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1- Introduction:

Ever since the pioneering experiment of Shull and Smart on MnO[l] the spin
configuration of the magnetically ordered condensed state has traditionally been
determined using unpolarized neutron diffraction intensities. Often the sample studied
is polycrystalline and although the technique works remarkably well for collinear spin
structures, it often fails for a more complicated spin configuration, for example, non
collinear, incommensurate helimagnetic structure. For such structures even a neutron
diffraction investigation on good-quality single crystals may not yield a unique
solution. For high-symmetry crystal structures the existence of several magnetic
domains adds further uncertainty. Even traditional polarized ncutron diffraction
methods with one-dimensional polarization analysis on single crystals may fail to give
a unique spin configuration. [2]

In that context , the second part of this lecture aims at introducing a powerful
novel technique, Spherical Neutron Polarimetry {SNP}, which is often able to
determine unambiguously the spin configuration of incommensurate modulated
magnetic structures and commensurate antiferromagnetic structures like triangular
ones. It was also used very recently for high precision measurement of antiferro-
magnetic form factor. All that rely on our ability to measure the transverse
components of the final polarisation vector using Cryopad, a zero-field neutron
polarimeter developed at ILL [3, 4]. Cryopad-1II is presently used for more difficult
but highly interesting inelastic measurements of mixed magnetic —nuclear pair
correlation functions in low dimension magnetic systems [5].
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1.1-Various examples of ordered magnetic Structures
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Fig I(a-g) :Various examples of ordered magnetic structures
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1.2- The crystalline Bravais laftice:
The invariant nuclear crystal lattice translations are given using the direct Bravais
lattice:

f=n1&+n25+ngé' (1.1)
nl, n2, n3 being integer numbers.

The position coordinates for an arbitrary atom in the unit cell reads
R =l+T, 1.2)

with r= xjfi+yfb +z,¢ (13)

X, ¥, z being less than unity.
A dual vectorial space is defined which is called reciprocal space

i =25 Az (1.4)
Vo

b =znz (1.5)
Vo

o L -

& =Zanb (1.6)
V,

in which vectors are defined which connect the origin to a given node in reciprocal
space

T=hd +kb' +1¢ (1.7

when h, k, | are integer numbers
or a point in the 1* Brillouin zone

K =kd +kb +kE (1.8)
when k|, k2, k3 are less than unity.
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1.3- Mathematical Crystallography

The mathematical operations which are necessary when describing the magnetic
structures, their stability, and the corresponding neutron cross-sections are

summarized in the following tables:

Table 1: Periodic density in direct space:

Direct Space

Reciprocal Space

For a periodic crystal

p(F +1)=p(F) (1.9)

The Fourier transform of p(r) is discrete, it

has non zero coefficients only at reciprocal
lattice nodes

F(k) = [p(Pe¥d’F  (1.10)
Table 2: Arbitrary distribution at nodes of reciprocal space:
Reciprocal Space Direct Space
For an arbitrary distribution of amplitudes the inverse Fourier transform
F(k) at nodes in reciprocal space p(F)= Y F( e ™
k (1.11}

gives a continuous and periodic function in
direct space

p(F +1) =p(F) (1.12)

It is therefore possible to demonstrate the following theorem:
The reciprocal lattice of the reciprocal latrice is the direct lattice.

Table 3: From direct lattice nodes to reciprocal lattice:

Direct lattice

Reciprocal Space

For an arbitrary amplitudes distribution at
real lattice nodes m(l)
The inverse Fourier transform of

m(l) :fp(l?)e"ﬁd% (1.13)

The Fourier transform

oty =¥ m()e™ (1.14)
I

is a pericdic and continuous function in
reciprocal space

p(k +K)=p(k) (1.15)

Generalization: Instead of dealing with a scalar distribution m, we begin with a vector
distribution 7 . In addition we consider the case of several interpenetrating Bravais lattices

identified with index j

Table 4: Vectorial generalization

m)=[p, e dk  (116)

EB)=Ym @)™
i

Integration is in the first Brillouin zone only

In this way we can decompose an arbitrary distribution of magnetic moments m ;na

crystal.
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1.4- The stability of magnetic structures
The interactions between the magnetic moments are described using the following
Hamiltonian:

H=—Y,Jy iy, (1.18)
L
)

When we cool the sample, the magnetic moments 7, get eventually ordered;
The solutions m, must leave the Hamiltonian invariant by lattice translations.
The general solution is:

sy = B, (k)e ™ d’k (1.19)

where k is restricted to the first Brillouin zone.

Due to minimization in the magnetic energy for the system,

1) one % vector is more favorable than others, the system will choose this ground
state:

~F il
J

¢ (20)

mu =

in case there is several vectors k equivalent by symmetry it can choose to rest in a
multi £ configuration
fiyy = Ymge (1.21)

staref k

2)may be one k vector and its harmonics are favorable
m, = e (1.22)

7
harmongcs

and in case we have a star of equivalent k vectors we can have the crossed harmonics
which are sometimes called intermodulations.

1.5- Direct space representation

For sake of simplification we are going to suppose that we have a single atom per unit
cell. This means that we have only one lattice, j=1.

- —~& —ikl

m=) me

k (1.23)
kI =2n(nk, + nk, +nk;) (1.24)

We must distinguish 2 cases, ki isa multiple of T, kI isnot a multiple of ™

We must note that #, is real. If k! isnot a multiple of 7 then for all k we have to

associate —k which is not equivalent through lattice translation. Knowing that
— -k

=ty (1.25)

then m,, =% ‘e  + (Y e™) = dacostki+ @) (1.26)
k




Joint ICTP-INFM School
1-11 February, 2000 Trieste, Italy

cal G P

Tt

»

x+'

v c‘@‘
’ S|P

o-ka o-2ika o-3ika
l l I | J

lattice lattice lattice lattice

magnetic moments contained in planes perpendicular to kare parrallel
Fig. 2 : magnetic moments contained in planes perpendicular to k are parallel

1.6- Looking for the propagation vector

Magnetic reflections are generally observed by comparison of powder diagrams
obtained above and below the magnetic ordering temperature. They tell us about the
length of O =T & k

The intuitive identification can be made when the modulus of k is small (long
wavelength modulation) and the powder diagram is not too crowded with peaks
(highly symmetrical space group). The satellites appear as being attached to a
reciprocal lattice vector and we shall speak, for example, of the satellites at the origin
which give intense lines at small scattering angles.

In that circumstance it is possible to use a simple graphical technique as illustrated
in the following figure. The circles drawn having a radius

47sin O,
A (1.27)
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The most effective method is to enter in a computer programme a list of measured
lengths Q as well as the reciprocal lattice description for a systematic search of all the

k vectors which are satisfactory. The Brillouin zone is sliced into a fine grid of k and
ém,l and

for each © we calculate all the O =T * k. Then a comparison is made of
H tAH,

40

T:34 K r2.48 4

Car
(]
T

5 =z =
—
%

£

Neutron counta{x103)

ay wn
33

Fig. 4 : Propagation vector for TbRu,Si,

As an example, TbRu,Si, crystallizes in a quadratic structure with I4/mmm space
group. Neutron Powder diagrams a) have been recorded at 2 temperatures on both
sides of the transition TN=55K The reciprocal lattice and the related Brillouin zones

are shown in b). We can see that the magnetic order correspond to k=<0.232,0,0>

10
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2- Essential Neutron scattering

When a neutron meets a magnetic atom it experiences two scattering potentials:
1) a nuclear scattering which reveals the existence and nature of the nucleus
2) a magnetic scattering, arising principally from unpaired electrons.

2.1 Coherent Nuclear scattering
The nuclear scattering interaction operator for atom j reads:

fj is the nuclear spin vector operator. At room temperature the nuclear spin angular

momentum is randomly oriented and the mean, coherent part, which is of interest here
averages to zero. We shall therefore assume in the following a,, = b, which we will

call the scattering length or Fermi length. It is often expressed in 10~12cm.

The coherent nuclear cross-section for all the atoms in the crystal is
2

do iR, (2r) - -
—| =IY peM| = N M|F -
(dQJN E,J: e =N 2' M80-7)
(2.2)
With
Fyo@=Ybe%e™
: (2.3)

N.B. it is important to realize that Ajc_)". 1 ; 1s not the magnetic interaction we are interested in,

it is the spin dependent part of the strong nuclear force which is responsible for the neutron-
nuciear interaction.

2.2 Magnetic scatte:;ing amplitude:

ay, = p3.M,, (0) 24)
2
p=—to =Y 02696 10cm
Zme 2
(2.5)

M (é is the Fourier component of the magnetization density 11_/}(?) at scattering vector Q
and M i (é) is the projection of M( é) on the plane perpendicular to the scattering vector

o

Fig. 5: The projection due to dipolar interaction (Fourier space)

11
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It can be shown that
M, =0AMAQ)=M-QXM.Q)

(2.6)
Q = unit vector = ﬁ
and M(Q)=m, f(Q) (2.8)
2.3 The two main scattering cross sections for neutrons
nuclear magnetic
do iOR. [ dc) Ok,
=2 = b Ui —_— — ] Y
(a’Q)N Z, i [ 0), |2
(2.9) (2.10)
am_,-(Q)*_"Pf(Q)a'-ﬁ’yJ. (2.11)
iy, = 3 oe ™
L (2.12)

(d—") N SR s G- ["—") =(2")3N§Z|Fm(é>f6(é—1€—%)

dQ v, < daQ/y v,
(2.13) (2.14)
Fy(@) = Zf_lb,e@’e_w" @15) | Fu( D= ij_l £ @™ (2.16)

Fuu=0AFyn0)=Fy-0F00) (519,

Ful =B ~QFIOF) 1

Ne e Do —

L
L
» |

é:f ézf'i‘j(-

Table 5: Scattering cross sections and graphs

12
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2.4 Various kind of magnetic cross-sections

k = 0 ferromagnetism (ferri-antiferro)

[j_g)M = Z|IT’ML(Q)|25(Q— 7) (2.19)

k=kd +kp +kE sinusoidal
modulation or helix. To each & is
associated —k

k=0=T+k
k= Q=%—k
~
-~
—_ ’7L’7 ﬁ,
k with harmonics -
A
‘L/f‘ﬁ’
A
/’_'_,—"/.;_
~ 1_. | r,fo/‘“
k==a -
2 /me
multi-k

Table 6: Cross sections and graphs in reciprocal space

I3
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2.5 Instrumentation

2.5.1- Two axis diffractometer for powder neutron scattering
Source Monochromateur

PBétecteur(1600)
A=160degres
50,1 degre

Le Diffractométre a poudre D20 de 11LL
(d'aprésP.Convert)

Fig. 6: The high flux large position sensitive detector powder diffractometer D20 at
ILL

Fig. 7: Debye Scherrer cones (side view)

_ (B N__ ¥ Iy e
e = A 20)2,-: HB) = I:iEdQ - v, 87 sinf sin20 rz |F |A (2.20)

the Lorentz factor is —————
sinQ sin2 6

resulting from the product of the probability for a crystallite to be oriented in the

appropriate direction sin(% - 8)=cos0

(the detector being

times the portion of the cone intercepted by the detector.
rsin

at distance r, correspond to a section p = rsin0)

14
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2.5.2- Single crystal diffractometer

2.5.2.1- 1* method, the classical 4 circles one:

by using a 4 circles diffractometer, the reciprocal vector T is made to cross the Ewald
sphere in the horizontal plane. The scattering plane is horizontal and the detector set
in the appropriate Bragg angle. Recently small position satellites have been
introduced.

rails for
28 counter
table

Usual names for the 4 circles

® crystal
X crystal
¢ crystal
v or 20 detector

Fig. 8: Four Circles Diffractometer

Fig. 9: Integrated intensities are measured in the horizontal plane by rotating the
crystal. The reciprocal lattice node goes through the Ewald Sphere.

15
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By rotating the crystal with the angle ®, one makes T to cross the Ewald sphere
A neutron reflection is obtained which is being integrated in the detector.

800 -

600

JHw

400

200 -

o —— —

Fig. 10: Histogram of the number of neutron detected during the step rotation (i.e a
neutron scan)

i [0 N K
o = M) Y10 = [Gade = T ool @21)

the Lorentz factor is

sin2 6

2.5.2.2- The normal beam method with tilting detector

Alternative Geometry with a tilting detector which is better suited when using large cryostats
like superconducting magnets (see D3 description section 4.2)

/
Vi
The 3 normal beam angles
W crystal
Y detector
v detector lift

Fig. 11: Integrated intensities are measured outside the horizontal plane by rotating
the crystal on a vertical axis . Here the reciprocal lattice node goes through the
Ewald Sphere in the north hemisphere and the detector has to be lifted to collect the
Scattered neutrons.

16
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By rotating the crystal around the vertical axis with angle w, T crosses the Ewald
sphere. Except for the horizontal reciprocal “zero-layer” the Bragg reflection is not in
the horizontal plane. The detector is tilted in order to collect the scattered neutrons.

3
L, =AY, J(®,) = [~=dQ = N_4

ds —— |4
ds2 v, siny sinv

(2.22)

in that case the Lorentz factor is — -
siny sinv

2.5.3 Investigating the magnetic moments, size and direction

Due to the dipolar nature of the magnetic neutron interaction, the scattering amplitude
has 3 components transforming as a vector. We shall call it the magnetic interaction

vector M = pF,, .

-
PFM(Q)

>

oY

Fig. 12: The magnétic interaction vector
We note that
| = msino

(2.23)
= 3 =k il
Fou Q)= Xp,f/Q) mjye™
and that Y (2.24)
It is interesting to note that for a magnetic reflection on a collinear magnetic structure
such as m /Q .o =0, the magnetic interaction vector is zero due to all rr”:beeing
zero. Reciprocally knowing the magnetic interaction vector for a single reflection

17
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does not tell anything about the component along ¢ of the magnetic Fourier
structure factor {only 2 out of 3 components are seen by the neutron).

VT A
s ¢ & ¢

Fig. 13: Cancellation of magnetic scattering can result from the dipolar interaction

Possible indetermination of the Magnetic moments directions.

Suppose that the structure is collinear and that we are looking at the direction of
magnetic moments on the basis of intensities in a powder diagram.

> xp,f (Qfmle™
! (2.25)
The intensity at a given peak results from all reflections having the same Q length

since they arrive in the detector at the same angle 20 . All those reflections may or
may not have the same structure factor

> p, £, @il
J (2.26)
but they have different sinc (Ie. different magnetic interaction vectors). Therefore
2z
T Yapfsin’a) ¥ 1p, £l
d . (2.27)

Qnonequivalent
Shirane has shown that, for cubic symmetry, (sin2 OL) =2 /3 independent of the
moment direction and for uniaxial symmetry the intensity depends on 0 but not on ¢.

[F . (@) = sincx

Fig. 14: Definition of the polar angles relative to a symmetry axis

18
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2.5.4 Magnetic domains

2.5.4.1- K Domains

When ordering magnetically, the system choose the K vector which minimize the
energy. But several K might be equivalent due to the symmetry of the crystal. One
part of the crystal will choose k, and other parts k,, ks, etc. The famous example of
MnO with its 4 ternary cubic directions is shown here:

k3 k2
[
|
@O Mn <
® (7] z
Fig. 15: The 4 k domains in MnO
. 111 - 111 - 171 =~ 111
k =< oa ky = s k3= o k =TT
1=G3 2); 2=(33 2); 3=G 2); 4=(337 (2.28).

Those different directions can be distinct in reciprocal space or be superposed as a
result of lattice translations as in the following example

k =(=,0,0
| (2
i (010)
T (2.29)
PN P
® ® ®
o °
® 3 ®
P ®

Fig. 16: Superposition of 2 k due to lattice translations

19
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2.5.4.2- S domains

It exists an other kind of magnetic domains: those due to the various directions
equivalent by symmetry of the crystallographic site on which the magnetic moment
orders itself. Such domains are called S domains (S for Spin).

Within one K domain, one may find that the magnetic moments rﬁ}’.‘ have only one

possible direction or, may be, several equivalent directions relatively to a, b, ¢ axis
and the direction k.

It can be shown that, due to the existence of S domains, the conclusion of Shirane
relative to the limitations in investigating the magnetic moments directions based on
neutron intensities remains on a single crystal as long as the proportions of S domains
are equal. In order to remove the ambiguity, it is necessary to unbalance the domains.
This can be done by applying an external uniaxial constraint or a magnetic or electric
field.

2.5.5- Mutual orientation of the magnetic moments

We have seen the effect

-of the propagation vector

-of the magnetic moments direction

We are left with the relative orientation of the magnetic moments when there is more
than one magnetic atom in the unit cell:

1|Fy [ = B, Fyy* ~QF, XQF,™) (2.30)

F(Q)=pY, Q) rife™
i (2.31)
It must be stressed here that we have to add the amplitudes from several atoms in the
unit cell,
¢ First, for a given crystallographic site, the various positions which are related with
symmetry elements-such as

Rotations

Inversions

Rotation +fractionally translation
e Second, for the various crystallographic sites.

3- Magnetic interactions
Although, in direct space the interactions must be added on all atoms in the crystal
H==YY 1y iy iy,
i 3.1)
in reciprocal space

H==Y 30 (k)ymj !
£ , (3_2)

it is enough to add Fourier components of the interactions for atoms inside the unit
cell.
As a matter of fact

M= ﬁike—aﬂ - 2 —k’e—ii’?’
b i T i’
k d [y

an (3.3)

20
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then
—~ — ikl ‘-k ki
_EZJIUJ k j'e '
3.4)
Introducing
e—ffc'f'eik? -1
then
_ _Zzzﬁlk - -;t Tk k )Ju € - ik(E-1)
I i’ kk’ (35)
defining
7, (k) =ijle—sm-z')
! . (3.6)
we note that this Fourier transform is independent on I’
Then
- _22 2k ke W, (k)z ik
o 3.7
TR 5k D)
r (3.8)
and in the first Brillouin zone T =0 and therefore &' = -k .
We find the expression we were looking for:
H=-Y3 7. (k)m m'
ki (3.9)

3.1- The classification of Magnetic structures

Let us take the general case in which the k vector is a non symmetric point in the
Brillouin zone. We say that the structure is incommensurate because k[ is nota

multiple of 2.
Example: the sinuscidal structure:

n—ilj = ﬁlj.‘eriﬁ +n_’i;k€iH :ﬁj COS(EI*—(‘)]) (3.10)
The length of the magnetic moments will change from one cell to the next

i ——Le
2 (3.11)

Fu@= pY £,(@) %47
J (3.12)

Fig. 17: The sinusoidal magnetic structure
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We can present a commensurate structure as a

The Fourier coefficient is real.
al modulated structure.

discontinuity for a more gener
k structures

3.1.4-The mono-K and multi-
w consider structures with a single at

om per cell

For the sake of simplification we no

and also that it Ik
We have
i, = Yite ™
* (3.29)
% | —k are already automatically associated.
k vectors: El,l};,l?,ﬁ

In addition we will suppose that there is several equivalent

modes and the associated Hamiltonian

3.1.4.1- Table: magnetic

1

H, = -J(kym" i
(3.3

H,= T

(3.33)

i | e —Jo|Me M+ M yadd|
(335)

Table 8: magnetic modes

H=H=H i M" = -JLE m" (double k); M5 = -‘-;_5 ms (triple k)

Being given the following magnetic Hamiltonian:

H= -JE mim™ + A4Z(m"" )4 + A’;z(m"' )2 (m"f')2
% 2

kky

+Ag Y, (m" )6 + ALY (m" )dt (m"f‘)2 + ALY
; (3.36)

kk,

it can be shown that a limitation in the order n of terms included in the Hamiltonian
multi-k

results in
e n=2 no difference in energy for a single-k structureé with domains and a
structure
e n=4 the structure can switch from single-k to triple-k
n= 6 the structure can switch from single-k to doubie k or triple-k (rare earths)
3.1.5- The Multi-k structures
In general
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—ky =ik,

b -ikT
m,=m e +me

but 77,is real, for all &, / -k and k, /K,
m, = " cos(k +@,) + M costk,l +@,)

if we make the assumption that 7" / /k
we will have the following structures

Single-k structure:

(3.37)

(3.38)

L ]

L J

First domain k1
ky
—_—

second domain k2

kg

Table 9: Graphs for Single-k structure and cross sections

Double-k structure:-

k2

There is only one domain:

Beware this differs from a
single propagation vector

k tky

Table 10: Graphs for Double-k structure and cross sections. Note:

The same image

with the same iniensities is obtained in reciprocal space for the single-k structure as
soon as the domain distribution is balanced.
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Fig. 19: Example for atriple k structure:

3.2 How to remove ambiguities for multi-k structures:

3.2.1- Applying a constraint on the muiti-k
S_inqle-—lt.-F Double-k  Triple—k- Four—k .

Fig. 20: multi-k structures

Example of the most symmetrical multi-k structures associated with the propagation
vector k= <1/2,1/2,1/2> and k=<0, 0, 1> for a face centered cubic (FCC) lattice. lons
1,2,3,4 are sitting at the center of the faces.

On the following example it can be seen that the intensities associated with the
various reflections become different when an external perturbation is applied.

UAs: Applying a uniaxial constraint distorts the lattice in such a way that the domain
k for which the modulation propagates parallel is favored. We conclude that the
structure is single-k. We can think that it was so before applying the constraint.
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USb: The same uniaxial constraint distorts the lattice without changing the intensities.
The structure remains triple-k with a single domain.

4- Polarised neutron scattering

4.1 Theory : Atomic magnetization density maps and the spin
dependence in the neutron cross section

Let us call FN(Q) [cm] the nuclear structure factor and FM(Q) [p.B] the vectorial

magnetic structure factor, Q being the scattering vector. In a magnetic crystal, the
magnetic moment of the neutron interacts with the periodic field of the magnetic
electrons resulting in a magnetic scattering amplitude. Due to the dipolar nature of
this coupling only the component of E‘M (é)

which is perpendicular to Q is effective.

Fu(@=0AEDA0) “.1)
It can be shown that the comesponding neutron scattering amplitude operator,
expressed in the spin space of the neutron, reads:

ay(0)= pFy (Q)-6 4.2)
The vector operator & has 3 components which are the Pauli matrices and
p=0.269510 P[cm/p,] (4.3)

is the scattering length corresponding to one Bohr magneton.
It is then useful to define the magnetic interaction vector:

——

PFW(Q) M(Q)
¥ §
T
k, kg
M(Q) = pE,,(0) (4.5)

Figure 21: The magnetic interaction vector

The spin dependent cross section reads:

g—"- =NN"+P(MN" + M'Ny+ M-M +iP(M" A M) (4.6)
1))

with N =N(Q)et M= M(Q) (4.7)

For simplification we shall suppose that the crystal is ferromagnetic or paramagnetic
with a vertical applied field and that we are measuring horizontal plane reflections.
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We also make the hypothesis that the polarisation is +1, that is parallel (+) or
opposite(-) to the applied magnetic field. Then:

8- NN +MN + M N+ MM (4.8)
with M = plF;, (O)| = pF, 4.9)

If, in addition, the crystal has a center of symmetry N=N', M= M and we are left
with the very simple expression for the flipping ratio:

R=9" - (%—j‘—f}‘})2 (4.10)

s

From the experimental values of R(Q), the preceding quadratic equation provides two
solutions for the ratio M/N. The crystal structure having been measured by other
neutron techniques, the values of N are known and it is normally easy to select the
appropriate M .

In the presence of magnetic-nuclear interference terms , these measurements provide
us with very sensitive information on the amplitude of magnetic interactions terms.

4.2 Instrumentation: A recent version for a high-magnetic-field single-
crystal diffractometer equipped with polarized neutrons: the D3 at ILL.

D3 is a single-crystal diffractometer with polarized incident neutron beam. In
practice, the instrument is set at a Bragg peak of an already-known crystalline
structure. Then by simply reversing the beam polarisation, D3 performs a highly
sensitive measurement of the spin-dependent nuclear-magnetic-interference amplitude
term which is present in the Bragg scattering of polarized neutrons from a small
single-crystal specimen magnetized in a field [6].No special attention being paid to
the scattered polarisation, the data consists in a collection of pure ratios and we may
call it a OD or Scalar approach.
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Fig 22: The polarized neutron diffractometer D3 (http:/fwww.ill fr/YellowBook/D3/)

(a) The hot neutron beam. Being installed at H4, D3 can use neutrons from the hot
source with wavelengths as short as 0.4A. It is, therefore, possible to measure

magnetic structure factors up to sin®/A =2 A-1, a value corresponding to a direct-
space resolution which is better than any details nature provides in the smallest
magnetic ions.

(b) The polarizing primary spectrometer. D3 uses readily exchangeable CoFe and
CusMnAl monochromator cassettes. Wavelength change is an on-line operation,
including the insertion of the appropriate resonant harmonic filter. This is particularly
useful when extinction or multiple scattering are present. The range of calibration is

from 0.42 to 0.84 A. The highest neutron flux is 0.5 10 cm2 s-1. The beam
polarisation is good and depends slightly on the wavelength, the monochromator and
the in-pile collimation used: it is 90% at its lowest and reaches 99% at its best.
Polarisation reversal is made with a "Cryoflipper”.

(¢) The magnetic normal beam diffractometer. The secondary axis is set on a "ILL-
Tanzboden" floor, mechanically attached to the monochromator exit port (Fig. 7 ).
Normal-beam geometry with a lifting detector is used and therefore, the large
cryomagnet is kept vertical. The detector support arm and the sample adjustment table
being non magnetic, cryomagnets with large stray ficlds can be used. A pneumatic
half-shutter system in front of the 5 cm diameter single 3He detector facilitates the
determination of the exact orientation matrix for the crystal.

(d) High-field, low temperature sample environment. Most measurements carried out
on D3b require the sample to be at low temperature and in an intense magnetic field,
therefore a 4.6 Tesla Oxford Instrument cryomagnet is dedicated to the instrument. A
precision temperature controller and a cryomagnet controller are interfaced to the
instrument computer which can set variables in the range (1.5-4.62 Tesla, 1.5-273.0
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Kelvin). An airtight chamber attached to the top of the cryostat makes it possible to
insert dangerous (alpha emitter) or air-sensitive samples without any contact with the
atmosphere. :

(e) Data acquisition. The instrument is extensively automated. Positioning,
measurement, data storage and transfer are under control of a dedicated computer.
The software acquisition system provides the user with many simple commands
ranging from elementary actions (such as "*SMF 4.62" to set the nominal field,
"*WAV 843" to select the wavelength followed by "*SBH Er" to insert the
appropriate Erbium filter ) up to sophisticated data-collection sequences. Input-
stream files containing such orders can be prepared in advance. Output files resulting
from the measurements are stored on a file server. They can readily be analyzed by a
powerful system of programs making use of the CCSL [7]. This provide quick
reduction, sorting and averaging of the various data sets already collected. Resulting
magnetic structure factors are then Fourier-transformed for direct visualization of the
atomic magnetization density maps and then used to refine models for the magnetic
electrons.

4.3 Ferro, Ferri and Paramagnetic Spin density determination
The various means to exploit these Fourier coefficients M(k) will not be developed

here, as a recent comprehensive discussion is given by J Schweizer in his course
"Form Factors and Magnetization densities" (8]

5 — Polarisation analysis in the scattered beam

5.1 Principle of Neutron Polarimetry

magnetic interaction vector
M©
nuclear interaction
- —-
P, N/ ]
through sample
—
from polariser Q
-
P

Vs

Fig. 23: Neutron Polarimetry: The incident polarised beam is scattered at wave
vector Q . The incident polarisation vector is oriented in a particular direction. Due
to the magnetic interaction it reorient itself in a way which tells us about the Q
Fourier components of the magnetic and nuclear potential experienced in the sample.

to analyser

5.2 Theory of Elastic Neutron Polarimetry

As early as 1963 the complete theory for elastic neutron nuclear-magnetic theory
including polarisation was published by M. Blume [9]. Two master equation were
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used , the first one describing the neutron scattering cross section and the second one
its polarisation vector as a function of the incident polarisation and the 2 main
interactions described in the preceding section. Using the same notations as in 2.2, the

general formulae for‘the polarisation vector P of Bragg scattered neutrons with
incident polarisation F, becomes:
o, = NN +P,(MN" + M N)+ M-M" +iP(M" xM) (5.1)
Po, = BNN'+MN' +M'N —i(B,x MN" —F, xM"N)
+ M(P, M)+ M (B.M)- B(MM")—i(M" x M)
These two master formulae can be sliced and sorted out into 4 parts with well

identified physical origins which are presented in the table below:
The cross section

o, = (NN')+ (M5 )+ (iB, (81" x M) + (B (MN" + M)

(5.2)

(5.3)

The scattered polarisation
Po, =(B NN")+ (-B.(HLM" )+ F(F, M)+ BT (B.5D)

+
+(N M +N" M+i(N M - N M)x F%)
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Equations for Nuclear &Magnetic&Interference Neutron Polarimetry

g,=0,+0, +0, +0, (5.5)
Po, ={Po), +{Po), +(P5), +(Po), (5.6)
(index) /mode elastic contribution comment
o, =NN' (5.7) | Intensity as modulus square of the
structure factor
(n) nuclear
F5), = b (5.8) |Incident Polarisation is conserved
o n T D Gn ’ )
o =MM (5.9) |Intensity as modulus square of the
(m) mag!nctu; Magnetic Interaction Vector (MIV)
normal par ~
PR G), =B o_ {12 iyint

Incident Polarisation is flipped except

(5:10) | forits component along the MIV

G.=i ( i x A‘:I) }30 (5.11) | Intensity depends on incident

() lgagnetic Polarisation.
chiral part - -
o), =~i (M xM) (5.12)

MxM" #0 creates Polarisation along
the scattering vector

C, = ( NM +NM ) . }% (5.13) Intensity depends on incident
polarisation when N&M are in phase

) nﬁﬁgﬁ}?{?& (ﬁ;’)i =NM+N" M Polarisation is created along M when
. - . N&M are in phase.
+i [(N M’ -N' ) X Ii')] Incident polarisation is rotated on a
(5.14) |cone around M when N&M are in
quadrature.

Table 11: The 4 main parts in  Elastic Polarimetric Neutron Scattering:
At a position Q in reciprocal space, the neutron scattering amplitude operator is

FQ)=N@Q)+ M(Q)-6 (5.15)
N (é) =-n" ane’lo'k" is the Nuclear structure factor {5.16)

M(Q) = pﬁ’M e Q) is the Magnetic interaction vector (5.17)
p=0269510""[cm/p,]  (5.18)
Fu @)= pY £,(0) i ~ (07, )0)% e ™ (5.19)

The 3 components of & are the Pauli Matrices (vector operator), 1, is the position of
the magnetic atom m, m_ the local magnetic moment in Bohr magnetons |,

and fm(é) the magnetic form factor normalized to I at @ = 0.
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5.2.1 How the 3 components of scattered polarisation can detect the absolute
magnetic configurations
If we assume that the i 1mag1nary and real part of the complex magnetic interaction

vector M are parallel (i.e. M = M.M) the last term dlsappears An interesting
representation for the polarisation directions [10] is given in a set of coordinates

|:)I Initial direction of polarisation

\ ¥y=0
\\
4
\
\
\ Vo
]
A
R
ol ~
a\© | ( Magnetic
/ I ) M interaction vector
/ ' |
~ar=1
| TE
|
I !
!
/ {
/ €]
/ = 00

where the polar axis is parallel to M .

Fig 24 Rotation of the neutron polarisation vector P relative to the direction of the
magnetic interaction vector M. Y is a complex number which expresses the length

and the phase of the magnetic interaction vector M relatively to the nuclear
structure factor N . Special directions (i) are discussed in the text.

Then, using the standard set of polar coordinates and assuming P; =1:
Bl18,.9,]. P[16,0,], andd¢=¢,-¢, (5.20)

1 JN”JNI"‘_.AJM'I

JONN + MM ~(NM™ +N°M)? (5.21)

O =cos”

(NN* + MM Ycod. + NM' +N"M
cosB, =— = e (5.22)
NN + MM +{(NM +N M)cosﬂl.

At this stage it is useful to introduce the complex ratio
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r=%
N (5.23)
When M and N are in phase, I is a real number. When in quadrature it is purely

imaginary.
We note the following remarks: (number in parenthesis refer to those in Fig 6)
-0 and @ are completely decoupled when T is real or pure imaginary.

-The “precession” angle 8¢ by which the (M,P) plane rotates around M is
independent of the initial .

In addition:

-If Tis real 8¢ is zero. The polarisation remains in the initial (ﬁ[ 13) plane. It does not

precess but tilts toward M when Tincreases. Starting from the direction (1) (initial
direction) for I' =0 (pure nuclear) it passes (2) when I" increases and becomes
collinear to +M, (3), when T" =+1. For I" = oo (pure magnetic case) it is flipped over
on the symmetrical direction (6) (as if it has precessed by m around M ).

-If T is pure imaginary then 6, =0, the component of polarisation parallel to M

remains unchanged. We can say that the polarisation “precesses” purely around M by
the amount §¢ with no change in the nutation angle . &8¢ varies from —m for
I"=—ko (6) to m for " =jeo (6) passing by /2 (5) when |I1=1. The sign of 8¢ is
the same as T, the polarisation rotates positively around M when T is positive.

-Note the consistency in the 4 different paths towards the pure magnetic case
(I'=x0e; I'=xjeo). All paths go to the same point using 4 different routes on the
sphere) ,

-In the general case where I' is complex the situation is complicate: The "real” and
"imaginary" source of polarisation are not simply additive because of mixed terms
coming from the spin dependent cross-sections. Nevertheless the final polarisation
remains in distinct "quadrants of the spherical calotte”, with the well defined frontiers
and special points discussed above. Those "geometrical” constraints often provide
useful first hints on the direction, length and phase of the magnetic interaction vector.
The complete analysis of the actual measurements [11] requires, of course, computer
calculations [7] based on the complete formalism and taking into account the
symmetry of the problem (Different magnetic domains give different Qs, resulting in
different final polarizations which are not additive because they are weighted by
different cross-sections [10].

5.2.2 Restricted theory for the longitudinal component: LPA

Historically, the first arrangement made to look at the scattered neutron polarisation
(outside the direct beam) was made at Oak-Ridge. The direction of the incident
polarisation vector 13;, was fixed adiabatically with a strong magnetic guide-field at
the sample position. This particular axis, although not specially vertical was called z
and chosen as the quantification axis for describing the spin state (+, -) of the neutron
(see appendix}. In such a guide-field the only component of scattered polarisation P
which is conserved for subsequent analysis is P, the “longitudinal component”.

Moon Riste and Koehler [12] actually thought that it was impossible to work without
a guide field and focussed their attention on it. In a simplified theory they produced a
subset of 4 spin state indexed cross-sections which became famous:
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2
o :Kb +PSJfH (5.24)
2
o, =Ko- s (5.25)
2
o> =Kp-(s7 +is7) (5.26)
2
G; :KP'(Sf_iSIH (5.27)

We have added as a subscript to the partial ¢'s the 2 axis of quantification zz (pre
and post scattering) which were implicit in MRK mind but unfortunately forgiven in
their notations. Using the zero-field cryopad arrangement we have now access to 12
independent cross sections (o), 0,6, ,6.,0,0,,6.,6.,0,.0_,0,,.0,)
which are more conveniently expressed in the formalism published earlier by Blume
based on the universal concept of polarisation vector, i.e asymmetries in the cross-
sections. (beware that in SNP z is always vertical)

Meanwhile, and for 20 years, LPA (unfortunately called Polarisation Analysis by the
authors) was the first technique available at finite Q Experimentalist got used to the
original formalism, forgetting the assumption made, up to the point where it was
wrongly called “Full Polarisation Analysis” by over enthusiastic promoters!

The measurement of such Spin-Flipped SF (+-; -+) and non-spin-flipped NSF (++, --)
processes along the guide field direction z being the only one possible when "In-field
studies” are to be made, it is now common practice to use this simplified theory which
is everywhere in the books. because it is not measuring the transverse components of
final polarisation.

We recommend to use “Longitudinal Polarisation Analysis” {LPA} to describe this
technique and to be very cautious with too strong an interpretation of the results:
because LPA technique is unable to detect the transverse component of polarisation
we should now prefer SNP in all antiferromagnetic studies where the application of a
magnetic field is not strictly required

For example, it is strongly believed that LPA can separate the nuclear (b) from the
magnetic (p) terms in the interaction: by putting the z quantization axis (magnetic
guide-field) along the scattering vector one can geometrically cancel the non-spin flip

magnetic interaction p. S i Then all muclear terms are unflipped and all magnetic
terms flipped along z. This technique is true and easy but not sensitive! Knowing the
low statistics which are overwhelming  obtained with polarisation analysis
arrangements it might well miss to detect a very exciting but small nuclear-magnetic
correlation. We shall see that this results in a substantial rotation of the initial
polarisation vector, therefore a transverse component of scattered polarisation. The
LPA measurement hardly prove that the nuclear—magnetic interference terms are zero
as it is merely insensitive to this. It is only if the 2 amplitudes are comparable that the
polarisation vector will be amply rotated, showing up as a reduced longitudinal
component of polarisation. As soon as the 2 amplitudes are unbalanced (small nuclear
in large magnetic or small magnetism in large nuclear) they can only be easily
detected in 2 neutron scattering effects: the polarisation dependence in the cross
section when they are in phase, the transverse component of final polarisation when
they are in quadrature. This is where polarised neutron techniques are really sensitive
and should be pushed.
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5.3 Experimental

5.3.1 The zero field chamber approach

For a long time, the theory of General Polarisation Analysis [9] had established that
the measurement of all three components of the final polarisation were interesting,
being sometimes the only means to decide in between two magnetic configurations.
(13]

zero field sample chamber
magnetic shield

incident rotator

outgoing rotatar

oy

Fig. 25 : Principle of neutron polarimetry in zero field

5.3.2 Cryopad

Such a measurement is a difficult experimental task knowing the strong influence of
any magnetic field on nentron polarisation. In fact it requires to connect two different
guide-field directions onto a Zero-field sample chamber. We have been able to solve
it successfully in our neutron polarimeter CRYOPAD by building the sample chamber
with superconducting Meissner screens [3]

Cryopad is a unique facility which is able to achieve full vectorial control of neutron
polarisation as it appears necessary in the theory shown in section 5.2 [9]. Being fed
with a polarized monochromatic beam out of a primary spectrometer, CRYOPAD
orients the polarisation vector in any specific direction and then delivers it to the
sample chamber. The sample chamber is maintained in a zero field state, there is no
parasitic precession and the change in polarisation, therefore, results only from the
interactions present in the scattering process. When the final polarisation exits from
the sample chamber, CRYOPAD acts on it in order to measure one by one each 3
components in turn. More details on the design of this polarimeter and the technique
of generalized polarisation analysis can be found in [3], [11].{14]

(a) The host spectrometer. CRYOPAD can be used as an option to IN20 triple-axis
machine which has Heusler polarizing crystals on both the first and last axes or on D3
polarised hot nentron diffractometer with 2 polarised 3He filter in front of the
detector.

A description of IN20 and D3 can be found in the ILL web page (www.ill.fr). On
IN20 the Heusler-crystals arrangements are of the vertically focusing type (120 mm
high for the monochromator and 85mm for the analyzer) in Bragg reflection
geometry, the applied magnetic field being horizontal in the mirror plane and with a
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gap of 7Smm [15]. Both instruments will be improved in the coming years as they are
part of the Millennium programme of the ILL (see Web page)

(b) The data acquisition system. On IN20, Cryopad is driven by a special version of
the inelastic software. This provides some facilities to set the incoming polarisation in
an arbitrary direction and to measure the scattered polarisation in any different
direction. Proper currents are automatically introduced in the coils taking into account
the different energy in the 2 arms of the spectrometer. On D3, Cryopad is driven by a
special version of the crystallographic MAD data acquisition software incorporating

special polarisation commands.
zero field sample chamber

inner Melssner shield auter Meissner shield

secondary incident coil primary turnabout <oil

outgoing nutator

Py

F ig 26 Schematic of the various magnetic regions in CRYOPAD :

5.3.3 LPA in a magnetic Guide-Field

The first systematic polarisation analysis method was developed at Qak-Ridge by
Moon Riste and Koehter {MRK} [12]. It was developed at the HFIR using a 3-axes
instrument which was providing the proper control of the polarisation direction z at
the sample axis with a strong magnetic guide-field.

Fig. 27: The schematic representation of a 3 axis spectrometer equipped for
polarisation analysis. (after [12])
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Because only the z longitudinal component of the scattered polarisation (parallel to
the field and to the incident polarisation) is measured, the other components being
deliberately lost in the measurement (as can be seen in the next picture) and therefore
neglected in the analysis, we catalog this method 1D-polarisation analysis. It is
generally known as "Polarisation Analysis”, and sometimes quoted as "Full
polarisation analysis". In view of the preceding discussion and the present existence
of SNP we would prefer to call it "Longitudinal Polarisation Analysis” (LPA).

Longitudinal Polarisation Analysis

Fig. 28 : LPA: The effect of a magnetic guide-field on the scattered polarisation.

6. Spherical Neutron Polarimetry at work:

6.1- The use of spherical neutron polarimetry in magnetic structure
determination [16]

The determination of magnetic structure is fundamentally different from conventional
crystal structure determination whereas in the latter the problem is to determine
atomic positions; for magnetic structures the sites of the magnetic atoms are normally
known, but both the magnitude and direction of the magnetic moments have to be
determined. At the same time the magnetic structure factor differ from the
conventional structure factor by being a complex vector, rather than a complex scalar
quantity.

Since in a classical diffraction experiment only the intensity of the Bragg reflections
can be measured, the phase problem is aggravated in the magnetic case, because six
quantities, the amplitudes and phases of the three components of the structure factor,
have to be deduced from a single measured intensity. Actunally, because of the form of
the dipole interaction between the neutron and the magnetic induction in the crystal,
only those components of the magnetic structure factor perpendicular to the scattering
vector contribute to the scattered intensity and it is this property which may allow the
moment directions to be determined. However, in complex, and particularly in
noncollinear structures, measurements of the magnetic intensity alone may not be
sufficient to determine the magnetic structure uniquely. It is in this context that
neutron polarimetry may prove extremely useful, the change in direction of the
neutron polarisation vector in the scattering process being rather directly related to the
orientation of the magnetic interaction vector (see table below for a graphical
summary ).
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6.1.1- Graphical approach of SNP [10]
G,=0,+0, +0,.+0; (5.5)

Po, ={P5), +(Po),, +(Po), +(P0), (5.6)

(index) /mode elastic contribution polarimetric graph
— —
PD
o,=NN 2
(n) nuclear

o, =MM

{m) magnetic ~ o
normalia:t (P )m =-Ro, {l—Z(PG-M)M}

(c) magnetic Po), =-i (M‘ x M )
chiral part
o, =(NM +NM).P,
Po).=NM +N" M
Oractosrr | i - )<
interference

Table 12: The 4 main parts in Elastic Polarimetric Neutron Scattering (a graphical
view). Note that the case a=b for the magnetic chiral part (c) should not be
considered as a restriction: what remains from the longer component s just acting
as a normal magnetic interaction vector (m).
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6.1.2- Depolarization due to antiferromagnetic domains

The equations which relate the scattered polarisation vector to the incident one and
the physics of the scattering process have been worked out by Blume[9]. For Bragg
scattenng his formula for the polarisation P scattered by a reflection with scattenng
vector Q may be writien in terms of its magnetic interaction vector M(Q) as in
equations (). The squared modulus of the nght hand side of eq. (5.2)

Po —PNN +MN' +MN—:(P><MN -B xM'N)

+ M(P,. MY+ M'(B.M)- B(MM")—i(M" xM)
- 2
is always greater than or equal to |}g| 5,2 which means that the amplitude of the

polarisation is either increased or unchanged by scattering from any pure state,
although in general its direction will be altered. Real depolarization of the scattered
beam is an indication that a mixed state consisting of more than one type of magnetic
domains is present. The ability to distinguish depolarization from rotation of the
polarisation vector away from its initial direction is one of the features which makes
this technique (SNP) more powerful than conventional longitudinal polarisation
analysis (LPA).

6.1.3.- Domain classification

It is worthwhile to rehearse the different types of magnetic domain which may occur
in antiferromagnetic structures. They may be classified into:

¢ configuration domains (K domains},

+ 180° domains, (i.e. Magneto-Electric domains)

e orientation domains, (S domains)

¢ chirality domains.(LR domains)

The type and number of domains that can occur depends on the relative symmetries of
the paramagnetic phase and the ordered magnetic phase. In general, if the order of the
paramagnetic space group is p and that of the magnetic space group m, the number of
different domains is p/m.

6.1.3.1-Configuration domains (K domains)

As was said in section 1 configuration domains exist whenever the propagation vector
k describing the magnetic structure is not transformed either into itself, or itself plus a
reciprocal vector, by all the symmetry operators of the paramagnetic group. When this
is the case the operation of the paramagnetic symmetry on k generates a set of
inequivalent vectors which form the star of k . Each vector in the star generates a
different configuration domain, and each configuration domain gives rise to a
completely separate set of magnetic reflections.

6.1.3.2- 180° domains

180° domains correspond to regions of crystal in which all the moment directions in
one domains are reversed with respect to the corresponding ones in the other. In a
structure with a non-zero propagation vector such domains cannot be distinguished
except by the defects associated with domain walls. A translation T such as T-k = n,
transforms one domain into the other as illustrated into fig. . When the propagation
vector is zero, magnetic and nuclear scattering occur in the same reflections and the
difference in phase between the magnetic and nuclear scaftering differs by © between
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a pair of 180° domains. Two simple types of antiferromagnetic structures with zero k
can be distinguished. In the first the nuclear and magnetic scattering differ in phase by
zero or . These are centrosymmetric structures in which spins related by the centre
of symmetry are parallel to one another. An example is Fe203, a projection of which,
illustrating the 2 domains is shown in fig. 2. For such structures the cross-section
6,=0,+0,+0,+0,, eq. (5.5),
is polarisation dependent due to the contribution of the nuclear-mag interference term
o, = (N M+ NM') . fi’}, eq. (5.13), and this term has opposite signs for the two
domains. The polarisation of the scattered beam is rotated in the plane of the incident

polarisation P, and ﬂ(é) due to the terms
(-B(M.M" )+ MB.M" )+ M (B.AD)+(N M+ N M)ineq (5.4)

For the second class of structures the nuclear and magnetic scattering differ in phase
by i% which occurs when moments related by a centre of symmetry are antiparaliel.
The cross-section is not polarisation dependent in this case, since due to the phase
quadrature, the polarisation dependent term () is zero. However the term of eq(l),
which turns the polarisation towards the direction perpendicular to both }% and J'EI(Q)

becomes nonzero. The sense of the rotation is determined by the relative phases of the
nuclear and magnetic scattering and is opposite for the two types of 180° domains.
This overall situation is illustrated in fig. , and exemplified by the antiferromagnetic
structures of oFe,0, (hematite) and Cr,0, as shown in figure below.

Cra03 Fey03
S A Tl A
< B
oA A
¥
= B
3
A
+ B
2> A
®
AQ BO
* Oxygen

Fig. 29: The antiferromagnetic structures of aFe,0; (hematite) and Cr,0; as shown
in figure below
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Fig. 30 Magnetic interactions are odd in o(Cr203), even in [} (Fe203) resulting in
different rotations for the polarisation. It is possible to imagine what sort of
polarisation would result from a mixture of the two.

6.1.3.3- Orientation domains

Orientation domains occur whenever a magnetic structure cannot be described by a
magnetic space group which is congruent with that describing the configurational
symmetry. For instance, if the configurational symmetry possesses a symmetry axis of
order higher than 2, then either the moments lie parallel to this axis, or the structure is
noncollinear, or the symmetry axis is not in the magnetic space group. Similarly, in a
collinear structure, moments must always lie parallel or perpendicular to mirror planes
and diad axes.

In general the magnetic space group 7 is congruent with a sub-group 5 of the
configurational symmetry & and Z«7%®S. The sub groupS is made up of operators
contained in & which are not in the magnetic group. If the group 5 is of order ¢ then
there are ¢4 possible orientation domains which are related to one another by the
elements of S. in this case the magnetic interaction vectors for reflections related by
the elements of § will be different:

M(Q) » M{ RG) but #1,(0)= m(R0) 6.1)
where R, is an operator in £ and M, is the interaction vector for the domain

generated by R . For collinear structures the magnetic structure factors of reflections
related by the elements of S are equal:
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RF,(0)=F,(RO) (6.2)
but this is not true in the general case
The polarisation scattered by a purely magnetic reflection with magnetic interaction

vector M// M’ is given by

This corresponds to precession of the incident polarisation direction around the
direction of M by 180° without change in its magnitude [17]. If more than one
orientation domain is present in the crystal, the final polarisation vector is the sum of
the polarisation vectors scattered by each domain weighted by the intensity scattered
by that domain (equal to o,M,M, where o, is the population of the ith domain).
Consider the case illustrated in figure x where the incident polarisation is
perpendicular to the scattering vector and in one of the planes or along one of the axes
which generate a pair of orientation domains. The magnetic interaction vectors M,
and [4 of the 2 domains are related by the symmetry axis (Y in Fig x) and rotate the

scattered polarisation into the directions indicated by B and P respectively. If the
domain populations are equal the final polarisation vector is in the same direction as
the incident one, but reversed if ¢ is greater than 45° The same type of behavior
occurs if the incident polarisation is perpendicular to the symmetry axis, as shown in
Fig. 31

F4 z
M] M1
PO
A
P, P P,
[
2o
— ¥
PO
M, M,
(a) (k)

Fig. 31: Diagram showing the rotation of the polarisation direction by scattering
from two symmetrically related domains with magnetzc interaction vectors M and
M The incident polarisation P is rotated to P by M and to P by M The

resultant polarisation is the weighted sum of the two vectors. As we suppose that the 2
domains are in equal proportion the resultant polarisation P is F,cos2¢ where ¢ is

the angle between P;) and M. (a) The incident polarisation is perpendicular to the
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scattering vector and parallel to the symmetry axis relating A_/}l and 1@'2. {b) as in (a)
but the incident polarisation is perpendicular to the symmetry axis.

6.1.3.4- Chirality domains

Chirality domains occur whenever the paramagnetic space-group is centrosymmetric
but the ordered magnetic structure is not. The center of symmetry may be lost because
magnetic moments on atoms at positions related by the centre are neither parallel nor
anti-parallel to one another. Alternatively it may correspond to a special class of
configuration domain: one in which 2x is not a reciprocal lattice vector (K#T —-K),
so that the centre of symmetry is not in the configurational group. In the latter case the
two chirality domains correspond to positive and negative K ; they both give
magnetic reflections at § +K with

M (T +€)=-M(T-«)=-M [T +K). (6.3)

For both these types of spin arrangement M will not in general be parallei to M’ so
the terms in eqs x and x respectively are non zero. The first of these terms gives a
polarisation dependent cross-section for such structures, and the second results in a
rotation of the scattered polarisation towards the scattering vector. Both terms have
opposite signs for pairs of chirality domains and therefore cancel each other if the two
domains are equally populated, although if the domain population are unequal the
polarisation may be reduced

x component (even)

simple chiral arrangement

M(0)
/
s
’
’

rd "
~ propagation
/ B (0]} z

L M(2)
y component (odd)
Fig. 32: A tentative 3d representation for an helicoidal structure showing that the x
component of the magnetic moment is an even function of z contrary to the y
component which is an odd function. The Fourier transform of an even function being
real and that of an odd function imaginary, it results that the real and imaginary part
of the magnetic interaction vector are automatically pointing in orthogonal

directions: M=a x+ib ¥ . As a consequence MxM #0.
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\j

Fig. 33: Due to the nature of the dipole inieraction the neutron sees only the
projection of the helix on a plane perpendicular to its momentum transfer. Depending
on the observed reflection a perfectly regular helix can be seen as an elliptic one or
even as a sinusoidal modulation (when Q =T +k is contained in the “plane of the
helix”). As it much influenced by the relative length of the two components in the
magnetic interaction vector, the measurement of the final polarisation for 2
orthogonal of the momentum transfer, when possible, is a very sensitive tool to
distinguish an helix from a collinear sinusoidal arrangement, orient its main axis and
measure the ellipticity. (see for example [2, 18])

6.2-Antiferro-magnetic form factor & magnetic density determination
[19].

The form factors of magnetic ions in ferromagnetic and paramagnetic materials have
been extensively studied using classical polarised neutron flipping ratio measurements
and in favorable case the measurements can be very precise[20]. Such form factors
are much more difficult to measure in antiferromagnetic structures because in
antiferromagnets the neutron scattering cross-section is not often polarisation
dependent; the classical method is then not applicable. As a consequence, very few
measurements of antiferromagnetic form factors have been made. In the few cases
where such measurements have been undertaken they have given very interesting
results. The antiferromagnetic form factors are more sensitive that ferromagnetic or
paramagnetic ones to the effects of covalency. This because the overlap of positive
and negative transferred spin on the ligand ions leads to an actual loss of moment
rather than to its redistribution . Up to now no precise measurements of the form
factor have been made in antiferromagnetic structures in which the periodicity of the
magnetic and nuclear structures are the same and in which magnetic atoms of
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opposite spin are related by a centre of symmetry. in such structures the magnetic and
nuclear scattering are superimposed, making their separation difficult. Additionally
the magnetic and nuclear structure factors are in phase quadrature so that there is no
interference between them to give a polarisation dependent cross-section. The newly
developed technique of spherical neutron polarimetry [14], allows a precise
measurement of the magnetic scattering in such structures, and this can be exploited
to determine the antiferromagnetic form factor.

The technique of neutron polarimetry which we have developed using Cryopad
consists in choosing a direction for the incident neutron polarisation and determining
the direction of polarisation of the beam scattered by the sample with a chosen
momentum and energy transfer. In the present experiment we are looking at elastic,
Bragg, scattering so that the energy transfer is zero.

Cr,O, provides a well known example of an antiferromagnet for which magnetic and
nuclear scattering appear in the same Bragg reflections and are in phase quadrature.

B =B B, =0 P =€
E.=0 K=l =0
P =-t P =0 P =P

Table 13:  The components of scattered polarisation in Cr,0;

It is convenient to choose three orthogonal directions (x, y, z) for the incident
polarisation: z perpendicular to the scattering plane, x parallel to the momentum
transfer vector, and y completing a right handed Cartesian set. The components of the
scattered polarisation parallel to the same three directions can be designated Pyx,

Pyy, Pyz where the subscript u indicates the direction of incident polarisation (x, y,

z)h
B=(1-y"(1+y? and £=2my I[(1+y") (6.4)(21]

where y is the ratio bétween the magnetic and nuclear structure factors, and m, the

projection of the magnetic moment direction on the plane perpendicular to the
momentum transfer. There are two possible 180 domains for which m, is of equal

magnitude but opposite in sign. If the volumes of crystal belonging to the two domains
arev' and v~, the domain ratio is defined as

N= =v (v +v) (6.5)
and the non-zero off-diagonal terms in the polarisation matrix become

Isz =T|E.» and sz = _ng' (6'6)

We have already measured the ratios of all reflections of the form A£0.¢ with

sin@® /A (0.5 A'using Cryopad Il on IN20 [21]. These measurements, which were
made on two crystals of different sizes in three different degrees of domain
imbalance, gave amazingly consistent results which enabled the lower angle part of
the Cr3+ form factor shown in figurel to be determined with high precision. It is not
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however possible to extend these measurements to higher sin® /A using IN20 since

the highest useable incident wave-vector is 4.14™".

We have recently however been able to extend our measurements to higher
momentum transfer by installing Cryopad on the hot-source polarised neutron
diffractometer D3 and using the newly available 3He neutron spin filter to allow
polarisation analysis of the diffracted beam. The experimental arrangement is shown
in figure2. At the higher sin®/A values the magnetic scattering becomes very weak
and it is impractical to carry out the full polarisation analysis. However, if the domain
ratio is high and is determined using the lower angle reflections, then it is sufficient to
measure just P,and P, components of scattered polarisation. These are lincarly
rather than quadratically dependent on and may be corrected for deficiencies in the
transmitted polarisation using the P, component. Using this method we are able to
deduce the magnetic structure factors of 14 x 0. /¢ reflections with sin® /A between

0.5 and 0.75 A™". Their contributions to the Cr** form factor are shown in figure 1 and
are magnified in the inset.

We were able to fit the low angle data to the Cr** free atom form factor by assuming a
chromium moment of 2.5 k. The rather low value suggests that there is significant
covalent transfer to the oxygen ligands. These lower angle data fit rather well onto a
smooth curve. The higher angle data are scattered above and below the curve
corresponding to a spherical distribution of moment, this scatter contains information
about the deviations from spherical symmetry and can be used to determine the
distribution of unpaired electrons amongst the different 3d orbitals.
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The Cr®* form factor in Cr2 O3

2.50 o

2,00 e

100 -

050 ,

Magnetic Amplitude (1)

0.00 0.25 0.50 .75

sinB/A (A1)

Fig. 34: the experimental values of the magnetic form factor measured at the hO.£
Bragg reflections of Cr,0; The smooth curve is the spin-only free ion form factor for

Cr'* normalized to 2.5 M.

6.3 Theory of Nuclear-magnetic interference in the inelastic scattering
of polarised neutrons

Very recently, Maleyev revisited this theoretical issue in details. We give here the
abstract of his paper followed by a table of the master formulae where we reconcile
his notations with ours. Here is the abstract of his paper [22]

The problem of the inelastic nuclear-magnetic interference (INMI) at the scattering of
the polarized neutrons is considered theoretically. General expressions for this
interference are derived and discussed. It is shown that the INMI appears at the
presence of some interaction, which connects nuclear and magnetic variables and
contributes to both nuclear and magnetic parts of the scattering. However at H = 0,
where H is the applied magnetic field or the sample magnetization, the INMI takes
place if the spin-lattice interaction is characterized by an axial vector. An example of
the Dzialoshinskii-Moriya interaction is considered. It is shown that in this case the
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INMI is connected to the three spin non-diagonal susceptibility with non-local chiral
spin operator. Application of the theory to the spin-Peierls compound CuGeQ, is
discussed on the basis of preliminary experimental findings.

The notation used in the table are adapted from Malevyey :

At a position QQ in reciprocal space, the neutron scattering amplitude is

F,=N,+M,< S (X))
with Ny =~N"Y be'®™ and M, = pF,, (0), (6.8)

p=0269510""[cm/p,] and F,, (0)=-N1Y £.(0) e'Q'F"'[r?am -(6.m,) 0] 69

b, the nuclear scattering length for the atom localized in 7, s, the local magnetic
moment in u, of the magnetic atom m in position r, and fm(é) its local magnetic

form factor normalized to 1 at Q=0.
In the inelastic case, the retarded generalized susceptibility is

used{4,B), = ij:dt e {A@).B(0)]) (6.10)
It is splitted in a dispersive (‘) and a absorptive (“) part
{A,B),={A B} o + A, B} o (6.11)

The absorptive part is then used to define the various Van Hove correlation function
in eq. VH which are contained in the inelastic equations:

S,5(0) = A[l —e(‘"*)]_ (ABYo . (6.12)

The 2 master formulae are sliced into 4 parts given in the table according to
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6,=0,+0,+0, +0,; (6.13)
Po, =1P5), +(Po), +(Po). +(Po), (6.14)
) Elastic:(Blume 1963)[9] Inelastic : (Maleyev 1998)[22]
{index) /mode
See section 5.2 for Van Hove Correlation Function:
notations »
vicr 1 S, () = %:[l— e(_’")] {A,B}w )
(6.15)
o,=N N 5.7) G, =(kf/kj)Sn (6.16)
(n) nuclear part (P6), =k o, (5.8) (PG), = Ro, (6.17)
S is VHCF IN N ) "
n ™ for \N g+ Ngf, (6.18)
o = MM (59 | O K kISud 6.19)
PG), = B, o_{i=(na)i (BS), =(1’?‘) Ry [(Saa + stu) ‘Saasars]
(5.10) (6.20)
_ / gy~
Sap is VHCF for \WQ,MQ/Q (6.21)
o, = ,( “x M)-F, Gan | % (ky/ k) i Sop Eapy Foy (6.22)
{¢)  magnetic - - ,
chiral part Po), =i (M x M) Bo), =k /k) ity Sy (6.23)
(5.12) ”
) / By
Saﬁ ISVHCEDF\M(jQ,MQ /u) (624)
o.=(NM'+NM).B o= /k)i5, R (6.25)
{(5.13) { }
()  nuclear- L P5), =(k /%) {S. +i[5. x B
mag. (P6),=NM'+N'M (6.26)
interference +i [( N M —N W ) xB ] S, is VHCFfor
5.14 - " - ” - ”
©>-14) {N—Q’MQ>M =(N—Q*Ma)w i(MfQ’NQh
(6.27)

Table 14: A parallel in between elastic and inelastic SNP formulae (note that in the
original table [4] an error exists in formulae 4.20 which has been corrected here. We
thank B. Roessli for raising our attention to this point.)
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Conclusion

Magnetic neutron scattering remains a first class tool for the study of magnetic order
and interactions. Powder scattering has made progress with the introduction of large
position sensitive detectors. Unpolarised single crystals studies are being
revolutionised with the introduction of a new quasi-Laue method using image plate
detectors. Unpolarised neutrons show geometrical features of the cross-section and
give the modulus of the magnetic interaction vector M at many points in reciprocat
space. Based on the dipolar anisotropy of its magnetic interaction the neutron can tell
us what are the direction of the magnetic moments from observed extinction and
relative intensities systematically measured at many different momentum transfer é
in reciprocal space.

At one particular é the application of Spherical Neutron Polarimetry (SNP), can
check, often directly, what is the direction of the magnetic interaction vector M in its
plane. This has been a powerful direct method for detecting the limitations of the
classical measurement of cross-sections in the numerous cases where the integrated
intensities are not sensitive enough to the details of the magnetic structure.
(Essentially due to domains superposition there are many possible models for a
given, limited, set of intensities). Moreover, in such difficult situations, SNP lead to
an unambiguous  understanding of what neutron can tell of a complicated
antiferromagnetic structures like triangular and helicoidal arrangements.

What is most spectacular with neutron scattering is the exploitation of the nuclear-
magnetic interference term which gives a great sensitivity for the measurement of
very small magnetic amplitude. It has been extensively used for the complete
determination of the magnetic form factor and anisotropy in it, telling us about the
exact shape and spatial density of magnetic ions. It has now been demonstrated that
SNP can do that in favorable antiferromagnetic arrangements like for magneto electric

compounds. )
But the most promising feature is in the field of inelastic neutron scattering where,

triggered by SNP experiments, recent theoretical analysis has shown that the
measurement of the transverse component of scattered polarisation is a way to
measure mixed nuclear-magnetic pair correlation functions. Such measurements are
being done and may well have a serious impact on the future understanding of
microscopic physics at low dimensional, spin driven phase transitions.

51




2

Joint ICTP-INFM School
1-11 February, 2000 Trieste, Italy

Annexes: [23]
A1. The polarized neutron beam

A.1.1. Quantum aspects...

Because the neutron carries a spin 1/2, (an internal degree of freedom...) the complete
quantum mechanical description for it's dynamical state |l|I) has two components (+,
-). In term of real space wave-functions we have

Vi A =F+W} ana V-F) ={F.~|w) (A1)
which are generally grouped in a two component Spinor:
. v (F)
w®l=| 7 a2)
y_(7)

These two functions of space variables may be completely distinct if the Hamiltonian
comprises important coupling terms in  between orbital (r) and spin (+,-)
coordinates.

An example of historical importance is the Stern-Gerlach experiment. A static
magnetic field with a large gradient produces two possible deviations for silver
neutral atoms depending on which spin state they go into at the entrance in the
magnetic field. Such an experiment could not be made directly on an electron beam
because of the dominant Lorentz force which couples strongly the orbit ¥ to the field
B for a charged particle q.

For the neutron q=0, the Lorentz force disappears and we can use the Stern-Gerlach
experiment in order to demonstrate the quantification of the 1/2 angular momentum.
Nevertheless we shall see later that slowly varying fields are used very often on
neutron beams without any mention of Stern-Gerlach orbital effects. This is because
the magnetic moment. of the neutron is 3 orders of magnitude smaller than the
electron’s one:

m
Wneut, = Enlho =—1-913*M—eu3 (A3)
r
up=92741 10727l
=27 -1

Because the orbital deviation is generally so small we often write the neutron spinor
as the product of a single wave function times a spin 1/2 state vector:

[w@®]=0@[x] (A5)

In all the experimental aspects which are discussed in section 1 what happens to the
magnetic field is at a length scale which is orders of magnitude larger than the neutron
wavelength, therefore the position of the neutron can be considered as a classical
point variable [24] and the neutron magnetic moment will sense only the magnetic
field at this point. Time and space being then simply coupled through the classical
speed of the neutron, inhomogeneous magnetic fields along the neutron trajectory will
appear in spin space as simple, time dependent quantities.
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The spin 1/2 state vector evolution
Vo, 2 6
[x}=e""" “cos3|+)+e A 6)

will be governed by the usual time dependent Schrédinger equation and 6 and @

will appear to be functions of time (As usual they give the polar angles for the proper
spin quantization direction 1i. e. the direction relative to which the spin component

Szis +']2-,that is also the direction of the corresponding classical angular momentun
vector)

The 3 components of the angular momentum vector operator S are simply expressed
in the |+),|—} basis with the 3 Pauli Matrices:

0 1 0 —i 1 0
T oo) T o) %Tlo 1)R7

Se =% {xloalx} (A 8)
(Sx)=%sin9 cosQ, (Sy>:%sine sin¢ , (Sz}=%cose (A 9)

Note that any Hermitian operator can also be expressed on this basis as a linear
combination of the identity matrix and the 3 Pauli matrices.

A.1.2 Statistical average
Because the beam contains many neutrons which are not necessarily in the same spin
state we shall call polarisation for a beam of neutron the ensemble average of the
angular momentum (see Annex 1)

P={x|6|% (A 10)
An interesting quantum mechanical derivation is the Ume evolution of the beam

polarisation vector P inan homogeneous magnetic field H. (see Annex 2)
Let us start from the dynamical equation for mean quantum values:

BP d{c
-4 6.,
)] (A 1D)
With the appropriate Zeeman energy term:

(A 12)
we find:
aﬁ ~ ~ 'y . s ~ ~
E=—Xz‘<[0',(0'-H]):%E’Y«H/\(O'/\O'))} (1.13)
Using the commutation relation :
G0y —0y0y = 2io, (A 14)
we have:
0P 117 A 163
- HALo)
50 = (A AS) (A 16)
and finally
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0P _ _ 1z B\
at - ((HAP)/ (A 17)

with 7 =-18324.61 s \Gauss ™ (A 18)

A.1.3....and classical behavior.

At this stage it is interesting to establish the classical equation of motion for a
magnetic moment m in interaction with a magnetic field. We have to consider two

torques:

and the inertia of angular momentum:
l—:, dj y -1 dm
=" = — —
dt dt (A 20)
At equilibrium these two torques must cancel out:
dm =
— = (H A m)
dt (A 21)

We note that this classical derivation let us exactly with the quantum equation

of motion (f’ and m are obviously proportional vectors). When dealing with "gentle”
magnetic fields not only we can separate the spin and the orbit , but in addition we
find that the spin polarisation behaves classically.

A.1.4. Larmor precession...

From the preceding equation of motion we can now easily extract the main
characteristics of the solution in a constant magnetic field:

dm> M =
—=2m—-= 27m(HA m) =0
at ot (A 22)
i. e ﬁ"tz =const. , the modulus of the polarisation remains constant:
_ om S e
H-Z==-y-H-(HA)=0
o1 (A 23)

i.e. H-m=Const., the projection of the polarisation on the applied field remains
constant as shown in Figure 1.
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H

/

FigA- I Larmor precession of the neutron magnetic moment in a constant magnetic

field
Finally
1 |dm| ymAH
m) dr m A H
il
-1.
mLz—?&-B(SI) (A 25)
MP
jo 1 [[rad / sec]=18325- H[Gauss] (A 26)

and for the moving neutron

A

—(p-[deg/ cm|=2.65 k[fi] H|[Gauss]
Ax (A 27)
A neutron with a 2.4 A wavelength will precess by 60° in a 10 Gauss.cm field
integral.

A.1.5 Rotation of the neutron quantization axis in a "guide-field"” and the
adiabaticity parameter:

We shall see later that it is often desirable to change the direction of the neutron
polarisation along the traveling beam in order to adapt it to the various requirements
at different points on the instrument. This is generally achieved by introducing
appropriate helicoidal guide-field sections on the neutron trajectory. The field
amphitude remains roughly constant as in Fig. A 2:.
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Fig. A 2: Propagation of the neutron polarisation vector in an helicoidal ficld

which rotates by %— at constant modulus. We suppose here that the component of

polarisation parallel to the field follows adiabatically the field direction (the
longitudinal component is adiabatically conserved. see text).

By solving the time dependent Schridinger equation or the equivalent “classical”
equation of motion the final polarisation after a = field rotation [25]
and in the general case [26] have been deduced. It appears that , apart from Berry
phase which is not our problem here, the dynamical behavior is controlled by a single
"adiabaticity parameter E", a pure number which is the ratio of the neutron Larmor
precession versus the angle of rotation for the guide-field (both being expressed in
degfem.}.

w
E=—1L

Oy (A 28)

We give in the figure the 3 final components of polarisation for the important
practical case of a full initial polarisation entering a field rotation of /2
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|| Comgonents of P as a function of the adiabaticit; garameter!i
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Fig. A3: The 3 final components of polarisation as a function of the adiabaticity parameter
At the extreme left of the adiabaticity scale, E is very small, the field reorients itself
quickly (in much less than a Larmor precession period) : the neutron spin remains in
its initial direction. This means that the field direction which was parallel to the spin
at the entrance in the system is orthogonal to it at the exit (The Zeeman energy is
changed and therefore the process is non-adiabatic for the neutron). At the extreme
right of the scale the field reorientation is slow (i.e. the neutron has made several
Larmor precessions during the time spent in the helical field region). We see that two
components of the neutron spin have been interchanged in such a way that the spin
remains fully aligned with the applied field. (The Zeeman energy is unchanged, the
field has "guided" the neutron spin component which was parallel to it and the process
is fully adiabatic for the neutron).

For completeness we give here the expressions for the component parallel to the final
direction of the field assuming it was fully polarized along x at the entrance:

For a /2 field rotation:

P2 =1——2—25in2(%‘\}1+E2), (A 29)
g +E
with E=0.03H[Gauss]- S[cm]-L[A] (A 30)
and for a I'T field rotation;
PT =_1+E2E78i”2[%‘jl+E2)' (A 31)
with E = 0.015 H[Gauss]- S[em]-A[ A] (A 32)

The polarisation transmission along the guide-field direction becomes better than
95% for values of E greater than 3; 98% for values greater than 8; and 99.5% for
values greater than 15. Still we have to be careful, when they matter, with orthogonal
components which decay slowly and are still of the order of 10% at E=20.

Let us finish this discussion by looking at the expression for the time derivative of the
Zeeman term.
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dH.P . dP -dH - - o\ sdH

e = {4+ P=E = —yH (A AP)+ P
dt dt dt dr (A 33)

The mixed product on the right term is always zero, it appears clearly that only a

change in the field can change the energy. If the modulus of the guide field remains
constant —T is orthogonal to H and therefore only couples with the components of

P which are oscillating at Larmor Frequency. The product will zero out to the first
order. Only second order terms may change energy. This is the mechanical origin of
the guide field adiabaticity.

A.1.6. Non-adiabatic passage through a magnetic field discontinuity:

In some other instrumental aspects in neutron polarimetry, one is dealing with the
extreme left of the dynamical scale. We shall see for example that in the measurement
of the spin dependent cross-section we must be able to reverse at will (flip) the
direction of the incident polarisation in order to measure the "flipping ratio”.

Amongst several techniques which have been used to accomplish such a flipping is
the Dabbs-foil system. The neutron goes through a transverse current sheet in a very
short time compared with the Larmor period. The idealized problem looks simple and
could be viewed as a peculiar E=0 point on the preceding field-rotation curves when
calculated for a 7 field rotation. In practice, the problem deserve a separate discussion
because the magnetic field has no constant modulus. It goes instead through a node at
the center of the sheet.

What happens at that point of zero-field depends critically on the presence of small
orthogonal components coming from any stray-field. This problem has been discussed
carefully many years ago in the context of successive Stern-Gerlach measurement
where the same experimental difficulty happened [27].

From Majorana equations we can calculate the atomic beam polarisation after the
field reversal:
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neutron team

Fig A-4 The magnetic field components used in the Majorana calculation of the non
adiabatic crossing through a field node

With the stray-field H, = A; H y = 0; Hy =—Ct and Pf=Px we find

P 2
;L:I—Zexp(—k%) with ;Tczﬂ%,fgc‘f‘L (A 34)

0
For thermal neutrons and then keeping only first order in the exponential we find the
following:

Pl 0.036A2[Gauss*]A[A]
0 = '_1 + dH
Px Z;-[Gaussl Cm]

(A 35)
The amount by which the process will depart in first approximation from the ideal
reversal depend linearly on the inverse gradient of the main field but quadratically in

the stray field amplitude By looking at Fig. 5 were we have reported the variation of
5

the ratio Py for various realistic values of stray-field A and main-field gradient for

thermal neutron wavelength, we conclude that for cold neutrons and standard current
sheets conditions such departure from pure non-adiabaticity may become important.
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Fig. A3 Lambda dependence of the polarisation reversal when crossing a Dabbs foil
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A2. The Neutron Spin Filter

A 2.1. More polarized neutrons: the polarized 3He filter.

e

S

LigAé6

{a) Decoupling the optics from the polarisation with the transmission filter.

The production of hot neutron beams with polarisation greater than 95% and energies
up to 500 meV (lambda = 0.4 A.) has only been possible until now by using selected
Bragg reflections from certain magnetic crystals. The polarisation results from the fact
that magnetic and nuclear scattering amplitudes cancel each other for one of the two
spin states of the neutron. Unfortunately, with existing crystals, polarizing reflections
arise at relatively low Bragg angle and have small structure factors for reasons which
are inherent to the cancellation process [28]. This generally results in low reflectivity
and poor resolution conditions for polarized neutron measurements at high energy and
large momentum transfer.

Spin selective absorption in highly polarized nuclei also leads to the polarisation of
the neutron beam . It has the obvious advantage that it completely decouples the
energy selection from the polarisation selection in both the incident and scattered
beams thus giving freedom to optimize the resolution conditions.

20.5MeV
o+ 20.1MeV o 3hesn

19.8 MeV

4He
Fig. A7  The level of 4He corresponding to the resonance responsible for the
strength and spin dependence of the 3He(n,p)t reaction

(b) Highly spin selective absorption in SHe. 3He might seems at first sight a strange
candidate for a device dedicated to the transmission of thermal neutrons since it
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absorbs them so effectively in many neutron detectors. Indeed the cross-section for
neutron capture is huge and falls off inversely with neutron velocity (Fig A 9).

In fact this capture cross section for the reaction 3H e+n—1t+ p has been shown to
be strongly spin dependent [29]. It is associated with a broad resonance (270 keV),
near threshold resonance for 3He+n, corresponding to a J=O% energy level in 4He
(FigA 10). With a fully polarized 3He absorber, only those neutrons with spins anti
parallel to the 3He polarization may be absorbed via the resonance. Practically, with a

80% 3He polarisation and an appropriate thickness (opacity), it is possible to produce
a spin filter with high neutron polarization (95%) and small attenuation of the desired
spin (Fig. A 11) [30-32].

1.0 5

pipumlemey ey iyl

{ == polarisation
0.8 - Lo —&~ transmission
«=k= quality factor

0.6

oad LI\ e

0_2 O AR - SR i M e e :

T T | T T
0 2 4 6 8
Opacity = N od
Fig. A8 Expected Transmission, T, polarisation P and quality factor PT12 for the
neutrons versus "opacity” Nod of the Neutron Spin Filter for 75 % polarized 3He
nuclei. It can be shown that the optimum is reach for Nod=2.2 (N atomic density, ©
absorption cross section, d thickness of the filter)
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Annexe 1:

General properties of the density matrix
Ter Haar, D., Theory and applications of the density matrix.
Rep. Prog. Phys., 1961. 24: p. 304-362.

Page 312: In this section, we shall discuss the general properties of the density
matrix. We shall introduce the density matrix first of all through the statistical
approach and prove some of its properties. After that we shall introduce it through the
quantum-mechanical approach and show that the two density matrices are, indeed, the
same. We may refer to the following papers and books to supplement the discussion
in this section: Kemble 1937[1], Tolman 1938[2], Husimi 1940[3], ter Haar 195441,
Fano 1957[5], and Hagedorn 1958[6].

In the statistical approach to the density matrix we are concerned with the
description of a physical system by an ensemble. This ensemble will often be a grand
ensemble, that is, the number of particle in the different constituent systems will not
necessarily be the same for all systems. We shall, however, in this section not
emphasize this aspect, but it will be important in the discussion in §4. Let there be N
systems in the ensemble and let these systems be described by normalized wave
functions W *(k=1,..., N ). Itis convenient to introduce a complete orthonormal set
@, in terms of which the w* can be expanded. To simplify our discussion in the
present section we shall neglect complications introduced by spin, that is, we assume
the y* and¢@, to be scalars. It is easy enough to take spin into account, and we shall
do this, for instance, in § 8. In terms of the ¢, we have

v =) o, (k=1,.,N) e2.1)

Originally we had defined our ensemble by the wave functions w*. In the new
representation it is defined by the coefficients c: .

Let A be a physical quantity, the value of which we wish to determine for the
system which is represented by our ensemble. This quantity will correspond quantum
mechanically to an operator A (all operators will be denoted by *) and its average
value for the kth system will be given by the equation

A, =_|'w"*f\w*a‘t, (22)
where indicates integration over all arguments of y*. Taking the average over the
ensemble, which we shall denote by {...}, we obtain the expectation value of A for the
system under consideration, and we get

N
A=N"Y [y Aytar (2.3)
k=1

or using Eqn (2.1),



A=N'Y Y d*gA,., e (2.4)

where A, is the matrix element of A in the @, -representation:

A= [ 01 A0, d {2.3)
Introducing the density matrix p by its matrix elements in the @, -representation,
Pon =N D ¥k, (2.6)

we can write Eqn (2.4) in the form
(A=Y, Appu =TrGAd, . (2.7)

where Tr indicates the trace, that is, the sum of the diagonal elements.
A few remarks should be made here about Eqns (2.3), (2.6) and (2.7). First of all
we notice that (A) is a double average: one average is the quantum-mechanical

average given by Eqn(2.2), and the other is the statistical average over the ensemble.
This means that two different kind of probability considerations enter into our
discussion; this point was speciaily discussed by London and Bauer (1939)[7}. The
quantum-mechanical probability considerations enter even if we have as complete a
knowledge about the physical system as is possible in quantum mechanics, that is, if
we know the wave function of the system; they are a feature inherent in quantum
mechanics and are not related to any lack of (possible)knowledge. The statistical
probability considerations, on the other hand, are closely connected to our lack of
knowledge-as they are in classical statistics-and were introduced exactly because our
knowledge is incomplete. Secondly, we note that the density matrix, or statistical
operator as it is sometimes called, is defined by its matrix elements in the particular
representation in which we are working. We shall see presently that if we change to
another representation the density matrix will change according to the usual rules of
quantum mechanical transformation theory. Finally, we note the intimate connection
between the density matrix elements and the average values of physical quantities.
This connection is used by the operational approach to define the density matrix in
term of averages. There are cases where the density matrix is a finite matrix- for
instance, when we are dealing with polarization experiments- and if it is a matrix of
rank M it is determined by M’ —1 independent parameters (vide infra). If we can find
the average values of M .| physical quantities A, these will suffice to determine the
density matrix. In the case of the polarization of light, for instance, M will be 2, and
the three components of the polarization vector will just be sufficient to determine the
density matrix completely, as we shall see in §8.
From the definition (2.6) we see that p is Hermitian,
P =Pw® e (2.8)



Applying Eqn(2.7) to the unit operator (;\ = i) we find that o is normalized (to

unity),
1={1}=Trp.1=Trp. f2.9)
This result could also have been obtained directly from Eqn (2.6) and the fact that
the y* are normalized
Tp=N"Y, Y ar*al=N"D1=1. .. (2.10)

From Eqn(2.8} it follows that the diagonal elements of the density matrix, p,,,, are

real, and from Eqn(2.10) it follows that they must satisfy the relations
> pn=1,0<p, <. L (2.11)
The physical meaning of the p,, is clear from Eqn(2.6) and (2.1): it is the
(normalized) probability that ¢, is realized in the ensemble.
Let us now consider a change from the ¢, -representation to another
representation, say, the j, -representation. Instead of Eqn(2.1) we have now
v =) co,= Zdexp. ...... (2.12)
The transformation from the @, - to the), -representation will be characterized by
a unitary transformation matrix S, such that

X, = Encp,,s,,p, ..... (2.13)
while Se*=s,.. . (2.14)
so that > 5,%8,=8,, (2.15)

where 8 " is the Kronecker delta function.

From Eqns(2.12) and (2.13) it follows that
Cn =D Sully nnr(2.16)
and using Eqn (2.15) we get from this equation
dy=2 ciS,*. {2.17)
If we denote the transformed density matrix by a prime, we have instead of Eqn
(2.6) the equation

o, =N'Y dtxdt, L (2.18)
and frgm Eqns (2.17) and 2.14) we get
Pog =N D6 * SanSp ™ =2 (7)) PnSeg rr(2.19)
or, in matrix notation,
o’=s8"ps, . (2.20)

which is the normal equation for the transformation of an operator.
We notice, by the way, that the averages (A) will be unaffected by the

transformation since
(A} = Trﬁfﬁr = TrS‘lﬁSS“AS = TrS—lﬁﬁS = TrSS“‘éA = T,ﬁ,i = (A), w(2.21)

where we have used the property of the trace

4



TrABC=TrBCA, .. (2.22)
and the fact that S~ =1.
Let now assume that we have made a transformation to a representation in which
p is diagonal,

P =P L (2.23)
Consider now Trp” (={p}). We have
15t =Y, ot <(3,0.) = (1) =1 (2.24)

where we have used Eqn(2.9) and the fact that the p, are non-negative. As the trace
is invariant under a unitary transformation, we can write Eqn(2.24) in the form
Trp® <1, or, Enmpmpm = EH mpm|2 <t L (2.25)

where we have used Eqn(2.8). Inequality (2.25) imposes a limitation upon all

elements of the density matrix, that is, upon both the diagonal and the off-diagonal
elements.

If we are dealing with a finite matrix, say of rank M, there are altogether M2
complex matrix elements p__, thatis, M2 parameters. This number is reduced by a
factor 2 because of Eqn (2.8) and reduced by unity because of the normalization
condition (2.9) so that there are M2-1 independent parameters. From the operational
point of view this means that one needs M2-1 independently measured quantity to fix
the density matrix.

In the preceding section we have discussed the difference between a pure state and
a mixture. We now wish to establish the condition that the density matrix corresponds
to a pure state. A pure state corresponds to the case where we have the maximum

information available about the physical system, that is, where all systems in the
ensemble possess the same wave function, W, say. In that case there is only one

averaging process involved in obtaining (A} , namely, the quantum mechanical one.

The pure state is characterized by the existence of what Fano (1957)[5] calls a
'complete’ experiment; this is an experiment which gives a result predictable with
certainty when perfonined on this state and gives this particular result only for this
particular state. The possibility of such an experiment is apparent if we bear in mind
that it is possible to find a Hermitian operator, corresponding to a physical observable,
which possesses this particular state as a (non degenerate) eigenstate. This complete
experiment can be used as a filter. It should be an experiment designed to measure the
observable, of whichy , is an eigenfunction. We may mention a Nicol prism as a
possible apparatus which could serve as a filter when we are dealing with density
matrices describing the polarization of light (compare §8).

We shall now prove that the necessary and sufficient condition that p describe a

pure state is



o’ =p, . {2.26)
that is, p should be idempotent. That Eqn (2.26) is a necessary condition follows
easily from the fact that Eqn (2.6) now leads to

P =€ (2:27)
as the c: are independent of k and are all equal to the expansion coefficients cio’ of
v, where W, is the wave function of all systems in the ensemble. As W is

normalized we get immediately
( ) 2 (0) (0) * C(D} (. C{OJ C(U) * — b (228)

To prove that Eqn (2.26) is a sufficient condition we consider again a
representation for which p is diagonal. In that case p’ is also diagonal, and Eqn
(2.26) is now equivalent to

p} =p, for all valuesofn, .. (2.29)
or: either p, =0 or p, =1. -(2.30)

From the normalization condition (2.9) and Eqn (2.30) it follows that one of the
P, say p, is equal to unity while the other p, vanish:

P =1;p,=0,n0. L. (2.31)
From Eqn (2.6} we then get
b=N"Y ke =1, «{2.32)
cﬂz must be not greater than 1, Eqn(2,32) can only be satisfied by putting
let[=1, k=1...N, -+(233)
ot v* = exp(io, ), @, real, -(2.34)

which means that, apart from an irrelevant phase factor exp(ict,), all y * correspond

to the same wave function.

We shall derive the equation of motion for the density matrix. We have assumed
that the systems in the ensemble are describable by a wave function and we shall
assume that the wave function satisfies the Schrédinger equation

By *=my*, L. (2.35)
where, as usual, the dot indicates differentiation with respect to time. The operator H
is the Hamiltonian of the system. It is convenient to use Eqn (2.1) to obtain the
transformed Schridinger equation
ihéy = 3 Hyer e (2.36)

and from Equs(2.36) and (2.6) and the fact that / is Hermitian it follows
straightforwardly that

ip,, =|A.p|_.orinp= 22 - (2.37)
where [ , ]_ indicates the commutator. We shall defer a discussion of Eqn (2.37) until
after we have considered the quantum mechanical approach to the density matrix, but

there are one or two remarks we wish to make at this juncture.



We have so far been working in the Schrodinger representation, that is, the
operators are assumed to be time-independent and the time dependence is contained
in the wave function (compare Eqn (2.35)). In the Heisenberg representation, on the
other hand, the time dependence is in the operators. Instead of a wave (or
Schrédinger) equation one has equations of motion for the operators. These are of the
same form as the equation of motion (2.37) for p but with the opposite sign. If we

were to change to the Heisenberg representation we would find that p would be a

constant operator (see, for instance, Hagedomn 1958).
The time dependence of {A) is, in the Schrédinger picture, invested in p and in

the Heisenberg picture in A. For {A) we find from Eqns (2.7) and (2.37), using the
fact that A is time-independent in the Schrodinger picture
{A\
i A)= thrpA ihTrpA = T H.p|_ A= Tr(HpA - pIHA)
or, a(a={aa), (2.38)

with the sign corresponding to the Heisenberg picture! Eqn (2.38) is, of course, true in
all representations.
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Annexe 2:

Polarization experiments
Ter Haar, D., Theory and applications of the density matrix.

Rep. Prog. Phys., 1961. 24: p. 304-362.

page 341: We mentioned in the introduction that often one can use an
operational approach to the density matrix. This is especially the case when one
discusses polarization or scattering experiments, as one is in that case interested in
only a few of the many parameters which specify the system and one can use a
density matrix which refers to only those degrees of freedom which are studied
experimentally. The simplest example is the polarization of a beam of electrons which
we shall discuss in some detail. A related problem is that of the polarization of light
which we shall also consider here, without going into a very detailed discussion. Our
final discussion will be of scattering and angular correlation experiments. For a
consideration of such experiments elaborate matrix techniques have been developed,
some of which are based upon the density matrix, but we must refer to the literature
for a discussion of such techniques (see, for instance, Tolhoek and de Groot 1951 b,
¢[8], Cox and Tolhoek 1953[9], Tolhoek and Cox 1953[10], Hartogh, Tolhoek and de
Groot 1954[11], de Groot and Tolhoek 1955[12], Huby 1958[13]).We can only touch
upon some aspects of density matrix techniques; for more details of those techniques
as applied to polarization, scattering, and angular correlation experiments in nuclear
physics we may refer, for instance, to the papers by Tolhoek and de Groot (1951
a)(8], Lipps and Tolhoek (1954 a, b)[14], Kotani (1955)[15], Tolhoek (1956){16],
Fano (1957)[5], Hagedorn (1958)[6] and Zaidi (1959). We may also mention some
unpublished lectures delivered by L. Rosenfeld to Nordita in Copenhagen which have
been of great use in writing this section. The use of density matrices in discussing the
polarization of electromagnetic radiation is based upon the fundamental ideas of
Stokes(1852). Recently Fano (1949, 1957)[5, 17] and Wolf and Roman (see , for
instance, Wolf 1954, 1959 a, b, 1960, Roman 1959[18], Parrent andRoman 1960)[19]
have discussed this problem in great detail, but we can refer here only to those papers
which are relevant to our discussion of density matrix techniques. In the present
section we shall consider the polarization of particles with spin 1/2; the case of larger
spin values will be mentioned only briefly.

Let us consider a beam of particles with spin 1/2, for instance, a beam of electrons.
If we are only interested in the polarization or spin-orientation properties of this
beam, we have a system of particles with two degrees of freedom, as long as we
neglect negative energy states as we shall do here. The system should thus be
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describable by a 2 by 2 density matrix, and we need only 3 independent parameters to
determine fully the density matrix,(Compare the discussion in §2). The physical
situation is completely defined, if we know the polarization vector P, that is, the
average value of the spin vector in the system,

P:{&), w(8.1)

where & is the vector the components of which are the Pauli matrices,

. ot . |0 - 1 0
cx=|1 ol cr_v=|i ol GZ:L I (8.2)
We note that these matrices satisfy the following relations
fro,=fro,=froe,=00 .. (8.3a)
6,6,=-0,0,=i0,, 0,0, =-~0,0,=i0,, 00,=-0,0,=i0,;
6l=6'=6'=1; . (8.3b)
Tr6,6,=Tr6,6,=Tr6,6,=0, Tr6' =Tr6 =Tr6 =2 (8.3¢)

As P has three components we can use these as the three independent parameters
to determine the density matrix p. As p is a 2 by 2 matrix, we can express it in terms

of the unit matrix 1 and the Pauli matrices,

p=al+(asd). (8.4)
From the normalisation condition (2.9) and Eqn (8.3a) we get
Trp=1=2a, or, a=% ..... (8.5)
while Eqn (8.1) leads with the aid of Eqns (8.3a) and (8.3¢) to
P=(6)=Trp6=Tlas+6{ad)]=24 .. (8.6)

Combining Eqns (8.4) to (8.6) we get

. 1r- . 1j1+P, P, -iP
92‘2[1+(P'°)]=5Px+ipy 1-p, |’

This equation shows that, indeed, p is determined, once P is known.

Let us now consider the case where this beam passes through a magnetic field, and
ask what will happen to the polarization of the beam. We could use Eqn (2.37) for the
rate of change of the density matrix and as p contains P obtain in that way the
equation of motion for P. The drawback of this procedure is that one cannot apply it

with the same ease to the case of particles with spin greater than % . We shall instead

use Eqgn (2.38) for the rate of change of average values. From this equation and Egn
(8.11) we get

ap_a6) i~
e —‘gqU’Hsl/ ...... (8.8)

where PAIS is the Hamiltonian referring to the spin coordinate (the spin Hamiltonian)

which is given by the equation



i

I E

'

A, = (i H)= ~> y4(5:H), (8.9)

where His the magnetic field, [i the magnetic moment of the electron i = ehG / 2mc

with e, electronic charge; m, electronic mass; ¢, velocity of light), and y the

magnetogyric ratio (y = e/ mc). If we write Eqns (8.3 b) in the symbolical form
[6A6]=26 . (8.10)

we find from Eqns (8.8) and (8.9)

P
> zw\[o (6H ]\
=%iy([HA 6'/\0) —Y\[HA/CT)]
or, %P =—y{{HAP],

which is just the classical equation of motion for the polarization vector. One could
prove Eqn (8.11) starting from the Schrodinger equation, but the proof is
cumbersome. The ease with which we could prove Eqn (8.11) is an example of the
advantages of the density matrix. Eqn (8.11) itself is a consequence of the generalized
Ehrenfest theorem (Ehrenfest 1927[20], Kramers 1957(21}, § 30) which states that
any quantum-mechanical average will obey the corresponding classical equation of
motion.

We can easily generalize the discussion leading to Eqn (8.11) to the case of larger
spin values. Let j(>1/2) be the largest possible value of the angular momentum of the
particle. The density matrix will now be a 2j+1 by 2j+1 matrix, and apart from the
components of the polarization vector P we need other quantities to determine p
completely. The vector P can be called the dipole polarization vector, and the other
quantities which can be used to determine p are the quadrupole polarisation tensor (5
components; its components and the 3 components of P are the 8 parameters which
are sufficient to determine p if j=1), the octupole polarization tensor (7 components;
it comes into play if j>1), ..., in general the 21-p01arization tensor (with 21+1
components; for a given j, all multipoles with I<2j will be involved). We do not have
the space here to go into a detailed discussion of the determination of the density
matrix for this general case and refer to Fano's review article (1957) where further

references can be found. The polarization vector P is now defined by the equation
) — (8.12)

where J is the angular momentum. It satisfies the commutation relation which can be

expressed by a formal equation similar to Eqn (8.10),
[Ind]=in. (8.13)

The spin Hamiltonian is given by the equation

10



~

H=—(m), (8.14)

and from Eqns (8.12), (8.13), (8.14) and (2.38) we find that Eqn (8.11) holds also for
the general case.

1
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Annexe 3

Magnetic Scattering of Neutrons:

A Technique with a Real Future-[22]
J. Schweizer
,DRFMC/MDN/CEA-Grenoble, 1996,

The scattering by one atom, in a well defined quantum state, transforms a neutron

in state 1%} in state X7 i S matri
spin state A/ in another spin state 1A / by the action of an © matrix:

Ix 3 = Slx}
with lx} = al+}+ 8->
and |x) = al+} +&1-)
a’ :(a” an]lZI
One can write Pl \ay axn (89)
The S matrix is expressed as
(aytay (au=ap
[au ap) _|T 2 - o | L2
ay azz) 0 LTIl ta J O —%-1—222—“( — )J
2 2
[au alz} :(B 0}+( A, A‘_lAy]
a4y ap 0 B A, +i4, A, (810)

which means that formally, the S matrix can be written:

S=BI+;‘;.& (S11)

where [ is the unit matrix, B is a scalar and A is a vector.

The polarisation dependant neutron cross section

In order to express the cross section of a scattering process in which the scattering

\ ‘ \
system changes from |7 to A ), and the neutron state changes from Ly , to Ik,x’),
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k being the wave vector of the neutron, one uses the master "Fermi Golden rule”
formula:

d2 k’ ’ I3 R
; “(2:;12) 2ol Ew MM 8(E, - B, +ho)
AR

dQdE’ & (12)

\ —
where P4 is the probability of finding the system in the quantum state %) ,and (7)
is the interaction potential between the neutron and the atoms.

The spatial part of the matrix element can be written

K WA) = [, e T VE X v d'r =V(§)

(513)
which is the Fourier transform of the potential, with g=k'—k,
We are left with the matrix element of () between two spin states:
Iv(ghn)
with: X} =al+}+ 8->
%73 =al+3+61=)
%% =V{g)lx}
and the following relation:
o _( B(3)+ A(D) Ax(a)-iAy(a))ﬂ
vl \A(9)+iA(9) B{g)-A.@) )b (S14)
The partial scattering amplitudes
Starting with a spin state Ix} =1+
o ,.( B(7)+ A A,(é)—iAy(é)}‘l‘ _|B@+A@
a’=B{@)+ A. @ is the non spin flip amplitude U™
b'=A, (‘})"L iA(9) is the spin flip amplitude U
o : I} =1~}
Starting with a spin state 1X/ =177
« ( B(@)+ A @) Ax(a)—fAy@‘)ﬁ: A@) - i4,@
Pl \A2)+iA( B(G)-AD Blg)- AP (S16)

'

a’=A[(3)- iA(q) is the spin flip amplitude U

13



b"=B(@) =A@ is the non spin flip amplitude U
These partial scattering amplitudes may be written in the contracted form:

U= =B() £ A (817)

U™ = A(q) iA(g) (S18)

The scattering cross section can be written:

dc k’( m )22 A
iy 2 PAS(E.\_EJ.'+hU)X%|XI

If the system is in a well defined qugntum state A before the scattering process, and a

well defined state A~ after, there is one function x> only and:
d’c _k ( m
dQdE’  k\2mh®

Starting first with a perfect polarization along Oz

2
) 8(8, - B+ o)
(524)

I =1+

X =VIx}=(B + A >+ (4, +i4, )

g ? 2 . 2
oy =B+ A +[A, +iA) (525)
Starting then from a perfect polarization antiparallel to Oz, one gets:
Fla, ? 2 . 2
{x |x ) = |B _Azl +|Ax - lAyl (S26)

For a beam of neutrons, with a non perfect polarization P , one chooses the Oz
direction parallel to P, and average expressions (S25) and (526) for
. 1+P

nt=—
2 neutrons polarized along Oz
. 1-P
n=—

2 neutrons polarized along -Oz

This results in the general formula for the cross section:

it~ kz(zﬁ,)“" (B~ B+ ho)[B +A"A+ F(B"A+ 4'8)+ iP(4" A 4)]
(827)
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The final polarisation

In the same conditions, when the states A and*” of the system are well defined, the
polarization P of the scattered beam is the average value of the vector operator O

5Bl
A (S28)
Starting first with a perfect polarization along Oz

[} =1+>

XY= +AdD+ (A, +4)1

one gets
OCIOP =[BT+ A7) (A, a8 + A + (4, +ia, )] ($29)
which corresponds for the 3 components of P tothe 3 equations
01
G yPL =[BT+ A7) (K4, - iAy'){ . 0}[([3 +A Y+ (A, +iA, )]
(530)
RN e o0 -
NP =[(+I(B +A4, )+(—|(Ax —iA, )L O’}[(B +A )4+ (A.Jr +iAy]—)]
(S31)
. . Af! O
(b =[BT+ A7)+ N4 ~in, )](0 B ad+(a, +ia )]
(S32)

Starting then from a perfect incident polarization antiparallel to Oz, one caiculates:
Wl P =xlelx
w1th|X/> = (Ax —iAy)+) + (B - Az)_}

For a beam partly polarised, after choosing the Oz direction parallel to P and

R Z
averaging over # neutrons polarised along Oz and ' neutrons polarised along -Oz,
one gets:

d*s 13, k’( m

dQdE | k\2nk

{B A+APB—iA AA+B PP+ (ﬁ‘ﬁ)ﬁ +A'(}3}i)— ﬁ(ﬁ*ﬁ) +i[B‘ (A.A f’)+ (ﬁ /\/I)B]}

2
) 8(E, — E,, +ho)

(833)

The cross section, which has been formulated
d*o
dQdE’

< {x XV =BB + E'EH;(B "A+ EB)+ iﬁ(ﬁ* Af«)
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ot}

can be expressed as a sum of two terms:

2 — -
do =a+ PV
dQdE’

where a is a scalar
a=PPB+AA
V=B A+AB +iA"AA

and Vis a vector

By varying the incident polarisation V| the measurement of the cross section gives
access to 4 quantities: the scalar @ and the 3 components Vx, Vy, and Vz of the

vector V

In the same way, when formulating the polarisation of the scattered beam

as:
/)P =B A+AB—iA A A+BBP + (E' ﬁ)ﬁ + ;1‘(13/1)" f’(ﬁ'ﬁ)ﬂ[ﬁ' (E A ﬁ) +(ﬁAE)B]

this expression is equivalent to?’ = V' + TP

whereﬁ'is the vector BA+AB-iA AA and where 7 is a tensor.
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Annexe 4

Cross-section and polarisation of scattered beam
Marshall, W. and S. Lovesey,

Theory of thermal neutron scattering. 1971, Oxford: Oxford University
Press.

page 327

The partial differential cross-section derived in Chapter 1 is given by
d'c ( m )2 kK I 16
= — | = AolVIOR 67y x
dQdE  \ 2mh’ kg_;”l”c*é,\ (0P ) _

x (A r’g’ll}(x )IA,G}S (ho +E, —E,.)

.(10.20)

In (10.20}, ‘IA/(K) is the Fourier transform of the interaction potential between the
incident neutron and the target system.
For purely nuclear scattering from an array of rigid nucleit,

~ 27ht _ -
Vv, (x)= — Y exp(ic.R,, )b, . (10.21)
1,d

Here l;,d is the scattering amplitude operator (cf. (1.26))
b, =A,+ % B,G-i, (10.22)

where i, is the angular momentum operator for the nucleus at lattice site
R, =1+d.

For purely magnetic scattering (cf. (5.10))

P (x)= [ Zm‘zz}( Y922 ]&, Zexp(il(.r,. ){fcx (s, x¥) _-hi_ilaﬁ X IA).} (10.23)

m Amg

In a later section of this chapter we calculate the cross section for the scattering of
neutrons by the electric field produced by the nuclei and atomic electrons in solid.
The interaction potential for the process is there shown to be

Vi) z[?}(;—;){ﬂi—i]{iwt(% 0)n-6 —l}x
x{g exp(ic R, )Z, - Zexp(imri)}

where k'x k=k’sinOn (10.25)
defines the unit vector and eZ{ is the charge associated with the nucleus of site d

, (10.24)

within the unit cell.
An examination of the three types of interaction potential given above shows that
they all have the form
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V=

o

V=h+as (10.26)
where the operators B and & refer to the target system. It is therefore sufficient in
studying the modification to the cross section due to polarisation, to consider just the
general form of interaction potential (10.26).

Let us also, for the moment, consider that part of the cross-section (10.20) that
depends on the neutron spin, namely,

Y, po{ ot lo Ko o) (10.27)

The sum over ¢’ in (10.27) can be done by closure, to give
Y. p.{ol*ilo} (10.28)

This is valid only if there is no phase correlation between the states labeled with the

quantum number @ , i.e. only if with respect to these states ¢ the density maltrix is .
diagonal. But in this case the probability p, is just the diagonal element (c|ﬁ|o'), S0

(10,28) can be rewritten
Y (oo X ol o) (10.29)
Furthermore, if p is diagonal,
(G’Idc) =50.0’(0-|6|G)
so that {10.29) becomes

‘E(UIW qGXU 1§|0')

and the sum over ¢’ can be done by closure to give for (10.27)
2 Ps (0[\710 ')(019]0‘) = 2(0‘ {F*ﬁ[ﬂc) =Triop=Trpd™v (10.30)
o0.0” [\

This final form is independent of the representation that is chosen to label the
states and hence for this last form it does not matter whether or not p is diagonal. We

conclude therefore that a formula which is much more general than (10.20) is

d* % A 14 .
dQ;E. = (#) - g‘ 2. Tr p(le(K )l)\.'}()\. 1V(1<)|A)8 (ho + E, — E,. )(10.31)

where it is understood that the trace is to be taken with respect only to the neutron

spin coordinates. Before we examine the structure of the spin-dependent part of this
cross-section we derive an expression for the polarization of the scattered beam, P’.
The formula for P* must represent the transformation of the spin state of the incident
neutron beam, defined by P, due to the interaction with the target system; we must
average the initial spin state of the beam over all possible scattering processes and
sum over all possible final states. Thus
P < Trpv'6v.
The constant of proportionality is determined by normalisation; viz.
P =Trpd’av/ Trpv'y (10.32)
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In full we have

d’c ( m K Ny
P’ — = —] — Trofh
dQdE 2nh2) x 2P TR

A3} ')6>< .
X (JL 11;(1(11}8(3‘10) +E, - E;/)

Let us examine the structure of eqns (10.30) and (10.32) with the general form of v

given by eqgn (10,26). For the cross-section we need to evaluate (10.30),
fadet 1) 1 AN+ A A M A
Trpv'y == Tr(l-i—P.GXB +a .0')([3 + oz.cr)
2
| . . (10.34)
=STr(I+P&)FB+p'a.6+d".6p +d".56.5)

The evaluation of the trace of products of Pauli operators is facilitated by making

use of the identity
G oGy =8u gl +i D E e O, (10.35)
Y

where €., 1s the completely antisymmetrical tensor with three indices,
ie. €. = t+1if a, B, y are in cyclic order,
=-1 if q, B,y are not in cyclic order,
=0 otherwise.
This identity is derived by using the commutation relation for angular momentum
operator,
[E‘ﬂf‘ﬂ} :I}v: Cagy I:v
and the fact that Pauli operators anticommute,
5,6, + 6,6, =25, ,1
Because 770, is zero, we obtain from (10.35)
Tr6,0, =28, ,
Also with the aid of this result,

Tr&,6,6, =i 3, €0y Tr 0,0, =2iEy, . (10.36)
<

With the aid of these formulae we find for (10.34) the result,
Trpp 5 = &' .6+ "B+ B (&.P)+(&" . PP +iP.(&" x&). (10.37)
When it is adequate to consider only nuclear and magnetic scattering, an
examination of the corresponding interaction potentials, (10.21) and (10.23), shows
that [§ contains only nuclear terms and ¢ both nuclear and magnetic scattering. This
interference has been utilized to perform very accurate measurements of magnetic
structure factors. Bearing in mind that the cross-section must be averaged over the
orientations of the nuclet, it can be seen that for randomly oriented nuclei the last term
on the right-hand side of (10.37) is purely magnetic.
In order to evaluate
Trpv'ed (10.38)
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as required in the formula for P’, eqn (10.32), we need, in addition to (10.12) and
(10.36) the identity

Tr6,646,85 = 28,48,5 =80y Bs5 +8usdsy ) (10.39)
which can be derived from (10.35). Also note that, if A andB are arbitrary vectors
(AXB), = Y, €, AgAY ; (10.40)
By
With these results,

Trpo o =Bra+a'p+p AP+ &+{G.P) +(&*.P)6c -
- “ (10.41)

~P.(6".8) it x& +iB (6 xP)+i(Px & )P

If we again consider just nuclear and magnetic scattering, we see that in the limit
of an unpolarized incident beam of neutrons there is a creation of polarization by a
purely magnetic term (for randomly oriented nuclei), ~i&" ¢ .

To sum up, we use (10.37) in conjunction with (10.31) to give the cross sections
and we use (10.41) in conjunction with (10.33) to give the polarization P* of the

scattered neutrons.
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