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1. Neutron Sources

(This Chapter on “Neutron Sources” is an exerpt from a review article by Bauer [1]).

There is an almost unlimited range of research and applications in science in which
neutron scattering plays an essential role in solving difficult and important problerris.
Unfortunately, suitable neutrons are not readily available. Although about half of our
world is made up of neutrons, they are tightly bound deep inside the atomic nucleus and
quite chificult to set free. Facilities that accomplish this task in a manner useful for
scientific and technological applications are calied neutron sources. The energies of free
neutrons span many orders of magnitude. Table 1.1 gives a summary of terms

commonly used to characterise different neutron energy regimes.

Table 1.1: Approximate limits of neutron energy regimes classified by names.

Energy range Classification Energy Range for
Nuclear Physics Neutron Scattering Neutron Scattering

uitra cold < 0.1 meV
very cold 0.1 +0.5 meV

<1keV slow cold 0.5+ 5 meV
thermal 5+ 100 meV
¢pithermal or hot Ol+leV
resonant 1+100eV

1 keV + 0.5 MeV intermediate

0.5+ 10 MeV fast

10+ 50 MeV very fast

50 MeV + 10 GeV high energy or ultra fast

> 10 GeV relativistic

For all neutron sources we are dealing with nuclear reactions. Some nuclear
reactions with a practical potential are listed in Table 1.2. Since the goal must be to
release as many neutrons as possible in as small a volume as possible 1o achieve a high

luminosity, the heat deposition going along with the neutron release is an important
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feature and has been included in Tabie 1.2. In fact, cooling problems are a limiting
factor in practically all neutron source designs. The two most commonly used reactions
are thermal nuclear fission in **U and spallation by protons in the energy range around

1 GeV. We will restrict ourselves to these reactions.

Table 1.2: Neutron yields and deposited heat for some neutron producing reactions.

Reaction and Energy/Event Yield [nfevent) Deposited heat [MeV/n]
T(d,n): 0.2 MeV 8 x10%n/d 2500
Wi(e.n): 35 MeV 1.7 x 10" n/e 2000
‘Be(d,n): 15 MeV 1.2 %107 nid 1200
B5U(n, 0 fission ~ 1 n/fission 200
(T.d) fusion ~ 1 nffusion 3
Pb spallation: 1 GeV ~20n/p 23
P8 spallation: 1 GeV ~ 40 n/p 50

fission of ; chain reaction via
the compound moderated neutrons
nucleus

Spallation intranuclear
cascade

inter nuclear

fast

primary cascade
particle
P+
[ 1 g
~1GeV -. evaporation
} v ta
@ prolon
highly excited O neutron

nucleus Y

Fig. 1.1. Schematic representation of fission and spaltation.



Fission of the uranium isotope 235 by slow neutron capture has been the most
frequently used reaction in neutron sources up to the present. The reaction can be made
self-sustaining because it is exothermal and releases more neutrons per fission process
than are needed to initiate the process. If a slow neutron is captured by a fissionable
nucleus, the resulting deformation can cause the nucleus to break into two fragments
(see Fig. 1.1). Very often a neutron is released directly during this process, but mostly
the neutrons “evaporate” from the fragments. This is a very important feature, because a
small fraction of these evaporation neutrons are released with a time delay of the order
of seconds (up to minutes) and thus enable a critical arrangement to be run in a
controlled fashion.. The spectral distribution of the fission neutrons can be well

described by a Maxwellian

2 E
n(E) = WJE : exp{—E—} (1.1)

T

with a characteristic energy E;=1.29 MeV. Fission reactors produce a continuous flux
of neutrons.
The term “‘spatlation” is applied to a sequence of events that take place, if target

nuclei are bombarded with particles (e.g., protons) of a de Broglie wavelength

A =+h?/2mE which is shorter than the linear dimension of the nucleus. In this case
collisions can take place with individual nuclides inside the nucleus and large amounts
of energy are transferred to the nuclides which, in turn, can hit other nuclides in the
same nucleus. The net effect of this intra-nuclear cascade is twofold (see Fig. 1.1):
Firstly, energy is more or less evenly distributed over the nucleus leaving it in a highly
excited state; secondly, energetic particles may leave the nucleus and carry the cascade
on to the other nuclei (inter-nuclear cascade) or escape from the target. The excited
nucleus left behind will start to evaporate neutrons (and to a lesser extent protons). The
low-energy part of the spectrum of these evaporation neutrons is quite similar to the one
resulting from fission (eq. 1.1), but as a consequence of the neutron escape during the
intra-nuclear cascade the spectrum extends Lo energies up to that of the incident particles

(i.e., up to 1 GeV). The release of spallation neutrons takes place within less than 10 s
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after the nucleus was hit, so that the time distribution of spallation neutrons is
exclusively determined by the time distribution of the driving particle pulse, i.e.,
spallation sources deliver a pulsed flux of neutrons.

The energy spectrum of neutrons released from the neutron source is in the MeV
range, whereas meV neutrons are required for scattering experiments. Therefore an
energy shift of several orders of magnitude is necessary, which is accomplished by
collisions with the atoms of a moderator substance. The goal in the layout of a
moderator is to create the highest possible flux of moderated neutrons either in the
shortest possible time (pulsed neutron sources) or in the largest possible volume (steady
state neutron sources). It is therefore desirable that as many collisions as possible occur
in the shortest possible time. This can be achieved by using moderators made of light
atoms such as H,O and D,0. The time for slowing down the neutrons is of the order of
10° s after which the neutrons are in thermal equilibrium with the moderator according
to the Maxwellian distribution defined by eq. (1.1). Moderators are usually kept at room
temperature, and this is the reason why the corresponding neutrons are called thermal
neutrons, with a maximum peak flux around the neutron wavelength A=1 A (E~80
meV). The Maxwellian energy spectrum of the neutrons can be shifted by inserting
either a cold source (e.g., a vessel containing D, at T=20 K) or a hot source (e.g., a

graphite bloc heated to T=2000 K) into the moderator.

2. Basic Properties of the Neutron

The most relevant, unique character of thermal neutrons, which can hardly be matched

by any other experimental technique, can be summarized as follows:

* The neutron interacts with the atomic nucleus, and not with the electrons as X-Tays
do. This has important consequences: The response of neutrons from light atoms
(e.g., hydrogen, oxygen) is much higher than for x-rays; neutrons can easily
distinguish atoms of comparable atomic number; and finally, neutrons easily

distinguish isotopes which allows, e.g., by deuteration of specific parts of



macromolecules (or biological substances) to focus on specific aspects of their
atomic arrangement.

For the same wavelength as hard x-rays the neutron energy is much lower and
comparable to the energy of elementary excitations in matter. Therefore, neutrons do
not only allow the determination of the “static average” chemical structure, but also
the investigation of the dynamic properties of atomic arrangements which are direcdy
related to the physical properties of materials.

By virtue of its neutrality the neutron is rather weakly interacting with matter which
means that there is almost no radiation damage to living biological objects under
study. Also, the rather weak interaction with matter results in a large penetration
depth and therefore the bulk properties of matter can be studied. This is also
important for the investigation of materials under extreme conditions such as very
low and very high temperatures, high pressures, high magnetic and electric fields, or
several of these together; in such cases the studied sample is always surrounded by
numerous shields which make the use of x-rays difficult.

The neutron carries a magnetic moment which makes it an excellent probe for the
determination of the static and dynamical magnetic properties of matter (magnetic

ordering phenomena, magnetic excitations, spin fluctuations).

It is exactly this latter point which forms the basis of the work described in the present

chapter.

The kinetic energy of a thermal neutron with velocity v is given by

E = , (2.1)

where m=1.675-10-24 g is the mass of the neutron. The de Broglie wavelength A of the

necutron is defined by

A= —, (2.2)



where h=6.626-10-27 ergs is the Planck constant. The wave vector k of the neutron has

the magnitude

k = —, (2.3)

its direction being that of v. Eqgs. (2.1)-(2.3) define the momentum p and the energy E of

the neutron:
p = hk, 2.4
2 2
Ak
E = o (2.5)

with & = h/2x. It is conventional to say that a neutron with energy E corresponds to a

temperature T:

where kp=1.381-10-16 erg-K-! is the Boltzmann constant. Combining egs. (2.1)-(2.6)

yields

By inserting the values of the elementary constants we arrive at the following relations
between the energy, wave length, wave vector, velocity, and temperature for thermal

neutrons:

E = 8181 ?%2 = 2072 k% = 5.227 Vo= 0.08617 T, (2.8)



where the units are meV for E, A for A, A-! for k, km/s for v, and K (Kelvin) for T. In
neutron scattering the energies are usually quoted in meV. Another energy unit
frequently used is terahertz (THz), and other spectroscopic techniques often use wave

numbers in units of cm-!. We then have
1meV=0242THz=8.07cm =116 K=173T, 2.9)

where the conversions to temperature (K) and magnetic field (T=Tesla) are included for

completeness.

3. Instrumental Aspects

The principal aim of a neutron scattering experiment is the determination of the
probability that a neutron which is incident on the sample with wave vector k is
scattered into the state with wave vector k'. The intensity of the scattered neutrons is

thus measured as a function of the momentum transfer
Q = k-k), 3.1

where Q is known as the scattering vector, and the corresponding energy transfer is

given by

h2 2 2
i = —(k ~k'"). (3.2)
2m

Egs. (3.1) and (3.2) describe the momentum and energy conservation of the neutron
scattering process, respectively. The momentum conservation is schematically sketched
in Fig. 3.1. For k=k' we have from eq. (3.2) hw =0, i.e., elastic scattering. Fig. 3.1(a)

shows the particular situation



Q=k-k'=1,

which is just the condition known as Bragg's law (coherent elastic scattering). If Q does
not coincide with a reciprocal lattice vector T, we have incoherent elastic scattering. For
inelastic scattering (b) the scattering vector can be decomposed according to Q=t+q,
where q is the wave vector of an clementary excitation 10 be specified. Neutron

scattering turns out to be the only experimental technique which is able to measure the

dispersion relation fw(q) at any predetermined point in reciprocai space.

Fig. 3.1:

Fig. 3.2

(a) | (b)

Visualization of eq. (3.1) in reciprocal space for elastic (a) and inelastic (b} neutron scatiering.
The lines indicale the boundaries of the Brillouin zone, and the full circles denote the zone

ceniers,

sample

deteclor
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source
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Basic layout of a triple-axis spectrometer. The three axes around which
respective rest of the spectrometer is rotated are: the monochromator axis (variation of k), the
sample axis (variation of the scattering angle), and the analyzer axis (variation of k).
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The determination of fitw(q) by neutron scaticring techniques requires a controlled
access to the variables Q and . This can be done in various ways, but by far the most
effective experimental method is the triple-axis crystal spectrometry developed by
Brockhouse {2] who received the 1994 physics Nobel prize for this achievement. The
principle of this method is sketched in Fig. 3.2. An incident beam of neutrons with a
well defined wave vector k is selected from the white spectrum of the neutron source by
the monochromator crystal, and scattered from the sample. The intensity of the scattered
beam is measured as a function of k' by the analyzer crystal and the neutron detector.

The outstanding advantage of the triple-axis spectrometer is that data can be taken
at predetermined points in reciprocal space (which is known as the “constant-Q” or
“constant-@” method), so that single-crystal measurements of the dispersion relation
hw(Q) can be performed in a controlled manner. Of course, general scans in Q and ©
are also possible.

For structural studies there is usually no need to perform an energy analysis by the
third spectrometer axis. Neutron diffractometers are therefore called two-axis
instruments. Advanced instruments often take advantage of position-sensitive detectors

that speed up the rate of data collection tremendously.

Fig. 3.3: Schematics of a direct time-of-flight spectrometer. The four choppers define the energy and the
pulse width of the incident neutrons. In addition, they suppress higher-order neutrons and
frame overlap.

For neutron scattering experiments on polycrystalline, liquid and amorphous
materials various types of time-of-flight spectrometers are usually more appropriate. In

the time-of-flight method the neutron beam is monochromated by a series of choppers
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that produce pulses of neutrons with the desired wavelength and that eliminate higher-
order neutrons and frame overlap of pulses from different repetition periods as well (see
Fig. 3.3). The monochromatic neutron pulses are then scatiered from the sample and are
detected by arrays of neutron counters covering a large solid angle. The energy transfer
he and the modulus of the scattering vector Q are then determined by the flight time of
the neutrons from the sample to the detector and the scattering angle at which the
detector is positioned, respectively.

In the inverted time-of-flight method the white neutron beam is pulsed, for
example by a spallation source itself, and the energy of the scattered neutrons is
analysed by means of banks of analyser crystals or choppers. Recently, the time-of-
flight method has also been successfully used for the measurement of excitations in
single crystals (see ISIS 99 Progress Report, RAL, Didcot, UK).

4. Magnetic Neutron Cross-Section

The neutron scattering cross-section corresponds to the number of neutrons scattered
per second into a (small) solid angle dQ with energy transfers between %® and
h (w+dwm), divided by the flux of the incident neutrons. Theoretical expressions for the

cross section usually start from Fermi’s “golden rule”

d’c _[ m
dQdw 2nh”

2 1
) {—Zp,@k K, A 101k, A >|28(ﬁm+Ek—El.). (4.1)
A A

Here, IA> denotes the initial state of the scatterer, with energy Ej and thermal
population factor pj, and its final state is IA'>. U is the interaction operator of the

neutron with the sample which depends on the specific scattering process. E.g., neutron
scattering from nuclei at fixed positions R; is well approximated by the Fermi

pseudopotential:

21k’
m

U{r) =

Y bd(r-R,) (4.2)
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where b; is the scattering length. The magnitude of b; is of the order 10-12 cm, i.e., for
nuclear scattering the cross section (4.1) amounts to about 1024 cm? (=1 barn).

For magnetic scattering the interaction operator ﬁm of the neutron with the

sample may be described by the interaction of a neutron with a magnetic field H:

A

0, =0-H= -wm\6H, (4.3)

where [i is the magnetic moment operator of the neutron, y=-1.91 the gyromagnetic
ratio, [n=0.505-10"1% erg-T-! the nuclear magneton, and & a Pauli spin operator. For a

large class of magnetic compounds the magnetic field H used in eq. (4.3) is generated
by unpaired electrons. The magnetic field due to a single electron moving with velocity

¥e 1§ given by

R R
H - curl{%} - %"iﬁlé : 4.4)

where R is the distance from the electron to the point at which the field is measured,
€=1.602-10-19 C the elementary charge, and c=3-1010 cm-s-1 the velocity of light. The
magnetic moment operator of an electron is

~

e = —2ug8, 45

where Up=0.927-10-16 erg-T-! is the Bohr magneton and § the spin operator of the
electron. The first term of eq. (4.4) arises from the spin of the electron, and the second
from its orbital motion.

The major task in the evaluation of the magnetic neutron cross-section is the
calculation of the transition matrix element in eq. (4.1). This was first done by Halpern
and Johnson [3], and more recently in many excellent text books on neutron scattering
[4,5]. For unpolarized neutrons, identical magnetic ions with localized electrons, and

spin-only scattering the following “master formula” is obtained:
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dzc

dQdw

= (1, )2 %Fz(Q)exp{ﬂ?W(Q)}Z(Saﬂ - Q(;_?Q) SaB(Q, ©) , (4.6a)
o.p

where S®B(Q,) is the magnetic scattering function:

s""(Q,m) = Zexp{iQ (R, — Rj)}z Py < ?ng?l A><A I§?I7«. >
ij AN

(4.6b)

1,=0.282-10-12 ¢m is the classical electron radius, F(Q) the dimensionless magnetic
form factor defined as the Fourier transform of the normalized spin density associated
with the magnetic ions, exp{-2W{Q)} the Debye-Waller factor, and §:1 (oe=x,y,z) the
spin operator of the itk ion at site R;. From the magnitude of r, we expect the magnetic
neutron cross section to be of the order 10-24 cm-2, i.e., similar to the size of the nuclear
Cross section.

The essential factor in eq. (4.6) is the magnetic scattering function S*(Q,w)
which will be discussed in more detail below. There are two further factors which
govemn the cross section for magnetic neutron scattering in a characteristic way: Firstly,
the magnetic form factor F(Q) which usually falls off with increasing modulus of the
scattering vector Q. Secondly, the polarization factor (SQB-QaQB/Q% tells us that
neutrons can only couple to magnetic moments or spin fluctuations perpendicular to Q
which unambiguously allows to determine moment directions or to distingnish between
different polarizations of spin fluctuations.

Eq. (4.6) strictly applies to cases where the orbital angular momentum of the
magnetic ions is either zero or quenched by the crystal field. A theoretical treatment of
the scattering by ions with unquenched orbital moment has been given by Johnston [6],
however, the calculation is complicated, and we simply quote the result for Q—0. In
this case the cross section measures the magnetisation, L=-pur(L+28S), ie., a

combination of spin and orbital moments that does not allow their separation. This
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clearly contrasts to magnetic scattering by X-rays. For magnetic neutron scattering an

approximate result can be obtained for modest values of Q. We replace the spin operator

S in eq. (4.6) by

§ = 1gi7 , @7

where

JI+D-L{L+1D+S(S+1)

= 1+
& 210 +1)

(4.8)

is the Landé splitting factor and i ‘f is an effective angular momentum operator (e.g., for

rare-earth ions J is the total angular momentum quantum number resulting from the
spin-orbit coupling which combines the spin and orbital angular momentum L and S,
respectively).

If ® is a positive quantity in the scattering function SoB(Q,m) of eq. (4.6), the
neutron loses energy in the scattering process and the system is excited from the initial
state A which has energy Aw less than the final state A'. Consider now the function
SoB(Q,-w) where  is the same positive quantity. This represents a process in which the
neutron gains energy. The transitions of the system are between the same states as for
the previous process, but now A' is the initial state and A is the final state. The
probability of the system being initially in the higher state is lower by the factor
exp{—hw / kpT} than its probability of being in the lower energy state, hence

s®Q,-0) = exp{—lf—mT} s?Q,0) , (4.9)

B

which is known as the principle of detailed balance. Eq. (4.9) has to be applied in the
analysis of experimental data taken in both energy-gain and energy-loss configurations
which correspond to the so-called Stokes and anti-Stokes processes, respectively.

Using the integral representation of the 3-function,
14



k]
E, —Et
6(?1m+E,L—E,,_.) = -ﬁt exp{i(—’T’—‘—)—

—

}exp{—i(ot}dt , (4.10)
the scattering function S®3(Q,w) (eq. 4.6) transforms into a physically transparent form:

off 1 i3 . &0 aB .
sPQw=-—3 [exp{iQ- (R, - R <$H 0% 1) >expl-iot}dt . @.11)

),j ]

<§f€(0)§£3 (1)> is the thermal average of the time-dependent spin operators. It

corresponds to the van Hove pair correlation function {7] and gives essentially the
probability that, if the magnetic moment of the itk ion at site R; has some specified
(vector) value at time zero, then the moment of the jth ion at site R; has some other
specified value at time t. A neutron scattering experiment measures the Fourier
transform of the pair correlation function in space and time, which is clearly just what is
needed to describe a magnetic System on an atomic scale.

The van Hove representation of the cross section in terms of pair correlation

functions is related to the fluctuation-dissipation theorem [4,5,8]:

-1
5*Q,0) = % (l—exp{—:—(’;}) mx*(Q,a), (4.12)

where N is the total number of magnetic ions. Physically speaking, the neutron may be
considered as a magnetic probe which effectively establishes a frequency- and wave
vector-dependent magnetic field, HA(Q,w), in the scattering sample, and detects its

response, M*(Q,w), to this field by

M*(Qo) = x*(QuH (Qo), @.13)
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where x®P(Q,m) is the generalized magnetic susceptibility tensor. This is really the
outstanding property of the neutron in a magnetic scattering measurement, and no other
experimental technique is able to provide such detailed microscopic information about

magnetic compounds.

5. Elastic Magnetic Neutron Scattering

5.1. Magnetic Structure Determination

We start from the master formula (4.6). For elastic scattering we have [A>=IA">, so that
the matrix elements in eq. (4.6b) can be replaced by their expectation values. With

=R, -R, and by integration with respect to @ we obtain

% (e EB[% _ Qan) F(Q) )%eié.z(ggxgg) . (5.1)

5.1.1. Paramagnets

For paramagnetic systems there is no correlation between the spins at sites 0 and 7, thus

we have for £ #0

(Ss)(88)=0 . (5.2)
Therefore we have to consider only the case £ =0. We find

<82 >< 8 >=3,4 < S >< 8% >= Byp < 3y >=18,4 < §>2= 38,pS(S+1)

and (5.3)
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ou ) 53

o,fB o
thus the final cross section reads

do

d

WM

N(, )2 e *VE? (Q)S(S +1) - (5.4)

5.1.2. Ferromagnets

A ferromagnet consists of domains with uniformly arranged spins, but the spin
directions in each domain are different. Let us consider a single domain in which the

spins are oriented along the z axis. Then
(8)=(81)=0; (8:)=0. (5.5)

For a Bravais ferromagnet we can skip the index ¢ and find from egs. (5.1) and (5.5)

d - = z : Qz Q-2
o =m)e ZWFZ(Q)(I—(%J J(s )deQ' . (5.6)

Herein the lattice sum can be expressed as
A7 3 — -
T = BUw80-1, (5.7
¢ T

where v, is the volume of the unit cell and 7 a reciprocal lattice vector. By defining € as

the unit vector along the magnetisation direction z we can mudify eq. (5.6) by
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and arrive at the final formula for the cross section:

3 ~ N2
:—g=N%(m)ze-zwm(é}(gzy%(l_(r-e) >5(Q-%) : (5.9)

The { ) brackets denote the average over all the domain orientations which for an

arbitrary distribution of domain orientations reduces to

(5.10)

———
|
|
——
M
< Icin
o
(]
v
Il
W

Equation (5.10) also holds if for symmetry reasons only a few domain orientations are
possible, e.g., (100), (010), and (001) in systems of cubic symmetry.

Eq. (5.9) shows that ferromagnetic Bragg scattering occurs at all the reciprocal
lattice vectors, thus it is often difficult to separate the ferromagnetic from the nuclear
Bragg scattering. A discrimination between the two scattering contributions can be
achieved by considering the essential factors in eq. (5.9):

* The magnetic Bragg scattering is proportional to the square of the zero-field
magnetisation, < §? >2, which exhibits a strong temperature dependence, particularly

when approaching the Curie temperature.
* The Q-dependence of the magnetic scattering follows the square of the magnetic
form factor, F*(Q), which decreases rapidly with increasing modulus of Q

+ The magnetic scattering depends on the orientation of <S$?> relative to the

reciprocal lattice vector 7.

Furthermore, by applying an external magnetic field along Q the spins will align along

that direction (for sufficiently large fields), so that ‘—f =1, thus the magnetic scattering

vanishes, The difference of two measurements (with and without external field) yields
therefore directly the magnetic scattering contributions. The most elegant method for

18



discrimination, however, involves the use of polarised neutrons, see lecture by F.

Tasset.
5.1.3. Antiferromagnets

In antiferromagnets the domains consist of two sublattices A und B with antiparallel
spin alignment, thus < $? >=0 in each domain. One therefore defines < §* > as the so-
caired staggered spin, i.e., the zero-field magnetisation in each of the two sublattices A
and B. For the calculation of the cross section we start from eq. (5.6) by defining a new

magnetic unit cell (with volume v,,) which is the unit cell of the sublattice A (including

the spin of the sublattice B at site d):

2
do _ 2 = Q o\l i 7 iQd
sotwremelaf(QfJoT gt o

Gy = +1 for an ion in sublattice A and o4 = —1 for an ion in sublattice B. By using eq.

(5.7) we find the final cross-section formula:

3
g% =Np (i”) (yro)Ze—zw EE|Fm(:f,,,)|2<1 — (T 5)2)5(() - ifm) (5.12a)

with the magnetic structure factor

Fol(tm) = (8 )F(in) S 04e™ . (5.12b)
d

m

1,, denotes a magnetic reciprocal lattice vector.

Let us consider as an example the antiferromagnet KMnF, (T,=83K). The
chemical lattice has simple cubic symmetry (see Fig 5.1), thus the reciprocal lattice has
also simple cubic symmetry, and the reciprocal lattice vectors are defined by
T=2E(t,,1,,t;), with integer numbers ;. The magnetic lattice, however, is face-
centered cubic, thus the magnetic reciprocal lattice has body-centered cubic symmetry.
According to Fig. 5.1 the magnetic reciprocal lattice vectors are defined by

T =28, L, t) or T =2E( +4, t,+4, t3+4). From eq. (5.12) we find:

i9



cheﬁ'"'d =0 for T, = za—n(tl,tz,t;;) ,
d

=2 for %, =2—(t1+ Sty + 4, l3+%)

We arrive at the important result that nuclear and magnetic Bragg scattering occurs at
different points in the reciprocal lattice. This is visualised in Fig. 5.2 for the neutron
diffraction pattern taken for KMnF, at T=4.2 K.

" m {1

1 »fer Il
Fig. 5.1  (a) Structure of KMnF, (b) Chemical reciprocal lattice (all Mn ions are identical). (c) Magnetic
reciprocal lattice,
s 1915
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Fig. 5.2: Neutron diffraction pattern of I(MnF3 at 4.2 K [V. Scatturin et al., Acta Cryst. 14, 19 (1961)].

The numbers by the peaks are the coordinates in reciprocal space multiplied by 2. A trio of odd
numbers represents a magnetic peak, a trio of even numbers a nuclear peak.

5.1.4. Helical Spin Structures (Magnetic Spiral Structures)

Let us consider the magnetic spiral structure of Au,Mn (magnetic ordering temperature

= 363 K) as shown in Fig. 5.3. The Mn ions form a body-centered letragonal lattice.
20



Within a plane perpendicular to the z axis all the moments are ferromagnetically
aligned, but the moment direction turns by an angle ¢ between adjacent planes. We
define a spiral vector P as follows: P is a vector along the z axis; its length equals %—
times the distance d between adjacent planes. The expectation values of the spin

operators are then given by

<8} >=<S§> cos(P*-7),
. 2 L. (5.13)
<S8} >=<S>sin(P*.4),

<8 >=0,
with P* =2Z Inserting in eq. (5.1) yields

o
S

F3

b
—

‘\*x

L

Fig. 5.3: Structure of Au,Mn (only the Mn ions are shown).

- = fay 2 2 1 x P A~ B
%z(?’fo)zc‘szz(Q)%(:‘Q"(S) {1-(%‘] )cos(f’ £)- QQ?” sin(P -f)} - G19
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¥, . . . . D B .
Since P is not a reciprocal lattice vector, the summation over sin(P *-£) vanishes. We

express cos(P *-#) by an exponential;

o =
L]
2
E}
g
2  sool
5
£
o
n
Scaltcring anple degree
LN thy

0

002" N
2,
Y S W

Fig. 5.4: Neutron diffraction pattern taken for Au,Mn [A. Herpin et al., Comptes Rendus 249, 1334
(1959} (a) T=293 K. (b) Difference of spectra taken at 293 K and 423 K.

The assumptions of eq. (5.13) were somehow special in the sense that we confined the

moment direction to the x axis in the basal plane. We could as well start with the

22



moment direction along the y axis, which would change the polarisation factor in eq.

2 2
(5.16) from [I - (%L) ] to [1 - (%L) ] Taking the average yields the final cross section

do
dQ

@n)’

= MO (o, )ze-szz(Q)(§>2(1 + (%-)z)%:{a(d P-4 8Q-F-3)}.

We realise that magnetic Bragg scattering occurs for Q = T+ B”, i.., each nuclear
Bragg reflection is flanked by a pair of magnetic satellites. This is visualised in Fig. 5.4
for AuMn.

5.1.5. The Magnetic Ordering Wavevector

Besides the examples treated above there is a myriad of other magneltic structure types.

It is convenient to characterise them by the magnetic ordering wave-vector §, which is

defined by the relation
i, =[i,cos(d, R,), (5.18)
ie., q, describes properly the mutual orientation of the magnetic moments at sites 0

und R;. For instance, for the antiferromagnet KMnF; described in Chapter 5.1.3 we

=~ _ 2 1 1 1
have q, -——(7,7,5).

a

5.1.6. Zero-Field Magnetisation

An inherent factor in all the cross-section formulae derived above is the square of the

expectation value of the spin operator S, see eq. (5.9) for the ferromagnet, eq. (5.12) for
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the antiferromagnet, and eq. (5.17) for the spiral structure. The expectation value of the

spin operator S is directly related to the magnetic moment fi:

~
5

HL=guy <S>, (5.19)

where g denotes the Landé-factor and yty the Bohr magneton. This means that the
magnetic moment can be determined directly by neutron diffraction without the need to
apply an external magnetic field (as in conventional magnetisation experiments). This
property, namely the ability to measure the magnetisation without a disturbing magnetic

field (therefore the term “zero-field magnetisation™), is unique for neutron scattering.
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\\
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{
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1
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Fig.5.5. Zero-ficld magnetisation of the Dy** ions in DyBa,Cu,0, [Allenspach et al., Phys. Rev. B 39,
2226 (1989)].
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5.2. Vortices in Type-1I Superconductors

A flux-line lattice forms inside a type-I! superconductor when the applied field H is
sufficient to cause vortices to enter (>H,,) but insufficient to destroy superconductivity
altogether (<H,,). According to Abrikosov [9] the flux lines are oriented parallel to the
applied field and form a two-dimensional lattice. The Bragg d-spacing of a flux-line
lattice is given by the condition that there is one flux quantum & =2.07x10""* Wb per

unit cell, and hence

d=,d, /B (5.20)
for a square lattice and

d =+/v3d_ /2B (5.21)

for a triangular lattice. For B=0.2 T this gives d~1000 A, and with an incident neutron
wavelength A=10 A we have a Bragg angle 26~0.5". This means that the small angle
neutron scattering (SANS) technique has to be applied.

The diffraction of neutrons by flux lines occurs essentially by the same principles
as discussed in Chapter 5.1. The neutron cross-section is proportional to the square of
the form factor F,, which is the Fourier transform of the flux-line distribution h(t) in

the sample:
Fo = 2= Jh(f)e™ a7 . (5.22)

For more detailed information on SANS experiments of flux-line lattices in type-I1
superconductors we refer to a recent review article by E.M. Forgan [10]. Figs (5.6) and

(5.7) exemplify the procedure for the determination of the flux-line lattice in Nb.
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Fig. 5.6: Left hand side: Geometry of the scattering process for neutron diffraction from a triangular
flux-line lattice. E denotes the Ewald sphere, Right hand side: Neutron diffraction pattern
observed for the dy, reflections in Nb [Lippmann et al,, J. Appl, Cryst. 7, 236 (1974)].
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Fig. 5.7: Left hand side: Form factors observed for the flux-line lattice in Nb. Right hand side: Flux-line
distribution h(r) in Nb determined by a Fourier transformation of the measured form factors
[Schelten et al., Z. Phys. 253, 219(1972)].
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6. Inelastic Magnetic Neutron Scattering
6.1. Single-Ion Crystal-Field Excitations

If the coupling between the magnetic ions is weak, we are left with a single-ion
problem, thus the excitation energies will be independent of the scattering vector Q.
Typical examples are rare-earth compounds which exhibit very low magnetic ordering
temperatures or do not order at all. In this case the dominant mechanism is the crystal-
field interaction.

The effect of the crystal field on a rare-earth ion is to partially or totally remove
the (2J+1)-fold degeneracy of the ground-state J-multiplet. This is exemplified at the top
of Fig. 6.1 for Pr3+ ions in the hexagonal compound PrBrs.! The crystal-field levels are

denoted by the irreducible representations Iy, and the corresponding wave functions are

J
r,> = 3 a,M) IM> 6.1)

M=-~]

From the sequence of the energy levels, properly identified by their irreducible

representations I'y, the crystal-field potential can be unambiguously determined.

In evaluating the cross-section for the crystal-field transition I'y—T'ym we start
from the scattering law S®B(Q,w) defined by eq. (4.6). Since we are dealing with single-
1on excitations, we have i=j. For N identical magnetic ions we can even drop the index i.

SB(Q,w) then reduces to
s®@ = N pr, <T, 3, ><T,, I T, > 8o +Ep, - Er )., (62)
where N is the total number of magnetic ions and Pr,, the Boltzmann population factor.

From the symmetry relations associated with the matrix elements we find the cross

section
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=N (%g‘vro)z % F?(Q) exp{~2W(Q)} Pr,
(6.3)

2(1—-Qaz}t<r 134T, > 8(hw+Er —Er )
Q2 m n L |

The polarization factor permits discrimination between transverse (0=x,y) and longi-
tudinal (ot=z) crystal-field transitions by measuring at different Q. This is nicely
demonstrated in Fig. 6.1. E.g., for Qllc only transverse transitions are observed, whereas
for QLc the transverse transitions lose half their intensities, and in addition longitudinal
transitions appear. The lines in Fig. 6.1 were calculated without any disposable

parameters, i.e., the intensities of the crystal-field transitions are excellently described
by eq. (6.3).

rsalﬂ r4 I—:Z‘r! r'
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Fig.6.1: Energy spectra of neutrons scattered from single-crystalline PrBry at T=1.5 K for Q paraliel

and perpendicular to the c-axis [Schmid et al., J. Appl. Phys. 61, 3426 (1987)). The resulting
crysial-field level scheme and the observed transverse (t) and longitudinal (1) ground-state
transitions are indicated at the top.
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For experiments on polycrystalline material eq. (6.3) has to be averaged in Q
space:

dzco

dQdow

=N (%gyro)”% FX(Q) exp{-2W(Q)} pr. I< Told,IT, >
8(hw+Er_ ~Ep.) ,

(6.4)

where J1=J-(J-Q) Q/Q? is the component of the total angular momentum perpendicular

to the scattering vector Q, and

<L 13,17, > = §2|< r i, s” . (6.5)

6.2. Magnetic Cluster Excitations

The simplest magnetic cluster system is the dimer (two coupled spins S; and S») for

which the Heisenberg Hamiltonian is defined by

H =-278,-S,, (6.6)
where J is the exchange integral. # commutes with the total spin $=81+8,, thus Sisa
good quantum number. The wave functions of the dimer states are of the form ISM>.
Assuming identical magnetic ions (S1=S7) the eigenvalues of eq. (6.6) are

E

s = —J [SS+1D)-2S(S;+1)] , 0828, . (6.7)

The energy-level sequence of an antiferromagnetically coupled pair of ions with half-

integer spin quantum number S; is indicated at the right hand side of Fig. 6.2.
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The calculation of the cross section for dimer excitations starts from eq. (4.6). For

the evaluation of the matrix elements we replace the spin operators §:1 by irreducible

tensor operators 'i"? of rank 1:

x A

L fax , .
=8, 1 =¢—ﬁ(sit1§). (6.8)

The M dependence of the matrix elements is given by the Wigner-Eckart theorem:

S

MITISM> = (-1 M
<SMIT!ISM> (-D [—M‘

S .
sitiss ,
M)< i

. S 1 .
<SETIS> = (- J28+ DS +1) {s S s }<S1 TS, >, 6.9
1 1 1
<SIT, N8> = ()5S <SIT US>,

<S TS, > = JS,5,+D@S, +D .

From the symmetry properties of the 3j- and 6j-symbols in eq. (6.9) the selection rules
AS = S-§ = 0,x1; AM = M-M = 0,t1 (6.10)
are derived. Thus inelastic transitions are only possible between adjacent energy levels

(this follows immediately from eq. 6.7). Since each energy level is (28+1)-fold

degenerate, we can sum over the quantum numbers M and M':

Y <SMITHS M ><SMITISM > = §<S||Ti||s'><swri"jns> : (6.11)
MM

Furthermore, we make use of the symmetry relations associated with the matrix

elements defined by eq. (6.9). We then find the following cross section for the dimer

transition [S > |S'>:
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: K
k

2
= N (,) F(Q) exp{-2W(Q)} p, Z [1“ ?;2 ]

a

6.12)
-i- [1+ D% cos@ R 1< SUT S > 8(hw+E, ~E, ) .

where N is the total number of dimers, ps the Boltzmann population factor, and R the
intradimer separation. The structure factor [1+(-1)AScos(Q-R)] is a powerful means to
unambiguously identify dimer excitations from other scattering contributions due to its
characteristic oscillating behaviour. This is nicely demonstrated in Fig. 6.2 by the Q
dependence of the magnetic excitations of Mn2+ pairs (with Rlic) introduced into a
single crystal of CsMgBr3. From the cross section (6.12) we calculate the intensity
ratios of the transitions 0 =21/152/2—3 to be 1.0 / 0.9 / 0.3, in excellent
agreement with the observations (see Fig. 6.2). The exchange coupling J between the
Mn?+ ions (with S$i=5/2) is directly related to the energies of the observed dimer

transitions, see eq. (6.7).
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Fig. 6.2: Energy spectra of neutrons scattered from Mn2+ pairs in CsMng 2gMgp 72Br3 at T=30 K [Falk
et al,, Phys. Rev. Leu, 52, 1336 (1984)]. Full circles: Q=(0,0,1); open circles: Q=(0,0,2).

For polycrystalline material eq. (6.12) has to be averaged in Q space:
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d k'

, F*(Q) exp{-2W(Q)} p,

) (6.13)
%[1 +(-* 5%9;{—)] I<SIT,IS > 8(hw+E, -E,) .
6.3. Spin Waves
For an extended system the Heisenberg Hamiltonian (eq. 6.6) is written
Ho=-237;8§. (6.14)

i>j

The exchange coupling Jj; forces the spins to be perfectly aligned (along the
quantization axis z) at zero temperature. At finite temperatures spin deviations occur
which propagate through the lattice giving rise to spin waves. The spin-wave dispersion
is given by

ho(q) = 28 [7(0) - I(q)] (6.15)

with the Fourier transformed exchange function

J@) = Y J; expfig- (R, -Rp}. (6.16)
ij
The operators affecting the spin deviation of the itk atom (at site R;) are defined by

Si = 1,% > exp{ilq-R, —a(q)]} 4, ,
q

o ZS . ~t

S, = \fﬁ > exp{-i[q- R, — (@]} a5 . (6.17)
q

§X) = SH% Zexp{—[(q)“q')'Ri“(CU(‘I)-((D((l' ))t]} ﬁ;ﬁq :
a.q
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where

a . oat _

aglng > = an Ing —1> dqlng> = ng+1 Ing +1> (6.18)
are annihilation and creation operators first introduced into spin-wave theory by
Holstein and Primakoff [11]. With <&gd, >=<ng >, <4.d; >=<n,+1> and the

definitions

= -E"+8); 7= -2@8-%) (6.19)

we calculate the spin correlation functions < §fx (0)§?(t) > ofeq. (4.11) to be

aX ax S .
<STO8w> = - % [exp{-i[a- (R; ~R) - (@]} <ng +15
+ expiiq (R, —R,)—a(q)t{;<ng>] ,
- ) {[ J Jj<n (6.20)
<S/OS{()> = <SOS[v)>,
<§O8W> = -2 Yan, >,
N 4
where <ng> is the Bose-Einstein occupation number:
pa@) T
- g
<ng> = [exp{k—B-_F}—l} . (6.2

For the calculation of the neutron cross-section for spin-wave scattering we insert
eq. (6.20) into the “master formula” (eqgs. 4.6 and 4.11). We can drop the term o=P=z

which is time-independent, i.e., it describes the elastic magnetic scattering. Moreover,

since < S (0)§§(t) >=—< 8§ (O)§}‘ (1) >, we are left with the terms a=f=x and o=p=y:
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d20' 2 S k'
= - -R.
oae = (M) 71— kF 2(Qexp{ 2W(Q)}(1+Q )Zexp{lQ (R, -R;)}

T Y [exp{-i[q (R, ~R;)— m(q)t]} <ng+1> (6.22)

— q

+ exp{i[q~(Ri -R;)- m(q)t]} <ng >] exp{-iwt} dt .

Using the relation for the lattice sum,

3
> exp {iQ-(R,-R)} = &D

i>j o

Y Q-1 (6.23)
T

where v, is the volume of the unit cell, and the integral representation of the d-function
(see eq. 4.10) we arrive at the final formula:

d’s  _ (.} @eny’s k¥

dQdw ° 2v, k

Y [<ng+1> 3(Q-q-1) d{hn(g)- A} (6.24)

T.q

+ <ng> d(Q+q-1) S{rw(q)+in}] .

Qz
F? (Q) exp{-2W(Q)} (l+Q )

The cross section (6.24) is the sum of two terms, the first corresponding to the creation
and the second to the annihilation of a spin wave. We recognize that the two §-functions
in the cross section describe the momentum and energy conservation of the neutron
scattering process according to eqgs. (3.1) and (3.2), respectively.

Let us consider as an example the spin waves in the antiferromagnet
YBa,Cu,0Og 5, the parent compound of the T.=90 K superconductor YBa,Cu,0,. In this
structure the spin waves propagate within two coupled CuQ, planes. The Heisenberg

Hamiltonian reads
H = 2 gi"gj + XJ §i-§k , (6.25)
ij ik
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Fig.6.3: Left hand side: Energy spectra of neutrons scattered from YBa,CuyOg,5 [Hayden et al., Phys.
Rev. B 54, R6905 (1996)]. Right hand side: Resulting spin-wave dispersion.

where the first term denotes the intraplanar, the second term the interplanar exchange
coupling between nearest-neighbour Cu spins. We have (wo spin-wave dispersion

branches, since there are two Cu ions per unit cell:

_ 41 1/2
r(Q) = 2),[1 - vX(Q) + 2J" 1+ vy Q) (6.26)

with ¥(Q) = 1[cos(aQ,) + cos(aQ, )]

Herein the the + sign denotes the acoustic, the — sign the optic spin-wave branch.

a=3.855 A is the lallice parameter along the x and y axes. For instance, at the
antiferromagnetic zone center Q=(2n/a, 2n/a, Q,) the optic spin-wave branch
cxhibils a gap of energy hw, = 24/J,J, . By applying eq. (6.22) we can differentiate
between acoustic and optic spin waves (sce Fig. 6.3):
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i X

—

d’c d’c .
(dﬂdmlc = cosz(%—AzQz) ; [dﬂdmlp = smz(%AzQz) X (6.27)

Az=3.2 A is the distance between the two CuQ, planes. Obviously we can only observe

acoustic spin waves for Q,c/2r=1.8, 5.5, ..., and optic spin waves for Q,c/2r=3.7, 7.3,

... (c=11.8 A is the lattice parameter along the z axis).
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