname’ in the body of the email.

realtime — realtime@realtimelinux.org — general discussion.

api — api@realtimelinux.org — API discussion.

documentation — documentation@realtimelinux.org

drivers — drivers@realtimelinux.org — discussion of drivers for use
with Realtime Linux.

kernel — kernel@realtimelinux.org — Linux kernel modifications for
use with Realtime Linux.

networking -— networking@realtimelinux.org — Realtime networks.
ports — ports@realtimelinux.org — Porting of RTL/RTAI to other
platforms.

testing —- testing@realtimelinux.org — discussion on testing
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17 Annex II — CD-ROM sets

All the well-known Linux distributions {Caldera, Corel, Debian, RedHat,
Slackware, SuSE and I will certainly miss out a few...) now come on two
or more CD-ROMs. Beside the base system they contain in general a wealth
of additional, optional packages and a lot of documentation. If you have
acquired one of these distributions, there will be no real need for other CD-
ROMSs, possibly with one exception:

“Linux Developers Resource 6 CD set”, approx.$ 50.00 (I paid approxi-
mately 70000 Lit a few years back). Contains Several Linux distributions and
many many things from the GNU and other archive sites. Available from:
InfoMagic, P.O. Box 30370, Flagstaff, AZ 86003, fax: +1-602-526-9573, e-
mail: info@infomagic.com.

This is probably the most useful CD-ROM set. It is updates twice a year. You
can also open a subscription and receive the bi-annual update automatically.
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Abstract

This chapter is intended to refresh your C programming language
knowledge. It is not a complete guide or reference on the language.
The topics are introduced mainly through simple examples.
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1 Introduction

The C programming language was developed by Dennis Ritchie in the Bell
Laboratories and was designed to be run on a PDP-11 computer with a
Unix operating system. It is a small, flexible and concise language, with
a mix of low-level assembler-style commands and high-level commands. 1t
is an excellent selection in those areas where you may want to use assembly
language but would keep it a ’simple to write’ and 'easy to maintain’ program.

The first standard was the Kernighan and Ritchie’s book: “The C pro-
gramming language” (1988). The ANSI C standard was defined when it was
evident that the C programming language was becoming a very popular lan-
guage. The ANSI C standard defines not only the syntax and semantics of
the programming language but also a standard library. We will follow this
standard in all the examples.

There is also another standard known as POSIX.1, which defines the in-
terface of the system calls and some library functions, used to obtain services
from the operating system. We will encounter this standard in the examples.

2 Getting started

The first example (see figure 1) is a program that prints the mean of two
integer values. Not so much, but enough to begin. Note that the line numbers
in the left column do not belong to the program; they are intended only for
reference.

All C programs need a main function, and this is the place where the
execution begins. In this example, three local variables in main are created.
The first two, named a and b are of type integer, and the other one, named
answer is of type float.

The sentences in line 11 assign values to the two integer variables. Then
the function mean is called to calculate the mean of the two integer arguments
given to it. The types of the formal parameters of the function (in this case
x and y) should be compatible with the actual parameters in the call. The
initial values of x and y are copied from the variables mentioned in the call
{2 and b).

The function mean returns the mean of the two integer arguments (a float,
hence the float before the function name). It also declares a local variable £
of type float to be used to store the mean value, which is computed in line 5.
This value is returned to the main program through the return statement.

We have used 2.0 {a float constant) instead of 2 (an integer constant) in
line 5. because we want a float as the result of the division operation. If we
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1. #include <stdio.h>
#include <stdlib.h>

3. float mean{int x,int y) {

4, float f;

5. f=(x+y)/ 2.0;
6. return f;

7. }

8. int main() {

9. int a,b;

10. float answer;

11. a=3;b=2;

12. answer = mean(a,b):

13. printf("the mean of %d and %d is %f\n",a,b,answer);
14. exit (0):

15. }

Figure 1: a program to print the mean of two integers

divide an integer by another integer, we obtain an integer:

3+2y /2 =2
(3+2)/20-=2.5

The values are printed in the main function by using the standard library
function printf. The on-line manual page describes this function fully. For
now, just note that the first argument is a string it which some format
specifiers are embedded: %d for integers and %f for floats. The string is
printed with these format specifiers replaced with the values of the variables
that follow the string as arguments.

The exit function terminates a program normally. [t expects a single
integer as argument, which is called the ezit status, and can be examined by
the process which puts this process to run {possibly the shell). If simply main
falls off the end’ (implicit return), the exit status of the process is undefined.
By convention, an argument of 0 means OK, and an argument between 1 and
255 means an error has occurred.
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The two #include directives found in lines I and 2, instruct the pre-
processor to include the definitions and declarations from the include files
stdio.h and std1lib.h. Forstandard include files we use the form <filename>
to indicate that the standard include directory must be searched. Our own
directory is searched first if we use the form ” filename” instead. The on-line
manual page for each function shows which files must be included.

3 Control structures

3.1 Repetition statements

The C programming language provides three structures for looping: the
while loop, the do while loop and the for loop.

The while loop continues to loop while some condition is true. When the
condition is false, the looping is discontinued. Let’s see an example (figure 2).

1. #include <stdie.h>

2. int main() {

3. int i = 1,sum = 0;

4, while(i < 5) {

5. sum += 1;

6. i++;

7. }

8. printf ("summation is %d\n",sum};
9. exit(0);

10. }

Figure 2: while statement

This small program just prints the summation of the integer numbers
from 1 to 4. As long as the expression of the while statement in parenthesis
is true, all statements within the braces are repeatedly executed.

If the variable i were initialized to any number greater than or equal to
5, the statements inside the braces of the while loop would not be executed
at all. If the variable were not incremented in the loop, the loop would never
terminate. If there were just one statement to be executed within the loop,
no braces would be needed.
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Note the short expressions used in lines 5 and 6. The operator ++ is called
the increment operator. The meaning of these expressions is the following:

sum += 1 sSum = sum + 1
1++ 1i=1+1

The for loop is nothing new; just a new way to describe the while loop.
The same example from figure 2 is re-written using the for statement in
figure 3.

1. #include <stdio.h>

2. int main() {

3. int i,sum;

4. for(sum = 0,1 = 1;i < 5;i++)

5. sum += 1;

6. printf ("summation is %d\n",sum);
7. exit(0);

8. }

Figure 3: for statement

The for statement has three expressions separated by semi-colons (;).
The first one contains sentences that are executed prior to the first pass
through the loop. In this case, two assignments. The comma (,) operator
allows to put more than one expression, where only one is allowed. The
second field is the test which is evaluated at the beginning of each pass
through the loop. The third field is executed in every pass, but after all the
statements in the body of the loop.

The for loop is convenient because all the control information of the
loop is in one place. We will see later more examples on the use of the for
statement.

The other construction, the do while loop is a variation of the while
loop. The main difference is that the condition is evaluated at the end of the
loop. This means that the body is executed at least once. The same example
1s re-written in figure 4. Note that the meaning of the program is the same,
because in both cases, the body of the loop is executed at least once.
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1. #include <stdio.h>

2. int main() {

3. int i = 1,sum = O;

4, do {

5. sum += 1i;

6. 1++;

7. } while (i < 5);

8. printf("summation is %d\n",sum) ;
9. exit (0);

10. }

Figure 4: do ... while statement

3.2 break and continue

The break statement is used to jump out from a loop.

The continue statement does not cause a termination of the loop but
causes a jump out of the present iteration. It always jumps to the end of the
loop just prior the terminating brace. The loop is terminated or not based
on the loop test. In the for statement, the last expression is evaluated as
usual. A complete example is provided in figure 5.

3.3 if and switch

In the simplest form, the if statement has a condition and a statement. If the
condition is true, the statement is executed, and if it is false, the statement
is skipped. Note that the single statement can be replaced by a compound
statement composed of several statements between braces.

The second form is similar, but with the addition of the word else and
another statement. If the condition is false, this statement is executed.

The switch statement is like a multi-branch if. The key word switch is
followed by a value between parenthesis, and a set of cases between braces,
identified by the word case followed by a constant. The control is transferred
to the first statement of the case whose constant is the same as the value
between parenthesis. If no constant is found, the control is then transferred
to the first sentence after the key word default, if there is one. If no case
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1. #include <stdio.h>
2. #define N 50

3. int main() {

4. int i,c¢;

5. int n_spaces = O,n_symbols = 0,n_chars = 0;
6. for(i = 0;1i < N;i++) {

7. ¢ = getchar();

8. if (¢ == EOF) break;

9. if (¢ == ’\n’) continue;
10, switch(c) {

11. case ’ ’. n_spaces++;
12. break;

13. case ’,7:

14. case ’.7:

15. case ’;’: n_symbols++;
16. default: n_chars++;
17. )

18. }

19.  printf("chars: J%d spaces: %d symbols %d\n",
n_chars,n_spaces,n_symbols) ;

20. exit(0);

21. }

Figure 5: control statements

matches, and there is no default, no action is performed. Once an entry
point is found, statements will be executed until a break is found, or until
the control runs out of the switch braces.

An example that shows the use of most of the control structures discussed
so far is presented in figure 5.

The objective of this program is to read at most 50 characters from the
standard input, and print the number of spaces, the number of punctuation
symbols (only .7, *;" and "), and the number of characters read without

considering spaces. Newlines ('\n’) must be ignored, but considered in the
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50 characters limit. EQOF should be considered as the end of the input.

The line 2 contains a definition of a constant by using the preprocessor
directive #define. FEach occurrence of the identifier N in the program is
replaced with the string 50. It can also be used to define macros.

The function getchar () reads a character from the standard input.

The break in line & will cause a jump out of the loop effectively termi-
nating the loop, if the character read is an EOF. The continue statement
on line 9 will cause a jump to the end of the loop if the character read is a
newline. The third expression of the for statement (i++} will be executed.

If the character is a space, the corresponding counter (n_spaces) will be
incremented, and the break in line 72 will cause a jump out of the switch
statement.

If the character is a symbol, the corresponding counter (n_symbols) will
be incremented, and the execution will continue also with the default sen-
tences, allowing the counter of characters (n_chars) to be incremented.

If the character does not belong to this set, the default sentences are
executed, incrementing the counter of characters (n_chars).

4 Expressions

e Most operations in C that are designed to operate with integers will
work equally well with characters, because they are a form of integer
values. The following code will convert upper case characters to lower
case.

int ¢;

c = getchar();
if (c >= A’ && ¢ <= ’Z7)
c=c¢ - A" + 'a’;

The && operator is the logical and. The logical or operator is || and
the negation operator is !.

o The operators ++ and -- are known as the increment and decrement
operators respectively. i++ is equivalent to i = i + 1, and i-- is
equivalent to i = i - 1. The operation can be done after the variable
is used, or before, by using i++ or ++i, so
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1= 10;

printf("i = %d\n",i++);
and

i=10;

printf("i = %d\n",++i);

will both leave i as 11, but in the first example 10 will be printed, and
in the second 11 will.

¢ There is an abbreviated form that can be used with binary operators.
For example, the following expressions are equivalent:

i+6 i+=6
i* 12 i %= 12

e The assignment expressions produce a value: the value that is effec-
tively assigned, so

a=(b=1+2) + 4;

will assign 3 to b and 7 to a.

e Comparisons will return 1 if the comparison is true, and 0 if it is false,
SO

i= (3 <=28) + 2;

will assign 3 to 1.

e There is no boolean type in C; the integer 0 stands for false, and any
number different from 0 is considered as true. So

while(i != 0)

where = stands for different, is equivalent to while(i).
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e Some conditional expressions can be abbreviated by using the condi-
tional operator (?:}. For example,

if (x < 2)
a = b;
else
a = 12;

can be re-written as
a=(x<2) 75 12;

e There are also operations for bit manipulation, that can be applied to
operands of types int, short, long, unsigned and char. They are the
bitwise and &, the bitwise or |, the bitwise exclusive or =, the left shft
<<, the right shift >> and the one’s complement ™.

The example of the figure 6 shows a function used to count the number
of bits in 1 in an unsigned long.

int n_bits(unsigned long x) {
int n = 0;

N s

while (x) {
if (x & 0x01) n++;
x >>= 1;

}

return n;

}

O~ OO W

Figure 6: bit manipulation

As we previously said, while(x) is equivalent to while(x != 0). This
is a safe stop point, because we are shifting x, and as it is unsigned, it
is filled with 0’s from the left.

The test on line 4 checks if the least significant bit of x is 1. Note that
the constant 0x01 is hexadecimal. If a constant begins with 0 (zero) it
is an octal one (like 077).

The expression in line § is an abbreviated form of x = x >> 1.
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e The cast operator can be used to prescribe a conversion to a target
data type, independent of the context. For example,

int x = 5,y = 2;
float f,g;

f
g

x/y;
x / (float)y;

will assign 2 to £, and 2.5 to g. The cast consists of the name of a type
between parenthesis.

5 Arrays, Structures and Unions

An array is a set of contiguous variables of the same type, that can be accessed
through an integer index. For example, the declaration:

int al[100];

reserves memory for 100 integer variables. They can be accessed by using
subscripts from 0 to 99. For example, the program in figure 7 initializes all
the components in an array and then print the summation of them.

A structure is a collection of variables grouped as a single object, where
each one could be from a different type. For example, the following structure
could be used to define a point giving its x and y coordinates:

structure point {
float x;
float y;

iy

We can declare variables of this type:
struct point a,b;
and fill data by using the dot (.) operator:

.5,
.6;

?

a.x =

a.y

2
5

We could have created an initialized point by using:
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1. #include <stdio.h>
#define N 50

3. int main(}) {

4, int a[N],i,sum = 0;

5. for(i = 0;i < N;i++)

6. afil =1 * 2;

7. for(i = 0;i < N;it++)

8. sum += alil;

9. printf ("summation is %d\n",sum);
10. exit(0);

11. }

Figure 7: arrays

struct point b = { 5.0 , 1.256 };

Structures can be assigned, passed to functions and returned, but they

cannot be compared, so:

c = a;

is possible (all the fields from a are copied into c), but you cannot do:

if (a == b) ... /* not possible */

The figure $ shows a program that assigns into a point structure ¢ the
structure a if a is equal to b. If this is not the case, the greater coordinates

between a and b are assigned to c.

A union is like a structure, but the fields occupy the same memory loca-
tions, with enough memory allocated to hold the largest one. For example,

the following union has two fields that overlap.

union option {
int number;
float price;

+;
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1. struct point {

2. float x;

3. float y,;

4. };

5. int main() {

6. struct point a = { 2.3 , 3.1 },b,c;
7. b.x = 1.5;

8. b.y = 8.9;

9. if (a.x == b.x &k a.y == b.y)
10. c = a;

11. else {

12. ¢c.x = {a.x > b.x) ? a.x : b.x;
13. c.y =(a.y >b.y) ? a.y : b.y;
14. %

15 exit(0);

16. }

Figure 8: structures

An assignment to one of its fields overlap what it has in the other, so
union option x;

X.number = 13;
X.price = 12.5;

the value 13 will be over-written with the value 12.5. The programmer
has to remember what the union is used for.
Structures and arrays can be combined, for example,

struct point arr[10];

1s an array of then structures point, and their components can be accessed
for example as follows:

arrl[4] .x = 3;
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6 Type declarations

The typedef declaration allows us to give an identifier to a type, so it can
be used in the same way as the predefined ones. For example,

typedef int integer;

will define the type integer as the standard type int, so now we can
declare an int variable x by doing:

integer X;
A more useful example is the following:

typedef int array[100];
typedef struct point Point;

Now, we can declare:

array a,
Point x;

and a is an array of 100 integers, and x a structure. An array of 10
structures point can be defined as:

Point b[10];

7 Pointers

All variables are stored in some position in the memory, for example, as a
result of

int i = 10;

the situation in the memory (simplified) could be as is shown in figure 9,
assuming the base address of the variable is 3000.

i 3000 10

Figure 9: memory situation 1

A pointer to an integer can be defined as follows:
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int *p;

and it can point to i by assigning to it the address of the variable. This
value can be obtained by using the & operator:

p = &ij;

and the situation in memory will be as is shown in figure 10.

i 3000 10

Figure 10: memory situation 2

p 1000 | 3000

The value pointed by a pointer can be accessed by using the operator *.
We can print the value pointed by a pointer, and modify it by executing:

printf("value pointed by p = %d\n",*p); /* prints 10 */
*p = 5;
printf("value of i = %d\n",i); /* prints 5 */

8 Pointers as parameters

We have seen that C copies the values of the actual arguments into the
formal parameters of the function when it is called. It is not possible for a
function to modify the arguments, so a function that swaps the values of the
arguments cannot be defined.

To be able to remove this restriction, the addresses of the arguments can
be passed as parameters. In figure 11 the code for a function that swaps the
values of the arguments is shown.

The memory situation when the function is called is depicted in figure 12.

Note that the function defines the parameters as pointers to integers. The
addresses of the variables are passed by walue, so they can not be modified.
But this is not important. We want to usc them to be able to interchange
the values of the original variables.

The standard library function scanf can be used to read from the stan-
dard input. The first argument is a format string which gives information on
the external representation of the data (similar to the one used in printf).
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1. void swap{int *x,int *y) {
2 int temp = *x;

3. *X = Ky,

4 *y = temp;

5. %

6 int main() {

7 int a = 2,b = 5;
8. swap(&a,&b) ;

9. 1}

Figure 11: pointers as arguments

a 2 b 5

.,

Figure 12: parameters when swap is called

/

The next arguments are the addresses of the variables where the input values
must be stored. For example, to read two integers and one float value from
standard input, we can do:

int 1,];
float f;

scanf ("%d %d %f",&i,&j,&f);
We must pass the address of the variables. This is the only way in which
the scanf function will be able to store the values.
9 Pointers to structures

It is also possible to assign the address of structures to pointers. For example,
if we declare a structure of type Point (declared in section 6):

Point s = { 2.0 , 3.0 };
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and anoimter to Poiut soeetigres
Peint #*p;

We can make the pointer p to point to s by executing:
p = &s;

so the situation in memory may now be as is shown in figure 13.

s 5000 2.0 8.X

3.0 8.y

p 1100 50600

Figure 13: pointer to a structure
To modify a field of the structure by using the pointer, we can write:

(#p) .y = 8.0;

Proeparenthesis con not e ogan v s e e L ety pis e
precedence than the asterisk operator. The same behavior of these two op-
erators can be obtained with the operator ->. So, we can write:

p->y = 8.0;

10 Program structure

We have seen that a program consists of a set of functions. The variables
we have used so far were all local variables to these functions. When the
program is not executing statcinents in a function, these local variables do
not even exist. Space is created for them when the function is called. This
space is deallocated when the function is abandoned. These variables have
an automalic storage class.

Local variables can be defined in such a way that the values they can
have will still remain between calls, even if they can not be accessed when
the statements of the function are not under execution. These variables have
an static storage class. See the example in figure 14.

This program has a function f that receives no arguments and has no
return value (this is the meaning of the void key word). It defines in lines 8
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1. #include <stdio.h>
2. wvoid £() {

3. int a = 0;

4, static int b = 0;
5. printf("a = %d b = %d\n",at+,b++);
6.

7. int main() {

8. £0O;

9 £O;

10. exit (0);

11. 3}

Figure 14: storage classes

and 4 two local variables named a and b initialized to 0. a has an automatic
storage class, and b has a static storage class. This means that a is initialized
every time the function is called. b is initialized just the first time the function
is called, and the value is maintained through successive function calls. So,
the values printed by the program are:

a=20 b =20
a=20 b=1

We have defined only variables that are local to functions. It is possible
to define variables that can be accessed in more than one function, and also
local to some compound statement.

Large C programs usually consist of several source files. They are com-
piled separately, and the object files are combined into one executable pro-
gram. C provides the possibility that variables and functions defined in one
module can be used in another one. They are called ezternal.

This is illustrated in figure 15. The example is not meaningful, but it
shows the different possibilities.

In module one.c, two variables are declared outside the scope of the
functions. The variable b is static. This means it can be accessed in all
functions, but in the same file in which it is defined (it is called file scope).
The variable a is an extern variable, and can be accessed in the file in which
it is defined, and also in all the files in which it is declared (program scope).
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1. /#* module one.c */
2. int a;
3. static float b;

4. int main() {

5. int f(int,float);

6. extern float g(int);
7 b =39+ g(2);

8 a = f(2,b);

9. exit (0);

10. }

11. int f(int x,float y) {
12. return a + b + x;
13. }

14. /* module two.c */
15, extern int a;
16. extern int f{int,float);

17. float g{int x) {
18. return (x + a + £(x,3.1)) / 2.0;
19. }

Figure 15: scope

The definition is in line 2 and a declaration is in line 75. A declaration
Just specifies the attributes, and a definition does the same thing, but it also
allocates memory space. An external variable has only one definition, but it
can have several declarations.

The declaration in line 15 allows the variabie a from module one.c to be
accessed in module two.c.

In order to access the function g in module one.c, a declaration is pro-
vided in line 6. As it is a local declaration, the function g can be called just
from the main function.

The line 5 contains a declaration of the function f, which is defined later
in the same file. This declaration is called a prototype and is required every
time we want to call a function that is defined later in the file.
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The declaration of the function £ in line 16 allows this function to be
called from functions in the file two.c.
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1 Pointers and Arrays

The relation between pointers and arrays in C is quite strong. All operations
that could be defined with arrays can also be implemented by using pointers.
Let us define an array of integers, and a pointer to integer:

int a[6] = {7 , 4, 9, 11, 8 };
int *p;
After the assignment

p = &al0];

the pointer p points to the beginning of the array a. This could have
been done also by:

p=a,;
because the name of the array represents also a pointer to the first element

a[0].
The situation in memory may now be as follows:

a[0] a[l1] a[2] a[3] a[4]
7 4 9 11 8

3000

’

Figure 1: a pointer to an array

The value of the first component of the array can be assigned into an
integer variable x by using an index i

x = al0] (where i = 0 in this case)

or through the pointer

X = *p;
It is allowed to add an integer constant to a pointer. By definition, if a
pointer p poinés to a component of an array a, p+i points to i components

after p. See figure 2.
The valne of the fourth component of the array a can be assigned into

the integer variable x by using the index

91
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/ A Tp+2 Tp+3 +p+4

Figure 2: adding constants to p

x = al3];
or by using the pointer
x = *(p+3);

If a pointer p points to the beginning of the array a, then *(p+i) is
equivalent to ali]. Note that this is also valid for the name of the array, so
*(a+1i) is equivalent to a[i].

2 Pointer arithmetic

C allows several forms of arithmetic operations with pointers, and this is one
of the distinctive features of the language.
We have seen in the previous section that it is possible to add a constant to
a pointer that points to an array. Likewise, subtraction is permissible. When
a constant 1 is added (subtracted} to a pointer p, p is moved ahead {back)
in the array i positions, without considering the size of the components.
Let us, for example, assume that we have declared an array of structures;

typedef struct {
int x;
int y;
} Point;
Point al4];
and two pointers to this kind of structure:

Point *p,*q;

These pointers can point to some components in the array:

p = &all];
q = &a[3];
Sixth College on Microprocessor-based Real-time Systems in Physics 02
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a[0] a[1] af2] a[3]

Figure 3: pointers to array of structures

as can be seen in figure 3.
It is possible to access the components of the structure pointed by a
pointer using the pointer operator, for example,

P—>x = 2,

which in this case, is equivalent to a[1].x = 2.
By subtracting the constant 3 from the pointer q, we can access the Oth
component of the array:

*(q - 3).x = 8;

Pointers to components of an array can also be compared. In the following
example, the first two conditions evaluate to true (1) and the last one to false

(0):

<q
1= g
>=q

o g o

Pointers can also be modified. As an example, if we execute:

p=p-1; (orp—-)

p will now point to the previous component in the array, as is shown in
figure 4.

The subtraction of pointers is also valid, and it produces an integer that
represents the number of components between the two pointers. As an ex-
ample,

q - p returns 3
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al0] afl] a[2] a[3]

Figure 4. after p--

p - q returns =3

To initialize all the fields of the structures of the array a to 0, we can
execute:

for(p = &a;p <= &al3];p++) {
p—>x = 0;
p—>y = 0;

}

3 Pointers to void

A pointer to void is called a generic pointer, and it can point to objects of
any type. We have defined in the previous sections just pointers that point
to an object of a specified type. Let us see an example:

int i;
float f[5];

void *p,*q;
p = (void#*)&i;
q = (void*)&f[3],

In this example, two generic pointers p and q are defined. The pointer p
is pointed to the integer variable i, and q is pointed to a component of the
array £ of type Hoat. Note that we must use the cast operator to explicitly
convert the types.

These pointers can point to objects of any type. However, there arc
some operations that cannot be done with these pointers. For example, it is
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not possible to add a constant to a generic pointer. The reason is that the
compiler does not know the size of the object pointed by the pointer. So, for
example,

q++ cannot be done
although, with the appropriate cast, the following operation can be done:
(float*)q++ is legal.

As another example, to print the integer value pointed to by p, we can
do:

printf ("%d\n",*((int*)p));

4 Strings

A string is represented in C as an array of characters. The end of the string
is denoted by a null character, which is written as ’\0’. So, one extra byte
is needed to represent the string.

As an example,

char stri{] = "C is nice";

will define an array of 10 elements, as is shown in figure 5. Note that
the size of the array is obtained from the length of the string plus one byte
for the null character. If we had defined a longer array, the extra space will
remain uninitialized.

strl

Figure 5: our first string

The name of the array can be considered as a pointer. However, there is
a significant difference if we define a string like this

char *str2 = "C is nice";
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v

Figure 6: our second string
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str2

In this case, we obtain a real pointer and an array, as is shown in figure 6.
In both cases, references to individual characters can be done, by using
both the notation of pointers or with indexes:

str1[2] is equivalent to  *(stri+2)
str2[2] is equivalent to  *(str2+2)

However, an important difference is that the name of the array is a con-
stant pointer, so it cannot be modified:

stri++ is not allowed, and
str2++ advances the pointer by one position.

C does not provide operators that work with whole strings. As an exam-
ple, if we have two strings s1 and s2, we would like to execute s1 = s2 to
assign strings. This is not possible, because they are pointers, and we would
have just copied the addresses. We must copy the characters one by one, by
using a loop. The next function strcpy allows us to do this.

void strcpy(char *sl1,char *s2) {
while (*Si++ = *32++);

}
The following is a situation in which the function strcpy can be used:

char a[12];
char b[] = "C is nice";

strcpy(a,b);

Note that as we are passing the name of the arrays as arguments, we are
really passing the addresses of these arrays as arguments. The figure 7 shows
the situation when the function strepy is just called.

The code of the strepy function is extremely compact and efficient, and
it could be intimidating. The while loop has no body. This means that the
condition will be evaluated, until it becomes false. Note that the condition
is an assignment expression,
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st

52

Figure 7: just to execute strcpy

xs1++ = *52++

so the assigned value will be used to determine if the condition is true or
not: if this value is 0, the condition will be considered false, and true if it is
different from 0.

In the assignment expression, the right hand side is considered first:

*52++

The ++ is executed first, so the pointer s2 is advanced to the next position.
However, it is a post-increment operation, this means, that it returns the
pointer as it was before the operation. This value is de-referenced with the
* operation. In the example, the first time this expression is evaluated, s2
will point to the position b[1], and the character obtained will be *C’.

On the left side:

*g1++

the process is the same. The character is assigned to the position pointed
to by si, and the pointer is advanced to the next position. The process
is repeated until the character *\0’ is copied. In this last case, the value
returned by the assignment will be 0, and the condition will be evaluated to
false. This situation can be seen in figure 8.

Note that the target string must have enough space to contain the char-
acters to be copied from the source string.

5 Library functions for strings

There exist many functions that work with strings in the standard library.
We will go through some of them.
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Figure 8: just to return from strcpy

e void strcpy(char *sl,char #*s2)

We have already seen the operation of the function strcpy in the pre-
vious example. It copies all the characters pointed to by s2 to the area
pointed to by s1, until the null character is copied. There must be
enough space for them on the area pointed to by s1. As an example:

char a[12];
char b[] = "C is nice";

strcpy(a,b);
printf("a: %s\n",a);

will print:
a: C is nice

e void strcat(char #*s1,char *s2)

This function concatenates the characters pointed to by s2 to the string
pointed to by s1. There must be enough space in the area pointed by
s1 to store the characters from both strings. As an example:

char a[12];
strcpy(a,"C is ") ;
strcat(a,"nice");

printf("a: ¥%s\n",a);

will print
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a: C is nice

e int strcmp(char xsl,char *s2)

This function allows to compare lexicographically strings s1 and s2. It
returns 0 if both strings are equal, a negative value if s1 is before s2
and a positive value if s1 is after s2.

e int strlen(char *s1)

This function will return the number of characters in the string s1
without considering the null character. As an example:

char al] = "C is nice";

printf("length of a: %d\n",strlen(a));
will print
length of a: 9

e int sprintf{char *s,char xformat,...)

This function works like printf, but the actual output goes to the
string s instead of the standard output. The notation ... indicates
that the number of arguments is variable, and in this case, it depends
on the number of format specifiers in the format string. Let us see an

example:
char a{20];
int i = b;

float £ = 3.5;

sprintf(a,"/d -- %£",i,f);
printf("a: %s\n",a);

will print

a: b — 3.5
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6 Using strings
It is possible to define an array of strings, and initialize it at the same time.
For example:

char *a[3] = { "C" , "is" , "nice" };

In this example, a is an array of three pointers to characters, or, an array
of three strings. The memory may be as is shown in figure 9.

a

af0] = [0

a[l] 4

a[2] 1 s \0
\ it et | et | O

Figure 9: an array of strings
the expression ali] can be used to access the i-th string. As an example:
strlen(al[2]) returns 2.

Strings can also be used as fields in structures. For example, a structure
that represents a person with his or her name and age, could be defined as
follows:

typedef struct {
char name[10];
int age;

} person;

and created and initialized by:

person X;

strcpy{(x.name,"John");
X.age = 30;

Note that we must define the string as an array of characters, and not as
a pointer. If we would have defined it as a pointer to characters, there would
not have been space for the characters to be copied by strcpy.

If we would like to reserve just the exact amount of characters needed
by the name of the person, we can define the field as a pointer, and ask for
memory in a dynamic way. This point will be introduced in the next section.
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7 Dynamic memory administration

Dynamic memory administration is the process by which memory can be
allocated and freed at any point during the execution of the program.

C provides some functions in its standard library related to dynamic
memory administration. The two most important ones are:

void *malloc(size_t n);
void free(void *p);

The malloc function asks for a memory block of size n (in bytes). If n
consecutive bytes are available, it returns a pointer to the first byte. Other-
wise, it returns the constant NULL.

As an example, if we want to copy the string b into a, we can reserve
space for the exact amount of characters, and then copy the string:

char *a;
char *b = "a string";

if ((a = (char*)malloc(strlen(b)+1)) == NULL) {
printf("not enough memory\n");
exit(1);

b

Note that we must consider also the null character when we ask for mem-
Ory space.

Let us suppose we need to obtain space for n integers during the execution
of the program. The malloc function requires the size expressed in bytes.
To know how many bytes an integer uses, we can use the operator sizeof,
which takes as argument the name of a type or an object, and returns its
size in bytes. The following piece of code allocates dinamically space for an
array of n integers, and initializes all its components to zero.

int *arr,n,i;
scanf ("%d",&n) ;

if ((arr = (int*)malloc(n * sizeof(int))) == NULL) {
printf("not enough memory\n");
exit(1);

}

for(i = 0;i < n;i++) arr(i] = 0;
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As another example, to reserve memory for n structures person (as de-
fined in the previous section), we can execute:

person *p,
scanf ("%d" ,&n) :

if ({p = (person*)malloc(n * sizeof(person))) == NULL) {
printf ("not enough memory\n");
exit(1):
}
for(i = 0;i < n;i++) {
strcpy (plil .name,"");
plil.age = 0;
}

The standard library function free, is used to return back the memory
that was obtained by calling malloc. For example, to return back all the
memory that was dynamically assigned in the examples in this section, we
can execute:

free((voidx*)a);
free((void*)arr);
free((void*)p);

8 A bigger example

In section 6 we have seen that an array of strings could be defined and
initialized in a very simple way. For example:
char *a[3] = { "C" , "is" , "nice" };

However, if we want to build a structure like this in a completely dynamic
way, it is not so easy. Remember that in this example, a is a pointer to
pointers of characters, because a is the name of an array, and the name can
be considered as a pointer to the first element.

We must begin with an empty structure

char *xb;

First, we need to create the array of pointers.
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if ((b = (char*#*)malloc(3 * sizeof(char#*))) == NULL) {
printf("not enough memory\n");
exit (1);

}

then we can ask memory for the individual strings and we are ready to
copy them

for(i = 0;i < 3;i++) {
if ((b[i} = (charx)malloc(strlen(a[i])+1)) == NULL) {
printf ("not enough memory\n");
exit(1);
}
strepy(b[il,alil);
+

The three steps we have followed are shown in figure 10.

ol ]

-~ \‘.’
\.

nv vis AC) )e‘ ’\O

Figure 10: steps in dynamic memory allocation

To release the area that was dynamically allocated, we must follow the
opposite procedure:

for(i = 0;1 < 3;i++)
free((void*)b[il);
free((void*)b);
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9 Program arguments

It is possible from the C program, to access the arguments that are passed in
the command line. For example, if our program is called program, it can be
execitted from the shell prompt with a series of arguments, like for example:

$ program file.tex -b 123

The program arguments can be accessed through two parameters of the
main function, named by convention argc, the argument count, and argv,
the argument vector. argc is an integer, and argv is an array of strings, like
the one we have been discussing in the previous sections. In this example,
the values of the parameters are shown in figure 11.

arge
& 4
argv
L — p !r! !0) !g) Y.t !a! !m !\0
\*’r" T e’ e e’ k] N0
_\ s b V\O
NULL \
5]’ !2’ !3, ’\0

Figure 11: program arguments

The following program prints all the strings that are passed as arguments
to the program.

#include <stdio.h>
int main(int argc,char *argv[]) {
int i;

for(i = 0;1 < argc;i++)
printf ("%s\n",argv{il);
exit(0);
¥

If we compile this program under the executable name program, and we
execute it as it was shown before, we will obtain:
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program
file.tex
-b

123

Note that the name of the program is the first string in the argv argument.
Also the ANSI standard guarantees that argv[arge} is a NULL pointer. The
notation char *argv[] is equivalent to char **argv, and can be used just
when defining the arguments of a function.

We will see now an example, which will show how a program can deal
with parameters as the standard Unix commands do. The program expects
a file name as argument, and it has two options: -a and -b. The usual
notation for this is the following:

program [[-al[-bl] <filename>
So, the program can be called, for example, as follows:

$ program a.tex

$ program -a a.tex

$ program -b a.tex

$ program -a -b a.tex
$ program -b -a a.tex

The code for the program is the following:

#include <stdio.h>

int main(int argc,char *argv{]) {
int a_option = 0,b_option = O;
char **p_to_arg = &argv[1];

while (--argc && (*p_to_arg)[0] == ’-’) {
if ((xp_to_arg) 1] == ’'\0’) {
printf ("invalid option\n"); exit(1);
I
switch((*p_to_arg) [1]) {
case ’a’: a_option = 1; break;
case ’b’: b_option = 1; break;
default: printf("invalid option\n"}; exit(1);
}
p_to_arg++;

1

Sixth College on Microprocessor-based Real-time Systems in Physics 105
Abdus Salam ICTP, Trieste. October 9-November 3, 2000




Advanced C Kavka, Carlos

if (arge !'= 1) {
printf("invalid arguments\n"); exit(1);

+

printf("a option: %s\n", (a_option) ? "yes" : "nmo");
printf("b option: %s\n", (b_option) ? "yes" : "no");
printf("file: %s\n",*p_to_arg);

exit(0);

In the program, p_to_arg is a pointer initialized to point to the second
entry in the argv argument, the one that corresponds to the first program
argument,

The while loop processes the optional arguments. In every iteration the
pointer p_to_arg is advanced to the next argument, and the argument count
1s decremented. This last operation is valid because argc is a local variable.
The condition stands for: continue iterating while there are still arguments
and the first character of the current argument is a -. At the end of the loop,
p_to_arg will point to the filename, if there is one in the input line.

10 Pointers to functions

The functions are also stored in memory, and in C, pointers are allowed to
point to them. As an example, let us define a pointer to functions, that take
two integers as arguments and return an integer value:

int (*p) (int,int);
and define two functions with these characteristics:
int add(int x,int y) {

return x + y;

}

int sub(int x,int y) {
return x - y;
1

The pointer p can point to each of them. With the expression:

p = add;
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the pointer p will point to add. This function add can be called through
the pointer, by de-referencing it:

printf("%d\n", (*p) (2,3));

The important point is that the function pointed to by p is evaluated.
So, if we make p a pointer to the function sub

p = sub;

and we return back to execute the printf function, sub will be called.

A pointer to a function can be passed to another function as a parameter
and can be used within the function to call the function which it is pointing
to. It is not permitied to increment or add a constant to a function pointer.

As an example, the following function do.op receives an integer n as
argument, two arrays of integers with n elements in each and a pointer to a
function:

int do_op(int n,int x[],int y[1,int (*f)(int,int)) {
int i,sum = (;

for(i = 0;i < m;i++)
sum += (*£)(x[i],y[i]);
return sum,;

}
This function can be invoked, for example, as follows:
int al31 ={2, 1,5}

printf ("%d\n",do_op(3,a,b,add));
printf ("%d\n",do_op(3,a,b,sub));

The first printf will print 16 (2-+1 + 1+3 + 5+4), and the second 0 (2-1
+1-3 + 5-4),

Sixth College on Microprocessor-based Real-time Systems in Physics 107
Abdus Salam [CTP, Trieste. October 9-November 3, 2000




Advanced C Kavka, Carlos

11 Linked lists

We will see now an example in which we will combine dynamic memory
allocation with structures.

A linked list has a pointer to access the first node, this node contains a
pointer that points to the second one, and so on. The last node contains a
null pointer. Each node keeps some information. In our example, we will
assume it contains an integer data.

A node is an ideal candidate to be implemented with a structure. It must
contain a field to store data, and the pointer to the next node. Note that
this structure is recursively defined:

typedef struct {
int datza;
node #*next;

} node;

The list will be a pointer to the first node:
typedef node *list;

A list 1 could be defined as follows.

list 1;

An example of a list built with the previous structures is shown in fig-
ure 12.

datah_ 7 4 3
| /mxt —/ */ NULL

Figure 12: a linked list
A list like this could be traversed printing the integer information by
using the following function:
void print(list 1) {

node #*p;

for(p = 1;p != NULL;p = p->next}
printf ("%d\n",p->data);
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The pointer p begins by pointing to the first node, and if its value is
not NULL, the data field of the node pointed to by p is printed. Then p
is advanced to the next node, by using the address stored in the next field.
This process continues until p is NULL.

To create the list, we can define a function to create and insert a node into
the list 1 in the position pos with a data value. Note that this function must
allocate dynamically space for the node, and modify the involved pointers.
If the node must be created in the first position, the pointer 1 that points
to the first element of the list must be modified. So, its address is passed as
argument {not the value).

void insert(list *first,int value,int pos) {
node *p = *first,*prev = NULL;
node *new_node;

/* a new node must be created */
if ((new_node = (node*)malloc(sizeof(node})) == NULL) {
printf ("not enough memory\n"); exit(1};

}

/* advance the pointers to reach insertion position */
while (--pos) {

prev = p;

p = p->next;
i

if (prev == NULL) { /* first position */
*first = new_node;
new_node->next = p;

} else { /* other position #*/
prev->next = new_node;
new_node->next = p;

}

}

The pointer p is used to point to the node which is currently at the
pos position. The pointer prev (previous) is used to point to the previous
position. If we want to insert a node in the first position, the pointer p will
point to this position, and the pointer prev will be NULL (no position to
point). This situation is shown in figure 13. In this case, the pointer to
the first element must be modified to point to the new first one. The new
pointers are drawn with a dotted line.
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Figure 13: insertion in the first position

A situation in which the node to be inserted is not the first is shown in
figure 14.

prev p
N
first
data 7 / 4 / 3
] Ine; ] i NULL
b
- 7
Figure 14: insertion in another position
12 Files

There are two possibilities to work with files in C. The first one is called
unbuffered I/0. 1t is not part of the ANSI C standard, but it is part of
POSIX.1. The term unbuffered refers to the fact that each read or write
invokes a system call in the kernel. The other one, usually called, the standard
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I/0 routines belongs to the ANSI C standard, and provides higher level
services.

12.1 Unbuffered I/0

All open files are referred to by file descriptors. A file descriptor is a non-
negative integer. When we open a file, the kernel returns a file descriptor to
the process. When we want to read or write a file, we identify the file with
this integer value.

By convention the Unix shell associates the file descriptor 0 to standard
input, file descriptor 1 to standard output and file descriptor 2 to standard er-
ror. In POSIX.1 these numbers are replaced by the constants STDIN_FILEND,
STDOUT_FILENO and STDERR_FILENQ.

The functions available for file I/O are five: open, read, write, lseek
and close. We will look at them right now:

e int open(char *pathname,int oflag)

The pathname is the name of the file to open or create. The value to
be passed to the argument oflag is obtained {rom one of the following

constants:

O_RDONLY  Open for reading only.
0_WRONLY Open for writing only
U_RDWR Open for reading and writing

optionally OR’ed with constants from the following set (Not all the
possibilities are shown):

O_APPEND Append to the end of file on each write.

0_CREAT Create the file if it does not exist. This option requires
a third argument specifying the access permission bits of the new
file.

0_TRUNC If the file exists, and its open mode allows write opera-
tions, truncate its length to 0.

0_NONBLOCK Sets the non blocking mode.

e int close(int filedes)

Close the file with file descriptor filedes.
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e off t lseek(int filedes,off t offset,int whence)

Every open file has an associated 'current file offset’. It is a non negative
integer that measures the number of bytes from the beginning of the
file. The interpretation of the offset argument depends on the value
of the whence argument.

— If whence is SEEK_SET, the offset, of the file is set to offset bytes
from the beginning of the file.

— If whence is SEEK_CUR, the offset of the file is set to its current
value plus the offset. The offset can be positive or negative.

— If whence is SEEK_END, the offset of the file is set to the size of the
file plus the offset. The offset can be positive or negative.

The offset of the file can be greater than the current size, in which case,
the next write to the file will extend it.

¢ ssize t read(int filedes,void *buff,size t nbytes)

This function read nbytes from the file and store them in memory
beginning at the address pointed to by buff. [t returns the number of
bytes successfully read.

¢ ssize.t write(int filedes,void *buff,size_t nbytes)

This function writes nbytes from the address pointed to by buff to
the file. It returns the number of bytes successfully written.

12.2  Some examples

Let us see some examples. The following program, opens a file named
file.data, writes a string and closes it.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int main{) {
int fd;
char *str = "some data";
int n = strlen(str)+1;

if ((fd = open("file.data",0_WRONLY | O_CREAT | O_TRUNC,
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S_IRUSR | S_IWUSR)) < Q) {
perror(“"can not open');

exit(1);

¥

if (write(fd,str,n) !'= n) {
perror{'"can not write");
exit(1);

}

exit (0);

¥

The file is opened only for writing; it is truncated to zero length if it
existed, and if it is created, permissions to read and write are granted to the
user. The function perror prints the string it receives as argument and then
print the system error message. Note that a close is not necessary at the
end, because all files are closed automatically when the program exits.

The following program can read from the file just created. Ten characters
are read from the file to the area pointed to by str. Note that we must have
enough space for the characters read.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int main() {
int £fd;
char str[10];

if ((fd = open("file.data",0_RDONLY)) < 0) {
perror("can not open");
exit{1);

}

if (read(fd,str,10) !'= 10) {
perror('can not read");
exit(1);

}

exit(0);
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The following program can create an empty file with 1KB size:

#include <sys/types.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fe¢ntl.h>

int main{) {
int fd;
char ¢ = \0?;

if ((fd = open("file.data",0_WRONLY | O_CREAT | O_TRUNC,
S_IRUSR | S_IWUSR)) < 0) {
perror('can not open");
exit(1);
}

if(lseek(fd,1024,SEEK_END) !'= 1024) {
perror(“can not seek");
exit(1);

}

if (write(fd,&c,1) '= 1) {
perror('can not write");
exit(1);

}

exit (0);

12.3 Standard I/0 library

The ANSI C standard I/O library handles details such as buffering allocation
and performing I/0O in optimal-sized chunks.

When we open a file, the standard [/O function returns a pointer to a
FILE object. This object contains all the information required by the other
library functions. We never use this structure directly. We pass a pointer to
this structure to the other standard functions, in the same way as we were
using the file descriptors before.

Some of the functions available are described now. Note that just a short
description is presented. For more information, please refer to man pages.

e FILE *fopen(char *pathname,char *type)
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This function opens the file pathname. type could be one of the fol-
lowing values:

“r"  open for reading.
"w" open for writing.

"a" append; open for writing at the end of the file, or create for
writing.

"r+" open for reading and writing.
"w+" truncate to 0 length or create for reading and writing.

"a+" open or create for reading and writing at the end of file.

If the file can be successfully opened, a pointer to a FILE structure is
returned. If there is a problem, a NULL pointer is returned.

e int fclose(FILE *fp)
Closes the file specified by fp.

e int fgetc(FILE *fp)
Reads one character from the file specified by fp. getc is equivalent
to fgetc, but it is implemented as a macro. It returns EOF to indicate
an error condition.

e int ungetc(int c,FILE *fp)
Push back the character c into the stream specified by £p. This means
that it will be available on a subsequent reading.

e int fputc(int c,FILE *fp)

Write the character c in the file specified by fp. putc is equivalent to
fputc, but it is defined as a macro. It returns EOF to indicate an error
condition.

e char *fgets(char *buff,int n,FILE *fp)

This function reads at most n-1 characters into the area pointed to
by buff from the file specified by fp. The reading is stopped after an
EOF or a newline. It returns NULL to indicate an error condition.

e int fputs(char *str,FILE *fp)

This function writes the string pointed to by str to the file specified
by fp. It returns EOF to indicate an error condition.
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e int fflush(FILE *fp)

This function causes any unwritten data to be passed to the kernel. If
fp is NULL, all output streams arc flushed.

The output cannot be directly followed by input without an intervening
fflush or £seek. The same is true in the other way.

12.4 Some examples

Let us see some examples. The following program opens a file and writes
three strings.

##include <stdio.h>
int main() {

}

FILE *fp;
char *str[] = { "one" , “two" , "three" };
int 1;

if ({(fp = fopen("file.data","w")) == NULL) {
perror("can not open");
exit(1);

}

for{i = Q;i < 3;i++)
if (fputs(str(i],fp) == EOF) {
printf("can not write");
exit(1);
}
exit (0);

There exists three predefined file pointers: stdin, stdout and stderr.
These pointers can be used with all the functions shown here. As an example,
the following program copies its standard input into its standard output:

#include <stdio.h>
int main{) {

int c;

while ((c = fgetc(stdin)) !'= EOF)
if (fputc(c,stdout) == EOF) {
perror("can not write");
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exit(1);
}
exit (0);
}

12.5 Binary I/O

Most of the functions shown operate with one character at the time or one
line at a time. If we are doing binary I/O we would like to read or write an
entire structure at a time. Two functions are provided for this purpose:

e size_t fread(void *ptr,size_t size,size.t nobj,FILE *fp)

Reads nobj objects of size size from the file specified by fp and stores
them in memory starting at the address pointed to by ptr. It returns
the number of objects successfully read.

e size t fwrite(void #*ptr,size.t size,size.t nobj,FILE *fp)

Writes nobj objects of size size into the file specified by fp copied
from the memory address pointed to by ptr. It returns the number of
objects successfully written.

We can write the elements 3 through 6 of a floating point array into a file
by executing:

float datal[1i0];

if (fwrite(&datal[3],sizeof(float),4,fp) != 4)
perror('can not write");

or write a complete structure as follows:

struct person {
char name[10];
int age;

¥

struct person X;

if (furite(&x,sizeof(x),1,fp) 1= 1)
perror("can not write");

There are two functions related to the file position:
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e long ftell(FILE *fp)

Returns the current file position.

e int fseek(FILE #*fp,long offset,int whence)

with the same semnantic of the 1seek {unction.

12.6 Formatted I/O

The formatted 1/O functions allow to read or write from a file in a similar way
as scanf and printf work with standard input and output. The information
is always written in ASCII code into the file. The great advantage is that
they are simple to use, and the files can be read directly with a text editor.
The disadvantage i1s that files are usually bigger.

e int fprintf(FILE xfp,char *format,...)
It works like printf, but the output goes to the file specified by fp.

e int fscanf(FILE *fp,char *format,...)
It works like scanf, but the input data comes from the file specified by
fp.

As an example, the following program writes into a file called numbers
the integers from 0 to 5.

#include <stdio.h>

int main{) {
FILE *fp;
int 1i;

if ((fp = fopen('"numbers","w")) == NULL) {
perror("can not open');
exit(1);

}

for(i = 0;i < 6;i++)
if (fprintf (fp,"%d\n",1) '= 1) {
perror("can not write"),
exit (1)}
¥
exit (0} ;
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If we list the contents of this file, we will see the numbers.

$ cat numbers
0

o WD
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1 Introduction

Embedded systems have been around since the early days of computers.
When a chemical plant used an IBM mainframe computer for process control
in the 1960s, the mainframe was really an embedded processor, albeit a big
and expensive one. When a physicist used a PDP11 minicomputer in the '70s
to control and monitor his cryogenics experiments, he had built an embedded
system. However, in those days, the number of such systems was not very
large, basically because of the cost of hardware. How many PDP11s can a
cryogenics laboratory possess?

With the advent of microprocessors/microcontrollers and their prices
tumbling down in recent years, there is a tremendous growth in the number
of embedded systems. The cost change for embedded controiler is phenom-
enal in the last two decades - from $10,000 in 1970s to $10 in 1990s which
is three orders of magnitude change. Based on the well-known fact that an
order of magnitude change of price would have large impact on its use and
importance, one can see that embedded systems will proliferate virtually ev-
ery where. The subject of embedded systems is now a prominent one, at least
in the Internet! A recent Internet infoseek search on ’embedded systems’
produces 226,063 entries! With such a vast amount of information available,
this short series of lectures can at best only give a cursory introduction to
the subject.

1.1 What are Embedded Systems?

An embedded system is one with a built-in or embedded processor or com-
puter, typically for carrying out some kind of real-time applications. The
computer in such a system is not used as a general purpose computing ma-
chine. An embedded processor may or may not have a standard keyboard
and video monitor, but it will always have some kind of connection to the
outside world be it a synchrotron, an air-conditioner or a handphone. While
it is possible to cite many examples for which the time of response is not
critical, there are far more applications of embedded systems which are time
critical. Thus the study of real-time aspects of embedded systems becomes
an important issue - which is what this college is all about.

It is the application rather than the hardware itself that defines the em-
bedded system. A PC used as a general purpose computer, as those in the
computer room and in your office or home is not an embedded system. The
same type of PC used in the laboratory to log data or control thus forming
an integrated equipment is an embedded processor. Peripheral interface will
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be used, but then again, in a simple case, it may involve only the standard
serial (COM Port) and parallel (Printer Port) interface of the PC.

There are numerous examples of embedded systems around us. Basi-
cally the ubiquitous embedded processors can be found in a large nurmber of
applications and situations:

e Laboratory - test equipment, data acquisition systems, control sys-
tems, dedicated equipment. The use of embedded systems in laborato-
ries has been going on for a long time. In ’60s and '70s researchers in
laboratories used minicomputers as embedded processors. Now stan-
dard PC and microcontrollers are typically used. Test and laboratory
equipment manufacturers are among the first major users of micropro-
cessors in embedded systems. The predecessor of this Real-time Col-
lege was a college on the use of microprocessors in embedded systems
in laboratories.

e Process industry - process control systems. This is the grand daddy
of real-time embedded systems. Early examples are the closed-loop
control system at a Texaco refinery in Texas in 1959 and a similar
system at a Monsanto Chemical Company ammonia plant in Louisiana.
As the industry is able to pay, they are the ones that use mainframe
computers as embedded processors. It is interesting to note that the
use of computers in the process industry more or less charts out the
history of computer engineering and computer science. Practically all
the hardware and software techniques have been used by this industry
in one way or the other.

e Manufacturing industry - production line assembly equipment, au-
tomatic test equipment, robots. Manufacturing industry benefits tremen-
dously from embedded processors especially in the area of automation
or robotics. Without the use of embedded systems, you would not be
paying the current price of about $1000 for your PC which is really
more powerful than a minicomputer of the '70s, let alone the ENIAC
(Pennsylvania, 1945, 19,000 vacuum tubes, 200kW, 10 decimal digits,
0.2 ms addition, 2.8 ms multiplication.) or the EDSAC (Cambridge,
1949, 3,800 vacuum tubes, 500kHz mercury delay lines, 256 words, 35
bits, 1.5 ms addition, 6 ms multiplication.)! In 1996, assembly plants
in Malaysia, Mexico, Philippines, Thailand, China and other countries
are churning out more than 3 billions microcontroller ICs worth more
than 10 billion dollars! This is only possible when large amount of
embedded systems with clever software are used in the assembly and
production lines.
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e Automotive - engine controls, anti-lock braking, lamp, indicator and
other controls. It turns out that the automotive industry is one of the
most important customers of the embedded processors. In 1996, the
average amount spent by a car manufacturer on a car in microelectron-
ics is more than one thousand dollars. This industry stipulates high
requirements; electronics used must be highly reliable while able to
withstand severe conditions of temperature, vibration and electromag-
netic interference. Some processors were initially specifically designed
for the automotive industry and latter only modified for general pur-
pose use.

e Consumer goods - audio-visual equipment, household electronics
(microwave ovens, washing machines, dishwashers, air-conditioners),
electronic toys and gadgets, etc. The list of products in this category
is very large and is expanding continuously as the costs of embedded
controllers drop. It is inconceivable now to operate a new television
set without an IR remote controller. This is of course easily made pos-
sible when the price of 4-bit microcontrollers drops to a dollar each.
(Whether one needs a remote controller to turn on a channel is a dif-
ferent story.)

e Office & banking equipment — autotellers, counting machines, weigh-
ing machines, photocopiers, fax machines. In many parts of the world,
fax machine is an essential equipment in running a business or oper-
ating an office. It speeds up business transactions significantly. While
e-mail is taking over facsimile service in many situations, the latter is
still an essential piece of office equipment. (I had to send my accom-
modation form to ICTP housing section by fax from Kuala Lumpur.)
Modern banking equipment are of course using a large number of em-
bedded processors, ranging from the very powerful one in autoteller
machines to simpler ones in currency notes counters and others.

e Computer peripherals - printers, keyboards, visual display units,
modems. A computer system consists of a number of peripheral devices
besides the CPU box. Peripheral devices inevitably use embedded pro-
cessors to either reduce cost or enhance performance. As the volume
of PCs produced is no longer trivial, the use of embedded processors in
their peripheral devices cannot be overlooked either.

e Telecommunications - pagers, telephones, wireless phones, hand-
phones. This is yet another major area of embedded processor appli-
cation. With the rapid growth in the telecommunications especially
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in the area of cellular phone, the telecommunications manufacturers
have been pushing the advancement of embedded processors in terms
of size, cost and complexity. With the requirement of integrating ana-
logue and digital circuitry, they are encouraging the chip designer and
manufacturer to push towards the limits of this technology.

Although there is an infinite variety of embedded systems, the principles
of operation, system components and design methodologies are essentially
the same. A typical system consists of a computer and an interface to the
physical environment, which may be a chemical plant, a car engine or a
keyboard, for example. In some applications, standard input/output devices
such as the VDU, keyboard and printer are present, as in the case of process
controller in a chemical plant. In others there are no standard I/O devices,
as in the case of car fuel injection control. In the former case, it is likely that
a general purpose computer such as a PC or a more powerful workstation PC
will be adapted as the embedded processor. In the latter, microcontrollers
designed together with dedicated electronics will be used.

We shall deal with the development of such systems in general, with
emphasis on a class of embedded systems using microcontrollers which is
currently the most prevailing form of computer used in laboratory and many
other situations.
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1.2 What are Real-time Embedded Systems?

It was mentioned earlier that embedded systems are typical used to carry out
real-time applications. What are real-time systems? The Oxford Dictionary
of Computing defines a real-time system as “Any system in which the time
at which the output is produced is significant. This is usually because the
input corresponds to some movement in the physical world, and the output
has to relate to that same movement. The lag from input time to output
time must be sufficiently small for acceptable timeliness.”

The above definition covers a wide range of systems - from UNIX work-
stations to aircraft engine control systems. When a command is entered in
a UNIX workstation, we typically get a response on the screen ’with a suffi-
ciently small time lag’. In an aircraft engine control system, the response to
commands and other input parameters has to be within certain time limits.
There is however a subtle difference between the UNIX workstation and the
aircraft engine control system in terms of timeliness.

An alternative definition of a real-time system can be as follows: “a real-
time system receives inputs and sends outputs to the target system at times
determined by the target system operational considerations - not at times
limited by the capabilities of the computer system.” This further defines the
meaning of response time and it distinguishes between the UNIX workstation
and the engine controller. In a UNIX workstation, occasionally when we issue
a command, we may not get the response in a time to our liking because the
CPU is running some other higher priority tasks or simply overloaded. In
this case, the UNIX workstation no longer qualifies as a real-time system
according to the more stringent definition mentioned above.

A real-time program is thus one for which the correctness of operation
depends both on the logical results of the computation and the time at which
the results are produced. The main objective of this Real-time College is to
deal with the various techniques and methodologies in achieving the above.

In view of the fact that not all embedded systems require very rigid
response times, real-time systems may be classified broadly into three cate-
gories:

e Clock-based (cyclic, periodic) - e.g. process control systems. Gen-
erally all process control related systems would require a clock-based
system. The real-time program is conscious of time by means of a sys-
tem clock. Actions are taken at the precise moments of time. When a
stimulus is present or when a limit is reached the system must respond
within a certain clock cycles (time).
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o Event-based and Interactive - e.g. alarm systems, autoteller. An
event based system such as an alarm system in your house generally
does not have the sense of 'time’. When a contact is opened because
the house is broken in, the siren is triggered or the police is notified, to
within an acceptable time limit.

Strictly based on time constraints, real-time systems can be grouped into:

e Hard real-time - must satisfy deadlines on each and every occasion,
e.g. temperature controller of a critical process.

e Soft real-time - occasional failure to meet deadlines acceptable, e.g.
autotellers.

While real-time embedded systems have received a lot of attention in re-
cent years, the earliest proposal of using a computer in real-time applications
for controlling a plant actually dates back to 1950 when Brown and Campbell
published their paper:

e Brown, G.S., Campbell, D.P., ‘Instrument engineering: its growth and
promise in process-control problems’,Mechanical Engineering, 72(2):
124 (1950).

A couple of early industrial installations of embedded systems are listed
below:

e September 1958 by Louisiana Power and Light Company for plant mon-
itoring at a power station in Sterling, Louisiana.

e First industrial computer control installation was by Texaco Company
for a refinery at Port Arthur in Texas in March 1959.

The above systems, as well as many other early systems were supervisory
control systems that used steady-state optimisation calculations to determine
the set points for standard analogue controllers. In other words, the digital
computer was used to compute and to send simple commands to many stan-
dard analogue controllers which had been in use for a longer time in the
industry. These analogue controllers were generally expensive, complicated
and required periodic calibrations. Later, direct digital control which allowed
the direct control of plant actuators was added and analogue controllers were
not required.
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The early real-time programs were written in machine code which was
manageable when the tasks were well defined and the system small. However,
in combining supervisory control with direct digital control, the complexity
of programming increased significantly. The two tasks have very different
time scales and interrupting the supervisory control is necessary. This led
to the development of general purpose real-time operation systems and
high-level languages for such systems.
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2 Design and Development of Embedded Sys-
tems

There are four major steps involved in the design and development of em-
bedded systems:

e System design.
e Design and build hardware.
e Design and develop software.

e Integrate software into target system.

For very small projects involving only one person, the above tasks are
carried out sequentially in that order. However, for bigger projects, it is
often possible to develop the hardware and the software in parallel. This
calls for a thorough system design in the first place.

2.1 Designer’s Skills

In order to carry out the task effectively, the designer of embedded system
must possess several skills:

* Good knowledge of the microcontroller resources. This should in-
clude the architecture, the instruction set, the addressing modes and
the on-chip resources. The knowledge should generally extend beyond
the simplified and idealised devices. For example, a good designer must
know how the microcontroller handles interrupts and related timing is-
sues so as to handle real-time activities effectively.

®» Good knowledge of real-time control. The real-time reqguirement
of the target system must be clearly understood before an effective
solution may be found.

e Good knowledge of software technigues. The amount of software
effort needed for an embedded system often far exceed that of hard-
ware nowadays. A good designer thus must possess good knowledge of
languages, operating systems, and software building blocks in handling
various requirements and tasks of the target system. Many experienced
programmers found that collecting useful algorithms and software tools
is very helpful for future projects.
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For example, it may be an advantage to represent a system by a state
machine. In this case, how can the state machine be implemented in
software easily? In an embedded system where a keyboard is used, how
does one handle the keyboard parsing?

¢ Good knowledge of hardware I/O components or sub-modules.
To be able to design a good embedded system, knowledge of the state-
of-the-art peripheral devices is helpful. For example, the technology
of output devices including LED, LCD and CRT has progressed sig-
nificantly. Manufacturers have implemented very sophisticated device
drivers for some displays and it is a good idea to consider using them
whenever possible.

e Many embedded systems involve the use of ADC or DAC. Again, a good
knowledge of accuracy, resolution, and speed of conversion is essential.
If a target system is expected to measure 1 millidegree in 100 degrees,
it is useless to design a system with a 10-bit ADC, for example. Other
components such as drivers, position control and position encoding are
often used and should be included in the repertoire of hardware skill.

¢ Good knowledge of development tools . Development of embed-
ded system requires both hardware and software development tools.
Hardware tools: multimeter, oscilioscope, logic probe, pulser, EPROM
programmer, logic analyzer, in-circuit emulator, development system.
Software tools: editor, cross compiler, cross assembler and linker, sim-
ulator, development system.

2.2 System Design

Designing of embedded system is no different from designing any other com-
puter based system and it is important that one applies a good design and
engineering methodology. Many diflerent approaches have been advocated
and there are many books written on the subject but basically the objective
is to apply a system approach so that the target system may be built to
specification functionally and it is easy to maintain.

First of all, define the functions and requirements of the target system.
The problem must be well defined. Otherwise there is no solution. Difficulties
arise when the scope of the work is not rigidly known or when the designer is
uncertain of the capabilities of the various hardware and software resources.

This may happen in the initial phases of a project and as time goes on,
one must have a clear idea of all the requirements and freeze the specifications
before embarking on the next phase of work.
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In general, once the first phase is over, onc can specify the interface to
the target system clearly, for example:

e Number and type of parallel I/O needed for interacting with the target
system.

¢ What kind of real-time requirement is needed?

e Any serial communication needed? If so, what is the distance of com-
munication?

o Is the target system localised or distributed over a wide area?

e Any ADC and DAC requirement? If so, what are the requirements on
resolution, accuracy and sampling rate?

Is it a networked or a stand-alone system? In the case of distributed or
networked application, define the type of networking facility to use. This
usually depends on the data rate and response time. For example,

o If the data rate requirement is kbps and below and the response time
requirement is around a second, a low cost serial link based on RS232
or RS422 interfaces may be used.

e If a high data rate up to Mbps is needed, use a standard LAN-type
link, Ethernet or Token Ring for example.

Specify the user interface. Is it an instrument panel-type interface? Or
1s it a graphical user interface (GUI)? In either case design a friendly user
interface.

2.3 Choosing An Embedded Processor

When the functional requirements of an embedded system is defined, one
can choose an appropriate microcontroller/microprocessor. The choice really
depends on many factors, amongst them are:

¢ Unique functional requirements of the target system. It may be that
the ADC requirement calls for a particular processor, or the tempo-
rary buffer needed dictates another. Other applications may require a
microcontroller with EEPROM as a non-volatile storage.
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e Production volume of the target system. A one-off laboratory em-
bedded system may use an expensive or oversized processor whereas a
system that has to be produced in quantity may be very cost sensitive.
One may have to use a $§1 processor with masked ROM instead of $50
processor with EEPROM.

¢ Experience of the designer.
e Availability of the devices.

e Your boss says ‘use microcontroller xyz’.

Besides using a microcontroller and building the target system from scratch,
there is yet another alternative - obtain or purchase general purpose em-
bedded computers with the necessary I/O and build only the interface to
the outside world. This is an attractive option if you can afford it. There
are manufacturers producing a wide variety of embedded computers ranging
from 8-bit microcontroller-based systems to full-fledged 486 PC with 1.44MB
ROM disk on a single expansion card.

However, the importance of embedded system design really arose from
the availability of a wide range of microcontrollers. And knowing these mi-
crocontrollers well is a necessary skill of an embedded system designer.

2.4 Microcontrollers (MCU)

If you ever wonder why we should study microcontrollers, please look at the
following table of the total number and value in USD of microcontrollers
shipped by manufacturers in 1996 alone:

MCU Quantity (Millions) | Value (Million USD)
4-bit 1,100 1,800
B-bit 2,100 6,500

16-bit 200 1,600

The evolution of microprocessor has been along two different paths. One
has been the development of powerful CPU with 16~ and 32-bit data bus
and very large memory space (e.g. gigabyies). These processors are used
in personal computers and workstations which form the backbone of com-
puting facilities in home, commercial, educational, engineering and research
environments.
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The power and speed of the 16-and-32-bit CPU of course do not limit
them to the domain of stand-alone computers. They are used as embed-
ded computers as well. In fact they are used in many applications where
sophisticated control or high speed operation is needed, e.g. HP Laserjet
printers.

However, it is true that for a large number of laboratory and other ap-
plications, the tasks can often be performed by a range of smaller processors
— the 4-and-8-bit microconirollers. In this short series of lectures, we shall
not deal with the development of embedded systems using 16- and 32-bit
CPUs because of the complexities of such systems. However, their use as
cross-development tools for microcontroller-based embedded systems will be
elaborated.

The second evolution path of microprocessor is along the line of micro-
controllers which on a single chip the processor is integrated with RAM,
ROM, EPROM, EEPROM, timers, serial and parallel I/O facilities. These
microcontrollers are most suited for real-time embedded systems or used as
real-time modules in large systems.

It is noted that the 8-bit microcontrollers is the main workhorse in embed-
ded systems and this trend is likely to continue. However, the 4-bit smaller
brother has its part to play too, with shipment of about half that of the 8-bit.
There is really no point in putting an 8-bit MCU in a TV remote control
when a 4-bit version would do the job efficiently at a lower cost. This is
of course due to that fact, that more powerful microcontrollers normally re-
quire complex hardware. Cost considerations can be very important in high
volume applications. The price range is wide - from low cost (~USD1) 4-bit
chips to high performance 16-/32-bit chips at (USD50-100).

Choosing a microcontroller for use is not a simple task if you are a se-
rious user because there are many manufacturers offering a wide variety of
seemingly similar devices. Besides the few points mentioned earlier, one has
to look at several other factors:

e Development tool and technical support. This applies to your local
agent support really. It is no good to you when the catalogue lists
some superb development tools at low prices but the local agent is
unable to get it for you or provide the necessary technical information.

e Documentation. Can you get full data book, reference manuals, appli-
cation notes?

e Does the manufacturer produce all the supporting chips? If not, are
they readily available? Is there a second source for the MCU?
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e Does the series have a one-time-programmable (OTP} version? What
about EEPROM, and windowed EPROM?

The major suppliers of microcontrollers are: Motorola, Mitsubishi, NEC,
Hitachi, Philips, Iutel, SGS-Thomson, Microchip, Matshushita, Toshiba, Na-
tional Semiconductor, Zilog, Texas Instruments, Siemens, and Sharp. Mo-
torola, the leading supplier of microcontrollers, shipped more than 350 mil-
lions units in 1993 while the last in the above list shipped more than 17
million units.

We shall look at two microcontrollers in greater detail later. In this
section, a brief survey of some commonly used microcontrollers is given.

e 6805 (Motorola) - This is 2 popular family of microcontrollers by
Motorola based loosely on the 8-bit 6800 microprocessor which has a
von Neumann architecture where instructions, data, I/0 and timers all
share the same memory space. Some members of this family include
on chip serial /O, ADC, and PLL frequency synthesizer. There are
EPROM and mask ROM versions. Expanded and single chip modes
are available.

e 6811 (Motorola) - This is another popular 8-bit microcontroller by
Motorola which is more powerful than the 6805 and is a CMOS de-
vice drawing typically less than 20mA. It has most of the features and
peripheral devices of a microcontroller including digital I/O ports, pro-
grammable timers, ADC, PWM generator, pulse accumulator, asyn-
chronous and synchronous communication ports and watchdog circuit.
We shall use this device to design a small embedded system in this
College.

e 683xx (Motorola) - These are high performance (32-bit) microcon-
trollers capable of very high processing speeds and addressing large
memory space. They are produced by incorporating various peripheral
devices into the 68000 family core processor. The 68331 for example
has a 68020 core and about the same processing power as an Intel
80386.

e 8048, 8051 (Intel and others) - Two very famous series of 8-bit
microcontrollers by Intel. The 8048 is a first generation microcontroller
and is still popular because of the wide range of software available and
its low cost. The 8051 is a second generation microcontroller which
rules the microcontroller world of the 8-bit class of embedded systems
at the moment. It is not as orthogonal as the Motorola counterpart,
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but it is powerful and can be easy to program and design if you are
familiar with the architecture.

The 8051 has a modified Harvard architecture with separate address
spaces for program and data. The program space is 64K (bytes), with
the lower 4 or 8 K residing on chip. It uses indirect addressing to
access up to 64K of external data memory. It has 128 bytes of on-chip
RAM (256 bytes in 8052) plus several special function registers. 1/0 is
mapped separately into its own space as in the other Intel Processors.

It has the capabilities of performing Boolean operation on bits just
about anywhere in the system and then carry out relative jumps based
on the results. There are large amount of software available for this
microcontroller and there are many other chip manufacturers that sec-
ond source this device with many different variants if the customers so
desire. Finally, probably the most important of all, it is more readily
available than others and perhaps cheaper than other chips in many
parts of the world.

80C196 (Intel) - This is a third generation Intel microcontroller fea-
turing 16-bit operation and CMOS fabrication (though the original
version 8096 is NMOS). As a high-end microcontroller, it has 40 digi-
tal 1/0, high speed ADC, serial communications, § priority interrupts,
PWM generator, watchdog timer, hardware multiplication and divi-
sion.

80186, 80188 (Intel) - These are the microcontroller versions of the
famous 8086 and 8088 used in the PC. There are a number of variants
available but they all have 2 DMA channels, 2 counters or timers,
programmable interrupt controller, and dynamic RAM refresh output.
The use of the same CPU as the PC means that a lot of programs
are readily available and that one can use standard development tools
for PC to develop applications for this microcontroller. This may cut
down the learning curve drastically if one is previously familiar with
the editors, assemblers and compilers in PC. Of course it is basically a
very powerful processor to use.

80386EX (Intel) - This is the microcontroller version of the 386 pro-
cessor of Intel. As in the case of 80186 and 80188, the major advantage
is compatibility with the 386 PCs. The chip has serial I/O, DMA chan-
nels, power management, counters or timers, programmable interrupt
controller, and dynamic RAM refresh output. This is of course a even
more powerful chip to be used as microcontrolier. It is worth noting
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that in this case the effort of designing your own 386 microcontroller
embedded system versus buying a standard ready built 386 PC as your
embedded PC has to be weighed carefully. The latter may turn out to
be a better solution.

e COP400 (NS) - This is a 4-bit microcontroller from National Semi-
conductor which features 512 to 2K ROM, 32 to 160 4-bit RAM with
many different packaging (DIP/SO/PLCC) from 20 to 28 pins. It can
operate from 2.5 to 6 volts. A wide range of applications call for this
type of low end chips, especially when its price goes under 50 cents in
quantity.

¢ COP800 (NS) - This is a 8-bit microcontroller from National Semi-
conductor which features static memory, and voltage range of 2.5V to
6V. It has a memory mapped architecture as in the Motorola series of
microcontrollers.

e HPC (NS) - This High Performance microController family from Na-
tional Semiconducior is a 16-bit chip with von Neumann architecture
operating at 3.3V. It has hardware multiplication and division capa-
bilities. Other features include HDLC for data communications, mul-
tiply /accumulate unit for low to medium DSP applications.

e Z8 (Zilog) - The Z8 family of microcontroller is from Zilog and is
loosely related to the Z80 MPU. It has a rather unique architecture
with three memory spaces for program, data and registers. Standard
features include digital 1/O (up to 40 lines), serial communications,
timers, DMA, fast interrupts. One member has a ROM Basic. An-
other one (Z86C95) has 256 registers and an internal 16-bit Harvard
architecture DSP. The DSP registers are accessible as additional regis-
ters. ADC and DAC are also included.

o HD64180 (Hitachi) - This is a microcontroller family from Hitachi
that is compatible with Z80 but runs in fewer clock cycles. It has digi-
tal I/0, asynchronous and synchronous serial communication channels,
timers, interrupt controls, DMA. Hardware multiplication and a few
other instructions have been added.

e TMS370 (TI) - This microcontroller family by Texas Instruments is
similar to 8051 and has large number of on-chip devices such as RAM,
ROM (mask, OTP, or EEPROM), timers, watchdog, SCI, SPI, ADC
and interrupts. Instructions are mostly 8 bits with a few 16-bit ones.
Hardware multiplication and division included.
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e PIC (Microchip) - This is a family of first RISC microcontrollers
which is gaining popularity recently. The predecessors of this family
have been around for more than 20 years under the name General In-
struments. The new PIC series are fabricated in CMOS with enhanced
features and more family members.

The chip features a Harvard architecture with fewer instructions than
other microcontrollers (33 for the 16C5X versus over 90 for the 8048).
Simplicity in design allows more features to be added. The major
advantages of this chip are small size, small pin count, low power con-
sumption and low cost.
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3 Hardware Design and Development

Once the system requirements are well defined and the type of embedded
processor chosen, one can embark on the task of hardware design and devel-
opment. If the choice is a standard PC or ready built hardware as the embed-
ded processor, then the hardware design step is simplified to that of designing
the interface board or circuitry to the target system. Although there can be
an infinite variety of target systems, the interface requirements however can
be grouped into just a few standard categories - digital I/O, analogue 1/0,
serial data communications and parallel data communications. Many of the
interface requirements are normally provided for by the embedded processor
hardware. Perhaps signal conditioning circuits (instrumentation amplifiers,
precision attenuators, current drivers, etc.) are needed in the case of analogue
1/0 or special actuators or 5ensors.

We shall look at the case where the embedded processor is not already
available but built. This is more likely the case for embedded system design-
ers! Ten or fifteen years ago, one would build a microprocessor based system
using a handful of chips including microprocessor, memory, peripheral de-
vices and other glue chips. And to do that effectively, certain basic skills
have to be acquired. In fact, the earlier Microprocessor College at ICTP
spent four weeks trying to achieve just that.

Nowadays, we may still build microprocessor-based embedded system.
The 6809 system used in the laboratory of this College is one such example.
There are many good reasons for doing so. First of all, it generally has more
memory resources than a single chip microcontroller. This facilitates the
use of more sophisticated resident firmware including a full featured monitor
or a real-time kernel, for example. Often, there are many readily available
software for a popular microprocessor such as the 6809. The designer may
already be familiar with a well-known microprocessor and need not learn to
use a new one.

The trend however, is to use single chip microcontrollers whenever possi-
ble. The beauty of designing embedded systems using microcontrollers is the
relative ease and simplicity. You no longer have to be a 20-year-experienced-
electronic-engineer to be able to design the hardware. As you may be aware,
the topic of embedded system in this College has been reduced to six lectures!

Whether we use microprocessors or microcontrollers, there is a set of good
design rules or practices that one should adhere to. Amongst them, one that
has often been over looked is that the design must incorporate facilities for
debugging and testing. Small tests or diagnostics, switches or indicators,
added during the designing stage cost very little, but help tremendously in
the later stages.
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Once the circuit design is completed, the next step is circuit board layout
and fabrication. Unfortunately the hardware development process does not
end there. In most cases, a certain degree of hardware testing and debugging
must be done.

3.1 Outline of Hardware Test Procedure

To carry out these tasks, it would be advantageous if sophisticated tools such
as development system, in-circuit emulator and logic analyser are available.
However, it is possible to test and debug with the basic electronics labora-
tory equipment such as multimeter, oscilloscope, logic probe and function
generator alone, if a systematic approach is adopted.

¢ Printed circuit board (PCB) inspection for track continuity and pos-
sible bridging. This is a step that is often overlooked. However, it is
a vital step because easily locatable faults if left undetected, usually
cause much more debugging efforts at a later stage.

e Power up the bare PCB and check voltages.

o Ifit is a microprocessor-based system, such as the 6309, or a microcontroller-

based system operating in expanded multiplered mode, test the address
bus and (partially) the data and control bus on the hardware kernel
which is the processor itself. This step is skipped if the system is
single-chip, micocontroller-based.

In the case of 6809, this is done by forcing a NOP ($12) on the data bus
by pulling up D1 and D4 to 5V via resistors and grounding all other
data lines. It causes the continuous execution of NOP for all memory
locations. This in turn results in AQ toggling at half the system clock
rate, Al toggling at half the rate of A0 and so forth. The address bus
can thus be checked easily with an oscilloscope. In this test, data bus
and control bus are partially verified.

The above test procedure is actually making use of the 1-byte instruc-
tion of the microprocessor in a unintended manner. For Z80, 8085 and
8088 similar techniques can be used. In Z80 and 8085, RST 7 (3FF)
instruction is used whereas in 8088 either the I-byte INT 3 or PUSH
instructions may be similarly used.

e If a logic analyser is not available, implement a tight loop program in
the EPROM or EEPROM such as a branch-to-itself loop (LOOP BRA
LOOPY}. For 6809, this consists of two bytes ($20 $FE) and takes three
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machine cycles to execute. A two-byte reset vector 1s also needed in
the ROM. The execution of this very short program can be followed
cycle by cycle on an oscilloscope and thereby confirming the proper
operation, at least partially, of the data and control bus.

e It is a good idea to include DIP switches and LED indicators in the
hardware even if they are not required in the final target system. Test
routines for I/O ports which have these input switches and output
indicators can be written and tested. Commonly used routines include
incrementing the binary value of the output port at a slow rate for visual
inspection, reading status of switches and sending it to the output port.
This stage of testing serves to verify the operation of I/0 ports and to
provide users with function selection. Normally on power up the system
is programmed to check the status of the input switches and jump to
appropriate test routines or the main program.

e Small test routines for other components in the system are then imple-
mented. This includes testing the serial link, the timers, ADC and the
memories.

e In some embedded systems where the memory is not very small, a
monitor program or kernel is then implemented.

o At this stage most of the hardware testing is done and the task moves
on to application software testing and debugging. However, there is one
type of hardware bug which is not detected by the testing mentioned
above. These are problems caused by intermittent faults, glitches or
external interference. These are detected by means of logic analyser or
in-circuit emulator running in surveillance mode.

3.2 Some Hardware Development Tools

While one can get by with the basic tools for small embedded system devel-
opment, nevertheless it will help if a number of other hardware development
tools are available, especially when one is dealing with more sizeable projects
or when problems such as intermittent faults, external electromagnetic in-
terference, and glitches arise as mentioned above. It is impossible to give
a thorough treatment of various hardware tools in detail here. However, a
number of more important ones are introduced below.

¢ Oscilloscope - The oscilloscope really needs no introduction other
than listed here for completeness sake, It is noted that while the con-
ventional dual-trace 20MHz cathode ray oscilloscope (CRO) is still the
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faithful workhorse in the lab, there exists in the market now digital
oscilloscopes with liquid crystal display (LCD) at a reasonable price.
Often it combines the function of a digital (memory) oscilloscope with
a logic analyzer. The importance of the oscilloscope cannot be over-
emphasized - after all the HP and Tektronix logic analyzer designers
used their oscilloscopes to debug their embedded systems in the '70s!

¢ Logic Analyzer - The two traces of an oscilloscope is ready rather
inadequate or impossible when it comes to simultaneously monitoring
the 40 or so lines of a typical microprocessor or microcontroller circuit.
Logic analyzers capture 48 or more signals and display them in multiple
traces or in coded form. Being a powerful embedded system itself, the
logic analyzer can perform a number of other things that expedite the
debugging of embedded systems.

It allows a trigger condition (data, address and control bus pattern)
to be set up and captures the cycle by cycle information in memory
(typically few thousand cycles deep) when the trigger condition is met.
The captured data can be viewed as traces, in binary/hex form or
in mnemonics of the target processor after being disassembled. This
provides a very power tool for monitoring what’s going on at a very low
level non-intrusively - at least while the embedded system is running
at its normal speed.

Most logic analyzers also provide timing analysis whereby the traces
are sampled at rates higher than the system clock and hence glitches
or other irregular waveforms may be detected.

e Emulator - First introduced by Intel, now in-circuit emulators are used
in large number of embedded system development. This tool brings the
debugging of hardware one step higher than using the logic analyzer
alone. Basically it not only allows the target system to be monitored,
but also has the ability to stop execution in a controlled manner, change
memory and register contents and resume execution. This is achieved
by replacing the target system CPU with a more elaborate system
typically containing the same type of CPU but having other resources
which can carry out the actions mentioned above. In theory the system
emulates all the CPU’s functions in real time.

The major features of the in-circuit emulators are breakpoint, real-time
trace, RAM overlay, and performance analysis. Breakpoint setting,
as mentioned above, allows us to stop execution, for example, at the
end of a function and monitor the return value. When the code does
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not behave as expected, real-time trace can be used to look at what
the code is doing. Embedded systems often have their code stored in
ROM or EPROM. To change the code during debugging is tedious.
RAM overlay is a technique to circumvent this difficulty. Instead of
running the code in the target system ROM or EPROM, RAM in the
emulator which can be easily modified is used. Performance analysis
deals with the problem of code not able to deliver the performance
required, such as keeping up with external events. The analysis allows
the programmer to scrutinize the execution of his code carefully and
find remedies if possible.

In the case of microprocessor-based systems, the target Microprocessor
is replaced by an emulating processor which has overall control over
the data, address and control bus and thus the operation of the entire
system. In the case of microcontroller-based systems, it is more com-
plicated. Typically, the emulator operates the microcontroller in the
expanded mode so as to gain access to the internal bus. It must also
have:

_ extra RAM to hold the application software during development,
— a monitor program, and

— rebuilt ports to replace those lost in the expanded mode.
Other features available in an emulator are:

_ communication facility between the monitor program and a host
computer,

— ability to download object code from the host computer to the
target system,

— ability to display and change RAM contents and processor status
of the target system,

— single stepping and breakpoint features, and

_- execution of the application program at full speed.

The emulator is almost an indispensable tool in the development of em-
bedded systems but the downside is that it is generally not cheap. Good
emulator can run to tens of thousands of dollars. Fortunately there are
a number of low-cost emulators typically produced by chip manufac-
turers themselves to promote the sales of their microcontrollers. These
are often sold under the name of evaluation board of system. They lack
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the sophistication of full featured emulators but nevertheless are very
useful for small projects.

One such example of a low-cost standalone in-circuit emulator is the
M68HC11EVM designed for developing 68HC11 embedded systems. It
has the following features:

- Emulate both the single-chip and ezpanded-multiplezed modes of
operation,

— Code may be generated using the resident assembler /disassembler,
or may be downloaded through a host or terminal.

— Microcontroller ROM is simulated by write-protected RAM during
program execution,

— Two serial links for host and terminal communication.

The system operates in either one of two memory maps - the monitor
map and the user map. Two types of memory map switching are
possible. Temporary map switching allows modification of user memory,
and permanent map switching allows execution of user programs.

e ROM Emulator - ROM emulators are like RAM overlays mentioned
above, used to temporarily replace the target system firmware. A ROM
emulator consists of RAM and associated circuit, a connection to the
ROM socket in the target system and a link to a host computer. The
host computer downloads the data into RAM which is then used by
the target system as its ROM memory. This relatively simple tool is
very effective in embedded system development because it reduces the
iteration time significantly.
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4 Software Design and Development

Software design and development for embedded systems is no difference from
most other software project design and development.

o First of all write down the software specifications before anything else.
Resist the temptation to start programming before the overall software
design is done. How often do you see an electronic engineer grab a
soldering iron the moment he has a rough specification of an amplifier
to build? As far as possible, adopt a top-down approach.

e The major task in software design is the breaking up of the entire
project into smaller manageable modules or components. Ideally mod-
ules and components should not be longer than 2 or 3 pages. The longer
it is, the more difficult to debug. Write comments on your code, not
just a few token lines haphazardly thrown in to satisfy your manager
or instructor. On each routine, write a detailed header describing the
algorithm, strategy, calling procedure, return value, etc. After 20 years
of pleas, coaxing and threatening, 1 am sure we can produce better
commented code.

e What programming language to use? Most people agree that one
should use a high level language (HLL) to develop embedded systems.
Amongst the HLLs, C is known to be a good choice for embedded sys-
tems. However, other HLL have not fallen entirely into oblivion yet.
Interpretative HLLs such as BASIC and FORTH are used by some.
PL/M from Intel is also being used.

e Besides knowing C, an embedded system programiner usually has to
learn the assembly language as well. For very small projects, assembly
language is still a good choice in view of the memory constraint. Even
when one writes in C, a small amount of code such as the interrupt
routines and sometimes the device drivers are still implemented in as-
sembly language. Source code debugging is nice, but occasionally, one
may have to debug at a lower level, especially when hardware debugger
such as logic analyzer is used. In which case, a good knowing of the
assemnbly language is needed.

e One important point in designing software for embedded system is to
design with debugging in mind. More often than not, your code won’t
work the first time. Unlike hardware development, the time taken in
testing and debugging during software development can be surprisingly
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long if you are not careful. Well organized code is a must if you want
to minimize debugging time. Well commented code mentioned above
1s another cardinal virtue in programming.

Basically, one must adhere to good software engineering methodology.
We shall ook at a number of issues pertaining to software development for
embedded systems. Ideally a development environment system for embedded
system work should have the following three components:

* Host computer - This is typically a PC which runs the editor, linker
and compiler. PC has become the de facto standard as development
platform for embedded systems because of its availability and the amount
of commercial and public domain software tools obtainable. Traditional
embedded system vendors have designed their development tools with
the PC in mind. This also encourages a large number of third party
software vendors to use the PC platform for their software tools.

e Debugging engine - This refers to the component that allows vou
to look into your target system in terms of code execution. It may be
in the form of an in-circuit emulator or in smaller projects a monitor
program resident in the target system itself. This debugging engine
allows you to open a window in the host computer and monitor the
execution of your code or status of your processor in the target system.
For any serious work, it is no longer acceptable to compile your code,
program the EPROM, plug it in and hope that it will work!

® Source-level debugger (SLD) - This is a piece of software running
in the host PC which allows you to debug your code at source level, in
conjunction with the debugging engine. Not only does it communicate
with the debugging engine or target system, it also provides intelligent
assistance in the debugging stage. For example it displays the source
code (actual C statement instead of assembly code) at which the target
is at, resolves symbolic references, examines in the high level format,
allows breakpoint to be set at source level, single step through the code
again at source code level, etc. Generally a good SLD will provide all
these features in very neat multiple window environment, thus making
debugging a much easier task than if it is done at assembly code or
machine code level.

4.1 Cross Development

As mentioned above, mainly because of the ubiquitous position, the PC is
almost universally used as the platform for embedded system development.
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In which one would be doing cross development running a host of cross
software - cross assemblers and linkers, cross interpreters, cross compilers.
Unless of course one is developing an embedded system with the same CPU
as the PC used (e.g. 80186, 80188, 80386EX or the PC itself used and
embedded processor.).

Cross development is necessary for a number of other reasons:

¢ Many microcontrollers used in embedded systems are just too small
to be used as processors in development systems. Native or resident
assemblers and compilers may not be available for such systems.

e Existing computer facilities are readily available and with the appro-
priate cross-development software tools, are suitable for carrying out
the task of software development. This is considered an important ad-
vantage because no extra hardware is needed and software tools such
as editors are already available.

o Nowadays, one can find cross-development software tool for almost any
processor in the market. Some manufacturers are supporting their
products with a dial-up facility or through Internet which allows users
to download cross-assemblers and cross-compilers to the PC.

Thus, cross assemblers are programs that run on a computer with a differ-
ent processor from that of the target system, and assemble programs written
for the target system into relocatable object code. The linkers then relocate,
usually with other object modules such as library modules, to the desired exe-
cution addresses for the target machine. Common features of cross assemblers
are: (1) provision for using macros in program, thus macro-assembler, (2)
conditional assembly, (3) assembly time calculations and (4) listing control.

Similarly, cross compilers are programs that run on a computer with a
different processor from that of the target system, and compile high level
language programs written for the target system typically into assembly lan-
guage programs. The use of a cross compiler can reduce program devel-
opment time significantly for large projects. It also makes programs more
portable, since they are written in a high level language such as C. A typical
cross compiler consists of: (1) macro preprocessor, (2) parser, {3) optimizer
and (4) code generator.

4.2 Simulation

Simulation is a way of using software to model the target system including the
target processor itself. The program can see his system running in the stable
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environment of his host computer which run the simulation program. This
is used when the target system is not available, when the target prototype is
still unreliable, or when the programmer has to access the low level status of
the system not normally accessible in embedded systems.

While it sounds like a great idea, unfortunately good simulators for em-
bedded systems are not readily available. This is due to the fact that the
simulator has to deal with real-time events and sometimes rather complex
I/O. How can you get a general purpose simulator to understand your ob-
tuse or ingenious interface to the solar tracking system? How do you simulate
real-time, asynchronous events? To duplicate the data stream coming from
the outside world is not easy either.

Nevertheless, there are simulators available for many processors. One
successful category of simulators seems to be the microcontrollers such as
the 8051. When most of the I/O are integrated on a single chip, they are
well defined and thus can be simulated more readily.
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5 Other Techniques for Embedded Systems

Armed with the above, one can embark on the actual coding, compiling,
downloading and debugging of the embedded system. Elegant structuring of
the program is very important in embedded system design, as in all other
software design. A monitor program tugged in the EPROM of an embedded
system is not too much to ask for nowadays. This will help in the debugging
process tremendously. In structuring your program, however, there are two
other techniques that have been used by many designers and found to be
very useful. These are (1) state machine technique and (2) real-time kernel.

5.1 State Machines and State Tables in Embedded Sys-
tems

For small systems, sequential organization of the program is often used. The
entire function of an embedded system is represented by a flowchart and
implemented accordingly using a single main loop. When external inputs or
events arrive, the program branches off to some modules to carry out the
required actions.

There are however a number of shortcomings using the above method:

e Testing of a monolithic program is often difficult.

e When the loop becomes large as more functions are added, life becomes
complicated. When single large loop is used, there is a tendency to
produce spaghetti code.

e Subsequent modifications of system function, like adding another con-
trol switch, are tedious because the entire flowchart has to be revised
and often re-implemented entirely.

For many embedded systems, the complexities often justify a more sys-
tematic approach of designing the software. Representing the function of a
system by a state machine is such a approach. The power of state machine
representation comes from the fact that it can subsequently be represented
by a state table which is well suited for microcontroller and microprocessor
implementation, even at assembly language level.

Using the state table method of implementing the functions of a system,
it is natural that the job be broken down into small, more manageable and
often independent modules, called the action routines. Such routines are
more easily tested and often reusable.
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However, the single most important advantage of state table implemen-
tation really lies in the ease of function modification. In most cases, only the
state table is modified together with the necessary new routines, while most
of the old code would be intact.

5.2  An Example of State Machine Representation

A simple example of a system with keyswitches and display is given here to
illustrate the method of state machine representation.

¢ Suppose we have a keypad with ten numeric keys 0 to 9 and two func-

tion keys |ENTER] and [DELETE] and a 4-digit numeric LED display.

¢ On power up, the display shall show 0.

e Numeric values can be entered on the keypad and as each digit is en-
tered, it is scrolled into the display from the rightmost digit. During

this mode, the display blinks to indicate digit entering mode.

key or

The digit entering mode is terminated with either the

the key.

If |ENTER | is pressed, the display stops blinking.
e If [DELETE | is pressed, the display stops blinking and shows 0.

There are 3 possible states in this example:

State Name Description
$0 Initial Power-on state or after DELETE, display shows
0 in steady mode.
51 Data Entry Digit entry mode, display shows digits in blinking
mode.
52 Display Final display mode, display shows final value in
steady mode.

There are 3 types of events:

Event Name Description
EC Number Entry of any numeric key.
El Enter ENTER key is pressed.

E2 Delete DELETE key is pressed.
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There are three action routines needed:

Action Name

Description

AD Reset

Display 0.

Al Build digits

Build up display buffer from right while numbers

are entered and blink display.
A2 Steady display | Show steady display.
A3 Null No action.

The specification mentioned earlier is represented by a state diagram.

E1(A2)

EO(AL)

The above state diagram can be easily transformed into a state table rep-

resentation.

Present State Event Action | Next state
EOQ Al S1
SO E1l A3 SO
E2 A3 SO
EO Al S1
S1 El A2 S2
E2 AO SO
EO A3 S2
S2 El A3 52
E2 A0 SO
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The complexity of the system has thus been broken down into:

¢ A number of action routines.
¢ A service routine to scan the keypad and update display.

A state stable.

e A very small main program.

The main program structure is represented below:

Initialization

STATE=S0

Read input buffer

Scan state table

Execute action routine
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The keypad and display service routine may be implemented as an in-
terrupt service routine based on 10-ms clock ticks from a programmable
timer module, for example:

E)terrupt Service Routinﬂ

Update display

Scan & debounce keypad
Update key buffer

5.3 Task Scheduler in Embedded System

An application in real-time embedded system can always be broken down
into a number of distinctly different tasks. For example,

e Keyboard scanning

¢ Display control

e Input data collection and processing

e Responding to and processing external events

e Communicating with host or others
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Each of the above tasks can be represented by a state machine. However,
implementing a single sequential loop for the entire application can prove
to be a formidable task. This is because of the various time constraints in
the tasks - keyboard has to be scanned, display controlled, input channel
monitored, etc.

One method of solving the above problem is to use a simple task sched-
uler. The various tasks above are handled by the scheduler in an orderly
manner. This produces the effect of simple multitasking with a single proces-
sor. A bonus of using a scheduler is the ease of implementing the sleep mode
in microcontrollers which will reduce the power consumption dramatically
(from mA to gA). This is important in battery operated embedded systems.

There are several ways of implementing the scheduler - preemptive or
cooperative, round robin or with priority. In a cooperative or non-preemptive
system, tasks cooperate with one another and relinquish control of the CPU
themselves. In a preemptive system, a task may be preempted or suspended
by different task, either because the latter has a higher priority of the time-
slice of the former one is used up. Round robin scheduler switches in one
task after another in a round robin manner whereas a system with priority

will switch in the highest priority task.

For many small microcontroller based embedded systems, a cooperative
(or non-preemptive), round robin scheduler is adequate. This is the simplest
to implement and it does not take up much memory. Ravindra Karnad has
implemented such a scheduler for 8051 and other microcontrollers. In his
implementation, all tasks must behave cooperatively. A task waiting for an
input event thus cannot have infinite waiting loop such as the following:

While (TRUE)

{
Check input

}..

This will hog processor time and reprieve others of running. Instead, it
may be written as:

If (input TRUE)
{

}
Else (timer[i]=100msz)

In this case, task ¢ will check the input condition every 100 ms, set in
the associated timer/il. When the condition of input is false, other tasks will
have a chance to run.
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The job of the scheduler is thus rather simple. When there is clock
interrupt, all task timers are decremented. The task whose timer reaches 0
will be run. To simplify things, the state status of the task is used by the
scheduler to decide where to pass control to.

The greatest virtue of the simple task scheduler ready lies in the smallness
of the code, which is of course very important in the case of microntrollers.
The code size ranges from 200 to 400 bytes.

5.4 Real-time Kernel in Embedded Systems

Real-time operating system (RTOS) is the central theme of this College and
it would be nice if we can incorporate such an OS in our embedded systems.
Unfortunately, more often than not, the memory and other resources of most
embedded systems we build do not permit this. There is however an alterna-
tive - that of using a subset of the RTOS to solve the problem of embedded
systems. If the | /O and file handling is removed from the fully fledged RTOS,
we are left with a kernel which deals with tasks handling. This turns out
to be a powerful tool in dealing with real life embedded system applications,
such as the state machine technique.

In embedded systems, interrupts are used to respond to external events
and in doing so avoid the waste of CPU time by constant polling for such
events. However, interrupt handling can be rather complex if there are many
processes to be handled simultaneously. In many situations, embedded sys-
tems run more or less independent programs which share some common re-
sources. A very large intertwined program will result if we use simple inter-
rupt handling technique. Real-time kernel (RTK) will help the programmer
to deal with such circumstances by thinking in terms of concurrent tasks
instead of individual routines that execute when certain events occur.

Real-time kernels come in a great variety of types. Many of the small
RTKs are implemented in assembly language; others are implemented in
HLLs such as C. A recent survey shows that there are more than 40 RTK
manufacturers producing kernels for 8-, 16- and 32-bit processors including
proprietary and open market ones. The price tag of these commercial RTKs
ranges from USD$100 to USD$10,000.

There are also a small number of real-time kernels appearing in journals,
magazines and books, which are normally available in source code. Later
in this series of lecture, we shall look at one designed by Jean J. Labrosse
called pC/OS, which is implemented in C with full source code available to

the user.
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6 The 68HC11 Microcontroller

We have mentioned earlier that there are now many microcontrollers available
in the market. We shall look at one of them, the 68HC11, in this section.
It is a family of microcontrollers with members providing different 1/0 and
memory facilities. They can be used in single-chip or expanded mode.

‘The main features are:

* Parallel 1/0 - 40 I/O lines arranged as five 8-bit ports, two general
purpose and three fixed direction.

¢ ADC - 8-channel, multiplexed-input, successive approximation with
sample and hold. Conversion time 16 ps for 2 MHz system.

¢ Serial communications - A full-duplex two-wire asynchronous serial
communications interface (SCI} with baud rate ranges from 75 bps
to 131 Kbps. A full-duplex three-wire synchronous serial peripheral
interface (SPI) with & maximum master bit frequency of 1 MHz.

¢ Programmable timer - 16-bit with four stage prescaler, three capture
functions and five output compare functions.

* Memories - ROM (4K, 8K or 12K), EPROM (4K or 12K), EEPROM
(512, 2K or 8K), RAM (256, 512 or 1K).

* Interrupts - Nonmaskable interrupt (XIRQ) and maskable interrupt
(IRQ). IRQ is either level-sensitive or falling-edge-sensitive.

» Pulse accumulator - A 8-bit counter used for event counting or gated-
time accumulation.

* COP watchdog - A computer operating properly watchdog is used to
detect error in the system. When it is used, the program is responsible
for keeping an internal free-running watchdog timer from timing out.
[f the watchdog times out, the MCU will be reset. This is an important
feature in embedded systems as most of them are running unattended.
In the case where watchdog is not built in, an external watchdog circuit
using a couple of monostable multivibrators is often used.

¢ Low power modes - In single chip mode, 15 mA for normal operation,
6 ma in WAIT mode and 100 xA in STOP mode.
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6.1

A simplified diagr
below.The parallel I/O subsystem consisting o

Architecture of the 68HCI11

am of the architecture of the 68HC11 is shown in the figure
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6.2 Programming Model

The 68HCI11 has 91 new opcodes in additions to those of 6800 and 6801.
Now it has a total of 109 instructions. Both multiplication and division are
possible now. Bit manipulation instructions are also available.

7 _acoumuLatora  D{7  accumutatomz O .p

15 DOUBLE ACCUMULATOR D 0 o

[1s Lekx mmaieTER X 0] o

fas INDEX REGIITER ¥ o] w

[15 TTACK PoINTER o =

[15 PROGRAM COUNTER 0] 2
7 0

ooNDITION CGDEREGISTER |S X HI N Z V C | con

CARRY
OYERFLOW

ZEROD

E— TS, 1

I T MASK

HALF CARRY (FROM BIT )
c T T X INTERRUPT MASK
STOF DISABLE

6.3 Modes of Operation

There are 4 hardware controllable modes of operations that are available:

Mod A Mod B Mode of Operation
0 1 Single Chip
1 1 Expanded
0 4] Bootstrap
1 0 Special Test

» Single-chip mode. The chip functions as a monolithic microcontrolier
without external address or data bus.

e Expanded-multiplexed mode. The chip can access a 64KB address
space. The total address space includes the on-chip memory addresses.
The expansion is made up of port B and port C, and control signals
AS and R/W.
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¢ Bootstrap mode. A special operating mode that uses a boot loader
program in the bootstrap ROM to load program into RAM via SCI.
This is how you get your program loaded into the MCU memory.

s Special test mode. This is a factory testing mode similar to the
expanded- multiplexed mode except that the reset and interrupt vectors
are fetched from external memory locations.

159
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6.4 Memory Maps

The memory maps of the four different modes are shown below. In expanded
mode, the areas not used internally are for external memory and I1/O. If
an external memory or I/O device is located to overlap an enabled internal
resource, the internal resource will take priority.

o v v 777, 2000 | 256 BYTE RAM
} ! {MAY BE REMAPPED TO ANY
EXT EXT oo | 4K PAGE BY THE INIT REGISTER)
{ {
$1000 A VA A 1000 | 64 BYTE REGISTER BLOCK
$2000 (MAY BE REMAPPED TO ANY
103 | 4K PAGE BY THE INIT REGISTER)
EXT EXT
$B000
BOOT
SPECIAL
BFI0 | ROM BFCo) ST
INTERRUPT
> VECTORS
’///// T BFFF BFFF
$Cooo Faoo | 2K EEPROM (MAY BE REMAPPED
YAl
C
SFe00 / y / Y =51 NORMAL
INTERRUFT
/ / VECTORS
/] / .
serre L7 U / /) FFFF FFFF

SINGLE EXPANDED SPECIAL SPECIAL

CHIP MUX
(MODEO)  (MODE1) eoor TEST

NOTE:
1. Either or both the internal RAM and registers can be remapped 1o any 4k boundary by software.
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7 A Design Example Using the 68HC11

7.1 System Overview

The 68HC11 embedded system is one of several designed in this College to
demonstrate the concepts of real-time embedded systems and the technique
of cross development of such systems. In this particular one, simplicity of
hardware and development tool is emphasised. In fact, besides the micro-
controller, only one other chip, the RS232 interface driver, is essential in the
system, making it a really minimal system. It is conceivable that every par-
ticipant can go home with one such system, or at least the PCB for such a
system.

However, it is noted that though very small, it is nevertheless a fully func-
tional simple development system working in conjunction with a host station
such as a PC and the appropriate software. Only a standard RS232 serial
link between the host station and the target system is needed. Assembled
or compiled object code can be downloaded to the target system and stored
permanently in the EEPROM without requiring an external EEPROM pro-
grammer or other hardware. Uploading of target system code can also be
done if necessary.

As a simple system, in circuit emulation and debugging facilities such
as those provided by the Motorola Evaluation Module M68HC11EVM are
not available. This however is not a serious hindrance in learning the cross
development of a real-time embedded system.

A block diagram of the 68HC11 system is shown below followed by de-
scription of the various sub-units in other sections.

HOST PC J1 - 68HC11 EXTENDED VO PORT
CcCOmM1/2 J2 - ICTP (STANDARD) /O PORT
J3 - RS232 ASYN. SERIAL PORT
e
=
—
o
8 ICTP
o -t =
I-lz-l 170 BOARD
o
il
1= >
>
L]
= 68HC11
- /0 BOARD
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7.1.1 Host PC

The external host is typically a PC running Linux or other operating system
with suitable cross development software for the 68HC11. A COM port on
the PC is used to communicate with the 68HC11 target system. This link
serves as a code downloading or uploading channel during the development
stage. During the running or execution stage, the serial link may be used
for data communications between the PC and the target system if necessary.
Or it may be used by the target system to communicate with an external
instrument or equipment.

7.2 HC11 Microcontroller Kernel

The HC11 Kernel is a small board capable of communicating with a host
and interfacing to different target I/O subsystems. The entire board consists
of merely a 68HC811E2 microcontroller, an RS232 driver, a 5-V regulator, an
8-MHz crystal, a low voltage inhibitor (for reset), pull-up resistors, capacitors
and connectors. It highlights the capabilities of a typical microcontroller.
The main features of this board are as follows:

o ICTP PORT - A 26-pin standard ICTP 1/0O port (J2) to interface
with ICTP 1/0 board or other similar boards. However it does not fully
conform to the specification of the ICTP Port which is essentially based
on the ports of a Motorola peripheral interface adapter (PIA). PA0-7
of J2 is connected to Port B of the 68HC11. This port is a output only
port. PB0-7 of J2 is connected to Port C of the 68HC11. This is an I/O
port. CAl and CBI of J2 are connected to input strobe pin (STRA)
whereas CA2 and CB2 are connected to the output strobe (STRB) of
the microcontroller. There are functional differences between the PIA
strobe lines and those of the 68HC11.

esHC11 J2 (1ICTP PORT)

sV 5V

sv s5v

sSTAB 31 cBaz
STRA : cB1
=5 s el

PCS5 =] PBS

PCa 2 PRa

PC3a o] Psa

PC2 10 PR

PCA 14 PB3

12

PCO 24 eBO

PB7 B2 pay

FBe i3] Pas

PB4 164 pPAa

B3 114 Paa

PoT 197 GAy

PBO PAC

211 cAai

22] cAz2
GND —————— 231  GND
GND ————241 GND

PA3/OCS 25 TO

PAO/IC3 264 TG
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e HC11 PORT - A 40-pin extended I/O port (J1) to bring out most of
the peripheral lines for use with a 68HC11 I/O board. This connector
consists of the following:

— Timer function and real-time interrupt port (Port A).

General purpose output port (Port B).

General purpose I/O port (Port C).

Serial communications interface (SCI) and serial peripheral inter-
face (SPI) port (Port D). This port may be used as general purpose
1/0.

— ADC or general purpose input port (Port E).

— Input and output strobes (STRA, STRB).

Interrupts (IRQ, XIRQ)
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s RS232 Serial Port - An RS232 serial communications port (J3).
This port uses the TxD and RxD of Port D for asynchronous serial
communications. A Maxim RS232 driver/receiver chip operating at
single 5V supply is used.

e Power Consumption - The board is powered either by a regulated
5V DC supply or an unregulated DC supply ranging from 7 to 12 V
which is readily available in the form of AC adaptor. For the latter
a 5V regulator is used to produce the 5 V required by the MCU and
other components. The regulated 5V is also brought to the 68HC11
1/O board through connector J1. Current consumption of the micro-
controller (MC68HC811E2) is 15 mA which is relatively small. Other
components in the board have low power consumption too. The cur-
rent consumption of the I/O varies a bit depending on the states of the
LED lamps. An overall 200 mA should suffice for this system.

e Clock frequency - An 8-MHz crystal is used to produce a MCU clock
frequency of 2 MHz.

e Reset circuit - A fow voltage inhibit device (MC34064) is used in
the RESET set to drive the RESET low when the supply is below
legal limits. This will prevent the unintentional corruption of the on-
chip RAM and EEPROM. Of course the manual RESET button is still
there.

¢ Boostrap/Normal mode selection - A bootstrap/Normal mode se-
lection switch is connected to MODB pin of the MCU. In the boot-
strap mode, the resident ROM bootstrap loader which will download
a 256-byte program into the RAM. This feature together with the on-
chip EEPROM programming capability make the board a small self-
contained development station.

7.2.1 ICTP 1I/0 Board (or Colombo I/O Board)

ICTP I/O boards may be connected to the HC11 Kernel board via J2. As
mentioned earlier the J2 pins are not exactly the same as those specified.
However, the original ICTP (or Colombo) 1/0O board should pose no problem
in its present form. This is because PAQ-7 are used as outputs for connecting
to four 7-segment LLEDs and not as a general purpose I/O port. Strobe lines
do behave differently and program/driver should be modified accordingly.

Other I/O boards requiring J2 connection may be used as long as PAQ-7
are not required to function as inputs.
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7.3 HC11 1/O Board

There are innumerable ways of designing the I/O board. It is hoped that
several 1/Q boards may be constructed to demonstrate the versatility of the
microcontroller. It is envisaged that participants may subsequently wish
to design and construct their own 1/O subsystems which are more specific
to their problems. For example, an experiment that requires counting of
events, measurement of pulse width or precise pulse generations would make
full use of the timer and real-time interrupt offered by the entire Port A of the
68HC11. Similarly, a situation where 4 ADCs are required may call for the
design of a different I/O subsystem with the appropriate signal conditioning

circuits.
For a start a rather basic board is built. It is intended to demonstrate the

basics instead of showing the full capabilities of the microcontroller. Some
functions and components presently available in the ICTP I/O board are not
duplicated. Others that are simple to incorporate and considered useful in
learning the cross development of an embedded system are included. The
first HC11 1/0 board consists of the following:

e LED indicators —~ Small LED lamps are connected to Port B. These
can act as general purpose indicators but they are considered impor-
tant in the development of embedded system as a debugging aid for
reporting status.

e DIP switches — A 8-way DIP switch module is connected to Port C to
act as simple digital input devices. These switches, as the LED lamps,
are important aid in the development of embedded system. They allows
the user to interact with his system easily.

¢ Pulse input — A push-button switch is connected to the input strobe
pin (STRA).

¢ Strobe output — An LED lamp is connected to the output strobe pin
(STRB) through a buffer. This output also select either the LCD mode
or LED/SW mode. A HIGH selects the LCD.

e Analogue input — A miniature multiturn potentiometer providing
0-5V is connected to one of the ADC inputs.

o External analogue input - Provisions are made of connecting exter-
nal sources to ADC inputs.

¢ LCD panel - A 16-character by 1-line LCD display panel is connected
to Ports B and C. This is a more sophisticated output device capable
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of displaying simple text messages. It is a rather usefuluser interface
in a standalone system.

7.3.1 LCD & LED/SW Mode Selection

There are two ports (J1 & J2 connectors} brought out of the HC11 I/O Board
which match those on the HC11 Kernel Board. J1 (HC11 PORT) is a 40-way
connector which carries most of the HC11 I/O lines. J2 (ICTP PORT) is a
26-way standard ICTP I/O port. Most of the I/O devices mentioned above
(with the exception of analogue input and pulse counter) can operate with
either the ICTP PORT or or HC11 PORT. This is a constraint because in
doing so we have only Port B and Port C of the HC11 only. Consequently,
the LCD and LEDs/Switches cannot function simultaneously. A selection of
either the LCD or the LED/SW has to be made. This is done either by the
STRB signal or manually using a jumper through the use buffers. However,
LEDs connected to PB3-7 are not required by the LCD and hence can be
used during the LCD mode. Please refer to the appended circuit diagram for
details.

7.3.2 LED Panel

This itself is an embedded sub-system consisting of a twisted nematic mode
reflective liquid crystal dot matrix display and an embedded controller and
driver in bare chip form directly attached on the PCB. The display appears
as a 16-character by 1-line alphanumeric display while internally, as far as the
controller is concerned, it is connected as 8 characters by 2 lines. The con-
troller chip is a Samsung (or equivalent) dot matrix LCD controller KS0066.
Please refer to the manufacturer’s data sheet for programming this chip. If
you don'’t see any pattern at all the panel, please adjust the contrast control
(potentiometer).
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7.4 Program Development

Program development for the 68HC11 Embedded System consists of the fol-
lowing steps:

e Develop source program in host environment either in high level lan-
guage or in HC11 assembly language.

e Compile or assemble source into HC11 object code in S19 format.

¢ Download and run HC811 programmer (PRGHCS811) memory image
code to the 68HC11 Embedded System RAM using the bootstrap mode.

e Download the application in S19 format into the system and program
the EEPROM using the PRGHC811 which is now running.

¢ Reset and run the loaded target program.

Repeat from the first step if target program does not behave as required.

DEVELOP PROGRAM
COMPILE/ASSEMBLE

LOAD & RUN
PRGHCS11 (image)

LOAD & PROGRAM
OBJECT CODE (§19)

RUN & DEBUG

NO A YES
OK? DONE
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Circuit Diagram of the 68HC11 Kernel Board
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8 The Z80180 Microprocessor

The Z80180 is listed as a microprocessor in the catalogue but it is rather
close to a microcontroller and is a good candidate

a microcoded execution unit in CMOS, this chip offers rather high per-
formance and maintains compatibility with a large amount of existing Z80
Programs.

The main features are:

¢ Improved performance - Higher performance than the Z80 is ob-
tained by reduced execution times, an enhanced instruction set, and
high operating frequencies. Up to 33 MHz at 5 V or 20 MHz at 3.3 V

is available.

e Large memory space - An on-chip memory management unit (MMU)
supports extended address space of up to 1 MB of memory.

¢ DMA channels - Two direct memory access channels provide high
speed transfer of data between memory and I/O devices using either
request, burst or cycle-steal mode. Transfer can be effected between
mermories, between 1/Os or between memory and 1/0.

e Serial communications channels- Two full-duplex asynchronous se-
rial communication channels (UART) each with a programmable baud
rate generator and modem control. Some versions offer break detection
and generation. A clocked serial I/O (CSIO) provides a half-duplex se-
rial transmitter and receiver, which can be used for high speed data
transfer.

¢ Programmable timers - Two 16-bit programmable timers. One can
be used as a waveform generator.

o 780 MPU - Code compatible with Z80 MPU.

e Low power consumption - Power consumption at 10 MHz is 25 mA
in normal operation and 6 mA in STOP mode. Versions that provide
STANDBY mode consumes less than 10 pA in this mode.
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8.1 Architecture of the Z80180

The architecture of the Z80180 is shown below. Basically it has a CPU core
with number of system and I/O resources. The core has a clock generator,
bus state controller, interrupt controller, memory management unit and a
central processing unit. The integrated peripheral resources consist of direct
memory access controls, asynchronous serial communication interface and
clocked serial interface and programmable timers.
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8.2 Programming Model

The 780180 is object code compatible with the Z80 MPU. Thus one can refer
the 780 technical data for the full instruction set and programming model.
It has three groups of registers:

e Register Set GR — This consists of a 8bit Accumulator (A}, a 8-
bit Flag Register (F) and three general purpose registers {BC, DE and
HL) which may be treated as 16-bit or 8-bit registers depending on the
instruction.

o Register Set GR’ ~ An alternate set of registers to the GR. They
are not directly accessible but the contents may be exchanged with the
GR set at high speed.

e Special Registers — These consist of an 8-bit Interrupt Vector Reg-
ister (I), an 8-bit R Counter (R), two 16-bit Index Registers (IX and
IY), a 16-bit Stack Pointer (SP), and a 16-bit Program Counter (PC).

Besides the Z80 instructions, a number of new ones have been added.
They include instructions to enter sleep mode, 8-bit multiplication, I /O ma-

nipulation, etc.
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9 A 780180 Embedded System

9.1 System Overview

We have earlier introduced a very small embedded system using the 68HC11
single chip microcontroller. The elegance of that design is in its simplicity
- a mere two-chip board. Come with the simplicity is resource limitation,
essentially in memory size. The version we used has only 2KB of EEPROM
and 256 bytes of RAM.

In this section, we shall introduce a larger embedded system using the
Z80180 MPU. This has a memory capacity of 1 MB which is more than ad-
equate for really a large number of the embedded system applications. We
shall look at a Z80180-based Micro Genius developed by Z-World Engineer-
ing. Together with a C cross-compiler running in the PC, this embedded
controller provides a rather powerful system for real-time applications. The
commercial version is compact in size (3.2” by 2”) and relatively low cost
(USD89). Another essential feature of this system is the provision of real-
time multitasking capability by means of costatements and/or a real-time
kernel.

9.2 System Hardware Configuration

RS232 Port
280180 CPU
RS485 Port
Watchdog SRAM
32K
Real-time Clock 3R29,_512K EPROM
256K flash EPROM
; PIO Ports
Timer (ADC) Two 8-bits ports -
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A diagram of the hardware configuration is shown above. It has the
following sub-units:

e A 7ZR0180 which is an enhanced Z80 microprocessor outlined earlier.

¢ An RS232 port with the following features:

— With RTS & CT$S handshaking.
— 9600, 19200 or 57600 baud.

_ It is used to communicate with PC during program development
and can be subsequently programmed for other use.

An RS485 port which provides half-duplex serial communication using
balanced differential drives for distances up to 4 km.

e 32K bytes of RAM.

e Up to 512K bytes of EPROM or up to 256K bytes of flash EPROM.
Flash EPROM is non-volatile and can be written under program con-
trol.

o The following parallel I/O (PIO) are available:

— Two 8-bit ports, A and B.
— Port A with handshaking.

— 4 lines of port B are pre-assigned for real-time clock and RS5485
use.

e A watchdog circuit restarts the system if software fails to reset the
watchdog timer every 1.2 seconds. It also resets when Vce falls below

4.62V.

e A 555 timer is used as an analogue-to-digital converter for interfacing
with external resistive sensors.

e A real-time calendar clock acts as a timekeeper. It also provides 31
bytes of scratchpad RAM.
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9.3 Program Development

Programs for the Micro Genius are developed using Dynamic C which is an
integrated editor-compiler-debugger, run in Windows or DOS environment.
When a program is compiled, it is downloaded directly to the RAM of the
target system that is connected to one of the COM ports of the PC. Serial
communication is at 9600, 19200 or 57600 baud.

When the program development is finished, the entire program may be
compiled for EPROM. An EPROM may then be programmed in a separate
process and plugged into the target system to run.

‘Three modes of program development are available:

¢ Use target system with EPROM. Use the target system with a
Dynamic C BIOS EPROM and connect the RS232 port directly to the
PC. The RAM provides up to 32K of code and data space.

¢ Use target system with flash EPROM. Use the target system with
a 256K flash EPROM and connect the RS232 port directly to the PC.
In this case the flash EPROM provides 256K of program space and the
RAM 32K of data space.

¢ Use target system with a separate development board. A devel-
opment board that plugs into the EPROM socket of the target system,
provides its own RS232 port for communicating with the PC and em-
ulates the BIOS EPROM as well as providing 504K bytes of program
space in addition to the 32K data space on the target RAM. In this
case, both the serial ports of the target machine are free.

9.4 Interface Description

The interface of Micro Genius consists of bit- and byte-wise parallel 1/0,
serial ports, precision timer, and real-time clock. They are arranged in two
headers (H2 and H3) as shown below:

GND — 26 25— DCIN
RS485- —-| 24 23 — RSa86+
EXTRES — 22 21— VvBaT
GND — 20 19 — /RESET
ATCDAT — 18 17 b—  RTCCLK
PB4 — 16 1§ —— PBS
PBE —| 14 H3 13— PBY
/ASTB — 12 i1 — ARDY
GND —{ 10 9 — PaA7
PA8 — a8 7 — PAS5
PA4 — B 5§ — PA3
PA2 — 4 33— pPal
PAD —1 2 1 — 45V
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e RS232 & programming port A 10-pin header (H2) provides a d-wire
RS232 interface. This interface can also be used as the programming
port, in which case the communication port temporarily lost to the

user program.

e RS485 port — An RS485 driver chip provides a half-duplex RS5485 in-
terface. An RS485 serial communication channel can be used to create
a network of embedded systems with links spanning several kilometres.
The RS485 signals are available on pins 23 and 24 of header H3.

e Supervisor - A supervisor (DS1232) provides a watchdog timer that
guards against system or software faults by resetting the processor if
software does not hit (by calling hitwd) the timer at least 1.2 seconds.
It also resets the entire system on power-up Or when Vec falls below
4.62V.

e Real-time clock A real-time clock (DS1302) provides time and date
function, plus 31 bytes of scratchpad RAM. An external battery (con-
nected to VBAT) is used to retain data when power is down. Data are
clocked using RTCCLK and RTCDAT. RTCRST resets the real-time
clock.

e Timer - A timer (555) is used to measure external resistance, such
as a thermistor, control potentiometer, or a position sensor. It behaves
like an analogue input channel. The resistance of the input device is

deduced from the timer value using the following formula:
A = 1.1RC seconds where C = 4.7ul

e Parallel input/output ports A PIO chip is used to provide parallel
input/output ports.

— Port A (PA0-7, ARDY, ASTB) is a full I/O port with handshaking
lines. PAQ-7 are TTL compatible.

— PBA4-7 are available to user applications. Each line can supply up
to 1.5mA at 1.5V to drive Darlington transistor.

— PBO0-3 are used as RTCRST, EN485, RTCDAT and RTCCLK
respectively.

— Impedance of the I/O lines are 800 for sinking current and 160
for sourcing current.

— Port A may be programmed to operate in mode 0 (strobed byte
output), mode 1 (strobed byte input) or mode 3 (bitwise I/O).
Port B is in mode 3.
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9.4.1 Memory Map

e The memory map of the Micro Genius is as follows:

FFFFF
Unused

88000

32K RAM
80000

Top of 512K EPROM
40000

Top of 256K EPROM
20000
10000 Top of 128K EPROM
oso00 | Topof 64K EPROM
ooooo | Topof 32K EPROM

512K

512K
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9.5 Driver Software For I/O Devices

An extensive set of C functions for programming the interfaces is available
from Z-World Engineering. The following table forms a partial list.

FUNCTION DESCRIPTION
void setPIOCA(byte mask) Set port A control register.
void resPIOCA(byte mask) Reset port A control register.
void setPTODA(byte mask) Set port A data register.
void resPIODA (byte mask) Reset port A data register.
void setPIOCB (byte mask) Set port B control register.
void resPIOCB(byte mask) Reset port B control register.
void setPIODB(byte mask) Set port B data register.
void resPIODB(byte mask) Reset port B data register.

int tm_rd(struct tm *t)

Read the RTCinto the structure *t.

int tn_wr(struct tm *t)

Write the values in the structure *t.

int WrittRAM1302(int ram_loc, byte data) Write data to any of the 31 RAM
locations of the DS1302.

int ReadRAM1302(int ram_loc) Read data from any of the 31 RAM
locations of the DS1302.

void WriteBurst1302(void*pdata, int count)

Write count bytes, in burst mode,to
the DS1302.

void ReadBurst1302(void*pdata, int count)

Read count bytes, in burst mode,to
the DS1302.

void Write1302(int reg, byte data)

Write data to a specific register of
the DS1302.

int Read1302(int reg)

Read data from a specific register
of the DS1302.

chargeri302(int on_off, int diode, int resistor)

Turns the trickle charger on the
DS1302 on.

void Set555(uint max_count)

Trigger the 555 circuit and start the
Z180 timer.

int Read555(uint *lapse_count)

Read Z180 timer.

struct tm {
chat tm_sec; //0-59 char tm _min; //0-59
char tm_hour; //0-23

char tm_mday; //1-31
char tm_mon; //1-12
char tm_year; //0-150 (1900-2050)

char tm_wday; //0-6 where 0 means Sunday
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9.6 Serial Communication Software

The serial communication library includes the following functions:

e Initialization of the serial ports.

e Monitoring and reading a circular receive buffer.

¢ Monitoring and writing to a circular transmit buffer.

e An echo option.

o CTS (clear to send) and RTS (request to send) control.

¢ XMODEM protocol for downloading and uploading data. Downloading
of data is in multiple of 128 bytes. Uploaded data is written to specified
area in RAM.

* A modem option.

Serial communication is done by a background interrupt routine that
updates receive and transmit buffers. Using the CTS /RTS option, the RTS
will be pulled high when the receive buffers has reached 80% of its capacity.
The RTS line is pulled low again when the received buffer has gone below
20% of its capacity.

The RS232 library supports communication with Hayes Smart Modem.
The CTS, RTS and DTR lines of the modem are not used. They are tied
together. The CTS and RTS lines on the Micro Genius are also tied together.
A NULL connection is required for the TX and RX lines.

9.7 Master-Slave Networking

Functions for master-slave two-wire half-duplex RS485 9th-bit binary com-
munication are also available. In a network, one system is configured as
master (address 0) and the rest as slaves (address 1-255). The data transfer
scheme is as follows:

e 7180 is initialized for RS485 communication.
¢ The master sends an enquiry and waits for a response.

¢ Slaves monitor for their address during the 9th-bit transmission. The
slave that matches the address will listen to the rest of the message
and reply to the master.
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e The format of a master message:
[slave id] [len][ 1 [ 1 ...[ 1 [CRC hil [CRC lo]

¢ The format of a slave message:
[lend [ 3 C 1 ...[ 1 [CRC hi]l [CRC lol

9.8 Dynamic C Development System

As mentioned earlier, Dynamic C is an integrated development system com-
prising a C compiler, an editor, and a source-level debugger. In the Windows
version, it has eight menu: File, Edit, Search, Compile, Run/Debug, Watch,
Options, and Window. It compiles, links and downloads to the target ma-
chine under the same environment.

Embedded assembly language is supported (#ASM #ENDASM direc-
tives). C statements can be placed within assembly code by placing a C in
column 1. It supports hard and soft breakpoints where the former disables
interrupts whereas the latter leaves interrupts on so that higher priority tasks
can continue to execute.

Debugging supported by printf and watch expressions. A watch expres-
sion is a C language expression that can include preprocessor substitutions,
variables and function calls.

9.9 Extension To C for Extended Memory Data

Extension to C allows the access of extended memory data. Extended mem-
ory addresses are 20-bit physical addresses. Pointers are 16-bit machine
addresses. Two non-standard keywords are used for this purpose: zstring
and zdata.

xstring name { stringl, ... stringn };

defines an array of string addresses. The term name is the name of the
array, itself a 32-bit unsigned long integer whose lower 20 bits are the address
of the array.

xdata name { datuml, ... datumn }

defines an array of addresses of initialized extended memory data. The
data must be constant expressions.

xdata name [nf;

defines a block of n bytes in extended memory.
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9.10 Multitasking In Micro Genius

Both preemptive and cooperative multitasking are supported. In preemptive
multitasking, tasks are interrupted and control is taken away involuntarily. A
kernel is needed to monitor, regulate and dispatch tasks. A real-time kernel
(RTK) included in the Dynamic C library supports prioritized preemption.
As many priority levels as desired may be used.

A simplified real-time kernel (SRTK) is also available. There are only
three levels of priority in this case. The top priority task executes at 25ms
intervals, the low priority task executes at 100ms intervals. The background
task executed when no other tasks are executing.

A special fastcall task is available that can execute as often as 1280 times
per second. It preempts all other tasks.

In cooperative multitasking, each task voluntarily gives up control so
that other tasks can execute. A kernel is not required. This method provides
easier communications between tasks and is simpler to program. However it
requires a costatement mechanism to function. Costatement mechanism is
another extension to C provided by Dynamic C compiler.

9.11 Costatement Mechanism

Costatements are an extension to C that facilitate cooperative multitasking.
Costatements are cooperative concurrent tasks that can suspend their own
operation:

e They can waitfor event, condition, or the passage of time.
e They can yield temporarily to other costatements.

¢ They can abort their own operation.

Costatement can be active (ON} or inactive (OFF). For each costate-
ment, there is a structure of type CoData associated with it. It maintains
a position pointer to resume execution after being stopped. It also carries a
start flag and other data in the following syntax:

costate[name[state]]{
[statementjyield;|abort;|waitfor (expression);] ...}
Three delay functions can be used by waitfor:
int DelaySec(ulong seconds);
int DelayMs(ulong milliseconds);
int DelayTicks(uint ticks);
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9.12 A Real-time Problem Without Using Costate-
ments

Consider the following sequence of events to be programmed:
e Wait for a push-button to be pushed.
e Turn on device 1.
e Wait for 60 seconds
e Turn on device 2.

Wait for 60 seconds.

o Turn off both devices.

¢ Go to the beginning.

The above can be written in C without using costaternents as follows:
// Normal ¢ program without using costatement

extern shared long time;
long timerl, timer?2;

int state;
// Intialization:
state=1;
for(;;){
if (state==1}{
if (buttonpushed ()){
state=2;
turnondevicel();
timel=time;
}

} else if(state==2){
if ((time-timer1)>=60L)}
state=3;
turnondevice2();
timer2=time;
1
} else if(state==3){
if ((time-timer2)>=60L{

state=1;
turnoffdevicel();
turnoffdevice2();
}
}
}
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9.13 Real-time Problem Using Costatements

Now if the above sequence is just one of several tasks to be performed, the
code above has to be modified, often involving changes to keep track of the
state or time. Using costatement, the entire problem can be solved elegantly
as follows:

// Using costatements

for(;;) {
costate { // task 1
waitfor (buttonpushed(});
turnondevicel(};
waitfor (DelaySec(60L});
turnondevice2() ;
waitfor(DelaySec(60L));
turnoffdevicel();
turnoffdevice2();
}
costate { // task 2}
}
costateq // task n}
}
}

9.14 The Virtual Driver In Micro Genius

The virtual driver (invoked by VDInit) is a set of functions that provides the
following services:

e Periodic time interrupts

Second, millisecond and tick timers

Synchronization of the second timer with the real-time clock

Virtual watchdog timers
e Periodic drive for real time kernels

A fastcall execution thread

¢ Global initialization
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The virtual driver is called 1280 times per second by a clock interrupt. If
no real-time kernel, fastcall, or virtual watchdog is in use, the virtual driver
just updates the second, millisecond and tick timers.

If #define RUNKERNEL 1 is included in a program that uses the
virtual driver, it will call the RTK or SRTK every 25 milliseconds.

9.15 Real-time Kernels In Micro Genius

The RTK and SRTK allow program to be divided into prioritized tasks.
Execution of these tasks is interleaved in time. An example of using SRTK

is given below:

#use vdriver.lib // or include VDRIVER.LIB and
#use srtk.lib // SRTK.LIB in LIB.DIR
#define RUNKERNEL 1 // use the kernel

int HCOUNT, LCOUNT;

main(){
HCOUNT=LCOUNT=0
VdInit(); // Need virtual driver
init_srtkernel(); // Initialize the SRTK
while(D{ ... }

}

// This high priocrity task executes every 25 ms
srtk_hightask(){HCUUNT++;}

// This low priority task executes every 100 ms
srtk_lowtask(){
LCOUNT++;
costate{ // Print every 1/2 second
waitfor (DelayMs{(500));
printf ("%d %d\n", HCOUNT, LCOUNT);

}

costateq // Reset when HCOUNT is large
waitfor (HCOUNT>=32000) ;
HCOUNT=0;
LCOUNT=0;

}

The costatements create two execution threads within the low priority
task. Background tasks can be placed in the while loop in main. To use
the RTK, three steps must be taken:
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¢ define an array of task pointers

LL IR

e specify the number of tasks
e #define RUNKERNEL

An example using the RTK is shown below:

#idefine NTASK 7
#define RUNKERNEL 1
#use RTK.LIB

// Task prototypes
int heater(), pump(), sensor(), backgnd();

// Array of 4 task pointers

int(#Ftask([4]) () ={heater, // task ©
pump, // task 1
sensor, // task 2
backgnd}; // task 3

/*%dxnx WITH VIRTUAL DRIVER #kkusk/

main(){
vdInit(); // initialize VD and RTK
Tun_every(0,5); // run task O every 5 ticks
run_every(1,15); // run task 1 every 15 ticks
run_every(2,100): // rTun task 2 every 100 ticks
backgnd(); ' // run lowest priority task 3
}

Kernel functions related to the RTK are

* void run_at(int tasknum, voidtime)

e int comp48(void*timel, voidtime2)

¢ void gettimer(voidtime)

* void run_after(int tasknum, long delay)
¢ void run_every(int taksnum, int period)
» void request(uint tasknum)

¢ void run_cancel(int tasknum)

¢ void suspend(uint ticks)
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10 A Real-time Kernel for Embedded Sys-
tems - uC/0OS

10.1 Introduction

Jean J. Labrosse published an early version of 4C/OS in Embedded Systems
Programsming magazine in June 1992. It was written in C with the initial
goal for creating a small but powerful kernel for the 68HC11 microcontroller.
It has since been extended to a portable system suitable for use with any
microcontroller/microprocessor provided that it has a stack pointer and the
processor status can be stacked and unstacked.

Labrosse has subsequently written the book describing uC/OS:

e Jean J. Labrosse, u C/OSTheReal—TimeKernel, R & D Publications,
Lawrence, Kansas. ISBN 0-13-031352-1

The complete source listing of uC/OS is available in the book. It is also
available in a companion disk.

The code is protected by copyright. However, you do not need a license
to use the code in your application if it is distributed in object format. You
should indicate in you document that you are using pC/OS.

10.2 Main Features of uC/OS
The main features of #C/OS are:

e Portable — It is written in C, with a small processor specific code in
assembly to create task, start multitasking and perform context switch-
ing. For 80186/80188 the assemble language code is less than 4 pages.

e ROMable — The size and design of the kernel is such that it is suitable
for storing in ROM or EPROM.

e Priority driven - It always runs the highest priority task that is ready.
o Pre-emptive - When a task makes a higher priority task ready to run,
the current task is pre-empted or suspended and the higher priority task

is immediately given control of the processor. Execution of the highest
priority task is deterministic.

e Multitasking — Up to 63 tasks may be set up.
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¢ Interrupt feature - Interrupts can suspend the execution of a task. If
a higher priority task is awakened as a result of the interrupt, the higher
priority task will run as soon as the interrupt completes. Interrupts can
be nested up to 255 levels deep.

10.3 uC/OS Tasks

A task is an infinite loop function or one that deletes itself when it is finished.
'The infinite loop can be pre-empted by an interrupt that can cause a higher
priority task to run as mentioned above. A task can also call the following
#C/OS services:

e OSTaskDel()

OSTimeDly{)

0OSSemPend()

¢ OSMboxPend()

0SQPend()

Each task has a unique priority, ranging form 0 to 62. The lower the
value the higher the task priority.

10.4 pC/OS Task States

There are altogether six possible states for a task as listed below:

e DORMANT -The state when a task has not been made available to
#C/OS.

* READY - When a task is created by calling OSTaskCreate(), it is in
the READY state. Tasks may be created before multitasking starts or
dynamically by a running task. If the created task has a higher priority
than its creator, the created task is immediately given the control of the
processor. A task can return itself or another task to the DORMANT
state by calling OSTaskDel().

e RUNNING - The highest priority task created is in the RUNNING
state when multitasking is started by calling OSStart().
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e DELAYED -The running task may call OSTimeDly() and enters the
DELAYED state. The next highest priority task then runs. The de-
layed task is made ready to run by OSTimeTick() when the desired
delayed time expires.

e PENDING - The running may have to wait for an event by calling
0SSemPend(), OSMboxPend() or OSQPend(). It then enters
the PENDING state. The next highest priority task then runs. The
task is made ready when the event occurs. The occurrence of an event
may be signalled by another task or by an interrupt service routine
(ISR).

e INTERRUPTED - A task may be interrupted and enters the INTER-
RUPTED state. The ISR then runs. The ISR may make one or more
tasks ready to run. When all tasks are either waiting for events or
delayed, an idle task OSTaskIdle() is executed.

10.5 pC/OS Task State Transition Diagram

OSSemPend()
OSMboxPend()
OSQPend(}

OSTaskCreate() 0S8 _TASK_SW)

OSTaskDel()
Preempted

Interrupted OSintExit

OSTaskDel(}
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10.6 Task Control Block

Each task has a task control block, OS_TCB, which is used by muC/OS to
maintain the state of the task when it is pre-empted. When the task regains
control the OS_T'CB allows it to resume execution properly.

Each OS_TCB has the following field:

o OSTCBStkPtr - points to the top of stack.

e OSTCBStat — state of the task. 0 - ready to run

e OSTCBPrio - task priority. 0 - 63

o OSTCBD1ly — number of clock ticks the task is to wait for an event.

¢ OSTCBX, OSTCBY, OSTCBBIitX, OSTCBBIitY - used
for speeding up task handling by precomputing some parameters.

OSTCBX = priority & 0x07;
OSTCBBIitX = OSMapTle[priority & 0x07];
OSTCBY = priority >> 3;

OSTCBBIitY = OSMapTbl[Priority >>3];

OSTCBNext, OSTCBPrev - to doubly link OS_TCBs. OS-
TimeTick() uses this link to update OSTCBDly field for each task.

OSTCBEventPtr - points to an event control block.

All OS_TCBs are placed in OSTCBTbI|]. The maximum number of
task is declared in the user’s code. An extra OSTCB is allocated for the
idle task.

10.7 Creating a Task

Tasks are created by calling OSTaskCreate() which is target processor
specific. Tasks can either be created prior to the start of multitasking or by
another task at run time. A task cannot be created by an interrupt service
routine.

OSTaskCreate() has four arguments:

e task - points to the task code.

e data - points to a user definable data area that is used to pass argu-
ments to the task.
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e pstk - points to the task stack area for storing local variables and
register contents during an interrupt.

e p - task priority.

OSTaskCreate() calls OSTCBInit() which obtains an OS_TCB from
the list of free OS_TCBs. If all OS_TCBs have been used, an error code is
returned. If an OS_TCB is available, it is initialised.

A pointer the OS_T'CB is placed in the OSTCBPrioTble[} using the
task priority as the index. The OS_TCB is then inserted in a doubly linked
list withOSTCBList pointing to the most recently created OS_TCB. The
task is then inserted in the ready list.

If a task is created by another task, the scheduler is called to determine
if the created task has a higher priority than its creator. If so, the new task
is executed immediately. Otherwise, control is returned to its caller.

10.8 Deleting a Task

A task may return itself or another task to the DORMANT state by calling
OSTaskDel(). However, the idle task cannot be deleted. The steps taken
to removed a task is as follows:

e Removed from the ready list.
e OS_TCB is unlinked and returned to the list of free OS_.TCB.

e If OSTCBEventPtr field in nonzero, the task must be removed from
the event waiting list.

10.9 Task Scheduling

Task scheduling is done byOSSched() which determines which task has the
highest priority and thus will be the next to run. Each task has a unique
priority number between 0 and 63. Priority 63, the lowest, is assigned to the
idle task when pC/OS is initialised.

Each task that is ready to run is placed in a ready list. The task scheduling
time is constant irrespective of the number of tasks created. OSSched()
looks for the highest priority task and verifies that it is not the current task
to prevent unnecessary context switch. A context switch is then carried out
byOS.TASK_SW().

0SSched() runs in a critical section to prevent ISR from changing the
ready status of a task.
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10.10 Interrupt Processing

pC/OS requires an interrupt service routine (ISR) written in assembly lan-
guage. Interrupts are enabled early in the ISR to allow other higher priority
interrupts to enter.

OSIntEnter() is called on entering and OSIntExit() on leaving the ISR
to keep track of the interrupt nesting level. There may be 255 levels.

puC/O8’s worst case interrupt latency is 550 MPU clock cycles (80186/80188).
1#C/OS’s worst case interrupt response time is 685 MPU clock cycles
(80186/80188).

10.11 Clock Tick

Time measurement in suspending execution and in waiting for an event is
provided by OSTimeTick(), which supplies the clock ticks or the heartbeats.
OSTimeTick() also decrements the OSTCBDIy field for each OS_TCB
that is not zero.

The time between tick interrupts is application specific and is typically
between 10 ms and 200 ms. OSTimeTick() increments a 32-bit variable
OSTime since power up. This provides a system time.

10.12 Communication and Synchronisation

puC/OS supports message mailbores and gueues for communication. A task
can deposit, through a kernel service, a message (the pointer) into the mail-
box. Similarly, one or more tasks can received messages through a service
provided by the kernel. Both the sending and receiving task have to agree
as to what the pointer is pointing to.

A message queue is an array of mailboxes. uC/OS supports semaphore
(0-32767) for synchronisation and coordination.

The above services are events. Thus, a task can signal the occurrence of
an event (POST) or wait for an event to occur (PEND). However, the ISR
can POST an event but cannot PEND on an event.

When an event occurs, the highest priority task waiting for the event is
made ready to run.

10.13 Event Control Blocks

The state of an event consists of the event itself and a waiting list for tasks
waiting for the event to occur.
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Fach event is assigned an Event Control Block which has the following
data structure:

e OSEventGrp

o OSEventGrp

e OSEventTbl{8]

e OSEventCnt for semaphore count

e OSEventPtr for mailbox or queue

10.14 Memory Requirements

The memory required for the program is less than 3150 for the 80186/80188
microcontroller. This can be reduced to if some of the services are not re-
quired. The RAM or data memory is as follows:

e 200
+ ((1 + OSMAX_TASK) * 16}

+ (OS_.MAX_EVENTS * 13)
+ (OS.MAX_QS * 13)

e + SUM(Storage requirements for each message queue)

+ SUM(Storage requirements for each task stack)

+ (OS_IDLE_TASK_STK_SIZE)

193
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10.15

Kernel Services

The kernel services are given in the following table:

# SERVICE DESCRIPTION

| |oSit( Initalise pC/OS

2 | OSIntEnter{) Signal ISR entry

3 | OSIntExit() Signal ISR exit

4 |OSMboxCreate() Create a mailbox

5 | OSMboxPend() Pend for mrssage from mailbox
6 | OSMboxPost() post a message to mailbox

7 |0SQCreate() Create a queue

§ |0SQpend{ Pend for message from queue
9 | 0SQPost() Post a message to queue

10 |OSSchedLock() Prevent rescheduling

11 |0SSchedUnlock() Allow rescheduling

12 1 0SSemCreate() Create a semaphore

13 |0SSemPend() Wait for a semaphore

14 | 0SSemPost() Signal a semaphore

[5 |OSStart() Start multitasking

16 | 0STaskChangePrio() Change a task’s priority

17 {O8TaskCreate() Create a task

18 | OSTaskDel() Delete a task

19 |0STimeDly() Delay a task for n system ticks
20 |0STimeGet() Get current system time

21 | OSTimeSet() set system time

22 |0STimeTick() Process a system tick
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A HC11 Embedded System PCB Artwork
A.1 HC11 MCU Kernel Board

LEGEND

DB9P

11

ha!

B8 MMz

TRA |

S
E

I

25 =10
» i -
[
DTE —
' » :agO !
» 1y 1 1
Y P3
J2
l —
@ u1 =
g g g
[
x o
u\.ﬂ
oy
=
ogg
ot
o-0 4
Ioxa {OM)>
BOOT
I M
RESET Su
[::] PBLL  nORAAL E% S::)

O~
%
nN
15

i 2

@ 185

Sixth College on Microprocessor based Real Time Systemns in Physics
Abdus Salam ICTP, Trieste, ltaly. October 9 - November 3, 2000

195




Embedded Systems

Ang, Chu Suan

A.2 HCI11 MCU Kernel Board
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A.3 HC11 MCU Kernel Board

f3vad A30Jo2
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A.4 HC11 MCU Kernel Board

COMPONENT MASK
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A.5 HC11 I/O Board
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A.6 HC11 1/0 Board
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A7 HC11 1/O Board
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A.8 HC11 1/0 Board
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B Software Utilities

Appended below are programm listing in the most primitive level for HC11

development.

B.1 PRGHCS811 EEPROM Programmer

********#**************#*******************************************************

mode.

*® ¥ ¥ X K X ¥ X ¥

: 1.10 on 24/10/90
Written by: K.A. Poh

Program : 68HC811E2 EEPROM programmer
Filename : PRGHC811.ASM
Version : 1.00 on 12/9/90

Binary image of this program is downloaded to the 68HC811E2 in bootstrap

It then read in $19 file (application program) and program the EEPROM.

* O O¥ R X X XK O ¥ ¥

*#***************************************************************#*****#*******

*

¢ ko o e sk ok ke ok koo ok
* EQUATES =
ok e sk o oo ok o R koK ok
RAMBS

REGBS

BOOTROM

**+* Registers

EQU
EQU
EQU

will be addressed

$0000
$1000
$BF40

start of ram
start of registers
start of bootstrap ROM routines

with Ind,X mode *k*x*

BAUD EQU $2B sci baud reg

SCCR1 EQU  $2C sci controll reg

S5CCR2 EQU  $2D sci control2 reg

SCSR EQU  $2E sci status reg

SCDR EQU  $2F sci data reg

BPROT EQU  $35 EEPROM block protection reg
OPTION EQU  $39 config option reg

PPROG EQU $3B eeprom prog reg

HPRIO EQU  $3C highest priority reg

TEST1 EQU $3E test functions control reg
CONFIG EQU  $3F config reg

TDRE EQU  $80

RDRF EQU  $20

MDA EQU  $20

SMOD EQU $40

mS10 EQU  10000/3 10mS delay

Null EQU O

At ok ok ok Ak ok

* RAM *

e AR s K
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et

DRG  RAMBS .
EE_OPT RMB 1 )
MASK RMB 1
TEMP RMB 1
LAST_BYTE RMB 1

PAGE

K ok 3 ke ok 36 2k o o o o o ok o ook o o ek ook ok ko ok ok ok sk K

* PRGHC811 PROGRAMS START HERE =*
sk ok 3 ok ook ok S oo o S o o o ko o o ok o o oK o ok o

ORG  RAMBS
LDS  #$FF init stack
LDX  #REGBS
CLR SCCR1,X 8 data bits, 9600 baud
LDD  #$300C
STAA BAUD,X
STAB SCCR2,X
Read_Opt STS EE_OPT default EE_OPT=0, MASK=$FF
BSR Read_C chk control byte
CMPB #°’P’ program EEPROM 7
BEQ Leoad
CMPB #’V? verify EEPROM ?
BNE Read_0pt
DEC EE_OPT
Load EQU *
BSR Read_C
CMPB #°’S’ wait until S1 or 39 received
BNE Load
BSR Read_C
CMPB #°1°
BEQ Laod1
CMPE #’9°
BNE Load
BSR Rd_Byte complete reading S9 record before ending
TBA
SUBA #2 no.of bytes to read including chksum
BSR  Get_Addr get execution address in Y
Load9 BSR Rd_Byte discard remaining bytes
DECA
BNE  Load9

BEQ Read_0Opt

Lacdi EQU *
BSR  Rd_Byte read byte count of 51 record into ACCB
TBA
SUBA #3 minus load addr & chksum from count
BSR  Get_Addr ge load addr into X
DEY
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BRA LoadlB
LoadlA LDAB EE_OPT
BMI  Verify
Data_Poll LbaR LY
EORB LAST_BYTE
ANDB MASK
BNE Data_Poll
LoadlE DECA
BE Lead
LoadlB BSR Rd_Byte read nx. byte
INY nx. load addr
TST EE_OPT
BMI  LoadiD if verifying then don’t program byte
BEQ Prog if internal EEPROM selected then program
LoadlD STAB LAST_BYTE save it for data polling
BRA LoadlA
Verify LDAB ,Y
CMPB LAST_BYTE if programmed byte is correct then
BEQ LoadlE read nx byte
BSR VWrite_C else send bad byte back to host
BRA  LoadlE before reading nx. byte
Read_C EQU * ACCA, X, Y regs unchanged by this routine

BRCLR SCSR,X RDRF =
LDAB SCDR,X
Write_C BRCLR SCSR,X TDRE =*
STAB SCDR,X echo it back to host

RTS

Rd_Byte BSRE Read C read most significant nibble
BSR Hex_Bin
LSLB
LSLB
LSLB
LSLB
STAB TEMP
BSR Read_ C
BSR Hex_Bim

ORAB TEMP
RTS
Get_Addr EQU =
PSHA save byte counte
BSR Rd_Byte read MSB of addr
TBA
BSR Rd_Byte read LSB of addr
XGDY
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PULA
RTS
Hex_Bin EQU *
CMPE #'9? if ACCB>9then assume it is A-F o
BLS  Hex_Num
ADDB #9
Hex_Num ANDB #%F
RTS
Prog EQU =«
PSHA
CLR  BPROT,X remove protection on EEPROM
CLR  PPROG,X
CMPB ,Y
BEQ ProgB if same data then skip pProgramming
LDAA #8186
Progh BSR  Program erase byte
LDAA #2
BSR  Program program byte
ProgB LDAA #1F
STAA BPROT,X
CPY  #CONFIG+REGES
BNE  ProgX
LDAB ,Y load ACCB with old value to prevent hangup
ProgX PULA
BRA  LoadlD
Program EQU *
STAA PPROG,X
STAR ,Y
INC PPROG,X enable programming voltage
PSHX
LDX  #mS10 wait 10 mS
Wait DEX
BNE Wait
PULX
DEC  PPROG,X disable programming voltage
CLR  PPROG, X
RTS
PAGE
A e R R Ak o ok
*  VECTORS *
KR R o Kk
ORG  RAMBS+3$F7
VILLOP JMP  BOOTROM
VCOP JMP  BODOTROM
VCLY JMP  BOOTROM
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B.2 HC11 Test Program

This is a simple program that tests or exercises all the I/O devices in the

HC11 1/O board using the HC11 Kernel.

********#***#**********************************************#****#************

* Program . MC68HC1i1 MCU Kermel and 1/0 Board Test Program
* Filename : HC11_TST.ASM
* Version : 2.00 on 9/96

* Written by : K.A.Poh, C.S.Ang
* Description:

*
* This program tests the peripheral devices of the I/0 Board with the
* following modes:

%

X % ¥ W O X ¥ ¥

*
* 1. Welcome message - 'WELCOME TO ICTP.’ is displayed for 2 seconds in this#*

*

*

« 9. LED test mode - A 1lit LED is rotated from right to left continuous.
* 1.CD shows ’Rotating 1 bit. ' message.

*

« 3. DIP switch mode - Status of DIP switch is shown on LED.

* LCD shows ’DIP switch mode.’ message.

*

» 4. ADC mode - Analogue o/p from pontentiometer is shown on LCD.
*

* 5. LCD test mode ~ Display character set, one character at a time on
* LCD.

*

* 6. Counter mode - Pulse accumulator is tested by pressing PAI (BL)
* - button.

* - Counter value is shown on LCD. Counter continues
* - to count even in other modes.

*

+ Press STRA (B2) button to enter the next mode, except for mode 1.

*

*+ LED lamp #10 (rightmost) shows 5V status.

*

» LED lamp #% (2nd from right) shows LCD/SW mode. Lit for LCD and off

* for switches. The LCD/SW mode is controlled by STRB (with JP2 closed,
= JP1 open) or manually using JP1 (with JP2 openj.

*

* This program uses sequential flow in the main loop to switch mode. No
* interrupts.

*

**********************************************#*******************************

********#************************

« Define Register Addresses *
***********#*#*******************

mode. Then it automatically enters the next mode.
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RAMBS
REGBS
EEPROMBS

***x Registers
PIO0C
PORTA
PORTB
PORTC
DDRC
PORTCL
PORTD
DDRD
PORTE
TMSK2
TFLG2
PACTL
PACNT
BAUD
8CCR1
SCCR2
SCSR
SCDR
ADCTL
ADR1
ADR2
ADR3
ADR4
OPTION
COPRST
PPROG
HPRIQ
INIT
CONFIG
CONFIG_REG

EQU  $0000 start of ram
EQU  $1000 start of registers
EQU  $F800 start of eeprom

will be addressed in Ind,X mode #xx

*** User Defined Constants s+

ETX
bit0
biti
bit2
bit3
bit4
bits
bité
bit7
t8
rdrf
tdre

EQU  $02 parallel i/o ctrl reg
EQU  $00 port a

EQU  $04 port b

EQU  $03 port ¢

EQU  $07 data direction reg c

EQU  $05 alternate latched port C
EQU  $08 port d

EQU %09 data direction reg d
EQU  $oaA port e

EQU  $24 timer mask 2

EQU  $25 timer interrupt flag reg 2
EQU  $26 pulse accumulator ctrl reg
EQu  s$27 pulse accumulator counter reg
EQU $2B 8ci baud reg

EQU  $2¢C sci controll reg

EQU  $2p sci control2 reg

EQU  $2E sci status reg

EQU  $2F sci data reg

EQU  $30 adc ctrl reg

EQU  $31 adc result reg 1

EQU  §32 adc result reg 2

EQU  $33 adc result reg 3

EQU  $34 adc result reg 4

EQU 339 option reg

EQU  $3a COp reset reg

EQU  $3B eeprom prog reg

EQU  $3C highest priority reg
EQU 33D init reg

EQU  $3F config reg

EQU  §FF EEPROM at $F800-$FFFF, cop disable
EQU %03 End of text

EQU  $01 define bit positioms
EQU  $02

EQU %04

EQU  $08

EQU $10

EQU  $20

EQU  $40

EQU  $80

EQU  bité6 T8 of SCCR1

EQU bith RDRF of SCSR

EQU  bit7 TDRE of SCSR
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PAGE

sk 50 7 o ke ol o K o o o ok ok Bk Sk o ok

% DEFINE I1/0 PINS =
*********************

*PORTB :

e EQU  bit0 control E of LCD
™V EQU Dbitl control R/W of LCD
s EQU bit2 control RS of LCD

PAGE
Aok ok ko o ok K R Rk

# DEFINE VARIABLES *
s sl o o o ok K o ok K

ORG  RAMBS
CHAR_CODE RMB 1 character code for LCD
A_REG RMB 1 tmp storage
CC_REG RMB 1 tmp storage
MSG_PTR RMB 2 message pointer
LCD_PTR RMB 2 LCD pointer
BCD_BUF RMB 3 00 00 00O - 99 99 99
MSG_BUF RMB 17 16 character + ETX
PAGE

ks o s ook oo o s A R

* DEFINE CONFIG REGISTER =

ok o o s o o o o sk MK K
ORG CONFIG+REGBS
FCB  CONFIG_REG

PAGE
********************************************************************#*********
+ BODTSTRAP - Decide which test to perform *

******#*t****#********#***********************************************#*******
ORG  EEPROMBS

BOOTSTRAP EQU =

LDS  #$FF init stack

JSR  PWR_UP_INIT initjalisation
TEST_LOOP EQU  =*

LDY #MSG_1 load message 1

STY MSG_PTR
JSR  DPLY_M3G

LDX #2000 delay 2 seconds

JSR  DELAY_IN_MS

JSR CLR_STAF ) clear unintended STRA
LDY #MSG_3 load message 3

STY MSG_PTR

JSR  DPLY_MSG

JSR  LED_TEST rotate 1 bit in LED
LDY #MSG.4 load message 4

STY MSG_PTR

JSR  DPLY_MSG
JSR  DIP_SW testing DIP switches
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JSR  ADC_TEST read and display ADC
JSR  LCD_TEST cycle character pattern
JSR  PA_TEST pulse accumulator test
BRA  TEST_LOOP
PAGE
3 o o A o K o KRR oSk o o ok o 36 ok e o o R KK e R o o o s oo ok oo R o ok A kKoK ok

* Messages *

e e o ok ke ok ok ok ok e ok ak ke ok e 2k 3k ok ok e 3k ok ook ok ke e ol s ok ek ok ok ok ok ok ok ok e ol ek o ok sk b ok ok ok ok ok of e s sk ke s ok ok ok ok ok sk ok ok ok ok ok ok ok o e

MSG_1 FCC 'WELCOME TO ICTP.®
FCB ETX

MSG_2 FCC ’ '
FCB ETX

MSG_3 FCC 'Rotating 1 bit. ?’
FCB ETX

MSG_4 FCC 'DIP switch mode.’
FCB ETX

MSG_ADC FCC  *'ADC: 0.00 Volts '
FCB ETX

MSG_PA FCC ’COUNTER(B1): !
FCB ETX

¢ ek e 3 oo sk ok o ok ok o ok ok o ok e e o sl 3k o 2 Kk K ok ok 3 s ok s ok ok o sk ok e o ke o 36 ok ko ok ok k3 ok ok 3 ok ok ke o sk o ok ok ok sk ok o ok e 3K oK o Ak oK oK

* LCD_MODE - Turn STRB high for LCD access *
s o 0 o o S oo o oo o o S Ak oo Ko o o R o o o o o e s o o o R o R R Ko o K e e o
LCD_MODE EQU =*

LDX  #REGBS

PSHA save A

LDAA #)00010100 full-input handshake, STRB high

STAA PIOC,X write to ctrl reg

PULA

RTS

3 e o o o ok o o o s sl 3 ok 3k ok Kk ok oK sk e s sk sk sk 3k o ok s o s o 3k ok 2k ok ok ke 36 ok 3 o 3ok ok o ke A e o K o A oK K K o K oK ofe e e sk ok 3k ok ok ok

* SW_MODE - Turn STRB low for switch/LED access *
3 8 A o B o o o S RO OB B o 3 o o eSS S o 8 o8 o ok o ok o ok o e o o o oS K KRR KK o o e S s o o sk sk sk o
SW_MODE EQU =

LDX  #REGBS

PSHA save A

LDAA #%00010101 full-input handshake, STRB low

STAA PIOC,X write to ctrl reg

PULA

RTS
20 o ok o Ao o S o S o o o o o o o e o o s o o oo A s oK B o o ok ok sl o Rk ko o o o o o ok o oo ok o sk ok ok ok ok ok
* PWR_UP_INIT - Initialize comtrol registers, I/0 and RAM. *

o o o e oo s o o e kK oo oo o oo s o o sk ok ok o 3 o oo SRR K e ok ok ok R o o ook oK e s ok e e ok o ok o o ok
PWR_UP_INIT EQU =

LDX #REGBS
CLR  PORTB,X led’s off, lcd disabled
CLR  DDRC,X port c as input
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LDAA #%01000000
STAA PACTL,X
CLR  PACNT,X
JSR  INIT_LCD
LDAA #§20

STAA CHAR_CODE
CLI

RTS

PAGE

set pulse accu. ctrl reg

clear pulse counter
init lecd

set space character
for LCD test mode

*********************#**************************#**#**************#****#******

« INIT_LCD - Initialise LCD

*

* - Refer to Samsung KS0066 LCD comtroller data sheet *
**********************#***¢***********************m***************************

INIT_LCD EQU =
JSR  LCD_MODE
LDX  #B0
JSR  DELAY_IN_MS
CLC

LDAA #%00111000
JSR  WRT_TO_LCD

LDX %5
JSR  DELAY_IN_MS
CLC

LDAA #%001110000
JSR  WRT_TO.LCD

LDX #1
JSR  DELAY_IN_MS
CLC

LDAA #%00111000
JSR  WRT_TO_LCD

turn STRB high for LCD
wait for 50 ms

select instruction reg
set 8-bit function
wait for b ms

select instruction reg
set 8-bit function
wait for 1 ms

select instruction reg
set 8-bit function

above sequence recommended
for init by supplier

*
CLC select instructiocn reg
LDAA #%00111000 set 8-bit interface
JSR  WRT_TO_LCD 2 line LCD, bx7 dots
CLC select instruction reg
LDAA #%00001000 display off
JSR  WRT_TO_LCD
CLC select instruction reg
LDAA #1 display clear
JSR  WRT_TO_LCD
CLC select instruction reg
LDAA #%00000110 set entry mode, curser -2,
JSR  WRT_TO_LCD display not shifted
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it

CLC select instruction reg

LDAA  #/00001100 display on, cursor off, .
JSR  WRT_TO_LCD blink off

CLC select instruction reg

LDAA  #310000000 set display data RAM addr

JSR  WRT_TG_LCD to 0

RTS

PAGE

***********************************************************************t******

* DELAY_IN_MS - On entry, X=Delay duration in ms *
*#****************************#*******************#***#**#********************

DELAY_IN_MS EQU  *

* Loopl delay = 286x7x0.5 us = 1 ms

LooP1 LDY  #287
Loap2 DEY 4 cycles

BNE  LOOP2 3 cycles

DEX

BNE  LOOP1

RTS

PAGE
R ok oS o Ao KRk R o o R o K o ok o o oo S ok s ok s oo ok s ol o oo o ok o oo ok
* ADC_TEST - Test ADC *
* - Read ADC and display hex value in LCD *
P o s ok o oS ook koo AR A oo KK oo o o e o o ook o ok e o ke ok o o o ok o o o o ok o o
ADC_TEST EQU =

LDX #MSG_ADC get ROM message ptr

LDY  #MSG_BUF get RAM message buffer ptr

JSR  COPY_MSG copy

LDY  #MSG_BUF point to message buffer

STY MSG_PTR
DO_ADC LDX  #REGBS

LDAA #%10000000 ADPU=1 for ADC

STAA OPTION,X

LDAA #%00110000 continuous adc

STAA ADCTL,X set ADC ctrl reg
TST_EOC BRSET ADCTL,X bit7 DPLY_ADC tinished conversion

JSR  CHK_STRA check if STRA is pressed?

BCS  XADC_TEST yes, get out

BRA  TST_EOC wait for end-of-conversion
DPLY_ADC LDX  #REGBS

CLRA c¢lear high byte first

LDAB ADR4,X read adc result

ASLB X2 to get "5V full scale

BCC NOC no carry

LDAA #1 otherwise, set high byte
NO_C JSR  BIN_BCD convert to BCD
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LDX  #MSG_BUF

LDAA BCD_BUF+2 load 1s digit
ANDA #$0F mask high nibble
ORA  #$30 convert to ASCII
STAA B8,X put it at the right place
LDAA BCD_BUF+2 icad ls digit
LSRA put it at the right place
LSRA
LSRA
LSRA
ORA  #$30 convert to ASCII
STAA T7.X put it at the right place
LDAA BCD_BUF+1 load 1s digit
ANDA #$0F mask high nibble
ORA  #$30 convert to ASCII
STAA B,X put it at the right place
LDY  #MSG_BUF point to message buffer
STY MSG_PTR
JSR  DPLY_MSG display it
BRA DO_ADC
XADC_TEST RTS
PAGE

******************************************#************************t**********

* COPY_MSG - Copy message from ROM to RAM buffer *
* - ¥X=source, Y=destination *
* terminated by ETX in string *
* input string cannot have ETX as text *
******************m***********************************************************
COPY_MSG EQU =
NEXT_BYTE LDAA 0,X transfer loop starts

INX copy MSG_ADC to MSG_BUF

STAA O,Y

INY

CMPA #ETX last byte

BNE NEXT_BYTE “transfer loop ends

RTS

********************************************#*****************#***************
+ BIN_BCD - Binary to BCD conversion *

* - Input value in D, conversion in BCD_BUF, BCD_BUF+1, BCD_BUF+2 =
*#*#***************************#********************************************#*
BIN_BCD EQU =*

CLR BCD_BUF clear BCD buffers

CLR  BCD_BUF+1

CLR  BCD_BUF+2

STAA A_REG save high byte
TST.D LDAA A_REG recover high byte

213
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SUBD
BEQ
SUBD
STAA
LDAA
ADDA
DAA
STAA
BCC
LDAA
ADDA
DAA
STAA
BCC
LDAA
ADDA
DAA
STAA
BCC
XBIN_BCD RTS
PAGE

#0
XBIN_BCD
#1

A_REG
BCD_BUF+2
#1

BCD_BUF+2
TST_.D
BCD_BUF+1
#1

BCD_BUF+1
TST_D
BCD_BUF
#1

BCD_BUF
TST.D

dummy to set Z flag
0, get out

save A
increment lsb

increment next byte

increment msb

******************************************************************************

* PA_TEST - Test Pulse Accumulator

*

* - LCD shows number of times Bl (PAI) is pressed *
******************************************************************************

PA_TEST EQU
LDX
LDY
JSR
LDX
CLRA
LDAB
JSR
LDX
LDAA
ANDA
ORA
STAA
LDAA
LSRA
LSRA
LSRA
LSRA
ORA
STAA
LDAA
ANDA
ORrRA

*
#MSG_PA
#MSG_BUF
COPY_MSG
#REGBS

PACNT, X
BIN_BCD
#MSG_BUF
BCD_BUF+2
#30F

#$30

15,X
BCD_BUF+2

#$30
14,X
BCD_BUF+1
#$0F
#$30

get ROM message pointer
get RAM message buffer ptr

get count
convert to BCD

lead 1s digit

mask high nibble

convert to ASCII

put it at the right place
load 1s digit

put it at the right place

convert to ASCII

put it at the right place
load 1s digit

mask high nibble

convert to ASCII
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STAA
LDY
STY
JSR
J5R
BCC
RTS
PAGE

********************************#*****

* DIP_SW - Test DIP switches
* - Port C reads a 8-waw DIP s
*t*********#***************#***#***#****#********
DIP_SW EQU *

JSR  SW_MODE

LDX  #REGBS

LDAA PORTC,X

COMA

STAA PORTB,X

JSR  CHK_STRA

BCC DIP_SW

RTS

PAGE

13,X
#MSG_BUF
MSG_PTR
DPLY_MSG
CHK_STRA
PA_TEST

put it at the right place
point to message buffer

display it
change mode?

#***************************************

*

witches and port B drives a LED array *
e PLE LLLLE S

set switches/led mode

read DIP sw status & disp
on LED array: 1=om, O=off

*************#*********************************#******************************

+ LED_TEST - Test LED at po
*********#*#******#*#******

LED_TEST EQU
JSR
CLC
LDAA
LDX
STAA
STAA
TPA
STAA
JSR
BCS
LDAA
TAP
LDAA
LDX
J5R
RORA
BRA
LDX
CLR
RTS
PAGE

ROTATE

XLED_TEST

*
SW_MODE

#%10000000
#REGBS
PORTB, X
A_REG

CC_REG
CHK_STRA
XLED_TEST
CC_REG

A_REG
#100
DELAY_IN_MS

ROTATE
#REGBS
PORTB, X

rt B by cycling 1 bit
*********************************##****************

*

turn STRB low for switches
set bit 7 to 1

display in port B LED
save A register

save CC register

restore CC register

restore A register
delay 100 ms

rotate bit pattern left

clear all LEDs

Sixth College on Microproces
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AR A A KA A oo ook ok oK ok b o o
* DPLY_MSG - Diplay message on LCD

*****************#**************#****

*

¥ and PBO-PB2 drive the controlx

*

******************************************************************************

* - Port € drives DBQ-DB7 of LCD arra
* lines of LCD display.
DPLY_MsSG EQU =

JSR LCD_MODE

CLC

LDAA  #%10000000
JSR WRT_TO_LCD
CLC

LDAA  #400001100
JSR  WRT_TQ_LCD

LDY  #LCD_DD_RAM_ADR

STY LCD_PTR
NX_CHAR LDY  MSG_PTR

LDAA 0,Y

INY

STY  MSG_PTR

CMPA  #ETX

BEQ  END_OF_MSG
PSHA

LDY LCD_PTR
LDAA 0,Y

INY

STY LCD_PTR

ORAA  #%10000000
CLC
JSR  WRT_TO_LCD

SEC

PULA

JSR  WRT_TO_LCD

BRA  NX_CHAR
END_OF_MSG RTS

WAIT_LCD_RDY EQU =
*Wait until LCD status indicates ready

CLC

JSR  READ_LCD
TSTA

BMI  WAIT_LCD_RDY

select LCD mode by STRB=1
select instruction reg
set display data addr
write to LCD

select instruction reg
turn display on

write to LCD

Bet pointer to display data
RAM

get pointer to message
get 1 byte of message
Move pointer to next byte

get out if ETX is met

save it for later

get DD RAM addr, which is
disjoint between the 1st §
and the last 8

form display data addr
select instruction reg
set display data addr

select data reg

get the byte teo write
write it to LCD
pProcess next byte
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RTS

LCD_DD_RAM_ADR FCB  0,1,2,3,4,5,6,7
FCB  $40,841,$42,$43,$44,845,$46,847
PAGE

******************************************************************************

* LCD_TEST - Perform character set test on LCD *
* - A1l characters are shown, one at a time. *
******************************************************************************
LCD_TEST EQU *
START_LINE LDAA CHAR_CODE fetch character code

LDAB #16 16 characters to write

LDX  #MSG_BUF points to message buffer
NEXT_FILL STAA 0,X put it in buffer

INX prepare for next byte

DECB count down

BNE NEXT_FILL next character

LDAA #ETX terminator

STAA 0,X

LDY  #MSG_BUF point to message buffer

STY MSG_PTR

JSR  DPLY_MSG display it

LDX #5000 .5 second per pattern

JSR  DELAY_IN_MS

JSR  CHK_STRA change mode?

BCS  XLCD_TEST get out if yes

LDAA CHAR_CODE recover code

INCA next pattern

CMPA #8$80 skip blanks ($80-$9F)

BEQ SKIP_80

CMPA #0 skip blanks ($00-$1F)

BEG SKIP_20
BRA  CONT_LINE

SKIP_20 LDAA #320
BRA CONT_LINE
SKIP_80 LDAA #$A0
CONT_LINE STAA CHAR_COBE save code
BRA  START_LINE repeat first character
XLCD_TEST RTS

**#***********************#*********#*****#**********************************

* WRT_TO_LCD - Write a byte %o LCD panel *
* - A=data to write to LCD register *
* Carry(C)=LCD register select (RS) *
* C=1=RS selects data register *
* C=0=RS selects instruction register *

****#****#*******************************************************************
WRT_TO_LCD EQU =*
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LDX
*Set RS
BCC
BSET
BRA
SET_RS_LOW1 BCLR
SET_RW1 BCLR
BSET
*Set data
LDAB
STAB
STAA
BCLR
BSET
CLR
LDX
JSR
RIS

READ_LCD EQU

#REGBS

SET_RS_LOWt
PORTB,X rs
SET_RW1
FORTB,X rs
PORTE,X rw
PORTB,X e

#$FF

DDRC,X
PORTC,X
PORTB,X e
PORTB,X rw
DDRC, X

#2
DELAY_IN_MS

*

* On entry, Carry=LCD register select (RS)
* On exit, A=data read from LCD register

LbX
*Set RS.
BCC
BSET
ERA
SET_RS_LOW2 BCLR
SET_RW2 BSET
BSET
LDAA
BCLR
LDS
JSR
RTS
PAGE

#REGBS

SET_RS_LDW2
PORTB,X rs
SET_RW2
PORTB,X rs
PORTB,X rw
PORTB,X e
PORTC,X
PORTE,X e
#2
DELAY_IN_MS

set write mode
enable LCD

set port ¢ as output
write byte to LCD

disable LCD

set back to read mode

set port c as input again
delay 2 ms

set read mode
enable LCD

read LCD register
disable LCD

delay 2 ms

*************************#*#**************************************************

* CHK_STRA - Check for STRA transition *
* - On exit, C-flag=0, if no active transition of STRA *
* =1, if there is active transition *
* =~ On exit, STAF flag is cleared *
8 3 ko o o e o 6 oK oK K 3 3 o o o 3 ook oo 3k 3 oo e 1 K o B sk K0 o o ok o ok oo R ook ok ok o s sk o ok sk sk ok ok oK ok o S oK 3 3
CHK_STRA EQU =%

LDX  #REGBS

CLC assume no transiticn

BRCLR PIOC,X bit7 EXIT_STRA

exit if not set
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DEBOUNCE JSR CLR_STAF to clear STAF in PIOC
LDX  #20 debounce key
JSR  DELAY_IN_MS
LDX  #REGBES
BRSET PIOC,X bit7 DEBOUNCE exit if not set
SEC set transition flag
EXIT_STRA RTS

******************#**********************************************#************
* CLR_STAF - Clear STAF or STRA flag *
* - Also used to clear previous unintended setting *
********************#*****************t********#*******#****#**#**********#***
CLR_STAF EQU =

LDX  #REGBS
LDAA PIOC,X to c¢lear STAF in PIOC

LDAA PORTCL,X need this as well

RTS
PAGE

******************************************************************************

* JRTI - Return from interrupt. *
******************************************************************************

JRTI RTI

PAGE
ke e ok o o ok KoK ko ok oK
* VECTORS *
ook s 3 ok o ok e ok o o ok o ok ok

ORG EEPROMBS+$07D6
VSCI FDB JRTI
VSPI FDB JRTI
VPAIE FDB JRTI
VPAO FDB JRTI
VTOF FDB JRTI
VTOCS FDB JRTI
VTOC4 FDB JRTI
VTOC3 FDB JRTI
VTGoCc2 FDE JRTI
VTOC1 FDB JRTI
VTIC3 FDB JRTI
VTIC2 FDB JRTI
VTIC1 FDB JRTI
VRTI FDB JRTI
VIRQD FDB JRTI
VXIRQ FDE JRTI
VSWI FDB JRTI
VILLOP FDB BOOTSTRAP
VCoP FDBE BOOTSTRAP
VCLM FDB BOOTSTRAP
VRST FDB BOOTSTRAP
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Abstract

Hardware developed for the Colleges on Microprocessor—based
Real—time systems in Physics s reviewed. An embedded system
based around an MC 6809 microprocessor is introduced together
with a real-time, multi-threading kernel developed to run on the board.
The kernel is designed to implement a small memory manager, a task
scheduler,software system calls and installable device drivers. On top
of the system, several layers of software are implemented, that provide
full high level language library support including a version of the Posix
1003.1c (PThreads) standard. Examples are provided that illustrate
the use of these libraries together with methods for compilation and

debugging of C code.
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1 Introduction

Since the start of the series of Colleges on Real-Time Systems in Physics,
several pieces of small but useful hardware items have been developed by
members of the instruction staff with the aim of furthering the effectiveness
of the material presented in the course lectures. Several such items are dis-
cussed in these notes from both their hardware, and where appropriate, their
software aspects. It is important to realise that although developed primarily
for teaching the principles of real time systems using personal computers and
embedded systems, several pieces of the hardware can be used for a much
wider class of applications than found in the teaching laboratory. Cards sim-
ilar in design to the MC6809 board described here have been used by the
author for many data acquisition applications such as temperature control,
transient digitisers and intelligent signal averagers. When equipped with the
IEEE 488 instrumentation interface, the de facto standard for small labo-~
ratories, such instrumentation can perform significantly better than many
commercially obtainable pieces of equipment and at prices at least an order
of magnitude lower.

2 Hardware

2.1 The GPI board

The General Purpose Interface card (GPI) was designed by Manuel Gongalves
in 1994 to provide a means of interfacing digital signals to the then recently
introduced PC systems running the Linux operating system. It is based
around a single Intel 8255 1/O chip with only three other chips to provide
address and 1/O decoding and hence provides an extremely simple example
of the principles of PC interfacing. A schematic of the board is shown in Fig-
ure 1, page 224. The 24 input/output lines from the IC can be programmed
in two groups of 8 and two groups of 4 as either input or output. Two of these
lines (PCO and PC3) can provide interrupt capability when the jumpers JP1
or JP2 together with either JP6 or JP7 are selected. The interrupts selected
in this case are either IRQ5 or IRQ7 which are often free in many systems.
The data lines are buffered by a 741.5245 tri-state driver to reduce loading
of the PC bus. This is generally necessary in PC interface designs as the bus
can drive a maximum of around 2 LSTTL loads per card. Address decoding
on address lines A3-A9 is achieved via a 7419682 digital comparator with
internal pull-up resistors and an 8 way DIP switch tied to ground. The AEN
line of the PC bus is also checked by the comparator to be low in order to
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prevent spurious access during DMA cycles (when AEN is high). As the
card is to sit in the IO address space of the PC, the IOR and IOW lines are
decoded directly by the 8255 programmable parallel interface. The default
address is 0x320 corresponding to the locations originally assigned by IBM
to the prototype card.

2.2 The Colombo board

The Colombo board is actually a complete system with provisions made for
a 6809 microprocessor, a 6821 programmable interface adapter, and RAM
and ROM situated on one half of the board. The remainder of the board
comprises a 4 digit, 8 segment LED display together with various switches
and devices that can be interfaced via a 26 pin connector (J2) to either the
on-board microprocessor or an external host machine (see Figure 2, page
226). It is this latter feature that has been used predominantly during the
various colleges.

The 26 pin connector definitions are shown in Figure 4 (page 228) and are
to be considered the standard connections for College instrumentation. Two
sets of data lines can be seen which reflect the characteristics of the 6821
PIA around which the board was designed. The set of A lines (PAO - PAT)
are connected to the latch/drivers of the 4 LED displays and data latched
in the following manner (see Figure 2 on the page 226): The hexadecimal
digit to be written on a given LED is placed on lines PA4-PA7. The data is
latched by first setting the E pin of the specified digit low and then resetting
it back high again. As each digit has a separate line attached to it, digits
that share the same data can be latched individually. A clock that produces
pulses at a selectable rate can be attached to line CA1l. When connected to a
suitable input on the host device an interrupt can be raised by these pulses.
On some cards a buzzer is connected to line CA2, on others the buzzer has
been replaced by a LED. In either case, setting CA2 high causes the attached
device to function.

Connections to the B side are entirely inputs (Figure 4 on page 228):
On lines PB4-PB7, a 16 position rotary switch is attached; on PB3 and
PB2, are two toggle switches; and on PBO and PB1 are two push button
switches, connected via a 74279 for debouncing. These push buttons can
also be jumpered to line CB2 which, when connected as an input on the host
machine, can raise interrupts. Finally, a voltage to frequency converter is
attached to line CB1. This device converts an analogue voltage signal into a
sequence of pulses at a frequency determined by the magnitude of the signal.
If the number of pulses arriving per unit time is counted, the magnitude of
the signal can be determined.
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Figure 3: Pin Definition of the Standard ICTP Connector

2.3 The LCD display board

Designed, by C.S. Ang, as a more up to date and modern replacement for
the Colombo board described previously, this card features a 16 digit ASCII
LCD display panel in addition to two push button switches, an 8 way DIP
switch and an 8 LED strip (Figure 5, page 229). A number of different
connectors allows several possibilities for the host machine. The first of
these, is a 40 pin strip connector for direct interfacing to the 6811 card
described next. The standard ICTP 26 pin connector is also found on the
card allowing connections to be made to either the GPI card or the 6809
card described later. Since the latter connector has fewer pins than the
former, the card functionality is also somewhat reduced when this connector
is used. However, it still allows a significantly better display capability than
the Colombo board. As the details of the card with reference to the 6811
interface are more than adequately covered in the notes of C.5.Ang, only
those aspects relevant to the standard ICTP interface will be discussed here.

The L.CD display is an Agena AA16102 module capable of displaying up
to 16, 5x7 pixel alphanumeric characters. With CA2 held high, data are
placed on lines PBO-PB7. The line PA1 is set low for a write operation and
PA2 is set according to whether the operation is a write data (high) or a
write instruction (low). The line PAO is then strobed from low to high to low
for the data to be latched. For full details of all possible operations, please
refer to the manufacturer’s data sheet.
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Figure 4: Simplified details of the Colombo Board showing A and B sides
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system calls, the user is unaware of the details of the kernel and has only
to supply a means of using the system calls from the programming language
of his choice. For C running under LINUX, the GCC compiler modified to
produce absolute code for the 6809 can make use of libraries encapsulating
the assembler commands. Simple memory management is provided so that
a process can be allocated memory as and when it is needed and return the
memory to the heap when finished. Processes can be loaded and relocated
by the memory manager. Alternatively, absolute code can be used as long
as certain well defined steps are followed.

2.5.2 Hardware description

The board is based around a MC6809 processor running at a clock speed of
{ MHz. Although the 6809 is now an old microprocessor, its use in a piece
of hardware intended mainly for teaching purposes can be justified on the
grounds of its superior instruction set and clarity of use. The 6809 arguably,
still has the best instruction set of any 8 bit microprocessor or micro controller
and is ideally suited for the current purpose. Development tools are widely
and freely available at many sites on the Internet which is a great advantage
for any device.

Throughout the design stage, stress has always been laid on those areas
that will allow the various aspects of microprocessor teaching to be empha-
sised. For this reason two identical serial communications ports have been
provided. These allow communications drivers to be debugged easily using
one port connected via the monitor to the host machine and the second to the
hardware application. For both ports, the baud rate can be set by changing
jumper JP2. If faster rates are required, the ACIAs at 0xA020 and 0xA030
(Figure 9, page 235) must be configured so that the clock is divided by 1
rather than 16 and the jumpers adjusted accordingly. Comrmunication uses
only the TxD, RxD and ground return lines of the 9 pins of the RS 232 ports.
For interconnection between the board and a host PC, null modem cables
must be used.

The 6840 PTM provides 3 timer channels. The first is attached to the
NMI line and is used by the monitor for tracing through code, and the second
is used for the system clock by the kernel. It issues & clock interrupt on the
IRQ line at 10 ms intervals. The third clock is available to a user and has
both gate and output on the onboard standard ICTP 26 pin strip connector.
To ensure these and other interrupt signals are processed, the jumpers must
be set correctly on jumper jP1. Under RInOS, all interrupts except the
MON signal from timer channel 1 which is jumpered to the NMI line, must
be jumpered to the JRQ line. Jumpering to the FIRQ line without special
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Figure 10: Jumpers Setting for the M6809 Board

provision will cause unpredictable results and generally will hang the system.
Refer to Figure 10 on page 236 for a description of the jumper settings.

Random access memory is used to provide (i) a common area for system
and application programme use and (ii) an area in which large processes can
be loaded. These are supplied by a 2764 equivalent 8k RAM at 0x0000-
0x1FFF and a 581000 128k RAM at 0x2000—-0x9FFF (see Figure 11, page
237). Since the entire address space of the 6809 is only 64k, the 128k of
the 581000 is divided into 4 pages each of 32k in size by decoding the upper
two address lines of the 581000 with an address latch. Writing the values
0-3 to the latch will cause the appropriate page to be set. It is advised that
application processes do not interfere with this register when the kernel is

running.

Two channels each of ADC and DAC are provided. No interrupt ca-
pability is provided for the ADC channels as at a clock rate of one MHz,
conversion takes less than approximately 25 pus, which is only barely more
than the time required to handle a straight forward interrupt request. For
times longer than this, timer channel 3 can be used.
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3 The RInOS kernel

This first version of the kernel is written entirely in 6809 assembler rather
than a high level language such as C. The design criteria were that the system
should :

(i) Use software interrupt system calls to an EPROM based kernel to in-
terface to an applications programme rather than be linked in with it
at compile time and subsequently downloaded to RAM.

(ii) Allow a variable number of applications to be downloaded to RAM
where they could be run concurrently when the kernel was started.

(iii) Provide a set of functions that would allow the efficient coexistence of,
and communications between, a number of processes.

(iv) Provide a means of installing device drivers that could be changed after
the start of the kernel and without having to re-assemble the system

code.

Several real-time kernels were examined for their suitability for use in
an embedded system such as the 6309 board. Initially, the p/COS real
time kernel was considered as a possible candidate but was rejected because
criterion (i) above was difficult to fulfil. Another alternative was to modify
the MCX11 Real Time Executive provided for the 6811 by Motorola. The
dispatcher of this kernel was particularly suitable for use with the 6809 and
was used as a model for the RInOS scheduler. The remainder of the code
was, however, written completely afresh to fulfil the various criteria.

3.1 Context switching under RInOS

At the heart of any kernel is the process scheduler or dispatcher. This func-
tion determines which task will run and for how long. RInOS uses a simple
technique to determine whether the current task is to continue running or
will yield to another, by assigning to each task a priority level between 1 and
255. The priority level 0 is reserved for the null task which always is in a
runnable state but runs only when no other task is available. The priority
Jevel is used to determine the position where the task can be inserted into
a linked list of tasks starting with the highest priority task and ending with
the null task. The system variable prioptr at address 0x108 always points
at this list. A task can change its priority by unlinking and inserting itself
into its new level. During a context switch the linked list of tasks is searched
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until one is found that is in a runnable state. This and all other information
needed by the system to describe each task is found in a structure called
a task control block or TCB which is given in Table 1 on page 240. The
STATUS field of this structure indicates whether or not a task is runnable
or is asleep. When a runnable task is found, the following sequence of events
occurs:

(i) All interrupts are switched off

(ii) The system variable taskptr is set to point at the new task. This
always indicates the address of the current task

(iii) The system variable intlvl is decremented. This variable indicates the
level of interrupt nesting. If after decrementing, it is zero, the system
was not interrupted and it is safe to return to the application task
that was either running at the time the interrupt was issued in the
case of a hardware interrupt or issued the system call in the case of a
software interrupt. Non zero values indicate that the system itself was
interrupted and it is not safe to perform a context switch at this time.
In the latter case, a simple return from interrupt is issued and control
flows to the point of interruption. In the former case the sequence
continues with the value saved in the STACK_POINTER field of the
TCB being transferred to the stack pointer register of the processor.

(iv) A return from interrupt is now issued with the new stack pointer. This
causes the machine registers to be filled with the values found on the
stack. The final register to be pulled from the stack is the programme
counter which causes a jump to the new value just pulled from the
stack and hence a transfer of code execution to a new task.

This sequence is illustrated in Figure 12, page 241. During the issuing of
a system call, the reverse process occurs:

(i) The register set is pushed onto the stack and interrupts are switched
off

(ii) The variable intlvl is incremented

(iif) If intlvl was zero before being incremented, the value of the stack is
saved in the STACK_POINTER field of the TCB pointed at by taskptr
and the value of the system stack is placed in the stack pointer. Oth-
erwise the system stack is already in use and is not therefore reset.
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Table 1: Important Task Control Block structure fields

void * | PRIORITY_POINTER | Link to next highest priority task
int PID Unique thread handle
char PRIORITY Priority level
char STATUS Current status of the task.
Possible values are:
READY
WAITING
SLEEPING
SUSPENDED
NO_TASK
void* | CODE_ENTRY Initial entry point of task
void* | CODE_START The start of the code in memory.
This is written by
the memory manager after loading
void* | STACK SEGMENT The start of the stack
reserved for the thread
void* | STACK_POINTER Used to save the current context
of a task during a system call
or hardware interrupt
int STACK.LEN The size of the stack
allocated to the thread
char PAGE The page of memory allocated
to the task
int PARENT The handle of the parent
thread
char EXIT STATUS Termination status
of the thread
char EXIT_CODE Return code
of the thread
void* | EXITFUNC Pointer to an optional
exit function
void* | EXITFARG Pointer to an opticnal
parameter to be passed to the
exit function
void* | MAILBOX Pointer to the task mailbox
void* | SEMAPHORE LIST A link to the next task
waiting on a semaphore
int TIMER_-COUNT Used to indicate how many clock
ticks a sleeping task has to wait
before being woken
void* | TIMER.LIST A pointer to the list of
threads waiting on the timer
void* | ARGPTR A pointer to the optional argument
list passed to the thread
char ERROR_STATUS The status of the last
error encountered by the thread
char ATTRIBUTE The thread attribute bit fields
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Figure 12: The steps involved in a context switch. Task #3 was running when
an event occurred that made task #2 runnable. Task # 3 is thus preempted
and taskptr is changed to point at task #2. The STACK_POINTER field
of the TCB belonging the task #2 points at the set of registers pushed onto
the stack when task #2 was last interrupted or preempted. These registers
are pulled from the stack individually ending with the Programme Counter.

When this register is finally pulled, the context switch is complete and task
# 2 resumes running. '
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(iv) The function call number is examined and a jump is made to the par-
ticular call requested

(v) Interrupts are switched back on again. In general, interrupts are ofl
only during sections where interruption would cause problems and
switched back on again as soon as possible. Application programmes
should not change the interrupt status as this could interfere with the
functioning of the kernel.

When a task is first created, it is given a new TCB and a unique integer
handle, stored in the PID field of the TCB. The area reserved for the task’s
stack is placed into the STACK POINTER field and the various register
values are initialised on the stack. The value of the CODE_ENTRY field is
placed on the stack so that it will be pulled off into the programme counter
during a context switch. In order to start multitasking, the kernel will simply
find the highest priority task in the linked list and perform a context switch
to that task.

3.2 Hardware interrupt handling and device drivers

In contrast to the handling of system calls via software interrupts which
occur in an orderly and predictable manner, hardware interrupts by their
very nature are asynchronous and can occur at any time. On the 6809 and
many other processors, a hardware interrupt is handled by reading a location
specially reserved for the interrupt and jumping to the address found in that
location. The actual mechanisms may vary from processor to processor, but
in general the actions are similar. On the 6809 board, the interrupt vectors
are found in the EPROM at the addresses between 0xFFFO to 0xFFFF. This
means that the interrupt vectors themselves can not be changed and must
always point to the same handler. To circumvent this problem, the monitor
maintains a second set of interrupt vectors in RAM which can be altered
at will and, during installation, the kernel writes the value of its own set of
interrupt handlers to these vectors. The interrupt sequence then becomes:

(i) The processor stacks the register set in the same order as for a software
interrupt;

(ii) A jump is made to the location found in the IRQ vector at address

xFFFS;

(iii) A second indirect jump is made to the location in the monitor vector
table;
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Table 2: Device table structure fields

void* | INTERRUPT_SERVICE | Address of the interrupt
handler for the device

void* | DEVICE_DRIVER Address of the device driver
void* | HARDWARE Address of the hardware
void* | DATA_AREA Address of an area reserved

for use by the device driver in
which it can store information
it needs

char | INSTALLED A flag to indicate whether or
not the particular device is
installed. 0 indicates it is not

(iii) The kernel interrupt handler processes the interrupt.

This sequence adds about 9 cycles to the time required to service the in-
terrupt and may be undesirable in a very time critical application. However,
when demonstrating the principles of real time techniques, the versatility
gained by being able to replace the interrupt handler has a number of ad-
vantages.

The RInOS kernel uses a system of device drivers to form an interface
between applications programmes and the system hardware. An application
programme should never manipulate the hardware directly in a multitasking
environment as this could interfere with the operation of another task which
also requires the use of the hardware. The kernel maintains a list of the six
devices available on the board, namely: ACIA1, ACIA2, PIA, ADC, DAC
and TIMER3. The system clock is treated separately. Each entry in the
device table contains the structure shown in Table 2 on page 243.

The table is completed by the kernel during system initialisation with
values for the default device drivers. TIMERS3 at present has no default
driver, therefore one must be supplied if this device is to be used by an
application programme. Since the table is in RAM, it is possible to replace an
entry with the parameters of a new driver. The system call OSInstallDriver
should be used for this purpose.

Note that the particular structure of the device table allows ACIA1
and ACIA2 to share the same device driver software but to have different
DATA_AREA and HARDWARE fields.
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During a hardware interrupt, the device table is examined to find the
device causing the interrupt. Each device capable of raising an interrupt has
a status register that indicates whether or not it requires service. If a device
is found to require service the service routine at the address found in the
INTERRUPT_SERVICE field is called. Otherwise the next device in the list
is examined. If no other devices are found to have issued an interrupt, the
system clock on PTM channel 2 is examined. and appropriate action taken.
If no device is found to have requested service, a serious system fault could
occur if the spurious interrupt does not clear itself, as on return to the point
of interruption, an uncleared interrupt will immediately reassert itself and
cause an loop of interrupts that will effectively hang the system.

3.3 Memory management

Memory management under RInOS distinguishes between two types of avail-
able memory. The first 8k of memory starting at 0x0000 is available to both
processes and system alike. The paged memory is only available, however, to
processes on the same page; processes on separate pages cannot share data
in this area but must use the commmon area starting at 0x0000. Separate
memory allocation and deallocation system calls exist, therefore, for these
two distinct regions of memory. In each case, however, RInOs uses similar
constructs to handle their management. The first 256 bytes of each area (at
0x0000-0x00FF and at 0x2000-0x20FF on each page) contain a page table
for the relevant block of memory. Memory is allocated in blocks of 32 bytes
each for the common memory and in blocks of 128 bytes each for paged
memory. After system initialisation, each unused block is marked by OxFF
and each used block contains the pid number of the task owning it or zero
if the system owns it. If a block of memory is requested, the relevant table
is scanned to find a vacant area of sufficient size. The first such area found
is marked as belonging to the requesting task and a pointer to the start of
the area returned to the caller. If paged memory is requested and no space
can be found on the first page, successive pages are searched until a block
is found. No hardware protection is provided to prevent one process from
using the memory of another: it is expected that such antagonistic actions

can be guarded against by the application programme designer.

3.4 Semaphores

Perhaps the single most important programming construct of real time pro-
gramming is the semaphore. A semaphore is pasically a lock that permits
a given number of users to access a system resource of some description.
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Table 3: Semaphore structure fields

char | SEMA_TYPE The type of the semaphore
0 = Mutex
1 = Counting
4 = Event

char | SEMA_VALUE The value of the semaphore
void * | SEMA _POINTER | A pointer to the first task
in a linked list of tasks
waiting on the semaphore

Wkhen a task claims the semaphore by performing a DOWN operation, it ef-
fectively locks out other users from the resource until the task again releases
the semaphore. Alternatively, a semaphore can be used to signal that an
event which one or more tasks have been waiting for has occurred. RInQS
uses three types of semaphore: the binary semaphore or mutex; the counting
semaphore; and the event semaphore.

The structure of the semaphore is given in Table 3 on page 245,

A mutex can have but two values: 0 or 1. A task can claim the mutex
if its value is 1, which will immediately cause the value to change to 0.
Any other task trying to claim the mutex will be blocked at this stage. On
receiving such a request, the kernel rather than decrementing the value of
the semaphore in the SEMA_VALUE field, links the task into a list of tasks
already waiting on the semaphore. The first task in the list is pointed to
by the field SEMA_POINTER. If this field is null, then no tasks are waiting
on the semaphore yet. A mutex places the task in the list according to the
priority of the task and sets the SEMAPHORE_LIST field of the TCB to
point at the next task in the list. When an UP operation is performed on
the mutex, it first attempts to wake the highest priority task i.e. the first task
in the linked list, and to remove the task from the list. If this fails because
no task is waiting, it increments the semaphore value to 1 (see Figure 13 on
page 246).

Counting semaphores are implemented in a similar manner, but can take
any positive value up to 255. They are typically used in situations where
there is a limited number of resources such as slots in a buffer which can
be allocated to users. In this case they would be initialised to the number
of usable resources. A DOWN operation would decrement the semaphore
value until 0 is reached at which stage the task issuing the DOWN would be
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attached to the linked list. A difference between the implementation of mutex
and counting semaphores is that whereas the mutex links in order of priority
so that the highest priority task is woken first, the counting semaphore links
in the strict order of arrival.

The third type of semaphores are used to synchronise events. The sema-
phore is always initialised to 0 and any task issuing a DOWN on it automat-
ically is put into the linked list to sleep. When the event that the tasks have
been waiting for arrives (by performing the UP operation on the semaphore)
ALL tasks waiting on the semaphore are woken. This does not mean that
all tasks run at the same time, but that all are put into a state where they
can run when given the opportunity.

RInOS offers a number of functions to create, free, perform UP and per-
form DOWN on the three types of semaphore. Semaphores are implemented
in two different ways. During kernel initialisation, 128 semaphores are made
ready for system usage in shared memory and are thus available globally,
irrespective of the page. Alternatively, since a semaphore is only a suitable
initialised structure in memory, any such memory block can be used as a
semaphore. User semaphores are generally created in paged memory and
are thus local to a single page, this makes them suitable for a set of threads
created on a single page but not for inter-process (ie between pages) usage.

3.5 Interprocess communication

When loaded, each process has absolutely no information concerning the
details such as pid, semaphore numbers ete. of any other thread. A thread
can examine its own details by issuing the OSTaskInfo system call and
getting a pointer to its own TCB, but has no access to information belonging
to any other thread. To circumvent this problem, a thread with priority lower
than any other except the null task can, as one of its first actions, reserve
a block of shared memory and place relevant information in this mernory.
The format of this information and its meaning must be agreed between the
various processes but otherwise is arbitrary. Care must be taken with this
and any other shared resource to ensure that access is regulated by guarding
with a mutex or counting semaphore. RInOS implements pipes, signals and
message passing as basic interprocess communication functions.

Messages are sent between threads using the OSSend and OSReceive
pair of system calls. These functions send messages to and examine the
contents of a task’s mailbox. A mailbox is basically a linked list attached
to the MAILBOX field of the task’s TCB. A task sending a message sends
a pointer to a block that can be used as memory shared between both the
sender and the receiver. The receiver can examine its mailbox at any time
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and act on the contents of the message. Alternatively, if a task chooses
not to look at its mailbox, the messages will go unprocessed. An optional
semaphore can be set using the OSReply system call that puts the sender to
sleep until a reply is received. This should obviously be used with a certain
amount of caution.

Signals under RInOS do not invoke a signal handler and are similar to
messages except that messages are sent to individual threads and signals to
any thread that wishes to receive notification of an event. A thread wishing to
receive a particular numbered signal would issue the OSWaitSignal system
call specifying the desired signal number as an argument. The thread will
then block until the desired signal is issued. Two types of signal are provided:
The first type is persistent in that after being issued, it is always in effect
until cancelled. The second type signals only those threads waiting for the
signal at the time of issue. A thread starting a wait after the signal is issued
will miss it unless the signal is resent. The user must decide which signal
type is most appropriate for the application being designed.

A pipe is basically a queue or fifo for holding data with suitable protection
in the form of counting semaphores and mutexes. Under RInOS, functions
exist for creating, opening, writing to, reading from, and closing a pipe.
When being opened, the user specifies the width of data (in bytes) to be sent
down the pipe, ie 1 for char, 2 for int etc. A pipe will block if it is full when
writing or empty when reading.

3.6 The system clock

When the PTM is jumpered to the IRQ line, the system clock provides a
periodic interrupt every 10 ms. Tasks wishing to sleep for an integral number
of clock ticks can use the OSSleep system call to perform this operation. On
receipt on this call, RInOS attaches the TCB of the calling task to a linked
list of tasks waiting on the timer starting with the system variable clktsk
and continuing with the SEMA_POINTER field of the TCB. The number of
clock periods to sleep is entered in the TIMER_COUNT field of the TCB.
Finally the calling task is put to sleep to await expiry of its timer. At each
clock interrupt, all tasks in the linked list have their TIMER_COUNT fields
decremented and any reaching zero are woken and removed from the list.
A call to OSSleep with an argument of zero results in the task not being
placed in the linked list but nonetheless put to sleep. This means that the
task will never wake.
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3.7 The loader

The RInOS loader resides in the monitor and was designed to accept posi-
tion independent code that could be loaded at any suitable address found
vacant by the memory manager. Under this scheme, the code is compiled
or assembled using an origin of zero (the default in many assemblers) to a
Motorola S19 format file and sent to the board via a terminal emulator over
a serial line to ACIAL. The size including all code, data and stack require-
ments is specified on the command line together with an optional priority
and argument list. The memory manager reserves the required memory at a
suitable location and loads the file into this area. It then calls OSCreate to
create a new TCB for the process, sets the STACK_PQINTER field in the
TCB to 12 bytes before the end of the reserved area and fills in the remaining
12 bytes with the default values of the registers in readiness for running the
process when the kernel starts multitasking. The final location on the stack,
from where the programme counter will be pulled is loaded with the value in
the CODE_ENTRY field of the TCB which in turn is obtained from the S9
record of the downloaded file.To initiate a download, the following command
must be sent to the board (via a terminal emulator).

1 <codesize> [argument list]+

followed by a carriage return.
A default stack of 0x100 bytes is reserved for the thread, but this can
(and should for C programmes) be changed using the ss command:

88 <stacksize>

4 Compilation tools

4.1 Introduction

A complete set of compilation and debugging tools have been provided mainly
through the efforts of Rinus Verkerk. The GNU C compiler was adapted to
produce position independent M6809 assembler code and a suitable assembler
and linker found. The combination produces relocatable code in S19 format
and links together with the standard C libraries, a startup module ert0, that
performs initialisation by pointing to command line arguments etc. A brief
introduction to their usage is presented here.
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4.2 The cross compilation and loading chain
4.2.1 Downloading to the ICTP09 board

Code to be downloaded to the ICTP09 board is developed using any text
editor and saved to disk. Since GCC can take a very large number of argu-
ments in order to compile even the simplest of programmes, a steering script
has been provided that performs a great deal of the work for you. For a full
description of the compiler, assembler and linker options, please refer to the
manual, " Software for the 6809 Microprocessor board”. The seript is invoked
by:

cc09 -treal [-Walll [-v] prog.c

Here, the terms in square brackets are optional but recommended. The
~treal flag is essential for code to be downloaded to the board, but as we
shall see later, must be changed to —tdb09 when code for the db09 simula-
tor/debugger is intended to be produced. Other options can be include if
desired. Following the compilation stage, the script will assemble the com-
piler output and finally link in the various libraries and startup code. Any
errors in the compilation will be reported to the screen, and the user should
scrutinise the output to check that compilation completed without mishap.
The code must now be downloaded to the board using a terminal emulator.
Under Linux, the recommended emulator is Seyon which should be invoked
as follows:

seyon -modems /dev/modem -- -sb -sl 500 &

As an alternative to this long command, if installed, the seyon icon can
be clicked. In either case, a board should be connected to a serial port and
powered on. When Seyon starts, the reset button on the board should be
pressed. This should casuse the RInOS propmt to be displayed. The actual
prompt varies with builds, but is currently

RIn0S version 0.9.1

Several methods exist to cause the downloading to start. The easiest of these
is to click the Transfer button on the Seyon Command Center window that
should have been displayed when Seyon was initiated. When the name of the
file to be downloaded is supplied, Seyon will issue to the board the sequence
of commands necessary to perform the downloading and notify the user when
the process is complete. Alternatively, the Misc button can be clicked on
the Seyon Command Center followed by Divert and the name of the file to
be downloaded. Prior to this, the command
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1 size

must be written to the ICTP09 board, where size is the total size of the
programme, its data and any stack.
In either case, when the prompt

Task # 02 loaded at address 00:2200+

is received (assuming this to be the first file downloaded), the file is ready to
be started. This is done by issuing the command:

If debugging is to be done on the board, breakpoints must be set prior to
starting with the x command as once started, the only way to restart without
breakpoints is by reloading the programme.

4.2.2 Debugging on the db09 simulator

It is not too easy to debug satisfactorily on the real hardware, for several rea-
sons. Firstly, a number of inconvenient and annoying bugs in the monitor,
make life more difficult than need be. For example, once a breakpoint has
been set, it is necessary to remove it prior to restarting. The timer jumper
must also be removed if tracing is to be performed. Secondly, breakpoints
cannot be set in the kernel itself or in code in any part of the eprom. This
effectively restricts debugging to client programmes, which can be inconve-
nient. On the other hand, there is no substitute for the real hardware when
debugging device drivers or any code using the on board hardware.

As an alternative to the hardware debugger, debugging using the db09
simulator can remove many of the aforementioned problems with the hard-
ware. Code destined for use with db09 must be compiled with the -tdb09
cc09 option. The commands used by db09 are different to those employed by
the real hardware and the user is recommended to refer to the complete list
in the ICTP09/RInOs user manual. An additional feature recently imple-
mented in db09 is the ability to debug at source code level. This makes the
debugging process considerably easier than at the assembler level. Details of
this feature will be provided as an addendum to the user manual.
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4.3 GUM

As a final point in this section, note is made of attempts to bring all the loose
strands of the previous sections together in a unified debugging environment
tentatively known as GUM. Under GUM, the user sees only db09: all com-
munication, breakpoints, memory dumps etc are handled by db09 over the
serial link. Thus the user has to handle but a single interface and a single set
of commands. Again as this is still under development (as of mid July 1999)
the user is requested to refer for further details in a separate addendum.

5 Libraries available under RInOS

Libraries are available for provision of a number of functions under RInOS.
First, support for the C language is made available via the libc.a library.
This library contains the standard functions such as printf, putchar, malloc
etc demanded by the ANSI C standard. The library is automatically linked
in as part of the compilation chain and the functions can be referenced by
use of the standard headers <stdio.h>, <stdlib.h>, <string.h>, etc.

The second group of library routines generally consists of wrapper func-
tions for RInOS system calls and allow the user basic level access to the
kernel and device driver services. These routines are found in libcreal.a and
are automatically linked in as required. The routines are accessed by inclu-
sion of the <syscalls.h> header file which also includes all basic information
on structures and types defined and used by functions making system calls.
This header is also automatically called by the standard header files (stdio.h)
etc and only if none of these headers are included is it necessary explicitly
to declare <syscalls.h> in a file. A second library, libIOreal.a performs a
similar function by bridging the low level I/O services of the kernel to C level
functions. These functions are in turn used by the standard I /O functions of
the C library. If low level output is required, the header file <ICTPI0.h>
should be included.

The third group of library functions are used by the compiler during
code generation and are libgcc.a and libmath09.a. libgcc.a is used by the
compiler to perform integer arithmetic operations and to convert between the
various integer types. libmathQ9 performs a similar function with floating
point functions. Neither library should be called explicitly in a user defined
function.

Finally, an implementation of the POSIX 1003.1c (pthreads) library is
made available to simplify the mechanics of preparing multi-threaded pro-
grammes. The implementation is reasonably complete within the confines of
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the 8 bit microprocessor platform and its use is encouraged as the functions
for thread creation and mutex usage in particular offer greatly simplified
functionality over the native RInOS functions. As extensions to this library,
the following functions allow simple manipulation of (counting) semaphores
and events

int event.init(event.t *event, const eventattr.t *attr) ;
int event.destroy(event.t *event);
int event.signal(event.t *event);
int event.wait(event.t *event);
int semaphore.down(semaphore.t *sema);
int semaphore.init(semaphore.t *sema,
const semaphoreattr.t *attr);
int semaphore.up(semaphore.t *sema);
int semaphore.destroy(semaphore *sema);
int semaphore.init(semaphore *sema,
const semaphoreattr.t *attr);
int semaphore.destroy(semaphore.t *sema);

All the definitions and types used in these function definitions can be
found in the header file <pthread.h> which should be included when any
reference is made to any function member of the library.

6 Programming examples

6.1 Introduction

Although programming in C under RInOS is quite straightforward, there are
several points that should be noted. Code is presented that illustrate some
of these points and demonstrate the use of several of the available libraries.

6.2 Creating threads and mutexes

This example uses the pthreads library to create a child thread and a single
mutex. First a thread attribute is created and the desired priority of 20 is
set using a variable of type struct sched param. Before the child is created, a
static mutex is claimed using the down user sem()function. This is actually
a RInOS wrapper function rather than the pthreads equivalent showing that
the two libraries can be mixed at will. The child thread is then created
using the pthread_create() function. Finally the mutex is released and the
parent exits, at which point the child gains the mutex and is able to run.
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Note the use of the static initialiser for the mutex. Static initialisation is
a convenient method for all types of semaphore creation. In this example
the thread owning the mutex will experience a priority boost if its priority
is lower than any thread waiting on the mutex. Please refer to the sycalls.h
and pthread.h header files for further semaphore types.

#include <pthread.h>

/% Child prototype */
void* child.thread(void #*arg); /* Static mutex construction */
struct semaphore mutex = {MUTEX | SMBOOST, 1, 0, O, 0};

int main()

{
pthread.t child ; pthread.attr.t attir;

/* Child will have high priority, default is 10 */
struct sched.param priority = {20};

pthread.attr.init(&attr);
/*initialise thread attribute */
/* Set priority of thread */

pthread_attr_setschedparam(&attr,&priority);

/* Get semaphore before anyone else can */
down_user_sem{&mutex) ;
pthread.create(&child, zattr, child.thread, NULL);

/* Finally release mutex */
up_user_sem(&mutex) ;
return NULL;

}

voidx child.thread(void  *arg)
{
/* Try to get mutex */
down_user_sem(&mutex) ;
return NULL;

1
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6.3 Mutex, semaphore and event handling

The previous example showed how a mutex can be created using a static ini-

tialiser. The base type for all three semaphore types is the semaphore struc-

ture defined in syscalls.h which is redefined in <pthread.h> as pthread_mutez_t
semaphore_t and event_t for mutexes, counting semaphores and events respec-

tively. Under pthreads, a mutex would be defined as:

pthread mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

This would initialise the mutex to a value of 1, and allow priority boost-
ing by default. The priority boosting uses the priority ceiling protocol and
-POSIX_THREAD_.PRIO _PROTECT is defined by the implementation. The

functions

int0 pthread_mutex_lock(pthread_mutex_t *mutex)
int pthread_mutex_unlock(pthread_mutex_t *mutex)

are defined as operations on mutexes under pthreads which perform the
down and up operations respectively.

Events and semaphores do not form part of the standard pthreads imple-
mentation. Extension functions have been added to allow use of the ob jects
in & manner consistent with mutexes. Static initialisation of all semaphore
types is similar and follows the outline of the following fragment in which a
semaphore and several types of event are defined:

#include <pthread.h> /* For function prototypes */

#define INITIAL.VALUE 10
semaphore_t count = {COUNT,INITIAL_VALUE,OQ,0,0}

{EVENT,0}; /* Persistent event */
{REVENT,0}; /* Resetable event */
{SEVENT,0}; /* Single event,

freed after signal */

event_t pevent
event.t revent
event.t sevent

main()

{
.... /* Create a child %/
event_wait(&revent); /* Wait for an event to occur */

}
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void# child(void# artg) {
/* Child thread created by main */

/* Signal any threads waiting for the event */
event_signal(&revent) }

The same fragment using basic RInOS functions would be:

#include <syscalls.h> /* For function prototypes */
#define INITIAL_VALUE 10
semaphore count = {COUNT, INITIAL.VALUE,0,0,0}

{EVENT,0}; /* Persistent event */
{REVENT,0}; /* Resetable event */
{SEVENT,0}; /* Single event, freed after signal*/

]

semaphore pevent
semaphore revent
semaphore sevent

il

main()

{
... /* Create a child */
down_user_sem{&revent); /* Wait for an event to occur */

}

void* child(void* artg)

{
/* Child thread created by main */

/* Signal any threads waiting for the event */
up_user_sem(&revent)

}

Note again the use of an initial value for the counting semaphore. As
an alternative to static initialisation, all semaphore types can be created dy-
namically and initialised separately. Under RInOS however, this is wasteful
of memory and is not recommended.

6.4 Memory allocation under RInOS

As the following examples shows, memory allocation follows standard ANSI
C practise using malloc() and free(). In this example 5 blocks of (paged)
memory are allocated and then freed.
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#include <stdio.h>
#define NBLOCKS &5

void main(void)
{

void* memptr [NBLOCKS];
int index;

for (index = 0; index ! NBLOCKS; index++){
memptr [index] = malloc(256); 1}

for (index = 0; index < NBLOCKS: index++){

free(memptr[index]); }
}

Global or shared memory can similarly be accessed using the pair of non
standard functions:

void* globalalloc(int size)
void globalfree(void *p)

6.5 Accessing system variables

When downloading a programme to RInOS, an optional, run-time argument
list can be specified. The startup module, crt0 makes this list available to
the programme via the standard argument passing mechanism of argc and
argv. As usual, arge is the number of arguments passed to the programme
and argv is an array of strings containing the individual arguments. The
startup file crt0 is also responsible for making available several other global
resources. In earlier versions of RInOS, input and output functions acted on
file descriptors rather than file pointers. In the current release it is expected
to use the file pointers in the following list:

File Filename Description Type

stdin Standard input read only

stdout Standard output write only

stderr  Standard error write only

fpia ‘“lcd’’LCD file read/write

facial ‘‘coml’’ACIAl file read/write

facia2  ‘“‘com2’’ACIA2 file read/write

fadc ‘‘adc’’ADC file read only

fdac ‘‘dac’’DAC file write only
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With the exception of stdin, stdout and stderr, all the preceding files
should be opened prior to use and closed when finished in the standard
manner. Thus the following code fragment will open and later close the the
first serial port for writing:

#include <stdio.h>

FILE* f; /+ File pointer definition */

if ((f = fopen(“coml”,”w”)) 1= NULL) {
fprintf(f,...);
¥

fclose(f);

Finally, crt0 provides access to the pushbutton on the LCD board. During
kernel initialisation, a resetable event semaphore is reserved and initialised.

On each press of the pushbutton, any threads waiting for this event will
be woken. The startup module stores a pointer to the event semaphore in
the global variable pshbttn and all any thread wishing to wait on this event
has to do, is to perform a down using one other of the two functions:

down_user_sem(pshbttn);
event_wait (pshbttn) ;

The second of these is illustrated in the following code fragment:

/% Push button test */
#include <pthread.h>

extern semaphore.t* pshbttn; /* pushbutton semaphore pointer */
void main(void)

{
event_wait (pshbttn); /* wait for pushbutton to be pressed */
. /% Got event, now do something ... */

L

Sixth College on Microprocessor-based Real-time Systems in Physics 258

Abdus Salam ICTP, Trieste, Ttaly. October 9 — November 3, 2000




et i il s oa o ama

Review of College Instrumentation Wetherilt, A.J.

7 Bibliography

1. Software for the 6809 Microprocessor board. €. Verkerk and A
Wetherilt

2. Modern Operating Systems. Andrew Tannenbaum

3. The MCX11 Real Time Executive. Motorola

4. The ASSIST09 Monitor, Motorola

9. The p/COS Real Time Kernel, Jean Lebrosse

6. Specifications for the AA16107-LY, Agena Industries Co.

7. PThreads Programming Nichols, Buttlar & Farrell, O’Reilly.

Sixth College on Microprocessor-based Real-time Systems in Physics 259
Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000




