m | the

e s abdus salam’

ational, scientific
rioton | ‘ mternatlonal centre for theoretncal phys:cs

+ wrnatkoral avomic

enargyagancy

- The Sixth College on eroprocessor—Based
Real—sze Systems in Physics

9 Octaber -3 November 2000

LECTURE NOTES
Volume 1I

MIRAMARE-TRIESTE
October 2000

Edltors
Abhaya S. Induruwa
- Catharinus Verkerk

These are preliminary lecture notes intended only'fd;_distribﬁtion to participants

strada costiera, | | .~ 34014 trieste italy_-.ﬁl. +39040 2240111 fax +39 040 224163 - sci_info@ictp.trieste.it - www.ictp.trieste.it '

g £~

1199 | 2000
Y
¢

0 000 000 055266 O

Acknowledgements

The Sixth College on Microprocessor-based Real-time Systems in Physics
is the result of the dedicated contributions by a large number of people as-
sociated with the planning, organising and running of these Colleges. The
appropriateness of the theme and the timeliness of the topics covered are
evident from the demand for participation and the enthusiasm of the partici-
pants. Laboratory work forms an important and integral part of the College
and having access to a range of purpose built hardware systems provides an
excellent opportunity for the participants to have hands-on experience and
serves to reinforce the theoretical aspects taught in the College.

We sincerely thank Professor Miguel A. Virasoro, Director of the Abdus
Salam International Centre for Theoretical Physics for his interest in the
course and the laboratory work, and for his support. Special thanks are due
to late Professor Ines Wesley-Tanaskovic and Professor Luciano Bertocchi
for their encouragement, support and long standing association with the
College. We are grateful to the United Nations University and to the Abdus
Salam ICTP for their respective financial contributions.

The organisation and smooth running of an activity of this scale requires
support and assistance, both before and during the College. Our thanks go
in particular to Italo Birri and Mohammed Igbal of the Microprocessor Lab-
oratory, Marco Zorzini of the Scientific Computing Section and the College
Secretary Ms Stanka Tanaskovic for their continued assistance to the Col-
lege. We also thank all the staff of the Abdus Salam ICTP who work behind
the scenes to make the running of the College possible.

We wish to acknowledge the contributions of the lecturers and tutors who
in addition to preparing and making presentations, contributed by running
the laboratory and giving useful and friendly assistance to the participants.
Our sincere thanks go to Imtiaz Ahmed, Chu Suan Ang, Paul Bartholdi,
Razaq Jjaduola, Carlos Kavka, Anton Lavrentev, Ulrich Raich, Pablo San-
tamarina, Olexiy Tykhomyrov and Jim Wetherilt. A number of them made
particularly important contributions in preparing enhanced hardware and
software for this course.

The hard work and dedication of the participants made the interaction
with them an enriching experience for the teaching staff. We are confident
that they will return to their respective home countries and institutions
equipped with new knowledge and experience in the subject matter taught in
the College. We wish them success and full satisfaction in their professional
life.

Abhaya S. Induruwa,
Catharinus Verkerk,
Directors of the College,
Trieste, October 2000.

TABLE OF CONTENTS

Contents

1 Software Design by P. Bartholdi & Denis Mégevand 1
1 Documentation oL 3
1.1 Various Types of Documentation 3

1.2 Internal Documentation to the Code 4

1.3 Maintenance Manual — Programme Logic 5

1.4 User's Guide. 5

1.5 Reference Manual 6

1.6 Reference Card 6

1.7 Administrator’s Guideo 7

1.8 Teaching Manual, Primer. 7

1.9 General Index 7

1.10 Reference Page Contents 8

1.11 Literate Programming 8

2 Quality Assurance 11
2.1 Standards, Practices and Conventions 11

2.2 Software Quality Factors 12

2.3 Review and Audits 12

2.4 Testing 13

2.5 Defensive Programming in the Laboratory 14

2.6 Debuggingo 15

2.7 Murphy’s Laws, 16

3 UnixTools e 17
3.1 UNIX as a Programming Language 17

3.2 Pipes and Redirections 18

33 Aliases and functions oo 18

3.4 Searching Tools 19

3.5 Looking for partsofafile 20

3.6 Stream Editor: sed and gawk 20

3.7 Character conversion using tr 22

3.8 Useof the history 22

Sixth College on Microprocessor based Real-Time Systerns in Physics iii

Abdus Salam Trieste, Italy. October 3 — November 2, 2000.

TABLE OF CONTENTS

3.9 Command/file name completion 23

3.10 Executing just What is Necessary, using make 24

3.11 RCS and SCCS: Automatic Revision Control 27

4 Shell programmingo 29
4.1 bash and csh command syntax compared 34

4.2 Use of the history 43

4.3 Command/file name completion 44

5 Very High Level Programming 44
5.1 Public Domain Software 45

5.2 Notes about Relational Data Bases 46

6 Useofmetwork, 48
6.1 File transfer 48

6.2 Working on another computer 51

6.3 Executing a command on a remote host o1

6.4 Remote copying afile. 51

6.5 Displaying on another station 52

6.6 Secure remote commands L. L 52

7 Structured Design Lo L 53
7.1 Introduction Lo 53

7.2 Program Development Phases 53

7.3 Ascending Design and Programming 54

7.4 Descending Design and Programming 54

7.5 Structured Design Principles 55

7.6 Flow Controlling 56

7.7 Implementation Addresses 62

7.8 Weaknesses of the Structured Approach 62

7.9 Practical remarks concerning the exercises 62

8 Datastructures L., 63
8.1 Atrays oL 64

8.2 Linked ists 69

8.3 Stacks 73

8.4 Queues 75

9 Object Oriented Computing 75
9.1 Objectso 76

9.2 Object Oriented Design 77

9.3 Competence Sharing 78

9.4 Object Oriented Programming 79

9.5 OOP Languages v v v, 83

10 Real-Time Systems 84
10.1 Concurrent and Real-Time Concepts 84

10.2 Embedded and Distributed Real-Time Systems 86

Sixth College on Microprocessor based Real-Time Systems in Physics v

Abdus Salam Trieste, Italy. October 9 — November 2, 2000.

TABLE OF CONTENTS

10.3 Implementation Issues 87

10.4 Time Handling 88

10.5 Real-Time Systems Design 93

10.6 Structured design of Real-Time Systems 102

10.7 Example of a concurrent problem 105

11 Use of man pages, apropos and info 111
11.1 man and apropos oe .o e e 111

11.2 dinfo 112

12 Think 113
13 References and Bibliography, 114
13.1 Structured Programming 115

13.2 Algorithms & Data Structures 115

13.3 Object Orientation 116

13.4 Concurrent and Real-Time Programming 116

13.5 Languageso 117

136 UnmxTools 117

13.7 RELATIONAL DATABASE 118

2 X Window Programming by Ulrich Raich 119
1 Introduction to X-Windows 121
1.1 Client-Server Model 121

1.2 Display Management 122

1.3 Windows Hierarchies 124

1.4 Drawing, the Graphics Context 130

1.5 Bitmaps and Pixmaps 135

1.6 Drawing Primitives 138

1.7 Colour Model 142

1.8 Event Handling 145

2 The Motif Widgets 155
2.1 The Widget Class Hierarchy 168

2.2 The compound string (XmString) 171

2.3 Pixmaps 172

2.4 The Core Widget 174

2.5 The XmMainWindow, 174

2.6 The XmBulletinBoard 175

2.7 The XmForm 175

2.8 The XmScale 176

2.9 The XmLabel 177

2.10 The XmArrowButton 177

2.11 Pulldown Menus 178

2.12 DialogBoxeso 180

Sixth College on Microprocessor based Real-Time Systems in Physics v

Abdus Salam Trieste, [taly. October 9 — November 2, 2000.

TABLE OF CONTENTS

2.13 Connections of widgets to XLib 181
2.14 Widget Resources 181
3 Using an Interactive GUI Builder 184
3 Collected Adventures in Linux Driver Writing
by Ulrich Raich 189
1 Introduction 191
2 Generalities L 192
3 Testing the Hardware 193
4 Accessing adevicedrivero 199
5 Representation of the device driver 203
6 Implementing the Device Driver, first steps 204
7 The Driver Routines 210
8 Appendix A: The ICTP device driver user’'s manual 214
9 Appendix B: The full Driver Code 217
4 Towards Real Time Data Communications
by Abhaya S Induruwa 233
1 Introduction Lo oL 235
2 Network Classification 235
2.1 Geographical Coverage 236
2.2 Network Topology 236
3 Network Architecture L. 238
3.1 What is a Network Protocol? 238
3.2 Transmission Mechanism 241
3.3 Physical Media. 243
4 Internetworking o oL 243
4.1 Repeaters L. 244
4.2 Bridges and Switcheso 245
4.3 Routers 245
4.4 Gateways e e 246
4.5 Multiport-Multiprotocol Devices 246
5 A word about the Internet 246
6 Internet Protocol Architecture 249
6.1 IP Addressing 249
6.2 The Internet Protocol 250
6.3 Internetworking with IP 252
6.4 IP Datagram Format 252
6.5 Brief Description of TCPand UDP 252
6.6 IP Multicasting 253
6.7 Resource Reservation Protocol (RSVP) 255
Sixth College on Microprocessor based Real-Time Systems in Physics vi

Abdus Salam Trieste, [taly. October 9 — November 2, 2000.

TABLE OF CONTENTS

7 IPv6 — The New Generation Internet Protocol 256
7.1 The Designof IPv6 256
7.2 IPv6 Header Format 257
7.3 Simplifications. 257
7.4 New Fields, 259
7.5 Special Services 259
7.6 IPv6 Address Space 259
7.7 Making IPv6 Compliant 260
8 Data Communication in Real Time 262
8.1 RTP Data Transfer Protocol 262
8.2 Real Time Data Transfer using ATM 267
8.3 IP/TV - A Real life Example 272
8.4 Delivering Real Time Data to the Desk Top 274
8.5 ADSL - delivering RT multimedia to the home and
small business 280
9 WAP - Wireless Application Protocol 283
9.1 WAP Specification 284
9.2 Architecture of the WAP Gateway 284
10 SWIMIAary o« o e e e e e e e 285
11 Bibliography oL 286

Sixth College on Microprocessor based Real-Time Systems in Physics
Abdus Salam Trieste, Italy. October 9 — November 2, 2000.

vii

Software Design

Sizth College on Microprocessor-based
Real-time Systems in Physics

Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

Paul Bartholdi and Denis Mégevand
Geneva, Observatory
51, chemin des Maillettes
CH-1290 Sauverny
Switzerland

e-matl: Paul.Bartholdi@obs.unige.ch
Denig.MegevandQobs.unige.ch

URL: http://obswuw.unige.ch/

Abstract

In this chapter, we will look at various topics concerning Software
Design, from program documentation to very specific aspects of real-

time. It contains also an introduction to shell programming and the
use of various Unix tools.

Software Design Bartholdi Paul

1 Documentation

Some program are used once and never used again.
However most programs

¢ will be used many fimes;

o will be changed, upgraded;

e will go to other users;

e will contain undetected errors.

Maintaining, upgrading, using again, debugging, cost more time and money
after a program is “finished” than before. :

Good programming + Good documentation = lower total cost

1.1 Various Types of Documentation

Documentation will serve many goals, and be read by many different users.
It should be

Useful, that is concise and readable;

Consistent, any change should be time stamped;

Maintainable, indexes and cross-references should be produced auto-
matically;

Up-to-date, in parallel with the codes.
Here is a short list of various situations:

1. Source Code Comments

2. Maintenance Manual

3. User’s Guide (Tutorial)

4. Reference Manual

Sixth Coliege on Microprocessor-based Real-time Systems in Physics 3
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design

Bartholdi Paul

5. Reference Card

6. Administrator’s Guide

7. Teaching Notes

8. General Index

Depending on the importance of the system, some of these points may be
ignored, or be part of others. For large project, they should be independent

documents.

1.2 Internal Documentation to the Code

Goal: Document each module at the local level for the programmer. Tt
should be short and informative (not paraphrase), easily readable on a screen.

Header ®

In-line comments .

name + descriptive title

programmer’s name and affiliation

date and version of revisions with changes
short description of what it does and how
input expected, limits

output produced

error conditions, special cases

other modules called

should help to follow execution
break into sub-sections

indent if useful

use meaningful names

do not duplicate code

Sixth College on Microprocessor-based Real-time Systems in Physics 4
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

1.3

Maintenance Manual — Programme Logic

Goal: Present a global view of the product to a programmer, at the func-
tional and structural level.

table of contents

program purpose, what it does and how

names and purpose of principal modules
cross-reference between modules

name and purpose of main variables

flow chart of main activities, dynamical behavior
debugging aids, how to use them

interface for new modules

index

It should complement the internal documentation (not duplicate it)

Look at your program from above, think about it as an outsider.

1.4

User’s Guide

Goal: Should help the user, present him a global overview of the product
and how to use it!

Table of contents

how to use the documentation

how to contact author/maintainer (E-Mail) addresses, phones etc
acknowledgments

program name(s)

what it does (briefly)

explanation of the main notions and concepts used

Sixth College on Microprocessor-based Real-time Systems in Physics 5)
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

e references (how it does it)

e how to start and stop the programs

e input expected, controls available

e unusual conditions, errors, limitations

e sample run with input, output and comments

e index

1.5 Reference Manual

Goal: Present an exhaustive and formal description for the various elements
of the product.

e table of contents
¢ table of function, with a short description

e reference pages: list of all functions in a standard form, with a complete
description similar to the module headers

¢ table of global variables with complete description and cross-indexing
e glossary for all specific words

e table of errors

e table of drivers

® annexes

e index

1.6 Reference Card

Goal: Single sheet with formal references for rapid consultation.

List of all commands, with their syntax, ordered by subject. Should be
produced automatically from the Reference Manual and User’s Guide.

Sixth College on Microprocessor-based Real-time Systems in Physics 6
Abdus Salam ICTP, 'Irieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

1.7 Administrator’s Guide

Goal: Easy installation and maintenance of the product in various environ-
mernts.

e Table of contents

e minimum configuration and necessary associated products
e installation

e documentation production

e updates

e des-installation procedure

o list of supported machines and configurations

o list of attached files

o table of variables

e index

1.8 Teaching Manual, Primer

Goal: Easier understanding and learning of the product.

Step by step introduction of the various concepts and commands of the sys-
tem, with examples, exercises, answers etc

It will depend considerably on the product. It could be part of the User’s
Guide.

As a rule, make suggestions for serial execution, avoid to force the reader on
a given path, let him try whatever he wants, put data files at his disposition.
In my opinion, many Introduction to ... are far too restrictive in this sense.

1.9 General Index

Goal: Find information anywhere in the documentation.

Should be prepared at the same time as the various documents.

Sixth College on Microprocessor-based Real-time Systems in Physics 7
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

1.10 Reference Page Contents

Here is a quite exhaustive list of fields for a reference page:

name
list of commands linkages to other products

short description long description remarks

synopsis (BNF) syntax return value(s)
options global variables context

input parameters output parameters optional parameters
author version date

examples keywords optional keywords
known bugs limitations cross-references
€rrors level of errors bibliography
algorithms precision complexity

input files library files external references
temporary files used files modified files

1.11 Literate Programming

Knuth, while writing his set of books on TEX , that is the TEX text processing
system, in parallel with the design of the product, has build a new concept
for the documentation of codes, where the text around the code is the main
object of attention.

The code, written in the middle of the documentation, can be extracted
automatically and passed untouched to the compiler. It is not intended for

human reading, even less for editing, this has to be done in the documentation
file.

The printed documentation produce code listing that is particularly easy to
read.

cweb is well adapted to C programming.

Here is a small extract from a cweb file:

@ Most \.{CWEB} programs share a common structure.

It’s probably a good idea to state the overall structure
explicitly at the outset, even though the various parts

could all be introduced in unnamed sections of the code
if we wanted to add them piecemeal.

Here, then, is an overview of the file \.{wc.c} that is defined

Sixth College on Microprocessor-based Real-time Systems in Physics 8
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

by this \.{CWEB} program \.{wc.w}:
\index{c!cweb examplel}

@c

@<Header files to include@>@/
@<Global variables@>Q/
@<Functions@>e@/

@<The main program®>

@ We must include the standard I/0 definitions, since we want
to send formatted output to |stdout| and |stderr].

@<Header files...@>=
#include <stdio.h>

@ The |status] variable will tell the operating system if the
run was successful or not, and |prog_namel is used in case
there’s an error message to be printed.

@d OK 0 /* |status| code for successful run */
@d usage_error 1 /* |status| code for improper syntax */
@d cannot_open_file 2 /% |status| code for file access error */

@<Global variables@>=
int status=0K; /* exit status of command, initially |OK| =/
char *prog_name; /* who we are */

From this code, two files can be extracted, a .tex for the printed document,
and a .c file for the compiler.

Here is the corresponding extract in printed form:

Sixth College on Microprocessor-based Real-time Systems in Physics 9
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

2 AN EXAMPLE OF CWEB we o §l

2. Most CWEB programs share a common structure. It’s probably a good idea to state the overall structure
explicitly at the outset, even though the various parts could all be introduced in unnamed sections of the
code if we wanted to add them piecemeal.

Here, then, is an overview of the file wec. ¢ that is defined by this CWEB program we.w:

{Header files to include 3)
(Global variables 4}
{Functions 20}

{ The main program 5)

3. We must include the standard I/O definitions, since we want to send formatted output to sidoui and
stderr.

{ Header files to include 3} =
#include <stdio.h>
‘This code is used in section 2.

4. The status variable will tell the operating system if the run was successful or not, and prog_name is
used in case there's an error message to be printed.

ftdefine OK 0 /* status code for successful run */
#define usage_error 1 [* status code for improper syntax */
#define cannot_open_file 2 /+ status code for file access error */

{ Global variables 4} =
int status = OK; /* exit status of command, initiatly OK =/
char *prog_name; J* who we are +/

See also section 14.

This code is used in section 2.

and the € code:

#define QK O
#define usage_error 1
#define cannot_open_file 2 \

#define READ_ONLY O \
#define buf_size BUFSIZ \
#define print_count(n)printf("%81ld",n) \

2%/
#line 30 "wc.w"

/%3 %/
#line 39 "wc.w"

#include <stdio.h>

/x:3%/
#line 31 "wc.w"

/x4iwf
#line 50 "wc.w"

Sixth College on Microprocessor-based Real-time Systems in Physics 10
Abdus Salam ICTP, Trieste. October 8 — November 3, 2000.

Software Design Bartholdi Paul

int status= DK;
char*prog_name;

[ridxf/x14: %/
#line 150 "wc.w"

long tot_word_count, tot_line_count,tot_char_count;

2 Quality Assurance

The goal of Quality Assurance is to systematize the process of verification
and validation:

e Verification: Are we building the the product right?

o Validation: Are we building the right product?

2.1 Standards, Practices and Conventions

Will depend on the environment (ex. programming language). It should be

e generally agreed on,

o then followed by every one.
In general:

e The code should reflect the problem, not the solution;
e the methods used has to be predictable;
e the style has to be consistent throughout the program;

e special features of the programming language or hardware environment
should be used very carefully, or avoided altogether;

e the program should be written for a reader as much as for a computer.

Sixth College on Microprocessor-based Real-time Systems in Physics 11
Abdus Salam ICTP, Trieste. October § — November 3, 2000.

Software Design Bartholdi Paul

2.2 Software Quality Factors

Correctness does it satisfy its specifications and fulfill the objectives?
Does it do what I want?

Reliability does it perform its intended functions?
Does it do it accurately all the time?

Efficiency Amount of resources required
Will it run on a given hardware as well it can?

Security controlled access to the code and data
Is it secure?

Usability Effort required to learn, operate, upgrade the code
Can I run it in the long term?

Maintainability Effort required to locate and fix errors in the code
Can I fix it?

Flexibility Effort required to modify an operational program
Can I upgrade it?

Testability Effort required to test fully a program
Can I test/trust it?

Portability Effort required to transfer the program to another system
Will I be able to change my OS or hardware?

Re-usability Reuse of parts of a program in another application
Can I reuse some of my work?

Interoperability Effort required to couple one system to another
Can I interface my program to another system?

2.3 Review and Audits

An innocent view on your work can be very useful to

¢ uncover errors in function, logic or implementation;
o verify that it meets the requirements;

e agree with accepted standards;

Sixth College on Microprocessor-based Real-time Systems in Physics
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000,

12

Sofiware Design Bartholdi Paul

e achieve consistency with other works;

e ease managemnent.

A technical review should take place each time a module of a reasonable size
has been completed, or results from some extensive test exist.

The review team should be small: 2-3 persons. E-Mail has the advantage
that everything will be documented.

Imaginary checklist for a review:

1. System engineering: definitions, interfaces, performances, limitations,
consistency, alternative solutions

2. Project planning: budgets, deadlines, schedules
3. Software requirements

4. Software design: modularity, functional dependencies, interfaces, data
structures, algorithms, exception handling, dependencies, documenta-
tion, maintainability

5. Testing: identification of test phases, resources, tools, record keeping,
error handling, performance, tolerance

6. Maintenance: side effects, documentation, change evaluation and ap-
proval ...

2.4 Testing

1. Executing a program with the intent of finding an error

2 Successful test: one that uncovers an as-yet undiscovered error, with
minimum amount of time and effort.

3. Testing cannot prove the absence of defects

2.4.1 Black Box Testing

Using only the specified functions and input/output description, demonstrate
that each function is fully operational in all circumstances, and has no de-
fective side effects.

Some questions:

Sixth College on Microprocessor-based Real-time Systems in Physics 13
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

o Which functions are tested?

Which classes of inputs are used?

Is the system sensitive to input values? to user errors?

What data rates and volumes can be accepted?

How does it affect system operations?

2.4.2 'White Box Testing

Using not only the external specifications, but also the internal working of
the modules, demonstrate that it does work in the expected way, exercising
all internal components.

All procedural details should be closely examined.
Exhaustive testing is generally impossible for large modules.

Some questions:

Do the data structures maintain their integrity during the execution?

Which paths are exercised, which are not?
e How are “special paths” executed?

e How is error handling executed?

How does the system react to stress, deliberate attacks?

2.5 Defensive Programming in the Laboratory

The previous section is mainly valid for large projects, in particular when a
team of many people is involved with external requirements.

Here are a few hints that can be applied during the exercises in the laboratory:

 Try to explain clearly what you are doing to your colleague. It is not
far from a psychiatric experience. You will find your own errors that
way.

e Do not trust anything!

— Print the status for all file operations,

Sixth College on Microprocessor-based Real-time Systems in Physics 14
Abdus Salam ICTP, Trieste. October § — November 3, 2000.

Software Design Bartholdi Paul

— When you open a file, verify that it exists,

— When you read a record, check that you are not at eof,
check that the data are valid
—~ When you write a record, check that you have write perissions,

— When you do some complex calculation, check that the results are
in the right order,

— If some input data must be on a given range, check its bounds,

— If anything may last more than a few seconds, print some flags or
indications,

— When your program has terminated, check the size and contents
of every file involved (it may not be a bad idea to print inside the
program a summary of all written files with their length).

e Keep a backup of all important (a constantly changing concept) files

e Use the facilities of UNIX, like make, grep, tee, diff ...

2.6 Debugging

Almost all programmes contain errors (= bugs in relay). You can help the
detection of them:

e add guards while coding,

e prepare simulated input, first simple (easy to trace by hand), then more
complex {difficult),

o Debug each module alone, then in small integration,

e chose critical points where you know what you should get if previous
step are correct,

¢ advance by small steps,

— from input forward,

— from output backward,
e analyze wrong results to see what/where this value comes from,

try all (very) improbable cases.

Sixth College on Microprocessor-based Real-time Systems in Physics 15
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

Rules :

e if some thing can go wrong, it will !
e if an error can be damaging, it will !

e if it is very improbable, it will still exist !

2.7 Murphy’s Laws

Murphy was an American engineer whose pessimism paid — his famous law,
“If anything can go wrong, it will,” should remain a model of conservative
system design. Many scientists were inspired by him (as seen from the fol-
lowing):

¢ Any given program, when running, is obsolete.

e Any given program costs more and takes longer to develop.

» If any program is useful, it will have to be changed.

e If a program is useless, it will have to be documented.

¢ Any given program will expand to fill all available memory.

e The value of a program is proportional to the weight of its output.

e Program complexity grows until it exceeds the capability of the pro-
grammer who must maintain it.

e If the input editor has been designed to reject all bad input, an inge-
nious idiot will discover a method to get bad data past it.

e Make it possible for programmers to write in English and you will find
the programmers cannot write in English.

 Bolub’s Fourth Law of Computerdom: Project teams detest weekly
progress reporting because it so vividly manifests their lack of progress.

e The Briggs/Chase Law of Program Development: To determine how
long it will take to write and debug a program, take your best estimate,
multiply that by two, add one, and convert to the next higher units.

Sixth College on Microprocessor-based Real-time Systems in Physies 16
Abdus Salam ICTP, Trieste. October § — November 3, 2000.

Software Design Bartholdi Paul

e Computers are unreliable, but humans are even more unreliable.
e Any system which depends on human reliability is unreliable.

e A carelessly planned project takes three times longer to complete than
expected; A carefully planned project takes only twice as long.

e Grosch’s Law: Computing power increases as the square of the cost.

o Putt’s-Brook’s Law: Adding manpower to a late software project only
makes it later.

e Shaw’s Principle: Build a system that even a fool can use, and only a
fool will want to use it.

e Weinberg’s First Law: If builders built buildings the way programmers
wrote programs, then the first woodpecker that came along would de-
stroy civilization.

o Weinberg’s Second Law: A computer can make more mistakes in 2
seconds than 50 mathematicians in 200 years.

o Efforts in improving a program’s “user friendliness” invariably lead to
work in improving user’s “computer literacy”.

'77

o “But I only changed one line and it won’t affect anything

3 Unix Tools

The goal of this section is not to introduce UNIX per se, but to show how
some UNIX tools can help in the production of good software.

3.1 UNIX as a Programming Language

Forty years ago, much programming was done in assembler, if not with wires.
Then higher level languages like Fortran, C, Cobol etc. permitted the de-
velopment of codes more or less independent of the hardware and operating
system, that is much easier to read, that can be developed in reusable mod-
ules. Yet, the basic building blocks are still relatively low level instructions
that are combined into higher and higher modules to form a single large
program, where the modules are ‘hard’ interconnected.

Sixth College on Microprocessor-based Real-time Systems in Physics 17
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

The pipes and redirections, the very large number of simple standard tools
available in UNIX and the facilities to build newer tools in the same spirit,
and then interconnect them into streams and shells, make UNIX an ideal
interactive programming environment.

3.2 Pipes and Redirections

Pipes permit to write small modules dedicated to simple tasks, and to in-
terconnect them through standard input/output. Such modules are much
simpler to develop and test individually, while the pipe checks for the inter-
faces. When fully tested, these modules can be put together in larger ones.
The number of successive pipes is practically unlimited.

1s -1 | less

Redirection is a good way to have all input data (including test ones) in files
that can be text-edited. Output redirection, in particular using tee, builds

sets of files against which future version’s output can be compared (use diff
for that).

prog < test.data > test.results

3.3 Aliases and functions

Every complex command that may be used regularly could be aliased into a
simple mnemonic name :

alias mnemonic=’equivalent string’

The exact form of alias depends on the shell used. Here I have adopted the
bash form.

Many examples of aliases are given below.

Aliasing into usual UNIX command should be carefully avoided if the use of
the original version can be dangerous when the aliased one is expected.

alias rm=’/bin/rm -i’

is a typical example. In another environment, rm will not ask you for confir-
mation when you expected it.

Inversely, tools that require a mode, should specify so: use ”~/bin/rm -f”
and not "rm”.

But:

Sixth College on Microprocessor-based Real-time Systems in Physics 18
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

alias ls=‘/bin/ls -CF’
is a perfectly acceptable one.

Notice that, except in csh and icsh, it is not possible to pass parameters to
an alias. In most cases, but not with csh or tcsh, a function can replace an
alias. In ksh and bash, a function is defined by:

function name() { commands }

Inside the function body (commands), parameters are referred by their po-
sitions in the calling statement, that is $1 for the first parameter, and so on.
See the examples bellow, page 20.

The keyword function itself is optional in bash.

Another method, probably safer than an alias and shell independent, is to
have a reserved ~/bin directory, and a corresponding scripts for each alias:

Put in your .login file a command:
PATH="/bin:$PATH

and then:
echo "/bin/rm -i" > ~/bin/rmi

This will create a file, usually called a script (do not forget to make it ex-
ecutable), instead of the alias command. Typing rmi will execute that
file.

3.4 Searching Tools

grep is a very powerful tool to do all sorts of searches and filters, in particular
as part of a pipe stream. It looks for all occurrences of a pattern inside a
set of files, and print the corresponding lines. It has many options (see the
man pages), among them three avec very useful: -h suppress the prefixing
of filenames on output, —i ignore case distinctions, and -v to select non-
matching lines.

For example, finding all files that use stdio.h:
grep stdic.h *.¢c x.h or * ., [ch]
Printing error messages only, with full output into a file:
test < test.data | tee test.res | egrep -1 error

grep can also be used very effectively to “gearch” through a “data base”.
Suppose that you have a file with names, phone numbers and remarks, more

Sixth College on Microprocessor-based Real-time Systems in Physics 19
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

or less in free form, another with hints on different subjects concerning your
programs etc.

Then you can define the following aliases:

function help(){egrep -ih $1 ~/.help ./.help}

function tel()={egrep -ih \!* ~/.phones /share/phones}
help xxx will print all lines from ~/.help and ./.help that contains the
string “xxx”.
and tel abc will do the same for the phone files. With tel or help you can
look for anything, not necessarily name or first name, but also for partial

phone numbers etc. tel 0039 will list all entries in Italy, while tel rinus
will find our director’s one.

Here is another application, to list only the files that have been modified this
day in the current directory:

alias today ’set TODAY=‘date +"%h %d"‘; ls -al | egrep $TODAY’
A similar command to see all files modified this day, in alphabetical order:

alias Today ’find . -ctime O -print | sort’

3.5 Looking for parts of a file

head and tail can be used to select only a few useful lines:
To see only the first line of a set of subroutines:
head -1 *.c
To see only the largest (or the most recently modified) files:
1s -1 | sort +4n -5 | tail -16
1s ~rtl | tail
Long output could also be piped into more (or less, most).

uniq can be combined efficiently with sort to find “words” that are rarely
used, and so possibly wrong (sort -u would do the same).

3.6 Stream Editor: sed and gawk

sed is a very simple but powerful editor that can be inserted in the mid-
dle of a stream. gawk can be used in the same way for very complex text
manipulation. The simplest using of sed looks like:

Sixth College on Microprocessor-based Real-time Systerns in Physics 20
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000,

Software Design Bartholdi Paul

| sed -e ’s/abc/efgh/g’ |

It will simply replace everywhere the pattern “abc” with “efgh”. The first
character after s will be used as the separator, it is not necessarily a /.

Here is a more elaborated example:

#!/bin/csh

add a new user (board), in group 501

and set the same encrypted passwd as in other machines.
\index{password}

/usr/sbin/adduser -g501 board

set today=‘date +’%Y/mid:AHM’

cd /etc

cp passwd passwd_$today

sed -e 's/board\:\!/board\:7sOkry.rn.dco/’ passwd_$today > passwd

gawk is a very complex program for which the manual is more than 300
pages, but it can also be used very effectively as a single line program. In the
simplest case, gawk is used to reorder the fields or choose among the fields
in every lines. For example:

awk ’{ print $3 $7}° file
will leave only the third and seventh fields.

Here is little more complex example:

#!/bin/tcsh

lock all users with no password

put a | in the second field of the file /etc/passwd
if that field is empty.

cd /etc
set today=‘date +’ %Y/ mid:JHIM"
cp passwd passwd_${today}
/bin/awk ° BEGIN {FS=":"; OFS=":"} \
{ if (NF>=7) { if(§2=="") $2="1";
print $0 } } ° passwd_${today} > passwd

Sixth College on Microprocessor-based Real-time Systems in Physics 21
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000,

Software Design Bartholdi Paul

3.7 Character conversion using tr

tr is intended to do all sorts of character conversion, including special char-
acters, and optionally to replace strings of the same character by a single
one.

Normally, two strings of characters are given as parameters to tr. tr will
replace all occurances of characters in the first string by the corresponding
character in the second string.

If the option -d is given, then the characters from the first string are deleted.

If the option -s is given, strings of the same characters are replaced by a
single one.

Special characters are represented with \ and a character.

\a ctrl G bell

\f ctrl L form feed

\n ctrl J new line

\r ctrl M carriage return
\t ctrl I tab

\v ctrl K vertical tab

\nnn octal value

It is also possible to give a class of characters instead of a string. In this case,
the string should have the form ’[:class:]’ , where class is one of alnum
alpha digit cntrl blank lower upper punct.

Here are a few examples of using tr. The first three are equivalent. The last
two can be very usefull if you have a mix of PC, Mac and Unix machines.

cat myfiile.c | tr ABC...Z abcd...z > ..
cat myfiile.c | tr A-Z a-z > ...
cat myfiile.c | tr ’[:upper:]’ ’[:lower:]’ >

tr ’\r’ ?? < dos_file > unix_file
tr \r’ ’\n’ < mac_file > unix_file
3.8 Use of the history

tcsh keeps a log of the last n commands. n is defined with the command
set history=n in the file .cshrer or .tcshre .

This log can be used in the following ways:

Sixth College on Micropreocessor-based Real-time Systems in Physics 22
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

history prints (on screen) the list of the last n commands executed,
fc repeats the last command,

fcn repeats a given command,

fc-n repeats a given relative command,

fc abc repeats the last command starting with the same letters,

fc -s/old/new/g repeats the last command with editing (substitution [+globall),

Part of the repeated command can be re-used by the following word desig-
nators:

0 word 0 (= command)
n n*! word
- first word

$ last word

m —n words m through n

- words 0 through but last

* words 1 through last

% word matched by the string

The word designators can be modified by appending a modifier to the spec-
ifier: <specifier>:<modifier>

r root of the file name

e extension of the file name

h head of the path (but last comp)

t tail of the path

s/old/new/ substitution

global (comes before s)

print but no execution

quote words

make first lower case letter upper

make first upper letter case letter lower

i = = B = R)

3.9 Command/file name completion

After you have typed a few letters of a command or file name:
< TAB > will complete it if possible and unique,
< ctrl>d will list all possible completions.

3.9.1 Finding something in a large directory tree — find

£ind allows to search through any directory tree, looking for matching file
names or files modified before or after a given date for example, and then

Sixth College on Microprocessor-based Real-time Systems in Physics 23
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Barthoidi Paul

execute any sort of command, like printing file name with full path, deleting,
executing a grep on them etc.

find has many options, but we will see only four. Refer to the man pages
for all other ones.

find . -name < file_name, possibly with wild card> -print
find . -ctime < n> -exec < command>

In the command, use {} to replace the file name, ending the command with
\;

The first parameter (“.”) is the starting point, root of the directory we are
searching.

The second is the selection criteria, according to file names or times.
Then comes the execution for all files that match the selection criteria.

In facts, many selection criteria and many executions can be used simulta-
neously. Selection criteria can possibly be joined by or or and and not.

find without any execution part simply produces a list of the selected files
on the standard output. This can be used with cpio to copy directories
recursively.

Examples:

1. Remove all core files, printing their full path:

find . -name core -exec rm -f {} \;

2. List all files created today in any subdirectory:

find . -ctime 0 -print

3. Search for use of stdio.h in all ¢ files:

find . -name *\.c -exec grep stdio {} \;

4. copy a directory tree on an other place:

find <source directory> | cpio -dpm <destination directory>

3.10 Executing just What is Necessary, using make

When a project gets larger, it becomes more and more difficult to track which
compilations, link and execution are necessary.

Sixth College on Microprocessor-based Real-time Systems in Physics 24
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

make permits to do such operations automatically, based on declared depen-
dencies and last modification time. The set of commands executed in each
case is completely open and not restricted in any way to compilation or link.
Further, the dependencies can be given explicitly, supplied by compilers like
gcc -M, or even assumed implicitly by make itself in many cases from the file
suffixes.

The use of implicit assumptions make it faster to write but more difficult to
read the dependency file.

The general form of a dependency file (usually named Makefile) is the fol-
lowing;:

target(s): dependencies
<TAB> commands to produce the target(s)

make without a parameter will check the first target for dependencies, and
then recursively through the file. If a target is older than a dependency, then
the corresponding commands are executed.

If make is used with a parameter (a target in the Makefile), then the search
starts from this target.

Here is a small example of a Makefile

all: prog test

prog: main.o sub.o
$(LINK.c) -o $@ main.o sub.o

main.o: incl.h main.c
gcc —c¢ main.c

sub.o: incl.h sub.c
gcc -c sub.c

test: prog test.data
prog < test.data > test.results

touch can be used to change the date of last modification.

make can also be used as a simple user interface for commands, when there
are dependencies among them. Suppose that you have a dBase on which
you can edit, make extraction, preformat, visualize or print. The user could
then say: make visualize or make edit, and all necessary operations will
be done automaticaily. Here is the corresponding makefile:

Sixth College on Microprocessor-based Real-time Systems in Physics 25
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

all : catalogue stickers

catalogue : Catalogue.dvi
dvips -Php0d Catalogue

stickers : Stickers.dvi
dvips -Php0 Stickers

catalogue.win : Catalogue.dvi
xdvi Catalogue &

stickers.win : Stickers.dvi
xdvi Stickers &

Catalogue.ps : Catalogue.dvi
dvips Catalogue -o

Stickers.ps : Stickers.dvi
dvips Stickers -o

Catalogue.dvi : Catalogue.tex catalogue.tex
latex Catalogue

Stickers.dvi : Stickers.tex stickers.tex
latex Stickers

catalogue.tex : m.rdb
report catalogue.report < m.rdb > catalogue.tex

stickers.tex : m.rdb
report stickers.report < m.rdb > stickers.tex

m.rdb : mediatheque.rdb
cp mediatheque.rdb m.rdb

mediatheque.xrdb : mediatheque.db
m.awk mediatheque

clear :
rm catalogue.tex stickers.tex Catalogue.dvi Stickers.dvi \
Catalogue.ps Stickers.ps Catalogue.log Stickers.log \
Catalogue.aux Stickers.aux

If the files reside on more than one machine (using NFS for example), they
should all be synchronized with ntp or similar time protocols. See section
10.4.2.

For very large projects, when many persons are involved in the development,

Sixth College on Microprocessor-based Real-time Systems in Physics 26
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

make is not sufficient. make ignores the notion of version or file locking that
are necessary in these circumstances.

Other tools exists for them, in particular sccs, RCS or CV. diff and patch
can be used to keep track of incremental updates and versions (including the
recovery of previous code).

3.11 RCS and SCCS: Automatic Revision Control

RCS and SCCS designate sets of tools that help maintaining revisions of a
product. Only RCS will be discussed; SCCS offers approximately the same
capabilities while having an older, clumsier syntax. CVS is intended for the
simultaneous update of files by many users.

If a program of a certain importance is being developed, it is essential to keep
all versions of the source code — not just the last, or the ten last. All versions
should be numbered; a log file should account for all the modifications made
between two numbers; version numbers should be allowed to ramify in a tree-
like manner; the binary code produced should be stamped with the version
number; and if many people work on the same project, there should be some
coordinating means between them.

RCS is a set of tools for UNIX that manages automatically these tasks. Text
files are normally hidden by RCS. A developer may check a file out, that is
make it visible in his directory for modification, while locking other devel-
oper’s access to it; edit it, write appropriate logging information; and check
it in back. Initially, a file £.c is placed under RCS’ supervision with

ci f.c

with initial version 1.1. The file is moved to a special directory, usually
~/RCS/. An edit cycle would now be:

co f.c
edit f.c
ci f.¢c

If you have EMACS, you may use its built-in capabilities to simplify this
process: edit the file using its true path (~/RCS/f.c), and type Ctrl-X and
Ctrl-Q to check the file in and out respectively.

It is not necessary to modify your Makefiles, as make automatically checks
out and deletes files it doesn’t find. If you really wanted to, you would just
put:

Sixth College on Microprocessor-based Real-time Systems in Physics 27
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

f.c: /home/mickeymouse/RCS/f.c
<TAB> c¢o $<

RCS can stamp source and object code with special identification strings. To
obtain them, place the marker “$1d$” somewhere inside your source file. co
will automatically replace it with $1d: filename revision_number date time
author state locker$ and the marker “Log” is replaced by the log messages
that are requested during a check-in.

RCS keeps all your previous versions through reverse deltas, i.e. keeps the
last version in full, and reverse diff’s to obtain previous revisions. These are
accessed through

co -r<revision #>
and a sub-branch, new level major release etc. may be defined with
ci -r<mew revision #>

Besides ci and co, RCS provides a few commands:

ident extracts identification markers
rlog extracts log information about an RCS file
rcs changes an RCS file’s attribute

rcsdiff compares revisions

Refer to the manual pages for more detail.

3.11.1 RCS in a multiuser environment

UNIX by itself provides no file lock, neither file access control. But all the
nuts and bolts are present.

For a good multiuser system with personalized file access control,

e create a user rcs, without terminal access (no shell) and locked pass-
word (*LK# in passwd file),

e make RCS directories belonging to rcs,

e for each file, use rcs -a to give access to every authorized users.

Sixth College on Microprocessor-based Real-time Systems in Physics 28
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

3.11.2 Remarks concerning RCS

1. The directory ~/RCS is not made automatically (use mkdir RCS)
9. ¢i will not move ...c,v files automatically to RCS (use mv)

3. co and ci will look automatically in ~/RCS/ if the file is not found in
the current directory, and ~/RCS exists.

4. co and ci will not lock automatically the files, use co -1 instead.

5. co and ci work also on wild card. For example, co -1 *.c will extract
all .c files at once.

6. rcs -1 file will lock the file. This is necessary if you modified a non
locked file.

7. rcs -U / rcs -L file will enable/disable the file, doing strict locking.

4 Shell programming

When a set of commands is repeated more than 2 or 3 times, then it is
usually worth putting them into a file and executing the file, passing possibly
parameters. Such files are called script files in UNIX.

All Unix shells offer lots of usual programming constructions, as variables,
conditionals and loops, input and output, even some rudimentary arithmetic.
Shell programming cannot replace C programming, in particular it is much
slower, but it can be very effective to organize together the repetitive and
possibly conditional execution of programs.

Writing script files can have two other advantages:
— They can be edited until it works, even once . ..

~ They keep track of what was done, either as a log, or as an example for a
similar problem in the future.

To be executable, a file just needs the x bit set. This is done with the
chmod +x script command.

As many different shells can be used in UNIX, it is preferable to add as a
first line a comment telling the system which one is used. So the first line
of a script file should look like #!/bin/sh or whatever other shell is used
(remember they have different syntax, and should not be confused).

Sixth College on Microprocessor-based Real-time Systems in Physics 29
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

4.0.3 Comments

Any character between the # and the end-of-line is treated as a cominent.
The example just above is really a comment, and is understood by the shell
as a possible indication about which shell should be used. In such a case, the
18 called the magic number.

4.0.4 Quotes

‘Two quotes symbols can be used: ’> and .
Inside * ’, no special character is interpreted.
Inside * ", then §, ¢, !, and \ are the only ones interpreted.

Any special character can be transformed into a normal one with a \ in front.
Try:

Test="NoGood"

echo 1. Test # just ascii string
echo 2. $Test # % in front
echo 3. \$Test #\$ in fromt
echo 4. \\$Test # \\$ in front

4.0.5 Parameter passing

A command can be followed by parameters as “words” separated with spaces
or tabs. The end-of-line, a ;, redirections or pipes end the command.

Inside a script, $n, where n is a digit, will be replaced by the corresponding
parameter. Notice that $0 corresponds to the name of the command itself,

As a very simple example, here is a script that will compile a C program, and
execute it immediately. The name of the program is passed as a parameter.

#!/bin/sh -x
gee 03 -0 $1 $1.c
$1

To compile and execute threads.c, one would type ccc threads .

Sixth College on Microprocessor-based Real-time Systems in Physics 30
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

4.0.6 Variables

Variables can be defined inside a shell. Except if exported, they are not seen
outside the shell. Variable names are made of letters, digits and underscores
only, starting with a letter or an underscore.

They can be defined with =, without any space around the = sign, or read
from the terminal or a file.

Test="0Order==%$1"
read answer

and used, as for parameters, with a $ in front for them to be replaced with
their content.

if ["x$answer” = "xY" 1; then
SetPower $level

fi

select "$Test”

4.0.7 Environment variables PATH , MANPATH and LD _LIBRARY_PATH

When the name of a program (a file name effectively) is given for execution,
the system will look in successive directories, and execute the first one found.

In the same way, man looks in successive directories and prints the first cor-
responding pages found, and the loader looks in the list of directories for
dynamic libraries.

These lists of directories are given in the variables LD.LIBRARY PATH, MANPATH
and PATH.

The directory names are separated with colon (*:”) characters.
To add a new directory, use command (in bash):
PATH=${PATH} : < my_dir >
or |
PATH=< my_dir > : ${PATH}

The first version puts the new directory at the end, the second in front of
the list. Both versions have some advantages.

tcsh keeps a hash table of all executables found in the PATH. This table is
setup at login, but it is not automaticaly updated when PATH changes. The
command rehash can be used to update manually the hash table.

Sixth College on Microprocessor-based Real-time Systems in Physics 31
Abdus Salam ICTP, Trieste. October 8 — November 3, 2000.

Software Design Bartholdi Paul

a “generous” PATH is predefined in most Linux systems

the current directory “.” is usually part of the PATH . It is better to
put it at the end of the list to avoid replacing a system program.

you can put all your executables in a directory called “/bin and add
~/bin to your PATH . (in the file */.1login or "/.profile).

you can do the same for your personal man pages.

to see the full PATH as defined now, use the command:
echo $PATH

to see all environment variables:

env

to find where an executable is:

which my_program

to find where are all copies of a program (in the list defined by PATH):
whereis your_program

You may have to redefine whereis in an alias to search the full PATH :
alias=whereis "whereis -B $PATH -f"

If you add directories in an uncontrolled way, the same directory may

appear in different places ... To avoid this, you can use the PD program
envy :

eval ‘envv add PATH my_dir 1°

The last number, if present, indicates the position of the new directory
in the list. Without a number, the new directory is put at the right
end of the list.

Notice that envv is insensitive to the shell used (same syntax in tesh,
bash and ksh.

4.0.8 Reading data

Variables can be read from the keyboard with the read command as seen
above. Any file can be redirected to the standard input with the command

exec

0<file. Then the read command gets lines form the file into the vari-

ables. The arguments can be individualy recovered with the set command:

Sixth College on Microprocessor-based Real-time Systems in Physics 32
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000,

S - - - . oman . ——

Software Design Bartholdi Paul

exec 0< Classes

read head

set $head

echo The heads are: $1 $2 $3.

4.0.9 Loop — foreach command

In bash, the command for permits to loop over many commands with a
variable taking successive values from a list (See section 4.1 for a csh equiv-
alent).

The syntax is:

for < variable name> in <list of values> ; do)
< commands >
< commands >

done
Here are a few examples using foreach in csh scripts. Try to rewrite them
in ksh ones.

1. Repeat 10 times a benchmark:

for bench in 123456789 10 ; do
echo Benchmark Nb: $bench
benchmark | tee bench.log_$bench
done

2. Doing ftp to a set of machines. We assume that the commands for
ftp have been prepared in a file £tp.cmds:

for statiom in 1 2 3 7 13 19 27 ; do
echo "Connecting to station infolab-$station”
ftp infolab-$station < ftp.cmds

done

Such commands enable us to update a lot of stations in a relatively
easy way.

Sixth College on Microprocessor-based Real-time Systems in Physics 33
Abdus Salam 1CTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

4.0.10 File name modifiers

The variable names can be modified with the following modifiers:

< variable name > :r suppresses all the possible suffixes.

< variable name >:8/< old >/< new >/ substitutes < new > for < old>.
Many more modifiers exist, look in the man pages of csh for a complete list.

Example: Save all executables and recompile:

for file in *.¢ ; do
echo $file
cp $file:r $file:r_org
gee -g -o $file:r $file
done

4.1 bash and csh command syntax compared

Today, many people use tcsh for interactive work. Other prefer bash or
ksh. It has so many goodies. But for shell programming, writing scripts, the
choice is really open between sh and its offspring (ksh, bash. . .) on one side,
and csh on the other. ksh or bash are now the default standard on Linux,
probably the simpler yet most powerful of all. c¢sh on the other end has the
advantage of being a subset of tsch, with which the user is probably more
comfortable. As with many other choices with computers, it has become a
question of religion. Make your mind!

If your problem is more complex, if you need arrays, if you manipulate many
files, then probably neither bash or csh are sufficient.

awk is almost ideal to manipulate text in any form, but it is not really in-
tended for shell programming. It has only few interactions with the system,
with the file system etc.

perl provides almost everything you may ever whish, including, in the script
language, all facilities of awk and sed, both indexed and context addressed
arrays etc. perl 5 is now available with most Linux distributions. As for
tsch, it is not part of the system and has to be installed specifically by the
“system manager”.

"The following pages compare the main commands used in bash and csh. As
you will see, some are missing on one or the other side, others are definitely
simpler on one side, and many are quite similar.

Sixth College on Microprocessor-based Real-time Systems in Physics 34
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design

Bartholdi Paul

ksh csh
Arithmetic
$CC ...) Quar=expr

eXpr erpression

Loops
for id in words ; do
list ;
done

Repeated command

Menu input
select id in words ;
do list ;
done
Case

case word in
pattern) list ;;
pattern } list ;;
*) list ;;
esac

Conditionals
if list ; then
list
elif
list ;
else
list ;
fi
Conditional loops
while list ; do
list ;
done
until list ; do
list ;
done

Function
function id () { list ; }

Signal capture
trap command signal

foreach var (words)

end

repeat count command

switch (siring)
case label :

breaksw
defaunlt:
endsw

if (expression) then
else if (expression) then
else

endif

while (expression)

end

onintr label

Breaking loops
- break
continue
Sixth College on Microprocessor-based Real-time Systems in Physics 35

Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

4.1.1 Signals used with shells

The main signals used in shells are: INT (2), QUIT (3), KILL (9), TERM (15),
STOP (23) and CONT (25). KILL can not be caught or ignored, and will bring
your shell to an end. STOP and CONT allows to stop temporarely a shell (or
any task) and then restart it without loosing anything.

4.1.2 Sample shell scripts

The following pages list some shell scripts that present various aspect of shell
programming. Almost every construction is present, though not necessarely
with every options. Some are just toy scripts (calc), some real programs
used daily for system maintenance (crlicense, pngl and png2). flist has
been used to create this listing.

Here is a table of commands and corresponding scripts where they are used.
The scripts bellow are in alphabetical order. Their names appear in the
listing at the right, after a long dash line separating the various scripts.

arithmetic calc calc2 guessl guess2 minutes

loops convert convert2 flist tolower toupper
select terml term2

case convert minutes term?

if convert ddmf_check filinfo flist grep2
guessl guess2 terml term?2
while calc2 convert guessl guess2 minutes
function convert3
trap calc2 guessl

Tue Oct 3 11:41:33 MEST 2000

-- KillKillMeAfter
#!/bin/bash -f
Kill the KillMeAfter started by pid $1
Also kill the sleep started by KillMeAfter
estype="‘uname -mrs | tr * ? ?_7*"
GAWK=/unige/gnu/${ostype}/bin/gawk
KMApid=‘ps -ef | \
tr -s > 7 |\
egrep KillMeAfter | \
$GAWK -v pid=$1 ’$10 == pid { echo $2 } * ¢
Sixth College on Microprocessor-based Real-time Systems in Physics 36

Abdus Salam ICTP, Trieste. October 9 ~— November 3, 2000.

D iy o il P — . e

Software Design

Bartholdi Paul

sleeppid=‘ps -ef | \
tr -s * ? |\
egrep sleep | \
$GAWK -v pid=$KMApid ’'$3 == pid { echo $2 } > °

echo "$0 : KillMeAfter pid : $KMApid"
echo "$0 : sleep pid : $sleeppid”

if ["X$KMApid" t= "X"] ; then
echo "killing pid : $KMApid and $sleeppid”
kill -9 $KMApid $sleeppid

fi
exit 0
-- KillMeAfter
#!/bin/bash
called by some script, with pid as parameter $1,
expected to kill it after $2 sec
echo $0 : pid=$1
echo $0 go to sleep for $2 sec
sleep $2
echo $0 weak up
if ‘ps -ef -o pid | egrep $1 > /dev/mull ‘ ; then

kill -9 $1
echo pid : $1 should be dead now
else
echo pid : $1 was already killed
fi
exit O
-- cale
#!/bin/bash
Very simple calculator - one expression per command
echo $(($x))
exit 0
---------------------- - - ——— ——— calc2
#!/bin/bash
simple calculator, multiple expressions until ~C
trap ’echo Thank you for your visit ’ EXIT
while read expr’7expression ’; do

echo $(($expr))

done
exit O
------------------------------ -—== - mm e convert
#!/bin/bash
convert tiff files to ps
Sixth College on Microprocessor-based Real-time Systems in Physics 37

Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design

Bartholdi Paul

echo there are $# files to convert :
echo $x*
eche Is this correct 7

done=false
while [[$done == false 1]; do
done=true
{
echo ’Enter y for yes’
echo ’Enter n for no’
¥ >k2
read REPLY?’Answer 7’
case $REPLY in
y) GO=y ;;
n) GO=n ;;
*) echo ’#**** Invalid’
done=falase ;;
esac
done
if [["$G0" = y\"y" 11; then
for filename in "$€"; do
newfile=${filenamel,.tiff}.ps
eval convert $filename $newfile
done

#!/bin/bash
simple program to convert tiff files into ps

for filename in "$@" ; do
psfile=${filenamel,.tiff}.ps
eval convert $filename $psfile

done

exit O

#1/bin/bash
simple program to convert tiff files into ps

function tops {
pstile=${14.tiff} .ps
echo $1 $psfile
convert $1 $psfile
}

for filename in "$@" ; do
tops $filename
done

convert2

convert3

Sixth College on Microprocessor-based Real-time Systems in Physics
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

38

Software Design

Bartholdi Paul

#!/bin/bash
coprocess in ksh

ed - memo |&

echo -p /world/

read -p search

echo "$search"

exit O

#!/bin/bash

coprocess 2 in ksh

search=eval echo /world/ | ed - memo
echo "$search"

exit O

#!'/bin/bash

print informations about a file

if [[! -a $1 1] ; then
echo "file $1i does not exist !"
return 1

fi

if [[-d $1 1] ; then

echo -n "$1 is a directory that you may"

if [[' -x $1]] ; then

echo -n " not "

fi

echo "search."
elif [[-f $1 11 ; then

echo "$1 is a regular file."
else

echo "$1 is a special file."
fi

if [[-0 $1 1] ; then
echo "You own this file."
alse
echo "You do not own this file."
fi
if [[-r $1 1] ; then
echo "You have read permission on this file."

fi

if [[-w $1 1] ; then

filinfo

Sixth College on Microprocessor-based Real-time Systems in Physics
Abdus Salam ICTP, Trieste. October § — November 3, 2000.

39

Software Design

Bartholdi Paul

eche "You have write permission on this file."
fi

if [[-x $1 11 ; then
echo "You have execute permission on this file."
fi

#!/bin/ksh
list files separated with name and date as header
ECHO=/unige/gnu/bin/echo

narg=$#

if test $# -eq O

then
$ECHO "No file requested for listing"
exit

fi

if test $# -eq 2
then

head=$1

shift
fi

$ECHO ‘date
for i in $* ; do
$ECHQ *

$ECHD -~ 7 == === oo

if test $narg -ne -1
then head=$i
fi
$ECHO $head
cat $i
done
$ECHD ’ °

0 L e

#1/bin/ksh
search for twe words in a file
filename=$1

wordl=$2
word2=%3

Sixth College on Microprocessor-based Real-time Systems in Physics
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000,

e w— - L

40

Software Design Bartholdi Paul

if grep -q $wordl $filename && grep -q $word2 $filename

then
echo "’'$wordl’ and ’$word2’ arre both in file: $filename.”
fi
exit O
—— guessi
#!/bin/ksh
simple number guessing program
trap ’echo Thank you for playing !’ EXIT
magicnum=4$ (($RANDOMY10+1))
echo ’'Guess a number between 1 and 10 : °
while read guess’?number> ’; do
sleep 1
if ({ $guess == $magicnum)) ; then
echo ’*Right 11!’
exit
fi
echo ’Wrong !V’
done
exit 0
-- guess2
#!/bin/ksh
an other number guessing program
magicnum=$(($RANDDM%100+1))
echo 'Guess a number between 1 and 100 :’
while read guess’7number > ’; do
if (($guess == $magicnum }); then
echo ’Right !!!’
exit
fi
if (($guess < $magicnum)); then
echo 'Too low !’
else
echo 'Too high !’
fi
done
exit 0
-- minutes
#!/bin/bash
count to 1 minute
Sixth College on Microprocessor-based Real-time Systems in Physics 41

Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design

Bartholdi Paul

i=1
date
while test $i -le 60; do
caze $(($i%10)) in
0) j=$(($i/10))
echo -n "$j" ;;
5) echo -n ’+? ;;
*) echo -n ’.’ ;;
esac
sleep 1
let i=i+i1
done
echo
date

#!/bin/bash
setting terminal using select

PS3='terminal? °
oldterm=$TERM
select term in vt100 vt102 v220 xterm dtterm ; do
if [[~n $term]]; then
TERM=$term
echo TERM was $oldterm, is now $TERM
break
else
echo ’#dk** Invalid '11!°?

T T T e e e e e e e e e e e e e i e o e

#!/bin/bash
set terminal using select and case

PS3=’terminal? °’
oldterm=$TERM
select term in ’DEC vt100’ *DEC vt220’ xterm dtterm; do
case $REPLY in
1) TERM=vt100 ;;
2) TERM=vt220 :;
3) TERM=xterm ;;
4) TERM=dtterm ;;
*) echo ’#xxxx Invalid !’ ;;
esac
if [[-n $term]]; then
echo TERM is now $TERM
break
fi
done

Sixth College on Microprocessor-based Real-time Systems in Physics
Abdus Salam ICTP, Trieste. October 3 — November 3, 2000.

42

Software Design

Bartholdi Paul

#!'/bin/bash
convert file names to lower case

for filename in "$@" ; do
typeset -1 newfile=§filename
eval mv $filename $newfile
done

#!/bin/ksh
convert file names to upper case

for filename in "$@" ; do
typeset -u newfile=$filename
echo $filename $newfile
eval mv $filename $newfile

4,2 Use of the history

tolower

toupper

tcsh keeps a log of the last n commands. n is defined with the command
set history=n in the file .cshrer or .tcshrc.

This log can be used in the following ways:

prints (on screen) the list of the last n commands executed,

history

fc repeats the last command,

fcn repeats a given command,

fc -n repeats a given relative command,
fc abc

fc -s/old/new/g

repeats the last command starting with the same letters,
repeats the last command with editing (substitution [+global]),

Part of the repeated command can be re-used by the following word desig-

nators:
0 word 0 (= command)
n n'? word
) first word
$ last word
m —n words m through n
— words 0 through but last
* words 1 through last
% word matched by the string

The word designators can be modified by appending a modifier to the spec-

ifier: <specifier>: <modifier>

Sixth Coliege on Microprocessor-based Real-time Systems in Physics

43

Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

root of the file name

extension of the file name

head of the path (but last comp)

tail of the path

s/old/new/ substitution

global (comes before s)

print but no execution

quote words

make first lower case letter upper
make first upper letter case letter lower

=+ B =

e L T

4.3 Command/file name completion

After you have typed a few letters of a command or file name:
< TAB > will complete it if possible and unique,
< ctrl>d will list all possible completions.

5 Very High Level Programming

Many tools exist now where the basic data unit is not numbers or words,
but vectors, matrices, records or files, whose internal structure and detailed
manipulation can be ignored by the user.

matlab, Scilab, Yorick, Python or SuperMongo are good examples of very
high level programming environments for graphic, vector and matrix manip-
ulation.

/rdb is a similar environment to manipulate relational tables.

For example, here is a small program in SM, that reads a file, does some
computation, and draws a graph with points of various sizes:

data cluster.dat

read{ size 1 viscosity 2 temperature 5 }
set LogT = lg(temperature)

set size = 0.1 + 2 * viscosity

expand viscosity

Diag size LogT

1

and another that selects some columns and rows from a table, using their

Sixth College on Microprocessor-based Real-time Systems in Physics 44
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

names and a selection criteria, then prepares a file for later processing with

I¥TEX.

column name first_name institute < ictp.rdb | \

row ’ country == "India" || country == "“China" ’ A
jointable -j1 institute - addresses.rdb EA
tabletotex > addresses.tex

The commands column, row, jointable etc. are part of the Perl rdb set of
commands that are also used for the exercises.

5.1 Public Domain Software for High Level Program-
ming

Programs like Mathematica, matlab, ingres etc. are very good indeed, but
also very expensive, even for universities. Most of them cost now more than
even powerful computer stations.

They have an other major drawback: They are produced and maintained
generally in the United-States, and the users never get involved in their
development. In some sense they are passive consumers.

Since the advent of aNU and more recently of LINUX, the users have the
possibility not only to get free software of high quality, but more impor-
tant, in particular for developing countries, to get involved actively in their
development, maintenance etc.

If LINUX, gcc, samba, apache and many other products around GNU are so
powerful and robust, it is mostly thanks to the very large number of users
that participate in their development, find bugs and correct them, exchange
idea to improve them etc. This could be a very cheap way to develop strong
software competences in your country. When the package is installed in your
machine, it requires only access to e-mail to exchange informations. ..and
your manpower and basic knowledges. Big supporting organization are not
necessary.

Here is a small list of some of the most often used ones, with their equivalent
commercial names:

Sixth College on Microprocessor-based Real-time Systems in Physics 45
Abdus Salam ICTP, Trieste. October 8 — November 3, 2000.

Software Design Bartholdi Paul

LiNuUx Commercial Comment

octave matlab Matrix + 2D and 3D graphics, use the same
M-files

scilab idem, strong for simulation

jacal mathematica Symbolic mathematics

maxima maxima idem, GNU version of maxima

R S Statistics, very complete

gnuplot 2D graphics

pgplot idem

Yorick IDL Data analysis and graphics

Python idem

RDB /rdb UNIX relational database

postgres ingres Powerful Relational Database System

msql idem

MySql idem

Thousand of public domain applications are available. To have a wider look
at the projects you may get involved with, consult:

http://rpumfind.net/linux/RPM/
or

http://sal.kachinatech.com/sal2.shtml

5.2 Notes about Relational Data Bases

Data Base systems are not part of this course, but it is difficult to build real
time systems without producing data that must be stored for later analysis.

Environmental parameters, usually noted in log books, should also be put in
files.

Many models have been invented to organize (some very large) sets of data,
the final goal being to be able to extract rapidly part of these data according
to given criteria (see the example in page 45).

The relational model is probably the simplest to understand and use, the
only one where mathematical proofs can be used and for which a standard
interrogation language (SQL) has been defined.

Sixth College on Microprocessor-based Real-time Systems in Physics 46
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

5.2.1 The relational model

The relational model was introduced by E. F. Codd of IBM in 1970. Its main
characteristics are:

e it is mathematically defined
e it is always coherent
e it is fully predictable

e it contains no redundancy

Many commercial or not relational data Bases are now available, for example
DB2, Informix, Ingres, Oracle, Postgres, Sybase, /rdb ...

In a relational RdB the data are organized in sets of rectangular tables:

PIN | name | surname | birth

PIN | Insurance

9318 | Weber | Luc 610711 9318 | Medica

Test | Blood | Sugar PIN | Diag | Interv | Test
210 9318 | ... cen 316
o 9318 ¢- 495

Some columns (in bold) are key columns. Usually, each row has a different
value in them. They do not depend on another one. Non key columns depend
on a key one.

The rule behind the choice of columns and the structure of tables, is that no
information should appear twice or more anywhere.

5.2.2 RdB basic commands

The basic commands are: insert, delete, sort, search, edit, append and join.

The join commands combine two or more tables whose records match on a
given column.

Sixth College on Microprocessor-based Real-time Systems in Physics 47
Abdus Salam ICTP, Trieste. October 9 - November 3, 2000.

Software Design Bartholdi Paul

Example: Join Personal Medical on PIN
Join Medical Lab on Test

SQL, the Standard Query Language, is a standard way to do interrogation
on a RdB. SQL commands can be embedded into C or Fortran programs,
but this is not standardized. See above, page 45 for a small example of a
relational database system entirely written in Perl, and so very transportable.
It is freely available at:

http://obswww.unige.ch/ bartho/RDB.tgz

5.2.3 Real Time RdB

Concept: Associate with critical columns a trigger function(s) that is exe-
cuted whenever an entry is added or changed in it.

The trigger has access to any other data, and can start any operation, in-
cluding modification in the dB that may start another trigger.

Example of applications:
e stock exchange
¢ patient monitoring
e central control for complex instruments

» storage monitoring (At > 1 day)

Real time dBs are good examples of the concept of “Objects = Data +
Functions”.

6 Use of network

The network concepts are part of another chapter. Here are just a few notes
on how to use the network for file transfer and remote connection.

6.1 File transfer

File transfer between two computers can be done with the program ftp (file
transfer protocol)

ftp <remote host name >

Sixth College on Microprocessor-based Real-time Systems in Physics 48
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

On some computers (including infolab-n), ncftp is available with some extra
facilities. It will record all recent hosts you have been connected to and in
which directory you worked. It will reuse this information the next time you
connect to the same host. Hosts can have short nick names.

6.1.1 Host names

The computer you want to connect to can be local, part of your local network,
or nonlocal, part of the rest of the world.

For a local host, the host name is sufficient.

For a non local host, the fully qualified name of the host.domain.country is
necessary.

For example; infolab-27 is locally acceptable, but obsmp2.unige.ch must
be given in full.

Every computer on the Internet has an IP number, made of 4 groups of digits
(1-255). For example, infolab-20 has the number 140.105.28.186 .

Both full name and IP number are unique in the world, and must stay so!
They can usually be used interchangeably.

See the chapter on Network for the new ipv6 (current is ipv4) protocol and
addressing schema.

6.1.2 TUser names

If you have an account on the remote computer, then use your own username
and your own password on that machine to transfer files back and forth
between your local and your remote computer.

If the remote machine is an anonymous server, from which you intend to fetch
or send files, then you must use anonymous as user name, and your email
address, in the form user@host.domain.country as password. Some servers
will accept anything as password, some others will check that it is a valid
address. In any case, politeness dictate that you use your true email address,
or at least your name and host.

6.1.3 Going to the right directory

When you are connected to the remote computer, you can use the usual cd
and 1s or dir command to locate your files.

Sixth College on Microprocessor-baged Real-time Systems in Physics 49
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

Note that on anonymous servers, directories ready to accept files from anony-
mous users are usually not readable! ...but you can still fetch a file from
them if you know its name and place.

6.1.4 Setting the mode of transfer

The files can be transmitted either in ascii, possibly with code conversion if
necessary, or in binary mode. The tenex mode is for binary files with very
long records.

6.1.5 Getting files

get <remote file > <local file name > will fetch the file.
mget < first file> <second file> ...fetch a set of files.

reget <remote file > <local file name > will restart the transfer of the file
after the last previously transferred block (after a problem on the line ...).

6.1.6 Putting files

put <local name > <remote file name > will transfer the file to the remote
host.

mput < first file> <second file> ... will transfer a set of files to the remote
host.

6.1.7 Compression and tar files

Some servers are set to compress files before transferring them. They can
also tar a complete directory and even compress it before sending.

To use these facilities, one must add .gz , .tar or .tar.gz after the file or
directory names.

6.1.8 Decompressing a file or directory

gzip -d <compressed file> will decompress that file.
tar xzvf <compressed tar file > will decompress and detar the full tar file.

gzip -dc < compressed tar file> | tar vxf - will do it if the decompres-
sion is not available within tar.

Sixth College on Microprocessor-based Real-time Systems in Physics 50
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

6.2 Working on another computer

To do so, you MUST have an account on the remote machine. No anonymous
user is possible (On infolab-nn machines, the username public, possibly with
password public can be used in a way similar to anonymous!).

telnet < remote host name > will establish the connection to the remote
host.

rlogin -1 < username> <remote host name> will establish a new session
for you on the remote host.

6.2.1 Password transfer

If you have in your home directory a file called .rhosts with entry lines in
the form:

< hostl > < username >
< host2 > < username >

with your current host name on the left part of this file, then the remote
system will not ask you for your password if you use the rlogin connection.

6.3 Executing a command on a remote host

It is possible to execute a line of commands on a remote station with:
rsh < remote host> "< command line>"

Your Jocal host should be present in the .rhosts file in your remote home
directory.

If more than one command is present on the line, they should be separated
with “;” characters.

For example, to list your files in the directory tbl on the remote host
jnfolab-21, use the command:

rsh infolab-21 "cd tbl; 1s -1"

6.4 Remote copying a file

rcp < local file> < remote host >:< remote file> will copy the local file onto
the remote system. Your local host should be present in the .rhosts file in
your remote home directory.

Sixth College on Microprocessor-based Real-time Systems in Physics 51
Abdus Salam ICTP, Trieste. October 9 ~— November 3, 2000.

Software Design Bartholdi Paul

6.5 Displaying on another station

To have a process running on a station with a X11 display on another, you
must:

On the display station: give the permission to write on its screen with the
command:

xhost < process station name or IP address >

(xhost + will give permission to any computer in the world. This can be
dangerous ...)

On your process station, you may have to redefine the global variable DISPLAY
with the command:

setenv DISPLAY < display address>:0.0
Then on, all your X11 output will go to the screen of the display station.

6.6 Secure remote commands

If you use rsh or rcp over the Internet without a .rlogin file on the remote
station, your password will be transmitted in clear ascii and many spying
programs will be able to catch it. With the very large number of nodes
traversed by your packets, it is impossible to guarantee any confidentiality,
even for sensitive ones.

ssh was developed to replace rsh and rcp while encrypting (and compress-
ing) every packet. X11 packets are also automatically encrypted and com-
pressed. ssh use public key encryption in a very clever way. It has to be
installed by root on the target machine (server), but the client part can re-
side in the normal user files. Except for the initial “¢” or “s” in their names,
the original and securised commands are used in the same way. No extra
password is needed. They may be just faster because of the compression on

slow, non compressed lines.

You can find informations on ssh on the following URL:
http://obswww.unige.ch/isdc/SSH/ssh-1.2.26.tar.gz
http://www-itg.1bl.gov/info/ssh/

The syntax for scp is as follow:

scp [-C -c blowfish] [[username] hostname:] <source> [{username] hostname:)<destination>

Recently, a new version of ssh has been developed, that is free to any one
and do not contains any proprietary or patented code. It is available for

Sixth College on Microprocessor-based Real-time Systems in Physics 52
Abdus Salam ICTP, Trieste. October § — November 3, 2000.

Software Design Bartholdi Paul

Linux and SOLARIS and most other UNIX versions. It should replace very
soon the proprietary ssh as above.

The master address for this OPENSSH is:
http://www.openssh.com/portable.html

The next URL contains information on OPIE, a password system where the
users get a list of passwords that are usable only once, making spying useless.
This effectively replace telnet.

http://obswww.unige.ch/isdc/0TP/opie-2.32.tar.gz

Both Openssh and OPIE are public domain softwares available for linux and
Unix in general.

7 Structured Design

7.1 Introduction

The continued improvement of computer performances have permitted to
develop more and more complex programs, leading to a posteriori misunder-
standing of the code, and to difficulties in the support and modification of
the program.

This has lead Dijkstra in 1965 to the concept of structured programmang,
which can be understood as creating programs recursively consisting of mod-
ules of lower level complexity. The modules should describe a whole, a log-
ical entity, at all levels. The operations involved in each module should
be described in the most general terms available at this level, and hide the
unnecessary details.

7.2 Program Development Phases

Any software project goes through a series of phases, possibly with many
loop-backs to previous steps. This is true for both simple modules and large
projects as a whole.

The main steps are:

user’s requirements , identification of what are the data, what has to be
done, which results are expected, what is the time-scale for the project,
what money, what hardware is available?

Sixth College on Microprocessor-based Real-time Systems in Physics 53
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

system definitions , formalization of the previous informations
system analysis , looking for solutions to the requirements
program design , software architecture for the adopted solution
program coding , implementation of the architecture

testing , verification against definitions and requirements

improving , smoothing the bottlenecks, getting beiter user’s interface

upgrading , to new requirements, new hardware available etc

The analysis phase is very important as it should lead to a good design for
simple programming, maintenance and should enable anyone to further en-
hance the program without having been involved in the original programming
work.

The question is how to decompose the problem in modules ?

There are two main ways in the decomposition process:

7.3 Ascending Design and Programming

Ascending approach is the construction of a complex system by combining
modules from the lowest level operations to the complete system, in increas-
ing order of complexity. This is also called Bottom-Up design.

Pros: The modules can be tested in their real functioning at the time they
are built.

Cons: We can’t know at the module’s programming time if it will best fit the
next level module.
We don’t have a general sight of the problem to be presently solved.

The interfaces are difficult to fix from below.

7.4 Descending Design and Programming

Descending approach is the construction of a complex system by expressing it
in terms of simpler layers, with stepwise refinement. This is also called Top-
Down design. The descending design presents exactly the reverse situation
for the programmer, that is:

Sixth College on Microprocessor-based Real-time Systems in Physics 94
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

Pros: General problem is more correctly decomposed in sub-problems.

Good sight of the problem or sub-problem to be solved at any time of
the design.

Design error can be detected and corrected at programming time quite
easily.

The interfaces between modules are defined from above.

Cons: Testing the already built modules (which are the higher level modules)
need to write drivers submodules simulating the input-output behavior
of the real submodules.

In practice, a mixture of both approaches is often used, by combining a
descending analysis and design with a ascending programming phase. This
mixture can be a good practical way as long as the analysis and design
phase are kept detailed and precise enough to avoid design errors. If one
has to correct the design at the programming time, this one should also be
descending.

7.5 Structured Design Principles
Structured programming enables to:

e give a program a better clarity, so that future enhancements may be
easily done.

e augment the reliability of the code, because modules can be tested as
soon as they are built.

¢ hide unnecessary details.

The principle of structured programming is to give the programmer tools
enabling him to express his problem in structured blocks.

A structured block is a module (at design level), or a piece of code (at
programming level) which stands on its own and has only 1 input and 1
output.

The content of this block may be very simple or very complex, in which case
it should be decomposed itself into other structured blocks.

This can be done with the flow control instructions. With these instructions,
the GOTO instruction is not needed anymore, so that one can avoid the un-
verifiable and multiple paths in a program.

Sixth College on Microprocessor-based Real-time Systems in Physics 0o
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

body

!

Figure 1: Structured block construction

7.6 Flow Controlling

Each language defines it’s own set of flow control instructions, and renames
them differently. In this section, we will describe the main flow control
instructions, which can be separated into three groups:

Conditional instructions

7.6.1 IF...THEN...ELSE...

Only one of two possible blocks is executed (figure 2):

if condition then body_true
else body_false

end
true . false
[condition 1
r - - - - = =N
| |
body_true | body_false |
' may be absent

| F PR — ‘l’ [|

Figure 2: if...then...else construction

Sixth College on Microprocessor-based Real-time Systems in Physics 56

Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

7.6.2 CASE...OF...

Ounly one of many possible blocks is executed (figure 3):

case erpression of
value.1:= body_1
value_2:= body_2

end
expression
value_1 value_2 value_n
body_1 body_2 R body.n

| | |

add velue_other and body_other

Figure 3: case...of construction

Please take notice that ezpression and values are sometimes replaced
by conditions.

Counting loops

7.6.3 FOR...DO...

A given block is executed an exact number of times (figure 4):

for variable:= first_value to last_value do
loop_body
end

Please take notice that loop_body is usually executed at least once.

Sixth College on Microprocessor-based Real-time Systems in Physics Y
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

var = first_value

may have other increment

usually executed at least once body var = var + 1
false true
var < last_value

Figure 4. for...do construction

Sixth College on Microprocessor-based Real-time Systems in Physics 58
Abdus Salam ICTP, Trieste. October & — November 3, 2000,

Software Design Bartholdi Paul

Conditional loops A given block may or may not be executed many times
depending on a condition. The condition may be set inside the block.

7.6.4 WHILE...DO...

while condition do
conditional_body
end

Please take notice that condition is tested before the first execution of
the conditional.body (figure 5).

If the condition is the constant 1, then the loop will go for ever. You
will have to use break to get out of it.

true false

body

body may never be executed

Figure 5: while...do comstruction

7.6.5 REPEAT...UNTIL...

repeat
conditional_body
until condition

Please take notice that condition is tested after the first execution of
the conditional_body (figure 6).

Sixth College on Microprocessor-based Real-time Systems in Physics 59
Abdus Salam ICTP, Trieste. October 9§ — November 3, 2000.

Software Design Bartholdi Paul

body

always ezecuted at least once

true false

condition

Figure 6: repeat...until construction

7.6.6 REPEAT...WHILE...DOD...

repeat
body_1
while condition do
body_2
end

Please take notice that condition is tested after the first execution of
the body_1, but before the first execution of the body_2 (figure 7.

Consider the following real situation (in pseudo code):

read;
if not EOF do computations
read again

We can solve it in three ways:

1. as in Pascal:
s=read();
while(s!=EOF) { calculations; s=read()}:
read is used twice, and appear illogically after the calculations . ..

2. vhile({s=read())!=EOF) { calculations } ;
Now we have side effects in the condition, doing two things in one
statement,;

Sixth College on Microprocessor-based Real-time Systems in Physics 60
Abduys Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

body-1

always executed at least once

may never be executed

Figure 7: repeat...while...do construction

3. while(1) { s=read(J);
if (s==EQF) break;
calculations
This matches the logic much better, though the code is longer.

7.6.7 Side effects

In C and many other languages, the tested condition can be any expres-
sion, possibly with strong side effects, that is variables get changed by the
condition evaluation. For example, consider the expression, given in the C
notes:

while (*S1++ = *82++)

Such expressions are very compact, but rather difficult to read, and quite
prone to errors.

Sixth College on Microprocessor-based Real-time Systems in Physics 61
Abdus Salam ICTP, Trieste. October 9 —- November 3, 2000.

Software Design Barthoidi Paul

7.7 Implementation Addresses

Some languages are more appropriate than others to structured program-
ming, and amongst the procedural languages, let’s cite as examples the Pas-
cal, C, Modula and Ada languages.

These languages offer all the preceding possibilities by specialized instrue-
tions, except the last one which should be programmed with a loop and
an internal if instructions. Moreover, Ada language doesn’t support the
repeat...until structure.

Other branching instructions complete the set, enabling the program to in-
terrupt or skip an occurrence of a loop.

Most of the procedural languages offer a goto instruction, just in case.. .,
but to avoid using it will lead to better design, and maintenance.

7.8 Weaknesses of the Structured Approach

The modules are based on their functionality, and define procedures and
functions, while variables are often passed as parameters, or are globally (on
the outside) defined.

This leads to

¢ logically incomplete modules.
e difficulty to reuse a module in a slightly different way

e variables can be modified from the outside of the module.

7.9 Practical remarks concerning the exercises

1. All system calls and standard library routines return a value indicating
the success or failure of the operation. The error code is also returned
in the variable errno.

This value should always be checked, with an error message and ap-
propriate action (continue with default, do it again, exit ...} in case
of failure (See the examples below).

2. stdio.h and other header files (including your own) contain list of
declarations like #DEFINE OEF (-1) or even #DEFINE NULL (0) and
also typedef ... { ... } FILE;

Sixth College on Microprocessor-based Real-time Systems in Physics 62
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

Use them! They help you hide something and make the code easier to
read, check and understand.

Examples:

FILE *Pn
Pn = fopen("/ds", “w" y; /% not "2" but "w" */

if((fn=open("/ds", "w")) == NULL)
{ printf("cannot open file /ds \n") ;
exit (11);
}

if((fn=open("specific", "r")) == NULL)
if((fn=open)"default", "r")) == NULL)
{ printf("neither specific nor default available \n");
exit (13);
}

Notice in the last example, that the second if is skipped if the first succeeds.

8 Data structures

Data structures can be classified into two main categories: linear and non-
linear. Linear structures are composed of a sequence of elements and include
arrays, linked lists, stacks and queues. Non linear structures include trees
and graphs. We will limit our scope t0 a general introduction to the linear
structures, as they are the basis of the structures used in real-time systems.

The operations that can be performed on a linear structure are:

e Traverse the structure and process each element.

Search a particular element of the structure.

e Add a new element to the structure.

Remove an element from the structure.

¢ Rearrange the elements in some order.

The internal representation of a linear structure may take two shapes:

Sixth College on Microprocessor-based Real-time Systems in Physics 63
Abdus Salam ICTP, Trieste. Qctober 9 — November 3, 2000.

Software Design Bartholdi Paul

e Array representation, where logically consecutive elements of the struc-
ture are represented by sequential memory locations.

e Linked list representation, where the relation between the elements are
represented by means of pointers.

The type of representation one chooses for a particular structure depends on
how it will be accessed, and on how many times the different operations will
be performed.

8.1 Arrays

Arrays can be linear or multidimensional homogeneous structures. We will
limit our scope to linear arrays; the extrapolation of the algorithms to the
other cases is relatively easy.

The linear array is a finite list of data elements. The elements are referenced
by an indez, which is the ordering number of the element. The elements are
stored in consecutive memory locations. That implies that the index set is
composed of consecutive numbers.

The smallest index is called the lower bound (LB), and the largest is the
upper bound (UB). The length of the array is given by the formula

L=UB-~LB+1

Usually, LB=0and L=UB+1,or LB=1and L=UB.

The logical representation of an array consist of a series of compartments pic-
tured either vertically or horizontally, depending on the number of elements
and on the available space, as shown on the figure 8.

DATA
1] 247
2 56 DATA
3| 429 | 247 [56 [429 [135 [87 [156 |
4| 135 1 2 3 4 5 6
5 87
6| 156
Figure 8: Logical pictures of array DATA.
Sixth College on Microprocessor-based Real-time Systems in Physics 64

Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

e ek EEE . BT e P o

Software Design Bartholdi Paul

The computer keeps only track of the base address (BA) of the array A, and
calculates the position of the kth element by the formula:

LOC(A[k]) = BA(A) +w - (k — LB)
where w is the number of memory words (bytes for an 8-bit architecture) per

element for the array A. The figure 9 shows the internal representation of an
array AUTO, with BA = 200, LB = 1932, and w = 4.

AUTO|1932]

AUTO[1933)

AUTO[1934]

Figure 9: Memory representation of array AUTO.

8.1.1 Operations on linear arrays

Operations on arrays are simple, due to the linear structure of the arrays.

Traversing an array is done by a counting loop (7.6.3), the index of the
array being used as the control variable of the loop. The body of the
loop defines the operations to do on each element.

Sixth College on Microprocessor-based Real-time Systems in Physics 65
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design

Bartheldi Paul

Inserting an element at the end of an array is quite simple. Inserting an
element in the middle of the array implies moving all the elements
located after the insertion point up back a position. This again may
be done by using a counting loop initialized at the upper bound, and
running down to the insertion point. One has to do it this way, as the
higher indexed memory locations may be overwritten without problem.

The figure 10 illustrates this by inserting the value “Ford” in a string
array at position 3.

Q0 =~ Oy O b W R

Figure 10: Insertion of an element in an array.

NAME

Brown

Dayvis

Johnson

Smith

Wagner

SO~ O o W N

NAME

Brown

Dayvis

Ford

Johnson

Smith

Wagner

Notice that decreasing index counting loops are not supported by all
languages. If not supported, this operation can be simulated by a
conditional loop (7.6.4).
Deleting an element of the array is very similar to inserting, at the algo-
rithmic level. A counting loop running upward from the deletion point

should be used to move down the succeeding elements.

Searching an element in the array can be done through two algorithms:
linear and binary search.

Linear search implies a conditional loop executed at least once. The
loop body should check if the element fits the desired item and if
the bound of the array is reached. This implies two comparisons at
each occurrence of the loop, leading to a possible 2N comparisons.

The estimation of the number of basic operations an algorithm
needs to be completed is called the complexity of the algorithm.
It gives the notion of computation time for the implementation of
the algorithm. It is sometimes expressed with the O notation:

f(n)

O(g{n))

Sixth College on Microprocessor-based Real-time Systems in Physics
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

66

Software Design Bartholdi Paul

Where f(n) is the complexity, g(n) is a simple function.

An enhanced algorithm will first write the searched item at the
end of the array, in position N + 1. Then a single comparison
is done in the loop, checking for the item, and when successful,
a last comparison determines if the item was found in the array
or in position N + 1. The maximum comparisons number is thus
N+ 1.

The average number of comparisons, in case of equally probable
position of the item, with an absence probability of ¢ is given by

NN+ 1
2 "'J\-r+(N+1)E

= (N+1)(%+e)

1 1 1
1'ﬁ+2'ﬁ+”'+N'ﬁ+(N+1)E

If the absence probability is very small, the average number of
comparisons will be about half the length of the array.

Binary search is used for maximum efficiency. The array needs to be
somehow sorted. The comparisons will not be done sequentially,
but accessing recursively the middle of the part of the array con-
taining the item to find. At the beginning, the containing part is
the whole array.

After M comparisons, the segment containing the item is -2-1};— long.
Locating the item implies thus a maximum of M = logy(N) +1
comparisons. This means that a 65000 element array could be
searched successfully in 16 comparisons.

So why not use always a so economical algorithm ? Binary search
is only possible if the array is sorted, and maintaining a sorted
array can be very resource-consuming, for big arrays with a lot of
modifications.

Sorting an array is a bit more complicated. There are several algorithms
suitable for different data structure. The most simple is called bubble-
sort.

Let’s have a N-element array. The algorithm consists of traversing the
array, comparing each element with the element immediately following
it and swapping the two elements if necessary. This traverse opera-
tion, called a pass, enables to put the smallest or the largest element
(according to the test) at the upper bound, in element N. This step
is repeated N — 1 times with the sub-arrays upper-bounded by the
element indexed N — 1, N — 2, etc.

Sixth College on Microprocessor-based Real-time Systems in Physics 67
Abdus Satam ICTP, Trieste. October 9 -— November 3, 2000.

Software Design Bartholdi Paul

The complete sort is a NV — 1 passes process. The passes involve N —1,
N —2, etc. comparisons, so the entire sort process need, to be complete,
a total of

N(N - 1)

(N-1)+(N-2)+(N=-3)+---+2+1= 5

which is proportional to N2.
Another well-known sorting algorithm is the quicksort algorithm.

In this algorithm, each step (fig. 11) is used to find the proper place for
one element of the array. Let’s take the first number of the array. We
compare it with the others, starting backwards from the last. When a
smaller number is found, we exchange the two numbers, and start again
traversing from left to right the array until we find a larger number.
This step stops when the comparison with the element itself. This
element is at its correct place in the array.

We then have two sub-arrays which are themselves to be quicksorted.

Comparison 1 (44| 33 11 90 40 22 88 66
Comparison 2 44| 33 11 90 40 22 88 66
Comparison 3 33 11 90 40 22 88 66
Swap 1 22 33 11 90 40 88 66
Comparison 4 22 33 11 90 40 88 66
Comparison 5 22 33 11 90 40 88 66
Comparison 6 22 33 11 90 40 88 66
Swap 2 22 33 11 40 90 88 66
Comparison 7 22 33 11 40 90 88 66
Swap 3 22 33 11 40 90 88 66
N - , — e

subarray 1 subarray 2

Figure 11: One step of the quicksort algorithm.

The quicksort algorithm is in the worst case when the array is already
sorted. Each step needs N comparisons and produces only one sub-
array, of length N — 1, leading to a total of

N2
N+(N—1)+(N—2)+(N—3)+---+2+1=7

Sixth Coliege on Microprocessor-based Real-time Systems in Physics 68
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000,

T —— Y - T — —_ .

Software Design Bartholdi Paul

comparisons, which is proportional to N2, The advantage over the
bubble-sort appears for the average case. Bubble-sort has a constant
number of comparisons. Quicksort, on the other hand, produces 2
sub-arrays in each step, so the successive levels place 1,2,4,.. ., 261
elements. About log,(N) levels will be necessary to sort the array, with
a maximum of N comparisons at each level. The average number of
comparison for the quicksort is thus proportional to N log(N).

8.2 Linked lists

As the insertion or deletion of an element in an array is a quite expensive
operation, and as arrays are static structures that cannot easily be expanded,
it is sometimes necessary to use another type of structure, whose elements
contain, in addition to the data, a link to the next element. This way,
successive elements need not occupy consecutive memory locations.

This type of structure is called a linked list, and is widely used in computer
science, due to it’s dynamic behavior. A linked list is composed of nodes.
Each node is divided into two parts: the information part and the link field
or nezt pointer field, which contains the address of the next node in the list.

NAME
or

START

Nextpointer field of third node
Information part of third node

Figure 12: Horizontal representation of a linked list.

A linked list is represented by a series of double boxes linked by vectors, either
horizontally or vertically, as shown in figures 12 and 13. The information part
may be further subdivided, as seen in figure 13. A separate variable indicates
the first element of the list. It is the list pointer variable (START). The
last element of the list contains a null pointer to indicate the end of the list.

8.2.1 Operations on linked lists

A linked list may be maintained in memory by means of two arrays, one
containing the data and the other the links, or by using an array of records

Sixth College on Microprocessor-based Real-time Systems in Physics 69
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

Bed
Number Patient Mext
START 1 Kirk 7
2
C 3 Dean 11
F) [tmowe— 1 12 |
5 Adams 3 D
6
7 Lane 4
8 Green 1
C Samuels _'_____0_.—-
.—-—-—"}—q—‘—“—-‘_,__‘___
C 11 Fields -3 >
12 Melson 9

Figure 13: Vertical representation of a linked list.

containing both the data and the links. Let the informative part of element
K be INFO[K] and the link field of the same element be LINK[K]. Let

also START contain the first node address and NULL be the content of the
last link.

Traversing a linked list is done by using a variable PT R containing ini-
tially the address of the first node (PTR := START). After hav-
ing processed the first node’s data, the pointer is updated to point to
the next node (PTR := LINK|[PTR]) and the loop is repeated until
PTR=NULL.

START Data list

Node A Node B

AVAIL

Node N

—{_I

Free-storage list

Figure 14: Linked list before an insertion.

Insertion To insert a new node in a list, we need to have some available
memory locations, and to be able to allocate them to the list. This is

Sixth College on Microprocessor-based Real-time Systems in Physics 70
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Panl

done by maintaining a parallel list called the list of available space, the
free-storage list or the free pool. Let this list be called AV AIL.

START Data list

Free-storage list

Figure 15: Linked list after an insertion.

The insertion of a node between nodes A and B of a list (fig. 14) is
done by removing the first node of AV AIL and storing its address in an
auxiliary variable NEW (NEW = AV AIL). The AV AIL is updated
(AVAIL := LINK[AV AIL)); we will then copy the new data in the
new node (INFO[NEW] := ITEM), and at last we have to insert
the new nodes in the list (LINK[NEW] := LINK[A}; LINK[A] =
NEW). The resulting lists are presented on figure 15. Note that were
the insertion point be the first node, the two last assignments would
have been LINK[NEW) := START; START := NEW.

Deleting a node of a list seems very simple, as we have only to reassign the
pointer of the preceding node to point to the next node. In reality, we
can’t know the address of the preceding node without traversing the list
to compare each node with the deletion point, while remembering the
preceding node until the actual node is processed. Another problem is
to deallocate the memory we don’t use anymore. This task is called
garbage collection and is done by returning the node to the AV AIL
list (fig. 16). Thus, deleting an element of a list is done by traversing
the list once, and then returning the node to the free pool, which
implies about the same operations as inserting a node. While doing the
traversing, we are able to do another task, as searching, for example, a
node with specific data, which we want to delete.

Searching a specific item throughout a list implies a loop with an internal
concordance test. If the list is sorted, the test may be smarter to check
if the item position is already over-passed, which would lead us to stop
the loop.

Sixth College on Microprocessor-bagsed Real-time Systems in Physics 71
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

START Data list
Bl L el T~
- i e

Free-storage list
Figure 16: Deletion in a linked list.

Binary search is not possible with linked lists, since there is no way to
point to the middle of a list.

Sorting a list may be done by different algorithms. The bubble-sort al-
gorithm (8.1.1) will be suitable for a linked list, but the quicksort al-
gorithm (8.1.1) will need the particular properties of a two-ways list
(8.2.2).

Another good way to have a sorted list is to keep it sorted, i.e. insertion
is done at the right place (searching).

8.2.2 Particular lists

There are several particular forms of lists that can be used in different situ-
ations.

START

-

LT T T

)

Figure 17: Circular linked list.

A circular list (fig. 17) is a linked-list whose last node’s link points to the first

Sixth College on Microprocessor-based Real-time Systems in Physics 72
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

D B e .~ oliar- it - - SR o e 3 ¢ ¢ i e - e —pn o — e w— [——

Software Design Bartholdi Paul

node. This kind of list is widely used in computer science, because all the
pointers contain valid addresses, and no special treatment is thus required
neither for the first node, nor for the last.

FIRST ' LAST
INFO field of ode N

BACK poiaer feld of node N
((-FORW pointer field of node N
D I R Ry

~
Node N

Figure 18: Two-ways linked list.

A two-ways list (fig. 18) contains three parts nodes. In addition to the data
part and the link field LINK[K] now calied FORW/[K], there is a second
link BACK[K] pointing to the preceding node. The START variable is
replaced by two entry point variables FIRST and LAST. A two-ways list,
has the following properties:

e FORW[A]=B <= BACK[B]=A

e Operations can be done in either direction.

e For deletion, the localization of the preceding node is trivial.

e Insertion is a bit more complicated by the presence of the second
pointer, i.e. needs two more assignments than insertion in a one-way
list.

A two-ways circular list mixes the properties of the two previous lists.

8.3 Stacks

A stack is a linear structure accessible only by one extremity. This notion is
very familiar to us, as we use a lot of stacks in every-day’s life, as illustrated
in figure 19.

All the operations will be done on a particular point called the top of the
stack. Adding an element is done by pushing it on the stack. Removing an
clement from the stack is called popping (fig. 20). As the top is the only

Sixth College on Microprocessor-based Real-time Systems in Physics 73
Abdus Salam ICTP, Trieste. October 9 ~— November 3, 2000.

Software Design Bartholdi Paul

Stack of Stack of Stack of
dishes pennies folded towels

-

Figure 19: Every-day’s life stacks.

access to the stack, the last element pushed in will be the first popped out

from the stack. This last-in, first-out property has given to the stack its
second name: LIFO.

€
B B B
A A A A A

(a) (b) (¢) @ (¢) (f)

Figure 20: Stack push and pop operations.

Stacks are widely used in computer science. They are the basic structures
on which the notion of recursion is implemented, and many well-known al-
gorithms or problems have been implemented and solved through its usage.

Remember the quicksort algorithm (8.1.1). A practical way to keep track
of all the sub array bounds while processing one of them is to put them on
stacks. The Towers of Hanoi problem is implemented recursively (recursion
uses stacks), or may be implemented with stacks in an iterative way. Reverse
Polish Notation (RPN) which writes operations as operands followed by the
operator uses stacks: The operands are put on the stack, where each operator
pops the number of operands it needs.

Sixth College on Microprocessor-based Real-time Systems in Physics 74
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

T AT

Software Design Bartholdi Paul

8.4 Queues

A gqueue is another familiar concept (fig. 21). In computing, queues are also
widely used for bufferizing data arriving from or leaving to a peripheral, or
to schedule tasks to a processor. They have a first-in, first-out structure, and
thus are also called FIFO.

BUS
S1op

Figure 21: Familiar queue.

Data may be added in a queue only at the end called the front, and removed
only at the other end, called the rear.

Special implementations of queues allow other types of access:

Deques are double ended queues, that can be accessed by either ends, but
not in the middle.

Priority queues are queues where the highest priority element is to be pro-
cessed first. The implementation will determine the ease of inserting
or deleting the element in a priority queue. A way to implement a pri-
ority queue is to use a linked list with its usual properties for insertion,
but where processing and deletion is limited to the first element. In
the figure 22, successive deletions will remove AAA, BBB, etc., while
insertion of an element XXX is done at a place determined by the
algorithm according to its priority (2).

9 Object Oriented Computing

Tt is highly preferable to group in one unit a logically linked data set. On the
other hand, it is not necessary that higher level modules know the internal

Sixth College on Microprocessor-based Real-time Systems in Physics 75
Abdus Salam ICTP, Trieste. October & — November 3, 2000.

Software Design Bartholdi Paul

START XHX{2

e of
[
-

s

LEEH- FEF |4} er—iGGG| 3| ¥

Wik DDDAI&-)

Figure 22: Representation of a priority queue implemented as a list.

functioning of the routines or the structure of a complex data set. An external
module should perceive them as a functional black box. This vision is close
to the block diagrams used in electronics or automatics.

The interface of the module is its visible and accessible part. It represents the
specifications of the module and can be separated from the implementation
part, which describes the functionalities of the module.

The Modula-2 language was one of the first languages to comply with the
separate compilation of the modules. It addresses the notion of visibility,
with library modules consisting of a definition and an implementation parts.

9.1 Objects

The basic concept of object-oriented description is to consider a program as
a model for a real world situation. Now, the real world consists of related
objects. Objects are thus more stable than relations in the system evolution.

It seems thus natural to decompose this real world situations model in objects
models rather than in models of the relations existing between these ob jects.

From now, we will call objects the models of real world objects. An object
is the whole set of characteristic properties satisfactory to describe the object
with regard to the studied model.

In classical programming, we consider an algorithmic description of the sys-

Sixth College on Microprocessor-based Real-time Systems in Physics 76
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

T O W I L W - m—— | —

Software Design Bartholdi Paul

tem, in which we introduce data. In object-oriented programming (OOP),
we consider objects, whose behavior is described by algorithms.

‘Object = Data structure + Related operationi,

9.2 Object Oriented Design

Different advantages of the object-oriented approach are examined in the
next sections:

9.2.1 Easy Design

Our brain is used to apprehend real objects. The definition of a program’s
main concepts as objects enables us to better conceive, thus better express
the application’s goal.

9.2.2 Better Support and Debugging

With the gathering of data structures and related procedures in a single
locus (the object), the localization is better, leading to more direct access
and easier debugging.

9.2.3 Data Security

An object is a black box. The OOP insists on the separation between the
object’s properties, described by related operations, and the internal repre-
sentation of this object. An object provides the handling interface, while
hiding the implementation details.

Seen from the outside, an object will be manipulated only on its properties
knowledge, without considerations to its realization.

9.2.4 Flexibility

Internal representation of the objects can be modified, adapted to the hard-
ware and so allow performance optimization, without meddling with the
application software.

Sixth College on Microprocessor-bagsed Real-time Systems in Physics 77
Abdus Salam 1CTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

9.2.5 Recycling

An application can be developed from existing objects. This can speed up
software production and decrease the development costs.

9.3 Competence Sharing

The overall process of software development involves three aspects:

9.3.1 The Role of the Application’s Conceptor
He has to define the objects in three phases:

1. What are the intervening objects of the application ?
2. What are they doing ?

3. How do they interact with each other ?

9.3.2 The Role of the Objects’ Programmer

He will create the objects defined by the first above-mentioned point. The
answers of the second and third questions will give him the data structure
and the associated operations, as illustrated in figure 23.

) — Data structure

€Y — Associated methods

Figure 23: Concepts — objects relation.
The objects’ programmer should be aware of the hardware, to be able to op-

timize the objects’ code, if necessary. No hardware dependent programming
should be done at another level, and even at any level, if possible.

9.3.3 The Role of the Application’s Programmer

He uses the objects according to the functionalities defined by the conceptor.
He is responsible for the application’s functioning optimization.

Sixth College on Microprocessor-based Real-time Systems in Physics 78
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paut

9.4 Object Oriented Programming

Procedural (algorithms based) languages such as Fortran or Pascal associate
data to procedures, but OOP associate procedures to data structures to
create objects. New languages with some new characteristic are to be used
for objects creation and manipulation. As we’ll see in the next sections, the
object approach is implemented in these languages, as well as some other
ideas allowing an easy and complete implementation of the objects.

First, the notions of abstract data types, which defines meta-objects, and
of encapsulation is the implementation of the objects themselves. The con-
cepts of inheritance enables the creation of hierarchy of related data types.
The polymorphism allows an object to take several shapes, and the dynamic
binding dispatches general calls to specific methods adapted to the object
type.

In the object-oriented concept, the communication between the objects is
done via messages, which are used to schedule the methods.

9.4.1 Data Abstraction and Encapsulation

Every data structure should give rise to a control of its manipulation, in
order to guarantee the data consistency. One should think of this structure
in terms of the actions to be carried out on it, rather than in terms of its
representation.

The definition of a type as the whole set of operations linked to a data struc-
ture meet this view, provided that one can only manipulate this structure by
these operations.

Such a type, whose name is associated with the data structure and whose
internal functioning and representation details are hidden by providing the
appropriate operations for the variables of this type is called an abstract data
type.

The gathering of hidden data structures and appropriate operations is called
encapsulation. The data structures embedded in an abstract type are called
members data, and the operations making up its interface are called methods
and form the specification of the abstract type.

The specification should be complete in the sense that no access to a variable
of the type should neither be necessary nor even possible, without going
through the specified operations.

This will increase the data security.

Sixth Coliege on Microprocessor-based Real-time Systems in Physics 79
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

9.4.2 Inheritance

Inheritance or class derivation is a mechanism by which OOP languages
allow relations between types and sub-types to be defined.

New abstract types can be defined, sharing the properties (including meth-
ods) of an already defined abstract type, without having to re-implement
these characteristics. The new type inherits all the members data and meth-
ods from a defined type, and may modify some of the already defined meth-
ods, as well as it may define some new members data and methods. The
figure 24 illustrates this concept.

Figure 24: Single inheritance: The bear family class

Some object-oriented languages implement the multiple inheritance concept,
allowing a class to be derived from more than one base class, with the aim
of inheriting members from different and independent classes. This concept
is illustrated in figure 25.

The new type is said to be a subclass or derived class of the original type,
which is a superclass or base class. We will adopt this terminology from now.

A derived class has obviously to be declared as inheriting, by specifying it’s
base class.

A derived class can itself be an object of derivation, as seen on the figure 26.

In the base class, the hidden objects have to be declared as accessible to
the derived classes: C++ defines three access levels for the members data or
functions of a class: public, private and protected.

The public declaration in a class enables visibility and access from outside,
and usually includes the manipulating functions of the embedded objects.

Sixth College on Microprocessor-based Real-time Systems in Physics 80
Abdus Satam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

The private declaration is provided for the hidden data structures and func-
tions, that are not accessible, even by a derived class.

The protected declared members and methods are only accessible by the

derived classes.

Ling_ling

Figure 25: Multiple inheritance: The bear family class, with en-
dangered species indication. Notice that multiple inheritance trans-
form the tree structure of the class hierarchy into a directed graph
structure,

The zoo animals fit nicely in an inheritance hierarchy, as already seen in
figures 24 and 25. The figure 26 show a three level inheritance hierarchy
with multiple base classes and multi-level derivation.

9.4.3 Polymorphism

Derived class variables (objects) can be assigned to its base class variables.
Ouly the inherited methods and data structures will be copied, specific mem-
bers added after the derivation will be ignored. This rule is very important
to guarantee the compatibility between related classes, and implies that an
object declared of the base class can take the shape of any object of the
derived classes. This peculiarity is known as the polymorphism concept.

The special relationship existing between derived classes promotes a generic
style of programming. The polymorphism mechanism implies the dynamic

Sixth College on Microprocessor-based Real-time Systems in Physics 81
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

e A R i T A T L R ¥ T . TR —— ——— e

Software Design Bartholdi Paul

Ling ling Quinn

Figure 26: Complete inheritance: A zoo animal inheritance graph.

ently for each derived class, despite it is referred to by the same name for all
these classes, and the adequate function can be binded at run-time.

A function should only be declared virtual if the class is supposed to be a
base class, the implementation of the function is type-dependent, and it will
be called through the base class. In the other cases, the code will be more
efficient if the function is declared as a usual member function. The multiple
definition process necessary for implementing the class-dependent versions of
a function is called overloading.

In C++, even basic operators can be overloaded. One may define, for exam-
ple, a + (plus) operator for adding strings, graphs, or stacks. The multiple
declaration of the + operator stands out the necessity to choose from the
different functions at some point. If this choice is done at the compilation
time, this is called early-binding or static binding. The late-binding approach,
where the choice is carried out at run-time, is used with virtual functions (dy-
namic binding).

Sixth College on Microprocessor-based Real-time Systems in Physics 82
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design _ _ Bartholdi Paul

9.5 OOP Languages

Languages supporting the different concepts of object-orientation to a cer-
tain extent include amongst other Ada, C++, Eiffel, Oberon, Simula, and
Smalltalk. We will restrict our view to C++, which is not the most se-
cure and consistent object-oriented language, but which is compatible with
its predecessor, the C language, with all the advantages and drawbacks this
compatibility involves.

The Eiffel, Simula and Smalltalk are real object-oriented languages, while
Ada and Oberon are conventional languages with minimal object-oriented
programming support: the concept of object is defined, but neither classes,
nor inheritance, even though these concepts may be simulated with some
programming effort.

9.5.1 C++

C-++ is an extension to C language, for supporting object orientation. The
most important extensions from this point of view are

o data abstraction
e operator overloading
o classes with multiple inheritance

e objects with dynamic binding

Abstract data types: Classes

Classes consist of data and functions members, and is divided into a
public and a private part. The public part describe the interface, while
the private part is inaccessible for heirs and clients. Members may be
declared as protected in order to be used by subclasses.

The declarative part of the class is stored in a separate header file,
inserted in each file using the class, as well as in the implementation
file for the class itself.

Inheritance: Derived classes

Publicly inherited members are public both in the superclass and in the
subclass. Privately inherited members cannot be accessed from outside
the subclass, and thus inhibit polymorphism.

Sixth College on Microprocessor-based Real-time Systems in Physics 83
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

Multiple inheritance is supported. Virtual derivation allows multiple
mheritance while avoiding multiple copy of inherited parts.

Polymorphism:

The assignation of subclass objects to variables of the superclass is
allowed, with the previously mentioned exception.

Dynamic binding:

Virtual functions allow to override inherited methods. Functions de-
clared as such in the superclass are dynamically binded.

Objects:
Objects are created either by declaration or by the new operator.

An initialization procedure called constructor is automatically called
by the compiler each time an object is created. This procedure has the
same name as the type. Another function of each class is the destructor
which is used to delete objects, as well as the memory allocated by those
objects.

10 Real-Time Systems

Real-time applications are characterized by the strict requirements they im-
pose on the timing behavior of their system. Systems ensuring that those
tirming requirements are met are called real-time systems. We will exclude
from the beginning the transactions processing systems (seat reservations,
banking), where the transactions are done in real-time, but without any con-
straint.

10.1 Concurrent and Real-Time Concepts

A concurrent program is a non-sequential program, in the sense that some
operations are performed simultaneously. This technique, obviously useful
in the case of a multiprocessor system, can even be attractive in a mono-
processor environment, to take full advantage of the independence of the
processor and the peripherals.

Consider for example that we want to write characters on a terminal. The
figure 27 illustrates the activities of both the processor and the terminal
interface.

Sixth College on Microprocessor-based Real-time Systems in Physics 84
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000,

Software Design Bartholdi Paul

e The processor has to wait until the terminal is ready to accept a char-
acter, it then sends the character to the interface and loops back to its
waiting state.

e The interface waits for a character, accepts it, write it to the screen
and loops back to its waiting state.

That description shows that both processes are waiting for an information
given by the other party, before doing any useful task. This is solved by task
or process synchronization. In this example, the synchronization is done for
one way by an interrupt, and for the other direction by means unspecified at
this point. There are several mechanisms able to signal that the character is
ready to be processed by the interface process.

N 7N

Wait ~ "~ [Signalize
Interrupt
Transmit Wait
_/ Character
Processor Output
Interface

Figure 27: Respective activities of processor and terminal interface for writ-
ing a character.

During this time, a concurrent program can perform another task!

Of course, even with the synchronization, one of the two processes will be
faster than the other. In our example, the processor will be mostly waiting
for the interface to be ready.

Concurrent, tasks should avoid accessing shared data simultaneously. This
could lead to incoherent informations if two processes write at the same time
in a data structure. Concurrent programs always present these two problems:

e Mutual exclusion (Critical resource access).

Sixth College on Microprocessor-based Real-time Systems in Physics 85
Abdus Salam ICTP, Trieste. October 9 -— November 3, 2000.

Software Design Bartholdi Paul

e Synchronization between processes.

These problems are solved by tools (mechanisms) specific to concurrent pro-
gramming, called locks, events, semaphores, monitors, mailbozes, rendez-vous
or interrupts.

A real-time program is very much like a concurrent program. It has to manage
peripherals, and the mechanisms mentioned above still apply. A real-time
program includes a supplementary issue: timing constraints imposed by the
fact that a real-time program controls an external system.

With the improvement of the performance of the microcomputers, and as
their price, size, weight, and power requirements decrease, real-time systems
are more and more widespread.

Current fields of applications include scientific instrumentation, medicine,
industry, cars and military. For example, a real-time system may drive and
monitor an astronomical telescope or an X-ray medical scanner, control an
industrial production line or a car motor and navigation system, as well as
drive a weapon delivery system or control a entire nuclear power plant.

You have noticed that the word control or a synonym come often in those
examples:

Timing and control are the master-words in the real-time systems world.

In general, we’ll call real-time system any system meeting external timing
constraints and able to solve these constraints during its execution; without
any specification on the architecture of the system.

A Real-time system can be divided into two groups: The hard real-time
systemns, for which a failure to meeting the timing constraints is considered
as a major failure (crash) of the system, and the soft real-time systems that
will give an error or a warning on such failures, without stopping execution.

10.2 Embedded and Distributed Real-Time Systems

Many complex systems require nowadays an elaborate control system to sup-
port their internal functioning. Such systems often use a dedicated computer
as controller. Such a computer is called an embedded computer.

An embedded computer system has to control the rest of the system. It gets
information like data and status from sensors, then issues control commands
to actuators.

One feature that distinguishes embedded systems from other real-time sys-

Sixth College on Microprocessor-based Real-time Systems in Physics 86
Abdus Salam ICTP, Triesie. October 9 — November 3, 2000.

Software Design Bartholdi Paul

tems is that they are only executing a task relative to a fixed and well-defined
workload. They don’t provide any development environment.

Study of embedded systems must consider the controlled system as a whole:
In particular, mechanical, electro-mechanical parts and electronics should be
considered at the specification level of such a real-time embedded system.

The most general way of defining a real-time system is to consider a multi-
machine, distributed computing environment. The term multi-machine im-
plies that, in addition to the internal timing constraints due to its peripherals,
each machine (node) has to deal with timing constraint requests of the other
nodes of the system.

10.3 Implementation Issues

Most of the real-time applications cannot be programmed with traditional
languages under a traditional operating system, or at least at their standard
level, as those languages don’t know how to handle the timing constraints
imposed by the system. Additional features known as real-fime extensions
are defined for some languages, enabling such systems to be programmed and
checked. These extensions often enable the programmed real-time system to
override the operating system mechanisms to control directly the hardware.

On the other hand, real-time systems can be programmed with classical
languages such as C, if there is a library of functions implementing the real-
time mechanisms. In this case, the real-time aspects of the application is
shared between the language and the real-time operating system (LynxOS,
08/9).

Another aspect of the implementation of complex, multi-machines real-time
applications is the operating system. The traditional approach to multi-
tasking operating systems design is to split the time in slices and to at-
tribute those slices to the different computing-resources demanding applica-
tions. This kind of management is called time-sharing. Time-sharing doesn’t
address correctly the problems arising in real-time systems.

So, the execution of real-time applications has to be supported by a correct
environment, which is obtained through a real-time operating system.

These real-time operating systems have to manage timing and interactions
problems. Different mechanisms allow them to handle timing constraints
correctly, including interrupts and signals. They also contain mechanisms
to solve the processes scheduling problem, that can be quite difficult, with

Sixth College on Microprocessor-based Real-time Systems in Physics 87
Abdus Salam ICTP, Trieste. October 3 — November 3, 2000.

Software Design Bartholdi Paul

preemptive tasks and dynamic priority setting. Another aspect treats the
communications between tasks, with semaphores and shared data zones.

10.4 Time Handling

Time handling is the most important issue in real-time systems. Time han-
dling includes:

e Knowledge of time
o Time representation concepts

e Time constraints representation

10.4.1 Knowledge of Time

Time is given by clocks. In a multi-machine environment, multiple clocks may
exist and should be synchronized, in order to get a coherence between the
different timing constraints and interactions specifying the real-time system.

A clock is characterized by its correctness, which defines the quality of the
knowledge of time, and by its accuracy, which defines the way the clock drifts.
The accuracy is given by the derivative of the clock signal, as shown by the
following definitions:

A standard or reference clock is one for which the relation
C(t)=t ,Vt
is confirmed. A clock is correct at time o, if
Clto) =ty

A clock is accurate at time tg, if

10.4.2 Clock Systems

There are different clock systems.

Sixth College on Microprocessor-based Real-time Systems in Physics 88
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

The simplest one consists of one central clock server, that should be very ac-
curate and reliable, even though a redundant system can be used. Therefore,
this kind of clock system is quite expensive.

Another type of clock system defines a master clock polling multiple slave
clocks, measuring their differences and sending to them the corrections to do.
All the clocks can be of the same accuracy, and if the master fails, another
one amongst the other is elected to become the new master. This type of
clock system is called centrally controlled.

A distributed clock system consists of an interlinked network of clocks, which
all run the same algorithm, polling the other clocks to get their time, and then
estimate their correctness. This type of system can be simple or enhanced,
depending on the complexity of the algorithms used at the nodes, and implies
a relatively heavy traffic load on the communication network.

The graph linking the nodes can be closely connected, with any of the clock
polling all the others, or loosely connected with only a subset of the connec-
tions used for time synchronization.

A protocol named zntp working through network with the UDP protocol is
publicly available, and works as a distributed clock system with a hierarchy
defining more or less reliable clocks. This hierarchy is organized in levels
(strata), a lower level number meaning a more preemptive clock. Each node
can be configured to communicate with a certain number of other clocks,
either for synchronizing itself (same or lower levels), or to only read the time
on higher level clocks.

The Global Positioning System (GPS) is a satellite based navigation system
providing precise position, velocity and time information. The heart of the
GPS consists of 21 satellites and three spares, that revolve round the earth
twice a day, at an altitude of 20000 km. They allow a 24 hours per day
worldwide coverage by more than 3 satellites. This system can be used by
special hardware to get a good timing information to synchronism clocks.
The receivers are cheap (about $ 600-1000).

Other special hardware may take advantage of the time signals broadcasted
by radio waves from different standard clock systems in the world, as DCF
in Germany, WWYV in Boulder, Colorado, WWVH in Hawai or JJY in the
Pacific North.

Sixth College on Microprocessor-based Real-time Systems in Physics 89
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

10.4.3 Time Representation

Time representation in real-time systems should be sufficiently well-designed
to take into account the properties of the system, and to allow a precise
definition of the characteristics of the time constraints.

As a preliminary definition, we should state that the time granularity of a
system is the clock resolution. This notion is more complex than it seems.
Each operating system uses a system clock (fig. 28a) to manage the timing
synchronisation between processes. This clock gives interrupts to the system
at a certain rate, which can usually be modified, but which should neither
be too high, for fear of excessive system overhead, nor too low, because it
would penalise the interactive processes by a long response time. This time
is usually about some tens of milliseconds. This gives the granularity for
scheduling processes, or time-slicing in a classical operating system.

There is another clock used for time measurement (fig. 28b), which can
also be used to drive a programmable timer for scheduling events at certain
time. This is called the real-time clock, and has a granularity of about
microseconds. A real-time operating system will usually use this clock to
synchronise the processes or manage timing constraints.

a) System Clock

|1 [

e
Tus

b) Real-Time Clock

Figure 28: Different clocks are defined in a system.

Point-based representation defines events of zero-length duration, occur-
ring at some time instants in a system, which are responsible for a
change in the state of the system.

Sixth College on Microprocessor-based Real-time Systems in Physics 90
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

Interval-based representation defines activities of finite duration, having
a start and a stop time. These activities can exist simultaneously.

Both approaches have their drawbacks:

Point-based-representation Interval-based-representation
Events cannot be decomposed It is difficult to take into ac-
while maintaining an order, as count the time granularity of
they have no duration. the system.

Partially overlapping activi-
ties cannot be described by
this model.

The best solution is highly dependent of the system, but will often be based
on a compromise between both approaches, leading to an interval based rep-
resentation, with system’s granularity support.

10.4.4 Timing Constraints Representation

A real-time system has to deal with the arrival of time-constrained requests,
i.e. the invocation of processes to be executed in due time.

The system has to allocate the resources to meet the specifications, in order
that the process can begin at a specified time, and be completed at another
specified time.

The minimal definition of a timing constraint is the triple

(Id, Thegin{conditionl), Teona(condition2))

where Id is the name or ID-number of the process.
Tbegm(conditz'onl) is the starting time of the process.
Tong(condition2) is the completion time of the process.

Depending on the system and the temporal uncertainties on the allocation
time of certain resources, we may need some additional time parameters in
the constraint representation.

In particular, the completion time may not be a very severe constraint, and
in case of earlier process completion, the resources should be freed for other
processes.

Sixth College on Microprocessor-based Real-time Systems in Physics 91
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

On the other hand, a very long process should not monopolize the resources
of the system, and the global efficiency of the system would be improved, if
time-slices were attributed to this process.

This leads to the more mature definition of a timing constraint as the quin-
tuple
(1d, Tyegin(conditionl), ey, fid, Tona (condition2))

where Id is the name or ID-number of the process.
Thegin (conditionl) is the starting time of the process.
€1d is the computation time of the process, or the time-slice.
fid is the frequency with which the time-slices

have to be attributed.
Tena(condition2) is the completion time of the process.

IR3 \ /—‘

IR5 \
}
Interrupt Handler LH. LH.
Response Time a— !
IR5 Service Routine 9.R.
IR3 Service Routine S.R.

R T

Figure 29: Interrupt Service Scheme

10.4.5 Interrupts driven Systems

Interrupts are often used as a synchronization mechanism in real-time Sys-
tems, particularly in control applications.

An interrupt is a signal occurring asynchronously and triggering a service
routine. This routine is called by the interrupt handler, which identifies the

Sixth College on Microprocessor-based Real-time Systems in Physics 92
Abdus Salam ICTP, Trieste. October & — November 3, 2000.

Software Design Bartholdi Paul

interrupt, locates in a table the appropriate address, and passes it to the
program counter (instruction pointer). The handler or the service routine
itself has to save the current environment before beginning processing the
request, as it could modify this environment.

A signal enabling the interrupt system (IE) is disabled by the acceptance of
an interrupt by the handler. It is usually the service routine’s responsibility to
re-enable it, at some time. In the figure 29, we have a first interrupt arriving
(IR5). The interrupt handler accepts it, as there are no other interrupts
being processed, and passes control to the IR5 service routine. A second
non-preemptive interrupt arrives before the routine has released the IE signal.
This interrupt is blocked for a while, until the interrupt handler being re-
enabled. Then it is normally processed. This iflustrates the fact that response
time to interrupt may vary.

The routine has to be carefully designed to meet the time constraints on it’s
duration, deadline and frequency. Sometimes, the task has also a starting
time condition, in which case it can be executed only if both the interrupt
has occurred, and the starting condition is met.

10.4.6 Signal Synchronization

Another way to synchronism processes is to signal certain states of the sys-
tem. Typically, one process needs the system to be in a certain state which it
cannot control for continuing it’s execution. Arrived at that point, it checks
a signal specifying the desired state, and if unsatisfied, waits until the signal
arrives, indicating the change in the system state.

On the other hand, another process is responsible of modifying the state of
the system, and has to signal it after completion. This method leading to
mailboz or rendez-vous synchronization does not fit well to real-time systems,
because it cannot ensure that deadlines are respected, and is mainly used for
concurrent processing.

10.5 Real-Time Systems Design

The design of any system should begin by a requirement specification phase,
followed by the design phase itself. These phases will be followed by the
implementation, tests, etc. The design phase can also be decomposed into
a preliminary and a detail phase. The different phases and sub-phases may
sometimes overlap each other in time.

Sixth College on Microprocessor-based Real-time Systems in Physics 93
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

Take care that a too rigid approach in the design, obtained for example by
avoiding any time-overlap between phases, may lead to a very formal and
well-documented design, but that will possibly be neither creative nor the
best one.

Another aspect is that a project is in itself very much like a “real” real-time
system, with timing constraints and deadlines. To achieve a project in the
specified delays, one will tend to minimize the specification and design phases
to begin as quickly as possible the implementation. This attitude may lead
to a badly-designed and possibly fragile system. A better way is to begin the
implementation of well-designed parts while refining the design of the rest,
ensuring both a good overall design and a quick development of the system.

Let’s examine the two phases of the design.

10.5.1 Requirements Specifications

‘The requirement specification phase is important in real-time systems, be-
cause the descriptive aspect of the document enables to easily include the
timing constraints.

The requirement specification document should:

e state external behavior of the system.

e avoid specifying any implementation details, but only constraints on
the implementation, as the details of the hardware interface.

¢ state the responses to the exceptions.
e be easily modified.

e be well documented to serve as a reference during all phases of the
project.

e specify the timing constraints and deadlines of the project itself.
Some systems may be described in a verbose documentation style only, while

others may need some more sophisticated tools as, for example, state-charts.

10.5.2 State-Charts

State-charts describe the system as states and transitions between them, trig-
gered by events and conditions. States are represented by boxes, transitions
by arrows, events and conditions are labels for the arrows (figure 30).

Sixth College on Microprocessor-based Real-time Systems in Physics 94
Abdus Salam ICTP, Trieste. Qctober 9 — November 3, 2000.

—— L e e

Software Design _ Bartholdi Paul

Figure 31: Clustering states in a state-chart.

States can be decomposed to lower level states or combined into a higher
level state (figure 31). These operations are called refinement and clustering.

Figure 32: Zooming in and out.

Zooming in and out (figures 32) enables one to have different levels’ views of
the system.

10.5.3 Petri Nets

The complexity of real-time systems is essentially due to the interactions
between tasks, the access conflicts and the temporal evolution of the system.
It is necessary to use powerful tools to represent the evolution of such a system
at the conception level. The Petri net representation is a very powerful
tool, which enables to represent the interactions between processes and the
evolution of processes.

A Petri net is a quadruple C = (P,T,1,0) including N places p; € P and

Sixth College on Microprocessor-based Real-time Systems in Physics 95
Abdus Salam ICTP, Trieste. October § — November 3, 2000.

Software Design Bartholdi Paul

L transitions t; € T. The structure is described by two matrices I and O of
dimension L x N specifying inputs and outputs viewed by the transitions.

The elements of those matrices are integers specifying the weight of the link
between a place and transition. The absence of a link is obviously described
by a weight w = 0.

A Petri net can be represented by a Petri graph, with two types of nodes:
places and transitions. The directed edges may only link nodes of different
type. As an example, a Petri net described by

C = (P,T,1,0)

P = |p11p2:P3;p4;p5|
T = ,t11t2,
P1 P2 P3 Py Ps
I =11 1 2 0 01l

0 0 0 0 1|t

P P2 Pz D1 D5
O = |0 0 0 1 2|4

0 0 1 0 0]t

is represented by the graph of figure 33

Figure 33: Petri graph with weighted arcs

This definition of a Petri net enables only the static representation of a
system. To modelize the temporal evolution, the Petri net is completed by
marking. A marked Petri net represents a state of the system. Marking
tokens are represented by dots on the graphs (fig. 34).

A marking is a N-dimensional vector specifying the numbers of tokens in
each place. The system becomes dynamic when the tokens travel through
the net. The traveling is done through transition firing. A transition may
be fired only if all the preceding places are marked (active). This transition
1s said to be enabled.

Sixth College on Microprocessor-based Real-time Systems in Physics 96
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

Figure 34: Marked Petri graph

Only one transition is fired at a time, randomly chosen between enabled
transitions. A firing has the following effects on the places preceding and
succeeding the transition:

e 1w token is removed from each preceding place.
e w token is put in each following place.
Firing is:
Voluntary An enabled transition may be fired, but it is not mandatory.

Instantaneous All the operations related to a firing occur simultaneously,
and take no time.

Complete All the operations related to a firing do occur.

The figure 35 shows the result of firing transition ¢, in figure 34.

Figure 35: Petri graph after the firing of ¢;.

A Petri net may be annotated as shown in the figure 36 illustrating the
allocation of a processor: As soon as the processor is idle (p; marked) and
there is a task waiting in the queue (p; marked), the processing may begin
(t1). The task is executed (p3 marked). At the end (¢2), the task is completed
(ps marked), and the processor is deallocated (p, marked).

Sixth College on Microprocessor-based Real-time Systems in Physics a7
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

Tache en r, "
© Processeur iibre

allende

Début de
traitement
d'un¢ Liche

Traitement
du Ja tache

Fin de traitcment
d’unc tiche

Tiche terminge

Figure 36: Petri net modelizing a processor allocation.

Figure 37: Petri net modelizing a rendez-vous type synchronization.

Sixth College on Microprocessor-based Real-time Systems in Physics
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

98

Software Design Bartholdi Paul

Figure 39: Petri net modelizing the semaphores primitives P(s) (left) and
V (s) (right).

Figure 40: Petri net modelizing mutual exclusion by semaphore.

99

Sixth College on Microprocessor-based Real-time Systems in Physics
Abdus Salam ICTP, Trieste. October & — November 3, 2000.

Software Design Bartholdi Paul

Without going into the details of the Petri net model, we can say that con-
ditions are associated to places, and events to transitions. The figures 37-40
show Petri nets representing some real-time issues.

The Petri net model may be used by the designer in a kind of top-down
structured approach (figs. 41-44) :

e Start with a global Petri net model of the system (fig. 41).

® Stepwise refine it by substituting (fig. 43) the transitions by well-
formed blocks (fig. 42) . A well-formed block should have only one
input and one output (fig. 44).

Figure 42: Block example.

Sixth College on Microprocessor-based Real-time Systems in Physics 100
Abdus Salam ICTP, Trieste. October — November 3, 2000.

T T e e v ———— v — —_

Software Design Bartholdi Paul

Figure 43: Replacement of ¢3,ps, ¢3 in fig. 41 by the block of fig. 42 .

% ' ‘ %)
SEQUENCE

IF THEN ELSE WHILE DO

Figure 44: Well-formed blocks.

Sixth College on Microprocessor-based Real-time Systems in Physics 101
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

The Petri nets can be transformed to flowcharts. The nodes of the flowcharts
are associated to the Petri net transitions, while the arcs will replace the
places (figs. 45 and 46).

10.6 Structured design of Real-Time Systems

In addition to the concepts of structured design, we have to address the no-
tions of timing constraints and interprocess communications. DARTS (De-
sign Approach for Real-Time Systems) was developed by General Electric to
extend the notion of structured design to include process decomposition and
process interfacing.

First, an analysis of the system has to be done in terms of functions: The
system is then viewed as a data flow transformed by functions.

10.6.1 Process Decomposition

When the functions have been identified and described, they must be as-
signed to processes. DARTS defines criteria to assign a function to a separate
process, or to group it in a process with other functions:

I/0 dependency If a slow peripheral dictates the speed of execution of a
function, this function should be put in a separate process.

Time-critical functions High priority functions should be kept in a sepa-
rate process.

Computational requirements Intensive computation functions should re-
ceive a separate process.

Functional cohesion Closely related functions should be grouped in a pro-
cess.

Temporal cohesion Functions triggered by the same stimulus should also
be grouped.

Periodic execution Periodically executed functions should be kept in a
separate process.

So we see that functional and temporal cohesion are a criterion to group func-
tion in a single process, where they can still be separated and distinguished
by creating modules inside the process. Timing constraints and special re-
quirements justify on the other hand separate processes.

Sixth College on Microprocessor-based Real-time Systems in Physics 102
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000,

Software Design Bartholdi Paul

Figure 45: Petri net example.

103

Sixth College on Microprocessor-based Real-time Systems in Physics
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design

Bartholdi Paul

Figure 46: Flowchart for the Petri net of the figure 45.

Sixth College on Microprocessor-based Real-time Systems in Physics
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

104

Software Design Bartholdi Paul

10.6.2 Interprocess Communication

DARTS provides two types of modules for the communication between pro-
cesses:

e Message communications modules (MCM},

¢ Information hiding modules {IHM). It is used mainly in cases of shared
data. THM defines the data structure in a hidden way, with procedures
to access it.

The figure 47 shows three processes P, P, and P3 communicating through
the data they share, and which is defined in the module IHM, with the data
hidden in structures B and C, accessed only through the procedure a.

Figure 47: IHM module

Please notice how close this approach is from the object concept.

10.7 Example of a concurrent problem

We want to implement a stop-watch that displays on a terminal screen the
times in a format like 00;00:00.0.

On initialization, the time is 00:00:00.0. Then, keyboard “one-key” com-
mand are driving the instrument:

Sixth College on Microprocessor-based Real-time Systems in Physics 105
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

. s.chrono—ss.watch mode selection
: s.watch —s.chrono mode selection
: s.watch —increment hours

: s.watch —increment minutes

: s.watch —increment seconds
: s.watch —r.watch

: r.watch —s.watch

: r.watch —e.chrono

: r.chrono—i.chrono

: r.chrono—f.chrono

Rl NoRZETS- W=

where:

s.watch, s.chrono : stopped watch and chrono modes

r.watch, r.chrono : running watch and chrono modes
i.chrono : intermediate display for 5 seconds
f.chrono : final display for 5 seconds

In the following pages, we show how this problem can be analyzed using Data
flow, State chart, Flow chart and Petri Nets.

Sixth College on Microprocessor-based Real-time Systems in Physics 106
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

10.7.1 Data flow study

keyboard

T1:
read a key

T2: RT clock

validate key

T3:

chrono mode

compute time
to display

display chars
display
Sixth College on Microprocessor-baged Real-time Systems in Physics 107

Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

k=G running
=T watch

running
chrono

10.7.2 State chart study

Sixth Coilege on Microprocessor-based Real-time Systems in Physics 108
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design

Bartholdi Paul

10.7.3 Flow chart study

stopped
chrono

running
chrono

G

Réy?\w

stopped
watch

interm
display dis

final

tuning

initialize
display

running

watch

S

T

stop
display

Sixth College on Microprocessor-based Real-time Systerns in Physics

Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

109

Software Design

Bartholdi Paul

10.7.4 Petri Net study

running
chrono

interm
display

59

®)

ORONRG

final
display

59

stopped chrono

W)

stopped watch

init runing
display watch
stop
display

Sixth College on Microprocessor-based Real-time Systems in Physics
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

110

Software Design Bartholdi Paul

10.7.5 Process decomposition study

According to DARTS, we have to select the data flow transforms which will
receive a separate process.

I/0 dependency: A process should be given to transform T1 (keyboard
input) and to transform T6 (display output).

Time critical function: none.
Computational requirement: none.

Functional cohesion: same process for T2 (validate key) and T3 (choose
mode).

Temporal cohesion: T5 (compute time to display) is to be put in the same
process as T2 and T3, or as T4, Mode dependent.

Periodic execution: T4 (clock) is to be executed at each RT clock tick.
Should be kept in a separate process.

11 Use of man pages, apropos and info

11.1 man and apropos

One should not forget all the man pages, either interactively on the screen,
or in printed form. The man pages for gee, in particular, are very detailed.

When printed pages are really needed, they can be produced with
man command | 1pr
or, if troff is installed,
man -t command
man -k keyword and apropos keyword can be used to retrieve command

names that are related to some keywords.
Here is an example:

Sixth College on Microprocessor-based Heal-time Systems in Physics 111
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

obssql8:” 551> apropos administration

admind admind (im) - distributed system administration daemeon

admintool admintool (im) - system administration with a graphical user interface
dispadmin dispadmin (im} = process scheduler administration

nis_checkpoint nis_ping (3n) = misc NIS+ log administration functions

nis_ping nis_ping (3n} - misc NIS+ log administration functioms

nisgrpadm nisgrpadm (1} - NIS+ group administration command

nisthladm nistbladm {1) - NIS+ table administration command

nlsadmin nlsadmin {im) - network listener service administration

pmadm pradm {im)} - port monitor administration

sacadm sacadm {1im) - service access controller administration

obssqig:” 552>

11.2 info

info is an interactive hypertext system that is replacing man for documen-
tation, in particular for all recent GNU products. info can be used on any
terminal, not necessarily in an X-window.

The information is organized in a tree-like fashion, but can be accessed di-
rectly on any leave.

It is invoked as:
info keyword

where keyword is a leave (concept, command or subcommand). If the key-
word is missing, info starts at the root of the documentation.

Here is for example what info without any parameter returns on my system.

File: dir Node: Top This is the top of the INFD tree
This (the Directory node) gives a menu of major topics.
Typing "d" returns here, “q" exits, "?" lists all INFO commands, "h"
gives a primer for first-timers, "mEmacs<Return>" visits the Emacs topic,
etc.
In Emacs, you can click mouse button 2 on a menu item or cross reference
te select it.

*

Menu: The list of major topics begins on the next line.

* As: (as). GNU assembler ‘as’.

* Bison: (bison). GNU version of yacc grammar parser.

* Cfengine: (cfengine). System configuration management.

* Cpio: (cpie). GNU version of cpio.

* Flex: (flex). GNU version of lex lexical analyser.
* Gasp: (gasp). Preprocessor for assembly programs.

*

Gdb: (gdb). G¥U debugger.

The first lines remind briefly how to use info, and, under the menu, are
the sub-top leaves. Putting the cursor on any line starting with an * and
pushing the return key will show the content of the selected material, which
itself may contain other sub-leaves etc.

Sixth College on Microprocessor-based Real-time Systems in Physics 112
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

12 Think

Think !
e think before doing
e think while doing

e think after having done

e your are responsible, you are the master
never give it to uP

e 1P must obey, not dictate

Think small !

e ‘Small is beautiful’
e keep things manageable, under control

¢ use small modules

Sixth College on Microprocessor-based Real-time Systems in Physics 113
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

Think with others !

e do not reinvent the wheel
e make your work sharable
e build-up libraries

e accept help, call for help

e the others can and must think too

Think on your own !

e do not accept buzz words for granted
e adapt to your own country
e do not destroy your richness

e never accept dogma

13 References and Bibliography

The following bibliography is not necessarily very coherent. It contains old
and new books, as well as some reference articles. They are all in my personal
library. I have not read all of them, but they all contain something that
impressed me and changed my way of using computers.

Many of these books have been reprinted, some re-edited, and the dates given
may not be uptodate.

Sixth College on Microprocessor-based Real-time Systems in Physics 114
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

13.1 Structured Programming

1

13.2

1

Dahl O., Dijkstra E.W. and Hoare C.A.R., Structured program-
ming, Academic Press 1972

Dijkstra E.W., A discipline of programming, Prentice-Hall 1976

Kernighan B. W. and Pike, R. The Practice of Programming.
Addison-Wesley 1999

Kruse R.L., Data structures and program design, Prentice-Hall 1984

Wirth N., Program development by stepwise refinement, CACM 14,
221-227 (1971)

Wirth N., Systematic programiming, Prentice-Hall 1973

Algorithms & Data Structures

Bentley Jon Programming Pearls. Addison-Wesley 1989

Bentley Jon More Programming Pearls, Confessions of s Coder. Addison-

Wesley 1988

Knuth D.E., The art of computer programming, vol. 1 : Fundamen-
tal algorithms, Addison-Wesley

Knuth D.E., The art of computer programming, vol. 2 : Semi-
numerical algorithms, Addison-Wesley

Knuth D.E., The art of computer programming, vol. 3 : Sorting
and searching, Addison-Wesley

Knuth D.E., Literate Programming. CSLI Lecture Notes No 27,
1992

Krob D., Algorithmique et structures de données, Programmation,
Ellipses 1989

Lipschutz S., Data Structures, McGraw-Hill 1986
Sedgewick Algorithms Addison-Wesley 1983
Wirth N., Algorithms & Data Structures, Prentice-Hall 1986

Sixth College on Microprocessor-based Real-time Systems in Physics 115
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

Software Design Bartholdi Paul

13.3 Object Orientation

- Aubert J.-P. and Dixneuf P., Conception et programmation par
objet, Masson 1991

- Blaschek G., Pomberger G. and Strizinger A., A comparison of
object-oriented programming languages, Structured programiming 4,
187-198 (1989)

- Booch G. Object-oriented Analysis and Design with applications,
Addison-Wesley 1994

- Quément B., Conception objet des structures de données, Masson
1992

- Reiser M. The Oberon System. Addison-Wesley 1991

- Reiser M. and Wirth N. Programming in Oberon, Steps beyond
Pascal and Modula. Addison-Wesley, ACM Press 1992

Rubin K.S. and Goldberg A. Object behavior analysis, CACM 9
(1992)

Voss G., Object-oriented programming, McGraw-Hill 1991

13.4 Concurrent and Real-Time Programming

Levi 8.-T. and Agrawala A.K., Real-Time system design, McGraw-
Hill 1990

Nichols B., Buttlar D. and Proux Farrel J., Pthreads program-
ming, O'Reilly & Associates 1996

Nussbaumer H., Informatique industrielle, vol.2: Introduction 3 I'informatique
du temps réel, Presses Polytechniques Romandes 1986

Schiper A., Programmation concurrente, Presses Polytechniques Ro-
mandes 1986

Sixth College on Microprocessor-based Real-time Systems in Physics 116
Abdus Salam ICTP, Trieste. October 8 — November 3, 2000.

Software Design Bartholdi Paul

13.5 Languages

_ Darnell P.A. and Margolis P.E. C, A Software Engineering Ap-
proach. Springer-Verlag 1991

- Eckel Bruce Thinking in Java. Prentice-Hall 1998
_ Flanagan David Java in a Nutshell. O’Reilly & Associates

- Hanly J.R. and Koffman E.B. Problem Solving and Program De-
sign in C. Addison-Wesley 1996

_ Hunt John Java and Object Orientation, An Introduction. Springer
1999

- King K.N., Modula-2, D.C. Heath and Company 1988

- Lea Doug Concurrent Programming in Java, Design Principles and
Patterns. Addison-Wesley 1997

- Lemay L. and Casdenhead R. g AMS Teach Yourself JAVA 2. Sams
1999

- Qualline Steve Practical C textslO'Reilly & Associates 1993
- Lippman S.B., C++ Primer, Addison-Wesley 1989
_ Borland C++ Documentation, Borland International 1989

- Thorin M. Ada, Manuel complet du langage avec exemples, Eyrolles
1981

_ Winston P. H. and Narasimhan S. On to JAVA. Addison-Wesley
1996

13.6 Unix Tools

- Bolinger D. and Bronson T. Applying RCS and SCCS. O’Reilly &
Associates 1999

- DuBois Paul Type Less, Accomplish More Using csh & tesh. O'Reilly
& Associates 1995

_ Garfinkel S. PGP, Pretty Good Privacy, O’Reilly & Associates 1995

Sixth College on Microprocessor-based Real-time Systems in Physics 117
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000,

Software Design Bartholdi Paul

Kernighan B.W. and Plauger P.J. Software Tools. Addison-Wesley
1976

Miller W. A Software Tools Sampler. Prentice-Hall 1987

Quigley E. UN1x Shells by Examples (Csh, sh, ksh, awk, grep and
sed). Prentice-Hall 1999

Rosenblatt Bill Korn Shell. O’Reilly & Associates 1993

Wall L., Christiansen, T, Schwartz, R. L. Programming Perl
O’Reilly & Associates 1996

Welch B. B. Practical Programming in Tcl and Tk. Prentice-Hall
1997

13.7 RELATIONAL DATABASE

Codd E. F. A Relational Model of Data for large Shared Data Banks.
CACM, 13, No 6, 377-387, June 1970

Codd E. F. Relational Database: A Practical Foundation for Produc-
tivity. CACM, 25, No 2, 109-117, February 1982

Manis R., Schaffer E., J grgensen UNIX Relational Database Man-
agement, Application Developrment in the UNIX Environment. Prentice-
Hall 1988

Parsaye K., Chignell, M., Khoshafian, S., Wong, H. Intelligent
Databases. Wiley 1989

Stonebraker M. The INGRES Papers: Anatomy of a Relational Database
System. Addison-Wesley 1985

Sixth College on Microprocessor-based Real-time Systems in Physics 118
Abdus Salam ICTP, Trieste. October 9 — November 3, 2000.

X Window Programming

Sizth College on Microprocessor-based
Real-Time Systems in Physics

Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

Ulrich Raich
CERN — European Organisation for Nuclear Reseach
P.S. Division
CH-1211 Geneva
Switzerland

email: Ulrich.Raich@cern.ch

Abstract

These lecture notes are intendend to give an insight into Graphical
User Interface (GUI) Programming using X-Window system. It
explains the different layers of X11 and gives a short introduction t0
Xlib.

Motif, the widget set supplied by the Open Software Foundation
(OSF) is used to demonstrate building of more sophisticated GUIs.
Even though only very few routines of the Motif libraries are ex-
plained these notes are sufficient to build a Motif program driving
the ICTP Colombo Board which is proposed as an exercise.

X Window Programming Raich, Ulrich

1 Introduction to X-Windows

X started its life in 1984 at the Massachusetts Institute of Technology
(MIT) with the project Athena. At MIT several hundreds of workstations
were scattered on the campus. They were intended for the use by students
and were rather heterogenous (several different manufacturers, different op-
erating systems). On the other hand most of them had:

e a powerful 32 bit CPU

e large address space

e a high resolution bitmapped display
e 3 mouse on some of them

e a network connection.

The idea was therefore to provide a window system allowing to write
vendor independent applications, that could run on any of these stations. In
addition, it should be possible to access applications on any of the worksta-
tions from any other workstation using the network. Of course performance
was another keyword in the design.

Since the lecture time for X—~Windows programming is fairly limited
(there are some 10 books of 700 pages each explaining the X—Windows
system!) we prepared this little booklet, which contains both an explanation
of some basic features of the system and all the calls you will need for the
exercises as well. In the course of the lectures and exercises you will build a
little X—Windows application simulating the Colombo board on the screen
and interact with it.

1.1 Client—Server Model

To write device-independent applications, the details of device access must be
hidden in some sort of driver. In X this is a program called the X-Server.
It provides all the basic windowing mechanisms by handling connections
from X-applications, demultiplexing graphics requests and multiplexing in-
put from keyboard, mouse, etc back to the application. This program is
usually provided by the hardware vendor.

An application connects to the X—Server through an interprocess com-
munication (IPC) path either through shared memory or through a network
protocol like TCP. Such an IPC path is called the X-Client. Since most
applications open only a single connection we often call the application it-
self the X—Client. However: an application having several IPC paths open
is considered as several clients. The communication protocol between an
X-Client and an X-Server is called X-Protocol.

Sixth College on Microprocessor-based Real-time Systems in Physics 121
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

 aml sk R adee mls

X Window Programming Raich, Ulrich

One of the main design objectives of this protocol was to minimize the
network traffic, because the network must be considered the slowest system
component. Therefore an asynchronous protocol has been chosen. To bring
windows up on the screen the application simply sends off requests without
waiting for an acknowledgement. This can be done because of the reliability
of the underlying network protocol. The application also does not poll for
events like key presses and mouse button presses. It registers interest in
certain events with the X-Server, which will then send only relevant events
back to the application. Both the output requests and input events are
buffered.

The X-Protocol is the fundamental layer onto which other tools can be
built. It is user interface policy free. This means that windows are only rep-
resented as simple rectangles on the screen without any semantics. Buttons,
pulldown-menus scrollbars don’t exist in this layer. These so-called widgets
are implemented in a toolkit sitting on top of the protocol.

The XLib contains routines that allow access to the X—Protocol. It pro-
vides the following functionality:

¢ display management (open, close displays)

¢ window management (create/destroy windows and change their vi-
sual aspect)

¢ two dimensional graphics (draw lines, circles, rectangles, text)

¢ colour management (colour map and its access routines)

» event management (registration of interest in events and event re-
ception)

This gives us an overview over the next few chapters.

In Figure 1 we can see three X~Clients running on three different ma-
chines (A,B,C) and communicating with a single X-Server (on system C).
For the clients on A and B the X-Protocol runs over the network, while for
the text editor a shared memory IPC path is used.

1.2 Display Management

In order to create windows on the screen and to receive events a connection
to the display must be established. In X terminology the display consists of:

® Ohe Or INore screens,

¢ a single keyboard,

e an (optional) pointing device,
o the X-server

Sixth College on Microprocessor-based Real-time Systems in Physics 122
Abdus Salam ICTP, Trieste, October 9 — November %, 2000

s caae ol LI T ET" T TEE OB O3 W T - - — T T T e = == - ——

X Window Programming Raich, Ulrich

System A System B
Beam CAD
Simulation Program
Xlib Xlib
Server Server
Quene Queue

Text Editer
Xlib —=_| X Server
Server Queue X Protocol
|
System C

D Screen

(ZE==7) Keyboard

Mouse

Figure 1: Client—Server Model

This connection can be built through the XLib call:

Display*XOpenDisplay (char *display_name)

If display name==NULL the displayname defaults to the value stored in
the environment variable DISPLAY. If you want to open the server on your
neighbour’s workstation, he will first have to allow you access to it:

xhost name_of your_station,
then you may define display-name as
his_station:server_number.screen_number
usually server_number.screen_number is 0.0,

Sixth College on Microprocessor-based Real-time Systems in Physics 123
Abdus Salam ICTP, Trieste, October 9 - November 3, 2000

X Window Programming Raich, Ulrich

The return value from this call must be saved, because it will be passed
into all subsequent calls. In case of an error a NULL display is returned.

There are several Macros giving information about screen properties.
Here are two of them:

e int DisplayHeight (Display *display, int screen_number):
e int DisplayWidth (Display *display, int screen_number):
giving the width and the height (in pixels) of the screen.

1.3 Windows Hierarchies

Once the Client-Server connection is established, we can generate our first
windows:

Window XCreateSimpleWindow (
Display *display,
Window parent,

int XY,
int width, height, border_width,
int x,y, /* position with respect */

/* to the upper left corner */

/* of the parent window */
unsigned int width,height,border_width,
unsigned long border_color,background_ color)

X, ¥, width, height and border width do not need any explanation,
background_color specifies the background colour. Because colours will only
be explained later we will put this to:

unsigned long WhitePixel (Display *display,int screen)
where WhitePixel is a Macro returning the pixel value for white. X11 is
able to support several screens with a single server. The default screen (we
only have a single screen which of course is the default one to be used) can
be found with
int DefaultScreen (Display *display)

The border_color parameter specifies the colour for the window border

and is set to:

unsigned long BlackPixel (display, int screen);

Sixth College on Microprocessor-based Real-time Systems in Physics 124
Abdus Salam ICTP, Trieste, October 9 - November 3, 2000

X Window Programming Raich, Ulrich

The parent parameter will need some more explanation: All windows are
inserted into a window hierarchy, where each window has a parent window.
The great-grandfather of all windows is the root window who’s id can be
obtained by:

Window RootWindow (Display *display, int screen)
The root window

e covers the screen completely;

e cannot be moved or resized;

e is the parent of all other windows;

e has all window attributes like background colour, patterns, etc.

You can draw onto the root window as on to all other windows.

At this point an example will probably help more and further explana-
tions. Here is a piece of code demonstrating the above calls and Macros
which will create a single window. Please take note that this program is
incomplete and will not bring the window up onto the screen yet.

/**/

/* EXAMPLE 1 for XLIB */
/* */
/* How to open a connection to a display, and create a window.*/
/* U. Raich 26-Nov-2000 */

/**[

#include <stdio.h>
#include <X11/X1lib.h>

main(argc,argv) unsigned int argc; char *argv(]; {

Display xdisplay;

Window main_window;

int screen;

int X,y ,width,height ,border_width;
unsigned long background_color,border_color,
/*

Open the connection to the X-server
The Null server name defaults to the display name
defined in the environment variable DISPLAY, which

Sixth College on Microprocessor-based Real-time Systems in Physics 125
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming Raich, Ulrich

usually is setup to the station running the client
(client and server on the same machine).

display = XOpenDisplay(NULL);

if (display == NULL) {
fprintf(stderr,”Sorry, I could not open the Display.\n");
exit(i);

X

/*
get color pixel values (see chapter on colors)
for foreground and background namely black & white

border_color =BlackPixel(display,DefaultScreen(display));
background_color=WhitePixel(display,DefaultScreen(display));

define position, width and height of the window

x=50; y=50; width=200; height=100; /* all this in pixels */
border_width = 1;

/*
get the screen number of the default screen (normally zero)

*/
screen = DefaultScreen(display);

/*
Create a window (the window does not appear on the screen yet)
The ’rootwindow’ is the parent of all other windows and covers
the entire screen.

main_window = XCreateSimpleWindow(
display,
RootWindow(display,screen),
X,y,width,height,border_width,
border_color,
background_color);

Sixth College on Microprocessor-based Real-time Systems in Physics 126
Abdus Salam ICTP, Trieste, October § — November 3, 2000

X Window Programming Raich, Ulrich

The return value from XCreateSimpleWindow is used to build the
window hierarchy. In Figure 2 a complete window hierarchy is shown. Since
all windows are clipped to the boundaries of their parents some of the win-
dows may be completely invisible.

A Main Window B Main Window C Main Window

N

D Child Window E Child Window

Root Window A
B
E
D
C
1 clipped

1 Root Window
1 visible part of window

Figure 2. Window Hierarchies

After the XCreateSimpleWindow all the data structures needed for
the management of the window will be created; however the window will still
not be visible.

XMapWindow (Display *display, Window window_id)
will map the window and all of its subwindows, for which the XMapWindow
routine has been called. Here is the code that is missing in the above program
in order to make it work and bring the window up on the screen.

Sixth College on Microprocessor-based Real-time Systems in Physics 127
Abdus Salam 1CTP, Trieste, October 9 - November 3, 2000

X Window Programming Raich, Ulrich

/*
here is, what was missing in the first program:
*/
/*
in the declaration part:
*/
XEvent event;
/*
at the end of the code:
*/
XMapWindow(display,main_window) ;
/*
don’t worry about this part of the code, we will see this in
quite some detail later
*/
for(;;)
XNextEvent (display,&event) ;

As you have hopefully learned in the meantime, Makefiles are a must for
every serious Unix programmer, therefore we also give the Makefile written
for the above program. Notice how simple such a Makefile can be!

Makefile for a simple X-11 program
U. Raich 26-Nov-2000

CFLAGS = -g -T.
LDFLAGS = ~L/usr/X11R6/1ib -1X11
CC=gcce

all: example_1 example_1_complete

Once the window is mapped, there are several XLib calls to change its
layout:

* XMoveWindow (Display *display, Window window_id,
int x offset, int y_offset)
* XResizeWindow (Display *display, Window window_id,
int width, int height)
¢ XMoveResizeWindow (Display *display, Window window_id,
int x.offset, int y-offset,
int width, int height)

Sixth College on Microprocessor-based Real-time Systems in Physics 128
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

PRl R+ BT e Am — R~ e e o

X Window Programming Raich, Ulrich

¢ XSetWindowBorderWidth (Display *display,
Window window_id,
int border_width)
e XSetWindowBackground (Display *display,
Window window_id,
unsigned long background.pixel)
¢ XChangeWindowAttributes (Display *display,
Window window_id,
unsigned long value mask,
XSetWindowAttributes
*attributes)

and many more.

The last call allows to change any of the window attributes in a single
call. Attributes is a XSetWindowAttributes structure, having a certain
number of fields. The valuemask tells the system, which of the attribute
fields are to be taken into account. Only these values will be changed. It is
a bitwise inclusive OR of the valid attribute mask bits (see Table 1).

Using this mechanism windows may also be created with:

window XCreateWindow (Display *display,
Window parent,
int x, int y,
unsigned int width, unsigned int height,
unsigned int border width,
unsigned long valuemask, int depth,
unsigned int class, Visual *visual,
XSetWindowAttributes *attributes)

For depth, class and visual try to specify CopyFromParent and have a
look at the man page. If in the situation of Figure 2 we would call

XUnmapWindow (display, Bmain.window)

the window B and all of its subwindows (D and E) would disappear. Figure 3
shows the results of such a Map call for a single main window.

It has been explained before, that a window simply consists of a rectangle.
Here on the contrary many more items like the three buttons on top of the
window, the stars, the triangles on each corner, etc. can be seen. The layout
and the functionality depend on the look and feel (the policy) of the window
system. It is another X-Client, the window manager, which is responsible

Sixth College on Microprocessor-based Real-time Systems in Physics 129
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programring Raich, Ulrich

| Mask | Structure |
anything
valid
valid
anything
— anything
valid

I

e E=1E=1 ==

Table 1: Structure and Value Mask

for the decoration of the main window (child of root window). It allows to
change the stacking order of windows, displace and resize windows, iconize
them and even killing them (and the application).

The XLib provides calls to communicate easily with the window manager
to modify the decorations like this one:

XStoreName (Display *display,
Window window_id,
char *title_bar_text)

This call communicates the title to be put into the title bar by the window
manager. The communication is done through the Inter Client Communica-
tion Convention (ICCCM, here M means Manual) using so called window
properties, which are data that can be attached to a window. We will not be
able to go into any detail for lack of time.

1.4 Drawing, the Graphics Context

Let us have a look at the simplest possible drawing instruction: create a line
between two points. The line may be done with the call

XDrawLine (Display *display, Drawable drawable,

GC graphics_context,
int x-start_point,int y_start_point,
int x_end_point, int y_end_point)

The meaning of all parameters except drawable and graphics_context
should be obvious. The drawable tells the system where to draw. In fact,
there are two possibilities. Either we draw into a window on the screen or into

Sixth College on Microprocessor-based Real-time Systems in Physics 130
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming Raich, Ulrich

drag

drag drag top
corne corner
title bar
standard
d option iconize d
rag { menu button maximize rag
side ! button side
drag ///
corner drag bottom drag
corner

Figure 3: A Main Window

a window simulated in memory, called a pixmap (Details about pixmaps are
found in section 1.5). Remember the root window is treated like any other
window, thus it is possible to generate background pictures by drawing in
the root window.

Coming back to our draw line primitive: when drawing the line several
questions remain open:

e what is the line width?
¢ what colour?

e straight line or dashed, dotted, ..., what are the distances between
dashes?

e how to join lines?

and there are many more drowing atiributes.

Since it is the X-Client who generates these graphic requests and it is
the X-Server who executes them, sll attributes must be sent to the server.
This could be done on a per primitive basis, however network traffic would be
strongly increased and the performance would suffer. For this reason graphics
contexts containing all these attributes can be prepared on the server. In the
drawing call the identifier of the graphics context resident on the server is
specified.

Sixth College on Microprocessor-based Real-time Systems in Physics 131
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming Raich, Ulrich

The Call XCreateGC creates a graphics context.

GC XCreateGC (Display *display,
Drawable drawable,
int value_mask, XGCValues *values) ;

The value structure of type XGCValues has over 20 entries. In table 2

some of the entries and their corresponding value_mask bit names are given.

For instance, to create a graphics context that allows drawing of a dashed
line with width 4, it is possible to use the following code segment:

XGCValues values;
unsigned long value_mask;
GC graphics_context;

/* setup the value mask */
value mask = GCLineStyle | GCLineWidth;
/* define the field indicated in mask */

values.line style = LineOnOffDash:
values.line width = 4; /* width of the line */
graphics_context = XCreateGC

(display, main_window, value mask, values);

All other GC values will be defaulted. Another way is to generate a
default GC using the call

DefaultGC(display, screen,_number) ;

and then use

XChangeGC (display, graphics_context, value, value_mask);
to do the necessary changes.

There are also lots of convenience functions changing a single entry in the
value structure:

¢ XSetForeground (Display *display,
GC graphics_context,
unsigned long foreground);

* XSetBackground (Display *display,
GC graphics_context,
unsigned long background);

* XSetLineAttributes (Display *display,
GC graphics_context,

Sixth Coliege on Microprocessor-based Real-time Systems in Physics 132
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming

Raich, Ulrick

r

Entry [value_mask bit

| usage and possible values

|

values line.width G CLineWidth

Type of line to draw

values.line.style GCLineStyle

LineSolid
LineDoubleDash

draw full line
odd lines full
differently from
even lines

only even dashes
are drawn

LineOnOffDash

values.cap_style GCCapStyle

How to drew
CapButt

the end point:

line square at the
end point

as CapButt, but the
last point is not
drawn

as CapButt, but the
line is longer half
the projection
CapRound round and points

CapNotLast

CapProjecting

values.join.style GCloinStyle

How to join fat lines:

outer edges extend
to meet at an angle
corner is cutt off
round off edges

JoinMiter

JoinBevel
JoinRound

values.fill_style GCFillStyle

FillSolid uses foreground
colour for filling
uses a loloured tile
patiern

same as FillSolid
but uses a stipple
pattern bitmap

as the mask

same as FiliTiled
but uses a stipple
pattern as the mask

in addition

FillTiled

FillStippled

FillOpaqueStippled

values.function GCFunction

logical operation for drawing
possible values see later

values.foreground GCForeground

foreground colour

values background | GCBackground

guess what!

values.tile GCTile

tile pizmap

values.stipple GCStiple

stipple bitmap

values.clip_-mask GCClipMask

clip mask

values.ts_x_origin GCTileStipXOrigin

shifting the tile of stipple patiern oTigings

values.ts.y-origin GCTileStipY Origin

the same for ¥

values.font GCFont

font for text drawing

Table 2: Some of the X GC Values

Sixth College on Microprocessor-based Real-time Systems in Physics
Trieste, October 9 — November 3, 2000

Abdus Salam ICTP,

133

X Window Programming Raich, Ulrich

unsigned int line width,
int line style, int cap._style,
int join_style);

XSetDashes (Display *display,
GC graphics_context,
dash_offget,
char dash_list{], int n);

XSetFillStyle (Display *display,
GC graphics_context,
int fill_ style);

XSetTile (Display *display,
GC graphics_context,
Pixmap tile);

XSetStipple (Display *display,
GC graphics_context,
Pixmap stipple);

XSetClipMask (Display *display,
graphics_context, Pixmap clip mask);

e XSetFont (Display *display, GC graphics_context, Font font);

and many more. Figure 4 shows the result of these graphics context manip-
ulations.

Last but not least there is an entry values.function which sets the binary
function that is applied to the existing pixel value when drawing on the screen
(src is the pixels to be drawn newly, dest is the actual pixel value)

e GXClear 0

e GXand src and dest

e GXandReverse src and (not dest)

o GXcopy sre (this is the default of course!)
¢ GXnoop dest

» GXxor src xor dest

¢ GXnor (not src) and (not dest)

o GXequiv {not src) xor dst

e GXinvert not dst

e XorReverse src or (not dest)

o GXcopylInverted not src

Sixth College on Microprocessor-based Real-time Systems in Physics 134
Abdus Salam ICTP, Trieste, October 9 - November 3, 2000

X Window Programming Raich, Ulrich
e GXorInverted (not src) or dst
¢ GXnand (not src) or (not dest)
e GXset 1
i - I -
Laf

Loy o oo
- — G — .}

Figure 4: The Graphics Context

1.5 Bitmaps and Pixmaps

In the previous section we were talking about pixmaps as drawables for draw-

ing primitives. Therefore the questions:

¢ What exactly is a pixmap?
e What is the difference between a bitmap and a pixmap?
e How can we generate pixmaps?

As already explained before, a pixmap is a sort of a simulated window
in memory. As long as we work on a black and white workstation we need

Sixth College on Microprocessor-based Real-time Systems in Physics
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

135

X Window Programming Raich, Ulrich

1 bit for each pixel to be displayed. An array, describing such a pixelplane
is called a bitmap. Once we use a color display several bitplanes are needed
depending on the number of colors, that can be displayed. This collection of
bitmaps with a certain depth is called a pizmap.

An empty pixmap can be allocated with the call:

Pixmap XCreatePixmap (Display *display,
Drawable drawable, int width, int height, int depth)

The pixmap will be stored on the X—Server, which is the reason for the draw-
able parameter. Just specify the id of your main window. Once you allocate
the pixmap you can use it as drawable in any of the drawing primitives. In
order to visualize your pixmap you must copy its contents onto a window:

XCopyArea (Display *display,
Drawable source._drawable, Drawable dest_drawable,
GC gc, int src.x, int src.y,
unsigned int copy.-width, unsigned int copy_height,
int dest_x, int dest.y);

If you have a bitmap which you want to convert to a pixmap or simply
visualize on a color display you use:

XCopyPlane (Display #*display,
Drawable source_drawable, Drawable dest._drawable,
GC gc, int srcx, int src.y,
unsigned int copy_width, unsigned int copy_height,
int dest_x, int dest_y, unsigned long plane);

with plane =1 (bitmap).

Of course it might be rather difficult to build up bitmaps using only
drawing primitives. For this reason X provides a utility, the bitmap editor.
The command bitmap will bring up the application shown in fig. 5.

The result of the editor is a C source file which can be included into you
application:

#define smiley_width 11

#define smiley_height 11

static char smiley_bits[] = {
0xf8, 0x00, 0x04, 0x01, 0x02, 0x02,
0xd9, 0x04, 0xd9, 0x04, 0x01, 0x04,
0x21, 0x04, 0x89, 0x04, 0x72, 0x02,
0x04, 0x01, 0xf8, 0x00};

Sixth College on Microprocessor-based Real-time Systems in Physics 136
Abdus Salam ICTP, Trieste, October 3 — November 3, 2000

X Window Programming Raich, Ulrich

; : I i

et g ¥

|

i psmmarssmmmamass s v e toss

Filled Rectangle)

P T T T

T e sty
Filled Circle

Figure 5: The Bitmap Editor (bitmap)

This code can be used to create a pixmap:

Pixmap XCreatePixmapFromBitmapData (
Display *display, Drawable drawable, char *smiley.bits,
unsigned int smiley-width, unsigned int smiley.height,
unsigned long foreground, unsigned long background,
unsigned int depth);

In order to find the number of bitplanes used by the visual (our display
hardware) the macro

DefaultDepth (Display *display, int screen)
can be used. The same result can be obtained by reading in the bitmap file
directly.

Sixth College on Microprocessor-based Real-time Systems in Physics 137
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming Raich, Ulrich

int XReadBitmapFile(Display *display, Drawable drawable,
char #*bitmap file name,
unsigned int *width, unsigned int *height,
Pixmap *bitmap, int *hot_x, int *hot_y);

hot_x, hot_y give the coordinates of the hot spot used for cursors. Now the
bitmap can be converted to a pixmap with the XCopyPlane call.

There is also a freely distributable library and a pixmap editor which
can be used to generate pixmaps (in colour) directly. (Try pixmap on your
machine!)

Pixmaps are used for cursors, tiles, stipples, icons etc. They can also be
used to restore pictures which have been destroyed by overlapping windows
(see section on events).

1.6 Drawing Primitives

X-Window is NOT a graphics system! This can be easily seen by the
limited number of graphics primitives and by their simplicity:
There are a few functions to clear out an area to be drawn in

e XClearArea (Display *display, Window window_id,
int x, int y,
unsigned int width, unsigned int height,
Bool exposures);
e XClearWindow (Display *display, Window window_id);
¢ XFillRectangle(Display *display, Drawable drawable,
GC graphics_context, int x, int y,
unsigned int width, unsigned int height) ;

While most graphics primitives work on a drawable, XClearWindow and
XClearArea work only on windows.
Here are the primitives which actually draw graphic objects:

¢ XDrawPoint (Display *display, Drawable drawable,
int x, int y);

¢ XDrawPoints(Display *display, Drawable drawable,
Point *points, int n_points, int mode):

where points is an array of type

typedef struct {

short x, y;
} XPoint ;

Sixth College on Microprocessor-based Real-time Systems in Physics 138
Abdus Salam [ICTP, Trieste, October 9 — November 3, 2000

X Window Programming Raich, Ulrich

n_points means the number of XPoint entries in the array points, and
mode = CoordModeOrigin (x,y is given in absolute pixel coordinates);
or
mode = CoordModePrevious (x,y are the relative distances to the last
point)

e XDrawLine (Display *display, Drawable drawable,
GC gc, int x1, int yl, int x2, int y2);
e XDrawLines (Display *display, Drawable drawable,
GC gc, Point *points, int npoints, int mode);
e XDrawRectangle (Display *display, Drawable drawable,
GC gc, int X, int vy,
unsigned int width, unsigned int height);
e XDrawRectangles (Display *display, Drawable drawable,
GC gc, Rectangle *rectangles,
int nrectangles);

where rectangles is an array of type

typedef struct {

short X, V;
unsigned short width, height;
}XRectangle;

e XFillRectangle (Display *display, Drawable drawable,
GC gc, int x, int vy, unsigned int width,
unsigned int height);
e XFillRectangles (Display *display, Drawable drawable,
GC gc, Rectangle xrectangles,
int nrectangles);

and there are some more for drawing arcs, segments, etc.

With all this theory let’s have a look at a very simple example again:
The following program will display a set of 50 random lines in our previously
mapped window. The call to XSelectInput and the fact that the drawing is
down after the XNextEvent will again be explained later (section on events).

#include <stdlib.h> /* needed for the random number generator */
#define WINDOW_WIDTH 200
#define WINDOW_HEIGHT 100

Sixth College on Microprocessor-based Real-time Systems in Physics 139
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming Raich, Ulrich

/*
here we do some drawing, just a series of random lines
*/
GC gc;
int i,x1,x2,y1,y2;
/*
new program ... new name!
*/
XStoreName (display,main_window, *Uli’s very first X-11 program");
/*
first define the graphics context
*/
gc = DefaultGC(display,screen);
/*

Sorry, that one you will have to believe me for the moment
again, we will see the call later

*/
XSelectInput(display,main_window,ExposureMask);

/*
then do the drawing

for(;;)
{
XNextEvent(display,&event);
XClearWindow(display,main_window);

for (i=0;i<50;i++)
{
xl

yl

rand () 4WINDOW_WIDTH;

rand () %WINDOW_HEIGHT;

x2 rand()%WINDUW_WIDTH;

y2 rand()%WINDDW_HEIGHT;
XDrawLine(display,main_window,gc,x1,y1,x2,y2);

Sixth College on Micraprocessor-based Real-time Systems in Physics 140
Abdus Salam ICTP, Trieste, October 9 - November 3, 2000

EEO HEE e o L ar e (x) W = ——— e - semmems _

X Window Programming Raich, Ulrich

For text drawing lots of different fonts are available. The command xlIsfont
prints the names of all available fonts. If you want to know how the font
looks like, try xfontsel. The font names are standardized as follows:

-adobe-times-bold-r-normal--14-140-75-75-p-77-is08859-1
ISO
L— character set
avarage
width

Spacing:
p - proportional
m - mono

vertical resolution
in dots per inch (dpi)

horizontal resolution
in dots per inch (dpi)

font size in 1/10 of dot.
A dot = 1/72 of inch.

font size in pixels

slant 7" regular
o - obfigue

. medium
weight 14

font family

foundry

Figure 6: Naming X fonts

First the font should be loaded with
Font Font XLoadFont (Display *display,char *f ont_name) ;

then the font must be specified in the graphics context and last but not
least we can draw our text using

XDrawString (Display *display, Drawable drawable, GC gc,
int x, int y, char *string, int length);.

Sixth College on Microprocessor-based Real-time Systems in Physics 141
Abdus Salam ICTP, Trieste, October 9 - November 3, 2000

X Window Programming Raich, Ulrich

It is also possible to fill an array of text items:

typedef struct {
char *chars;
int nchars;
int delta;/* distance between strings, is */
/* added to horizontal origin */
Font font;
}XTextItem

and use

XDrawText (Display *display, Drawable drawable, GC ge,
int x, int y, XTextItem *item_ array, int nitems);

which allows drawing of multiple font text strings.

1.7 Colour Model

The hardware for color displays varies very widely depending on the needed
graphics performance of the system. Since X is supposed to be hardware
independent, there must be a common color model that can be converted for
the different devices. X knows of the following hardware types, referred to
as visuals:

e Pseudo colour
This used to be the most common type of device. The image is de-
scribed through a pixel array, where each pixel is interpreted as an
index into a colour table, containing the r,g,b values sent to the screen.

e Static colour
Like pseudo colour, except that the values in the colour map are read
only

¢ Direct colour
The pixel is composed of 3 bit fields, each of which is used as an index
into one of 3 R, G, B colour maps. The values in the three colour
maps can be changed

e True colour
As the name proposes, here the color components for each pixel are

Sixth College on Microprocessor-based Real-time Systems in Physics 142
Abdus Salam ICTP, Trieste, October & — November 3, 2000

e o R A R et b T R B W W — - o o

X Window Programming Raich, Ulrich

usually 8, it means
1 = _depth 3)
0 Y o256 possible colours
N%\
:‘:--\-\\
Pixel: 5
colour map is
reacl/write
RIG|B
o
1
1o
display
hardware — = N 5 .
L 7

Figure 7: A Pseudo Color Device

directly specified. In this case we typically need 3 (components) times
8 bits of video memory for each pixel. For a 1024*1024 screen we
therefore need minimum 3 MBytes of memory. While a few years ago,
due to cost reasons these types of graphics cards were only used in very
costly graphics workstations, it is the most common model nowadays.
Since the colors are directly specified 24 bits of the pixel value (pixels
are longs!) the indirection through a color map is not needed here.

Grey scale
As the pseudo colour. There are still three colour maps but only one
of them is used

Static grey
Like grey scale, but colour map is readonly and linear

An X application can install its own colour map, but it will then dis-
turb other applications running on the same screen, because their colours
will be wrong. The colour maps are switched depending on input focus. So
normally a single default colour map is used. We can get an identifier to it by

Colormap DefaultColormap (Display display, int screen_number) ;

Sixth College on Microprocessor-based Real-time Systems in Physics 143
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming Raich, Ulrich

This colourmap (when the visual depth is 8) usually contains 6*6*6 pre-
programmed colors and 40 freely programmable colour cells.
To allocate colour cells in the colour map there are two possible methods.

1 allocating readonly colour cells:
These cells are shared between applications and are allocated by colour
name

X AllocNamedColor (Display *display,
Colormap colormap,
/* usually DefaultColormap(display,screen)+/
char *color_name,
XColor *closest_color, XColor *exact_color) ;

2 allocating read/write colour cells (only for Pseudocolor visuals):

X AllocColorCells (Display *display,
Colormap colormap
contig flag, &plane _masks,
n.planes, &pixels, n_pixels);

We can then use

XStoreColor (display,
DefaultColormap(display, screen_number) ,
my_colour)

to store a color into the default colourmap.

While X AllocNamedColor can be used for all color visuals X AlioeCol-
orCells and XStoreColor will only work on Pseudocolor devices.
The structure

typedef struct {
unsigned long pixel;
unsigned short red, green, blue;

char flags; /*DoRed | DoGreen | DoBlue */
char pad;
} XColor;

Sixth College on Microprocessor-based Real-time Systems in Physics 144

Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming Raich, Ulrich

describes a colour. The red, green, blue values are always in the range of
0-65535 and are scaled to the number of bits actually in use by the display
hardware. Flags allow to use only the red, blue, or green component (or
any combination thereof).

Most graphics routines ask for a pixel value. When allocating read-only
colour cells, a colour structure is returned (closest_color) and the pixel
entry in this structure (closest.color.pixel) can be used. In XAlloc-
ColorCells, the pixel values are returned directly. On Truecolor devices we
will define the colors directly within 24 bits of the pixel value.

Here is an example that shows a part of the rgb database file.

255 250 250 snow

248 248 255 ghost white
248 248 255 GhostWhite
246 245 245 white smoke
245 245 245 WhiteSmoke
220 220 220 gainsboro

255 250 240 floral white
265 250 240 FloralWhite
263 245 230 old lace

253 245 230 OldLace

250 240 230 linen

250 235 215 antique white
250 235 215 AntiqueWhite
255 239 213 papaya whip
255 239 213 PapayaWhip
255 235 2056 blanched almeond
255 235 205 BlanchedAlmond
255 228 196 bisque

265 218 185 peach puff
255 218 185 PeachPuff

285 222 173 navajo white
285 222 173 NavajoWhite
255 228 181 moccasin

255 248 220 cornsilk

255 265 240 ivery

255 250 205 lemon chiffon
255 250 2056 LemonChiffon
265 245 238 seashell

240 255 240 honeydew

245 255 250 mint cream
245 255 250 MintCream
Sixth College on Microprocessor-based Real-time Systems in Physics 145

Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming Raich, Ulrich

1.8 Event Handling

Once the client-server connection is opened the X-Client sends requests for
bringing up windows, changing them, drawing things into them etc, but the
X-Server can also inform the X-Client of certain events like exposure of a
window, mapping of a window or user initiated, asynchronous events like
mouse clicks or keyboard button presses. Due to the enormous amount of
possible events (think of mouse movement only!) and the relatively small
number of events the X-Client is actually interested in, it is much more
efficient to filter the events on the server side. Before treating any events the
X-Client must therefore register interest in a certain type of event on a per
window basis.

mouse
display
L0 LT L L
4%
f
butto.
keyboard uron pres
vents
expose
events

Keyboard
event;

rd , I |
Client Server
event mask event mask
window A events

Figure 8: Events in a Client-Server Model

Sixth College on Microprocessor-based Real-time Systems in Physics 146
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming _ Raich, Ulrich

The general layout of an X-Client is therefore given by the diagram below:

Initialize
connect to
X-server

Y

Create and
map
windows

Y

register

interestin
events

Y

MainLoop

AN

Service Service Service Service

event one event two event three event four

While in the ”usual” programming style the program asks for user input
at the moment it is needed and convenient (the program controls the user!) in
X-Windows programs the user can change the flow of control in any manner
choosing functions provided by the program in a completely random manner.

There are two possible ways for the X-Client to register interest in events:

1 at the moment of window creation we can set the entry event_mask
and the corresponding bit CWEVENTMASK in the value mask to
the event types we are interested in;

2 XSelectInput (Display display,
Window window_id, long event_mask);

If one of the selected events arrives at the X-Server (say a mouse click) it
sends this event into the X-Clients event buffer. There the main loop can
pick it up and analyse it.

Sixth College on Microprocessor-based Real-time Systems in Physics 147
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming

Raich, Ulrich

The call

XNextEvent (Display display, XEvent *event);

retrieves the next event from the event queue and blocks if no events are

available.

The XNextEvent returns an XEvent structure of the following form:

typedef struct {

int type;
unsigned long serial;
Bool send_event ;
Display *display;
Window window;
} XAnyEvent;
typedef union { int type;
XAnyEvent Xany;
XButtonEvent xbutton; --- many more --
XExposeEvent xexpose; --- many more ---
XKeyEvent xkey,
XMapEvent Xmap; --- many more ---

} XEvent;

From the event.type we can find out which sort of event has happened.
The following table gives a few examples. The event mask enabling reception
of the event type and the symbol for the event type are given.

| Event Mask Event Type | Event Structure
KeyPressMask KeyPress XKeyPressedEvent
KeyReleaseMask KeyRelease XKeyReleasedEvent
ButtonPressMask ButtonPress XButtonPressed Event
ButtonReleaseMask | ButtonRelease | XButtonReleased Event
PointerMotionMask | MotionNotify | XPointerMovedEvent,
LeaveWindowMask | LeaveNotify XLeaveWindowEvent
EnterWindowMask | EnterNotify XEnterWindowEvent
ExposureMask Expose XExposeEvent

In the above example Ezpose events need to be enabled for each of the sub-
windows and ButtonPress events must be enabled for the up/down arrows
and the exit button.

148

Sixth College on Microprocessor-based Real-time Systems in Physics
Abdus Salam ICTP, Trieste, October & — November 3, 2000

¥ Window Programming Raich, Ulrich

When drawing into a window using the X drawing primitives, the win-
dow must already be mapped onto the screen and all window properties like
position, size, id ... must be known. Since the visualization is done by the
X-Server there is a problem of synchronization. Therefore we usually cre-
ate and map the windows to be drawn in during the program initialization.
Interest in Ezpose events are declared as well. As soon as the X-Server has
mapped the window (all information on the window is available) an expose
event is generated. The drawing then goes to the expose event handler. The
XExposeEvent structure has the following form:

typedef struct {int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
int X, ¥,
int width, height;
int count;

} XExposeEvent;

The x, y, width, height parameters in the structure describe a rectangle
of pixels which must be redrawn. As can be seen in the Figure 9 below,
redrawing of several rectangles may be needed. The count entry indicates
how many more such expose events are going to follow. The easiest method to
treat these events discards all expose events with nonzero count and redraws
the full window on the last (count=0) expose event.

If the window size does not change, we can put our drawing into a pixmap
of same size as the window and on expose events copy the pixmap onto the
window using XCopyArea.

This diagram shows the rectangles to be updated if the calculator is
brought into foreground

In order to demonstrate the above principles: color and event handling,
the drawing example program has been re-written in such a way that firstly
the random lines get colored and secondly the lines are drawn only once
into a pixmap and then rendered on the window each time an expose event
arrives. Note that in the original example the lines change each time we
move the window or we cover/uncover it. In the new program this problem
is absent. Up to the XSelectInput call the program remains the same except
for inclusion of the math library needed, for the calculation of random colors,
and the transfer of some local variables into global ones, needed for the
subroutine that calculates the lines. Since this is the final version of our X
program the full source code is given here. Please note that pressing a mouse

Sixth College on Microprocessor-based Real-time Systems in Physics 149
Abdus Salam ICTP, Trieste, October 9 - November 3, 2000

X Window Programming Raich, Ulrich

Colombo Board Simulator

xclock _
width
%. S
Zh
Z
height R
Z
Zh
* |

——widh ——

xcalc

Figure 9: Expose Events

button on the window will erase the lines previously drawn and will calculate
and display a new set of lines.

Bixth College on Microprocessor-based Real-time Systems in Physics 150
Abdus Salam ICTP, Trieste, October 9 - November 3, 2000

X Window Programming Raich, Ulrich

/***/

/* EXAMPLE 4 for XLIB */
/* How to open a connection to a display, and create a window. */
/* */

/***/

#include <stdio.h>

#include <X11/X1ib.h>

#include <stdlib.h> /% needed for the random number generator */
#include <math.h>

#define WINDDW_WIDTH 300
#define WINDOW_HEIGHT 150

Display *display;

int screen,

Window main_window;
Pixmap backingStore;

int depth;

int x,y,width,height;
GC ge;

void drawRandomlLines () ;

main(argc,argv) unsigned int argc; char *argv(l; {

unsigned long background_color,border_color,border_width;
XExposeEvent event;

/* Open the connection to the X-server
The Null server name defaults to the display name defined
in the enviromment variable DISPLAY, which usually is
setup to the station running the client (client and server
on the same machine).

*/

display = XOpenDisplay (NULL);

if (display == NULL) {
fprintf(stderr,"Sorry, 1 could not open the Display.\n");
exit(1);

b

Sixth College on Microprocessor-based Real-time Systems in Physics 151
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

e etk e ait e B, @

X Window Programming Raich, Ulrich

/*
get color pixel values
for foreground and background namely black & white

border_color
background_color

BlackPixel(display,DefaultScreen(display));
WhitePixel(display,DefaultScreen(display));

fl

/*
define position, width and height of the window
*/
x=50; y=50;
width=WINDOW_WIDTH;
height=WINDOW_HEIGHT; /* all this in pixels */
border_width = 1;
/*

get the screen number of the default screen (normally zero)
screen = DefaultScreen(display);
Create a window (the window does not appear on the screen yet)

The ’rootwindow’ is the parent of all other windows and covers
the entire screen.

*/
main_window = XCreateSimpleWindow(
display,
RootWindow(display,screen),
x,y,width,height,border_width,
border_color,
background_color);
/*
new program ... new name!
*/

XStoreName(display,main_window,"Demonstrating Expose Events");
XMapWindow(display,main_window) ;

/*

first define the graphics context
*/

gc = DefaultGC(display,screen);
/*

Sixth College on Microprocessor-based Real-time Systems in Physics 152
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

wh

X Window Programming Raich, Ulrich

The XSelectlInput declares the events we are interested in.
ButtonPress events as well as Expose will be passed on to
the client and end up in the event buffer from where
they recuperated by this program using XNextEvent
*/
XSelectInput (display,main_window,
ExposureMaskIButtonPressMask);

depth = DefaultDepth(display,screen);
printf("You have a color device with %d color plames\n”,
depth) ;

backingStore = XCreatePixmap(display,
RootWindow(display,screen),
width,height ,depth);

drawRandomLines ()} ;

/*
don’t worry about this part of the code, we will see this in
quite some detail later

for(;;)
{
XNextEvent (display, (XEvent *)&event) ;
if (event.type == ButtonPress)
{
drawRandomLines{() ;
XCopyArea(display, backingStore, main_window,
gc, 0, 0, width, height, 0, 0);
by
else
XCopyArea(display, backingStore, main_window,
gc, event.x, event.vy, event.width,
event .height, event.X, event.y);

¥

void drawRandomLines ()

{
long color;
int 1i,x1,x2,y1.,y2;

/*

Sixth College on Microprocessor-based Real-time Systems in Physics 153
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming Raich, Ulrich

clear it out
*/
XSetForeground(display,gc,WhitePixel(display,screen));
XFillRectangle(display,backingStore,gc,0,0,width,height);

/*
then do the drawing
*/
for (i=0;i<50;i++)
{
x1 = rand () ¥WINDOW_WIDTH;
y1 = rand (O %WINDOW_HEIGHT;
x2 = rand()%WINDOW_WIDTH;
¥y2 = rand()/WINDOW_HEIGHT;
/*
put some color in order to make it nicer
*/
color = rand()%(int)rint(pow((double)2,(double)depth));
{SetForeground(display,gc,color) ;
XDrawLine(display,backingStore,gc,xi,yi,x2,y2);
}
}
%1
Figure 10: Color and Events
Sixth College on Microprocessor-based Real-time Systems in Physics 154

Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming Raich, Ulrich

2 The Motif Widgets

Up to now we only used XLib calls. We managed with some difficulties
to implement a button, treating mouse button clicks within the up/down
windows and a sort of label containing the digits. It seems to be a good
idea however to standardize on how such a button should react and on how
it should look like (contain some text or bitmap, be activated when mouse
buttonl is pushed and released within its window). This is the so called look
and feel which is implemented in libraries lying above the XLib. Figure
11 shows the different library layers. The lowest layer above the X protocol
is Xlib, the library we learned in the preceeding sections. Above Xlib you
find the Xt (X Toolkit) library onto which the widget sets are built. On top
ofXt you finally have the widget sets like Motif.

A window together with an input/output semantic is called a widget.
Typical examples are:

e labels

push buttons and toggle buttons

pulldown and popup menus
e boxes and forms containing other widgets

e text input widgets and many more.

For us widgets are simply user interface objects which are the building blocks
for our applications. There are several widget sets available on the market.
The most common ones are:

e Motif

o Openlook

e the Athena Widgets
o Gtk

o Qt

The Figure 12 shows some of the Motif widgets.

gixth College on Microprocessor-based Real-time Systems in Physics 155
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming Raich, Ulrich

T it

The X toofkt X} suppor i o bud widet s

XLIBfor giving access lthe X protocal

X Protogol

Figure 11: The structure of Motif and X11 Library layers

Figure 12: The Colombo Example showing some Motif Widgets

Sixth College on Microprocessor-based Real-time Systems in Physics 156
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

= TmmE e e e e

X Window Programming Raich, Ulrich

During these lectures we will have a closer look at the Motif widget set.
Why not choose another one?

The Athena widget set is part of X11 and was intended as a testbed
for the X Toolkit Intrinsics (Xt), a library providing routines for building
and accessing widgets. It is rather small and simplistic but quite a few
applications have been implemented with it. During the first GUI courses
we used the Athena set because Motif was not freely available and LessTif,
a Motif clone, written by the Free Software Community was simply too
unstable.

During later colleges Lesstif was successfully used. Maybe it was due to
the pressure from free GUI alternatives like Lesstif, Gtk and Qt that the
Open Software Foundation (OSF) has finally decided to make Motif freely
available (well, almost free: it is freely available for free operating systems,
not for commercial ones like HP-Unix, Solaris ...). We therefore now have
full Motif-2.1 available.

OpenLook was SUN Microsystems first widget set which they put into
the public domain when they switched to Motif for their workstations. It is
now deprecated and hardly anyone writes new applications with it.

Qt and Gtk are new additions to the widget sets and both are becoming
ever more popular. The desktop environment KDE 1s based on Qt while
Gnome, the desktop environment we use, is based on Gtk. Qt’s access
libraries are C++ based and therefore not easily usable during this college.
Gtk however is a serious candidate for future colleges. This time we are again
using Motif because now we have free access to the full (former commercial)
version, secondly it is still very widely used on all major commercial Unix
machines and simply because re-creating a new course is quite a job. Another
very serious candidate for future colleges is Swing, the widget set for Java
but again a new language must be learned before the widget set can be
employed.

In this section we will learn how to write the Colombo example with the
help of Motif widgets.

Instead of building the window hierarchies the application now builds wid-
get instance hierarchies. Again we have a root widget called the TopLevelShell.
This widget communicates with the window manager to set up the decoration
of its window. The child of the TopLevelShell is usually a XmMainWin-
dow widget, which contains an area for

e Menu bar with pulldown menus

e 3 container widget used as work area and containing other widgets
e optional scroll bars for the work area

e a command area (which we will not use!)

Sixth College on Microprocessor-based Real-time Systems in Physics 157
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming Raich, Ulrich

e and a message area, which may display error messages

As for the windows in X Lib the windows of the widgets are clipped to
their parent widget window boundaries. Even though most applications use
a XmMainWindow as their base window it is perfectly possible to use a
container widget or even a simple widget (see the hello world example) for
that purpose. In Motif we have essentially two types of different container
widgets, the XmBulletinBoard, where the positions of the children {wid-
gets within the container} are specified as absolute values and the XmForm,
where all positions are relative to the container or relative to other widgets
within the container.

Widgets provide a data structure containing so called resources, which de-
scribe them fully. When creating a widget instance all resources are defaulted
to reasonable values but they can be changed at creation or later during run-
time. The widgets we will be using for our Colombo Board Simulator are the
following;:

¢ XmMainWindow

¢ XmForm

e XmLabel (for the digits)

e XmArrowButton for the up and down buttons

e XmCascadeButton and XmRowColumn for the pulldown menu
XmToggleButton for the horn

In additon we will use XmScale for a more simple exercise at the beginning.
Before using any widget the X toolkit must be initialized and the
TopLevelShell must be created. This can be done with the call:

Widget XtVaApplnitialize (
XtAppContext *app_context,
String application_class,
XrmOptionDescRec *options,
Cardinal num_optionms,
int *argc, String *argv,
String *fallback_resources,...,NULL);

Some comments concerning the parameters to this call:
o XtAppContext is an opaque type containg application specific data;

e application class|: this parameter allows to group several applica-
tions into classes allowing to specify certain properties (resources) for
all members of the class. In our case we can create a class ICTP _exam-
ples and later customize all of its members in a single step;

Sixth College on Microprocessor-based Real-time Systems in Physics 158
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming Raich, Ulrich

e you may specify X related options on the command line. The command
line parser will pick them out and only leave the non-X ones. Put NULL
here.

e num_options, since we don’t treat special X options put 0 here.

e the ... stand for a NULL terminated list of resource-name—resour-
ce-value pairs. You will see later what this is good for. For the moment
just putting NULL will do the trick.

This initializes the toolkit, opens the display and creates the TopLevel
Shell who’s identifier is returned and which is the great—grandfather of all
other widgets. The TopLevelShell communicates with the window manager
and gets its decoration. Now we can start to build the widget instance
hierarchy. For each type of widget an include file containing widget specific
definitions is provided. In order to create a widget, call

Widget XtVaCreateManagedWidget
(String *widget name,
WidgetClass widget class,
Widget parent,
.., NULL)

o widget_name: each widget gets a name identifying it. These names
are used in so-called resource files where the application can be cus-
tomized by its user without changing a line of source code. We will see
this later.

e widget_class: each widget belongs to a class in the widget class hierar-
chy. Here we define the type of widget we want to create.

e parent: this is the widget id (note that XtVaCreateManagedWidget
has a return value, namely the id of the widget created) of the parent
widget. Like in the case of window hierarchies, this allows to create
widget hierarchies

e ...: NULL terminated list of resource-name—resource-value pairs
like in the XtVaApplInitialize call.

The following table shows the widget names, their class name and the
corresponding include file name for the widgets we will be using:

Sixth College on Microprocessor-based Real-time Systems in Physics 159
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming Raich, Ulrich

[

Widget Type | Widget Class Name] include file]

XmMainWindow | xmMainWindowWidgetClass | <Xm /MainW h>

XmBulletinBoard | xmBulletinBoardWidgetClass <Xm/BulletinB.h>

XmFrame xmFrameWidgetClass <Xm/Frame.h>

XmPushButton xmPushButtonWidgetClass <Xm/PushB.h>

XmArrowButton | xmArrowButtonWidgetClass | <Xm /ArrowB.h>

XmLabel xmLabelWidgetClass <Xm/Label.h>

XmToggleButton | xmTogglwidthonWidgetClass | <Xm /ToggleB.h>

XmCascadeButton | xmCascadeButtonWidgetClass <Xm/CascadeB.h>

XmRowColumn xmRowColumnWidgetClass <Xm/RowColumn.h>

As an example we show how to create an XmMainWindow and an

XmForm widget with default resources apart from width and height, which
might be zero otherwise:

/%
/*
/*
/*
/*
/*
/*
#i

#d

**/
*/

EXAMPLE 1 for MOTIF */
How to initialize the toolkit, create the toplevel shell */
and create a VERY simple widget hierarchy */

*/

***/
nclude <¥m/XmAll.h>

efine WINDOW_WIDTH 300

#define WINDOW_HEIGHT 150

Wi

dget toplevel, main_window, form;

main{int argc,char *argv{])

{

XtAppContext thelpp;
Widget toplevel;
/*

initialize the toolkit and create the toplevel shell
*/
toplevel = XtVaAppInitialize(&theApp,"ICTP_examples" ,
NULL,0,&argc,argv,NULL,NULL) ;

/*

Sixth College on Microprocessor-based Real-time Systems in Physics 160
Abdus Salam ICTP, Trieste, October 3 — November 3, 2000

X Window Programming Raich, Ulrich

create the widget instance hierarchy
*/
main_window = (Widget)XtVaCreateManagedWidget("main_window" ,
xmMainWindowWidgetClass,toplevel, NULL) ;

form = (Widget) XtVaCreateManagedWidget ("form",
meormWidgetClass,main_window,
XmNwidth , WINDOW_WIDTH,
XmNheight,WINDDW_HEIGHT,NULL);

A widget tree (widget instance hierarchy) can easily be built using several
of these XtVaCreateManagedWidget calls. Like in the Xlib examples the
program still does not put any widgets to the screen. In order to do so the
X-toolkit routine corresponding to XMapWindow must be called. The
function:

XtRealizeWidget (Widget toplevel);

does the mapping (and quite a few more things). Instead of calling XNex-
tEvent in a loop, the X-toolkit provides a call which already contains an
endless loop:

XtAppMainloop (XtAppContext theApp) ;

Our little example program can therefore be completed by adding:

XtRealizeWidget (toplevel);
XtAppMainLoop(theApp) ;

to the end of the program. The result can be seen in Figure 13.

Contrary to our window examples the widgets already contain code for
treatment of the X. events. However, the programmer should be notified of
certain sequences of events such as ButtonPress followed by ButtonRe-
lease within the window of a XmPushButton widget, which corresponds to
pressing the pushbutton on the screen.

This can be done with callbacks: Almost all widgets allow the user to
connect callback routines to certain actions. Use the routine:

XtAddCallback (Widget widgetid,
String callback name,
¥tCallbackProc callback,
XtPointer client_data);

Sixth College on Microprocessor-based Real-time Systems in Physics 161
Abdus Salam ICTP, Trieste, October 9 - November 3, 2000

X Window Programming Raich, Ulrich

motit 1

Figure 13: A first Motif example

e callback name is type of callback we are interested in. The most com-
mon one is XmMNactivateCallback used e.g. in pushbutton widgets. An-
other one: XmMNvalueChangedCallback is used in Text widgets and in-
dicates that the text widthin the widget has been modified.

e callback is the address of the procedure to be called when the sequence
of events has been seen. This is the routine we as programmers have

to supply.

e client_data: Certain data can be passed as parameters into the callback
procedure. client_data is a pointer to these data. Most of the time this
1s simply NULL.

XtCallbackProc is defined as:

typedef void (*XtCallbackProc) (Widget widget_id,
XtPointer client_data,
XtPointer call_data);

e call.data is a pointer to widget specific data that might be passed by
the widget into the callback procedure.

For the ezit button in our example programs we will therefore construct
a callback procedure:

Sixth College on Microprocessor-based Real-time Systems in Physics 162
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming Raich, Ulrich

void quitProc(Widget w,
XtPointer client_data,
XtPointer call_data)

/* cleanup if needed */
exit (0);
}

After creation of the exit button

exit _button = XtVaCreateManagedWidget ("exit_button",
xmPushButtonWidgetClass,
main widget, NULL) ;

(creation of a XmPushButton widget) we connect this routine as activate
callback to the widget:

XtAddCallback (exit_button, XmNactivateCallback,
quitProc, NULL)

Once the widget tree is complete and all callbacks are connected, control
is given back to the window system, which will call the registered callback
routines as soon as the corresponding event sequence has happened. The call
to
XtAppMainLoop (theApp);
does this.

Here is the improved version of the first Motif program including the
code activating the pushbutton:

#include <Xm/XmAll.h>

#define WINDOW_WIDTH 300
#define WINDOW_HEIGHT 150

Widget toplevel, main_window, form, exit_button;
void quitProc(Widget w, XtPointer client_data, XtPointer call_data);
main(int argc,char *argv[l)
{
XtAppContext theApp;
/*

Sixth College on Microprocessor-based Real-time Systems in Physics 163
Abdus Salam ICTP, Trieste, October ¢ - November 3, 2000

X Window Programming Raich, Ulrich

initialize the toolkit and create the toplevel shell
*/
toplevel = XtVaAppInitialize (&theApp,"ICTP_examples",
NULL,0,&argc,argv,NULL,NULL) ;

/*
create the widget instance hierarchy
*/
main_window = (Widget)XtVaCreateManagedWidget ("main_window" ,
xmMainWindowWidgetClass, toplevel ,NULL) ;

form = (Widget) XtVaCreateManagedWidget("form",
xmFormWidgetClass,main_window,
XmNwidth,WINDOW_WIDTH,
XmNheight ,WINDOW_HEIGHT,NULL) ;
exit_button = (Widget) LtVaCreateManagedWidget ("exit_button",
xmPushButtonWidgetClass,form,

XmNlabelString,

XmStringCreatelocalized("exit"),
XmNx, 100, XmNy, 50,

NULL) ;
XtAddCallback(exit_button,XmNactivateCallback,quitProc,NULL);
XtRealizeWidget (toplevel);

XtAppMainLoop (theApp) ;

/*
here the callback procedure
*/
void quitProc(Widget w,
XtPointer client_data,
XtPointer call_data)

exit(0);

Sixth College on Microprocessor-based Real-time Systems in Physics 164
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming Raich, Ulrich

Sometimes it is desired to map non X events to callback routines. You
may for example want to execute a callback when a certain time has elapsed
or when a device driver has data to be read. This can be accomplished with:

XtIntervalld XtAppAddTimeOut (XtAppContet app-context,
unsigned long interval,
timer_proc, client data);

where interval is in msec and XtIntervalld is an identifier which allows
you to distinguish the timer events in case you use more than one. The
corresponding callback routine must be defined as:

XtTimerCallbackProc timer_proc (
I{tPointer interval_id,
XtPointer client_data);

Similar routines are available for the driver case. Here we would use

XtInputId XtAppAddInput (app_context, source,
input_proc, client_data);

Again we want to put things together and demonstrate the above princi-
ples in a little {and this time even useful) demo program.

/***/
/* A first USABLE Motif program: A very simple digital clock */
/* U. Raich 3-0ct-2000 */

/***/

#include <stdio.h>
#include <Xm/XmAll.h>
#include <time.h>

#define WINDOW_WIDTH 300
#define WINDOW_HEIGHT 150

Widget toplevel, main_window, form, time_label;

XtAppContext theApp;

XtIntervalld timer_id;

¥tTimerCallbackProc timerProc{XtIntervalld timer_id,
XtPointer client_data);

Sixth College on Microprocessor-based Real-time Systems in Physics 165
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming Raich, Ulrich

main(int argc,char *argv(])

{

}

/*
initialize the toolkit and create the toplevel shell
*/
toplevel = XtVaAppInitialize(&theApp,"ICTP_examples",
NULL,0,&argc,argv,NULL,NULL) ;

/*
give it a nice title
*/
XtVaSetValues(toplevel,XtNtitle,"Uli’s Clock",NULL);
/*
create the widget instance hierarchy
*/
main_window = (Widget)XtVaCreateManagedWidget("main_window",
xmMainWindowWidgetClass,toplevel ,NULL);

/*
create a label to display the current time and date

*/

form = (Widget) XtVaCreateManagedWidget("form",
xmFormWidgetClass,main_window,NULL) ;

time_label = (Widget) XtVaCreateManagedWidget("timelabel",
xmLabelWidgetClass,form,
NULL) ;

timerProc{(XtIntervalld)NULL,NULL);

timer_id = (XtIntervalld) XtAppAddTimeOut (theApp,1000,
(void *)timerProc,NULL);

XtRealizeWidget (toplevel);
XtAppMainLoop (theApp) ;

/*
here the callback procedure
*/

XtTimerCallbackProc timerProc(XtIntervalld timer_id,

Sixth College on Microprocessor-based Real-time Systems in Physics 166
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming Raich, Ulrich

XtPointer call_data)

/*
this XmString stuff is explained a little later
don’t worry for the time being
*/
XmString timeString;
time_t current_time;

/*

get the current date and time
*/
time (kcurrent_time) ;
/*

convert it first into something readable and then

into an XmString that can be put into the label widget
*/
timeString=XmStringCreateLocalized(ctime (¢current_time));
XtVaSetValues(time_label,XleabelString,timeString,NULL);
XmStringFree (timeString);

timer_id = XtAppAddTimeQut (thedApp, 1000,
(void *)timerProc,NULL);

An this is how it looks like:

Figure 14: A useful Motif example: Digital Clock

The fow of control in an application program using widgets has therefore
the following form: (Figure 15)

Sixth College on Microprocessor-based Real-time Systems in Physics 167
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming Raich, Ulrich

Initialize
Toolkit

Y

Create Widget
Instance Hierarchy

Y

Attach
Callbacks

Y

Realise Root of
Widget Tree

Y

XtAppMainLoop

Callback 1 Callback 2 Callback 3

Figure 15: Flow of Control in a Motif Application

2.1 The Widget Class Hierarchy

Widgets are built using object oriented programming techniques. This means,
that there are some basic widgets (basic data structures and access routines,
so called methods) which are defined in the Toolkit intrinsics. These basic
widgets are the Core widget and several Shell widgets. A new widget uses
part of the data structures and methods defined in these basic widgets and
augments them with new data entries and new access routines or modifies
some of the properties. Consider a label and a pushbutton widget: The
label has some basic resources such as width, height, border width, fore-
ground/background colour, etc which it inherits from the core widget (all
widgets have these properties!). In addition it has a string or a pixmap as-

Sixth College on Microprocessor-based Real-time Systems in Physics 168
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

r—E g ——— o

X Window Programming Raich, Ulrich

sociated with it. A command button can be considered to be a label widget
having the additional features of being active. In the case of the XmPushBut-
ton widget a callback for activation (pushing the button) can be attached.

When a programmer calls XtVaCreateManagedWidget a widget in-
stance of the specified class is created. This instance contains the individual
values for the label string, the colours, etc while the class provides some ad-
ditional data fields valid for all instances and all the access routines. This
is why we always insist on talking about the widget instance hierarchy and
not just about the widget hierarchy!

To change the default layout of a widget we should access its resources.
These changes can be performed during widget creation or using the Xt
routine XtVaSetValues at runtime.

XtVaSetValues (Widget widget._id,
String namel, XtArgVal valuel,
String name2, XtArgVal value2, ..., NULL);

Tts counterpart for fixed length argument lists (resource name - resource
value pairs) is XtSetValues. As you may expect, similar routines for toolkit
initialization (XtAppInitialize) are also available. Before using these rou-
tines we must fill an argument list, where each element is of the following

type:
typedef struct {
String name; /* name of resource to by modified */

XtArgVal value;
} Arg, *Arglist;

A Macro has been defined to accomplish this:
XtSetArg (Arg arg, String resource.name, XtArgVal value)

This argument list and the number of entries may be specified in the
widget instance creation routine or in XtSetValues:

void XtSetValues (Widhet widget_id, Arg args, int num.args);

Imagine we want to set some text like ”Quit” in the exit button and set
its width and height to fixed values:

Sixth College on Microprocessor-based Real-time Systems in Physics 169
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming Raich, Ulrich

l Object Iieadga }—

Core —'IArr dg Hr deB "-_{
|

—-I LabelGadget H PushButtonGadget

—I SeparatorGadget HToggleButtunG-dgetI

Cascade Bution

DrawButton

—_I Primitive I——l Scrollbar I

ToggleBution

_l Separator I

Form

FileSelectionBox

SelectionBox

MessageBox l

'ConstralniH Manager I--

==

OverrideShell]—-I MenuShell —I

WMShell

[Shell TopLevelShell HAppIicatx‘onSkeH l

VendorShell

TransienShetl || DiatogShett I

Figure 16: The Motif Widget Class Hierarchy

Arg args[5];

XtSetArg (args[0] ,XmNlabelString, label_string);

XtSetArg (args[1],XmNwidth, 100);

XtSetArg (args[2] ,XmNheight, 50);

XtSetValues (exit_button, args, 3); /* will set these three */
/* resources at runtime */

Sixth College on Microprocessor-based Real-time Systems in Physics 170
Abdus Salam ICTP, Trieste, October 9 —~ November 3, 2000

X Window Programming Raich, Ulrich

(Defining text strings in Motif is a little tricky, see the next section on Xm-
String functions). In the same manner it is possible to read back resources
from a widget:

XtSetArgs (arg(0], XmNlabelString, greturn_string);

XtGetValues (exit_button, args, 1),
will return the label string into return string. Of course the variable length
counterpart XtVaGetValues is also available.

The next step is to give you a compilation of resources that you will need
for development of the exercises on widgets. This list is of course far from
being complete. We therefore encourage you to have a look into the LessTif
Manual, which you have online. You can access it from the root window
pulldown menu.

2.2 The compound string (XmString)

You would expect that putting text onto the widgets should be one of the
simplest things you can do. Well, you are mistaken! While the Athena
widget-set uses simple text strings (char *) for its labels, titles etc. Motif
goes a step further. Imagine you want to intermix greek and latin characters,
you want to write a text in German (having those strange umlauts) or in
French, or you want to intermix Cyrillic and latin text. All this is possible
with the Motif compound string conception. So, you can have labels like
¢ = 9251 mm mrad (used very often in accelerator physics!) very easily.

For the course we will restrict ourselves to simple english text but of
course you are encouraged to play and try things out. These are the calls
that will be enough for you:

. XmString XmStringCreateLtoR (char *text, char *tag)

In our case text will be the character string we want to convert into a
XmString and tag will be set to
XmSTRING_DEFAULT_CHARSET.
The call will also treat embedded \n’ correctly.

. XmString XmStringCreateLocalized (char *text)

Here text must be a NULL terminated string without embedded \n'.

The normal use of XmStrings can be demonstrated by setting a new
text within a label:

Sixth College on Microprocessor-based Real-time Systems in Physics 17
Abdus Salam 1CTP, Trieste, October 9 — November 3, 2000

X Window Programming Raich, Ulrich

XmString new_string;

Widget label;

/* some code initializing label. ../
new_string = XmStringCreateLocalized("My new String");
XtVaSetValues (label,XleabelString,new,string,NULL);
XmStringFree (new_string) ;

The last line is needed because the calls creating XmStrings allocate the
memory space they need for the XmString. The deallocation however is left
to the user of the call. The same result may be obtained in a more elegant
fashion passing through so-called resource converters built into Motif. In
order to be able to specify resource values in resource files (see section on
resource definitions) routines that convert ASCII strings to internal resource
representation, in this case string —s XmString are available. These can be
called using Xt VaTypedA rg:

XtVaSetValues (label, XtVaTypedArg, XmN labelString,
XmRString ,"Push Me",strlen("Push Me'")+1,NULL)

2.3 Pixmaps

As you can see from the table of resources later, an XmULabel not only can
display text strings in all variations, it is also possible to show Pixmaps.
The easiest way to build bitmaps is the bitmap editor {see section on X
Pixmaps) which stores bitmaps in an X specific way onto disk, Motif
provides a series of calls allowing someone to read these files and convert
them into Pixmap structures that can be used in labels, pushbuttons etc.
We need this feature when we want to generate labels which ressemble the
seven segment displays closely.

Pixmap XmGetPixmap (Screen *screen, char *image_name,
Pixel foreground, Pixel background)

& screen is a structure describing the screen you use (not the integer we
used to specify in the Xlib examples). You can get a pointer to this
structure with the call: Screen *XtScreen(Widget W)

¢ image name is the filename of 5 bitmap file

If things go wrong the result will be XmUNSPECIFIED _PIXMAP. [}
the call finds out that the same pixmap had been loaded before, it is not
needed to go out to the disk, but it can pick up the pixmap from the rizmap
cache.

A typical sequence to show Pixmaps is:

Sixth College on Microprocessor-based Real-time Systems in Physics 172
Abdus Salam ICTP, Trieste, Ociober 9 — November 3, 2000

X Window Programming Raich, Ulrich

#define SCREEN O

Widget toplevel, main_window, form, label,;

main(int argc,char *argv[l)

{

XtAppContext thelApp;

Pixmap smiley_pixmap;
Screen *gcreen;
Display *display;

/¥

initialize the toolkit and create the toplevel shell
*/
toplevel = XtVaAppInitialize(&theApp,"ICTP_examples",
NULL,O,&argc,argv,NULL,NULL);

/*
create the widget instance hierarchy
*/
main_window = (Widget)XtVaCreateManagedWidget("main_window",
meainWindowWidgetClass,toplevel,NULL);

form = (Widget) YtVaCreateManagedWidget ("form",
meormWidgetClass,main,window,NULL);

label = (Widget) XtVaCreateManagedWidget("pixmap_label",
xmLabelWidgetClass,form,
NULL) ;

display XtDisplay(toplevel);

screen XtScreen(toplevel);

smiley_pixmap = XmGetPixmap(screen,"smiley.bm“,
BlackPixel(display,SCREEN),
whitePixel (display,SCREEN)) ;

if (smiley_pizmap == XmUNSPECIFIED_PIXMAP)
{
printf ("pixmap no good\n");
exit(-1};
}

Sixth College on Microprocessor-based Real-time Systems in Physics 173
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming Raich, Ulrich

XtVaSetValues(label, XmNlabelType,XmPIXMAP,
XmNlabelPixmap,smiley_pixmap,NULL) ;

XtRealizeWidget (toplevel);
XtAppMainLoop (theApp) ;
}

2.4 The Core Widget

As we have seen in the Motif Class hierarchy, all widgets have Core as a
superclass. For this reason all widgets inherit the resources defined in Core.
We only put those resources into the Table 3 that you will definitely need
for the solution to the exercises but mmany more are available. Please have a
look at the Motif or Lesstif docs.

Table 3: Some resources of Core widget

| Resource Name | Type | Default | Description |

XmNx Position 0 x positon relative

to the origin of

the parent

XmNy Position 0 ¥ positon relative

to the origin of

the parent

XmNwidth Dimension | dynamic | width of the widget.

By default the geometry
management decides which
width is needed
XmNheight Dimension | dynamic | height of the widget.

The same as in XmNwidth

2.5 The XmMainWindow

Here are a few resources for the XmMain Window, Again the list (Table 4) is
far from being exhaustive. So please have a look at the Motif documentation.
There you will find different sets of resources: Firstly the specific resources
for the widget and secondly all the resources of its super classes. You will find
that the widget class hierarchy explained previously (The XmPushButton will

Sixth College on Microprocessor-based Real-time Systems in Physics 174
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming Raich, Ulrich

Table 4: Some resources of XmMainWindow widget

[Resource Name [Type | Default] Description |

(XmeorkWindow Widget | NULL [Container widget
that constitues the
work area. Most of the
different user widgets
will be put here
XmNmenuBar Widget | NULL The menu bar
containg pulldown
menus. Usually ther
are at least three of
them:

the File menu

the Edit menu

the Help menu
XmNshow Boolean | False Use XmSeparators to
Separator separate the different
XmMainWindow areas.

have its own resources, then the resources of its superclass XmULabel, then the
resources of XmPrimitive and so on (see Figure 16)).

2.6 The XmBulletinBoard

Sorry, there is no description of this widget within this script. For the exer-
cises we only use resources inherited from the Core Widget namely:

XmNx

XmNy
XmNwidth
XmNheight
XmNbackground

2.7 The XmForm

The XmForm widget is a container widget performing geometry manage-
ment on its children. The children of a form may specify their position
relative to each other or relative to their parent. When a widget is child of
a form it has the following additional resources, some of them shown in the
Table 5:

Sixth College on Microprocessor-based Real-time Systems in Physics 175
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming

Raich, Ulrich

Table 5: Some resources of XmForm widget

Resource Name

Type

I

Default |

Desciption

—

XmNtopAttachment unsigned char | XmATTACHMENT _.NONE | describes where to
attach the widget. Some
possibilies:
XmATTACH_FORM
XmATTACH_WIDGET
XmATTACH_OPPOSITE.

WIDGET
XmATTACH_POSITION

XmNbottomAttachment unsigned char | XmATTACHMENT _NONE | see above

XmNleftAttachment unsigned char | XmATTACHMENT_NONE | see above

XmNrightAttachment unsigned char | XmATTACHMENT _NONE see above

XmNtopWidget Window NULL widget onto which we
hook on

XmNbottopWidget — i — —— —_—

XmNleftWidget —_n— — i — — " —

XmNrightWidget — o — — i — ——

XmNtopOffset int 0 Offset for the attachment

XmNbottopOffset —— —_— — i —

XmNieftOffset — " — — " — — " —

XmNrightOffset —_—— —— —_—

XmNfractionBase int 100 used for relative position

and there are see the LessTif documentation

many more]

It is also possible to give the

width and height:

This is done with the resource XmNfractionBase

position in percentage of the tota]l XmForm

e Set the attachment type to XmATTACH_POSITION

e Set XmNfractionBase, for example, 100

* Now if you set XmNtopOffset to 30 then

the widget will be placed
at 30% of the XmForm height

2.8 The XmScale

The XmScale widget is going to be used in an introductory (and therefore
simpler) example where we use it as a linear indicator for an analog value.
We want the scale to be vertical with the maximum value on top. The actual

176

Sixth College on Microprocessor-based Real-time Systems in Physics
Abdus Salam ICTP, Trieste, October 9 - November 3, 2000

X Window Programming Raich, Ulrich

value should also be printed as a number. The range of values is defined to
be 0 — 5000, which may stand for 0 mV to 5000 mV, the digital values
we get from Ang’s IO board. Table 6 shows the nessesary resources.

The XmScale widget also has so—called convenience routines which ease
the reading and writing of scale values:

e XmScaleGetValue (Widget w, int *value_return)
e XmScaleSetValue (Widget w, int value);

do what you would expect.

Table 6: Some XmScale resources

[Resource Name Type | Default | Desciption

XmNshowValue Boolean False show not only the
analog value by
setting the position
of the scale, but also
its numerical value

XmNtitleString XmString NULL the title

XmNorientation unsigned char | XmVERTICAL XmVERTICAL or
XmHORIZONTAL

XmNprocessingDirection | unsigned char dynamic XmMAX._.ON_TOP

XmMAX_ON.BOTTOM
XmMAX ON_LEFT
XmMAX_ON.RIGHT

2.9 The XmLabel

Labels have two different visual aspects, they may either display text or
pictures in form of pixmaps.

Since we will use both in the Colombo exercise here are the resources
(Table 7) to be changed:

2.10 The XmArrowButton

The XmPushButton widget, being a subclass of the XmLabel widget,
has got all the label widgets resources with the possibility to connect an
activation callback in addition.

The XmArrowButton reacts as a XmPushButton, but already pro-
vides arrows as labels. The arrow direction can be specified by means of
resources shown in Table 8

Sixth College on Microprocessor-based Real-time Systems in Physics 177
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming Raich, Ulrich

Table 7: Some XmLabel resources

| Resource Name Type | Default] Desciption |
XmNlabelString XmString label name | String to be displaying
as the label
XmNIlabelPixmap Pixmap none Bitmap to be displayed
instead of a text string
XmNlabelType unsigned char | XmSTRING | How to justify the label

Table 8: Some XmArrowButton resources

| Resource Name [Type | Default | Desciption }

XmNarrowDirection | unsigned char | XmARROW_UP | direction of the arrow:
XmARROW_UP
XmARROW DOWN
XmARROW_LEFT
XmARROW_RIGHT

2.11 Pulldown Menus

Still missing is the way to construct menus. As explained above the children
in the widget instance hierarchy are always clipped to their parent windows.
When creating menus this is not acceptable and we must therefore create
another shell widget, which will contain the menu. On the other hand we
don’t want decoration of the window coming up when we activate the menu.
This can be accomplished by creating a Popup shell.

Luckily enough Motif provides a convenience routine which does all the
work for us:

filemenu = (Widget) XmCreatePulldownMenu (
Widget parent_widget,
char *widget_name,
Arg *args, int no_of.args)

creates the pulldown menu. However the menu as yet has no entry in it
and is neither hooked onto a button which will pop it up, nor placed into
a menu bar. Even worse, it will not appear on the screen because it is not
managed. Managing a widget is somehow similar to mapping a window in
XLib. It can be accomplished by

XtManageChild (Widget widget_id);

Sixth College on Microprocessor-based Real-time Systems in Physics 178
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

s s e e T e ———r e T ITI T ——— o - o\ e

X Window Programming Raich, Ulrich

In order to get rid of the other problems we first create a pushbutton and
place it into the pulldown menu:

label_string = XmStringCreateLocalized ("Quit™);

quit_button = XtVaCreateManaged Widget ("quit_button",
xmPushButtonWidgetClass,
file_menu,
xmNlabelString, label_string, NULL);
¥mStringFree (label_string);

then we create the menu bar with another convenience routine:
menu_bar = XmCreateMenuBar (
main_window,

vmenu_bar", args, (Cardinal)NULL);

and finally the button that pops up the menu:

XmStringCreateLocalized ("File");
XtVaCreateManagedWidget ("file.butt on",
xmCascadeButtonWidgetClass,
menu_bar,
¥mNlabelString, label_string,
XmlsubMenuld, file_menu,NULL) ;
XmStringFree (label_string);

label_string
file button

The resource XmNsubMenuld tells the CascadeButton, which menu
to pop up once it is activated. Of course the menu_bar must be placed into
the main window which can be accomplished with
XtVaSetValues (main window, ¥mNmenuBar, menu_bar, NULL).

Now

e menu_bar is the standard menu bar of the XmMainWIndow that
forms the base of our application

e it contains a pulldown menu named file_menu

e this file_menu contains a single button (that can be activated once we
attach a callback procedure to it) namely the quit_button

e ihe file menu is visible and can be popped up through a XmCascade-
Button named file_button

Sixth College on Microprocessor-based Real-time Systems in Physics 179
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming Raich, Ulrich

I know this looks pretty complex, but even though pulldown menus are ex-
tremely common in GUISs they are amongst the most complex structure you
can have in user interface programming. Here we put all the menu calls to-
gether into a working example: (Put this code into the previous one right
after the creation of the main window)

menu_bar = (Widget) XmCreateMenuBar (main_window,
"menu_bar",NULL,0) ;
file_menu = (Widget) XmCreatePulldownMenu(main_window,"

pulldown_menu",NULL,0);
exit_button = (Widget) XtVaCreateManagedWidget(”exit*button",
meushButtonWidgetClass,file_menu,
XtVaTypedArg,XleabelString,
XmRString, "Quit",
strlen("Quit")+1,NULL):
XtAddCallback(exit_button,XmNactivateCallback,quitProc,NULL);

file_button = (Widget) XtVaCreateManagedWidget("file_button",
meascadeButtonWidgetClass,menu_bar,
XmNsubMenuId,file_menu,
XtVaTypedArg,XleabelString,
XmRString,"File",
strlen("Quit")+1,NULL);
XtManageChild(menu_bar);

2.12 Dialog Boxes

Up to now all widgets came up onto the screen once the toplevel widget has
been realised. Very often however we want a box with an error or warning
message to pop up only if an error condition has been encountered. This can
be done with a XmMessageBoxDialog widget.

We create it with

XmCreateErrorBox ("error_box" ;parent,args,no_of .args) ;
and we manage it only once the error has happened. This box contains

several buttons, one of which will automatically unmanage the box and thus
make it disappear. The used resource is shown in Table 9.

Sixth College on Microprocessor-based Real-time Systems in Physics 180
Abdus Salam ICTP, Trieste, October § — November 3, 2000

X Window Programming Raich, Ulrich

Table 9: A resource for XmMessageBoxDialog

Resource Name Type Default | Desciption |

»nn

XmNmessageString | XmString | erTor message |

2.13 Connections of widgets to XLib

For several widgets a bitmap id can be used in order to display pictures in
buttons, labels etc. When creating a bitmap however we need the identifier
of the opened server connection (display variable) or a window id. In order
to get this information for a specific widget (which window corresponds to
the main_widget for example) several calls are available:

Display XtDisplay (Widget widget_id) returns the server connection id
Window XtWindow (Widget widget_id) — # - the widgets window id.
Sereen XtSereen (Widget widget_id) -— / — — /f — screen structure

Using these calls you may now happily intermix Xm, Xt and Xlib calis.
Now that we know everything needed to build the GUI for the Colombo
example, here is a picture of the widget classes needed for the program:

2.14 'Widget Resources

In the previous section we have seen that each widget has associated with it
a large number of resources (XmNwidth, XmNlabelString, XmNback-
ground, XmN...) which describe it. These resources can be initialized
during the creation procedure of the widget and modified by the running
program. Many of the resources need only initialization (or even keep their
default values) and are untouched during run time. Think of the label string
on a label widget for example.

The Xt library allows another very elegant way to modify resources: the
resource file. This file contains resourcename-resource value pairs and it is
read during program startup. A typical resource file is .Xdefaults in you
home directory, which you should have a look at.

Now the question is: How do we specify a widget and its resources. The
resource names are the same as the names used within XtSetValues, with
the leading XmN taken away

XmNwidth — width, XmNlabelString — labelString, etc.

Sixth College on Microprocessor-based Real-time Systems in Physics 181
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming

Raich, Ulrich

(El Conmands) (@ Tree)

Hidget Tree for client kntest3{ICTP_exanples}.

XnSeparatorGadget |

KnSeparatorEadgetl

RnSeparatanadgetl

ICTP_enanples —{ XalainHindow

20

g
&]
o o
1) 13
[+ [

5
E

XnfArrouButton

x

nArrosButton
XnfirrouButton
nAirrovBut.ton
nArrouButton
¥nfArrouButton
utton

rowButton

XnRowColunn

KnHenuShell

XnPushButton

SIEIEIRIEIHIBIE
I
| 5)[B|)5

Figure 17: Widget Instance Hierarchy (classes) as seen by editres

The widget is specified by giving its path through the widget tree:

digit_label 0 would then be called:

colombo.mainwindow.frame.digit_label_0.width: 45

Sixth College on Microprocessor-based Real-time Systems in Physics

182

Abdus Salam ICTP, Trieste, October & - November 3, 2000

e eml o M ma M MR i moaen i tie . BCTECEES A W O W

X Window Programming Raich, Ulrich

main_ window

™~

frame
digt label
digit label 0
digl_label 0

digh el 0

Figure 18: Specifying Resources in a Resource File

Like with filenames in Unix wildcards are allowed. The * stands for
any widget and * digit.label 0.width: 50 would most probably have
the same effect as the full specification above. Now you also understand
why we always give names to the widgets (the string in the widget creation
routine XtCreateManagedWidget). These names are used for widget
identification in the resource file.

To go even one step further we can also specify widget classes instead
of widget instances: *XmLabel stand for any XmLabel widget within any
application and there are usually many more XmLabel widgets than there
are widgets of name digit_label.0 within an application.

In the toolkit initialization you can also give a classname to your program.
With this you could for example. group all editors into a common class Editor
or (as we have done) group all solutions to the college exercises into a class
ICTP_examples.

You may immediately spot interesting possibilities by applying the con-
cept of a resource file:

e Have language dependent resource files. You can then modify the text
in an application for a given language by just creating a language depen-
dent resource file. This allows you to change the language for different
users without touching a single line of program code.

Sixth College on Microprocessor-based Real-time Systems in Physics 183
Abdus Salam ICTP, Trieste, October 9 ~ November 3, 2000

X Window Programming Raich, Ulrich

¢ Colours are a matter of taste. Is your taste different from a program
authors taste? No problem, create a resource file and change the colors.

Here is part of your .Xdefaults file:

!
! ICTP examples
! ITCP_examples#*bitmapFilePath: /usr/local/include/X11/bitmaps
ICTP_examples*font: *times-bold-i-*-140-*
ICTP _examples*main_widget*form.background: dark olive green
ICTP_examples*main_widget*Label.foreground: red
I0simulator*background: grey75s
I0simulator*XmText*background: ivory
I0simulator*XmText*fontList:\

—adobe~*—k—r—k—%=4—k—k—k—%—%—%

For those who want to observe the effect of changing resources before
putting them into the resource file a very neat program has been written:
editres. You find it under Utilities on the root window menu. This program
shows the complete widget instance hierarchy and gives you access to any
resource for any widget within your application. The Figures 19 and 20 show
typical screen dumps for our Colombo program.

3 Using an Interactive GUI Builder

A very popular design paradigm in GUI programming is the so-called MVC
(for Model View Controller) concept. The design is divided into those 3
blocks. The model contains all the code needed to modelize the problem, in
our case it would contain the data structures and access routines needed for
the Colombo simulator like the current values for the digits etc. The view is
the GUI that is presented to the user, namely the hierarchy of Motif widgets
needed to control the model. The controller will take the events coming
from the View and send messages to the model and view such that model
and view updates reflect the actions expected by the user.

The View, namely the static layout of the User Interface can be generated
by interactive GUI building tools. The one we provided you is called vdx

Sixth College on Microprocessor-based Real-time Systems in Physics 184
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming Raich, Ulrich

(@ Connands) (B Tree)
Hidget Tree for client sntest3{ICTP _exanples}.
VSeparatorl —
digit
digit
digit
digit
Buttonl
buttonllp
[;Eie53§j—-{;a1n_u1ndnu r— attonUp
buttonlp
buttonDoun
Buttonl
Buttonl
Buttonl
horn_toggle
popup_file_nenu file_neEEJ—"——{ﬁuit_buttuEJ

Figure 19: Widget Instance Hierarchy (Widget Names)

which stands for Visual Builder for X. You might ask yourself, why we did
not present the GUI builder right from the beginning, sparing you the tedious
job of building a GUI using direct Motif calls. The answer is rather simple:
The GUI builder is a rather complex tool that can only be used to a maximum

Sixth College on Microprocessor-based Real-time Systems in Physics 185
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming

Raich, Ulrich

.xmtest3.main_window.background:
N TR
* ICTP_exanples

Any Hidpget
Any MHidget Chain

* ¥nHainHindowu
finy Hidget
Any Midget Chain

Normal Resources: mb?2 gets a value

accelerators
ancestorSensitive
background
backgroundPixnap
borderColor
borderPixnap
borderHidth
bottonShadouColor
bottonShadowPixnap
children

clipHindou

colornap
connandHindow
connandlindouwl ocation
depth
destroyCallback
foreground

height

helpCallback
highlightColor
highlightPixnap
horizontalScrollBar
initialFocus
insertPosition
nainHindouHarginHeight
nainHindouHarginlidth
nappedlhenfanaged
nenuBar

nessageHindow
navigationType
nunChildren

scireen
scrollBarDisplayPolicy
scrollBarPlacenent
scrolledlindovlarginHeight
scrolledHindowHarginMidth
scrollingPolicy
sensitive
shadouThickness
showSeparator

spacing

stringDirection
topShadowColor
topShadowPixnap
translations
traversalOn
traverselbscuredCallback
unitType

userBata
verticalScrollBar
visualPolicy

width

workHindow

H

Y

Enter Resource Value:

[§et Save Fii;1l§9951lﬂgp1§1[5ave and prlﬁ][fopdoun Resnurce_ﬁa;1

Figure 20: The Resources

profit as soon as you understand what is going on behind the scene. As long
as you don’t understand expressions like widget class and widget instance

hierarchy as long as you don

't know how what resources are, it does not make

much sense to explain a GUT builder. The View of Colombo simulator that

Sixth College on Microprocessor-based Real-time Systems in Physics 186
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

X Window Programming Raich, Ulrich

we had built by hand, we will now build using the interactive program. The
following Figures all show windows displayed during the building process by
vdx. First we must define a Project, give it a name and a class (these values
will be passed to XtInitialze) and then we can generate the interface with
the widget class palette. The Figure 91 show the state of the builder during
the process of designing the Colombo user interface. The main window as
well as the menu bar with the file menu containing the exit button is already
done as well as 2 digit labels and and up and a down arrow button.

As you can see the screen looked rather messy when using a GUI builder
due the the great number of windows that you need to have in order to access
all the tools needed for definition of the widget instance hierarchy. Here is a
list of tools that you probably use during the build of a project:

e The main window. This will give you access to all the tools the builder
provides and it will usually provide a menu bar with plenty of buttons.
Here you can define a new project, save your files and reload them,
switch between design mode and test mode and many things more.

o A window visualizing the GUL This window (there may be several such
windows) will show you how your GUI will look like. Here you will first
define a shell widget and then place your widgets inside.

e The Widget Palette. The widget palette offers (in graphical form) a
list of all available widgets. You can select any widget from this palette
and place the selected widget into you Interface. This allows you to
construct your widget instance hierarchy.

e The widget tree. This window shows your widget instance hierarchy
in tree form and allows the selection of certain widgets e.g. in order
to change their resources or in order to select them as parents for new
widgets.

e The resource box. After having selected a widget you may visualize
and change any of ist resources, which is done with this box.

e The Generation window. In this window you will generate source code
for the constructed user interface. Usually you generate C source files
and the corresponding make file, as well as the resource file.

e Help windows. With all this mess it is necessary to have online help
which is provided in help windows

This is the end of the GUI lectures. Now its is time for you to apply your
knowledge in practice. Good Luck!

Sixth College on Microprocessor-based Heal-time Systems in Physics 187
Abdus Salam ICTP, Trieste, October § — November 3, 2000

X Window Programming Raich, Ulrich

Figure 21: A Screendump when using the VDX GUI Builder

Sixth College on Microprocessor-based Real-time Systems in Physics 188
Abdus Salam ICTP, Trieste, October 9 — November 3, 2000

Collected Adventures in Linux Device Driver
Writing

Sizth College on Microprocessor-based
Real-time Systems in Physics

Abdus Salam ICTP, Trieste, October 9-November 3, 2000

Ulrich Raich
CERN - European Organisation for Nuclear Reseach
P.S. Division
CH-1211 Geneva
Switzerland

email: Ulrich.Raich@cern.ch

Abstract

Writing a device driver is one of the most tricky things you can do
in programming. The problem is that deep knowledge on the hard-
ware you want to control is needed as much as deep knowledge about
the operating system you want to write the driver for. While a soft-
ware bug in a usual user level program is acquitted with a core dump
making a similar fault in system mode when implementing a driver
will normally result in a system crash.

This paper gives a step by step introduction on how one should
try to tackle the problems. It traces the difficulties the author had
himself when trying to provide the Colombo board driver. The full
driver source code is available for study.

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

1 Introduction

Tt may be best to tell you right from the beginning:

Device Driver Writing is a tricky business!

This in fact was the first lecture I learned myself when preparing this series
of lectures. 1 was very proud when I was attributed this course by ICTP
because device driver writing has the reputation of being rather difficult. So
I was thinking of a course explaining

e all the complicated data structures needed in order to hook up the
device driver with the kernel

e the context switch from user to supervisor mode with all its details

e lots of computer science theory of why device drivers are important

e and of course all the details of interrupt and DMA driven device drivers
e connection of file system with block device drivers etc.

I think you see what I mean. The Theory of Device Driver Writing might
have been the right title. Then I had the splendid idea that it might be good
to actually write a driver myself before trying to explain to others how to
do it. That was the moment when everything began to go wrong! 1 started
to write the code some 3 months before the course and 2 weeks before I
had to give my lectures the driver still did not work! (and of course the
transparencies were not prepared either!). The goals of my course became
much more modest and 1 ended up with a course that tells you about all
the mischieves 1 encountered when trying to implement my device driver.
No theory! No block device drivers and file systems. Just the story of how
T finally managed to get my device driver going. Nevertheless (or perhaps
just because the course is now much simpler!) I hope that you will get some
insight of

e what a device driver is
e how it works

e and how it is connected to the operating system.

Sixth College on Microprocessor based Real Time Systems in Physics 191
Abdus Salam ICTP, Trieste, Jtaly. October 9 — November 3, 2000

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

And the best thing of all:
¢ You get the full source code of the driver
® you can use it

* and you may modify it as ever you like (taking the risk of crashing the
system)

2 Generalities
When accessing any type of hardware several problems arise:

o Firstly there are many people who understand often rather complex
electronics that make up computer interfaces and there are many peo-
ple who write splendid software. Finding somebody who understands
the operating system writes nicely structured and very robust code
(software) and who is capable to read circuit diagrams, understands
timing signals and can read datasheets of electronic chips is already a
different business. It is therefore reasonable to isolate the code that
needs to know all about the intricacies of the hardware and which in
addition must be extremely robust (a small bug can bring the whole
system down!) into a separate module. Think of a disk driver for ex-
ample. This module is written and thoroughly tested once and can
then be used by everybody.

e In a multi tasking system several concurrent tasks may want to use the
Same resource, e.g. a line printer and may generate a big megs!

® As already mentionned above, hardware access should only be given to
trusted users since an error may easily blow the whole system. This is
particularly true for multi user systems.

e Access to fixed memory locations is needed €.g. registers or memory
in an interface or even specialized I/O instructions. When a device is
capable of generating interrupts or of performing DMA then the story
becomes even more complex: For interrupts the program context is
changed: A new stack frame is in use and the CPU running mode is
changed from user mode to supervisor mode. Therefore device drivers
must very tightly cooperate with the operation system kernel.

Sixth College on Microprocessor based Real Time Systems in Physics 192
Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

S ol NN W IR T R T T TR T R WY —

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

3 Testing the Hardware

Going through the problems one by one I decided that understanding the
hardware was first priority. So, what hardware should T use for my demo
device driver? At ICTP the only easily available hardware was the Colombo
board, which has been designed for the course 84 in Colombo (Sri Lanka).
This board actually consists of 2 parts: a processor/ memory/interface part
(which in our case will be permanently disabled and which I will not de-
scribe any further) and a part simulating some sort of external process to be
controlled. This 1/O part consists of

e 4 hex seven segment displays (BCD displays in the original version)

toggle buttons

2 pushbutton switches

a rotary switch with 16 positions

a voltage to frequency converter, allowing to simulate a simple ADC

3 fixed frequencies

The pushbuttons, the voltage to frequency converter and the fixed frequencies
may be used to generate interrupts.

This board was designed to be hooked up to a PIA (Motorola M6821, Par-
allel Interface Adapter) in a M6809 development system with the processor
part disabled. Development of programs could then be easily done on the
development system using its assembler/linker/loader/debugger. Once ev-
erything worked fine a few addresses needed to be changed and the program
was blown into EPROM and installed on the Colombo board. Enabling the
processor part allowed to run the system in standalone. As I said before,
from now on we are only interested in the I/O part of the Colombo board.
In order to use it for the device driver I still needed an interface for it on
the PC (PIA equivalent). I therefore tried to use the line-printer interface
available on most PCs and I manged to get the displays going. However the
number of I/O lines especially for input were simply not sufficient and also
demonstration of interrupts turned out to be impossible. At the same time
I learned that a parallel I/O board had been developped at LIP in Portugal.

Sixth College on Microprocessor based Real Time Systems in Physics 193
Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

address switches

a9 a8 a7 ab a5 a4 a3 a2 aen

Address Comparator

cs*
Figure 1: Address Selection

The I/O board consists of an Intel 8255 parallel input/output port, known
under the name ” Programmable Peripheral Interface (PPI)” and some inter-
face logic connecting the 8255 to the PC bus. An 75LS682 comparator chip
is used for I/O address selection in conjunction with 8 dual inline switches
(see fig. 1, chip U3 in the circuit diagram).

The 8255 has got 2 general purpose 8 bit ports which may be configured
as input or output port (Ports A and B). In addition there are 8 more 1/O
lines which may take over the function of additional input or output bits (4
bit ports) or may be used as handshake lines, depending on the (software)
configuration of the chip. Figure 2 shows the chip block diagram.

Sixth College on Microprocessor based Real Time Systems in Physics 194
Abdus Salam ICTP, Trieste, Haly. October 9 — November 3, 2000

Collected Adventures in Linux Device Driver Writing

Raich, Ulrich

Group A

Coatrol

v N PotA 10
N % PAT-PAQ

Bidirectional
Datz B Data

* Bus 4’\

/|

Buffes
:ll l: B Bit

Internal Data Bus

Port C
Uppet o

PCTHPCH

ProtC 1w
Lower PC3-PCO

Group B
Control

Port B
< > Yo
PR7-PRO

-

Figure 2: The 8255 Block Diagram

Sixth College on Micropr

ocessor based Real Time Systems in Physics

Abdus Salam ICTF, Trieste, Italy. October 9 — November 3, 2000

195

TR e

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

A0 AT Function
010 Port A
011 Port B
1 /0 Port C
! | 1 | (write only Control Register

Table 1: Addressing the 8255 chip

From the programmers point of view these ports are presented as 4 reg-
isters whose address layout are shown in table 1.

Before communicating with the outside world (the Colombo board in our
case) we must configure the 8255 telling it, which port will be used for output
and which port for input. In addition we need to specify the type of transfer
(latched or not). This is done by programming the control register.

Mode 0: Basic I/O mode (non latched). No interrupts

Model: Strobed I/O mode. Here some lines of port C will be
used as handshake (strobe) lines and may be used to generate
interrupts

Mode 2: Bidirectional mode

How does this map to our equipment hardware? Firstly we need 8 output
lines in order to drive the displays. 4 lines are used for the data while the
other 4 lines will generate the chip select signals for the registers holding the
data of each display.

Then we need 8 input lines for reading of the rotary switch and the toggle and
pushbutton switches. Of course the pinout of the PPI board was incompatible
with the Colombo board, but a simple passive adapter board did the trick.
I finally had the setup shown in fig. 3

The hardware was complete and testing could start. I collected all infor-
mation I was given with my PC and I found a table of hardware addresses,
telling me that the address reserved for Ipt2: was free.

I therefore set the address switches to 0x13b. (address 0x278 shifted left
by 2 and 1 added for aen) I opened my PC (for the first time!) I broke out
the metal protection for the I /O slot and I inserted the 1/0 card into the slot
I had selected. I hooked up the cables and the decisive moment has come! [
felt quite nervous! Another serious check and...

I switched the PC on !

Sixth College on Microprocessor based Real Time Systems in Physics 196
Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

— . e
N e e T T Ty

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

Colombo Board

19|96

Parallel VO Adapter
Interface Board

1

Rotary Switch Push Buttons Toggle Buitons

Figure 3: The Hardware Setup

I/O Addresses Device]
000-01F0 DMA Controller 1
020-03F Interrupt Controller 1
040-05F Timer
060-06F Keyboard
070-07F Realtime Clock

some left out
1F0-1F0 Fixed Disk
278-2FF Parallel Printer Port 2
2F8-2FF Serial Port 2
300-31F Protytype Card
378-3FF Parallel Printer Port 1
3F0-3F7 Floppy Disk Controller

Table 2: 1/O Addresses on the PC Bus

Sixth College on Microprocessor based Real Time Systems in Physics 197
Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

Qufff, there was no smoke coming out of the PC and the thing booted
normally. However I quickly found out that the floppy did not work any more.
Did I finally kill the floppy interface? I re-opened the PC (and decided to
leave it open until everything would work or [had to take the PC to the repair
shop) took the I/0 card out and tried booting again. The floppy worked fine
again. So there must have been an address clash between the floppy and
the I/O board. (I still don’t really know how this comes about!) Looking
through the addresses again I selected 0x300 (which turned out to confict
with the ethernet card in Trieste, were we finally selected 0x310) which was
marked " prototype card”. I re-inserted the board and rebooted. This time
the machine booted fine again and also the floppy worked normally. Real
progress! However I was still unable to talk to the 1/0O board.

Having a look at the xclock program told me that midnight had passed
again! and this was not the first time during the last week. My wife would
be angry with me and I tried to find an excuse knowing I would have a hard
time with that. The problem was, that she was somehow right but there was
so little time left before the course and I absolutely wanted to get the thing
going before. Still it was a wise decision to stop at that moment.

The next night (I did all this after working hours) I had another look at
the addressing on the I/O board. I controlled the address switches again and
they seemed all ok. The only possible source of error was the enable line (en)
which was marked without a ™ meaning: active high signal. Mostly enable
lines are active low however so I decided that this must have been simply a
misprint and I switched the comparator input to active low. It turned out,
that I was right. The PC booted, the floppy worked and [was able to talk
to the I/O board. This was not the end of the adventure but clearly the end
of the first chapter of this novel.

We need to become a little more technical now. You may have asked
yourself: What do I mean by talking to the board How do I know if I was
able to access the board or not. Which calls are provided within Linux to
access external hardware?

The main problem of checking the interface for the first time is to dis-
entangle hardware and software problems. It is therefore important to get
an indication that something workes. I tried to find a register that I could
just read for the first step e.g. a status register on the I/O card. Finding
a reasonable bit combination could be a first indication of successful board
access. After that I tried to find a read/write register which I could write
with a known bit pattern and read back. Typical bit patterns are : 0x55 and
Oxaa (Why?) !

!Try to write the numbers in binary. You will see that every other bit is set starting

Sixth College on Microprocessor based Real Time Systems in Physics 198
Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

Comparing written to read values gives you a fair idea. if things are work-
ing, at least if you are successful. Of course checking out the hardware also
means writing of very small and simple programs. After having checked read
and write access to the interface I wrote a little program that gives a visible
indication of something happening on the connected hardware, which was a
routine lighting the seven segment displays with known numbers. The pro-
gram is given below. It consists of two part2: Firstly permission is asked
for reading and writing to/from absolute 1/O addresses (the addresses of the
parallel interface registers). As you might expect in a multitasking and mul-
tiuser system access to absolute addresses must be restricted (and they are
restricted to the super user only) in order to guarantee system integrity. (A
super user is supposed to know what he is doing!) After successful execution
of i0_perm() we have access t0 our 1/0 interface registers.

The sequence therefore is:

ioperm (base_address,range,permission) :
value = inb(IO_PortAddress);
outb(I0 _PortAddress,value);

A similar sequence is available for memory access, e.g. if you want to write
into the video memory of a video card directly. Here we would:

open(/dev/mem);
allocate a certain number of memory pages

and map this memory onto the absolute address of the video
memory using mmap-

inb, outb etc. are Macros, which are defined in /usr/include/linux/ asm/io.h
(please have a look at this file !) together with similar ones like inw, inl etc.
Since these are “builtin macros” you must use the gee option -O2 in order
to get them included into your code. Forgetting -O2 results in unresolved
references at link time.

4 Accessing a device driver

You may think, since we now have access to our 1/O card, we can read and
write data form/to it, well ..., that’s it, we have finished! Unfortunately

from bit 0 for 0x55 and bit 1 for Oxaa.

Sixth College on Microprocessor based Real Time Systers in Physica 199
Abdus Salam ICTP, Trieste, Italy. October 9§ -—— November 3, 2000

T

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

this is not the case. As said before: Any program making use of toperm,
inb, outb or mmap will only run in super user mode. We want to give
access to our board to the ordinary user however. In addition there is no
resource protection (the board may be written to by several tasks in any wild
sequence) and treatment of interrupts or even DMA are excluded. Only the
device driver will give you access to these possibilities.

What exactly is a device driver then? and how may an ordinary user
access it? We want to slowly approach this question by first looking at the
drivers software interface, or said differently: the way a programmer would
use the driver.

You have already written programs that make use of files and you have
seen the calls:

e open
e close
e read
® wrTite

Iseek ete.

Accessing a device driver is exactly the same. You may think of a device
as a special file (which is actually the technical term for it). The device is
accessed through inodes defined in /dev using the same calls as normal file
access. On order to open the device of our Colombo board we would write:

fd = open(” /dev/ictp0” ;O_RDWR);

In order to write to the board we would fill a buffer and write it to the board:

buf[0] = 0x3f; /* fill the buffer */
buf[l] = 0x3e;
buf[2] = 0x3f;
write(fd, buf, 3); /* write to the board */
What exactly happens when we do this? The ” calls” open, read, write are
so-called system-calls and differ from normal subroutine calls. System calls
generate software interrupts and doing so change the running mode from

(normal) user mode to supervisor mode. After that a subroutine within the
system kernel is called and executed in supervisor mode {(compare to fig. 4).

Sixth College on Microprocessor based Real Time Systems in Physics 200
Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

e~

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

system call .
User Mode supervisor mode
software
interrupt
User library
Program
open
' close —
read
. Driver
write efc... :
hardware
software éccess
............................. r..
hardware 1 9 9 6
registers -
ICTP
Colembo Board
\

Figure 4: Accessing the Device Driver

You now immediately see that our driver routines are actually executed on
the same level as the kernel, they are integral part of the kernel. This also
means that errors within the kernel routines are usually unrecoverable (there
is no such things as ”segmentation fault, core dumped”) and will crash the
entire system.

The following listing gives an example of access to the ictp driver.

/**#*********/

/* Access the ictp device driver */
/* This example writes the displays in RAW mode */
/* U. Raich 14.3.94 x/
Sixth College on Microprocessor based Real Time Systems in Physics 201

Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

AR R o Kk ok ok sk ok ko ok ok Kok ok ook ok kR ok
#include "/usr/include/stdio.h"

#include "/usr/include/fcntl.h"

#include <sys/ioctl.h>

#include "ictp.h"

void main{()

{
int fd,i,ret_code;
unsigned long mode;
unsigned char buffer[12];
short full _number;

/*
open the device driver for writing
*/
fd = open("/dev/ictp0",0_WRONLY);
if (£d < 0) {
perror ("Could not open ictp port:");
exit(-1);
}
else
printf("ictp port successfully opened for writing!\n");

/*
try out raw mode
we must code data and chip select signals ourselves

buf [0] buf[1] buf[2]

*/

buffer [0]=0x1f;
buffer[1]=0x17;
buffer[2]=0x1f;
buffer [31=0x9f;
buffer [4]=0x9b;
buffer[5]=0x9f;
buffer [6]=0x9f;
buffer {7]=0x94;
buffer 8] =0x9f;

Sixth College on Microprocessor based Real Time Systems in Physics 202
Abdus Salam ICTP, Trieste, Italy. Qctober $ — November 3, 2000

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

buffer[9]=0x6f;
buffer [10]=0x6e;
puffer[11]1=0x61;

if (urite(fd,buffer,12) != 12)
perror (“after write ")

close(fd);

}

5 Representation of the device driver

Having seen how to access the driver from an application we must now figure
out how the kernel finds its way into the driver. Trying:

Is -1 /dev/ictp*

will produce the following output:

cru-rw-rw- 1 root root 31, O Jan 4 19:07 /dev/ictp0
crw-rw-ru—- 1 root root 31, 1 Jan 4 19:07 /dev/ictpl
crw-rw-rw- 1 root root 31, 2 Jan 4 19:07 /dev/ictp?2

where c tells us that the file is actually a character device driver, rw are
the usual read and write permission bits and 31 is the major and 0,1,2 the
minor device numbers. These numbers are unique in the system. By the way:
the device special files are not created by a text editor but by the command:

mknod /dev/ictp ¢ 31 0
mknod /dev/drivername, device type, major number, minor number

‘The major number defines the I /O device, the minor number usually indi-
cates a channel number (a serial /O device may have 4 UARTSs representing
4 serial 1/O channels, which are driven by a single software module).

As explained before, the driver is an integral part of the operating system
and is usually linked into the kerne] during system generation. However a
software package has been developped for Linux, allowing us to install and de-
install device drivers (or other ”modules” like file systems etc.) into a running
kernel. This modules package provides the following basic programs:

e insmod: install a module into the kernel

e lsmod: list all installed modules

Sixth College on Microprocessor based Real Time Systems in Physics 203
Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

o rmmod: de-install a module from the kernel
e ksyms: list exported kerne) sysmbols

and the newer versions of the package have in addition:

e modprobe: same as insmod but a standard path is searched for the
modules while insmod needs the full path name.

e kerneld: kernel daemon, started during boot, allows demand loading of
modules. The module is simply installed in a standard directory. When
an application program calls a device driver routine (ex. ”open”) and
the device driver does not exist in the system, a request to load the
corresponding driver is sent to kerneld. kerneld loads the driver via
modprobe and the application can continue.

The system you are currently using has all its modules installed in
/lib/modules/2.0.33.

6 Implementing the Device Driver, first steps

A device driver always consists of at least 2 files:
e The driver include file (/usr/local /include/ictp.h)
e The driver code itself.

The include file contains the definitions of hardware addresses, register names,
and names for each and every bit used within the I/0O chip registers. In addi-
tion it contains definitions for error codes, names for driver operating modes,
ioctl request names and the like. It is used by the driver itself, but it is
usually also included by any program using the driver.

The following listing shows the include file provided for the ictp driver:

/*************#***************#**********************/
/* Definitions of 8255 addresses and control bits */
/* U, Raich 31.8.94 x/

/**************************#*************************l

#include <sys/ioctl.h>

#define ICTP_MAJOR 31
#define ICTP_NO 3
Sixth College on Microprocessor based Real Time Systems in Physics 204

Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

Collected Adventures in Linux Device Driver Writing

Raich, Ulrich

/*
* defines for 8255 ports
*/

#tdefine ICTP_A base

#define ICTP_B base+l
#define ICTP_C base+2
#define ICTP_S base+3

/*
* defines ICTP status and control register bits

*/

#define ICTP_MODE_SELECT 0x80

#define ICTP_A_MODE_O 0x00
#define ICTP_A_MCDE_1 0x20
#define ICTP_A_MODE_2 0x40
#define ICTP_B_MODE_O 0x00
#define ICTP_B_MODE_1 0x04
#define ICTP_MODE_BLOCKING 0

#define ICTP_MODE_NON_BLOCKING 1

#define ICTP_INPUT_A 0x10
#define ICTP_OUTPUT_A 0x00
#define ICTP_INPUT_B 0x02
#define ICTP_OUTPUT_B 0x00

#define ICTP_INPUT_C_LOW 0x01
#define ICTP_OUTPUT_C_LOW 0x00
#define ICTP_INPUT_C_HIGH 0x08
#define ICTP_OUTPUT_C_HIGH 0x00

#define ICTP_AVAILABLE i
#define ICTP_NOT_AVAILABLE 0

#define ICTP_SILENCE 0x09
#define ICTP_NOISE 0x08
#define ICTP_BUZZER_BIT 0x10
#define ICTP_BUZZER_ON 1
#define ICTP_BUZZER_OFF 0

Sixth College on Microprocessor based Real Time Systems in Physics
Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

205

Collected Adventures in Linux Device Driver Writing

Raich, Ulrich

#define ICTP_MODE_RAW 0
#define ICTP_MODE_SINGLE_DIGIT 1
#define ICTP_MODE_FULL_NUMBER 2
#define ICTP_BUSY 1
#define ICTP_FREE 0
#define ICTP_READ_SWITCHES 0
#define ICTP_READ_IRQ5_COUNT 1
#define ICTP_READ_IRQ7_COUNT 2
#define ICTP_ENABLE_IRQS 0x5
#define ICTP_DISABLE_IRQ5 0x4
#define ICTP_ENABLE_IRQ7 Oxd
#define ICTP_DISABLE_IRQ7 Oxc
#define ICTP_IEF_B 0x2
#define ICTP_DUMMY Oxff
/*

the ioctl codes:
*/
#define ICTP_SET_WRITE_MODE I0C_IN |
#define ICTP_GET_WRITE_MODE I0C_ouT |
#define ICTP_SET_READ_MODE IOC_IN |
#define ICTP_GET_READ_MODE I0c_aut |
#define ICTP_SET_BUZZER I0C_IN |
#define ICTP_GET_BUZZER I0C_0OuT |
#define ICTP_ENABLE_INTERRUPT
#define ICTP_DISABLE_INTERRUPT
/*

for checking if the board is there
*/
#define ICTP_TSTBIT 0x20
#define ICTP_SET_TSTBIT Oxb
#define ICTP_RESET_TSTBIT Oxa

0x0001
0x0001
0x0002
0x0002
0x0003
0x0004
0x0005
0x0006

As you can see, all addresses are calculated relative to a single base ad-
dress base. This variable can be set to the 8255 base address using an option
(base=0x320) to modprobe. Like this the driver code becomes independant
from from the hardware addresses and is configurable for any system,

Before a user program can access the driver it must be inciuded into the
system (if kerneld is not running). As already mentioned earlier, this can be

Sixth College on Microprocessor based Real Time Systems in Physics
Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

206

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

done either by linking it into the kernel at system creation or we register the
driver with the operation system once the module containing the driver gets
installed with insmod. Therefore we must provide 2 routines:

e init.module, which is called by insmod and which will check if the paral-
lel I/O card can be accessed at the base address specified before asking
the kernel to register the ictp device driver.

o cleanup_module, which is called by rmmod and which cleanly removes
the module from the system.

Since the driver is an integral part of the operating system and works in
supervisor mode, it has no access to the normal C library functions. It cannot
be debugged with a normal debugger either (the debugger has no access to
supervisory memory!). However a few calls are available to the device driver
writer, one of which is printk, which is the kernel equivalent to printf.

For debugging purposes I therefore put a few printk statements in strate-
gic places in order to be able to follow the execution of my code. When
registering the device driver with the system the address of the fops table
is passed as a parameter. This table contains the entry-points of the driver
routines needed for the execution of

e open
e close
e read
e write
e lseek
e ioctl

and a few more system calls. If a call is not implemented the table gets a
NULL entry. Here is the fops table of our ictp driver:

static struct file_operations ictp_fops = {
NULL, /* seek x/
ictp_read,
ictp_vrite,
NULL,/#* readdir */
NULL,/* select */
ictp_ioctl,
NULL,/#* mmap */

Sixth College on Microprocessor based Real Time Systems in Physics 207
Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

Collecied Adventures in Linux Device Driver Writing Raich, Ulrich

ictp_open,
ictp_release

};
The code for init_module is also given below:

/*
* And now the modules code and kernel interface.
*/

int
init_module(void) {

unsigned char testvalue = 0;
#ifdef ICTP_DEBUG

printk(KERN_DEBUG "ictp: init_module called\n");
printk (KERN_DEBUG "ictp: base address %x\n",base);

#endif
/*
initialize the chip
*/
ictp_reset();
testvalue = inb(ICTP_B);
/*

set bit 5 of port C and read back. This bit is unused
*/

outb{ICTP_SET_TSTBIT,ICTP_S);
testvalue = inb{ICTP_C);
#ifdef ICTP_DEBUG
printk (KERN_DEBUG "ictp: port C after set bit 5 %x\n",testvalue);
#endif
if ((testvalue & ICTP_TSTBIT) == 0) {
printk (KERN_ERR "ictp: board not found!\n");
return -ENODEV;
}
outb(ICTP_RESET_TSTBIT,ICTP_S);
testvalue = inb(ICTP_C);
#ifdef ICTP_DEBUG

printk (KERN_DEBUG “"ictp: port C after reset bit 5 %x\n",testvalue);

#endif

Sixth College on Microprocessor based Real Time Systems in Physics 208
Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

Clollected Adventures in Lirux Device Driver Writing Raich, Ulrich

if ((testvalue & ICTP_TSTBIT) != 0) {
printk(KERN_ERR "ictp: board not found!\n");
return ~ENODEV;

¥

/*
register the device driver with the system
74
if (register_chrdev(HW_MAJOR, nictp", kictp.fops)) {
printk(KERN_ERR nregister_chrdev failed: goodbye world :=(\n");
return -EIO;
1
#ifdef ICTP_DEBUG
else
printk (KERN_DEBUG "ictp: driver registered!\n");
#endif
return 0;

¥

"The first version of the driver registered a fops table with NULL entries
only. This version clearly cannot do anything, however it should be possible
to test installation and de-installation into the system using insmod and
rmmod. 1 expected to find the printk output on the xconsole and lsmod
should allow to check proper installation. What did I find? Well, following
Murphies laws, it was the worst possible result: lsmod told me:

ictp 1 0
Module Pages Used by

but I had no trace whatsoever of my printk statements. I was not really sure
who was right: Ismod or the missing output from printk. After several hours
of research and some poking around on the internet I found the email address
of a guru who had written a device driver before. He told me I could check
where to find the system console by trying:

date > /dev/console

When I tried this, I found the output of the date on the xconsole as expected.
Gtill 1 did not know, where the printk messages had gone. The other other
test 1 could find was to recompile the kernel and link my driver into the
system. When booting the newly created system I saw the very first printk
output on the system console but not the following ones.Of course I then
checked the system log (/var/ log/messages) in order to find out what had

Sixth College on Microprocessor based Real Time Systems in Physics 200
Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

happened and there I found all the printk output I had expected on the
console. The printk output went into the system log! After having add the
lines

Send debug messages to the system console
kern.debug /dev/console

to /etc/syslog.conf1 finally got the debugging messages where I wanted them,
namely on the xconsole.

7 The Driver Routines

Since we now
e understand the hardware
¢ know how to install the device driver into the system
e have a frame of the driver ready
¢ are able to produce debugging messages

we can actually start to implement the first driver routines that do the real
work. The first routines to be implemented are of course the open and close
calls. When opening the device driver we initialize the 8255 chip writing the
necessary control code into its command register.

In order to make sure that only one process at a time can access the
device a busy flag is set after the first successful open. All subsequent open
calls will be refused (giving back the error EBUSY) until the driver is closed
again.

static int
ictp.open(struct inode * inode, struct file * file)

{

unsigned int minor = MINDR(inode->i_rdev);
unsigned char command ;
int ret_code;

if (ictp_busy == ICTP_BUSY)

return -EBUSY;

command = ICTP_MODE_SELECT | ICTP_A_MODE_O | ICTP_B_MODE_O
| ICTP_INPUT_B;

Sixth College on Microprocessor based Real Time Systems in Physics 210
Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

outb(command, ICTP_S); /* setup to non interrupt */

#ifdef ICTP_DEBUG
printk (KERN_DEBUG "ictp: opened for switch reading\n");
#endif
ictp_busy = ICTP_BUSY;
return 0;

The above code is a simplified version of the code actually in service
for the ictp driver. In the real open routine we also switch off the buzzer
and, depending on the minor mode (ictp0, ictpl, ictp2) we register interrupt
service routines with the system.

In order to implement the write part of the driver we should first have a
look at the library routines accessible to the device driver writer. Some of
these routines we have already seen before, namely:

. register_chrdev(unsigned int major,
congt char *name,
struct file_operations *fops)

e unregister_chrdev(unsigned int major,
const char *name)

e printk(fmt)

There are also 2 Macros that allow us to find out the current major am
minor numbers:

e MAJOR(inode -> i_rdev) and
e MINOR(inode —> i_rdev)

As we have seen in the example code above, inode is a structure that is
passed into the driver routines, In order to implement the read and write
routines we need additional calls to transfer a data buffer from user space to
supervisory space and back. This feature is provided by:

o get_user(char *address)
e put_user(char *address)

Their use is demonstrated by the (incomplete) ictp write routine:

Sixth College on Microprocessor based Real Time Systems in Physics 211
Abdus Salam ICTP, Trieste, Ttaly. October 9 — November 3, 2000

Coliected Adventures in Linux Device Driver Writing Raich, Ulrich

/¥
* Write requests on the ictp device.
*/
static int
ictp_write(struct inode * inode, struct file * file,
const char * buf, int count)

{

char c;
const char *temp=buf ;
unsigned char ctemp, digit;

switch (ictp_write_mode) {
case ICTP_MODE_RAW:
temp = buf;
while (count > 0) {
c = get_user(temp);
outb(c,ICTP_A);
count--;
temp++;

return temp-buf;
break;

We have now seen the open, close, write routines (the read is very similar
to the write once we replace get_user by put_user). The only missing code is
ioctl,

As a typical example we will have a look at the code that drives the buzzer.
"The buzzer is connected to the PC-4 line of the 8255 and can be programmed
by specifying the bit number in the bits 1-3 of the 8255 command register
with biy 7 set to 0 and bit 0 defining on (bit=1) or off (bit=0). The ioctl
call as seen from the driver user’s point of view has got 3 parameters:

¢ the file descriptor
e 3 command code
e and a parameter

Command codes and symbolic names for possible parameters are de-
scribed in the ictp.h file

#define ICTP_SET_BUZZER IOC_OUT | Ox 0004

Sixth College on Microprocessor based Real Time Systems in Physics 212
Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

ioctl(ictp_fd,ICTP_SET\,BUZZER,ICTP_NOISE)
ioctl(ictp_fd,ICTP\dSET_BUZZER,ICTP_SILENCE)

will switch the buzzer on and off.
The command parameter in the driver code receives the ioct! command
code while the arg is passed the corresponding argument (buzzer on or off).

/*
* Handle ioctl calls
*/

static int

ictp_ioctl{struct inode * inode, struct file * file,
unsigned int cmd, unsigned long arg)

{
unsigned int minor = MINOR(inode->i_rdev);
unsigned char port_(_status;
unsigned short dummy;

case ICTP_SET_BUZZER:
#ifdef ICTP_DEBUG
printk(KERN_DEBUG "ictp: ioctl set buzzer function entered!\n");
#endif
if (arg == ICTP_BUZZER_ON) {
outb(ICTP_NOISE,ICTP_S);
return O;
}
else if (arg == ICTP_BUZZER_OFF) {
outb(ICTP_SILENCE,ICTP_S);
return 0;
1
else
return -EINVAL;
break;

case ICTP_GET_BUZZER:
#ifdef ICTP_DEBUG
printk(KERN_DEBUG "ictp: joctl get buzzer function entered!\n"};
#tendif
port_C_status = inb(ICTP_C);
if (port_C_status & ICTP_BUZZER_BIT)
return ICTP_BUZZER_OFF;
else
return ICTP_BUZZER_ON;

Sixth College on Microprocessor based Rea! Time Systems in Physics 213
Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

break;

default: return -EINVAL ;
}

The driver allows users to choose a write mode forcing subsequent write
calls to be interpreted in a different way:

o ICTP MODE_RAW will send the data transfered in the write data
buffer as is to the hardware. In this mode the driver user is responsable
to set up the data and chip selects correctly. This mode has been
provided in order give you trouble... well, in order to teach you the
hardware.

e ICTP_MODE SINGLE_DIGIT will write a single digit. Here a
single byte containing the digit number (0-3) in the high nibble and
the data value in the low nibble must be given in the databuffer.

e ICTP_ MODE_FULL_NUMBER takes a short containing the num-
ber to be displayed on all for digits. This is of course the simplest way

to use the driver. (Remember to specify a size of 2 (bytes) in the write
call).

The full ioctl code not only permits the user to set the write mode using
the ICTP_SET_WRITE_MODE ioctl command, several other commands are
impiemented for:

¢ Enabling/Disabling interrupts
e Setting the interrupt type (read becomes blocking or non blocking)
¢ Reading/Writing the buzzer state

¢ Reading/Writing the write mode

8 Appendix A: The ICTP device driver user’s
manual

A sample device driver for the ICTP board has been developed. The following
gives a summary of its functions.

Sixth College on Microprocessor based Real Time Systems in Physics 214
Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

The ictp driver expects an [/O board using an Intel 8255 chip at an
I/O adress that can be specified at module load time giving the option
"base=0x320" to insmod (default 0x300). The connections to the ICTP
board must be made as follows:

e Port A: ICTP displays
Port A is therefore programmed as output port.

e Port B: ICTP switches
Port B is therefore programmed as input port.

e If you open minor device 0, the port B of the 8255 will be set to mode 0
{non strobed input, allowing to read directly the state of the switches.
Port A is set to mode 1 (strobed I/0O).

e When opening minor device 1 the 8255 chip is initialized such that
both, port A and port B are set to mode 1 (strobed 1/O}). This allows
interrupts for both ports.

e In mode 1, with port A output, the bits 4 and 5 of port C may be used
as normal I/O pins, while the other bits are used as handshake signals

or interrupt lines.
Bit 4 of port C must be connected to CA2 (the ICTP buzzer).

e Bit 2 and Bit 6 of port C are strobe lines which must be connected to
one of the interrupt generating line CA1,CA2 or CB1.

The driver functions:
Read calls:

The driver uses major number 31 and 3 minor numbers:

e read on minor number §: read the switches
read on minor number 1: returns the number of
interrupts arrived since
the last read call.
e read on minor number 2: same as above for interrupt 2

Reads for interrupts exist in 2 flavors:

e non blocking: The number of interrupts since the last read is imme-
diately returned, even if it is zero.

Sixth College on Microprocessor based Real Time Systems in Physics 215
Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

e blocking: If the number of interrupts is zero, it blocks the calling
process until the next interrupt {or other signal like “C) arrives.

‘Write calls:

Writing works on any of the three minor devices. There are 3 different write
modes which may be set up by ioctl calls (see later).

e ICTP _ MODE_RAW: in this mode the data coming from the user
are sent untreated to the I/O port. In order to make the displays work
correctly, the user must select the suitable data/chipselect sequences cs
high + data, ¢s low + data, cs high + data for all digits. In each byte
the high nibble specifies the data and the low nibble the chip selects.
12 data bytes are expected and the driver will return EINVAL if the
count is wrong

o ICTP MODE_SINGLE_DIGIT: a single data byte is accepted. The
high nibble contains the digit number {0-3) and the low nibble contains
the data.

o ICTP MODE FULL_NUMBER:. a short is expected. This number
will be put onto the digits.

ioctl calls:

o ICTPSET WRITE_MODE: sets up the writing mode. The
following values are accepted.:
— ICTP_MODE_RAW 12 data bytes expected

but allowed anything
— ICTP_MODE_SINGLE DIGIT only 1 data byte allowed
— ICTP.MODE_FULLNUMBER a short needed;
e ICTP.SET_.READ.MODE set the read mode
— ICTP_-MODE_BLOCKING if count = zero, block process until
interrupt arrives
— ICTP.MODE_NONBLOCKING return current count immediately

o ICTP_.GET_WRITE_MODE return the current write mode
ICTP_GET_READ MODE return the current read mode
o ICTP.SET.BUZZER controls the buzzer. Valid args are:
— ICTP_BUZZER_ON
-— ICTP_BUZZER_OFF guess, what they are doing!
e ICTP_.GET_BUZZER read the current buzzer state.
Sixth College on Microprocessor based Real Time Systems in Physics 216

Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

Collected Adventures in Linux Device Driver Writing

Raich, Ulrich

9 Appendix B: The full Driver Code

/*

» Implements the ICTP character device driver.

+ Create the device with:

*

* mknod /dev/ictp ¢ 31 0

*

* - U. Raich

+ 13.3.94 : First version working with PC parallel printer port
*

* Modifications:

% 30.8.94 : U.R. complete rewrite for Manuel’s board

/* Kernel includes */
#include <linux/module.h>

#include <linux/mm.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/sched.h>
#include <linux/malloc.h>
#include <linux/ioport.h>
#include <linux/fcntl.h>
#include <linux/delay.h>

#include <asm/io.h>
#include <asm/segment.h>
#include <asm/system.h>

#include "ictp.h"

#define HW_MAJOR 31 /* nice and high */
#define ICTP_DEBUG 1

/*
some globals:
*/
int base=0x300;

Sixth College on Microprocessor based Real Time Systems in Physics
Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

217

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

unsigned long ictp_write_mode = ICTP_MODE_RAW;

unsigned long ictp_read_mode = ICTP_MODE_NON_BLOCKING;
int ictp_busy = ICTP_FREE;

int irqg5 = 5, irq7 = 7;

unsigned char irqb_count = 0, irq7_count = 0;

struct wait_queue *ictp_wait_gq;

/*
* The driver.

*/

static void
out_digit(unsigned char digit, unsigned char number)

{

unsigned char mask,c;

mask = 1 << digit;
mask = "mask;
#ifdef ICTP_DEBUG
printk("ictp: mask %x\n",mask);
#endif
¢ = (number << 4) | 0xf;
outb(c,ICTP_4);
¢ &= mask;
outb(c,ICTP_4);
c = 0xf;
outb(¢,ICTP_A);

/*
first the tough part: the interrupt code
*/

static void
ictp_irq7_interrupt(int irq)
{

outb(ICTP_DUMMY,ICTP_A); /* this just clears the interrupt =*/

irq7_count++;
if (ictp_read mode == ICTP_MODE_BLOCKING)

Sixth College on Microprocessor based Real Time Systems in Physics 218
Abdus Salam ICTP, Trieste, Italy. October $ — November 3, 2000

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

wake_up(&ictp_wait_q);
}

static void
ictp_irg5_interrupt(int irq)
{
unsigned char dummy;
dummy = inb(ICTP_B); /* this just clears the interrupt */

if (ictp_read_mode == ICTP_MODE_BLOCKING)

wake_up(&ictp_wait_q);
irgb_count++;

1

static void
ictp_reset(void)

/% ===/
/*

initializes the 8255 chip
*/
{

unsigned char command;

/*

sets port A to output
port A is connected to the ICTP module displays
high order nibble: data
low order nibble: chip selects

mode 1: stobed I/0
allows use of interrupts
CAl: on interrups
CA2: (Buzzer) on PC4

*/
command = ICTP_MODE_SELECT | ICTP_A_MODE_O | ICTP_B_MODE_O
| ICTP_INPUT_B;
cutb (command, ICTP_S);
/*
kill the buzzer
Sixth College on Microprocessor based Real Time Systems in Physics 219

Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

first setup port C to bit set (bit set/reset mode with set bit on!)
*/
outb(ICTP_SILENCE,ICTP_S);
return ;

}

/*
* Handle ioctl calls
*/

static int
ictp_ioctl(struct inode * inode, struct file * file,
unsigned int cmd, unsigned long arg)
{
unsigned int minor = MINOR(inode->i_rdev);
unsigned char port_C_status;
unsigned short dummy;
switch (emd) {
case ICTP_SET_WRITE_MODE:
#ifdef ICTP_DEBUG
printk (KERN_DEBUG
"ictp: ioctl write function entered! cmd: %x, arg: %lx\n",
cmd, arg);
#endif
if (arg > ICTP_MODE_FULL_NUMBER})
return -EINVAL;
else {
ictp_write_mode = arg;
return 0;
1
break;
case ICTP_GET_WRITE_MODE:
#ifdef ICTP_DEBUG
printk (KERN_DEBUG "ictp: ioctl read function entered! cmd: %x\n",cmd);
#endif
return ictp_write_mode;
break;

case ICTP_SET_READ_MODE:
#ifdef ICTP_DEBUG
printk (KERN_DEBUG
“ictp: ioctl write function entered! cmd: %x, arg: %1lx\n",
cmd, arg);

Sixth College on Microprocessor based Real Time Systems in Physics 220
Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

#endif
if (arg > ICTP_MODE_NON_BLOCKING)
return -EINVAL;
else {
ictp_read_mode = arg;
return O;
1
break;
case ICTP_GET_READ_MODE:
#ifdef ICTP_DEBUG
printk (KERN_DEBUG "ictp: ioctl read function entered! cmd: %x\n",cmd);
#endif
return ictp_read_mode;
break;

case ICTP_SET_BUZZER:
#ifdef ICTP_DEBUG
printk (KERN_DEBUG "ictp: joctl set buzzer function entered!\n");
#endif
if (arg == ICTP_BUZZER_ON) {
outb(ICTP_NOISE,ICTP_S);
return 0;
}
else if (arg == ICTP_BUZZER_OFF) {
outb (ICTP_SILENCE,ICTP_S);
return 0;
¥
else
return -EINVAL;
break;

case ICTP_GET_BUZZER:
#ifdef ICTP_DEBUG
printk (KERN_DEBUG "ictp: ioctl get buzzer function entered!\n");
#endif
port_C_status = inb(ICTP_C);
if (port_C_status & ICTP_BUZZER_BIT)
return ICTP_BUZZER_OFF;
else
return ICTP_BUZZER_ON;
break;

case ICTP_ENABLE_INTERRUPT:

Sixth Coliege on Microprocessor based Real Time Systems in Physics 221
Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

#ifdef ICTP_DEBUG
printk(KERN_DEBUG "ictp: enabling interrupts on 8255\n");
#endif
if (minor == ICTP_READ_IRQ7_COUNT) {
dummy = Oxff;
outb (dummy , ICTP_A) ; /* reset int flag */
Outb(ICTP_ENABLE_IRQ7,ICTP_S);

irq7_count = 0;
dummy = inb(ICTP_C);
#ifdef ICTP_DEBUG
printk (KERN_DEBUG "ictp: port C after enable int 7: %x\n", dummy) ;
#endif
return O;
}
else if (minor == ICTP_READ_IRQ5_COUNT) {
outb(ICTP_ENABLE_IRQ5,ICTP_S);
dummy = inb(ICTP_B); /* now interrupts should come in */

irqb5_count = 0;
dummy = inb(ICTP_C);
#ifdef ICTP_DEBUG
printk (KERN_DEBUG "ictp: port C after enable int 5: %x\n", dummy) ;
#endif
return O;
}
else
return ~EINVAL;
break;

case ICTP_DISABLE_INTERRUPT:
#ifdef ICTP_DEBUG
printk (KERN_DEBUG “"ictp: disabling interrupts on 8255\n");
#endif
if (minor == ICTP_READ_IRQ7_COUNT) {
outb (ICTP_ENABLE_IRQ7,ICTP_S);
return 0Q;
}
else if (minor == ICTP_READ_IRQ5_COUNT) {
outb(ICTP_ENABLE_IRQS,ICTP_S);
return 0,
}

else

Sixth College on Microprocessor based Real Time Systems in Physics 222
Abdus Salam ICTP, Trieste, Italy. October § — November 3, 2000

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

return -EINVAL;
break;

default: return -EINVAL;
}
¥
/*
Read the status of the ICTP board switches
*/

static int
ictp_read(struct inode * inode, struct file * file,
char * buf, int count)

{

unsigned int minor = MINOR(inode->i_rdev);
unsigned char testvalue;

if (count 1= 1) return -EINVAL;

switch (minor) {
case ICTP_READ_SWITCHES:
testvalue = inb(ICTP_B); /* read the switches */
#ifdef ICTP_DEBUG
printk (KERN_DEBUG
"jctp: switch value read from port: Yx\n",testvalue);
#endif
put_user(testvalue,buf);
return 1;
break;
case ICTP_READ_TRQ7_COUNT:
#ifdef ICTP_DEBUG
printk (KERN_DEBUG "ictp: irq7_count: %d\n",irq7_count);
#endif
if (ictp_read_mode == ICTP_MODE_BLOCKING){
if (irq7_count == 0) {
#ifdef ICTP_DEBUG
printk (KERN_DEBUG "ictp: Going to sleep ...A\n");
#endif
interruptible_sleep_on(&ictp_wait_q);
¥
#ifdef ICTP_DEBUG
printk(KERN_DEBUG "ictp: returned from sleep\n");

Sixth College on Microprocessor based Real Time Systems in Physics 223
Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

#endif
put_user (irq7_count ,buf);
irq7_count = 0Q;
}
else {
put_user (irq7_count,buf);
irq7_count = 0;
}
testvalue = inb(ICTP_C);
#ifdef ICTP_DEBUG
printk (KERN_DEBUG "ictp: Port C data: %x\n",testvalue);
#endif
return 1;
case ICTP_READ_IRQ5_COUNT:
#ifdef ICTP_DEBUG
printk (KERN_DEBUG "ictp: irq5_count: #d\n",irq5_count);
#endif
if (ictp_read_mode == ICTP_MODE_BLOCKING){
if (irq5_count == 0) {
#ifdef ICTP_DEBUG
printk (KERN_DEBUG “ictp: Going to sleep ...\n");
#endif
interruptible_sleep_on(&ictp_wait_q);
}
#ifdef ICTP_DEBUG
printk (KERN_DEBUG "ictp: returned from sleep\n");
#endif
put_user(irq5_count,buf);
irq5_count = 0;
}
else {
put_user(irqg5_count,buf);
irg5_count = Q;
}
testvalue = inb(ICTP_C);
#ifdef ICTP_DEBUG
printk(KERN_DEBUG "ictp: Port C data: %x\n",testvalue);
#endif
return 1;
default:
return -EINVAL;

}
}

Sixth College on Microprocessor based Real Time Systems in Physics 224
Abdus Salam ICTP, Trieste, Iialy. October 9 — November 3, 2000

Collected Adventures in Linux Device Driver Writing

Raich, Ulrich

/*

* Write requests on the ictp device.

*/

static int

ictp_write(struct inode * inode, struct file = file,
const char * buf, int count)

{

char C;
const char *temp=buf ;
unsigned char ctenmp, digit;

switch (ictp_write_mode) {
case ICTP_MODE_RAW:
temp = buf;
while (count > 0) {
¢ = get_user(temp);
outb(c,ICTP_A);

count—-;
temp++;
}
return temp-buf;
break;
case ICTP_MODE_SINGLE_DIGIT:
if {count != 1)
return ~EINVAL;
¢ = get_user(temp);
digit = ¢ >> 4;
ctemp = ¢ & Oxf;
out_digit(digit,ctemp);
return 1;
break;

case ICTP_MODE_FULL_NUMBER:
if (count != 2)
return -EINVAL;
temp = buf;
¢ = get_user(temp);
#ifdef ICTP_DEBUG

printk (KERN_DEBUG "write, mode 2, first byte: %x\n",c);

#endif
ctemp = ¢ & Oxf;

Sixth College on Microprocessor based Real Time Systems in Physics
Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

225

Collected Adventures in Linux Device Driver Writing

Raich, Utrich

cut_digit{0,ctemp);
ctemp = ¢ >> 4;
out_digit(i,ctemp);

¢ = get_user{temp+i);
#ifdef ICTP_DEBUG

printk("write, mode 2, second byte: %x\n",c¢);

#endif
ctemp = ¢ & Oxf;
out_digit(2,ctemp);
ctemp = ¢ >> 4;
out_digit(3,ctemp);
/x
get first nibble
*/
return 2;
break;
default:
return 1;
break;
}
}

static int
ictp_open(struct inode * inode, struct file * file)

{

unsigned int minor = MINOR(inode->i_rdev);
unsigned char command ;
int ret_code;

if (minor >= ICTP_NO)
return -ENODEV;

if (ictp_busy == ICTP_BUSY)
return -EBUSY;

ictp_write_mode = ICTP_MODE_RAW;
switch (minor) {

/*
this allows interrupts on the push button

Sixth College on Microprocessor based Real Time Systems in Physics
Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

226

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

*/
case ICTP_READ_IRQ7_COUNT:
ret_code = request_irq(irq7,(void *)ictp_irq7_interrupt,
SA_INTERRUPT, "ictp",NULL);
if (ret_code) {
printk (KERN_WARNING "ictp: unable to use interupt 7\n") ;
return ret_code;
}
else {
#ifdef ICTP_DEBUG
printk (KERN_DEBUG "ictp: irq7 registered\n®);

#endif
command = ICTP_MODE_SELECT | ICTP_A_MODE_1 | ICTP_B_MODE_O
| ICTP_INPUT_E;
outb(command, ICTP_S) ; /* strobed output */
/*

kill the buzzer
first setup port C to bit set (bit set/reset mode with set bit on!)}
*/
outb(ICTP_SILENCE,ICTP_S};
}
break;

case ICTP_READ_IRQ5_COUNT:

ret_code = request_irq(irg5, (void *)ictp_irqS_interrupt,
SA_INTERRUPT,"ictp",NULL);
if (ret_code)} {
printk (KERN_WARNING "ictp: unable to use interupt 5\n");
return ret_code;

}
else {
command = ICTP_MODE_SELECT | ICTP_A_MODE_O | ICTP_B_MODE_1
| ICTP_INPUT_B;
outb(command, ICTP_S); /* strobed input */
/*

kill the buzzer
first setup port C to bit set (bit set/reset mode with set bit om!)
*/
outb (ICTP_SILENCE, ICTP_S);
#ifdef ICTP_DEBUG
printk (KERN_DEBUG "ictp: interrupt 5 registered\n");
#endif

Sixth College on Microprocessor based Real Time Systems in Physics 227
Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

b
break;

case ICTP_READ_SWITCHES:
command = ICTP_MODE_SELECT | ICTP_A_MODE_O | ICTP_B_MODE_O
! ICTP_INPUT_B;
outb (command,ICTP_S); /* setup to non interrupt */
/*x
kill the buzzer
first setup port C to bit set (bit set/reset mode with set bit on!)
*/
outh(ICTP_SILENCE,ICTP_S);
#ifdef ICTP_DEBUG
printk(KERN_DEBUG "ictp: opened for switch reading\n");
#endif
break;

default:
return -EINVAL;
}
ictp_busy = ICTP_BUSY;
MOD_INC_USE_COUNT;
return 0;

}

static void
ictp_release(struct inode * inode, struct file * file)
{

unsigned int minor = MINOR{inode->i_rdev);

/*

free the interrupt
*/

switch (minor) {

case ICTP_READ_IRQ7_COUNT:

free_irq(irq7,NULL);
#ifdef ICTP_DEBUG

printk(KERN_DEBUG "ictp: interrupt 7 free’d\n");

#endif

break;
case ICTP_READ_IRQS_CQUNT:

free_irq(irq5,NULL);
#ifdef ICTP_DEBUG

Sixth College on Microprocessor based Real Time Systems in Physics 228
Abdus Salam ICTP, Trieste, Italy. October § — November 3, 2000

Collected Adventures in Linux Device Driver Writing

Raich, Ulrich

printk (KERN_DEBUG "ictp: interrupt S free’d\n");
#endif
break;

default: ;

}
ictp_busy = ICTP_FREE;
MOD_DEC_USE_CQUNT;
¥

static struct file_operations ictp_fops = {
NULL, /* seek */
ictp._read,
ictp_vwrite,
NULL,/* readdir x/
NULL,/* select =*/
ictp_ioctl,
NULL,/* mmap */
ictp_open,
ictp_release

};

/*
* And now the modules code and kernel interface.

*/

int
init_module(void) {

unsigned char testvalue = 0;

#ifdef ICTP_DEBUG

printk (KERN_DEBUG "ictp: init_module called\n"};
printk(KERN_DEBUG "ictp: base address %x\n",base);
#endif

/*
initialize the chip
*/
ictp_reset();

testvalue = inb(ICTP_B);
/*

set bit 5 of port C and read back. This bit is unused

Sixth College on Microprocessor based Real Time Systems in Physics
Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

229

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

*/

outb(ICTP_SET_TSTBIT,ICTP_S);
testvalue = inb(ICTP_C);
#ifdef ICTP_DEBUG
printk (KERN_DEBUG "ictp: port C after set bit 5 %x\n",testvalue);
#endif
if ((testvalue & ICTP_TSTBIT) == 0) {
printk (KERN_ERR "ictp: board not found!\n");
return -ENODEV;
}
outb (ICTP_RESET_TSTBIT, ICTP_S);
testvalue = inb(ICTP_C);
#ifdef ICTP_DEBUG
printk (KERN_DEBUG "ictp: port C after reset bit 5 Y%x\n",testvalue):

bl

#endif
if ((testvalue & ICTP_TSTBIT) != 0} {
printk(KERN_ERR "ictp: board not found!\n");
return -ENODEV;
}
/*
register the device driver with the system
*/

if (register_chrdev(HW_MAJOR, "ictp”, &ictp_fops)) {
printk (KERN_ERR "register_chrdev failed: goodbye world :-(\n");
return -EID;

}
#ifdef ICTP_DEBUG
else
printk(KERN_DEBUG "ictp: driver registered!\n");
#endif
return 0O;
}
void

cleanup_module(void) {

#ifdef ICTP_DEBUG
printk (KERN_DEBUG "ictp: cleanup_module called\n");
#endif
if (ictp_busy)
printk (KERN_WARNING "ictp: device busy, remove delayed\n");

Sixth College on Microprocessor based Real Time Systems in Physics 230
Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

R e R A T E— —— - - e . -

Collected Adventures in Linux Device Driver Writing Raich, Ulrich

if (unregister_chrdev(HW_MAJOR, "ictp") !'=0) {
printk("cleanup_module failed\n");

}
#ifdef ICTP_DEBUG
else
printk (KERN_DEBUG "cleanup_module succeeded\n");
#endif
by
Sixth College on Microprocessor based Real Time Systems in Physics 231

Abdus Salam ICTP, Trieste, Italy. October 9 — November 3, 2000

Towards Real Time Data Communications

Sizth College on Microprocessor-based
Real-time Systems in Physics

Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Abhaya S Induruwa
Technical Advisory Unit
University of Kent
Canterbury CT2 7NF
England.

email: abhaya@cse.mrt.ac.lk
asil@ukc.ac.uk

Abstract

These lectures are intended to help understand the computer net-
work architecture comprising network protocols, standards, hardware
and supporting technologies needed to perform real time data trans-
fer. The IP architecture and its components used in real time data
communication are discussed. IP/TV is illustrated as a real life ex-
ample.

Also discussed are High Speed LANs which, along with ATM, play
a vital role in delivering real time data to the desk top. In this respect
the new variants of Ethernet are playing an increasingly important
role.

More recent attempts based on WAP to deliver Internet services
to handheld mobile devices and on ADSL to deliver Internet to the
home user are introduced.

Towards Real Time Data Communications Induruwa, Abhaya 8

1 Introduction

Computer networks are increasingly becoming an integral and indispensable
part of scientific as well as public life. Over the last couple of decades data
networks have changed their character from a slow speed point to point
connection to a high speed data communication backbone supporting full
multimedia information transfer. More recently the handheld wireless phone
based on WAP (Wireless Application Protocol) and ADSL (Asynchronous
Digital Subscriber Line) technology supporting high speed data transfer rates
over twisted pair subscriber lines have revolutionised the provision of public
access to the Internet and its information services.

Today the technology offers the possibility of merging Real Time appli-
cations such as voice and data acquisition services which are time sensitive,
with time insensitive non Real Time services on a single network infrastruc-
ture. The largest Real Time Network in the world (also the oldest!) is the
telephone network which provides only 4 kHz analog bandwidth per voice
channel. The newer architectures such as ISDN (Integrated Services Dig-
ital Network) and Broadband ISDN offer channel bandwidths of 64 Kbps
and above. These higher bandwidths are suitable to carry either a number
of basic voice channels or a single application requiring a larger bandwidth.
ATM Asynchronous Transfer Mode, a cell based transport technique has
been developed to support the B-ISDN services.

RTP (Real time Transport Protocol), together with RTCP (Real time
Transport Control Protocol), have been devised to facilitate the communica-
tion of Real Time data over computer networks, which have been designed
and built to guarantee the delivery of time insensitive bursty data. IPv6 is
emerging as the next generation IP with all the features necessary to support
the delivery of multimedia and other real time data services at high speed.

At the Local Area Network level, the popular Ethernet running at
10Mbps is enhanced to operate at 100Mbps (Fast Ethernet) and 1000Mbps
(Gigabit Ethernet} thus making it suitable as a delivery mechanism of Real
Time traffic to the desktop.

2 Network Classification

A computer network is a collection of computers interconnected by one or
more transmission paths for the purpose of transfer and exchange of data
between the computers. Today these networks span the entire globe and be-
long to many different nations and network operators. Such networks can be
classified in many ways depending on the switching mechanism, transmission

Sixth College on Microprocessor-based Real-time Systems in Physics 235
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya §

speed, etc {Black 93], [Stallings 94a), [Stallings 94b).
For the purpose of this discussion it is appropriate to classify them based
on their:

a. geographical coverage

b. network topology.

2.1 Geographical Coverage

Networks can be classified into 4 categories depending on their geographical
coverage (from the smallest to the largest) as follows:

1. Desktop Area Networks (DANs) *

2. Local Area Networks (LANs)

3. Metropolitan Area Networks (MANS)
4. Wide Area Networks (WANs).

There is a significant level of deployment of all or some of the above
even in developing countries (most notably LANs and WANs with DANs
Just appearing) and hence should be of interest to research scientists.

2.2 Network Topology

Networks can be classified according to their topology in the following manner
[Stallings 93], [Stallings 94b.

1. Bus Topology (eg. CSMA/CD; Ethernet)

2. Ring Topology (eg. Token Ring, FDDI)

3. Star Topology (eg. ArcNet, Switched networks such as Fast Ethernet)
4. Mesh Topology (eg. Telephone network).

‘The bus topology has been used initially in the Ethernet (broadcast) and
later in Token Bus. Today it is important in the DQDB (Distributed Queue
Dual Bus).

The token passing mechanism shown in Figure 1 has originally been used
in the Token Ring and later in FDDI.

If however networks are categorised according to their transfer mecha-
nism, then the following classification results.

ln recent classification arising out of delivering ATM to the desktop at 25 Mbps. DANs are used to interconnect
devices such as camera, telephone and workstations.

Sixth College on Microprocessor-based Real-time Systems in Physics 236
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya S

Figure 1: Token Passing Ring

1. Broadcast Networks

Figure 2 shows a broadcast network which is used to broadcast from 1 to
many. CSMA/CD (Carrier Sense Multiple Access/Collision Detect) is
a medinm access protocol which is used to broadcast on a bus topology.

i
Pt

Figure 2: Broadcast Network

9. Switched Networks

In Figure 3 is shown a switched network which is used to switch data
from 1 to 1, 1 to many, or many to many. The telephone network is an
example of a switched network. It can be used to support applications
such as tele conferencing which involves the switching of many to many.

Although initially switched networks were mainly used in telecommu-
nication networks, today because of its superior performance, switched
technologies are used in LANs (for example switched Ethernet) and
ATM networks.

Sixth College on Microprocessor-based Real-time Systems in Physics 237
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya 8

Figure 3: Switched Network

3. Hybrid Networks

Figure 4 shows a hybrid network which consists of a switched part and
a broadcast part.

Switched Network Broadcast Network

Figure 4: Hybrid Network

3 Network Architecture

The topology, transmission mechanism, and a protocol which manages the
transmission mechanism together define a network architecture.

3.1 What is a Network Protocol?

A network protocol is used to facilitate the transmission of data between
a sender (transmitter) and a recipient (receiver) across a data communica-
tion network in an agreed manner. Over the years several different network
protocol architectures have evolved, the most notable being:

i. IS0 - OSI (Open Systems Interconnect) Reference Model (OSI-RM)

ii. IP (Internet Protocol)

iii. ISO 8802.X (for LANs and MANs - same as IEEE 802.X)

Sixth Cellege on Microprocessor-based Real-time Systems in Physics 238
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya S

In addition to the above there are hundreds of vendor specific protocols such
as:

a. IBM’s SNA (Systems Network Architecture)
b. DEC’s DNA (DEC Network Architecture),

which are proprietary and hence are not truly interoperable.

Because todays networks span the entire globe, it is important to utilise
standard protocols to facilitate seamless data communication over the net-
works belonging to different network operators to ensure interoperability.
This has been the major objective of the bodies involved in preparing stan-
dards, such as the International Standards Organisation (ISO), Internet En-
gineering Task Force (IETF), International Telecommunication Union (ITU),
Tnstitute of Electrical and Electronic Engineers (IEEE) ?, American National
Standards Institute (ANSI) and the ATM Forum.

Figure 5 shows the layered architectures of the protocols developed by
the above standards bodies.

180-08I TCP/IIP ITU-T IEEE 802.X
Application
PP N Application
Presentation
Session
TCP
Transport
Network IP X.25-3
Link o X252 LLC/MAC
Physical link -
Physical X.25-1 Physical
WAN LAN

Figure 5: Layered Architectures of different Protocols

In Figure 6 is shown the architecture of the [EEE 802 family of standards
for LANs and MANs. FDDI is a standard developed by ANSI-ASC X3T9
(Accredited Standards Committee) and provides services specified by the
ISO Data link and Physical layers (ISO 9314).

The key features of FDDI are 100 Mbps data rate, use of optical fibre
(multi mode fibre, single mode fibre, low cost fibre), the token ring style MAC
protocol and the reconfiguration concept (automatic healing property in case
of faults). The FDDI standard however allows the FDDI to be carried on
other physical media such as twisted pair copper (CDDI). FDDI-II supports
protocols for transmission of real time data [Jain 94].

IEEE 802.6 MAN standard specifies a DQDB (Distributed Queue Dual
Bus) protocol which can support data, voice and video traffic. It can also

2http:/ /grouper.ieee.org/groups/802/index.html

Sixth College on Microprocessor-based Real-time Systems in Physics 239
Abdus Salam 1CTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya S

802 1 Higher Layer Interfaces
802.2 Logical Link Control (LEC) L1C
§02.3 202.3u 802.3z 024 8025 802.6 802.7 8028 8029 202.10 802.11 802.12
VG-Any
CSMAKD Fast Gigabir Tokea T?hn DQDE Broad Optlcll Imn?grued Secure Wireless LAN ¥ MAC
Ethernet Ethernct Bus Ring MAN Band Fibre Voice/ Data Tech. (Demaad
(FDDD) Tech Tech. data Exchange Priarity}
COAX UTP UTP COAX sTP COAX
UTP STP OF 1-10Mbgs |]4.166bps || OF
OF OF Physical
OF oF 45-155
10Mbgs || 100Mpbs || 1000Mbps ;| 5 20nbps || 100Mbps || Mbes 100Mbps

Figure 6: The Architecture of IEEE 802 LAN/MAN Standards

serve as a LAN. DQDB MAN operates on a shared medium with two uni-
directional buses that flow in opposite directions. Two methods of gaining
access to the medium depending on the type of traffic have been specified.
In the first method a node on the DQDB subnetwork can queue to gain ac-
cess to the medium by using a distributed queue or by requesting a fixed
bandwidth through a prearbitrated access method. Data is transmitted in
fixed size units called slots of length 53 bytes (52 bytes data + 1 byte access
control field). :

DQDB private networks are connected to the public network by point to
point links. A DQDB MAN can typically range up to more than 50 km in
diameter and can operate at a variety of speeds ranging from 34 Mbps to 150
Mbps.

DQDB has been conceived to integrate data and voice over a common
set of equipment, thereby reducing maintenance and administrative costs.
B-ISDN is an attempt to provide universal and seamless connectivity for
multimedia services. IEEE 802.6 MAN has been designed to provide an
interim solution and to act as a migration path to B-ISDN.

Nodes in a DQDB subnetwork are connected to a pair of buses flowing
in opposite directions and can operate in one of two topologies, namely;
open bus (Figure 7) or looped bus (Figure 8) (open bus topology is similar to
Ethernet and looped bus topology is similar to token ring).

Although the DQDB access layer is independent of the physical medium,
the speeds at which DQDB MANs operate demand the use of fibre or coaxial
cables. For example, ANSI-DS3 operates at 44.736 Mbps over 75 2 coax or
fibre and ANSI SONET STS3 operates at 155.52 Mbps over single mode
fibre. The ITU-T G.703 operates at 34.368 Mbps and 139.264 Mbps over a
metallic medium.

Sixth College on Microprocessor-based Real-time Systems in Physics 240
Abdus Salam ICTP, Trieste. October 9—Noverber 3, 2000

TR T e T T T ey -y T T ———— ey ey —p— —— e e - = . . o o

Towards Real Time Data Communications Induruwa, Abhaya 5

I
g

Head

JUR -
s == O

Head

Figure 8: Looped Bus DQDB Network

A complete treatment of both the FDDI (Fibre Distributed Data Inter-
face) and the DQDB (Distributed Queue Dual Bus) along with LANs and
MANS is found in [Stallings 93], [Stallings 94b].

3.2 Transmission Mechanism

From the beginning, the voice data in a telephone network had been transmit-
ted in real time using circuit switching techniques. Since circuit switching is
ot an efficient transmission mechanism for the communication of non-voice
data, packet switching techniques have been devised.

3.2.1 Packet Switching

Transmission mechanisms based on packet switching allow the multiplexing
of data packets from different sources on the same transmission path thereby
making use of the channel bandwidth more efficiently. It also allows the
transmission of packets from one source along different paths thus taking
care of line congestion and availability problems. When the packets reach

Sixth College on Microprocessor-based Real-time Systems in Physics 241
Abdus Sajam ICTP, Trieste. Qctober 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya 8

the intended destination in whatever path they may have taken, they are
reassembled and presented to the user application.

The most widely used protocols which manage the packet transfer across
a data network belong to the family of standards conceived by the ITU-T
(X.25) and Internet Architecture Board (IP). However the variable packet
lengths and the multiplexing technique introduce jitter making
their Quality of Service (QOS) unacceptable for real time appli-
cations. The inherent limitation of X.25 in high speed data transfer has
been removed to some extent in the Frame Relay [Smith 93] transfer mech-
anism.

3.2.2 Frame Relay

Frame Relay offers a high speed version of packet switching and has the
potential of operating effectively at much higher speeds compared to X.25,
reaching speeds of 45 Mbps. Frame relay is well suited to high speed data
applications, but not suited for delay sensitive applications such as voice and
video because of the variable length of frames [Smith 93], [Stallings 95].

3.2.3 Cell Switching

Cell Relay is a transmission mechanism that combines the benefits of time
division multiplexing with packet switching. It operates on the packet switch-
ing principle of statistically interleaving cells on a link, on an ‘as required
basis’, rather than on a permanently allocated time slot basis. The fixed cell
size used enables a reasonably deterministic delay to be achieved across a
network. This deterministic nature of cell relay guarantees Quality Of Ser-
vice (QOS) and hence makes it suitable for all traffic types including real
time traffic, within a single network.

ATM (Asynchronous Transfer Mode) is fast becoming the dominant form
of cell relay. It uses a cell of 53 bytes long (5 bytes header and 48 bytes data)
and typically operates at speeds of 155 and 622 Mbps. ATM is delivered to
the desktop at 25 Mbps and Gbps platforms are being tested [Partridge 94].
ITU-T has selected ATM as the transport technique for B-ISDN (Broad-
band Integrated Services Digital Network) [De Prycker 95|, [Handel et al 94],
[Stallings 95].

Sixth College on Microprocessor-based Real-time Systems in Physics 242
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya S

3.3 Physical Media
The most popularly used physical media are:

Optical fibre cables

Coaxial cables

Unshielded Twisted Pair (UTP) cables
Shielded Twisted Pair (STP) cables

¢ o & O

Today all of the above media are used to carry data in excess of 100 Mbps
speeds. Only the distances they cover are different (for example, optical fiber
can operate at gigabit speeds for a few km whereas UTP can operate at 100
Mbps over a distance of 100 m without repeaters).

4 Internetworking

By internetworking is meant the process of interconnection of computers and
their networks to form a single internet. In other words to make two or
more networks logically to look and work like one. The Internet (note the
uppercase ‘I') is such an internet and uses TCP/IP (Transmission Control
Protocol /Internet Protocol) protocol suite [Wilder 93].

TCP is connection oriented and provides a reliable stream transport.
Although TCP is commonly associated with IP (as its underlying protocol),
it is an independent, general purpose protocol that can be adapted to use
with other delivery systems. The popularity of TCP has resulted in 150 -
TP4, which has been derived from TCP. TCP, together with IP, provides a
reliable stream delivery for data traffic.

TCP/IP protocol suite has become the de facto standard for open system
interconnection in the computer industry. It is used world wide in academic,
government, private and public institutions. Some of the reasons for its wide
acceptance can be attributed to the following:

e It provides the highest degree of interoperability.
e It encompasses the widest set of vendors’ systems.
e It runs over more network technologies than any other protocol suite.

Over the years Unix (and hence Linux) and TCP/IP have become almost
synonymous. Today it has become part of the operating system kernel. The
OS runs a separate process for IP, TCP input Joutput and UDP input/output.

In building internets, following hardware devices used to interconnect
networks are of interest [Black 93], [Comer 88].

Sixth College on Microprocessor-based Real-time Systems in Physics 243
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya S

Application — Gateway ———p» Application

Presentation Presentation
Session Session
Transport Transport

Network -<— Router —-’ Network

Data link <— Bridge _> Data link
Physical -— Repeater ————p» Physical

Figure 9: Interconnection Components

1. Repeaters
2. Bridges and Switches
3. Routers and Brouters

4. Gateways.

Figure 9 shows the use of these components in relation to the ISO-OSI
Reference Model.

4.1 Repeaters

When two networks are to be connected at the lowest level, ie. the physical
level, an interconnecting device known as a repeater is used. A repeater
simply takes bits arriving from one network and just forwards (repeats) them
on to the other. In some cases a repeater might have to translate between
two different physical layer formats, for example from optical fiber to UTP
(Unshielded Twisted Pair) cable. This may involve some processing of the
received signal such as signal regeneration for noise elimination. However,
repeaters pass on the data received without paying attention to the address
information.

Sixth College on Microprocessor-based Real-time Systems in Physics 244
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

b T T T Y TR X RS P A W TR Ry

Towards Real Time Data Communications Induruwa, Abhaya S

4.2 Bridges and Switches

Bridges and switches are used to interconnect networks at the medium access
control (MAC) layer. Typically this requires the interconnected networks to
have identical MAC layers although networks with different but related MAC
layers can be interconnected. Since Bridges operate at the MAC layer, they
can be used to effectively segment the traffic by filtering the traffic entering
one segment from another thereby reducing the unwanted traffic flow on
. network segments.

Unlike a repeater which replicates electrical signals, bridges replicate
packets. They are superior in their function, because they do not repli-
cate noise and errors or malformed frames. Moreover, bridges implement
CSMA/CD rules and hence collisions and propagation delays remain iso-
lated without affecting the other segments. In other words, every port on an
Ethernet bridge or a switch is on a separate Collision Domain or physical
network. As a result an almost arbitrary number of Ethernet segments can
be connected together with bridges whereas with repeaters the maximum
number of segments is five giving a total length of 2.5 km. Since bridges
hide details of interconnection, a set of bridged segments acts like a single
Ethernet.

A bridge can be used to make a decision on which frames to forward from
one segment to another. Such bridges are called adaptive or learning bridges.
They learn over time, which hosts are connected to which segment. Thus
an adaptive bridge builds up the address table automatically without human
intervention.

Bridges are often used to improve the performance of an overloaded net-
work by effectively partitioning the network into segments.

The type of bridges used in CSMA/CD LANs are known as transparent
bridges (IEEE 802.1D) since their presence is not visible to the stations. The
type of bridges used to interconnect token rings are called source routing
bridges (IEEE 802.5) and the routing information is provided by the source
station.

4.3 Routers

Routers interconnect networks at the network layer (level 3 in the OSI-RM
and the IP layer of the TCP/IP suite) and perform routing functions. This
is the main building block in internetworking using IP. Most routers now
support at least one of the multicast routing protocols, which is an essential
functionality to support the delivery of Real Time data over IP.

For performance reasons the functionality of a bridge and a router is

Sixth College on Microprocessor-based Real-time Systemns in Physics 245
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya S

combined to form a brouter. Whenever possible a brouter bridges data for
better efficiency rather than routing.

4.4 Gateways

Gateways are used when networks based on completely different network ar-
chitectures have to be interconnected at layers higher than the network layer
and when protocol translation is necessary. A typical example is intercon-
necting two networks based on TCP/IP suite and OSI suite of protocols.
An application level gateway is required to support FTP on TCP/IP and
FTAM on OSI. From this it should be clear that a different application level
gateway is required for every application supported across the interconnected
networks.

4.5 Multiport-Multiprotocol Devices

The multiplicity of transmission media and protocols used in today’s net-
works require the use of multiport repeaters and bridges, as well as multi-
protocol routers which support more than one protocol stack.

5 A word about the Internet

The one and only global network of interest to the whole scientific community
of the world today is the Internet, which is based on the Internet Protocol
(IP).

Internet Protocol is a truly scalable protocol that is used to connect com-
puters to small LANs and to WANs forming a global internetwork. IP is
available for almost all computing platforms ranging from the smallest palm-
top to the largest ultrasuper computer. Nowadays IP is increasingly becom-
ing available in handhled mobile phones and personal data assistants (PDAs)
and also on standalone micro—controller boards and embedded systems.

The Internet is an ever expanding network of networks. As of this writing
(September 2000), it interconnects an estimated 100 million computers and
1,000,000 computer networks in 176 countries. It experiences a staggering
growth rate of 100% per year. Figure 10 shows the Internet connectivity in
the world in 1997. Today, as a result of the emergence of various transmission
technologies including optical fibre, satellitec and enhanced communication
technologies based on robust high speed modems and DSL (Digital Subscriber
Line), almost all the countries in the world have some Internet connectivity.
Although it is difficult to keep track of the growth of the Internet in real time

Sixth College on Microprocessor-based Real-time Systems in Physics 246
Abdus Salam ICTP, Trieste. October 9-Novemnber 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya S

INTERNATIONAL %RNNEchvlTY
Verslon 18 - - rd

M internat

B Binet but not Internet

cmrml. 1907
B emuit Onty (UUCP, FidoNet) R To et Boaty.
[No connsctivity ﬁm I m’a"&wm
xmm-mumb m.m'ﬂmhlﬂﬂ %

Figure 10: Worldwide Internet Connectivity

any more, Figures 11 and 12 serve to show the scale of world wide Internet
deployment.

The DSL, specially ADSL {Asynchronous Digital Subscriber Line) is an
innovative modem based communication technology that allows the use of
the ordinary telephone line to enjoy the full multimedia capability of the
Internet at home delivered at a reasonably high speed.

The world wide popularity of the Internet is largely due to the World
Wide Web. This is the most pervasive application on the Internet today.
Figure 11 shows the staggering growth in the number of web hosts in the
world. Over a period of 4 years this number has risen from near zero to over
17.5 million (in June 2000). Also this number has more than doubled in a
year!

Figure 12 shows the explosive growth of the Internet measured in terms
of the number of Internet hosts connected to the Internet.

Both these show evidence of exponential growth in the usage of the In-
ternet. This has required some rethinking of the Internet strategy, specially
in relation to security, address space, quality of service, etc, in order to make
it sustainable in the face of this rapid growth.

Due to this unprecedented popularity and the growth of usage of IP,

today, IP suite is included as a standard component of all UNIX and UNIX
like (and hence Linux) distributions, making the networking of any computer

Sixth College on Microprocessor-based Real-time Systems in Physics 247
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications

Induruwa, Abhaya S

Hobbes' internet Timeline Copyright €2000 Robert H Zakon
http: ffwewv isoc. org/zakon/internet/Histary/HIT. html

20,000,000

18,000,000 { [paTE STTES | DATE SITES i

16,000,000 { |06/93 130 | 12/54 10,022 .

g 0 %8 | biree 1n0.000 -

[-4] i r

& 12000000 12/93 623 | D06/96 252,000 .
g 10000000 1 Jogso4 2,738 | 07/96 299,403 **
£ 5,000,000 4 o

e -t

6,000,000 '.*

4,000,000 JURTE A A

2,000,000 4 Y X 24
P PPPPRTYTIL L LA anananni S ——
2 8 ¢ 5 5 5 5 8 3 8 % % 3 8 § 8 8
£ o c [&] c ch = c [+] =
2 & & 2 2 8§ 2 8 3 8 2 8 35 § &8 E S

Figure 11: Growth of the number of Web hosts on the Internet
Hobbes’ Internet Timeline Capyright €2000 Robert H Zakon
hitpifsmsews. lsoc. orgizakonfintarm etHistorgfHIT . htm|
80,000,000
& New Survey -
70,000,000 {12/69 a | ossez 235 + 0Ld Survey
06/70 9 1 o8/s93 562
60,000,080 { [Los70 11 1 10s84 1,024
1lz,70 13 1 10/85 1,961 -
50,600,000 4 |04s71 23 I 0z2/86 z,308
[lo0/72 31 1 1r/86 5,089
B 40000000 4 [01/73 35 1 1ase7 28,174 -
= ' ! 06/74 62 1 07/88 33,000 a
03/77 111 1 10,88 556,000
30,000,000 11,5528 188 1 07,89 130,000 - -
20,000,000 - []-7g- 5N 213 i 10/89 159,000 F Y -
-~ -
& -

10,000,000 - PR
5§§QS$$§§§$$3§$33533%§$
8288522838885 585¢82¢8¢82 5
Figure 12: Growth of the number of Internet hosts

Sixth College on Microprocessor-based Real-time Systems in Physics 248

Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya S

running Linux much easier. IP is also incorporated into the OSI-RM thus
ensuring compliance with ISO standards.

6 Internet Protocol Architecture

By far the most successful and the most widely used protocol architecture for
LANs and WANs alike is the Internet Protocol (IP) [Black 93], [Comer 88|,
[Stallings 89).

IP is a layered architecture (see Figure 5) consisting of only 4 layers
(ISO-OSI RM has 7 !). TCP (Transmission Control Protocol) and UDP
(User Datagram Protocol) are the two transport protocols supported over IP.
Both the TCP and UDP make the assumption that the link is of acceptable
reliability (measured in terms of its BER - Bit Error Rate) and is capable of
delivering a packet to the intended destination without the intervention of
the upper layers. Some of the services supported in TCP/IP, including RTP
are shown in Figure 13.

FTP SMTP SNMP DNS %ﬁ: ‘Z
TCP UDP
1P
Physical Link

Figure 13: Services Supported over 1P

6.1 IP Addressing

IPv4 uses 5 classes of addresses as shown in Figure 14.

An example of IP address allocation in a typical network is shown in
Figure 15.

Many hosts have a host name associated with the IP address which can
be used to address them. However it must be understood that an IP address
does not identify a host. It identifies a network connection to a host because
an IP address encodes both a network and a host on that network. Hence if
the host is moved to another network, its IP address has to be changed.

No two devices on the global Internet should be allocated the same IP
address, although on a private network with no connection to the outside
world, arbitrary addresses can be allocated. The address allocation has been
initially handled by the Network Information Centre (NIC). Now it is handled

Sixth College on Microprocessor-based Real-time Systems in Physics 249
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Daia Communications Induruwa, Abhaya S

01234 8 16 24 31
Class A [0| netid hostid
ClassB (/0 netid hostid
Class C i1{1)0 netid hostid
ClassD |1|1(1]|0 multicast address
ClassE [1]1|1]1]0 reserved for future use

Figure 14: IP Addresses

by the NIC as well as RARE in Europe and APNIC in the Asia- Pacific region.
The addresses must be officially obtained from one of the above before using
them on your network.

Nowadays there are Internet Service Providers (ISPs) in many countries
(most of the time more than one !) who are allocated blocks of IP addresses
by the relevant NIC. These ISPs in turn allocate the IP addresses to their
customers.

The explosive growth of the Internet has resulted in the exhaustion of the
address space provided in IPv4 which uses a 32 bit (4 byte) address. IPng
(IP new generation), also known as IPv6, is designed to provide among other
things an enhanced address space using 16 bytes (128 bits) [RFC 1883] 3,
(Huitema 96], [Goncalves 98].

6.2 The Internet Protocol

The Internet Protocol is a connectionless network layer protocol. TCP is a
higher layer protocol which sits on top of IP. IP provides a connectionless (or
datagram type) service with Best Effort Delivery to its user. In other words
data given to IP (by the higher layer) is not guaranteed to be delivered.

The IP datagrams are the encapsulation of data packets passed from the
higher layer with an IP header as shown in Figure 16.

3RFCs are available from ftp://rs.internic.net /rfc

Sixth College on Microprocessor-based Real-time Systems in Physics 250
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications

Induruwa, Abhaya S

Ethernet 128.10.0.0
128.10.2.3 128.10.2.8 128.10.2.70 128.10.2.26
Ethemet Ethernet Ethernet
TR G
Host Host
Host

182.5.48.3

TR

192.5.48.7

internet

Host

192.5.48.1

192.5.48.0

192.5.48.6

10.2.0.37

One address for each network / segment

Internet 10.0.0.0
Ethernet 128.10.0.0
Token Ring 192.5.48.0
Network Hosts
128.10.2.8
192.5.48.1
128.10.2.3
192.5.48.3

Two addresses for each gateway.

(Class A)
(Class B)
(Class C)

Figure 15: Allocation of IP Addresses on an internet: an Example

Sixth College on Microprocessor-based Real-time Systems in Physics.

Abdus Salam ICTP, Trieste. October 9-November 3, 2000

251

Towards Real Time Data Communications Induruwa, Abhaya S

TCP header data

IP header data

Figure 16: IP Datagram

6.3 Internetworking with IP

Figure 17 shows how IP is used to internetwork two networks running dif-
ferent medium access control mechanisms namely, CSMA/CD and Token

Ring.
ISR 152}
0 1
p p p
0 e 0
0 W0 | Tholi Tl
m m | e e
- ol 1 o | Tl iy

Figure 17: Internetworking Using IP

6.4 IP Datagram Format

The IP datagram format which has a preamble of ten 16 bit words and an
option field of variable length is shown in Figure 18.

6.5 Brief Description of TCP and UDP

TCP and UDP are the two transport protocols used in the IP architecture
[Comer 88], [Stallings 89].

TCP is a connection oriented transport protocol designed to work in
conjunction with IP. TCP provides its user (application layer) with the ability

Sixth College on Microprocessor-based Real-time Systems in Physics 252
Abdus Salam ICTP, Trieste. October $-November 3, 2000

TR P W DI (Toi 1 LD AL T — — e —— m it - —ee————— —

Towards Real Time Data Communications Induruwa, Abhaya S

<+ 16 bits 4

Versi 4b; Haa.énwlr.n:l th T f Service (Bl
arsion (4b) er (4bn}g ype o rvice) 1
Total Length {16b) 1
Identification (16b6) 1
Flags (3b) l Fragment Offset (13b) 3
Time 1a Live (3b) Protocol (8b) 1
Header Checksum (16b) 1
Source Address (32b) 2
Destination Address (32b) 2
Options (varibaie) wvarinble
Padding(variable)

Figure 18: IP Datagram Format

to transmit reliably a byte stream to a destination and allows for multiplexing
multiple TCP connections within a transmitting or receiving host computer.

Being connection oriented, TCP requires a connection establishment phase
(like dialing a number to make a phone call) which is followed by the data
transmission phase. A connection is terminated when it is no longer in use.
TCP/IP is ideal for the transmission of bursty data. It works on the principle
of retransmission of dropped packets which is one of the major contributors
to delays in transmission. However, since voice and video data are time
sensitive, packet technologies such as TCP /1P cannot guarantee the proper
delivery of such data. Figure 19 shows the TCP header format.

UDP, on the other hand, is a connectionless transport protocol designed
to operate over IP. Its primary functions are error detection and multiplexing.
UDP does not guarantee the delivery of packets (compare with the ordinary
postal service) but guarantees that if a packet is ever delivered in error, such
error will be detected (use of checksum). It also allows for communicating
with multiple processes residing on the same host computer.

UDP packet format is simple (see Figure 20). It is also fast compared to
the use of TCP, since there is no connection establishment phase. Moreover,
UDP is important since RTP (Real time Transport Protocol) is supported
over UDP.

6.6 IP Multicasting

Multicasting is important in allowing a stream of data to be sent efficiently
to many receivers. In multicasting, rather than sending a separate stream

Sixth College on Microprocessor-based Real-time Systems in Physics 253
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya S

32 bits
Source Port (16 bits) Destination Port (16 bits)
Sequence Number (32 bits)
Acknowledgement Number (32 bits)
Data Reserved U|A|P(R|S!F
Oftset @bisy |D|CS[S|Yi! Window (16 bits)
{4 bits) G|K|H|T|N|N
Chacksum (16 bits) Urgent Pointer (16 bits)
Options (variable) ’II/ Padding
Data (vari’able)

Figure 19: TCP Packet Format

4 32 bits b
S
Source Port Destination Port uDp
Header
Length Checksum VL

[

T Data

Figure 20: UDP Packet Format

of data packets to each intended user (unicasting) or transmitting all pack-
ets to everyone (broadcasting), a stream is transmitted simultaneously to a
designated subset of network users. The concept of multicasting is shown in
Figure 21.

IP Multicasting is defined in [RFC 1112] of 1989. A key to IP multicasting
is the Internet Group Management Protocol (IGMP). IGMP enables users
to sign up for multicast sessions and allows these multicast groups to be
managed dynamically, in a distributed fashion. Enhancements have been
made to existing protocols to direct the traffic to the members of the group.
These include Distance Vector Multicasting Routing Protocol (DVMRP) and
Multicast Open Shortest Path First (MOSPF) protocol. An entirely new
protocol developed specifically for multicasting is the Protocol Independent
Multicast (PIM).

At the start of a multicast session group addresses are allocated which
are relinquished at the end of that session and reused later.

Internet MBONE is Internet’s multicast backbone which is a collection of

Sixth College on Microprocessor-based Real-time Systems in Physics 254
Abdus Salam ICTP, Trieste. October 3-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya S

multicast routers that can distribute multicast traffic. MBONE participants
use class D Internet addresses which identify a group of hosts rather than
individual hosts.

Recipients

O
U
v

A
]
i m— \t’
_ E l E Recipient
Multicast Server

Figure 21: Multicasting

6.7 Resource Reservation Protocol (RSVP)

A key factor in achieving real time quality of service is a reservation set up
protocol, a mechanism for creating and maintaining flow specific state infor-
mation in the end point hosts and in routers along the data flow path. The
IETF has developed its Resource Reservation Protocol (RSVP) specifically
for the packet switched multicast environment.

RSVP has been designed to meet a number of requirements:

1. support for heterogeneous service needs;

2. flexible control over the way reservations are shared along branches of
multicast delivery trees;

3. scalability to large multicast groups;

4. and the ability to preempt resources to accommodate advance reserva-
tions.

Sixth College an Microprocessor-based Real-time Systems in Physics 255
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

..

Towards Real Time Data Communications Induruwa, Abhaya S

The RSVP protocol basically acts according to its name. An RSVP re-
quest specifies the level of resources to be reserved for some or all of the
packets in a particular session. An application requests resources by spec-
ifying a flow specification, which describes the type of traffic anticipated
(for example, average and peak bandwidths and level of burstiness), and a
resource class specifying the type of service required (such as guaranteed de-
lay). A filter specification is also specified, which determines the sources to
which a given reservation applies.

RSVP mandates that a resource reservation be initiated by the receiver
rather than the sender. While the sender knows the properties of the traffic
stream it is transmitting, it has been found that the sender initiated reserva-
tion scales poorly for large, dynamic multicast delivery trees. Receiver initi-
ated reservation deals with this by having each receiver request a reservation
appropriate to itself; differences among heterogeneous receivers are resolved
within the network by RSVP. After learning sender’s flow specification via a
higher level “out of band mechanism”, the receiver generates its own desired
flow specification and propagates it to senders, making reservations in each
router along the way.

RSVP itself uses a connectionless approach to multicast distribution. The
reservation state is cached in the router and periodically refreshed by the end
station. If the route changes, these refresh messages automatically install the
necessary state along the new route.

RTP and RTCP information is simply data from the point of view of
routers that move the packets to their destination. RSVP prioritises multi-
media traffic and provides a guaranteed quality of service. Routers that have
been upgraded to support RSVP can reserve carrying capacity for video and
audio streams and prevent unpredictable delays that would interfere with
their transmission.

7 IPv6 — The New Generation Internet Pro-
tocol

7.1 The Design of IPv6

IPv4 is a very robust design. If it had a major design flaw the Internet could
not have been so successful. However IPv6 is not a simple derivative of IPv4,
but a definitive improvement {Huitema 96|, [Goncalves 98].

Sixth College on Microprocessor-based Real-time Systems in Physics 256
Abdus Salam ICTP, Trieste. Qctober 9—November 3, 2000

e T R TR TR R T T8 Pr— S— —- o

Towards Real Time Data Communications Induruwa, Abhaya S

7.2 IPv6 Header Format

Compared to IPv4 header format (Figure 18) which has 10 fixed header fields,
2 addresses and some options, the IPv6 header format shown in Figure 22
with only 6 fields and 2 addresses is in fact much simpler. Consequently the
header processing is expected to be much more efficient in IPv6, thereby cut-
ting down the processing and reducing the transit delays in internetworking
devices.

0 3 7 15 31
'Version| Priority I Flow Label '
{(4h) (4h) (24bits)
Payload Length (16 bits) Next Header Hop Limit
R (& bhifs) (& hifs)

Source Address -
(128 bits)

Destination Address _
(128 bits)

Figure 22: The IPv6 Header Format

7.3 Simplifications

The design of IPv6 has included three major simplifications (based on the
experience gained in operating IPv4 for over 20 years D:

a. assign a fixed format to all headers
b. remove the header checksum
¢. remove the hop by hop segmentation procedure.

IPv6 handles options in a different way (see Figure 23), in the form of
extension headers and hence there is no need for header length field in the
IPv6 header.

IPv6 currently defines six extension headers:

Sixth Coliege on Microprocessor-based Real-time Systems in Physics 257
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya §

IPv6 Header
Next Header = TCP Header + Data
TCP

[Pv6 Header Routing Header
Next Header = Next Header = TCP Header + Data
Routing TCP

[Pv6 Header Routing Header | Fragment Header, Fragment of
NextHeader= | NextHeader= | NextHeader=' | op pgopger 4 Dara
Routing Fragment TCP

Figure 23: Chaining of IPv6 Headers
1. Hop by hop options header — special options requiring hop by hop
processing
2. Routing header
3. Fragment header - fragmentation and reassembly
. Authentication header — integrity and authentication

. Encrypted security payload header - confidentiality

[R N

. Destination options header — optional information to be examined by
the destination node.

In order to improve the performance when handling subsequent option
headers and the transport protocol which follows, IPv6 options are always
an integer multiple of 8 octets long. This also helps to retain the alignment
for subsequent headers.

The main advantage of removing header checksum is to diminish the cost
of header processing by removing the need to check and update the check-
sum at each intermediate relay. This can however result in misrouted pack-
ets. Experience has shown that the risk is minimal since most encapsulation
procedures include a packet checksum (eg. MAC procedure of IEEE 802.X
networks, in the adaptation layers for ATM and in the framing procedure of
the Point to Point Protocol for serial lines).

Sixth College on Microprocessor-based Real-time Systems in Physics 258
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya S

The last simplification is the removal of the Type of Service (TOS) field.
Tt was found that although IPv4 provides TOS, this filed was hardly ever set
by applications.

7.4 New Fields

The Flow Label and Priority have been included mostly to facilitate the
handling of Real Time Traffic so as to ensure the proper treatment of high
quality multimedia communications in the new Internet. Flow labels will
allow the stipulation of severe real time constraints, for example.

7.5 Special Services

In traditional packet switching, a packet is queued at a switch (Figure 24)
until a line is available to carry it thereby giving rise to congestion and delay.

—> S>>

Figure 24: Traditional Packet Switching — One Queue Per Line

Assigning higher priority to the queue of real time packets over that of
data packets is not enough. It is necessary to ensure that the service rate
is equal or higher than the arrival rate of packets. This can be achieved as
follows:

If each real time queue is serviced aft a rate compatible with its require-
ments then it will never suffer from unpredictable queueing delays (see Figure
25). The data queue, however, will only be serviced on a best effort basis.

The proposers of IPv6 suggest that the New Internet is capable of pro-
viding all the services required by its users, including Real Time Audio and
Video. It is their opinion that ATM is ” Another Terrible Mistake”.

7.6 IPv6 Address Space

The address length of 128 bits gives rise to a total of 256210% different
addresses in its address space. However due to inefficiencies in address allo-
cation and administration (expressed by H Factor 4 which has found generally

4 Factor is defined by [Huitema 96) as the ratio between log(number of addresses)
and the number of bits in the address

Sixth College on Microprocessor-based Real-time Systems in Physics 259
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya 8

Rl —>>

R2 ——>>

R3 ——>> B =

R4 ——>

data ——3>

Figure 25: Real Time Streams and Data in Separate Queues

to lie in the range 0.22 to 0.26), the new Internet is expected to support 10
(quadrillion) hosts and 102 (trillion) networks.

The notation for writing IPv6 addresses is (remember the dot notation
in IPv4!):

FEDC:BA98:7654:3210:FEDC:BA98:7654:3210

The notation allows to skip leading zeros; for instance

0000 can be written as just 0 and 0032 can be written as 32. Further
the notation also allows removing a 0 leaving the colons. Thus an address
such as 1030:0:0:0:80:3210:2¢15:417a would become 1030::80:3210:2¢15:417a.
The double colon notation can be used at the beginning or at the end of an
address but only once.

In the interim period an IPv4 address will be written as an [Pv6 address
by prepending 12 octets of zeros giving 0:0:0:0:0:0:0:0:0:0:0:0:128.145.48.12.
It is also allowed to write this as ::128.145.48.12.

7.7 Making IPv6 Compliant

IPv6 will coexist with IPv4 for a number of years after which all computers
will run only IPv6. During this period it is suggested to have a dual protocol
stack consisting of IPv6 and IPv4 (Figure 26).

Sixth College on Microprocessor-based Real-time Systems in Physics 260
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya 5

Application

v

Figure 26: Typical Dual Stack Configuration

7.7.1 IPv6 Tunneling

Ipv6/IPv4 dual protocol stack will also be implemented in routers thus fa-
cilitating communication between two IPv6 compliant computers at the two
ends of the IPv4 based Internet. This is known as IPv6 tunneling (see Figure
27).

Tunnel
Dual stack ,/”’#d _h‘—h“\\ Dual stack
router - S~ _ router
o g [AN
Pv6 / IPv4 [Ipv4J
IPv4 | Network IPv6
IPv6 hosts IPv6 hosts

Figure 27: IPv6 Tunneling over a IPv4 Network

Sixth College on Micraprocessor-based Real-time Systems in Physics 261
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya S

8 Data Communication in Real Time

Packet switching techniques based on ITU-T X.25 and IP have been tradi-
tionally used for non Real Time data transfer. Since they do not guarantee
packet sequence integrity and consistent latency times in delivery, they are
inherently unsuitable for Real Time applications.

The following are required to carry out Real Time data transfer on exist-
ing networks.

1. Enough bandwidth for extremely dense audio and video traffic.

2. A transport protocol appropriate for the streaming requirements of real
time data (RTP).

3. A protocol to reserve network bandwidth and assigning priorities for
various types of traffic (RSVP).

8.1 RTP Data Transfer Protocol

A Real time Transport Protocol is therefore needed to provide end to end
network transport functions suitable for applications communicating in real
time. Such applications include transmission of interactive audio and video
data or real time simulation data over multicast or unicast network services.

The largest {and the oldest} network which supports real time data com-
munication is the telephone network which falls in to the category of a circuit
switched network. However in terms of a network protocol there is not much.
Once the network connection is established the communication process is
largely in the hands of the two persons communicating with each other.

In view of this a Real time Transport Protocol (RTP) along with a profile
for carrying audio and video over RTP were defined by the IETF in January
1996 [RFC 1889], [RFC 1890].

8.1.1 Characteristics of RTP

The Realtime Transport Protocol has the following characteristics.
i. Payload type identification

ii. Sequence numbering

iii. Time stamping

iv. Delivery monitoring.

Sixth College on Microprocessor-based Real-time Systems in Physics 262
Abdus Salam ICTP, Trieste. QOctober $-November 3, 2000

Femmrm L e e e e e ey

Towards Real Time Data Communications Induruwa, Abhaya S

Real Time applications typically run RTT on top of UDP to make use
of its multiplexing and checksum services (see Figure 28). Tailoring RTP to
the application is accomplished through auxiliary profile and payload format
specifications. A payload format defines the manner in which a particular
payload, such as an audio or video encoding, is to be carried in RTP. A
profile assigns payload type numbers for the set of payload formats that may
be used in the application.

Real time Server
Real time Application
RTP and RTCP

A Router Router
| Em> (®TEl >
|
q
L —— ER<€|— —— ——— — >R
RTCP control RSYP control
information information
(RSP

RSVP - Resource Reservation Protocol
RTCP - Real time Transport Control Protocol
RTP - Real time Transpart Protocol

UDP - User Datagram Pratocol

Recipient

Figure 28: Real Time Application running RTP on top of UDP

However RTP is not limited to be used with UDP/IP. It can be used
equally with other underlying network or transport protocols such as ATM
or IPX. Moreover, RTP supports data transfer to multiple destinations using
multicast distribution if provided by the underlying network, a feature which
makes RTP ideal for multi party multimedia conferencing.

RTP is designed to work in conjunction with RTCP (Real time Trans-
port Control Protocol) to monitor the quality of service. RTP delivers real
time traffic with timing information for reconstruction as well as feedback
on reception quality. The Resource Reservation Protocol (RSVP) is used to
reserve network bandwidth and assign priority for various traffic types.

8.1.2 Definitions in RTP
The following definitions are extracts from [RFC 1889, RFC 1890].

Sixth College on Microprocessor-based Real-time Systems in Physics 263
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya S

RTP Payload

The data transported by RTP in a packet, for example audio samples
or compressed video data.

RTP Packet

A data packet consisting of the fixed RTP header, a possibly empty list
of contributing sources, and the payload data. Typically one packet of
the underlying protocol contains a single RTP packet, but several RTP
packets may be contained if permitted by the encapsulation method.

RTCP Packet,

A control packet consisting of a fixed header part similar to that of
RTP data packets, followed by structured elements that vary depending
upon the RTCP packet type. Typically multiple RT'CP packets are
sent together as a compound RTCP packet in a single packet of the
underlying protocol. This is enabled by the length field of the fixed
header of each RTPC packet.

Port

The “Abstraction” that transport protocols use to distinguish among
multiple destinations within a given host computer (TCP/IP protocols
identify ports using small positive integers and the transport selectors
(TSEL} used by the OSI Transport layer are equivalent to ports). RTP
depends on the lower layer protocol to provide some mechanism such
as ports to multiplex the RTP and RTCP packets of a session.

Transport Address

The combination of a network address and port that identifies a trans-
port level end point, for example an IP address and a UDP port. Pack-
ets are transported from a source transport address to a destination
transport address.

RTP Session

The association among a set of participants communicating with RTP.
For each participant, the session is defined by a particular pair of des-
tination transport addresses consisting of one network address and a
port pair for RTP and RT'CP. The destination transport address pair
may be common for all participants, as in the case of IP multicast,
or may be different for each, as in the case of individual unicast net-
work addresses plus a common port pair. In a multimedia session,

Sixth College on Microprocessor-based Real-time Systems in Physics 264
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya S

each medium is carried in a separate RTP session with its own RTCP
packets. The multiple RTP sessions are distinguished by different port
number pairs and/or different multicast addresses.

e Synchronisation Source (SSRC)

The source of a stream of RTP packets, identified by a 32 bit numeric
SSRC identifier carried in the RTP header so as not to be dependent
upon the network address. Examples of synchronisation sources include
the sender of a stream of packets derived from a signal source such as
a microphone, a camera or an RTP mixer. If a participant generates
multiple streams in one RTP session, for example from separate video
cameras, each must be identified as a different SSRC.

e Contributing Source (CSRC)

A source of a stream of RTP packets that has contributed to the com-
bined stream produced by an RTP mixer. The mixer inserts a list of
the SSRC identifiers of the sources that contribute to the generation
of a particular packet into the RTP header of that packet. This list
is called the CSRC list. An example application is audio conferencing
where a mixer indicates all the talkers whose speech was combined to
produce the outgoing packet, allowing the receiver to indicate the cur-
rent talker, even though all the audio packets contain the same SSRC
identifier (that of the mixer).

e End System

An application that generates the content to be sent in RTP packets
and/or consumes the content of received RTP packets.

e Mixer

An intermediate system that receives RTP packets from one or more
sources, possibly changes the data format, combines the packets in some
manner and then forwards a new RTP packet. Since the timing among
multiple input sources will not generally be synchronised, the mixer
will make timing adjustments among the streams and generate its own
timing for the combined stream. Thus all data packets originating from
a mixer will be identified as having the mixer as their synchronisation
source.

Sixth Coflege on Microprocessor-based Real-time Systems in Physics 265
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya S

e Monitor

An application that receives RTCP packets sent by participants in an
RTP session, in particular the reception reports, and estimates the
current quality of service, fault diagnosis and long term statistics.

8.1.3 RTP Fixed Header Fields

The RTP header format is shown in Figure 29. The first twelve octets are
present in every RTP packet, while the list of CSRC identifiers is present
only when inserted by a mixer.

01234 3 15 31

T T lllll'\l T

V=2 PIXI cC |M| PT sequence nember

time stamp

synchronisation source (SSRC) identifier

coutributing source {CSRC) ideatifier

Figure 29: RTP Header Format

The RTP header provides the timing information necessary to synchronise
and display audio and video data and to determine whether packets have
been lost or arrive out of order. In addition, the header specifies the payload
type, thus allowing muitiple data and compression types. This is a key
advantage over most proprietary solutions, which specify a particular type
of compression and thus limit users’ choice of compression schemes.

8.1.4 Multiplexing RTP Sessions

In RTP, multiplexing is provided by the destination transport address (net-
work address and a port number) which define an RTP session.

8.1.5 Real time Transport Control Protocol (RTCP)

The RTCP is based on the periodic transmission of control packets to all
participants in the session, using the same distribution mechanism as the
data packets. The underlying protocol must provide multiplexing of the data
and control packets, for example using separate port numbers with UDP.
The primary function of RTCP is to furnish information on the quality of
data distribution. This feedback is a critical part of RTP’s use as a transport
protocol, since applications can use it to control how they behave. The
feedback is also important for diagnosing distribution faults. For instance, by

Sixth College on Microprocessor-based Real-time Systems in Physics 266
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya S

monitoring reports from all data recipients, network managers can determine
the spread of a problem. When used in conjunction with IP multicast, RTCP
enables the remote monitoring and diagnosis.

In addition RTCP controls the rate at which participants in an RTP
session transmit RTCP packets. In a session with a few participants, RTCP
packets are sent at the maximum rate of one every five seconds whereas
for a larger group, RTCP packets may be sent only once every 30 seconds.
In other words, the more participants there are in a conference, the less
frequently each participant sends RTCP packets. This makes RTCP scalable
to accommodate tens of thousands of users.

8.2 Real Time Data Transfer using ATM

Audio and video applications generate lots of bits, and the traffic has to
be streamed or transmitted continuously rather than in bursts. This is in
contrast to conventional data types such as text, files and graphics, which
are able to withstand short and inconsistent periods of delay between packet
transmissions. What is needed then is a network capable of transporting
both streaming and bursty data. ATM (Asynchronous Transfer Mode) is a
technique which just does this [De Prycker 95], [Stallings 95].

ATM is a connection oriented protocol designed to support high band-
width, low delay (even services with predictable delay), packet like switching
and multiplexing. The design of ATM ensures the capability to carry both
stream traffic (such as voice and video) and bursty traffic (such as interactive
data) with guaranteed QOS. It uses a fixed cell size for all types of traffic.
In the case of stream traffic ATM guarantees the integrity of cell sequence
which is essential for the successful delivery of such traffic.

ATM has grown out of the need for a worldwide standard to allow inter-
change of information regardless of the “end system” or type of information.
Historically there have been separate methods used for the transmission of in-
formation among users on LANs and the users on WANs. This situation has
been made more complex by the user’s need for connectivity expanding from
the LAN to MAN to WAN. ATM is a method to unify the communication
of information on LANs and WANSs.

ATM is the only technology based on standards, and has been designed
from the beginning to accommodate the simultaneous transmission of data,
voice and video. It is an easily scalable backbone which can be upgraded
merely by adding more switches or links. ATM is switched instead of routed
and therefore it is faster since not every IP packet at every node is exam-
ined to determine its destination. ATM LAN Emulation (LANE) allows
transparent interconnection of “legacy” LANs based on Ethernet or FDDI

Sixth College on Microprocessor-based Real-time Systerns in Physics 267
Abdus Salam ICTP, Trieste. October 9—November 3, 2000

Towards Real Time Data Communications Induruwa, Abhayva S

at the NI at the NIN1I
GFC VPl VPI
VPI
vCl vCI
PTI LH PT1 LH
HEC HEC
’ﬁ-: Payload = ? Payload ::
GFC - Generic Flow Control HEC - Header Erorr Control
VPI - Virtual Path Identifier CLP - Cell Loss Priority
VCI - Virtual Channel Identifier UNI- User Network Interface
PTI - Payload Type Identifier NNI - Network Node Interface

Figure 30: ATM Cell Formats

technology, making the ATM backbone look like a fast Ethernet or FDDI to
workstation applications. As more and more ATM nodes are deployed, the
differences between local and wide area networks will disappear to form a
seamless network based on one standard.

To use the limited bandwidth more efficiently, ATM uses circuit switching
principles to give the users a full channel to themselves. Since these users do
not use the full channel all the time, ATM uses statistical analysis to time
division multiplex several users onto the same line. This allows each user
to have all of the channel’s bandwidth for the period of time in which it is
needed.

To achieve this ATM uses two connection concepts; the Virtual Channel
(VC) and the Virtual Path (VP).

A virtual channel (also known as a virtual circuit) provides a logical
connection between end users and is identified by a VCI (Virtual Channel
Identifier) in the ATM header (see Figure 30). A virtual path defines a
collection of virtual circuits traversing the same path in the network and is
identified by a VPI (Virtual Path Identifier). The VPI emulates the functions
of the trunk concept in circuit switching. Thus virtual paths define the
cross connection functions across the network, whereas virtual channels are
concerned with switching and connection establishment functions. Virtual
paths are statistically multiplexed on the physical link on a cell multiplexing
basts.

GFC (Generic Flow Control) is used to control the amount of traffic
entering the network.

VPI and VCT are used for routing. VPI will change from one node to the
next when it travels through the ATM layer. VCI is predefined and usually

Sixth College on Microprocessor-based Real-time Systems in Physics 268
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya S

Higher Layers Higher Layers
ATM Adaptation ATM Switch ATM Adaptation
Layer (AAL) Layer (AAL)
ATM Layer ATM Layer ATM Layer
Physical Layer Physical Layer Physical Layer
Physical Medium

Figure 31: ATM Protocol Architecture

remains the same throughout the duration of the transmission. PTI (Payload
Type Identifier) is used to distinguish between cells that are carrying user
data and those carrying control information. CLP is a single control bit
which provides selective discard during network congestion and HEC is used
to check header errors.

The ATM cell formats used at the UNI (User-Network Interface) and NNI
(Network-Node Interface) are shown in Figure 30.

8.2.1 ATM Protocol Structure

Figure 31 shows the ATM layered architecture as described in ITU-T rec-
ommendation 1.321 (1992). This is the basis on which the B-ISDN Protocol
Reference Mode! has been defined.

e ATM Physical Layer

The physical layer accepts or delivers payload cells at its point of access
to the ATM layer. It provides for cell delineation which enables the
receiver to recover cell boundaries. It generates and verifies the HEC
field. If the HEC cannot be verified or corrected, then the physical
layer will discard the errored cell. Idle cells are inserted in the transmit
direction and removed in the receiving direction.

For the physical transmission of bits, 5 types of transmission frame
adaptations are specified (by the ITU and the ATM Forum). Each one
of them has its own lower bound or upper bound for the amount of bits
it can carry (from 12.5 Mbps to 10 Gbps so far).

1. Synchronous Digital Hierarchy (SDH) > 155 Mbps;
2. Plesiochronous Digital Hierarchy (PDH) < 34 Mbps;
3. Cell Based > 155 Mbps;

Sixth College on Microprocessor-based Real-time Systems in Physics 269
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya S

Virtual

channel ,[_ml m

switches

VCin VClm VCIm ¥Cip

Virtual
path f L I L
switches

VP VPIb VPL VPId
VCIn VCim 2 VCIp
Virmus] channe) 2 connection
VFIa VEIb 4 VPIc VPId

Wirtual - " Virtunl
N Virruat path x conoection path y con niom

Figure 32: VC/VP Switching in ATM

4. Fibre Distributed Data Interface (FDDI) = 100 Mbps;
5. Synchronous Optical Network (SONET) > 51 Mbps.

The actual physical link could be either optical or coaxial with the pos-
sibility of Unshielded Twisted Pair (UTP Category 3/5) and Shielded
Twisted Pair (STP Category 5) in the mid range (12.5 to 51 Mbps).

e ATM Layer

ATM layer mainly performs switching, routing and multiplexing. The
characteristic features of the ATM layer are independent of the physical
medium. Four functions of this layer have been identified.

1. cell multiplexing (in the transmit direction)
2. cell demultiplexing (at the receiving end)
3. VPI/VCI translation

4. cell header generation/extraction.

This layer accepts or delivers cell payloads. It adds appropriate ATM
cell headers when transmitting and removes cell headers in the receiving
direction so that only the cell information field is delivered to the ATM
Adaptation Layer.

At the ATM switching/cross connect nodes VPI and VCI translation
occurs. At a VC switch new values of VPI and VCI are obtained
whereas at a VP switch only new values for the VPI field are obtained
(see Figure 32). Depending on the direction, either the individual VPs
and VCs are multiplexed into a single cell or the single cell is demulti-
plexed to get the individual VPs and VCs.

Sixth College on Microprocessor-based Real-time Systems in Physics 270
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

L s B ey ey o B e e - ——y . —_ . . e e e e e e e

Towards Real Time Data Communications Induruwa, Abhaya S

o ATM Adaptation Layer (AAL)

The ATM Adaptation Layer (AAL) is between ATM layer and the
higher layers. Its basic function is the enhanced adaptation of services
provided by the ATM layer to the requirements of the higher layers.

This layer accepts and delivers data streams that are structured for
use with user’s own communication protocol. It changes these protocol
data structures into ATM cell payloads when receiving and does the
reverse when transmitting. It inserts timing information required by
users into cell payloads or extracts from them. This is done in accor-
dance with five AAL service classes defined as follows.

1. AAL1 - Adaptation for Constant Bit Rate (CBR) services (con-
nection oriented, 47 byte payload);

2. AAL2 - Adaptation for Variable Bit Rate (VBR) services (con-
nection oriented, 45 byte payload);

3. AAL3 - Adaptation for Variable Bit Rate data services (connec-
tion oriented, 44 byte payload);

4. AAL4 - Adaptation for Variable Bit Rate data services (connec-
tion less, 44 byte payload);

5. AALS5 - Adaptation for signalling and data services (48 byte pay-
load).

In the case of transfer of information in real time, AAL1 and AAL2
which support connection oriented services are important. AAL4 which
supports a connection less service was originally meant for data which
is sensitive to loss but not to delay. However, the introduction of AALS
which uses a 48 byte payload with no overheads, has made AAL3/4 re-
dundant. Frame Relay and MPEG -2 (Moving Pictures Expert Group)
video are two services which will specifically use AALS.

8.2.2 ATM Services
e CBR Service

This supports the transfer of information between the source and des-
tination at a constant bit rate. CBR service uses AALl. A typical
example is the transfer of voice at 64 Kbps over ATM. Another usage
is for the transport of fixed rate video.

This type of service over an ATM network is someiimes called circuit
emulation (similar to a voice circuit on a telephone network).

Sixth College on Microprocessor-based Real-time Systems in Physics 271
Abdus Salam ICTP, Trieste. October 9—November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya S

e VBR Service

This service is nseful for sources with variable bit rates. Typical exam-
ples are variable bit rate audio and video.

e ABR and UBR Services

The definition of CBR and VBR has resulted in two other service types
called Available Bit Rate (ABR) services and Unspecified Bit Rate
(UBR) services.

ABR services use the instantaneous bandwidth available after allocat-
ing bandwidths for CBR and VBR services. This makes the bandwidth
of the ABR service to be variable. Although there is no guaranteed time
of delivery for the data transported using ABR services, the integrity
of data is guaranteed. This is ideal to carry time insensitive (but loss
sensitive) data such as in LAN-LAN interconnect and IP over ATM.

UBR service, as the name implies, has an unspecified bit rate which
the network can use to transport information relating to network man-
agement, monitoring, etc.

8.2.3 1IP over ATM

The transmission of classical IP traffic over ATM can be accomplished as
shown in figure 33.

Application

TCP Layer

IP Layer

AAL

ATM Layer

Physical Layer

Figure 33: Transmission of IP over ATM

8.3 IP/TV - A Real life Example

IP/TVTM is a client server application that multicasts live or prerecorded
digital video and audio streams in real time to an unlimited number of users

Sixth College on Microprocessor-based Real-time Systems in Physics 272
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya S

over any IP based local or wide area network including the global Internet,
using fully compliant TCP /IP protocol stacks supporting real time protocol
components. It uses state-of-the-art Internet standards such as IP multi-
casting, RTP, RTCP and RSVP in its Flashware™ software suite to pro-
vide high quality, synchronised audio/video information over existing packet
switched networks simultaneous with current network data traffic.

Server Viewer 1 Viewer 2
Prrv IP/TV IP/TV
— or A A Viewer =% Viewer
MBONE
TCP/IP . . TCP/IP TCP/IP
with Audio / Video with with
Flashware Streams Flashware Flashware
IP based LAN/WAN
World Wide Web
Server
Instructions for Prog[rry;ll:vﬁuide Frograms
Multicast Programs

Figure 34: Real Time Audio/Video Over IP based LAN/WANs

IP/TV ® consists of a Viewer, a Program Guide and a Server (Figure 34).
The program guide shows a schedule of multicasts and can be accessed via
Web browser with HTTP (Hyper Text Transport Protocol). MBONE session
information can be accessed with the Program Guide which controls the
number of streams allowed on the network and the format of those streams,
ie. audio only, audio and video or some other combination. The server
delivers prerecorded or live multimedia streams based on the Program Guide
schedule and parameters such as start time and file name.

The IP/TV viewer, a tool for signing up for scheduled multicasts, is de-
signed to provide VCR like controls as well as “channel changing” controls.
With a software based codec (compliant with ITU video conferencing stan-
dard H.320/H.261) colour video running at a rate of 30 frames per second
uses about 500 Kbps bandwidth. The use of IP multicasting helps to conserve
network bandwidth by transmitting over the network a single data stream
that can be picked up by any interested user. The use of RSVP provides the
ability to reserve bandwidth on RSVP compliant routers, thereby giving pri-
ority to time dependent audio/video streams over less critical network traffic

5available with Flashware from Precept Software Inc.

Sixth College on Microprocessor-based Real-time Systems in Physics 273
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya 5

thus ensuring the desired Quality of Service (QOS).

8.4 Delivering Real Time Data to the Desk Top
8.4.1 Ethernet Based Solutions

Ethernet was invented by Dr Robert M Metcalfe in the 1970s at the Xerox
PARC (Palo Alto Research Centre). This was at a time when a network
bandwidth of 3Mbps was found to be adequate to serve the needs of the users
whose computers were connected to such networks. Formal specifications for
Ethernet were published in 1980 by a multi vendor consortium that created
the DEC-Intel-Xerox (DIX) standard and turned the 3Mbps Ethernet into an
open production quality Ethernet operating at 10Mbps. The popularity of
Ethernet made the LAN Standards Committee of the Institute of Electrical
and Electronic Engineers (IEEE 802) to adopt and publish this as an IEEE
standard in 1985. The IEEE standard which is based on the original DIX
technology and provides an “Ethernet like” system, is called the IEEE 802.3
Carrier Sense Multiple Access/ Collision Detect (CSMA/CD).

The original specification of 1985 specifies copper based transmission
media, specially, thick (10base5) and thin (10base2) coaxial cables. Since
then it has grown to include twisted pair (10/100baseT) and optical fibre
(10/100baseFL). It is estimated that there are about 400 million Ethernet
connections in the world today, making it the most widely deployed LAN
technology.

However, the majority of today’s computing is based on client/server
technology. As more applications are moved form desktops to severs, and the
number of desktop clients increases, the demand placed on a typical Ethernet
operating at 10Mbps tends to affect the application response time and impair
the users’ ability to effectively access, manipulate and transmit information.
Moreover the high performance servers of today need maximum bandwidth
and highly reliable network connections to make the most of their powerful
processing capabilities.

Clients, on the other hand, require high speed, low cost connections to
the high bandwidth networks. This asymmetric approach to client/server
network design has led to the development of Fast Ethernet (IEEE 802.3u -
100base..) and Gigabit Ethernet (IEEE 802.3z - 1000base..} specifications
giving a speed advantage of 10 and 100 times respectively, compared to the
original Ethernet. Associated with the high bandwidth is also the switching
technique, which makes the Ethernet and its variants to be appropriate for
the delivery of real time data.

Sixth College on Microprocessor-based Real-time Systems in Physics 274
Abdus Salam ICTP, Trieste. October 9-Novemnber 3, 2000

————— e — _— o

Towards Real Time Data Communications Induruwa, Abhaya 5

8.4.2 Signal Topology and Timing

The signal topology of the Ethernet is also known as the logical topology to
distinguish it from the actual physical layout of the media cabling. The
logical topology of an Ethernet provides a single channel (bus) that carries
signals to all stations attached to it. Repeaters which amplify and re-time
the signals can be used to link multiple Ethernet segments together to form
large Ethernets.

The signal timing is based on the amount of time it takes to traverse
the complete media system from one end to the other and back. This is
also called the round trip time, the maximum of which is strictly limited to
ensure that every interface can hear all network signals within the specified
amount of time provided in the Ethernet Medium Access Control (MAC)
mechanism.

The longer a given network segment is the more time it takes for a signal
to traverse it. Therefore configuration guidelines (rules) are provided to make
sure that the round trip timing limits are met, no matter what combination
of media segments are used in the network configuration.

However the expansion of Ethernet using repeaters is limited becaunse
of the signal timing restrictions. In order to meet the expansion needs of
today, two kinds of hubs known as repeater hubs and packet switching hubs
are available. The advantage of using a switching hub is that each port of
the hub provides a connection to an Ethernet media system that operates
as a separate Ethernet LAN, and the round trip timing rules for each LAN
stop at the switching hub port. This in effect allows several individual LANs
each supporting hundreds of computers to be linked together forming a much
larger LAN, but still meeting the requirements of signal timing.

The use of switching hubs allows, in addition, to mix Ethernet links op-
erating at 10Mbps with links operating at higher link speeds and to operate
either some or all of the links at higher bandwidths, namely 100Mbps or
1000Mbps.

8.4.3 High Performance Ethernets

Two approaches have been considered in making the Ethernet to operate at
higher bandwidths. In the first approach, the original Ethernet system with
the CSMA/CD MAC mechanism has been speeded up to 100Mbps. This
approach is therefore called 100baseT Fast Ethernet (IEEE802.3u).

The second approach has been to create an entirely new MAC mechanism
using hubs that control access to the medium using a demand priority
mechanism. The design of the medium access control based on demand

Sixth College on Microprocessor-based Real-time Systems in Physics 275
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data. Communications Induruwa, Abhaya S

priority mechanism has allowed the transportation of token ring frames in
addition to the standard Ethernet frames. Therefore it is called 100VG-
AnyLAN (IEEE802.12).

Switching invariably becomes central to the operation of high performance
Ethernets. The backplane speed (in packets per second (PPS)) describes the
capacity of the switch to move the data from the incoming ports to the
outgoing ports and is an important parameter. Another factor which is
important for the efficient functioning of a switch is the amount of buffer
memory provided. In general, higher the number of ports the more buffer
memory is needed.

8.4.4 Switched Ethernets

An Ethernet switch at its basic level can be thought of as a bridge with
many ports and low latency. A network segment connected to each of the
ports physically represent a separate Ethernet with its own repeater count
and timing restrictions. Switches are useful in segmenting large networks
for improved performance and/or easy manageability. However the many
segments of the network operates as one single logical network.

The design of Ethernet switches gives rise to the following classification
based on the type of packet forwarding technique used in the switch archi-
tecture. The packet switching type employed has an effect on latency which
describes the delay in the switch. The latency has the greatest impact in
environments where real time video and audio applications are supported.

e Store and Forward Switches

A store and forward switch stores each incoming frame in a buffer, checks
for errors, and if the frame is good then forwards the frame to its destina-
tion port. The store and forward technique has the advantage that it pre-
vents wasting network bandwidth by effectively blocking the damaged frames.
However the disadvantage is that it increases the latency and therefore re-
sults in lower throughput in networks with few errors. Store and forward
switches are useful in networks which may experience high error rates.

In general Store and Forward switching is likely to be the best choice
when a network needs efficiency and stability.

e Cut Through Switches

In a cut through switch a frame is forwarded immediately upon receiving
its destination address thus resulting in a very low latency in the switch. The
disadvantage is that it propagates errors and therefore is only suitable for
networks which experience a few occasional errors.

Sixth College on Microprocessor-based Real-time Systems in Physics 276
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya S

o Hybrid Switches

Hybrid switch is the result of an attempt to achieve the best of both the
Store & Forward and Cut Through techniques. In its normal operating mode
a hybrid switch operates as a Cut Through switch constantly monitoring the
rate at which damaged or invalid frames are forwarded. When the error rate
is above a certain threshold then the switch reverts to Store and Forward
mode and continues to operate in that mode until the error rate has fallen
to an acceptable level before reverting to Cut Through mode.

The Hybrid switch has the performance advantage of a Cut Through
switch when the error rate is low, and the error trapping ability of a Store
and Forward switch when the error rates are high.

The above types are only applicable when the source and destination
ports are all running at the same speed. If the switch has to perform a speed
conversion, which is the case in many new network installations especially
if a standard Ethernet is migrated to high performance Ethernet, then the
switch must operate in the Store and Forward mode to cater to the differing
link speeds.

R8.4.5 Fast Ethernet

Fast Ethernet (IEEE 802.3u) operating at 100Mbps is designed as the most
direct and simple extension of 10baseT Ethernet operating at 10Mbps. The
Medium Access Control mechanism used in the Fast Ethernet is simply a
scaled up version of the MAC technique used by 10baseT Ethernet. This
makes 100baseT to be similar to the conventional 10baseT, only faster. It
uses the same reliable, robust and economical technology of 10baseT. The
seamless compatibility between 10baseT and 100baseT allows easy migration
to high speed network connections. The Fast Ethernet specification includes
a mechanism for auto negotiation of the media speed. This allows the instal-
lation of a dual speed Ethernet interface which automatically detects and
sets its link speed.

Although Fast Ethernet preserves the critical 100m maximum UTP cable
length from the hub to the desktop, the rules applicable to the 100Mbps
technology are different because of the scaling of the MAC interface.

100baseT Fast Ethernet is a natural evolution from the standard 10baseT
Ethernet. Figure 35 shows the two in comparison.

Fast Ethernet also supports multiple media types. For 100baseT the same
cabling installed for a 10baseT network can be used. Figure 36 shows the
three media specifications supported by Fast Ethernet, namely 100baseT4,
100baseTX and 100baseFX.

Sixth College on Microprocessor-based Real-time Systems in Physics 277
Abdus Salam ICTP, Trieste. October 9-—November 3, 2000

Towards Real Time Data Communications

Induruwa, Abhaya S

Feature 10baseT Ethernet 100baseT Fast Ethernet
Speed 10Mbps 100Mbps
IEEE Standard 802.3 802.3
Media Access Protocol CSMA/CD CSMA/CD
Topology Bus or Star Star
Media support Coax, UTP, Optical Fiber UTP, STP, Optical Fiber
Hub to node distance 100 meters 100 meters
(Maximum)
Media Interface AUI MII

Figure 35: Comparison between Ethernet and Fast Ethernet

e 100baseTX

The 100baseTX specification supports 100Mbps transmission speed over
two pairs of UTP Category 5 or STP Category 5. The RJ45 connector used
for 100baseTX UTP is exactly the same as that used by 10baseT UTP. For
STP wiring 100baseTX also specifies the traditional DB-9 connector.

e 100baseT4

100baseT4 media uses four pairs of Category 3, 4 or 5 UTP wiring to
carry data at 100Mbps. The signalling scheme in 100baseT4 uses three pairs
of wires for data and the fourth for collision detection. Because 100baseT4
can use Category 3 it enables migration to 100baseT4 without having to
rewire.

100baseT4 also uses RJ45 connector.

e 100baseF'X

100baseFX media specification defines 100Mbps operation over two strands
of 62.5/125 micron fibre and allows transmission over greater distances than
UTP. The fibre optic connectors are the same as those defined for 10baseFX
networks.

Fast Ethernet specification includes a Media Independent Interface (MII)
which defines a standard interface between the CSMA/CD MAC layer and

Sixth College on Microprocessor-based Real-time Systems in Physics 278
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

T YN — e

Towards Real Time Data Communications Induruwa, Abhaya S

Fast Ethernet Media Access Control (MAC)

v

‘ Media Independent Interface (MII)

{AUI Equivalent)

v L v\

100BaseTX 100BaseT4 100B aseFX
2 pair Cat 5 UTFP 4 pair Cat 3, 4and § 62.5/125 micron
2 pair STP ure fibre

Figure 36: Fast Ethernet Media Support

any of the three media specifications supported. This is much like the AUI
connector for standard Ethernet. The MII defines a 40 pin connector to
connect to the external transceivers.

The Fast Ethernet however does not support coaxial cabling largely due
to its inability to support high data rates over the distances of interest. The
ISO 11801 cabling standard is applicable to Fast Ethernet implementation.

8.4.6 Gigabit Ethernet

The ever increasing processing power in the computers and the deployment of
power hungry applications on the networks must be matched by developing
high speed network connections to reduce traffic bottlenecks, improve overall
performance and ultimately enhance the productivity of the users who use
the network. The development of Gigabit Ethernet is clearly a solution to
match the network infrastructure with the desktop capability.

Gigabit Ethernet (IEEE802.3z) is an extension of the highly successful
10Mbps Ethernet and 100Mbps Fast Ethernet standards and therefore is fully
compatible with the huge installed Ethernet base. Gigabit Ethernet employs
all the features of Ethernet specification including frame format, support for
CSMA /CD protocol, full duplex transmission, flow control and management
objects. This compatibility preserves investment in network administrator
expertise and support staff training.

The enhancements in Gigabit Ethernet includes the support of fast opti-
cal fiber connections at the physical layer of the network and a MAC layer
specification which sustains a tenfold increase in the MAC layer data rates.

Sixth College on Microprocessor-based Real-time Systems in Physics 279
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya S

This is a key to its ability to support data intensive applications such as
imaging and video conferencing.

The proliferation of Gigabit Ethernet will take place in phases. Initially
Gigabit Ethernet will be used as backbone switch-to-switch connections. The
next phase will be to deploy switch-to-server connectivity to boost access to
critical server resources. This evolution will be driven by the increasing
installation of PCs with 100Mbps network interfaces. Finally as the desk
top costs come down and user network demand increases, Gigabit Ethernet
switches will enter the backbone and will take over the switch fabric.

At this stage, Gigabit Ethernet will probably use links that are compliant
with the installed base of UTP Category 5 cabling up to 100 m distances.

8.5 ADSL - delivering RT multimedia to the home and
small business

ADSL technology is the result of the recent advances in modem technology
that converts existing twisted pair telephone subscriber lines into access paths
for the transfer of multimedia and high speed digital data. Present day ADSL
can sustain downstream transmission speeds up to 6 Mbps to a subscriber
and in excess of 800 Kbps in both directions {(duplex).

‘These transmission rates expand the existing access capacities by a factor
of 100 or more (V.90 modem supports 56 Kbps nominally) without new
cabling, thus transforming the existing public telephone infrastructure which
is only capable of delivering voice, text and low resolution graphics to a
powerful system capable of bringing multimedia, including full motion video,
in quality assured real time, to the home and small business.

ADSL is seen as an interim solution which will play a crucial role in the
next decade for the delivery of information in video and other multimedia
formats. This is expected to pave the way for a full broad band service, which
will take decades to reach all prospective customers. In this interim period
ADSL will bring movies, television, video catalogues, remote CDROMs, cor-
porate LANs and the global Internet into homes and small businesses.

An ADSL circuit consists of an ADSL modem at each end of a twisted
pair telephone subscriber line creating three information channels as follows
(see Figure 37):

e high speed downstream channel {up to 6 Mbps)

¢ medium speed duplex channel (800 Kbps)

e POTS (Plain Old Telephone Service) or an ISDN channel (64 — 128
Kbps)

Sixth College on Microprocessor-based Real-time Systems in Physics 280
Abdus Salam ICTP, Trieste. October 9-Navember 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya 5

Information
Server

LU

Telephone

Neatwork Subscriber line
AD ADSL Subsorib
Equipment {Modem 1.5 Mbps - 6 Mbps — | Modem| ubscrioer

(5.5 km} (2.7 km}

L

)

16 to 800 kbps ———

Figure 37: ADSL Channels

It is this asymmetric nature in the data transmission rates in the channels
which gives rise to its name Asymmetric Digital Subscriber Line.
The downstream data rates of an ADSL channel depends on:

length of copper line

wire gauge

presence of bridged taps

cross coupled interference

In transmitting digital compressed video as a real time signal, ADSL can-
not use link level or network level error control procedures commonly found
in other data communication systems due to the fact that they are gener-
ally based on error recovery by re-transmission. ADLS modems therefore
incorporates forward error correction.

Multiple channels are created by the ADSL modem by dividing available
bandwidth of a telephone line in one of two ways (see Figure 38}):

e FDM - Frequency Division Multiplexing
e Echo Cancellation

In FDM one frequency band is assigned for upstream data and another
for downstream data. The downstream path is then divided by FDM into
one or more channels at the desired data rates.

Sixth College on Microprocessor-based Real-time Systems in Physics 281
Abdus Salam ICTP, Trieste. October 9—November 3, 2000

Towards Real Time Data Communications induruwa, Abhaya S

Downstream Downstream
£ E
a @
o\ | 3 o\ [2
0 8 0 2
o o o)
| :
Frequency Frequency

Figure 38: Creating ADSL Channels by (i) FDM and (ii) Echo Cancellation

Echo cancellation, a technology used in V.32 and V.34 modems, assigns
the upstream band such that it overlaps the downstream band and separates
the two by local echo cancellation.

With either technique ADSL splits a 4 KHz region for POTS at the DC
end of the frequency spectrum and guarantees the availability of telephone
channel even if ADSL fails.

8.5.1 ADSL Standardisation

At the present moment the following standards are applicable to ADSL:

1. ANSI T1.413 Issue I (1995) up to 6.1 Mbps
2. ETSI Annex to T1.413 to reflect European requirements

3. ANSI T1.413i2 (Issue II 1998) includes multiplexed interfaces at user
end and protocols for configuration and network management.

4. ITU-T G.dmt (G.992.1) and G.lite (G.992.2) (1999) the latter allows
the splitting to be done at the telephone network equipment end, at
the expense of line speed.

The final step has helped moving towards vendor interoperability and
service provider acceptance, further increasing ADSL deployment.

ATM Forum has recognised ADSL as a physical layer transmission pro-
tocol for UTP medium.

Sixth College on Microprocessor-based Real-time Systerns in Physics 282
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya S

9 WAP - Wireless Application Protocol

WAP is designed as an application environment based on a set of communica-
tion protocols for wireless handheld devices to enable manufacturer, vendor
and technology independent access to the Internet and advanced telephony
services. It bridges the gap between the mobile world and the Internet as well
as corporate intranets and offers the ability to deliver an unlimited range of
services to subscribers independent of their network service provider or type
of terminal device. This enables the mobile user to access the same wealth
of information from a wireless device as they can from a desktop.

WAP is based on a secure specification that allows users to access infor-
mation instantly via handheld wireless devices such as:

e mobile phones

® pagers

e two way communication radios
e smart phones

e communicators, etc.

WAP supports most wireless network technologies in use today, most
notable being CDMA, GSM (Global System for Mobile communications),
TDMA, CSD (Circuit Switched cellular Data), CDPD (Cellular Digital Packet
Data), etc.

The operating systems that support WAP are many. Ones specifically
engineered for handheld devices include:

e PalmOS
¢ Windows CE

o JavaOSs, etc.

Although WAP supports HTML and XML, the WML (Wireless Mark-up
Language) is specifically designed for small screens and one hand navigation
without a keyboard.

WAP supports WMLScript (similar to JavaScript) but makes minimal
demands on limited memory and CPU power of handheld devices. Browsers
that are specially designed to run on WAP devices and called micro-browsers
are of small file size.

Sixth College on Microprocessor-based Real-time Systems in Physics 283
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya S

9.1 WAP Specification

The WAP specifications define a set of protocols to be used in application,
session, transaction, security and transport layers. These are designed to
enable operators, manufacturers, and application and content providers to
meet the challenges in advanced wireless service provision.

WAP utilises standard Internet components such as XML, UDP (User
Datagram Protocol), TLS (Transport Layer Security) and IP. These are op-
timised for the mobile handheld device environment with its own unique
constraints; low bandwidth, high latency and less connection stability. WAP
utilises binary transmission for greater compression of data and WAP sessions
are designed to cope with intermittent coverage.

The WAP content is produced using WML and WMLSecript and is scaleable
from two line display on a basic handheld device to a full graphic screen on
smart, phones and communicators.

As WAP is based on a scaleable layered architecture each layer can de-
velop independently of others. This will also enable content providers to
customise content to match client expectations and differentiate themselves
from their competitors with new, enhanced information services.

While WAP users benefit from easy, secure access to Internet based in-
formation such as unified messaging, banking, and entertainment, they will
also enjoy considerable freedom of choice when selecting mobile devices and
network operators.

9.2 Architecture of the WAP Gateway
Figure 39 shows the layered architecture of the WAP Gateway.

e WDP - The WAP Datagram Protocol is for the transport layer that
sends and receives messages via any available bearer network.

WTLS — Wireless Transport Layer Security has encryption facilities to
provide secure transport service required by secure applications such
as e-commerce, e-banking, etc.

WTP — The WAP Transport Protocol layer provides transaction sup-
port adding reliability to the datagram service provided by WDP.

e WSP - The WAP Session Protocol layer provides a light weight session
layer to allow efficient exchange of data between applications.

HTTP Interface — This serves to retrieve the WAP content from the In-
ternet requested by the mobile device. WAP content (WML WMLScript)

Sixth College on Microprocessor-based Real-time Systems in Physics 284
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

e —o—lEraa o

Towards Real Time Data Communications Induruwa, Abhaya S

SNMP

JAVA Logging Subscriber DB Applications

______ i-----------T------------'--i------------------- —

M Billing Subscriber Compiler

A Pata Data & Encoder

N

A Context Manager

G

WSP

E 8 HTTFP
| M WTP :
| E :
; N WILS H
: T !
WDP/Adaption TCF/IP H

Bearers Internet

Firewall etc.

Figure 39: Layered Architecture of WAP Gateway

is then converted into a compact binary byte code for efficient trans-
mission over the air.

The WAP microbrowser software resident within the mobile device in-
terprets this byte code and displays the interactive WAP content.

10 Summary

Real time Transport Protocol (RTP), together with a host of other protocols
facilitate the transfer of real time data streams over existing LANs and WANs
based on the Internet Protocol (IP) technology. The efforts in the commercial
sector had been focussed mostly towards the support of multimedia audio
and video streams on PCs running Windows environments (such as Windows
3.11, Windows 95 and Windows NT). IP/TV is a strong case in point which
demonstrates how fast commercial products, adhering fully to international
standards, appear in the market place (RTP/RTCP on which IP/TV is based
were proposed only in January 1996 and products started to appear later in
the same year).

The overall success and acceptability of Ethernet as a LAN technology has
led to its enhancement to high performance platforms operating at 100Mbps
(Fast Ethernet) and 1000Mbps (Gigabit Ethernet). These two offer the users
the familiar Ethernet operating environment with the ability to deliver high
bandwidth real time data such as video and imaging to the desktop.

The technology and the tools developed are available for other real time
data transfer applications, such as data acquisition, which are of interest to
research scientists.

Sixth College on Microprocessor-based Real-time Systems in Physics 285
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya S

11 Bibliography

[Black 93 | Black U, Computer Networks, Protocols, Standards and Inter-
face (2nd Edition), Prentice Hall, 1993.

[Black 95] Black U, TCP/IP and Related Protocols (2nd Edition), McGraw
Hill, 1995.

[Comer 88 | Comer D, Internetworking with TCP/IP: Principles, Protocols
and Architecture, Prentice Hall, 1988.

[Comer 91 | Comer D, Internetworking with TCP/IP - Vol I: Principles,
Protocols and Architecture (2nd Edition), Prentice Hall, 1991.

[Comer et al 91 | Comer D and Stevens D L, Internetworking with TCP/IP
- Vol II: Design, Implementation, and Internals, Prentice Hall, 1991.

[De Prycker 95 | De Prycker M, ATM Solutions for Broadband ISDN ($rd
Edition), Prentice Hall, 1995.

[Goncalves et al 98 | Goncalves M and Niles K, IPv6 Networks, McGraw-
Hill, 1998.

[Handel et al 94 | Handel R, Huber M N, and Schroder S, ATM Networks
- Concepts, Protocols, Applications, Addison-Wesley, 1994.

[Huitema 96 | Huitema C, IPv6: The New Internet Protocol, Prentice Hall,
1996.

[Jain 94] Jain R, FDDI Handbook - High Speed Networking using Fibre and
Other Media, Addison-Wesley, 1994.

[Keshav 97 | Keshav S, An Engineering Approach to Computer Networking
- ATM Networks, the Internet, and the Telephone Network, Addison-
Wesley, 1997.

[Partridge 94 | Partridge C, Gigabit Networking, Addison Wesley, 1994.
[RFC 1112 | Host Erxtensions for IP Multicasting, August 1989.
[RFC 1883 | Internet Protocol, Version 6 (IPv6) Specification, April 1996.

[RFC 1889 | RTP: A Transport Protocol for Real Time Applications, Jan-
uary 1996.

Sixth College on Microprocessor-based Real-time Systems in Physics 286
Abdus Salam ICTP, Trieste. October 9-November 3, 2000

Towards Real Time Data Communications Induruwa, Abhaya S

[RFC 1890] RTP Profile for Audio and Video Conferences with Minimal
Control, January 1996.

[Smith 93 | Smith P, Frame Relay - Principles and Applications, Addison
Wesley, 1993.

[Stallings 89] Stallings W, Handbook of Computer-Communications Stan-
dards Vol 8: The TCP/IP Protocol Suite (2nd Edition), Howard W.
Sams, 1989.

[Stallings 93 | Stallings W, Local and Metropolitan Area Networks (4th Edi-
tion), Macmillan, 1993.

[Stallings 94a] Stallings W, Data and Computer Communications (4th
Edition), Macmillan, 1994.

[Stallings 94b] Stallings W, Advances in Local and Metropolitan Area Net-
works, IEEE Computer Society Press, 1994.

[Stallings 95] Stallings W, ISDN and Broadband ISDN with Frame Relay
and ATM (3rd Edition), Prentice Hall, 1995.

[Tanenbaum 96 | Tanenbaum A S, Computer Networks (8rd Edition), Pren-
tice Hall, 1996.

[Wilder 93 | Wilder F, A Guide to the TCFP/IP Protocol Suite, Artech
House, 1993.

Sixth College on Microprocessor-based Real-time Systems in Physics 287
Abdus Salam ICTP, Trieste. October 9—November 3, 2000

. - R R H ke 5 S BB AEE S . Gkl A S ——— e T s . e T - e e T T T e e

