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Magnetic scattering of x rays® (invited)

M. Blume

Brookhaven National Laboratory, Upton, New York 11973

The scattering of x raysis used to determine the electric charge distribution in matter, Since x rays %
are electromagnetic radiation, we should expect that they will be sensitive not only to the charge
distribution, but also to the magnetization density. That this is indeed the case has been pointed
out and studied experimentally. In this paper the magnetic scattering is discussed in a way which
allows consideration of the effects of electron binding. The cross section, compared with that for
neutron scattering from magnetically ordered materials, is reduced by (%o/mc?) (about

5 10~*). With a synchrotron radiation source, however, this factor can be made up, and
magnetic x-ray Bragg peaks can be collected in the same time as neutron peaks. Special effects of
interest include high momentum resolution, polarization phenomena which separate spin and
orbital densities, and resonance effects which give a large enhancement of the x-ray cross section
and which may make the study of surface magnetism possible.

I. INTRODUCTION

Neutrons have long been the probe of choice in studying

the magnetic structure {static and dynamic) of condensed
matter, while x rays have provided detailed information on
crystal structure through interaction with the electronic
charge distribution. Since x rays are part of the electromag-
nretic spectrum, however, we should expect that they will be
sensitive to magnetic as weil as to charge distributions. In-
deed, this sensitivity has long been used in analyzing polar-
ization effects in Compton scattering.' The cross section for
the scattering of photons by free charges, including magnetic
effects, was derived by Low? and by Gell-Mann and Gold-
berger® by taking the nonrelativistic limit of the Compton
cross section. A similar calculation was carried out by Platz-
man and Tzoar,* who first pointed out the possibility of us-
ing these effects in the study of magnetization densities in
solids in a manner comparable to that done with neutron
scattering. Subsequently, de Bergevin and Brunel® discussed
polarization phenomena and orbital magnetic scattering and
carried out several experiments demonstrating the existence
of the effects predicted by Platzman and Tzoar.

In this paper the cross section for x-ray scattering, in-
cluding magnetic terms, is derived in a way which allows the
effects of electron binding to be accounted for. By starting
with the nonrelativistic Hamiltonian for electrons [to order
{v/¢)*] and the quantized electromagnetic field, we produce a
general formula for the cross section including virtually ail
scattering phenomena in appropriate limits (in the *“kine-
matic” or Born approximation}, inciuding Thomson, Ray-
leigh, Bragg, thermal diffuse, Raman and magnetic scatter-
ing, and anomalous dispersion. In the limit of photdn energy
large compared to electron binding energy, we recover the
Platzman-Tzoar expression. The resuits show new resonant
magnetic scattering effects when the photon energy is com-
parable to the inner electron excitation or binding energies.
These magnetic effects are related to anomalous dispersion
phenomena, but they have a different polarization depen-
dence and vanish in the absence of magnetic order.®

* Work performed under the auspices of the 1.5, Department of Energy.
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The cross section for magnetic x-ray scattering is
smaller than that for neutron scattering {and x-ray charge
scattering) by (fw/mc?). It is thus difficult to observe these
effects against a background of charge scattering, although
interference between the two can be used {o extract the mag-

" npetic cross section. Because of the high intensity of synchro-

tron radiation sources, it is possible to make up the factor
{Aew/mc’) so that magnetic x-ray peaks can be collected in a
time comparable to that for neutron peaks. X rays can then
be used, because of the higher resolution possible for them,
to study long period modulated magnetic structures and an-
tiferromagnets in which the charge and magnetic peaks do
not coincide. X rays are also useful in distinguishing orbital
and spin scattering, which have different polarization depen-
dence, unlike the neutron case.

The principal resuits derived are Eqs. {13) and (13),
which give the cross sections necessary for calculating mag-
netic scattering effects. We consider here elastic scattering,
but the formulas are valid for inelastic phenomena as well.

il CROSS SECTIONS

We start with the Hamiltonian for electrons in a quan-
tized electromagnetic field

H = g ﬁ(r, - S A{rj))i
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This contains the radiation field, the electrons, and in-.

teraction terms. The vector potential A{r) is linear in photon
creation and annihilation operators ¢ * (k4 }and ¢{kd ) so that
scattering occurs in second order for terms linear in A and in
first order for quadratic terms.
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In the spin-orbit term in Eq. (1),
E= —V$—LA,
c

where ¢ is the Coulomb potential. Since the spin-orbit term
is already of order {v/c)?, we will omit linear terms in A and
keep only the quadratic ones and those independent of A, so
that

e
Ame) 2,:"'%.” DS(P‘ '.".%A 5 )) . @
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The first term is the ordinary spin-orbit coupling term for

electrons, while the second gives spin dependent scattering.
We can now write

H=Hog+ Hp +H, G
with
Hy= ;ﬁ"} HIV+ 5o zs, (Yo, xP), @)
Hp = ;ﬁﬂ’x(c*'(u )Cki)+ 4, (3)
H 5= 2”":2 ZAZ(’}) ——ZA(‘})PJ
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=F + #} + H; + H,. (7)

" and #°, are quadratic in A, while 5¥; and 7 are
linear. The vector potential A is expanded as
ZWZ) 1r2

Alr)=

) ;( .
X [elao)laole” + e*(aole*(gole~ 1. (8)

¥ is a quantization volume, which drops out of any physical

expression. The index o = 1,2) labels the two polarizations

of each wave g, and €(qo) is the corresponding unit polariza-
tion vector. Because of the transversality of the waves,

gelgo) =

Scattering cross sections are calculated by assuming
that initially the solid is in a quantum state |a) which is an
eigenstate of %7, with energy E,, and that there is a single
photon present. We then calculate the probabiiity of a transi-
tion induced by #” to a state |b) with photon k'4°". The
transition probability/unit time is given by the *‘golden rule”
{to second order)

w—_

{ |1y + E (f'ﬂ?"ln)(ﬂgf'l,) |z

‘ —

><6(E, E) 9)
|y=|akd ); {f)=|bk'"),
EI=E¢ +M*| E_r="-Eb -l-fulk..

Only #° and #°, contribute to the first-order term,
and only %, and #°} to second order.

Hence
w——— (b;X'A’|FH 4 HF|akd )
Z (bK'A|# + H5|m)n|F} + H5|askd ) |?
& E, +#%w, — E,
X 8(E, — E, + fiw, — ). (10)’

Assuming w,. ~a, (i-e., that only low-lying excitations of
the solid will be considered),

KA\ + Fapd y =2 €
Voo mc

X ‘(b zj:ex"" a)e’-e] - ';'c?(b Ejlem‘ﬂj

where e=elkl ), €=e*%'ANV and K =k — ¥

The first term gives e usuar [homson sc.iite
expression, which depends on the Fourier transform of the
electron density ).‘.,e "I, The second term, which is smaller
than the first by #w/mc® (mc®~0.511 MeV, so fiw/
me* ~0.02 for 10-keV x rays) depends on the spin density
Fourier transform
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FK-r,
e ’s.
7

In the limit of high-energy photons, the terms in 5%, and
5, will give additional contributions of this sort, as will be
seen. '

In the second-order terms, the intermediate states |n)
fall in two classes: those in which the initial photon has been
annihilated first, and those in whzch the final photon has first
been created.

Calculating the photon parts of these matrix elements
and combining with Eq. {11}, the cross section is obtained
from the transition probability by multiplying w by the den-
sity of final states and dividing by the incident flux:
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Equation (13) accounts for most x-ray scattering phe-
nomena to order (fiw/mc?)2,

The first (Thomson) term gives the usual expression for
Bragg scattering when |b ) = |a) and the periodicity of the
lattice is accounted for. Anomalous dispersion effects occur
when fiw, ~E, — E, for some state jc), so that an energy
denominator vanishes in Eq. {13). We have added a term
iI',/2 to the denominators in Eq. (13) to take into account
the level width, which is important only very close to reso-
nance. Equation {13) also includes spin-dependent resonance
terms which arise because of the 5.V X A term in #.

To derive purely magnetic scattering we assume
@, ~wy »(E, — E,)/A Neglecting the latter terms in the
denominators of the last two terms, these reduce to

L Sl ).

(S + ilex s, Je* “Jia), (14)

where we have used closure to carry out the sum over ¢. The
commutators in Eq. (14) are straightforward but tedious.
Evaluating them gives

(i
a)-( — (E'XE']X(EXE)

+ (b T,
7
+ (k' x €Yk €) — (kX )i, |
and combining this with the other terms in Eq. (13) gives
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A=¢€'Xe
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Equation (15) gives the cross section for scattering from
magnetization densities. The magnetic terms are smaller by
#iw/me” in amplitudes than the charge terms. An interfer-
ence can occur which will be of this same order. Because of
the factor i in front of the magnetic term, this interference

8(E, —Ey + o, —fi). {13)
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i
SRR e b s s

o,

wﬂl occur only if the polarization factors are complex (circu-
lar polarization) or if the structure is noncentrosymmetric.
The pure charge scattering is larger than the pure magnetic
scattering by a significant factor:

T g N( #iw )ZN.’, , )2f§.

Coparge N 1C7 rr’
where N,, is the number of magnetic electrons/atom, ¥ the
number of electrons/atom, and £, and £ are the magnetic

and charge form factors.
For Fe and 10-keV photons,

E 4 1075(s)2
o'cham

Also, the magnetic form factor £ of an atom falls off more
rapidly than the charge form factor because the magnetiza-
tion density is more diffuse spatially than is the charge den-
sity. This reduces the ratio even further. Finally, the factor
{S'), which goes to zero at the Curie temperature, is unity
only at low temperatures. By comparison the cross section
for magnetic neutron scattering is

dec _ ( — 1.9le2)2£|(b I
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The ratio of magnetic terms for x rays and neutrons is
approximately

I*o*m.Mi(ﬁQ)un 1 I
me=/ I3 4 I3’

Iion 4
Neutron sources can give ~ 10° neutrons/sec on a sam-

ag

ple. An x-ray source which gives ~ 10" photons sec {mono-

chromatic} will give comparable x-ray and neutron peaks.
The x-ray pure magnetic scattering should be observed

in structures {like antiferromagnets or spirals) in which the

Bragg peaks do not oceur at the same point in K space as the
much larger charge scattering. Note toe that Eq. (15)shows a
different polari-ation factor for spin and orbital terms, pro-
viding the possibili*y of distinguishing spin and orbit magne-
tization densities.

Finally, we consider the possibility of a resonance ef-
fect—where fiw ~ £, — E, in Eq. (13). These resonances are
the source of anomalous dispersion. Here we consider the
case where the core levels are exchange-split by magnetiza-
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tion of the outer electrons. The spin-dependent terms be-
come

#k?

m

(b ik x€)ae ey c|(k X )s,e™a)
Ez . y Ie : ’
v E, —E, + %0 —i—

For fiw~E, ~ E,, this is of order

i—;ﬁe)c? 2 Iﬁf: Ey:(b le _ *rey cle™Ma).

The factor #w/Ic can be as large as 10*. The experi-
MENt TEQUITES ¥oposon < e <4, WHETE Vpnoion IS the width of
the incident photon and 4 is the core-level exchange split-
ting. Circular pnlarization is also in general required to ob-
serve antiferrumagnetic peaks.

In summary, there are many interesting effects which
can be studied in the magnetic scattering of photons. This
technique can complement in some cases the neutron scat-
tering measurements.

Among the experiments are measurement to study

{1) tong period modulated structures;

(2) differences of spin and orbital magnetization den-
sity;

(3) resonance effects, i.c., spin-dependent anomalous
dispersion, which can give greater intensity and will give
Bragg peaks at points in X space different from the charge
peaks;

(4) surfaces using the above resonance methods; and

{5} interference between the magnetic and charge scat-
tering with circular polarization.

ACKNOWLEDGMENTS

1 am indebted to L. D. ‘Gibbs and D. E. Moncton for
helpful discussions and for showing me their experimental
results prior to publication.

'A. H. Compton and S. K. Allison, X-Rays in Theory and Experiments (va
Nostrand, New York, 1935). .

IR, E. Low, Phys. Rev. 96, 1428 (1934).

M. Gell-Mann and M. L. Goldberger, Phys. Rev. 96, 1433 (1954).

“p. M. Platziman and N. Tzoar, Phys. Rev. B 2, 3556 (1970).

*F.de Bergevin and M. Brunel, Acta Cryst. A 37, 314, 325 (1981).

*M. Blume, Proceedings of the New Rings Workshop, Stanford, 1983; 1. B.
Khriplovich and O. L. Zhizhimov (preprint).

L. L. Foldy and S. Wouthuysen, Phys. Rev. 78, 29 {1950}

%Y. J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley, Reading,
MA, 1967).



FHYSICAL REVIEW B

YOLUME 37, NUMBER 4

Polarization dependence of magnetic x-ray scattering .
M. Blume and Doon Gibbs R

Brookhaven National Laboratory, Upton, New York 11973 .
{(Reocived 12 June 1987) - .

. We calculate the polarization dependence of the x-ray scattering croes section, including mag-
for the polarization dependence of the cross section of the pure magnetio acattering and of the in-
terforence between charge and magnetic scattering, and for the polarization of the scatterad beam
in both cases. These expressions are compared to the equivalent results for magnetic nentron
scattering. The general results are then specializad to several typical cases, including the sostter-
ing of linearly and circularly polarized radiation from spiral, uniaxiaily modulated, and ferromag-
netic structures. It is shown that detailed magnetic-siructore determinations are possible using
synchrotron radiation. It is further demonstrated that the orbital- and spin-angular-momentum
contdbutions of both ferromagnets and antiferromagnets may be separately measured in a variety
of simple geometries. It is found that, although the efficiency is very Jow, linearly polarized radia-
tion onn be completely convertad to circular polarization by scatiering from a magnetic spiral. Fi-
nally, it is shown that, in addition to the interference between charge and magnstic scattering,
there is an interference involving the spin- and orbital-angulsr-momentum scattering, which can
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coupie moments in different spatial dircctions.

L INTRODUCTION -

In the last several years magnetic x-ray experiments
osing synchrotron radiation have been performed on a
rteadily growing number of magnetic systems. These ex-
periments have included high-resolution studies of the
pure magnetic scattering in antiferromagnets'—* as well
as of the interference between charge and
scattering in bulk and thin-film ferromagnets.*~
dependent Compton- (Refs. 7 and B8} and resonance-
magnetic-scattering’ studies have been performed on a
variety of ferromagnets. The high brightness of syn-
chrotron radiation sources has been an important factor
in the success of many of these experiments. It has now
become apparent that the polarization dependence of the
magnetic cross section can also be exploited in even
more detailed studies. First, the use of the polarization
dependence provides a natural technique for determining
magnctic structures. by x-ray scattering. Beyond this,
there are novel possibilities which arise from the well-
defined polarization characteristics of syachrotron raclia-
tion. For example, using the high degree of linear polar-
ization of the incident beam it has been posaible in syn-
chrotron experiments to distinguish between charge
peaks, arising from lattice modulations, and _ms_igne_ﬂc
peaks, in a spiral magnetic structure.>'® This distinction
was crucial to the interpretation of the diffraction pat-
tern in recent studies of rare-carth metals. Furthcrmore,
it has been suggested that by analyzing the polarization
of the scattered beam, it should be possible to separately
measure the spin and orbitat contributions to the cross
section.!! This separation is not directly possible by
neutron-scattering techniques and is important to a fun-
damentzl understanding of the electronic properties of
magnetic materials. Along these lines, we note the

37

elegant experiments of Brunel e ol in which thé

soattering of circularly polarized synchrotron radiation
was explicitly observed in a powdered ferrite.

In this paper we calculate the polarization dependence
of the x-ray scattering cross section, including magnetic
terms, using the Poincaré representstion for the polar-
ization. General expreasions are given for the polariza-
tion dependence of the crosa section of the pure magnet-
ic scattering and of the interference between charge and
magnetic scattering, and for the polarization of the scat-
tered beam in both cases. These expressions are com-
pared to the equivalent resolts for magnetic neutron
scattering. The geperal results are then specialized to
several typical cases, including the scattering of linearly
and circularly polarized radiation from spiral, uniaxially
modulated, and ferromagnetic structures. 1t is shown
that detailed magnetic-structure determinations are pos-
sible using synchrotron radintion by measuring the po-
larization dependence of the magnetic and interference

.cross sections, and by analyzing the polarization of the

magnetically scattered beam. It is further demonstrated
that the orbital- and spin-angular-momentum contribu-
tions of both ferromagnets and antiferromagnets may be
separately measured in a variety of simple geometries. It
is found that, although the efficiency is very low

"( < ~1079, linearly polarized radiation can be complete-

ly converted to circular polacization by scattering from a

" magnetic spiral. Finally, we note that, in addition to the

(A

interference between charge and magnetic scattering,
there is an interference involving the spin- and orbitai.
angular-momentum scatteting which can couple mo-
ments in different spatial directions.

Although particular features of the polarization
dependence of the cross secticn have already appeared in
carlier papers,!>1*%%11 the general case, explicitly includ-

17719 ©1988 The American Physical Society



- This expression is ex

1780 M. BLUME AND DOON GIBBS 3

ing the orbital angular momentum and the final polariza-
tion, has not been previously published. The present re-
sults are surprisingly simple and will be important for
their utility in suggesting and in analyzing the results of
synchrotron experiments. The general results for the x-
ray cross section are summarized in Eqas. (6), (7), and (9).
ded using the Poincaré represen-
tation in Egs. (11), (12), (14), and (16). Genersl expres-
sions for the final polarization of the magnetic scattering
are given in Bq. (13).

a’ - [Nz loee
dOdE’ [\ s | mc? J

iAo K

—;.7:'("‘? ’

where A= %€ and
B=exe+Ex&Nk-2)-kxank-a)
—k x&)xikxa) .

Here the sum is taken over all clectrons j, K=k —k' is
the momentum transfer, #w (fa’) is the incident {scat-
tered) photon energy, a (b) is the initial (final) state of
the scatterer, € (&) is the initial (scattered) polarization,
and p; is the electronic momentum. The geometry and
convections used here are illustrated in Fig. 1. The
modulus of the first term on the right-hand side of the
equation gives the usual Thomson cross section for

DEFINITIONS AND CONVENTIONS

o
EPe o

-~

FIG. 1. The definitions and conventions used in this paper.

and ' are the incident and scattered wavevectors and 26 is
the scattering angle. @, and & are the components of the po-
larization perpendicular and parallel to the diffraction plane
{spanned by k and &"). The U,'s define a basis for the magnetic
structure which is expressed in terms of the incident and scat-
tered wavevectors: 0, =tk +k"1/2c0s, 0,=kxk'/sin26,
0,=2(E~%")/24in0. By these conventions we also have
e =-1, ei=-—1,, &= sind ,—cos&ﬁ,, and

2j=—tsin0 0, + cos0 0,).

IKXp
_E-L- A+, B l

. IL CROSS SECTION

The cross section for magnetic scattering of photons
by free charges and atoms has been discussed by a aum-
ber of authors.'»%1%4%11 1 the following we repro-

duce the expression of Blume'! obtained by a nonrela-

tivistic calculation of the cross section using perturba-
tion theory. In the limit of high photon energy the cross
section for elastic scattering is

2
S E, -E, ~ (i, ~#ar)), (D)

)

[7 .

charge scattering and depends on the Fourier transform
of the charge density. The modulus of the second term,
which is reduced from the first by (% /mc?)?, describes
the pure magnetic scattering and depends on the Fourier
transforms of the spin and orbital magnetization densi-
ties. In addition, there is an interference term propor-
tional to ({Aw/cm?), involving the products of charge
and magnetic densities,. We first develop an expression
for the orbital momentum.

Rewriting the orbital term:

x-r, K Xp,) ixa, | —i .
§e q_ﬁL'A“’?e 1) Tgxl’-’ A",
where A'=—(K3/k?) A=—4sin?0)X& X&) and 26 is
the scattering angle. This expression is analogous to
that encountered in neutron scattering and for elastic
scattering may be rewritten as!?—18

. UR
_(a ZGi‘t"( :P[)

i
where L(K) is the Fourier transform of the atomic-
orbital magnetization density.'>~"7 Explicitly,"*

a)-—m{-ﬁx[L(K)Xﬁ] ,

L(K)=1(a | 3 A1 +LfKexp]a)
]

where

. o (ix)ll
fx)=2 ,,}_'_"0 (n+2nl°

As a consequence of the vector product the contribution
of the orbital term in the direction of the momentum
transfer K is zero, just as with neutron scattering.
Through the use of simple vector identities,

Rx(LxR)rA'=L[A'~(AKKI=L-A" @
with



a7 POLARIZATION DEPENDENCE OF MAGNETIC X-RAY SCATTERING

A=A — (A REK
=2t-kkNExD)
—(kxexk-e)+ (k' xenk-a .
Defining the Fourier transform of the spin density,

? Cm.""ll a) ,

the magnetization-dependent part (M, ) of the x-ray
cross section may be written explicitly in terms of L(K)
and S(K):

(M, ) =}L(K)- A" +S(K)-B . @

A" and B are given in Eqs. (1) and (2). It is clear that
the orbital and spin contributions to the x-ray croes sec-
tion are different and so they may be distinguished by
tnalyzing the polarization of the scattered beam. This
difference does not appear in neutron scattedng ‘whee
the interaction is purely magnetic in ongm ExPhcttly,
the expression for neutron magnetic scattering is

(M,)=Rx[{ILK)+S(K)]xK]-o
=[}L(K)+8(K)])-C,

suc)==(a

1781

wh?aithe neutron spin operator and C
X{oxK)]. It is seen that the polarization depen-
dence of the spin magnetization density is identical to
that for the orbital magnetization density. ‘The
difference in the cross sections for x-ray scattering and
neutron scattering arises because the x-ray interacts both
with ecbarse(thmushtheelectrlcﬂeldnnditsm-
dients) and with the magnetic ‘moment (through the
magnétic fields and their gradients). Thus, the Loreatz
force, for exampie, affects only the orbital magnetic mo-
ment and not the spin, to first order in {#x/mc?),
From the point of view of performing synchrotron ex-
periments it ia convenient to express the vectors A" and
B as 2X2 matrices in a basis whose components are
parallel and perpendicular to the diffraction plane (see
Fig. 1). Then .

A"_l Ai"l Ai'l K: o _(E+ﬁl)
SlAp AL [T e R4k 2ExE [ @
B, By, B Exi —ﬁ'(l—E-i’) _
Bu By |~ [ka-kk) kxk - o)

Thurepmmtauon of the matrix B has been given by de
Bergevin and Brunel.* (M, ) may now be written as

1
- l
(ExE _K? LK) LK) ¢
)= (M), M)y B{ExE) 2k’“ 2 +S(K)]ﬁ+ b
M) = )y (M) . o
v } ua“ HKHS(K)]H LK) K—L(m+suc) {(kxk")

(5

The diagonal matrix element involve magnetization density oriented only in the direction perpendicuiar to the
diffraction plane, while the oﬂ'—dzagona.l matrix elements involve magnetization density oriented.only within the
diffraction plane. Further, {M,, ), is independent of L(K). For general magnetic structures this same expression
holds with L(K) and S(K) reprwentmg the complex structure factors Expressing the component of the magnetic

structure in the Basis defined in Fig. 1 we have
{sin20)S;

(M, )= [Z(Sinze)[(cosBJ(L (+5,)+(5in8)S;]

where 26 is the scattering mgle and we have used
UK /kP=2sin’0. In this basis we may also write the
interaction matrix describing the charge scattering:

@

1 0
(M,)=p<x) [0 cos28

where p(K) is the Fourier transform of the electronic
charge density.

IIL. POINCARE REPRESENTATION

Having general expressions for the matrices (M)
and {M, ), it is now possible to calculate the cross sec-
tion and the final polarization for arbitrary incident po-
larization and for any magnetic structure. It is con-

—2(sin?0)[(cosOKL , +5, ) —(sin0)S, ]
(sin20)[2(sin®0)L, +5,] ©

i
venient to introduce the Poincaré representation for the
polarization and the density matrix for the incident
beam. The Poincaré representation is particularly useful

- as it applies to both completely and partially pelarized

incident radiation and involves only variables which are
measured in experuneuts A general discussion of these
techniques has been given by Fano.'* A discussion of
their application to neutron scattering and to the
transmission of x—rays through matter has been given by
Blume and Kistner.!” The first application of the Poin-
caré representation to magnetic x-ray scattering was by
de Bergevin 2nd Brunel.! ‘

We write the expression for elastic scattering by ex-
plicitly introducing the initial A and final A’ pclarizations
and taking the expectation value of M in the initial and
final state |a ) of the scatterer:

-7 -
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(MM YA

do e?
L L A—
a0 me?

2
‘ oy 2N
[ WY

2
—iﬁ,(ruu‘_)ml ,
. me

o )
(A 1{M,) A =-='(a |5 ™ |¢)el.e;.

Pl

(A4 (M, Y | A) =4 LAK ) Afiy +8(K)-Byy, .

Here p, is the probability for incident polarization A.
We next define the (2X2) density matrix p for the in-
cident beam by

) .p=§ [A)pafAf .

Evalusting, we obtsin the general expression for the
equilibrium differential cross section for elastic scatter-

ing:

2
dec e? iAo iAo +
an - [mc' ] tr l(M’_" mc’M"')p(M'_ mc'M"') ]

the density matrix. Because the density matrix is the
averaged outer product of a two-dimensional vector, it is
Hermitian, and consequently may be expressed in terms
of the unit matrix and the Pauli matrices:
P=(P;, Py, Pp)
p=H1+P-0) where a-:-(o;,—a,,.ac).

Here o represents the Pauli matrices, [o is the total in-
tensity, and P, P,, and P, give the Poincaré-Stokes rep-
resentation of the polarization. We write the com-
ponents of the Poincaré vector P using Greek symbols to
emphasize that it is oot a vector in real space. In the
usual Cartesian coordinate system we have

1+P, P;—iP,
P.+iP, 1—P; |’

1
P=5

where op=() §), o,=(} 5'), and a,=(5 2,). Taking &
and €, as two orthogonal unit vectors perpendicular to
the beam direction defined in Fig. 1 (with
E=E 2 +E;&), the compooents of P are defined as fol-
lows. Let I, be the difference hetween the light intensity
with linear polarization parallel to a vector oriented 45°
to €, and the intensity with linear polarization parallel to
a vector oriented 45° to €. Then :

I, IEH"Ez|1-"“-':'1"'Ez|1
TI, ME(|*+1E;|Y
__ Re(H{E,)
AR
Let I, be the difference between the light intensity with

left circular polarization and the intensity with right cir-
cular polarization. Then

2 2 .
B )
= l;‘c—,] u[(u, )p(M,')—;c-;((M,. Yo MDY — (M p(MI))+ [—";c—,-l (M, )p(M,.'.)] . o
—
_ (") is the Hermitian conjugate of {M). I, |E\+iE;|*—|E\—IE;|*
Following Fano,'® we now develop the expression for P,,=-;;—= | E, |2+ TR o

In(E}E;)
ARSI AL

Let I; be the difference between the light intensity with
linear polarization parallel to & and the intensity with
polarization parallel to €. Then
LA A
Tl B P+

It follows that P,=+1 (—1) represent linear polariza-
tion at angles +45" (—45°) to the U, axis, Py=-+1(-—1)
represent left (right) circular polarization, and Pp=+1
(—1) represent linear polarization along the U, @,
axis, respectively (see Fig. 1). If | P| =1, the beam is
completely polarized; if |P| <1, the beam is partially
polarized; and if | P | =0, the beam is unpolarized. The
vector P may simply be thought of as a vector in an
abstract space which is rotated upon scattering, as
shown in Fig. 2.

Once the Poincaré vector P and the total intensity Ig-
are specified, the polarization is completely character-
ized in terms of measurable intensities. To calculate the
density matrix and final polarization after scattering we
will require that'®

P

Cpawtep), .0
p’=Mpr, . (10b)
- do o? ‘ , 10¢)
an ™ |met | ‘
Prm_._B_tﬁ;,;’ ) (10d)
S
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POINCARE - STOKES m,‘»‘; , _ . terms multiplying P, will be referred to as the linear
LT """"éomp&nent. The terms not associated with a Poincaré
qodﬁcl‘.lcqt are referred to as the unpolarized component.

w e
“' i A. Charge scattering
N o .L Th:j(s case is straightforward and gives the expected re-
F\ ults FromEq. (7) and (10) we write
I 4
. . I 2
! s T do (et
— — e T tr{ M, Yp(M])
! § B U A l € | 11 pK) | [14 008220+ Po(1— c0s226)].
Py ) ; , ' 'j' me? T 4 »
5 o 1y
v _ : .

independent of P, and P,. The components of the final’
polarizatron P’ may be found using Eq. (10d):

FIG. 2. The Poincaré sphere, The polarization is complete-

f the Poincaré coefficients P Pi= 2(cos26)Fy
lychnmtenzedbytheuluesote 0 ents Py, e=
Py, P;, and by the total intensity I,. By definition, |P| gL._ . 1+ cos?20+P,(1- cos™268) '
P - 2(cos28)P, '
IV. RESULTS -7 1+ cos’26+Pp(1— cos™26) :
In this section we calculate the general expressions for _ 1— cos?20+ P14+ c0s?28)

the differential cross section and the final polarization Pp= ) 5
for each of the terms in Eq. (8), assuming arbitrary in- 1+ cos?20-+P (1 — cos?26)
cident polarization P=(P,,FP,,P;). For the purposeof . .
discussion, the terms multiplying P, will be referred to . B. Pure ic scm
as the 45“linear component, the terms multiplying P, &
will be referred to as the circular component, and the From Eq. (9) we write

| ,

——r | 1

do 2 ? #iow .z t oo ) {
20 |me? Pty te{{M,, )p{M, )} .

2
—"{mc I [ﬁm ‘T[“"'Pg)(lmui +1'ﬁzl|2)+(1‘"P5)(fmu| +{myp )

+2Re[(Pp+iPy Xm fym iy +mfyman 1] ’ (12)

where we have left the result in terms of m, ;, the elements of {M,, ). This form permits several general conclusions
to be drawn below, and makes writing the cross section for magnetic structures and orientations not considered in the

examples straightforward. Similarly, we expand Eq. {104} to obtain

2 2 e — 1
an;— ) [-r:—:,;l [(1+Pc)Re(m”mu)+(1——P§)Re(mlzmu)+Re[(P§+1P )(milmzz+mzlm12)]}
2 r . : H
:’—g . [Tn% ] [c1+Pg)1m(mflmn)+(1_;1_é;);m(mi;2mn)+Im[{P§+ip,,)(m;,mn...m;imnm . (13)
s '
da i 2 2 2__ 2
—oPh= Wimyy [*— | may | )+(17P§)(|m12] fma 1)
do 2 : o |

+2Re[{Py+iP, N mbym ,—mEmy)]}

._f-/l._,_
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In each of the expressions above the linear and unpolarized components and the circular and 45"-linear componenis
display a simple symmetry, involving the same products of matrix clements. If {M,, ) is diagonal, then there are no
contributions to the cross section from the 45™-linear or the circular components. If {M,, ) is nondiagonal, there are
again no contributions from the 45linear or circular components. Similarly, if {M,, ) is diagonal or nondiagonal and
Ppu=Py=0 then Pyon Py =0.

A feature of the cross section which is special to magnetic x-ray scattering is the existence of an interference be-
tween the spin and orbital angular momentum, which may couple moments in different spatial directions. These i
terms arise in each of the matrix element products above, except |m | 2. ‘To illustrate, we write the general expres-
sion for the magnetic cross section by substituting Eqg. (6) for {3, ) in Eq. (12):

1 B 2 ' o .
%s-;- l:‘g] [-n% ] [(14P){(sin®20)( | Sy | *+(sin?0) | L, 48, | ]+4lain') | 53 | 2

+ &(sin26Xsin*8)[(L; +51)S) +(L] +S7 1531}
+(1—P;){(sin*20) | 2(sin8)L; S | 2 +(8in?0) L, +5) |21+ 4sin®d) | 55 | *

 4(sin20)sin* (L} +51)S5 +(LT +57)ST ]}
— 8P (5in20)(sin?0)((cosd) (L} +5} J(sin2@)LY +57 1—(LY +57 Wsin?®L3 +531) _

. (sin’6NSILY —STL3)) .
+8P(sin20)(sin’@ )} (sin’@)cos®) (L] +51)L2 +(L v 4+SYILY

+(sin@){S4[(sin*O)Ly + 551+ 57 [(sin*)LY +571P]1 . (14

In this expression prime and double prime refer to the real and imaginary parts, respectively, of the generally complex
structure factors L and 8. Unprimed variables L; and S; refer to the jth components of the complex structure fac-
tors, Ly=L;+iL;" and S;=5; +S;’, with { and j labeling different symmetry directions in the I7 basis (see Fig. 1).
When ivj and P+0 terms of the form L,S,, L,L,, and S, occur. In many materials the components associated
with different symmetry directions are equal, so that 5;5;— 5, | 1. The magnetic structure of erbium,? however, is an
example where for intermediate temperatures the ¢ axis and basal! plane magnetic structures are distinct — thereby giv-
ing rise to just this sort of interference in the pure magnetic scattering. It may also be seen from this expression that
for L and S purely real or imaginary, the cross section is independent of the circular component. For a structure fac-
tor whose spatial direction is paralle! to a U-basis vector, the cross section is independent of both the circular and
45 -linear components. ‘

C. Interferencltj scattering
From Eq. (8) we write

oo i 2
L [;ﬂe_] [;._] tr({ My, )P M) — (M, dp(BEL D)
I

deo

an

-2 13 )
- [}fc_l mﬂ;z-[lm(p‘m“+p'mn c0820) + P, Im(p"m , —p* m 3 c0820)+ Pelmlp* m 13 +p*m  c0s26)

+P,Re(p®m ;—p°my; cos26)] » (15)

where we have substituted for { M) using Eq. (7) and m,; represent the elements of (M, ). When (M,, ) is diagonal
the interference term is independent of the circular and the 45*-linear components. When {M,, } is off diagonal, the
only coupling is to the circular and the 45°-linear components.

—1C - :
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Substituting for {M,, } from Eq. (6),

2 : ' —t .
do ‘ e? Ay o v et e
E I- [mc: ] m_cz((linzo)(l+P‘)(p sl -p S:’ tiva

+(sin29)(con29){1-?ﬂ[p'[i(sin’0)t.f +87 ]~ [zmn’s)r. ;;s; 1}“‘

—P (sin@){ (1 c0s26)(sin20)[p(L | +8})—p"(LY +s. 31-( I'— cos20)(p's’, —p"Sy )}

—Py{sin8){(1 = cos20)(sin26)[p'(L{ +S7 )—p"iL', +s]
—(1+ cos20)(1— cos26;(p'35' —p"S1) . (16)

[n this expression p* and p* refer to the real and imaginary parts ofthechargefoi'mhctor, respectively. When P=0
the only contributions to the interference term comie from magnetization density oriented perpendicular to the

diffraction plane. The interference term is considerably simplified for centrosymmetric systems (when L;'=S8;"=0).

Then,

do
an

me? | me?

: 12 o
=— l—’—— ] B0 (sin20)1+P;)p"S3 +(sin26)cos20X1 — P, Jp"[AsinO)L, +5; ]
I ' ) _

+4(sin’0)P [{cos’8)p'(L| +S,)—~(sin’8)p’S,]

—4(8in’0)P ;[ (sin?8)(cosB)p”(L ; + 5 )—(sinfXcos’d)p"S, ]} .

It is seen in this case that the circular componeni cou-
ples to the real part of the electronic form factor, while
both linear components couple to the imaginary part of
the electronic form factor.

V. EXAMPLES

We now apply the generai formulas cbtained above to
several simple examples of magnetic structures. We re-
call in this regard that synchrotron radiation is predom-
inantly lincarly polarized within the median plane of the
storage ring (P,=x1, depending on the orientation of
the diffraction piane) and elliptically polarized above and
below the median plane'? (P,,P;+0). The detailed po-
larization dependence of the incident beam depends on a
number of machine parameters including beam size,
magnet geometry, electron energy, ete. '

A. Ferromagnets

In ferromagnets the magnetic and charge matteﬁqg
are coincident in reciprocal space. Since the magnetic
scattering is typically reduced from the charge scattering
by >~10"% it is difficult to measure the magnetic

|

dg
dn

I
——
3
11 mu
~
—
(2]
|

! me?

(17)

i T

scattering from ferromagnets directly. One method to
over come this limitation is to introduce a magnetic fleld
and measure the flipping ratio, thereby isolating the in-
terference term in the cross section.%® As will be seen, it
is also possible to isolate the interference term by “fip-
ping” the incident polarization.® In addition, because
the magnetic scattering also flips the incident polariza-
tion (for some geometries), it is in principle possible to
measure the pure magnetic scattering from z ferromag-
net by analyring the polarization of the scattered beam.
Experiments performed to analyze ‘the polarization of
the magnetically scattered beam are described in refer-
ences 10 and 20. In the Appendix we develop a formal-
ism for these experimental schemes by introducing the D
matrix for detection efficiency. For written simplicity
we assume beclow that the spin- and orbital-angular-
momentum densities are collincar.

(i) If L and S are perpendicular to the diffraction plane
(parallel to 0;), then

e s s )
My ) =sin(20) |g 5gin?)L +5

and :t.hc interference term is*

‘(sin?.ﬂ)(( 14+P Np'S"—p"S")

+(1—P;)cos28){p'[2sin®0)L " +5"]—p"[Usin®)L’+5'1}) ,

-
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independent of Py and P,. In this case the real and imaginary parts of the charge form factor multiply the imaginary
and real parts of the magnetic structure factor, respectively. The interference cross sections for purely circular and
45"linear incident polarizations are identical and equal to the result for P==0. Note that for purely linear incident po-
larization (P=11) it is possible to separate L and S by alternately scattering in the horizontal and vertical planes.
For centrosymmetric systems with Py =1 we recover the simple result** :
2 .
do e —2h |, . -
da ,‘[mz ] l me? (sin20)p"5 .

The magnetic scattering for L and S along 0, is
2 P 2
42| -|-£ Ho_ 1 Ligin2e)(1+P;) | S |24+(1—Pp) | Asin®)L +5 | ]
- | me? me? | 2

an
independent of P, and P,. The final polarizations are
Py=(Py(S[2sin®0)L’ +S"}+5"[2ain’0)L" +5" ]} _
-P, (S'[2(sin?0)L" + 5" }—S"[2sin’ DL +5°1] /51 (1 +Pp) |8 |2 (1—P,) | 2sin?)L +5 |21,

Py=(~-P, (5"[2sin?0)L* +8'] —S'{2sin’O)L " + 5]}
+P,[.S"[2(sin’9)L'+S']+S"[2(ain’0)f."+S"]1 VA14+P[S | 24+ (1—P;) | 2(sin’6)L 45 | 4,

(1+P;)|s|’—(1—Pj)lz(sin’e);; +5|%
C T U+P,) 1S |2+ (1—Py) | Asin®IL +5 |*

For noncentrosymmetric systems the magnetic scatteriﬂg
mixes the 45°-linear and circular components. Note also
that for L. =0,

2 2
do _ 1l || g ? pej
i lmcz l‘[mc’ ] (sin20)|5 | P'=P.
Thus, in this configuration it is the orbital magnetization
density which introduces the polarization dependence
into the magnetic cross section. Finally, we point out
that for unpolarized incident radiation {P=0) and L=0,
the magnetic scattering is also unpolarized, P'=0.

{ii) If L and 8 are in the diffraction plane and parallel

" to ﬁ'l, then

(M,, ) =—i(sin20)sinf)(L +S)oy ,

where o, is the Pauli matrix defined above. Setting
Py =0, the interference term is

=i el ] ["*"’ ](sinztzm(cosﬂ)P,,

do
dfl me? mc?

x[p'(Lf+S')_pl'(Lll+Sll)] .

In contrast to the last example, the interference scatter-
ing now depends on the product of ‘the real parts of the
charge and magnetic structure factors, on the product of
the imaginary parts of the charge and magnetic struc-
ture factors, on the degree of circular polarization, and
on the sum (L+S). Because of the lincar dependence on
P, it is possible to isolate the interference term by tak-
ing the differsnce in intensities above and below the
median plane of the storage ring (as well as by measur-

R T L

r

ing flipping ‘ratios in a magnetic field) as has been
demonstrated in a powdered ferrite.’
The magnetic scattering is given by

- [_e’._ ]
m | me
independent of incident polarization. The final polariza-
tion is

P'=(Py, —P,, —P;) .

1

20| sin220sin?9|L+81?,
mc

do
dn

The magnetic scattering flips the linear and 45"-linear
components, but not the circular component.?' This

" suggests that for purely linear incident polarization

Pge=] the magnetic scattering may be directly measured
by analyzing the rotated linear component.

{ii) If L and 8 are in the diffraction plane'®*? parallel
to — Uy, then

{M,, ) =2sin’0)Sa, ,

where oy is the Pauli matrix defined above. The mag-
netic scattering is

2

_|e? fiw
m mc? me?
independent of the incident polarization and orbital-
angular-momentum density. In contrast to neutron
scattering, the cross section for magnetic x-ray scattex-

ing is nonzero when the momentum transfer and the
magnetization are collinear. The final polarization is

P =(P;,—P,, —P;) .

do

2
inf
T 4|5 | »in®9 ,
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‘The magnetic scattering flips the initial circular and
linear polarizations, again suggesting the possibility of
measuring it directly by analyzing the polarization of the
seattered beam. Setting P, =0, the interference term is_

2 2
% - [_":--c—z- ] ;;;‘?—1“ ]“dn’o)P‘(p's'__pnsn) .
I

The interference term is again linear in P, and indepen-
dent of the orbital-angular-momentum density.

We remark that, in principle, the spin and orbital
magnetic-moment contributions to the cross section may
sach be separately measured in ferromagnets. For exain-
ple, in cases (ii) and (iii) above (and assuming a centro-
gmmctric system), by rotating the moments from ﬁ, to

3 and measuring flipping ratios in cach direction, the
interference scattering is first proportional to L +5 and
then to S. The directions U, and U, are particularly
convenient as the ratio R of the two cross sections is also
simple,

(singy® §
T cosd L+8°

Similarly, by analyzing the final polarization for two
directions of the moment, the purc magnetic scattering
may also be used to separate L and S, Provided the in-
<ident polarization is well terized, these same
techniques apply to the directions U, and ﬁz.

It is also worth commenting that the angular and po-
larization dependence of the magnetic and interference
scattering and the final polarization of the scattered
‘seam may all be used to determine unknown ferromag-
netic structures. For example, the existence of interfer-
+nce or magnetic acattering at chemical Bragg positions
for linearly polarized incident radigtion requires a com-
ponent of the moment parallel to U,. Similarly, the ex-
istence of magnetic or interference scattering for circu-
larty polarized incident radiation requires that magneti-
zation density lie in the -0, plane. These directions
may be distinguished by studying the angular depen-
dence of the cross section for several different reflections
or by analyzing the final polarization, A general tech-
nique for determining unknown magnetic structures by
x-ray scattering is to study the angular dependence of
the magnetic or interference cross sections, Eq. (14) and
{16), for rotations of the sample about the momentum
transfer. Although these last remarks have been made
in a discussion of ferromagnetic structures, similar state-
ments are possible for antiferromagnetic structures, and
particularly for uniaxially moduiated structures.

R

B. Antiferromsgnets

In the following we make an analogy to the rare-carth
elements and write the structure factors for L(K) and
8(K) in terms of a single quantum J=L+8. Thus,

unit
ceil
LIK)=¢(K) T T, (0)En

n atoms

and

— 1

BRI S

1787
-
' d .
S(K)=¢,(K) 3 7, (0)%",
- » atome Yo
wherg ‘
1 atom ' '
. 3lafr 3 [Ly (O (Kot S (Ko My (0] a)
$,(K)=
, (}L-J+8-7) '
atom -
(a I3 njem /a
. : ]
HK =Ty B Satralo.

In these expressions n is the vector giving the position of
the nth atom in a magnetic unit cell, 7 is the modulation
wavevector, g; gives the ith component of the magneti-
zation in the 6 basis, and ﬁ',,(i) specifies the direction of
“the ith component of the magnetization of the nth atom.
$,(K) and ¢,(K) are the jonic form factors for the spin-
:;mclis norbita.l-&nguhr-momentnm densities, respective-
¥

(i} .For uniaxially modulated systems, ¥, #Jg(r-n)ﬁ,
(g pericdic) and ail the resnlts derived above for fer-
romagnetg apply by introducing the prefactor

2 g(,r,nkNK—ﬂ-n ZJZ

and by making the replacements §,—+¢, and L, —+¢,. In
contrast to the case for ferromagnets, the magnetic
scattering is now located at positions distinct from the
charge scaitering and sc may be directly measured. It
follows, of course, that the interference scattering is
zero. By measuring the cross section of the magnetic
scattering for suitable orientations of the moments {for
example, by rotation of the sample about the momentum
transfer or by use of & magnetic field), detailed
magnstic-structure determinations and separation of the
orbital and spin form factors are possible in a manner
analogous to that in ferromagnets.

(ii) The final example we consider is that of a simple
basal plane spiral with modulation wavevector + oriented
along U, r=+U;. In that case we have

J,, =[cos(r-n )R+ sin{7-n)§]

) ='_£_(ﬁ+e—-lra+ﬁ_elf-n) ,

Where ﬁ+ =ﬁl+iﬁg and ﬁ_=ﬁl—fﬁz. Then
M, —M} +M,, giving magnetic scattering at satellites
split symmetrically about each chemical Bragg

along the direction of U;. Thus

cell
(M2) =15 e =T rusingg)
' n

e, — siﬁe(cp, +¢;)
X (sing)d,+4,) +i[2sin20)d+4,] ("

R

[



'

i A __

X R

I ®

[N 4

1758 M. BLUME AND DOON GIBBS a7

For simplicity we specialize to the case of linear polar-
ization with P;=1 and assume ¢, and ¢, arc real. Then
the magnetic scattering may be written

2
—{I

RIEE e R

X (620X |, |2+ | 41-+9, | *sin'6)

" deo ?

dQ

and the final polarization is

+ NN | 1 T
A\
o\ \\ L=0

\ ' \\I:"‘%mu-l

+I il ™y
=y

- SATELLITE [ 7

{
osi— /

L(x)/slx:?

.,
LIKIZSIKIn 4/ e

’
P O

+8ATELLITE- 0.9

-t
[«] Q.2 0.4 0.6 0.8 1.0
sin@

FIG. 3. K dependence of the scattered linear and circular
Poincaré coefficients for linearly polarized radiation {(Pp=1)
incident upor a magnetic spiral. Upper: When L=0, then
Py=[{1—3in’®)/(1+ sin’6}] is positive definitc and decreases
from 1 to 0 with increasing momentum trapsfer K. When
8$=0 (and 8> 0), then P; =—1. The dashed lines illustrate the
general behdvior for two simple cases when the ratio of orbital
to spin form factor is constant. Lower: When L=0 the scat-
tered circular Poincaré coefficient for the positive satellitc is
segative dednite and decreases from 0 to -1
[P,y=—21in8/(1 + sin’8}]. When 8=0, then P, =0. The be-
havior for the negative satellite mirrors that for the positive sa-
tellite. For nonzero spin there is always a value of 8 for which
the scattered beam may be totally circular.

PE-O,
20N (8144)

' |+'[1+|‘,+"|3an9 )
. 1#s 2= 14144, | 4in’0
ST P i+, | Tein®

From this result it is apparent that the term in the cross
section proportional to |4, |2 is the probability for po-
larizatiop parallel to &, in Fig. 1, while the term propor-
tional to | ¢;+4, | *sin?0 is that for polarization parallel
to ¢;. Thus, by analyzing the degree of linear polariza-
tion in the scattered beam it is possible to seperately
measure the real form factors ¢,(K) and ¢,(K) in a
magnetic spirai®® (see Fig. 3). Provided there is a single
spiral domain of well-defined helicity, then the circular
components of the positive and negative satellites will
have opposite helicity, as shown in Fig. 3. 1t follows
that by adding a circularly polarized component to the
incident beam and measuring the degree of linear polar-
ization for the two satelfites, the helicity of the spiral
may be determined (see Fig. 4). Finally, note that if

EXL ST
| $(K)+¢,(K)|?°

then the scattering is totally circular. Although the
efficiency is very low ( < 105}, it is therefore possible to
completely convert linearly polarized radiation to circu-

sin?

0.5

-1.0

sin@

FIG. 4. Lincar Poincaré coefficient for scattering from a
magnetic spiral for the case L{K)/S(K)=3. The solid line
shows P} for incidemi Poincaré vector FPy=1 and P,=0.
“Ihere is no difference between positive and negative satellites.
The dashed lines illustrate the change when a amall component
of circular polarization is introduced in the incident beam
(P;=0.90 and P, =0.43).
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lar by scattering from a magnetic spiral. From theorefi-
cal calculations of the form factors for ¢; and ¢,,2, i
furns out that this condition is approximately satisfied

for the (002}) satellite of holmium with ~10 keV jn-

cident photon energy.

VI SUMMARY

In this paper we have derived general expressions for
the polarization dependence of magnetic x-ray scattering
for high photon energies and indicated a variety of direc-
tions for new kinds of synchrotron experiments. The ex-
lension of this work into the resonant regime, when the
photon energy is near an excitation energy of the solid,
will likely produce novel effects and remains to be car-
ried out. Finally, it is worth mentioning that while
polarization-dependent magnetic x-ray scattering experi-
ments are possible with present-day synchrotron sources,
reliable intensity measuréments of the sort required for
some of these experiments are still difficult. This class of
oxperiment will clearly benefit from the next generation
of synchrotron sources, and particularly by the develop-
ment of beamlines or insertion devices with tunable po—
larization characteristics.

Note added in proof. After completion of this
manuscript, we received a copy of this work by S.
Lovesy [J. Phys. C (in press)]. ”
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APPENDIX: D MATRIX
FOR DETECTION EFFICIENCY

Quantitative polarization analysis may be included in
the formalism by defining a matrix D which represents

" the detection efficiency and polarization sensitivity of the

detector assembly:

do
dﬂ

In this formalism an open detector has the D matrix
D]_ell s

where e; is the quantum efficiency for the detector. A
simple analyzing crystal diffracting within the scattering
plans has the D matrix

1
DZ"‘Z 0

)
2 :
[mic—i- ] tr(DMpM') .

0
cos?28
h oY E2,. 2
- (14 cos?20)1 + ) (1— cos®26); ,

where e, is the analyzer refiectivity and 26 its Bragg an-
The D matrix for a linear polanzatmn analyzer
oriented at ¢* to the scattering plane'®

cosld

S sinz¢]=373[1+cos(2¢)oc],

Dy=e,

where ¢; is the analyzer crystal reflectivity. Operation-
ally, the D matrix for the linear polarization analyzer
simply multiplies m,, and m, by cos¢ and multiplies

my; and m,, by sing.
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X-Ray Resomance Exchange Scatiering

J. P. Hannon and G. T. Trammell
Physics Department, Rice University, Houston, Texas 77251

M. Blume and Doon Gibbs

Brookhaven National Laboratory, Upton, New York 11973
(Racelved 15 June 1988)

Large resonant magnetization-scasitive x-ray scattcring is predicted to occur I the vicinity of Lp, Lm,
and MMy absorption edges in the rare-earth and actinide elements, and at the X and L odges in the
transition cloments. These “magnetic” resanances result from eloctric multipols transitions, with the
sensitivity to the magnetization arising from exchange. For some tramsitions, the magnetic scattering
will be comparsble to the charge scattering The general features of the obsarved Lm resonance in Ho

are discuased.

PACS pambere: 75.25.-+z, 61.10.Dp, 76.20.44, 78.70.Ck

In the course of investigating the magnetic spiral
structure of a bolmium crystal vsing the x-ray magnetic
scattering of synchrotron radiation, Gibbs er al! ob-
sarved z large resonant enhancement (hy a factor of 50)
in the magnetic satellite intensitics when the energy of
the incident x rays was tuned through the Lp; absorption
odge. Second-, third-, and fourth-harmonic satellites
wurealsoobse:vnd at resonance. A complex polarization
dependence was found, with the resonance peaks for the
o-c and o~x components of the magnetic scattering bo-
ing separated by about § ¢V for the first two harmonics,
and occurring at the sarne resonance energy for the third
and fourth harmonics.

This behavior (resonant increase, additional harmon-
ics, polarization dependence) can be understood on the
basis of electric quadrupole (£2) transitions to 47 levels
and electric dipole (E1) transitions to 54 levels. It is
noteworthy that this “magnetic” scattering resuits from
electric multipole transitions. This is due to the ex-
clusion principle sllowing only transitions to unoccupied
orbitals, resulting in an “exchange interaction™ which is
sensitive to the magnetization of the f and 4 bands.

To get a strong resonant enhancement, the scattering
must involve a low-order electric multipole transition
(E1 or E2) between a core level and either an unfilled
atomic shell, or a narrow band.? In the latter case, the
atomiclike nature of the transition is increased because
the core hole gives an additional binding of the excited
level.

For the rare carths, enhanced magmetic resonance
scattering will occur at the Ly, Ly, My, and Mg ab-
sorption edges, involving the E2 transitions to the tightly
bound 4f shell, and the £ transitions to the 54 band.
Although the latter transition is £ 1, the strength of the
magnetic scattering depends on the induced polarization
and exchange splitting of the band, resulting in a coptri-
bution of comparable magnitude to the E2 transition to

© 1988 The American Physical Society

the 4f shell. At the Mv and My edpes, the very strong
E 1 transition to the 4f shell will give & resonant magnet-
ic scattering amplitude on the order of 1007g! The reso-
nances at the X and Ly edges will be relatively weak, in-
volving E3/M2 transitions to the 4/ shell, and E2 tran-
sitions to the 5d band. The Ly and Ly resonances lic in
the 1-2-A region, well suited for diffraction studies of
magnetism in crystals. The strong £ 1 resonances at the
Mv and My cdges lic in the 5-10-A region, but can still
bo used for diffraction studies of the long-range antifer-
romagnetic spirals, and for grazing incidence studies of
surface magnetism, and they will give rise to very strong
magneto-optical effects in reflection and transmission in
magnetic samples.

Similar magnctization-sensitive electric multipole res-
onances should be useful for the study of the magnetic
properties of the transition elements and thc actinide
series. These large resonant enhancements should also
be important for the study of two-dimensional magnetic
ordering, with possible applications to high-T, supercon-
ductors,

The coherent elastic-scettering amplitude for non-
resopant magneuc x-ray scattering from a magnetic ion
is given by*

S = iro(Befme?) fpl 4 LK) A+S(K)-BI,

where L(K) and S{X) are the atomic orbital and spin
magnetization densities, A and B are polarization vec-
tors determined by ko.eoks.es. and fp is the Debye-
Waller factor. The x-ray magnetic scatlering is consid-
erably weaker than the charge scattering, with msgni-
tudes typically ==0.01rg. The total coherent clastic-
scattering amplitude is f=s fo+ f+if "+ 7@ where
fo=—2Zrg is the usual Thomson contribution, and S
+if” is the contribution from dispersive and absorptive
processes. The resonant scattering processes we consider
below contribute to £/ +if”.
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Foranelectrlcz"-polzrewmnce(EL)innmngneﬁcion.theconuibuﬁonmthecohemtmtednsamplitudek

givea by***

S (krerikoee) -4WD"2:f_Lle;-Y§2(i,) Y (ko)- eol Figh (o), 6))

where
Fi}(w) -E [

Pape{A) s (aMn:EL)T (7)
x(a,m) =1 )

| @) is the initial ground state of the jon, and 7)== | alhus)

“1(nu, ) *1) is the excited state with an electran excited to

the level (n,) Jeaving a hole in the core level (hpa ), where i and p; are the appropriate spin and angular momentum
indices. The excited states (mu,) are more tightly bound than the corresponding states in the unexcited ion duee to the
potential of the core hole. pg gives the statistical probabilitics for the various possible initial statc | &), and pa(np) gives
the probability that the (mu,) state is unoccu ied in |a). pa{n) is determined by the overlap integrals of the *old” or-
bitals which are occupied in the initial state | @) with the orbital (ns,) which is a “new” level in the presence of the

(hyza ) core hole, a familiar procedure in shakeoff calculatio

ne. I', is given to lowest order in kr by®

I, (aMmEL) =8x [-‘r’] [L-E—l-]l(d;j;(kn)l’uﬁ;) (mf. @

where j;, is the spherical bessel function of order L. Summed over M, [y gives the partial width for EL radiative decay
from [)— |a). T(n) is the total width for the excited state | ), which is determined by a// radiative {from any
shell) and nonradiative (Auger, Coster-Kronig) deoxcitations of | 7). T{n) is typically =s1~10 ¢V, so that the scatter-

ing will be fast =s107'¢ 5, accouating for the presence of
denominator, x(a,n) =[e(n) —e(a)— Aa)/IT(n)/2] gives the

the Debye-Waller factor in Eq. (1).! In the resonance
deviation from resonance in units of T'(n)/2. The polar-

ization dopendence is determined by the vector spherical harmonics Y% for an EL transition, '® and the relevant factors
which eppear in Bq. (2) can be expressed as products of the components of k and e,

3L +1)

u=—1

12 [l
e-\rm(i)—[i"(—”*-ﬂl] 3 CUL=1Li M — 1) ¥ioLu~sE)Y1,@).

For the electric dipole transitions (E 1), we have

lef- Y 1 (k) Y {4 (ko ol = [—12—;]kf-eoq:i(efxeo)-i;—(ef'i;)(eo- a0,

lef- Y8 (k) Y 5 (ko) eol = {:—x] [(e} - 2, (o~ 201,

giving the scattering amplitude

f55 = 3l - colFIP 4+ FI2 1 —i(ef xeo) LFIP —F2 1+ (e} -5 (oo 2)2F (R — Fif —FIL T, )

where 2y is the direction of the quantization axis defined —

by the local moment of the ion. Thus there are only
three distinct polarization responses for E'1 scattering’:
The first term, ¢ - €o, is independent of the direction of
the magnetic moment. The second term, —i(e} xep)
-2, depends linearly on the direction of the magnetic
moment, and will give first-harmonic satellites in an anti-
ferromagnet. If we usc the lincar o,x polarizations as
basis (which are perpendicular and paraliel to the ko-ks
scattering plane, respectively), incident oo scatters only
to =y, while incident xo scatters to both oy and xy. The
third contribution, (e} - zs)(eq-7s), depends quadratical-
ly on the moment dircction, and will give second-
harmonic satellites in a spiral antiferromagnet {and also
a contribution to the zeroth harmonic). This term
scatters either og or xp to both oy and zf. The appear-

1246

ance of first- and second-harmonic magnetic satellites is
a ct;aracteristic signature of a dipole transition (El or
M1).

Two simplified cxamples iflustrate the main ideas:
First, if the ground state of the ion has a gingle hole in
the 4f shell, then by Hugd's-rule, in the fully aligned
case, the empty orbital is mty = —3, ms=— ¥, which is
also a state of good j= §, my=—F. Then in Eq. (1),
pe=1 for the Hund's-rule ground state |a), and
palmy,m;) =1 for (mym,) =(—3,]), and zero other-
wise. (Here we ignore the question of overlap integrals
discussed below, but this should be less important for the
highly localized 4/ orbitals.) Then at the My edge, only
M=—1 is allowed, the transition being |3dsmmty
= — 3 )~ | 4f7j2,m;=— T ). This corresponds to a cir-
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calarly polarized electric dipole oscillator, with left-hand
¢irculation about ++2;. As a consequence, Fy™Fio=0
in Eq. (3), and F)—y=[y(e, —1, 1)/ Ix—1]
as given by Eqs. (1) and (2). All three polarization
terms then contribute with equal amplitude to f§7* in
. (3), and so the magnetic scattering will be as large

scattering. Fluorescence yield calcula-
tions'! indicate that (I';/T") = 102 for the rare earths,

30 that magnetic resonance scattering amplitudes
o= 1007 should be possible for thesc soft x-ray reso-

As a second example, consider the L-edge resonance
2pysy++5d, treating the “impurity™ 5d states in the pres-
ence of the core hole as atomic levels | S5d,my,m, ), with
an cxchange splitting A betweea the (ower cnergy)
{Sd,my,1) orbitals and the |5d,my,[) orbitals induced
by the 4f moment. For such a system, the probability
Pu(5d,m;,m,}) that the impurity orbital |S5d,my,m,) is
empty would be determined by the overlap integrals of
the occupied orbitals in the ground state |a) with the

' impurity orbital. For simplicity, we will assume that

Pe(5d,my,m;)wip(m,) independent of my. The partial
radiative width is then

C(Qpym )M (5d,m,m,)) =C3(1, +, § sy — M, m,,m))C3(1,1,25m; — M m, my) | 212,

where [2[*=3 ke?| Qpspl lkr[15d)]2% and the
scattering amplitude becomes
SEF® =Flo} - comy +i(of Xeo) z,P/4), @

where P=[n, (1) —~A/Im, n (1) =5[p(l)—p(1)] is
the nct number of spin-up electrons in the 54 band,
my=5Slp(1)+p(1)] is the number of holes in the 54
band, and F=x|x|21/3r(x—f). We have assumed that
A<T, giving an unresolved resonance doubict, and x is
the deviation from the central frequency. There is no
quadratic magnetic contribution (o} - z;)(co* zs) because
of the assumed my independence of p,(5d,my,m,). The
linear magnetic contribution is scen to arise from both
the spin polarization of a partially occupied band, and
from the exchange splitting of the empty states, with the
sign and magnitude of the “polarization factor” P de-
pending on the relative magnitade of the two contribu-
tions. As an order-of-magnitude estimate for Ho, taking
A=s0.3 oV, n,(1)}=s0.3, Fn;=s30r/(x—i), '=~=10
¢V, and n; =8, gives P==40.07; and a linear mag-
notic scattering contribution of == +0.06rgi(e} X0y 2,)/
&=,

For electric quadrupole transitions (£2), /45 will
contain thirteen distinct terms— order (0):

(ks ko) (ef - co),
order (1):
(ks ko) (of Xeg)- zp+ [kp+rer,ko+repl,
arder 2);
(k- ko) (ef - 2) (eu- 27) + Ik peres] + [ko+reol
+[ip+res,kgreol +ilks X ko) 2/ (e Xe0) - 25,
order (3):
(ks 27} ko~ 27) (ef x€0) - 2, + [kr eyl
+ [kg+repl + [kp+rer, koeregl,
order (4):
(kr-25) (ko 27 )ef - 27 ) (eo- 25).

The rclevant coefficients with whiclh these terms contrib-
ute for each M will be given elsowhcre. In a spiral anti-
ferromagnet, each order will give rise to a separate mag-
netic satellite. The appearance of four harmonic satel-
lites is a characteristic signature of a quadrupole reso-
nance (E2 or M2). The polarization dependences of the
four E2 magnetic contributions will generally allow all
thc possible combinations of g+rg, o++x, and x+~+x
scattering. (In contrast, the first-order £1 harmonic
anly allows o<+ x and x«=x scattering.)

These ideas give a simple explanation for the complex
resonance spectra obtained at the Ly edge in Ho (Ref.
1): The double-peak structure is the superposition of
resonance arising from different transitions. The lower
resonance several eV below the edge is the E2 transition
2pip++4f, giving rise to four harmonics, which were
predicted and observed, The appearance of only two
harmonics at the high-energy resonance, and the absence
of g++o scattering in the first harmonic, ideatify this as
an E'1 rcsonance, presumably the 2p;m«++5d transition.
In Fig. 1, we give theorctical curves for the four harmon-
ics. These curves are a combination of calculation and
parametrization, carried out under the simplest approxi-
mations. ‘The purposes here is qualitative iilustration,
and not a detailed fit to the data. We have calculated
S using nonrelativistic Hartree-Fock wave functions
assuming a Hund's-rule ground state for the Ho ion,
with four empty atomic orbitals j4f,m;, ), m;=—3 to
0. For o++u scattering, the calculated peak resonance-
nonresonance ratic ¥/ @) =4 3; for the first har-
monic, giving a 19/1 intensity mﬁo,)in reasonabie agree-
ment with the observations. f only contributes to
the first harmonic, interfering with f§%* for gero
scattering, giving a pronounced symmetry of the first-
harmonic ¢<+o resonance curve, with constructive in-
terference predicted on the high-frequency side of reso-
nance, as observed. The calculation of fé’i’“) is more
complicated. Tle 54 states are more extensive than the
highly localized 4/ orbitals, and it is necessary to include
banding (or “hopping™), crystal-field mixing of the my
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FIG. 1. Relative scattered inteasities (theoretical} vs x-ray
energy for the L edge in Ho: (a) 004+ 1), (b) (002+21),
(c} (002+32), and (d) (002-+4r). The sofid lines give the
g+ scattering, and the dashed lines give g+-x.

o

orbitals, and exchange splitting. In addition, band occu-
pation and induced polarization must be determined, as
discussed above. These calculations are underway, but
regardiess of the detailed pature of the states, the para-
metric form for the polarization dependence is given by
Eq. (3). In Fig. 1(a), the magnitude of Fy) —F;—1 was
chosen to give a 2/1 ratio for the peak 1 and E2 inten-
sities, and the si&wu chosen to give constructive in-
terference with £ %) on the low-frequency side of reso-

" mance, to agree with experiment. As shown in Eq. (3),

cither sign is possible. The present choice of sign and
magnitude corresponds to P(Ho) =s +0.11, in reason-
able agroement with the previous simple estimate of
+007. In Fig. 1(b), the magnitude of 2Fy—Fj
— Fy—, was chosen to give & 4/3 ratio for the peak E
and E2 intensities. The dominant E1 contribution is
predicted to be o+~ o, but with a small o++x contribu-
tion which interferes with the E2 resonance which is pre-
dicted to be almost entirely oc++x for the (002)
reflection, in good agreement with the observations. The

1248

E1 contribution to the socond harmonic indicatcs that
there is a nonsphericity in the Sd polarization. The third
and fourth harmonics arise entirely from the E2 reso-
name,andbothav—clndawxmuibuﬁomuepre-
dicted, in agreement with experiment.

The theory gives excellent qualitative and reasonable
quantitative agreement with the observations cven with
these simple approximations. More sophisticated calcu-

'hﬁomwﬂlberoquirodtogivemrmﬁumthedau.

Thesemiﬁvityoftbommumentstothedeuihoﬂhe
magnetic properties, and the large enhancement of the
magneticmttwlng.promlntomakethinmspemm-
copy an important new probe for magnetic studies.
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X-Ray Resomance Exchange Scattering. J. P. HANNON,
G. T. TRAMMELL, M, BLUME, and DOON G(B38s [Phys.
Rev, Lett. 61, 1245 (1988)] '

The factor P appearing in Eq. (4) should be
P=in (1) =[a/C(x —=i}In;}. Because of the additional
frequency factor, (x —1) ~', the exchange splitting A and
the induced moment n, (1) can be scparately determined.
This correction was pointed out to us by M. Altarelli.

In Eq. (2, Y (F) should be ¥, (f;)".

In the first equation on p. 1247, C3(1,1,2:m
—M,m,,m;) should be C*(1,1,2;ny — M,M,m), and the
factor % in | x| 2 should be & .

In the seventh line from the bottom of p. 1247, “sym-
metry” should be “asymmetry.”

Possible Observation of Light Neutral Bosons in Nuclear
Emulsions. F. W. N. DE BOER and R. VAN DANTZIG
[Phys. Rev. Lett. 61, 1274 (1988)].

The vertical scale in Fig. 2 (and in Fig. 8 of Ref. 10)
has to be divided by a factor of 2.

In the dashed curve in Fig. 2 obscuration has been
taken into account but not the fnite grain density,

Spectrum of J* =2+ Mesons. S. K. BosE and E. C. G.
SUDARSHAN [Phys. Rev. Lett. 62, 1445 (1989)]1.

The terms P*3 and Q*3 that appear under the in-
tegral sign of Eq. (3) should correctly read as (P*)? and
{Q*)?, respectively.

Two-Photon Absorption of Nonelassical Light. J. GEA-
BANACLOCHE [Phys. Rev. Lett, 62, 1603 (1989)].

In Fig. 1, the dashed line is for amplitude-squeczed
light and the dash-dotted line is for phase-squecczed light,
contrary to what the figure caption reads.
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Magnetic effects in anomalous dispersion
M. Blume
Brookhaven National Laboratory, Upton, NY 11973, USA

Abstract

Spectacular enhancements of magnetic x-ray scattering have been predicted and ob-
served experimentally. These effects are the result of resonant phenomena closely related
to anomalous dispersion, and they are strongest at near-edge resonances. The theory of
these resonances will be developed with particular attention to the symmetry proper-
ties of the scatterer. While the phenomena to be discussed concern magnetic properties
the transitions are electric dipole or electric quadrupole in character and represent a
subset of the usual anomalous dispersion phenomena. The polarization dependence of
the scattering is also considered, and the polarization dependence for magnetic effects
is related to that for charge scattering and to Templeton type anisotropic polarization
phenomena. It has been found that the strongest effects occur in rare-earths and in
actinides for M shell edges. In addition to the general or magnetic scattering properties
the theory is also applicable to “forward scattering” properties such as the Faraday
effect and circular dichroism.

1. INTRODUCTION

With the coming of age of synchrotron radiation sources of x rays many phenomena
which had barely been observable have become important research techniques. In par-
ticular, the high intensity of these sources has made possible the observation of x-ray
scattering from the magnetization density in solids with relative ease (1-5]). By con-
trast, the initial experiments using conventional sources [2] required heroic efforts to
observe the effects. Similarly, the tunability of synchrotron sources has made possible
a much more detailed study of anomalous dispersion and related absorption and po-
larization phenomena. A consequence of these developments has been a closer look at
the theoretical aspects of anomalous dispersion. The basic equations that will be used
in many papers at this conference are more than sixty years old, and a number of the
important developments to be discussed here could have been worked out at any time
in this period. That they have not is an indication of the interplay between theory and
experiment. The spectacular experimental developments made possible by synchrotron
radiation sources have stimulated a reconsideration of theoretical terms that previously
had to be dismissed as unobservable. In this process several effects which might in fact
have been observed with conventional x-ray sources have been found.

In this paper I will discuss the theory of magnetic effects in anomalous dispersion,
and in the process will develop equations which contain not only these magnetic terms
but also the general theory of anomalous dispersion including charge effects.

- Q-
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2. THEORY

The coherent amplitude for scattering of a photon with wave vector k and polariza-
tion state ) to k' and )’ is shown in the appendix to be given by

2 . "
A= %;sj{?‘sg Z Pa { {a| E KT |a) s

* : — i Y
__in—?_:-:—z-(al Ee'x'ﬂ ( ._‘(1:;:’:) A®PY 4 a}'Bﬂﬂ-r) |a)

1 = (Ea = E\ (6|01 (")[c)(cl0? (4)la)
=X (3=%)

Es—E.+hw—i%

1 E,-E, (alO’(k)|c)(c|O°t(k')|a)
+;Z( ﬁw ) Ea_Ec_ﬁ'w } (1)

where Of(k) = Z:c"'"‘(pf — ih{k x 3,)"), and the remainder of the notation used

in Eq. g}) is defined in the appendix [7]. The first term in braces, proportional to
(a} 3" e*XKri|a), gives the charge scattering, and is usually the only term considered in

]
the simplest “kinematical” theory of x-ray scattering. If the state la) of the scatterer
is spatially periodic it is easily shown that this ierm produces Bragg scattering. The
second term, proportional to ihw/mc?, is the non-resonant magnetic scattering (1-5).
Notable in this term is the fact that the scattering from orbital and spin magnetization
densities have different polarization factors (A*P7 and B°#7, respectively), raising the
possibility of using polarization dependence to separate these densities {2,4]. The non-
resonant magnetic scattering is much smaller than the charge scattering (4], but it is
readily cbservable with the intensity of synchrotron radiation. It is most easily seen in
an antiferromagnet or in a helical magnetic structure, where the charge and magnetic
scattering Bragg peaks are separate. In a ferromagnet, where the weak magnetic scat-
tering occurs at the same point in reciprocal space as the charge scattering, the two
may interfere with one another, and the polarization dependence can be used to sepa-
rate them. The third and fourth terms are responsible for anomalous dispersion—the
energy dependence of the scattering and the subject of this conference. The bulk of this
article will consider the properties of these terms.

We are concerned with the effects of resonance, when the photon energy Aw is ap-
proximately equal to the energy difference E. — E, of an excited state E, above the
ground state E,. Then the final term in braces can be neglected compared to the next-
to last, as the energy denominator of the latter can be close to zero. It might in some
cases be necessary to include the non-resonant terms, particularly when looking at cases
when the photon energy is far from resonance. This can be done in a straightforward
way, and Eq. (A8) in the appendix gives the relevant formuia.

In Eq. (1) the quantum states |a) and |c} refer to states of the entire solid, and the
sums over i and j are over all electrons in the scatterer. If the electron is associated
with a specific atom we can write

r,=n+d, + 7} (2)
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where n is & vector to the n'® unit cell and d, is a vector from the origin of the unit
cell to the s** atom in the cell. Finally, we approximate 7} ¢ 1 + ik - v+ ik rl)2
Eq. (1) then becomes

e? ae ﬂ} : iK{n+d,})-W, § : ' } : iX
A= ——EEE&’ £ ‘C ( ) - Pa (aI - (“"}8‘ r‘]a)éaﬁ
. P n,s) i K. 1'(K )(p,’)T
_‘7(‘4 E‘_ :( 1)} iy {___.Aﬂﬂv +.3Baﬂ1 )

Eo — E,)*\ (@™ rg (1~ dik' v jeie| S0 rf(1+3ikr)la
+m;(( W )) B Botha ik )} @)

with Z("") indicating a summation over electrons in the ion at n + d,. While we have
not derived it, it can be shown that the Debye-Waller factor W, must be included, and
we have written it in Eq. (3). We have also dropped the primes on the ri, and have
omitted the spin and magnetic orbital parts in the dispersive term. The latter may have
to be considered in special cases, particularly for visible light, but they are generally
smaller in the VUV and x-ray regimes than the electric multipole transitions which we
have retained.
Setting hw., = E; — E,(> 0), and writing

Ro, =2_ 0, Qal= 3 e,
i i
the resonance term in Eq. (3} becomes
2
¢ 3. ¢ - W, -
A.re:z —‘“‘—'mcz z C’K(n+d') 'Ef\‘f Cf
7

.m Z; wl, (al(RE, — iQREK")Ic) (cl(RE, + 3iQETk")|a)
h a

. L
w W Weg —igy

(4)

This expression is the usual one (except for the factor w,, [w) for the calculation of
anomalous dispersion up to electric quadrupole emission and absorption. We can write

2

4 K- —

Area = - C'K(n+d') W‘s:\"."a'g
ns

=3 re Wea { (al B3, lc)(cIRL, la)

w u—wc,—i{g

L [<arR::,ac> (cQA1k71a) ~ (alQgTK|c) (c[RE, |a)

+

2 W= Weq — i%
b 15 ALy
41 {alQRR o)Az o) } ®)
4 W= Wea — gy

~ X3
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= Afe, + A7 + ATl

where dd denotes dipole-dipole absorption and emission, dg the dipole-quadrupole cross-
terms, and qg the pure quadrupole terms. Note that for an ordered crystal the R’'s and
Q’s are independent of the vector n of the unit cel: R, = R2 and Q2% = Q2%. Fora
magnetic crystal in which the magnetic structure differs from the atomic structure (e.g.
a spiral structure) the labels are necessary. We omit them in the following, but they
should be restored where needed.

As a first application of symmetry we note that Af{, vanishes unless the atom is not
at a center of symmetry. @Q*® will only connect states of the same parity and R only
those of different parity. These terms will thus be small, but they are essential in that
they are responsible for optical activity and (non-magnetic) circular dichroism.

2.1 Dipole Transitions

The dipolar terms are generally larger than the quadrupolar ones in the transitions
for which they are allowed, and we will consider the dipolar terms first. We write

2 3
dd € (K- - o mw,
Ald — - E :esK(n+d.) W'e',,.‘sg cap B0 ©)
™ W

where w,. & wg, and

C'ﬂﬁ = E Pa (a|R7le) (clRfla) . (n
ca W= Wea —i3x

The states |a) and |c) between which resonance occurs involve levels which differ from
one another by the change in state of a single electron. The sums over a and ¢ are
here taken only over a set of sublevels of the ground state |a) (for example over the
magnetic quantum numbers of that state) and of a similar set of sublevels of the excited
state |c). (It is important to be aware of the distinction between the many body state
|a} and the approximate single particle states occupied by the electrons. The many
body states may be specified by giving the occupancy of the single particle states by
the electrons.) As an example we consider scattering from holmium (8], which was the
first material in which resonant magnetic scattering was observed at a magnetic Bragg
peak. The single particle states of Ho are shown in Fig. 1. The ground state |a} is
represented by the occupancy (18)%(23)%(2p1/2)%(2p3/2)* - . - (4£)'°. The excited states
of the Ly resonance have one fewer 2py 9 electron and either one additional 5d electron
or one additional 4f electron. The state with an additional 5d electron is reached by
an electric dipole transition (A4 = 1 with a change of parity) while the state with
an additional 4f electron requires an electric quadrupole transition. These transitions
represent promotion of the inner shell electron to a bound or nearly bound level with a
high density of states. They are related to the “white lines” in the near-edge absorption
spectrum. The usual calculations of anomalous dispersion, on the other hand, involve
promoting one of the inner shell electrons (such as a 2p3; or 2 1s electron) into the
continuum of Bloch states or free-particle plane wave states. In general the anomalous
effects are much larger for the “white line” transitions, and the tunability of synchrotron
radiation makes such studies relatively straightforward.

"‘LQL]‘- -
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Figure 1. Electronic states of the Ho3t jon.

Returning to Eq. (7) we may consider the decomposition of C*#, which is a second
rank tensor (9], into three parts:

CP= o6 + ¢ + 38, @)

(recall that s labels the particular atom in the unit cell). Here Cy = LtrC; C°F < ~CP°

is the antisymmetric part of C, and C_',’_”B = Cf“ is the traceless symmetric part of C,
so that

€2 = L(C™F - o),
o %(cwﬁ + Oy %(trC’)tS"ﬂ.

It is straightforward to deduce the form of the polarization dependence of the resonant
scattering from the fact that C is a tensor, together with assumptions about the sym-
metry of the surroundings of the atom. Each atom in the unit cell will, in general, have
a different tensor.

If the atom is in spherically symmetric surroundings, but possesses a magnetic mo-
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ment, then
C%? x e*FTm?,

.

since m, the magnetic moment, is the only vector in the problem. Here €87 is the
antisymmetric tensor of third rank. From Eq. (6)

2 3
d e iK(ntd)-w, T .
A% = -— ,,S, o Kntd.) -—-—ﬁw“ (s'x €5 Co,

el x ) MG + (6 mmes o) = Gy 2| On). (10
where Cg,, Cis, and Cy, are constants (with energy denominators of the form (w —
wo — :'2—[;()"1). Since the magnetic and chemical structures differ we have labeled mn, as
depending on n and s. Equation (10) shows that there is a more complex polarization
dependence than the simple €Y, - €, of non-resonant charge scattering. The polarization
dependence of the last term in parentheses is similar to that for Templeton scatter-
ing [10]. This term is of particular importance in antiferromagnets when considering
magneto-optic phenomena on transmission. From Eq. {A10) the index of refraction
depends on the forward scattering amplitude, for which K = 0. From Eq. (A6) the
non-resonant magnetic scattering amplitude vanishes when k = k', so only the resonant
term can contribute to these effects. Since for an antiferromagnet 3 mn, = 0, the only

n
contribution to the index of refraction must come from the terms quadratic in mn,, i.e.
the terms proportional to Cz, in Eq. (10). These terms will be non-zero for a simple
uniaxial antiferromagnet, but may vanish for more complex magnetic structures. These
terms also determine the Cotton-Mouton effect in ferromagnets.

The term linear in m is a purely magnetic phenomenon. Indeed, the antisymmetric
part of C=# will vanish if time reversal is conserved, so that a magnetic field must be
present, a broken magnetic symmetry with magnetic ordering must occur, or a time
reversal non-invariant term must be present in the system Hamiltonian. (The latter
effects are of fundamental interest, but we will not consider them here.) To see this we
introduce the notation |a) for the time reversed |a). If, for example, |a} is labeled by a

magnetic quantum number m, then [@) = | — m). The sum over c and ¢ in Eq. {7) can
then equally well be taken over ¢ and &. Hence
o 1 a|R*|c){c|R? a|R°|e)(c|RPja
cazﬁz{pau SelRle) | ”‘“‘.r”}. )
ac w—wc,——zn- W —iea — gy
Further, (a}R*|¢) = (c|R%|a), so
1 (alR*Ic)(c|RPla) . {alRP|c}(c|R"]a)
c*f = a : 12
2;{1% w—-wu—i% TP w—-wg,-,—i?% (12)
With p: = _—Ea—_—-l-_-,- ; p:_‘ = Pa T then
W — Wea — t3y w—ts)aa—!ﬁ

~ 2l
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028 =3 S{ 04+ P(alR"I0) 1Rl + (ol R¥Jc clR"a)
+ ~ SR — (lR21) el A7l .

and

C2F =3 S0 ~ H(el R el R la) — {al Rl (e o). (13)

This shows that C27 = 0 unless p, # p,. This will be the case if ps # ps (magnetic
ordering) or if wy. # was (magnetic field present - Zeeman splitting) or both,

The largest effect occurs when the excited state |¢) consists of a core hole together
with an additional electron in the valence shell. The sensitivity to the magnetic proper-
ties occurs because of the magnetic order of the partially filled shell. The Pauli principle
then permits transitions only to unoccupied electronic states, which are orbitals with
specific magnetic quantum numbers. To see this most easily consider an atom with one
hole in the outer shell {(e.g. Yb** : (4£)!3). If the atom is magneticaily ordered only

the state my = —¢, m, = —% is unoccupied. The excited state will involve an electron

filling that hole and leaving a single hole of the same spin (—1), withmy = —£+1 {for
the dipole term). This gives a transition that is dependent on the magnetic properties
of the atom, even though the transition is electric dipole in charact.-. Because of the
role of the Pauli principle this effect was called X-ray resonant exchange scattering in
the first theoretical treatment by Hannon, Trammell, Blume, and Gibbs [11]. From the
point of view taken here this appenrs as a subset of anomalous dispersion phenomena
(i.e. the antisymmetric part of the tensor).

Further consideration of the size of the effect leads to consideration of the radial
integral for the matrix element:

(a] R®[)x fo P dr Rug(r)r R (1),

where Rpn¢(r) is the radial wave function for the core electron and R,+¢ that for the
valence electron. This integral will be largest when the overlap of the two functions
is large. Since the lowest energy electrons like 1s are concentrated around the origin
and the valence electron’s wave functions are practically zero, there the transitions
are likely to be weak. We can conclude that transitions in the actinides from the 3d
levels to the 5f shell (the Mr;r and My transitions) will have the largest matrix
elements, and hence the largest effect. Experiments by McWhan et al [12] on UAs
show a spectacular effect, with an increase of six orders of magnitude in the intensity
of the antiferromagnetic Bragg peak as the photon energy passes through the My
(3d3/2 — 5f) resonance. Figure 2 shows the experimental data. At the peak of the
resonance the magnetic scattering intensity is 1% of the charge scattering intensity (i.e.
~ 9 electrons)! The detailed calculation of the resonance matrix elements is best done
by using the techniques of j-symbols and the spherical representation of the dipole (or
quadrupole) operators. This is done in ref. {11]. The results obtained there are identical
to those that would result from the Cartesian representation of the dipole operators
given here.

- {Q:? -
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Figure 2. Experimental data showing the six order of magni-
tude variation in intensity of the (0,0, 3) magnetic Bragg peak
in UAs. The solid line represents a fit to the data without
the factor wo/w of Eq. (1). Inclusion of that factor improves
the fit at high w. From reference [12].

In Eq. (9) we considered the form of C*f when the only vector in the problem is
the magnetic moment m of the atom. We now consider the case of an atom without a
magnetic moment in a uniaxial environment. I £, is a unit vector in the direction of
that axis for the s*® atom in the unit cell,
az8 _ lgﬂﬁ

a“s 3 k]

C'_:‘focz"

which is just the form for Templeton scattering {10].
Since there is no magnetic ordering Cff = 0. The form of A%, is then
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2 3 _
Ageda = _;’:_c'i' ﬂ;:D z cd(.(ﬂ-‘.d.)-MW‘{(":\.‘ b ca\Cnl)
s
1
+0n, ({5 52)en- 2) - S )} (14)

In both Egs. (10) and (14) the anisotropic terms provide the possibility of the change
of polarization on scattering, of the observation of magnetic Bragg peaks, and for the
explanation of Bragg peaks forbidden by the space group symmetry of the crystal. The
latter possibility follows because A%4, depends on the direction of the scattering vector
as well as on the orientation of the dyadic 2238 The two together will not necessarily
have the full symmetry of the space group, :

It is also of interest to consider the possible forms for C'*# when a magnetic moment
and a crystalline field are present. These are

C:‘ﬂ o (2927 — %G“ﬂ)(al + b1 (2 m)?)
+ey(m®mf — %mzb'“'a)

+dy (3%mP 4 2Pme g(s -m)8°8)(2 - m),

and
C?? = ie®#(aym? + b,5(5 - m)). (15)

(The constants a; and b; have resonant denominators.) As the symmetry of the sur-
roundings are lowered increasingly complex polarization phenomena oceur.,

2.2 Quadrupole Transitions

We now turn to the quadrupole terms in Eq. (5). We have

2 3

AE_E, - _ [ . Ei\qtsiim%}_ ZciKA(‘rH-d,)--W,D'a'r,ﬂﬁkf‘yké’

me 53]

s
with
nzlc){clQg)|a)

Da-y,ﬂﬁ — (a’Qn: ns . 16

Xazpa w_w“_iz_[;‘_ (18)

There are many terms possible even in the simplest cases. We follow the reasoning used
in the dipole transitions. The fourth rank tensor D*"#¢ has the following symmetries:

Dﬂ')’»ﬁ5 = D‘Yﬂ..‘” = Daw,éﬁ.

We define D*7 = DI04 D278 with D388 — 4 DA%, With the same reasoning
that led to Eq. (13),
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DI = L 3 (5. + 7 ((01Q7716)€*la)
£(al@?(c)(clQ""|a) ). (17)

From this we see that D2"?% will vanish if time reversal is conserved. We first consider
the case where the atom has a magnetic moment. The tensors must be constructed
from 6P £977, and m". The possible forms are

Dg‘r.ﬂ‘ =a, {saﬂdmvmﬁ + Ev&cmcaa#
+Ea6¢ ml&‘[ﬂ + E-;,chvéai}
+bq {e"'s"m’m"’m‘ + e mmm’

+e*"m mTm? + E""’m’m"m"},

D™ = ay5*76% + b, {67057 + 524677
+c3 58 m'm® + 6*m'mf + mem?§7
+m“m55""s} +d; {m“m"'&“ + 6""m#m‘s}

’
-|—egm°'m”m"m‘ + fg{t:“ﬂ’e"“ mm°

WL L Lt } (18)

For the case where the magnetic moment is zero but the atom is in a uniaxial
crystalline field along the direction %,, D_ = 0 and the D, terms are obtained by
substituting # for m. Writing out the terms in full, we find

ei\‘f‘s‘gD‘:”'“ k'Tk¢
= al{(e';. x €3) - m(k' - k) + (k' x k}- m(eY - £5)
(et x k) - mlk' - ex) + (K X £2)  m(k- s';,)}
+b1{(sf\". x £3) - m(k' - m)(k - m) + (k' x k) - m(ely - m)(ex - m)
(el X k) - k' - m)(ex - m) + (k x £2) - m(eR - m)(k-m) },

and
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sf\':'e:fD:"’"“k"’k’
= ba{ (e - eA)( - k) + (e - B)er - R}
er{(els - )k - m)(k - m) + (e - kYK - m)(es - m)
Heh - m)(ex s m(K - k) + (ex - K')(ef: - m)(k - m)}
ea{ (e -m)(ex - m)(k - m)(k - m)}
+A{((e5 x ) m)(E x 8- m) 4 (e X B)-m)(K xex)-m)). (19)

The a2 and dp terms vanish because of the orthogonality of ¢’ and k' as well as that of
cand k. -

The linear and cubic terms in D_ give rise to antiferromagnetic Bragg peaks and
to satellites of those peaks. The quadratic and quartic terms give second, fourth, and
zeroth harmonics of those peaks. For the case of non-magnetic anisotropy the quadrupo-
lar equivalent of Templeton scattering occurs. This can also lead to the appearance of
Bragg peaks that are forbidden by the space group symmetry [13].

2.3 Dipole-Quadrupole Cross Terms

Finally, we consider the dipole-quadrupole cross terms. These vanish, as mentioned
above, unless the ion is not in a center of symmetry. While they can give rise to
magnetic effects, their principal importance arises because they produce optical activity,
(non magnetic) circular dichroism, and, in the case of scattering, circularly polarized
radiation. From Egq. (5),

2
dg _ __© iK(ntd,)~W, 1a” _§
Ay = - p eIt eT Sl
ns

x 515 o p { (el R (e Qe

~(alQ>Tje)el R? o}k, (20)

A

2
[4 : .
elK(n'Fd.)—W.elAn: E’A

= T
= 2P { (el ) elQP o) (7 - k)
+(alR{e) (e Q"|a) (k7 + k)
+alQ7|e)(cl R |a) (™ - k)

~(alQ e} (clR*Ja) (7 + KT)}. (21)

xl.
g

Again using the reasoning that led to Eq. (13), we find

—_ 3 -
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Al = oy T Wy 8 £ T (G - )
+Gﬁ;:;(k" -k + Gﬂi’(k" +E7) + G:.{’(k"' + k"’}, (22)
where
Gaf™ = (vl + pra)
ac
x { (alB%16) (c1@*"]a) + {alQ°7le) (el R o} }. (23)
and p,v = +1. The terms with g = —1 are not invariant under time reversal, so these

are sensitive to magnetic structure. Of special interest are the terms with 4 = +1
(time-reversal invariant). In a non magnetic system in the forward direction (k = k')
only the term G_'T_'a_"'(k" 4 k') is non-zero. This term is antisymmetric in a and . It is
therefore capable of producing optical activity and dichroism. The term with u = +1,
v = +1 is proportional to the scattering vector K, and is symmetric in o and 5. Both

Giﬂ:’ and G%#7 give rise to polarization dependences of scattering involving circular

polarization, and observation of an effect produced by Gi{’,_" has been reported in this
book by Tempieton.

2.4 Form Factors

In order to make contact with the usual notation for form factors, we write Eq. (3)
as

2

e . K. -W, \ hw

A= —— e ef Z K (n+d) ( ,‘:f —i— f‘;’"’f“’m) , (24)
;Y]

where (omitting the subscripts ns for clarity)

F = fo8%8 4 18 4 ifes (25)
with
fo= 3 palal 1K a) = oK), (26)

the usual charge form factor (i.e. the Fourier transform of the charge density}), and
Ko (K xpi)7 o
i = Sopalal 35 iKer [ IEERD gt i 1ot o (21

the non-resonant magnetic form factor. From Egs. (4) and (5) we see that the “anoma-
lous” form factors f'@# 4 i f""*# are given by

wl, (al(Rj, — 31QATK"T)|c)(cl(RA, + 3iQATKT)Ia)

b w—wca—i%};

fra,s + ifua,@ —-m Zp“ . {28)

— 30 -



Magnetic effects in anomalous dispersion 507

Using Eqs. {6), (7), (16), (22), and (23) we find
3

1wy inaf o 0 [ rap L pay,gs s

f1o8 g ifres — D20 [gas o Ll

+3i 3Gk ) (29)

ny

The anomalous terms contain both magnetic and non magnetic contributions. We
see from this form that these terms have only a weak angular dependence. The Debye-
Waller factor gives some contribution to such a dependence, but the tensors C, D, and G
are essentially independent of angle. Further contributions come from the polarization
factors and from the presence of &' and k in the quadrupole-quadrupole and dipole-
quadrupole cross terms. Since the dipole-dipole terms are usually largest we have most
commonly

3
rar g . riiaef Ty af
£18 4 ifred s T g,

and angular dependence arises from the directional dependence of C together with the
polarization factor £% ef. In the usual treatment of anomalous dispersion (before the

Templetons’ work {10]) only the trace of these tensors was considered.

3. CONCLUSIONS

The magnetic effects in anomalous dispersion are potentially quite large. They
are intimately related to the usual charge dispersive effects. The electric dipole and
quadrupole interactions and their cross terms, together with symmetry arguments, give
excellent explanations for the polarization dependence of scattering, as well as for for-
bidden reflections, dichroism, Faraday effect, magnetic scattering, optical activity, etc.
We have shown here only the simplest applications of symmetry: time reversal (which
distinguishes magnetic and non-magnetic effects), parity (‘which shows how optical ac-
tivity arises) and local uniaxial symmetry. More detailed group theoretical analysis can
yield explicit forms for the tensors €', D and G.

It is clear from the theory that anomalous dispersion effects are strongly dependent
on the resonance structure of the ions in the solid, and, especially near those resonances,
are sensitive to the local environment and bonding configuration. This might be consid-
ered an annoyance by crystallc raphers, who would like to have a simpie :abulation of
anomalous dispersion “corrections” that is broadly usable in experiments. This is un-
fortunately, from that point of view, not the case. On the other hand, such sensitivity
enables experiments which can give otherwise unobtainable information about magnetic
and electronic structures. Much work remains to be done, both experimentally and the-
oretically. The equations are old, but, because of the synchrotron radiation revolution
in x-ray sources, the ideas and experiments are new.
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APPENDIX

In reference [4], the interaction between photons and electrons is shown to be

H = 2::(:, 2«42(?;) - %;Pi - A(rs)

€ 2 .
.__..';’% oLk V x A(ri) — 2(—;:‘5—)-5 Zs,- (A (r) x A(m)), (A1)

‘where A(r;) is the vector potential of the electromagnetic field at the position »; of the

ith electron. The first two terms are familiar, while the second two represent smaller
magnetic terms. Since A is linear in photon creation and annihilation operators, scat-
tering is produced in first-order perturbation theory by terms quadratic in A such as
the first and fourth terms in ££q. (A1) — (since scattering involves “destruction” of the
incident photon and “creation” of the scattered photons). Terms linear in A, such as
the second and third terms in Eq. {Al) give scattering in second order perturbation
theory. The use of Fermi's golden rule to calculate the matrix elements [4] then yields
the coherent scattering amplitude

2 N ,
A= _e_czei\e eﬁ ZPC{(“' Z e'x"‘1a)6“ﬁ - iea‘h%(alz J?C'K"Ia)

m
+ L 5o { (0 N0 B)ia) , (el ()i} elO” (k) } (A2)

Fa—EBothw—it |

Here £'% and €} are, respectively the polarization vectors for the scattered and incident
photons, where X and A' label two orthogonal polarization basis vectors (e.g. left and
right circular, or linear polarization parallel and perpendicular to the scattering plane).
€987 is the antisymmetric tensor of third rank; a, 8, and -y vary over the cartesian indices
z, Y, Z; Pa i8 the probability that the incident state of the scatterer |a) is occupied (given
by pa. = e~ 2«/*T/Z Z the partition function, for a system in thermal equilibrium) and
K = k — k' is the scattering vector (| K| = 4w sin8/), where 26 is the scattering angle).
The operator O#(k) is given by

O8(k) =S e*Ti(pf —in(k x 5:)%), (A3)

and T is the inverse lifetime of the intermediate state |¢}. (We have considered only the
coherent amplitude, where the final state of the scattering system |a) is the same as
the initia] state. Inelastic or incoherent scattering is accounted for by allowing the final
state |b) to be different from the initial state |a) of the scatterer, and for the frequency
' of the scattered photon to be different from that of the incident photon w.)

“3}&{- -
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Considering the last two terms in Eq. (A2), we note that for photons with energy
hw > E. ~ E, the summation over |c) can be carried out by closure, and the last two
terms will reduce to

1
35 (allo”' (), 07 ()]ja). (A9)
This commutator, as shown in reference (4], gives, together with the second term in

Eq. (A2}, the nonresonant magnetic scattering amplitude [1-5]. We obtain these terms
by writing

1 1 1) 1
E.— B+ hu—if (E.—EC+M—i§"E)+E
_ E.—E, 1 1
T Thw E,—E.+ho—iL A

(We have neglected i in the numerator, as it is negligible compared to E, — E,.)
Substituting in Eq. (A2) we obtain the commutator in Eq. (A4) and the terms with
energy denominators multiplied by factors E‘ﬁ,ﬁl Equation {A2) becomes

82 o iKor; a
A= ——seie] E:p.{w >_e'KTia)ss
, hw E : iKor; ,(KXp.-)'Y afy ¥ pafy
—IEE(GI : e (—l'—ﬁ—"—zA + 3s~ B [ﬂ)

1 E, - E.\ {al0®'(k")|c)}{c]O#(k)|a)
_Ezc:( Fuw ) E, - B, + bw —iL

- a|O8(k)|e){c)O*" ())a
+$Z(E.ME¢:)( |08 (k)e)(cl0™" ()] )}_ (A5)

E,-E,— ko

The commutator has been combined, as mentioned above, to give the second term in
Eq. (A5), the non-resonant magnetic scattering amplitude. The polarization factors
A®P7 and B*57 are obtained from straightforward algebra. They are

AT = (1 — k- k)eoB,
BOSY = o8 _ gotnjfipn | aiujija

— e R 4 B + Sk x By
+%(ic x B)fger (A6)
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In Eq. (A6) k and &' are unit vectors in the direction of the incident and scattered
photons, respectively. The terms multiplying AP give scattering from the orbital
magnetization density of the scatterer, while B*A1 multiplies the spin density terms.
Equation (A5) is the complete expression for the scattering amplitude. The first term
gives the standard charge scattering, the second the magnetic scatiering, and the third
and fourth terms give the resonant and non-resonant anomalous dispersion effects. The
latter can be conveniently combined in a form that is useful far from resonance, but
that corresponds to the neglect of the last, non-resonant term when hw ~ E; — E,. We
write
_L > (Eﬂ — E‘) (|0’ (k') |c) (c|O#(k)la)
m &~ Aw E,—E.+tw—ix
_ (alOA(k)|c)(c|O>' (k")]a)
E, — E.~fw + i3
- E(E‘ - E.,) { (a]0°' (k)[¢) (c|O (R)la) + (alOP(k)|cH{c|O™ (K')ja)

2m hw E,—E.+hw~-i%
(a0 ()Ie) (e 0P (R)]a) ~ (al0? (k)|e) (clO (K |a)
E,—E, + hw -k
1 (IO (B)]e)(cl0P(K)la) — (alO° (k)lc) (clO°"(K')|a)
' E, - E. - hw +i%
(alO*' (K")|c)(clOP(k)a} + (alOP(k)lc)(c|O™ (K')]a)
Ey — E. - hw +i} '

(A7)

{Note that we have restored the lifetime iT of the intermediate state |c) in the denom-
inator of the non-resonant term. It is negligible, but in combining the resonant and
non-resonant terms it is more symmetrical to include it.) In Eq. (A7} we see that both
resonant and non-resonant terms have elements symmetric and antisymmetric in @ and
B. This separation, as shown less generally in Eq. (13), gives time reversal invariant
and non-invariant terms, respectively.

Since

1 4 1 _ 2(E¢‘-Ec)
E,—Ec+hw—il  E,—E.—tw+il (B, — B — (hw —if)?’

and

1 i _ 1 - —2hw
Eo—Ec+hw—il Ey—Be—hw+ii  (Ea=E)? - (hw—i5)?’

we find for the scattering amplitude

26 -
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¢ wa* B iKor; af
A= 12y Eazp. (a]Ze ‘la)é

: hw K. _(KXP.-).' o, o
—‘;‘J(aize Ti (_'_WA ﬂ1+,;_rB ﬁv) la)

1 (8, - Bo/mw)
m Z (Ea — E.)? — (fw — L)

[ <A (1610”107 Bl + (alOA Bl (W1
HEBs = B ({0 ()e)ci0* W)l = (0 (k) el0”' ()| } (48)

When E, — E. + hw 2 0 the energy dependent terms reduce to the expressions in which
the non-resonant parts are neglected. Equation {A8) has no additional approximations
beyond those used to derive Eq. (A2). High and low energy limits of these terms can
also be evaluated directly.

The relationship between A in Eq. (A5) and the scattering cross-section is

do
— = |A(k'X, EX)|?
) = AmX RN, (9)
where we have written explicitly the dependence of A on the properties of the incident
and scattered photons. This cross-section gives the expression for the “kinematic”
theory of Bragg scattering. The relationship between 4 and the index of refraction,
which is needed for the calculation of dichroism, the Faraday effect, and other electro-
and magneto-optic phenomena, is

0 .
naa =bxa+ k_:- ' flf"A(k‘\‘!k’\)v (A10)

where V is the volume of the sample. Note that the forward scattering amplitude enters
this expression. nyry is 8 2x 2 matrix in this case, with rea} and imaginary parts which do
not necessarily commute with one another. The calculation of polarization phenomena
in this case is discussed in [14]. Examination of Eq. (A5) shows the relationship between
this 2 x 2 index of refraction (whose indices refer to the two polarization vectors) and
the usual 3 x 3 matrix whose indices are the spatial ones. If we rewrite Eq. (A5) to
define A(k'a, k), the 3 x 3 scattering amplitude,

A(E'N kX) = 8 e A(K a, k), (A11)

then

ned = 528 1 2T 1 ko gy (A12)
BV "

is the 3 x 3 index of refraction. The polarization vectors ' and ef serve as the trans-
formation matrices which project the three dimensional physical space into the two
dimensional space labelled by the orthogonal polarization indices A’ and A:

- 3?71,—
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n

A S s',{’."e‘:n""’ . (A13)

The calculation of polarization phenomena is generally easier in this two dimensional
space, where the Poincaré sphere representation can be used [14].
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