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BASIC INTERACTIONS IN CONDENSED MATTER

MAGNETISM: QUALITATIVE A CCOUNT OF SELECTED
TOPICS

R. BALLOU

Laboratoire Louis Néel - C.N.R.S. - BP166 - 38042 Grenoble cedex 9 -
FRANCE

A qualitative insight is given of some of the basic interactions at the origin of the
magnetic behaviours observed in condensed matter, followed by brief discussions of
ground states and excitations emerging from these interactions.

INTRODUCTION

A consistent account of the various aspects of the field of condensed matter magnetism is
clearly illusory: the word “ condensed matter magnetism” transposes to a wide spectrum of
investigations that may range from those typical of applied material science to those concerned
with quantum many body phenomena. What might be expected is at most an informal point of
view on a few, necessarily incomplete and arbitrarily chosen themes. Catching a glimpse of the
diversity of the field was however quite appealing. Attempt is therefore first made to enumerate in
an eclectic way, a few aspects of applied magnetism as well as themes of fundamental interest. A
qualitative insight of the most relevant microscopic interactions at the origin of the magnetic
phenomena is then given. Emphasis is placed on the physical origin and not on the very detailed
features of the different mechanism. Although now not surprising, a newcomer in the field will
observe that the ultimate origin of these interactions refers essentially to the electric Coulomb
interaction. A few outcomes of the described interactions are finally discussed, considering
essentially the most familiar magnetic behaviours of ferromagnetism and antiferromagnetism.
Since the variety of possible and observed magnetic phenomena is overwhelming, no exhaustive
overview could be attempted. We conclude by pointing out the importance of the experimental
means of investigation. A poor and very incomplete set of references, mainly reviews or
monographs, will be mentioned. The original literature on the field is rather abstruse and so vast

that it could not be reported here in a satisfactory way.
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CONDENSED MATTER MAGNETISM: A FIELD OF A WIDE DIVERSITY

Although the power of a magnet to attract iron appears to be known in the old Egypt and
Summer civilisations, no relevant applications had existed until this century, if we except the
mariner’s compass, most likely invented during the Zhou's dynasty in China. Applications
emerged and developed when new discoveries and new insights were made possible by
investigations at a more fundamental level. An understanding of the basic microscopic
mechanisms at the origin of the different magnetic behaviours of the materials was in that respect
of utmost importance. Consistent theoretical frameworks could be built up, that allowed to
examine thz different outcomes of given microscopic processes and Lo incorporate predictions.

Applied magnetism: the need for an understanding

A magnetic material may raise an interest for technical applications in a lot of ways

according to its properties.

As a hard magnet (hard to magnetise or to demagnetise) [1] it may provide a constant
induction field in a given volume of space, without the continuous expenditure of electric power
or the generation of heat inherent to a field produced by a current in a conductor. A hard magnet
is said be made into a permanent magnet when stability against the demagnetising action of stray
fields, including its own, is achieved. It is then fundamentally an energy-storage device: once the
magnet is magnetised, its energy is always available for use and is not drained away by a repeated
use like the energy of a battery, because the magnet do not work and no net energy is transferred
to the surrounding. The qualifying factors of intrinsic origin for a hard magnet are: a large
spontaneous magnetisation and a large magnetocrystalline anisotropy in the widest range of
temperature. As the prerequisites of any improvement, that calls for a deep understanding of the
microscopic mechanism of the interactions from which these quantities will emerge, i.e. the spin
exchange interactions and the crystalline electric field effects. A hard magnet is made a
permanent magnet by another important property: the coercivity. It accounts for the fact that
although a large magnetocrystalline anisotropy is existing to block up the rotation of the
magnetisation, magnetic domains with reversed magnetisation direction are nucleated at the
structural defects and a subsequent move of the domain walls may occur. As a result, a much
lower inverse magnetic field than that expected to overcome the intrinsic magnetocrystalline
anisotropy is sufficient for the reversal of the whole magnetisation. The coercivity is an extrinsic
property associated with the microstructure of the material and involve additional interactions that

become primordial at this scale: the long range magnetic dipole-dipole interaction.



As a soft magnet (easy to magnetise or to demagnetise) {2] a magnetic material may
help to canalise an induction field in the required geometry of a magnetic device. It may as well
help to detect an induction field in a given volume of space or else to screen parasitic induction
fields, eventually at high frequency in the case of weakly dissipating materials. As for a hard
magnet, the largest spontaneous magnetisation is once more requested in the widest range of
temperature but now the magnetocrystalline anisotropy should be the lowest in order to canalise
the highest induction {lux in the material without losses. This calls again for a deep understanding
of the spin exchange interactions and of the crystalline electric field effects. Used as a
screen with respect to time dependent parasitic fields, a soft magnet should in addition not
contair< defects of the size of the characteristic width of the domain walls to avoid the pinning of
these walls at the defects. It should moreover have a large resistivity to minimise the dissipating
effects associated with the electric current induced by the move of the domain walls. Also hi ghly
relevant to consider are the magnetoelastic interactions, which should be the weakest to

avoid the strain induced pinning of the domain walls.

The applications based on either of the basic features of hard and soft magnets form
already a list so long, as to astonish the uninitiated if set into details. Hard magnets are used in a
variety of electromechanical devices, e.g. in ac-current motors with electronic commutation, in
electric devices as actuators for linear or turning movements e.g. in disk heads, in electroacoustic
applications, in galvanometric instruments, ... as well as in al] instances where magnetic forces at
the macroscopic scale are involved, e.g. as with magnetic bugs, levitating vehicles, magnetic
brakes,.... As components of micro-motors or micro-actuators, they find now more and more
medical applications. We shall finally mention that they are basic building blocks of ondulars and
wigglers in synchrotron radiation sources. The use of soft magnets is even more wide and not
possible to enumerate in few sentences. We shall simply recall that they are basic building blocks
of magnetic circuits, of electromagnets, of magnetic sensors and of electrotechnical devices such
as transformers, rotating engines,... Soft magnets have also high frequency applications e.g. in
microelectronics, cellular phones,... The word market of hard magnets was evaluated at 6 Giga
Euro in 1995 and was found ever since to increase by more than 10% every year. That for soft
magnets went up to about 10 Giga Euro in 1995. These estimates excluded the market of
magnetic materials used in all audio/video and computed-related applications i.e. disk, dvd,
magnetic tapes, heads for disk drives,... which by itself was found to reach 11 Giga Euro in
1995. A deep understanding of Magnetooptic effects [3] is here clearly of relevance concerning
e.g. write in and read out processes in magnetic recording. Current trends in this field of
applications are directed towards materials of reduced dimensionality, i.e. thin films [4], with
the aim to promote novel applications such as magnetoresistive heads for disk drives, spin-switch

Or spin transistor, integration of magnetic and semi-conductor technology,.... All thesc
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possibilities emerged thanks to newly discovered phenomena such as giant magnetoresistance.
Active investigations are currently directed towards getting a detailed insight of the effect, which
involves a spin dependent scattering of electrons at the interfaces and/or in the bulk of the layers.
Another behaviour, opening possibilities of spin electronics and new magnetic microscopy, is
that of the half metals, defined as showing a gap in the band structure for a definite spin state.

The applications involving other magnetic properties of materials are as numerous. We
may call to mind e.g. the invar alloys [5], useful for high precision mechanical devices in an
environment of changing temperature e.g. telescope, supports of integrated circuits, nuclear
reactors,.... the invar phenomenon accounts for a vanishingly small thermal expansion of a
material over a wide range of temperature, which arises from a thermal contraction of magnetic
origin compensating the usual phonon induced thermal expansion. A magnetic material may,
more generally, transform a non magnetic signal e.g. mechanical, optical,... into that of an
induction flux and conversely, enlarging considerably the field of applications in terms of
sensors, actuators anJd more widely transducers. Among the applications using the magneto-
elastic properties of materials [6] we find the sonars, the hydrophones, the sensors of
position... New possibilities are continuously emerging as the increase of the performance of
given magnetic properties proceeds. As an example, the magnetostriction of some compounds
(Terfenol-D,...) allows now to conceive novel motors to displace heavy bodies at very low speed
or novel magnetocardiographers where the probe, instead of an expensive SQUID detector, is a
magnetostrictive film deposited on an optical fibber. A deep understanding of the magneto-
elastic interactions is here of course necessary. Arising from the strain derivatives of the
crystalline electric field, as a one-ion effect, eventually leading to a two-ions interaction, from a
distance dependent exchange interaction or else from a local moment formation or change, these
interactions may lead to isotropic as well as anisotropic macroscopic deformations. Among the
different effects, it is often customary to distinguish more particularly the magnetovolume effects
i.e. the spontaneous deformation at a magnetic ordering, the positive and negative Joule
magnetostriction i.e. the field-induced parallel and perpendicular deformation of the material and

the thermal expansion or contraction of magnetic origin [5, 6].

Although now widespread, the technical potentialities of applied magnetism are still far
from being on the end. Exciting long-term perspectives exist, forming the basis of new
incentives. As a matter of fact the diversity of the technical applications are answerable not only to
given magnetic behaviours but also to the variety of the behaviours observed in the different
magnetic materials and, often it is the improvement in the material synthesis that open new
possibilities. A fascinating example is that of molecular materials showing the low spin to

high spin transition [7]: a bistability that allow to materialise electronic functions {switching,



amplification, information storage, signal processing,...) at the level of moiccules or of a small

assembly of molecules. We shall end here this rather sketchy overview of applied magnetism.

Magnetic Behaviours (the source of formal concepts)

A number of magnetic behaviours emerge from the basic magnetic interactions which a
priori are not of any practical use but which are as important to investigate. A first reason is
simply that these behaviours exist and we have to find out why they set up. Another reason is that
by no means we may assume that nothing interesting could be learned from them. Of fundamental
interest, the analysis of these behaviours are useful to check the internal consistency of given
theoretical methods and may generate novel concepts that allow to build up unifying pictures of
magnetism or to make a fruitful analogy with other fields of physics.

Accounting for all the different magnetic behaviours is of course not possible, except a
few, simply because the set of all the possibilities is overwhelming. Among the most familiar and
first discovered we have the diamagnetism, the paramagnetism the ferromagnetism and
the antiferromagnetism. As other magnetic magnetic behaviours, we may quote the
ferrimagnetism, the helimagnetism, the non collinear, incommensurate, multi-
propagating or multi-axial magnetism,... Various transitions are associated to these different
variants of magnetic orderings either on varying the temperature or on applying a magnetic field
such as the spin-flip transition i.e. the field induced reversal of a sub-lattice of spins, the spin-
flop transition i.e. the field induced reversal of the antiferromagnetic direction, the spin-slip
transition i.e. the field-induced slippage of propagation vectors,... leading to an apparently
unending list of possible magnetic behaviours and to phase diagram that to be explained requires
to consider not only the spin exchange interactions but also the crystalline electric field
effects [8], eventually with pair effects favouring quadrupolar orbital ordering, as well as the

magnetoelastic interactions [9].

Among less familiar magnetic behaviours we could quote e.g. the speromagnetism, a
state of frozen isotropic random distribution of local moments, observed in materials with a
random-looking mixture of ferromagnetic and antiferromagnetic interactions and/or a random
distribution of local magnetic anisotropy axes. Other variants of magnetism observed in these
materials are the asperomagnetism, a state of frozen anisotropic random distribution of local
moments, or the sperimagnetism, a state of frozen random distribution of local moments of
different amplitude. When a sharp cusp in the ac magnetic susceptibility of these materials is
observed at a given temperature, a spin glass state is empirically said to set up. Attempts at

understanding the spin glasses [10] have ied to intensc experimental and theoretical investigations



involving new coi.cepts, ¢.g. magnetic frustration, replica symmetry and ergodicity breaking,
ultra-metric state space,..., and developing towards models of neural networks. A deep insight is
now achieved but open questions still remain, concerning e.g. the ground state, unique or not, or
the spin dynamics at finite temperature, spin droplets flips or hierarchical spin flips.

At first invented for spin glasses, the concept of frustration was latter found to contain
much wider physics. A frustration may come out without structural disorder in crystalline
materials. A distinction is then made between the frustration associated with the spatial oscillation
of the exchange interactions and the geometric frustration of antiferromagnetic interactions
defined a: the intrinsic impossibility to build a consistent spin configuration of opposite
orientations, due to exchange loops involving odd numbers of spins. A geometrical frustration
always leads to degenerate manifolds of spin configurations differing from each other by local
spin transformations. A basic outcome is that short wavelength spin fluctuations are enhanced
and the formation of local spin singlets is favoured. A fluctuation-induced ordering of spins may
set up when there exist spin configurations of lowest zero-point fluctuation energy or, at finite
temperature, of lowest fluctuation free energy. Otherwise an entropy of discrete ground state
degeneracy, scaling with the number of spins, persist and novel magnetic phases may be
induced, as a result of subtle microscopic processes. A wide number of possibilities are foreseen,
in between different variants of dimmer and valence bond states corresponding to different linear
combinations of spin singlet bond configurations on the lattice, flux phase states characterised by
a non zero circulating spin current around closed loops, multi-spin orders associated with a
breaking of solely space rotational invariance (nematic spin liquid) or with a breaking of solely
time reversal and parity invariance (chiral spin liquid), states with a spin pairing non local in
time,... All of these states describe a spin “rigidity” in the absence of a moment on a site and, as
such are often indifferently termed as quantum spin liquids [11]. Another expected outcome of
the geometrical frustration is that it might give birth to novel topological defects associated with a
non-Abelian homotopy group, that should lead to new classes of transitions, generalising the
Kosterlitz-Thouless vortices binding transition of spin rotators in 2D systems. Crossing and
interaction of the topological defects are expected to generate a topological glassy phase but
basically different from canonical spin glass.

We cannot at this point, not recall the long-standing problem of phase transitions and
critical phenomena [12], the understanding of which could be considered as one of the so far
best achievements of theoretical condensed matter physics. Conceptual approaches were
formalised gradually, starting with the Landau theory of phase transitions where the vital
importance of symmetry breaking was recognised, the concept of order parameter clearly defined
and the non existence of transitions of order higher than two demonstrated. Of course not all the

transitions are described within the same framework - examples are the liquid-gas transition, the



percolation in random systems, etc. which involves specific approaches. A fascinating disccvery
was the universality of the behaviour of the thermodynamical variables in the vicinity of the
ordering temperature, described by critical exponents depending upon only the space
dimensionality and the number of degrees of freedom of the order parameter. A deeper insight of
these critical exponents was made possible thanks to the concept of scaling and the idea of
renormalisation group [13] borrowed from the field theory. All these steps in the
understanding of the critical phenomena greatly benefited from the phase transitions observed in
the magnetic systems, thanks to extremely pure and magnetically well-characterised samples
which allowed accurate experimental investigations as well as to the insights provided by the
theoretical analysis of various models. After all, the field of magnetism was essential in providing
the exact solution of a many-body problem: the Onsager’s solution of the 2D Ising model, which
was certainly of great help in checking the numerical estimates of critical exponents. Initially
strongly inspired by the models of magnetism, another example is the spin-1/2 quantum chain
solved by the Bethe ansatz, the field of exactly solvable models [14] evolv=s at present as a
quasi independent branch of mathematical physics with a high degree of sophistication, extending
and developing variants of the Bethe ansatz method or finding out new methods such as the
quantum inverse scattering method, methods based on the use of Witten’s supersymmetric
quantum mechanics,... to apply to other systems such as the Hubbard chain or the Kondo
problem, or else discussing the existence or the non-existence a priori of an exact solution,
formulated through relations such as the Yang-Baxter equations, the Zamolodchikov equations or
through no-go theorems. Attempts are of course also made to map magnetic problems into
problems of other fields of physics that could be fruitful for magnetism. It was thus proved that
the 2D Ising model in the continuum limit, i.e. in the vicinity of the phase transition, can be
mapped to the Dirac equation of a free fermion, by constructing a variable x=ou, where o is the
order parameter and p a disorder variable, dual to o, defined at the end points of dislocation lines.
As from an appropriate generalisation of the p-variables, it was then proved that the 3D Ising
model in the continuum limit can be reduced to an exactly solvable model, i.e. the Neveu-
Schwarz-Ramond supersymmetric string, giving hope to find the critical exponents of the 3D
Ising model. Unfortunately the problem awaits yet to be concretely solved.

We shall end this eclectic inventory of the fundamental aspects of condensed matter
magnetism, far from being complete, by invoking the quantum tunnelling of magnetisation in
mesoscopic systems[15], as an example of how a theme of fundamental interest naturally
develops as soon as technical progresses, here in nano-technology and in the synthesis of new
clustered matertals, allow experimentally to investigate it. Although the idea of tunnelling between
collective spin states separated by an energy barrier was around for a time, its adequate

formulation taking account the effects of different environments (phonons, nuclear spins,...) is
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quite recent: the quantum resonance i e. the oscillation across an energy barricr is found to be
almost always destroyed, while the quantum tunnelling i.c. escape out of a metastable state and,
above all, the quantum relaxation i.e. the incoherent tunnelling assisted by the environment can be
observed in rather large magnetic clusters. An interesting outcome of the functional integral
treatment of the problem was the discovery of a topological term in the magnstic action that
forbids the tunnelling for half-integer mesoscopic spins, thus generalising the notion of Kramers
degeneracy. A field of fundamental interest we could finally mention as an example of a so far
poorly investigated one, at least experimentally, is quantum chaos in spin systems. A clear
advantage of the spin systems is that unlike other chaotic systems, such as the Rydberg states of
an atom, there is there the possibility to examine the whole spectrum of energy without the
qualitative change due to an escape from a potential well, and also that, apparently, irregular
behaviours might occur at low energy, including the vicinity of the ground state [16],

BASIC DYNAMIC VARIABLES AND INTERACTIONS

As to the question of what the magnetism of matter is, an answer in a few words could
be: the field of (cooperative) effects of spin and orbital magnetic moments in the matter. An
immediate observation is then in order: any electron has an intrinsic spin magnetic moment
Mg=gup$, where g=2.0024... is the electron gyromagnelic ratio, up=¢ #/2m, the Bohr
magneton and S the electron spin. It may also possess an orbital magnetic moment M =uglL,
where L is the electron orbital angular momentum. M, is associated with the stationary part of the
current density generated by the electron motion in orbital space. A nucleus might similarly have a
spin and/or an orbital magnetic moment but the corresponding amplitude is much weaker, being
proportional to the nuclear magneton (ug/1836). Consequently, the nuclear magnetism of a

material can in general be neglected. An exception is the nuclear magnetism of He? [17].

Attention can be called here upon some misconceptions found in the literature, which are
worthwhile to correct from a pure epistemological point of view. A spin is essentially a quantum
mechanical variable and not a specific relativistic variable as often believed and inferred from the
Dirac equation. As from general invariance principles using the Wigner theorem for
transformations preserving the scalar product of an Hilbert space, self-adjoint operators can be
built that transposes to dynamical variables. Assuming Galilean invariance the following
operators are generated H (Hamiltonian), X (position), P (momentum) and J (angular
momentum). An operator L (orbital angular momentum) can be buit as X x P which has the
same properties as J, but there are no reasons to assume that the difference S=J-L, which is then

no more a function of orbital variables should cancel. S, L, J can take integer values as dictated



by invariance undcr the special orthogonal SO(3) group while only S and tnerefore J but not L
can take half-odd integer values thanks to the special unitary SU(2) group universal covering of
SO(3). The SU(2) group is not simply connexe and implies that the spinor i.e. the wavefunction
of an half-odd integer spin is not invariant under a 27 rotation but a 4 rotation. At processing
further and introducing an interaction with an electromagnetic field the surprising result is found
that the intrinsic magnetic moment M of an elementary particle with mass p and charge q is
always M=q/2p irrespective of its spin §, i.e. the gyromagnetic ratio is g=1/S. It is by the
quantification of the field that radiative corrections arise correcting g as 2+f(ot) where (o) is a
function of the fine structure constant 0= A/mec, leading e.g. to g=2.0024. .. for an electron. g
for a proton is measured equal to 2.79275 and for a neutron, which 5as no net charge, equal to
~1.91346, indicating that these are not elementary particles.

A final point of epistemological interest that we shall mention is that condensed mater
magnetism is intrinsically quantum mechanical and that classical magnetism cannot exist, as stated
by the Van Leeuwen’s theorem. Its proof is quite simple: the Hamiltonian H of a system of
particles of charge q; and mass M in a magnetic field B =V x A is:

1 2
H= ;K{pj —qu(rj)} +U(r;)

to which will correspond the partition function Z = f Hdrjjndpj exp(-H/k,T). At making the
variable change p; — wj = P; - 4jA(rj) the volume element becomes I1dr;j I'ldm;. As a result, the

partition function Z and the free energy F become A-independent and thereby B-independent, so
that the magnetic susceptibility always vanishes: % = - 32F/ 92 F = 0,

A magnetic behaviour of the system of electrons in a material is dictated by the way the
magnetic moments of the electrons couple with each other or, with regard to the orbital part, are
affected by the environments, which calls upon finding out which interactions are under the main
concern. Among the most essential we have the exchange interaction, the effects of the electric
field of the environment on the orbital motion of the electron and therefore on its orbital magnetic
moment, the spin-orbit coupling and, as outcomes of the two formers, the magneto-elastic
interactions. Other interactions exist but are in usual weaker. Among them, the interactions,
within an atom or an ion, of the electrons with the scalar and vector potentials arising from the
nuclear charge and current give rise to various couplings between the nuclear and electronic
magnetic moments. Answerable to nuclear magnetism, these interactions are useful in probing the
electron magnetism at the atomic scale [18]. Of course there are couplings with other degrees of
freedom other than the magneto-elastic ones, which could also be fruitfully used to probe the
magnetism, as e.g. the Faraday or Kerr effects in magnetooptics. Usually they are not relevant in
fixing the magnetic states of a material. As the last but not the least, we may finally call to mind
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the magnetic dipole-dipole interactions. Of purely magnetic origin, these interactions are too weak
and can never lead to a magnetic order at the ambient temperature. Being long ranged, decaying
as -3 where r stand for the distance between the magnetic moments, they become relevant at the
mesoscopic level: the magnetic dipolar energy is as basic as the exchange or the
magnetocrystalline anisotropy energy are for the coercivity mechanism in the magnets. We shall
in the following essentially discuss the spin exchange interactions and crystalline electric field
effects.

EXCHANGE INTERACTIONS

The exchange interactions are actually fictitious interactions that transposes to an
effective coupling between spins arising from the electron-electron Coulomb repulsion, the
electron’s kinetic (delocalisation) energy and the Pauli exclusion (Fermi-Dirac statistics)
associated with the indistinguishability of the electrons.

The concept of indistinguishability tells that, whenever, among all the possible paths
contributing to the path-integral describing the dynamics of a given particle, some may intersect
that describing the dynamics of another similar particle, the quantum uncertainties prohibit to keep
track of the particle. Accordingly, the states of the system obtained from each other by merely
interchanging the two particles must be physically equivalent. This equivalence means that the
permutation operator associated with the interchange of the particles gives the same wavefunction
as before the interchange, except for a possible phase change n=exp(i0). n may a priori depend
on the paths used to perform an actual interchange. It turns out that it should be the same for all
the paths that can be continuously deformed into one another, i.e. belonging to the same class of
homotopy [19]. All paths in the three dimensional space can be deformed into one another, which
implies that the initial wavefunction should be recovered after a double permutation, i.e. n2=1.
Apparently, there are then only two possibilities: the wavefunction is either symmetric with
respect to the interchange (n=1), in which case the particles under concern are bosons or
antisymmetric with respect to the interchange (n=-1), in which case the particles are fermions
(the antisymmetry for fermions defines the Pauli exclusion). Any number of bosons may
occupy a same quantum state while not more than one fermion can occupy a given quantum state.
Consequently the statistical distribution describing the thermodynamical properties of a many-
particle systemn will be different according to whether the particle are bosons (Bose-Einstein
statistics) or fermions (fermi-Dirac statistics). If we consider now the spin of the elementary
particles, we meet again a priori two possibilities: since the second quantised field associated with

a particle should transform according to an irreducible representation of the proper Lorentz group

10



SO(3.1) in 3+1 dimensions, the spin can only be an integer or (by virtue of the SU(2) universal
covering of SO(3)) an half-odd integer. A spin-statistic theorem has been formulated on
general grounds in local quantum field theory [20], which states that the particles with an integer
spin are bosons whereas the particles (such as electrons) with an half-odd integer spin are
fermions and that the corresponding second quantised fields obey the equal-time commutation
and anticommutation rules. At the root of this theorem is only the need to preserve causality in a
theory with local interactions and the requirement of the existence of a lowest energy.

Actually other possibilities might exist. In one space dimension, the particles cannot
experience their statistics since they cannot get past on each other: any statistics is then possible
(an explicit way of getting fractional statistics is provided by a generalised version of the Jordan-
Wigner transformation which from a fermion density on a one-dimensional lattice allows to built
site operators obeying parafermion commutation rules). Exotic particles (anyons) characterised by
complex exchange phase 1 may also exist in a two dimensional space since then the windings of
paths cannot be disentangled by continuous deformation (i.e. an unambiguous (half-) winding
number can be ascribed to any path) and paths with different winding numbers belong to different
classes of homotopy. An interchange of anyons changes the phase 1 to its complex conjugate n*
and therefore, unlike the interchange of bosons or fermions, violates the parity and the time
reversal symmetry. Such a possibility should not be viewed only as a mathematical curiosity,
irrelevant to the real “word”. A system of electrons moving on a plane, in the presence of a
perpendicular magnetic field, does not have the time reversal symmetry and if the electron are
polarised, in some sense the parity is also broken, leading to the fascinating properties of the
quantum hall effect in its both integer and fractional aspects. A deep connection exist with the
chiral spin liquids, in that the two are formalised within the Chem-Simons theory, which is the
natural framework to describe the systems exhibiting fractional statistics (21, 22]. A
generalisation including the three and even higher space dimension case has been anticipated
assuming a non trivial topology of the configuration space of the multi-particle system (a
“natural” example is the torus inherent to the periodic boundary conditions) and a topological
spin-statistics theorem {23] has been formulated involving fractional spins. Fractional shifts of
spin are cornpatible with the algebra of angular momentum if multi-valued wavefunctions, which
are not representations of the permutation group but of the braid group, are allowed - this is
actually not new: the SU(2) spinorial representations of SO(3) are double valued. Another
approach not based on the phase change of the multi-particle wavefunction under a pair exchange
but on the counting of independent multi-particle states [24] has also been proposed, generalising
the Pauli exclusion and defining statistical distributions which interpolate bet'veen that of the

bosons and of the fermions,
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Intra-atomic exchange interactions

A physical interchange of electrons refers to an interchange of all its generic variables:
the spin as well as the orbital variables. A multi-electronic wavefunction will then have a
symmetric (resp. antisymmetric) spin component if its orbital component is antisymmetric (resp.
symmetric). As a consequence, if there exist an interaction between the electrons involving solely
the orbital variables and creating an unbalance in energy between the symmetric and the
antisymmetric orbital wavefunctions, we shall get an energy difference in the relative orientation
of the spins of the electrons, although no interactions involving these spins are taken into account:
this is the origin of the exchange interactions.

Let us consider a system of two electrons. An antisymmetrical spin wavefunction may
be compounded out of products of the spinors of each electron as [Xa(s1)X%p(s2)-

Xa(s2)xp(s )l /2 where s and s3 label the spin of the electrons and Xq and Y are the spin up
and spin down spinoc.s. This wavefunction defines a singlet state of total spin §=0, to which a
symmetric orbital wavefunction must be associated. On the other hand three symmetrical spin
wavefunction may be obtained as Yo (51)Xa(82), [xa(s1)xg(52)+xa(52)xg(s1)]/«f§and
xp(s1)xp(s2). They define a triplet state of total spin S=1, to which an antisymmetric orbital
wavefunction must be associated. The orbital wavefunctions may be compounded out of single
electron orbitals wy(r), u=a,b,.... It is then simpler to consider the case of two electrons localised
about a same positive charge and take for yy(r) the complete set of orthogonal eigenfunctions
associated with the sole interactions of one electron with the positive charge. In the orbital space,
the singlet state will be described by a symmetrical wavefunction writing
[Wa(r Wb {r2)+war2)yp(r)/ ~/2 and the triplet states will be described by an antisymmetrical
wavefunction writing [Wa(r )wb(r2)-ya(r)wb(rl/ <2 . The electrostatic interactions e2/|r;-r;|

have different expectation values in these two states. The difference to first-order in perturbation:
2] 1z(ab)=<V>sing-<V>trip=262f drifdry w*a(rDw*pr2) Iri-ral-lyar2)wh(r),

may be reproduced by the imaginary interaction -2J5(ab)s;.s2 acting solely in the spin space: this
defines an exchange interaction. Since the electrons are assumed to be localised about a same
positive charge, this exchange interaction is said to be intra-atomic and is characteristic of

atoms, ions or even electrons temporarily localised about a nucleus in a metal.

Owing to the orthogonality of the single electron wavefunctions yu(r), u=ab,..., the
generalisation to a system of n>2 electrons localised about a same positive charge is performed
straightaway: The exchange interactions write as the sum -2% j<iJijsi-8j of the bilinear coupling
Jijsi-s; associated with each of the different n(n-1)/2 electron pairs (i,j) that can be formed. A
second feature, associated with the orthogonality of the yy(r), u=ab,... and the fact that the
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Fourier transform of V(r|-r) is everywhere positive, is that Jij is positive definite and may be
interpreted as the self-energy of the charge distributions y*(r)yp(r). Therefore, for any pair
(a,b) of indices with a#b, the triplet state has always a lower energy than the singlet state. This is
the origin of the first Hund's rule, which states that the ground state of an atom or an ion is a
state of maximum multiplicity (S=Smax where S=%isi). If a=b, then the triplet state is
impossible and only the singlet state exists, in which case the electrons are said to be paired. We
would like finally to emphasise that there is no real Justification of maintaining the electrons in
definite single electron orbitals and that the electrostatic interactions induce various orbitals
excitations leading to off-diagonal exchange interactions and couplings of single electron orbital
moments. However the corresponding matrix elements write as integ.als involving four different
single electron orbitals and are then weaker than the exchange integrals J; j- They give rise to the
second Hund's rule which states that the ground state of an atom or ion is, among the states
of maximum multiplicity , that with the maximum orbital moment (L=Lmax where L=3} I;).

Inter-atomic exchange interactions

If the electrons were to be distributed over different positive charges then single electron
orbital wavefunctions y(r), u=a,b,... centred on the respective positive charges should be used.
One is then confronted with the non-orthogonality of these wavefunctions. In the case of the
system of two electrons ranging over two positive charges, the non-orthogonality modifies the
normalisation factor of the singlet and triplet orbital wavefunctions from 2-1/2 to [2(1+R2)]-1/2
and [2(1-R2)]-1/2 respectively, where R=Idrw*a(r)wb(r) 1s the overlap integral between the
wavefunctions ya(r) and yh(r) centred, now, each on a different positive charge. The energy
difference between the singlet and the triplet states is furthermore no longer as stmple as above,
since we have to take into account the additional interactions of each electron with the positive
charge at which it is not localised about. The outcome is that the singlet state may turn out to be of
lower energy than the triplet state, as in the hydrogen molecule. Anyway, the important point is
that again a difference in energy exists between these states, which may be reproduced by an
exchange interaction -2J|5(ab)s|.so acting solely in the spin space, where now J1o(ab) depends
on R? and may take a negative value. As the electrons are distributed over different positive

charges the exchange interaction is said to be inter-atomic .

The non-orthogonality of the single electron wavefunctions ya(r) and Yh(r) plays
clearly a vital role for the inter-atomic exchange interactions. A generalisation to more complex
molecules than hydrogen or solids is however delicate to perform when working with
overlapping wavefunctions. Advantage could be taken of the translation symmetry of a crystal
and use the Wannier functions. Unfortunately in so doing, we loose the intuitive meaning of the

exchange integrals and the wrong conclusion would be made that the spin coupling is always
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bilinear ferromagnetic. A reason for this apparent paradox is that polar states, describing events
where an electron hops on a site where another electron is already there, are incorporated in the
Wannier functions by the orthogonalisation process. A rigorous approach shows that the lack of
orthogonality may give rise not only to a bilinear coupling which might be antiferromagnetic but
also to additional terms involving high-order rotationally invariant spin polynomials. A general
formula for a crystal of hydrogenoid atoms (one electron in the open shell) is [25]:

-3 JigPa(sis) + o COPIEG G P n(SiS)-.81)

where the Jjj. | are generalised exchange integrals associated with compact permutations of the n
i,j,..., indices i.e. permutations that cannot be decomposed into permutations acting on disjoint
subsets of indices and the Py, are projector operators acting in the spin space as:

(s, +8, +...+s,) —m(m+1)
P, =

m=n/2-1,n72-2, .. 20 .;—(%+1) —m(m +1)

With a crystal made of non-hydrogenoid atoms, the calculations are much more difficult.
Assuming that the intra-atomic exchange interactions are always dominant over the inter-atomic
ones, the bilinear exchange interactions - i) Zjcv/Jigwj(v)sit-sj¥ may be re-written, by virtue of
the Wigner-Eckart theorem, as -2Xp vepJuvSy Sy, where S, stand for the sum ¥isiH of the
spin of all the electrons localised about a same positive charge i and J,;y is an appropriate linear
combination of Jiy)j(v)- Additional terms involving high-order rotationally invariant spin
polynomials also exist: biquadratic exchange —ZEu,quw(Su.Sv)z, multi-site exchange
-Ep,,v,?LAuvl(su-sv)(sp_vsl), -Eu,v,k,BAuvlé&(Su-Sv)(SA-SS)a .. [26]

Apparently, the bilinear exchange interaction 2% vepTpuvSp.Sy is enough to
describe, at least, the ground and low-lying excited states of most materials and there is no need
to consider higher order terms. A few remarks can be made here: an overlapping of
wavefunctions being distant dependant as well as over the symmetry of the wavefunctions
involved, the exchange integral J,y may have different values according to the direction of the
pair (1,v) in a crystal, leading to a possible anisotropy of the inter-atomic exchange interactions,
Orbital excitations and orbital transfers are induced by the electrostatic interactions between
electrons localised about different positive charges leading to off-diagonal inter-atomic exchange
interactions and couplings of orbital moments. Also other interactions exist in a crystal
(crystalline electric field, spin-orbit coupling) which may be strong and compete with the
exchange interactions. All these features lead to the more general -ZZM,KHSH.JW.SV form for

the bilinear exchange interactions where Jyy is now an exchange dyadic. Jyv can be separated
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into a symmetric part defining the anisotropic exchange and an antisymmetric part
corresponding to the D.(S,x8y) vectorial coupling.

A qualitative insight can be given of the physics behind the sign of the exchange integral
Juv. With orthogonal orbital wavefunctions, we get a ferromagnetic exchange interaction
between the spins, because therefore the electrons collective orbital state is antisymmetric and so
forth vanishes at the points ri-r; of intersection of the paths of the electrons, where the Coulomb
potential is the largest. With overlapping (non orthogonal) erbital wavefunctions, we get an
antiferromagnetic exchange interaction between the spins, because therefore an electron can
take advantage of the mixing of the wavefunctions to reduce its kinetic energy by hopping to the
second site while the other electron is there (polar state), parallel spins being of course restricted

by the Pauli exclusion from this virtual process.

Exchange interactions involving mediators

Other more complex mechanisms exist, which also lead to an effective coupling of spins
S, A description of all of the different possibilities would however be too long and we shall
only give a physical picture of four mechanism, involving the electrons of an intermediate
medium: the superexchange in insulators such as the transition-metal oxides, sulphides, ..., the
double-exchange in mixed-valency materials such as the manganates and, the indirect and mixing

exchange in conducting materials such as the rare-earth transition-metal intermetallics.

Let us consider an ionic compound made of magnetic cations and diamagnetic anions. If
the electron wavefunctions of the cations do not overlap with each other, then there are no direct
inter-atomic exchange interactions. However, if the paired electrons of the anions are delocalised
by chemical binding with the neighbouring cations, then there is a possibility for an electron of an
anion to virtually hop on a neighbouring cation, through intermediate excited states. A simple
example is provided by the copper-oxide antiferromagnet, made of Cu?* magnetic cations of spin
S=1/2 (one hole in the 3d atomic shell) and O2- diamagnetic anions. As to remain qualitative, we
shall restrict ourselves to one Cu-O-Cu triad: in the absence of the electron hops, the spin ground
state of the triad is four-fold degenerate (two possible spin orientations on each copper). If we
allow the diamagnetic electrons to hop, the electronic confi gurations of the triad will change to
Cul*-02--Cu3+ or Cul+-O-Cul*. Since the Cu2+ cations have only one free orbital state already
occupied by an electron, the hops will be forbidden by the Pauli exclusion if the initial orientation
of the two copper spins is parallel: the hop will depend on the spin state of the electron. As a
consequence, the degeneracy in the relative spin orientation of the Cu2+ cations is lifted (the

lowest-order correction to the ground state energy is fourth order in the copper-oxygen hopping
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energy): we get an effective coupling between the spins of the Cu?* cations, defining the
superexchange interaction [27] A generalisation to more complex systems can of course be
worked out. A large number of intermediate excited states might then exist corresponding to as
many exchange paths in the solid and the superexchange coupling is determined by those of the
lowest energy. In most cases, the bilinear coupling 22 p,v<pduvSp-Sy is dominant, nevertheless
higher order coupling such as a biquadratic superexchange '2Zu,v<uKuv(Su-Sv)2 might not be
always negligible. Whether the superexchange coupling is ferromagnetic or antiferromagnetic,
strong or weak, will depend on the orbitals involved and on the ligand configuration. A few
qualitative features of these orbitals might reveal themselves relevant for a prediction on the nature
and strength of the exchange at least concerning the bilinear coupling. A simple rule is that if the
cation-anion orbitals are orthogonal then a ferromagnetic coupling is likely, otherwise an
antiferromagnetic coupling should be expected. Another simple rule is that the magnitude of the
coupling gets smaller as the angle made by the tnad M-A-M decreases from 7 (collinear M-A A-
M bonds) to /2 (perpendicular M-A A-M bonds).

As far as anions of the same valence are involved, the superexchange interactions is the
sole spin coupling mechanism to be expected in the magnetic anions-diamagnetic cations materials
if of course the anions orbitals do not overlap, otherwise the direct exhange interactions will also
emerge. When however there is a mixed valency of the anions, an additional different exchange
mechanism may exist, as in the perovskyte-type manganates (Aj.x Bx)MnQO3, where A is a
trivalent rare-earth ion and B a divalent alkaline-carth ion. At the ends of the series (x=0 and
x=1), these oxydes are insulators and show an antiferromagnetism associated with
superexchange interactions. At intermediate compositions the electric conductivity increases by
several order of magnitude and the material show a canted antiferromagnetism with a net
ferromagnetic component. 1-X fraction of the Mn magnetic anions are then in the Mn3+ valence
state, with three d electrons filling tightly bound corelike tag orbitals and one electron occupying
an outer eg orbital, giving rise to a collective spin S = 2. X fraction of the Mn magnetic anions are
on the other hand in the Mn#+ valence state, with three d electrons filling the tog orbitals, giving
rise to a collective spin Sc = 3/2. The outer electron eg is able to hop forth and back between
neighbouring Mn ions of different valency. However, the intra-atomic exchange interaction J[,
coupling the spin s of the eg electron with the spin S¢ of the core t2g electrons is much larger
than the corresponding hopping integrals V and the spin-orbit interaction. The spins of all the
electrons on a given Mn ion can therefore not be coupled in any other way than ferromagnetically
(first Hunds’rule), without an excessive cost in energy. As a result, the hopping of the eg
electron can occur if the collective spins of the core tag electrons of the neighbouring Mn ions are
parallel but not if these spins are antiparallel. A quantitaive approach shows that the energy

associated with a Mnj-Mno pair is E = - J{S¢ £ Vcos(0/2), where 8 is the angle between the core
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spins Sc| and Sc2 and has the quantum mechanical definition: (2S¢c+1)cos(6/2)
=|S;, +8; +s[+1/2. An effective ferromagnetic coupling of the core spins of the neighbouring
Mn ions sets then in through the gain in kinetic encrgy associated with the therefore allowed hops
of the eg electron: this defines the double exchange interactions [28]. Another way to view
them is in terms of a Knndo lattice model with ferromagnetic localised electron spin — itinerant

electron spin exchange interactions.

Let us now consider a conducting material containing ionic spins with no direct
exchange interaction between them. The itinerant electrons in the solid will come under the
influence of a given ion where they will experience intra-atomic exchange interactions for a time.
This temporarily coupling modifies the translation motion of the itinerant electrons by increasing
around the ion the number of electrons of a given spin state and decreasing that of opposite spin.
As the distance from the ion increases the corresponding excess or lack of electronic charge
density decreases. The decrease occur in an oscillatory way, owing to the sharp wavevector cut-
off at the Fermi level. Since the charge displacements are spin dependent, this gives rise to a static
oscillatory spin polarisation density which will interact with the spin of a next ion. The
mechanism can be considered as due to a spin dependent scattering event, which is carried to a
second ion where the scattering will again depend upon the local spin configuration. As a
consequence, the two ionic spins will interact cooperatively, giving rise to an effective indirect
exchange interaction [29]. A bilinear coupling -ZEMNWJWS“.SV 1s obtained to second
order of perturbation in the itinerant electron spin - ionic spin exchange integral Niyr, where k
and k’ are the wavevectors of the itinerant electron before and after being scattered by the ionic
spin. In usual the dependence of Iy on k and k’ is neglected, which amounts at neglecting the
spatial extent of the orbital component of the ionic wavefunction (contact interaction). Anisotropic
bilinear, cross-term and multipole-multipole exchange interactions are again obtained when taking
into account the ionic and itinerant electron orbital asphericity. An important feature of the indirect
exchange interaction is that it is oscillatory and long-ranged, giving rise to a (non geometrical)
magnetic frustration. The indirect exchange interaction is the origin of the coupling of the 4f
electron spins in most rare earth metals and in a wide number of rare earth based alloys, where it
leads to complex magnetic structures. Its materialisation is in principle not unlikely in systems as
unexpected as purely organic materials. After all, molecules such as the benzene ring are nothing
more than prototypes of metals made of a few atoms. Although we shall then have a discrete set
of “itinerant electron” states instead of a continuum, there are no reasons for the mechanism not to
work and mimic that in the rare earth metals. The spin polarisation oscillation should then be
qualitatively understood as an outcome of the difference in the number of nodes of occupied and
unoccupied “itinerant” wavefunctions. A priori, large exchange interactions can be foreseen

which opens the fuscinating perspective of ambient temperature organic magnets, all the more as
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the “itinerant electons” in these materials might in fact themszlves stabilise a high temperature

ferromagnetism.

Another way an itinerant electron plays an intermediate role is through resonant
scattering. A resonant scattering means that an incident itinerant electron arriving in an ion's
vicinity in opportune circumstances can be temporarily captured in pseudo-atomic states around
the ion. This occurs owing to a mixing (or hybridisation) of the orbital wavefunctions of the outer
electrons of the ions with the delocalised orbital wavefunctions of the itinerant electrons. When
the jon possesses & spin, the probability for an itinerant electron being captured by the ion and
quantum ‘unnelled out again into an itinerant state becomes dependent upon the relative spin
configurations of the ion and of the incident itinerant electron. We get a mixing exchange
interaction, also termed symmetry exchange interaction since the wavefunctions that mix
should share a same crystal point symmetry [30]. A spin information may be transferred from an
jon to another so as again to allow the ionic spins to interact cooperatively. Unlike the indirect
exchange interaction, where the itinerant electron spin - ionic spin exchange integral I'ki is
ferromagnetic and tend to polarise the localised spin moments, the mixing exhange couple the
itinerant and localised electrons antiferromagnetically and tend rather to favour the formation of
local singlets as in the Kondo state. According to the strength of the hybridisation on the other
hand, the electrons of the localised spins can be partially delocalised. Different instances,
requiring a proper formalism, can then be met in actual materials, from localised electrons but
with interactions strongly renormalised by the itinerant electrons, through intermediate and
fluctuating valency, up to full itinerancy. A mixing exchange interaction is found in the so-called
anomalous rare earth metals such as the Ce, where the 4f electrons, owing to a larger spatial
extent, hybridise strongly with the conducting electrons. A wealth of intermediate possibilities,
where both the mechanism of indirect and mixing exchange interactions are operating with more

or less equal relevance, arc also materialised in the anomalous rare earth or actinide based alloys.

Itinerant electrons

A common feature of all the above exchange interactions is that at least one of the
coupled spin is that of electrons localised about a same nucleus, so that the bilinear form
'ZZu.vq.LJ uvsu-sv, although valid only to some extent, makes sense. In the case of itinerant
electrons, the formalism of second quantisation must be used to explicitly take into account the
electronic hopping processes: it merely consisis in introducing a field operator y(r) which may be
expanded in terms of a complete set of single-particle wavefunctions and writing the interactions

in terms of this field operator.
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A natural complete set of single electron wavefunctions describing the itinerant electrons
in a metal is provided by the Bloch functions Waks(r) (o band index, k: momentum index, s:
spin index) that diagonalise the one-electron Hamiltonian Hy defining the band structure ek of
the metal. Another set is that of the Wannier functions ygus(r) (u; lattice site index) constructed
from the yyk(r) as waus(r)=(1/J]V)Zk(B_z_)exp(—ik.ru)waks(r). A field operator may be
defined as V(r)=2ousWaus(F)Cous Where Cous (Caus?t) is the operator that annihilate (creates) an
electron in the cws Wannier state, We may then write:

Hp = ‘Eauvs touv Caus® Cavs

where tm,\,=(1/N)2’,1((3‘2_)cxp(-ik.(r\,—ru))ekOt are the matrix elements describing the electron
hops. tgyy do not depend on the spin state s, if we forget the spin-orbit coupling - tgyy=tgvy™ by
hermiticity of Ho - tayy can be taken real in the absence of an external gauge field. Much of the
electron-electron interactions e2/ lri—rjl are incorporated self-consistently in Hg but not entirely.
The residual correlation leads to the additional quartic interaction Hamiltonian:

H= Euquaﬁy&ss’ qupanYa Cous™ CBvs' + Cyps’ Cdqs

where the Uyypq@®P13 are the matrix elements of the screened e?exp(-plri-rjl)/| ri-rj! interaction.
Screening is actually a dynamical process involving collective charge fluctuations characterised by
a plasma frequency ® - It mostly comes out as an exponential decay within a Thomas-Fermi
screening length because w is high. Since the Wannier states are localised to within a unit cell, the
main contributions to Hj come from the terms with p=u and q=v or p=v and q=u. Ali the other
terms are negligible. Assuming furthermore that the Fermi surface lies within a single conduction
band, the matrix elements that couple states of different band index may be omitted. We louse in
that way various orbital excitations and off-diagonal exchange. Among the terms that remain we
have the two site interactions YuvUgvvaiulty (ny=2sCustcys) that couple the density fluctuations
at different sites. We may neglect it, although we are not rigorously justified to do it, if we are not
interested by the charge density instabilities. At the magnetic instabilities its contribution to the
free energy can be expected to be not singular. Another term is the two site ferromagnetic
exchange interactions Eu\,SS’Uu\,u\,c:us““cvsﬂ“cus'cVS , which we may also write as
-22uvavuv(Su.Syv+nyny/4), by defining 8,=(1/2)¥ss'cystGgs'cys Where 6=(0x,0y,0;) are the
Pauli matrices. When the Wannier functions are almost superposition of atomic orbitals, the two
site ferromagnetic term gets weak. Omitting it, we finally obtain the Hubbard Hamiltonian:

Hhup = Hgo + H)= ‘Zuvs tuv Cust Cyg + (U/2)2 06 Nyg My-g

with U=2U . We get in this way the minimal mode! to describe 4 many fermion system with

quartic interactions) [31].
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Even though a number of oversimplifying approximations are made to deduce 1t, €.8.
with regard to the orbital degeneracy of the itinerant electron states, the Hubbard Hamiltonian
contains much of the physics of metallic magnetism and leads to a wide diversity of phenomena,
perhaps still not all yet discovered [32]. We may also write it in a form that explicitly shows its

invariance with respect to the local SU(2) symmetry, i.e. a local change of quantication axis:
Hhub = -Zuvs tuy Cus* Cvs - (2U73)Zy Su? + (U/6)Zy ny.

U being positive, a magnetic ground state may be expected. Accordingly, the system would
somehow pick a global quantisation axis, the same for all sites, which means a spontaneous
breaking of the global SU(2) spin symmetry. Hpyp is also invariant with respect to the phase
change exp(i@)cys of the one-particle wavefunction (U(1) symmetry), which transposes to
nothing but charge conservation. When the relative strength of the intra-atomic correlation U over
the hopping energy t,v is weak, the states of the electrons are well described by the Fermi
liquid theory, as far as we may think of a one-to-one correspondence of the electronic states
with that of the free fermions and if we may ignore the bosonic excitations such as magnons [33].
Numerical diagonalisation suggest nevertheless that, at least in small finite systems, the statistical
distribution of energy levels gets characteristic of a quantum chaos when increasing the U/tyy
ratio to about unity. Another interesting limit is that of large U/tyy values. At half filling, i.e. one
electron per site, there are no low energy hopping processes and we get a Mott insulator
phase. The low energy excitations are then that of spins one-half S, interacting via the effective
antiferromagnetic exchange interaction 220 vevluvSu.Sy where J uv=-4tyy2/U. This generalise to
many sites, the interatomic exchange interaction obtained for the hydrogen molecule. Slightly
away from half-filling, the antiferromagnetic correlation are destroyed by the additional electrons
or holes which, to get more mobile, tend to favour a ferromagnetic local spin environment. As a
matter of fact, with N-1 electrons where N is the number of sites (one hole) the ground state in
the extreme limit of infinite U, is the fully polarised ferromagnet with total spin S=(N-1)/2) as
stated by the Nagaoka theorem. A present widespread belief is that superconductivity could

emerge from adding or extracting electrons to a Mott insulator.

Actually the Hubbard Hamiltonian is difficuit to analyse. An exact solution was obtained
in one dimension {34] and the rigorous demonstration that in higher dimensions it may lead to a
ferromagnetism in non-singular instances i.e. finite ranged hops, finite Coulomb interaction U
and dispersive (single-electron) bands is recent [35]. A number of approximate methods, more or
less sophisticated, were developed to investigate it. The simplest approach refers to the Hartree-
Fock approximation: using the functional-integral technique, the partition function of Hyyp can
be written (in the static approximation) in terms of N auxiliary variables My as
Z:fduuexp[(-BF(p.u)] with F(uu)=Fo—(l/B)Tan(I-VGO)+ZUU;,LU2/4, where the free energy Fop
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and the green function G are related to the one-electron Hamiltonian Hg and V is the non
uniform potential V=-(U/2)Xymy(nyr-nyy). At zero temperature, the integral is replaced by a
saddle-point approximation and the My are determined by minimising F(u,), which is equivalent
to performing the local Hartree-Fock approximation: py=<ny?-ny|>. The main contributions to F
come from a one-site term Fi=3,Auy2 and a two-site term F2=-22u,v<vjuvuu.uv with
=(U/4){ l+(U/N)Ekq[f(ek)—f(ek+q)]/(ek-ak+q)}, where f(ex)=1/(exp[(ex-er)/kpT]+1) is the
Fermi function, and Juv=—(U2/4N)quexp(-iq.(rv-ru))[f(ek)-f(8k+q)]/(ek—ek+q). Fj transposes to
the formation of a pseudo-moment on a site and F> to the inter-site coupling between the pseudo-
moments, which should now be treated on the same footing, in contrast to ionic systems.

CRYSTALLINE ELECTRIC FIELD INTERACTIONS

Other electrostatic interactions exist in a solid where indistinguishability is not involved,
therefore acting on the orbital motion of the electrons without giving rise to an effective coupling
between spins. In a metal, these interactions are already taken into account when computing the
hopping tg,y matrix elements. In an ionic solid, these interactions concern all the electric charges
external to the ion and are described by an electrostatic potential V(r), which is invariant only
with respect to the crystallographic symmetry of the environment of the ion in the solid. As a
consequence, the rotational invariance of the orbital states of the ion gets broken. According to its
strength, as compared to the interactions giving rise to the Hund's rules, the effect of V(r) is
either only a perturbation removing the orbital degeneracy of well separated ionic orbital states or
to mix states of different orbital moments leading to spectral terms muxing and even configuration
mixing. The full treatment of the problem is a priori complex since the charge distribution
associated with the neighbouring ions may overlap that of the electrons under consideration.
These external charge distributions are cailed ligands and their effects are computed by means of
the ligand field theory [36].

If the overlapping effects may reveal negligible, the effects of the electrostatic potential
V(r) are handled by the Crystal Field theory. In that case V(r) satisfies the Laplace's equation
and may be expanded as Vi(1,0,0) =22 1cme) a1l Y |m(0,0) on the basis of the spherical
harmonics Y|m(8,¢). The number of terms that need to be considered in this expansion is very
small and in many cases the constants ajm can be treated as adjustable parameters. The reason for
this is that the matrix elements of V{(r) are computed on wavefunctions, which contains
themselves spherical harmonics, If Wa(r) and yp(r) are two wavef mctions of orbital momentum
I" then the matrix elements of V(r) with I > 21" will vanish by orthogonality of the spherical
harmonics since the product Walr)yh(r) does not contain harmonics of order higher than 27,
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Similarly the symmelry of the wavefunctions by inversion in coordinate space implies to restrict
the expansion to spherical harmonics of even parity. The computations of the matrix elements of
V(r) are finally accomplished in standard ways through appropriate operator techniques by
making use of the Wigner-Eckart theorem as set up in the theory of group representations
{37]. In particular, if the mixing of spectral terms, defining manifolds of constant values L and S
of L=3,l; and S=);s;, was to be negligible then the equivalent operator method applies
[38]. This method makes use of the fact, implied by the Wigner-Eckart theorem, that within an L
manifold the matrix elements of operators which are functions of orbital variables X,y and z are
proportional to those of similar functions of the components Ly, LyandLzof L, provided the non
commuting character of these operators are taken into account. The crystalline electric field
Hamiltonian writes then as a function of powers of L and its components.

The way a set of original states decompose under the effect of the crystalline electric field
potential V(r) into new states depend of course on the original states themselves as well as on the
strength of V(r) but also on the group of symmetry characterising the environment of the ion. The
group theory is then of considerable help [39]. If w,(r) is an eigenstate of V(r) then any
wavefunction Yp(r)=Ow,(r), obtained by applying on y,(r) a symmetry operator O which leaves
V(r) invariant, is also an eigenstate for the same eigenenergy. Therefore yp(r) must be a linear
combination of the orthogonal set of wavefunctions spanning the subspace of states having this
eigenenergy. Assuming this subspace is g-fold degenerate we have \ub(r)=2a=1,gl"(0)ab\|1a(r).
The matrix ['(O) are said to form an irreducible representation of the crystal symmetry
group. Each irreducible representation is associated with a given eigenstate and the dimensionality
of the representation is equal to the degeneracy of this eigenstate. The number and nature of the
irreducible representations associated with the various symmetry groups may be tabulated by
means of the character tables. A character is merely the trace of the matrix of a representation
and is therefore independent on the basis of the wavefunctions used to compute the matrix. It is
solely characteristic of the symmetry operator considered. As to know how rotationally invariant
states decompose under a crystal field potential, it then suffices to know how the representations
of the rotation group decompose into that of the crystal symmetry group, which is done by just
inspecting the corresponding character tables without ever having to know about the
wavefunctions. This is the powerful feature of the group theory which allow to get an insight of
the expected energy spectrum of the crystal field without any calculations. It must be emphasised
however that the group theory cannot tell about the ordering of the different eigenenergy and of
their relative separations.

A relevant feature of the crystalline electric field potential V(r) is that it is invariant with
respect to the time reversal. Unlike the usual spatial symmetry operators, the time inversion

operator T is anti-unitary. It reverses the angular momentum as well as the spin of a particle, so
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that it anticommutes with the operators associated with these dynamical variables, but it
commutes with the rotation operators. T2 is equivalent to a 27 rotation operator. A spinor of an

half-odd integer spin is not invariant with respect to a 27 rotation but only with respect to a 4%
rotation. This implies that T2 differs from the identity operator 1 and is equivalent to (-1)n 1 for a
system of n electrons. If now n is even, T may transform a state into itself, which is impossible if
n is odd. Consequently any system with an odd number of electrons where the interactions are
invariant with respect to the time reversal, as e.g. the crystalline electric field potential, must have
a ground state which is necessarily at least two-fold degenerate. This is known as the Kramers
degeneracy [25]. A system with an even number of clectrons can in contrast have a non-
degenerate ground state. The invariance with respect to the time reversal implies furthermore that
opposite expectation values of orbital moments should occur with equal probability.
Consequently the trace of all the components L, Ly and L; of the angular momentum operator L,
which anticommute with T, must vanish within each of the crystalline electric field energy level
whereas the trace of L2, which commutes with T, has not to vanish, We may intuitively
understand as fast quantum fluctuations of the orbital moments associated with the time reversal.

A solid is actually made of a background lattice of nuclei at positions Ry each
surrounded by N electrons that feel a potential V(Ry,r) depending on the Ry. Assuming that
Eo(Ry,) is the ground state energy of the electrons associated with a given set of positions Ry, the
potential energy of the nuclei writes U(Ru)zEg(Ru)-C(Ru) where C(Ry,) is the Coulomb
interaction between the nuclei. We recognise here the Born-Oppenheimer adiabatic approximation
that allow to separate the electronic and nuclear motions in a solid. A slight change of the
positions away from given Ry, will modify the potential V(Ry.r) seen by the electrons and
change the electronic ground state energy Eo(Ry,). A degeneracy if any will then be lifted to the
first order of perturbation through matrix elements that transform according to the representation
I'gs x 'y x I'gs, where I'gg is the irreducible representation of the symmetry group of the crystal
associated with the ground state and I'y the irreducible representation associated with a mode of
vibration of the lattice of nuclei. I'gs x 'y x I'Gs can be reduced to the sum zprp of the
irreducible representations I'p. Assuming now that the positions Ry, are those minimising the
potential energy U(R), these matrix elements should all vanish. Any integral fdrfp(r) where
fp(r) is a function that transform according to an irreducible representation 'y vanish if I'y is not
the trivial representation I'j. At inspecting the character tables of all the space groups, a mode of
vibration is always found that leads to a sum 2pI'p containing I'}. Consequently the Ry, cannot be
those minimising U(Ry,), if the ground state is degenerate. If the ground state is not degenerate
then I'gg x I'v x 'gs = 'y and the matrix element vanish and if there is a Kramers degeneracy,
time reversal symmetry should be taken into account which also lead to vanishing matrix

elements: this is the Jahn-Teller theorem [25], which states that in any non-linear molecule or
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non-unidimensional solid there cannot be a degeneracy in the electronic ground state save the

Kramers degeneracy.

SPIN-ORBIT INTERACTIONS

A spin-orbit coupling interaction exists between the spin and the orbital kinetic moment
of an electron, which was historically revealed from the Dirac equation in the nonrelativistic limit
up to (v/c)2. We may, to some extent, interpret it as the interaction of the spin of the electron with
the magnetic field H = E x v seen by the electron in its reference frame, where is E the electric
field governing the electron orbital motion. A correction by a factor 1/2 should then be taken into
account, associated with the relativistic effect of Thomas precession. This effect is a property of
the Lorentz transformation that, to order up to (v/c)2, writes: B(v+5v)=R(30)B(3v)B(v), where
56=(8vxv), B(v) denotes a boost to a velocity v and R(56) is a rotation of 80 about 59. It tells

that an accelerating particle moving at relativistic speeds appears to precess in orientation.

In an isolated ion or atom, the spin-orbit coupling interaction may lead to different types
of coupling of the electronic kinetic moments according to its strength, which increases as one
goes from light to heavier elements. Up to the lanthanide series it remains however smaller than
the electrostatic interactions between the electrons so that the spin and the orbital moments of the
electrons will first couple separately to give rise to the spectral term energy levels defined by the
different values of the total spin S=Y;s; and total orbital L=3;1; moments. The spin-orbit
coupling will then act as a perturbation which will split each spectral term level (L,S) into
multiplets characterised by the different values J of the total kinetic moment J=L+S which ranges
from IL-SI to L+S. This defines the Russell-Saunders coupling approximation. Assuming a
stationary vector potential and a spherical symmetric scalar potential, the spin-orbit interaction
writes Y;&l;.si, which within an (I..S) manifold may also write AL.S, thanks to the Wigner-
Eckart theorem. A is negative or positive according to whether the considered electronic shell is
more or less than half filled. The matrix elements of the spin-orbit coupling within a manifold
(L,S) are all diagonal and write A[J(J+1)-L{L+1)-5(S+1))/2, using the formula 2L.S=J2-1.2-82,
As a consequence the energy difference between two successive multiplets (L.,S,J) and (L,S,J+1)
is given by A(J+1), which is known as the Landé interval rule. J value of the ground state
multiplet is IL-SI for a shell less than half filled because A is positive, and L+S for a shell more
than half filled, A being negative. This may stand as a third Hund's rule. The magnetic
moment associated with a given multiplet (L,S,J) is computed in an easy way as gjupJ where the
Landé factor gyis calculated as 1+[J(J+ D+S(S+1D)-L(L+1)1/2J(J+1), using the relation
g1J2=].(L+28)=J2+82+(J2-L2-82)/2 valid only within the (L.,S.J) manifold. For heavier
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elements such as actinides, the spin-orbit coupling becomes of the same order of magnitude as the
electrostatic interactions between the electrons. In that case, the spin-orbit interaction which now
commutes neither with § nor with L will mix the spectral terms, invalidating the Russell-
Saunders coupling approximation. One has then to diagonalise simultaneously the electrostatic
and spin-orbit coupling interactions, which refers to the so-called intermediate coupling
scheme. If finally the spin-orbit coupling interaction was to be larger than the electrostatic
interactions, it would at first couple the individual electronic spin and orbital moments to give rise
to the individual kinetic moment ji=li+s; which would then couple through the electrostatic
interactions to give rise to the total kinetic moment J=%iji. This defines the j-j coupling
scheme. Whatever the case, the total kinetic moment J=Xi(l;+s;) is a constant of motion since it
1s the generator of the group of rotations, under which isolated ions are invariant,

In a metal, the spin-orbit interaction is automatically taken into account by computing the
band structure gi® from a fully relativistic single electron Hamiltonian Hy_ in the sense of the
Dirac equation for the electron in an electromagnetic field. According to its strength in the usual
metals, its main effect is to raise the degeneracy of the band states at points k of high symmetry in
the reciprocal space. An important observation to make is that H is still time reversal invariant
and since it describes a single electron in an average potential we have the Kramers degeneracy
€ks”*=€.k-s* at all the points k in the reciprocal space, which transposes to a spin dependent
electron hopping without creation of a spin polarisation. When a symmetry inversion exist then
we also have gg%=¢_ 2.

The spin-orbit coupling interactions might be considered to operate solely within an ion
or within the displaced charge of a local spin polarisation in a metal (one-site approximation), as
far as the inter-atomic "spin-other-orbit" coupling interactions are negligible, which is the case in
most materials. If however these interactions come into play as within a pair interchange of
clectrons between different atoms, they give rise, to first order of perturbation, to the
antisymmetric exchange interactions "ZZu,vq.LD-(SuXSv) [40]. At higher order of
perturbation, anisotropic pseudo-dipolar and higher order coupling interactions are obtained.
No non-exchange effects of the spin-orbit coupling interaction may occur, at least to first-order of
perturbation, since the interaction involve an angular momentum operator, the trace of which

cancels owing to the time reversal symmetry.

MAGNETOELASTIC INTERACTIONS

On phenomenological grounds, the elasticity of a material is described by a symmetric
strain tensor ugg which defines the response of the material to an applied stress tensor Gy;5.
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As far as the strains are small, the non linear effects associated with the anharmonic higher order
terms of the expansion of internuclera potential U(Ry,) with respect to (RM-RPO) are negligible:
ugp is then linear in Gy3§ (Hooke’s law) and the elastic free energy writes
(1/2)ZapysCapysCapOys OF (1/2)2apysMapysuapuys where Coapys and Mgpys are 4th order
tensors defining the elastic constants and elastic moduli of the substance. eqp (and
therefore Gy3) is symmetric so that Caﬁys=cﬁa78=caﬁﬁy=cysaﬁi the number of independent
components of Capys (or of Mafiys) is considerably reduced: 21 for a triclinic single crystal to 3
for a cubic single crystal - if A is a matrix representing one of the symmetry elements of the
considered substance then for any tensor T: T, aB___f,:e(dctA)annAﬁp...Aangp__c where x=0
(x=1) for polar (axial) tensors and € is the time reversal signature [41]. In the case of a
polycrvstal, an averaging over the crystallite distribution should be performed and the elasticity
of the grain boundaries should be taken into account but this is too difficult. In practice isotropy
conditions are assumed. The elastic free energy may then write SLZQB(GQB-BuﬁElUMB)? +
K Z26:22/2 where dqp is the Kronecker symbol, K| the compressibility and S the shear
elasticity. On increasing the temperature the non linear effects take place through the phonon-
phonon couplings and there is a progressive softening of the elastic constants (or moduli).
Another outcome of the anharmonic higher order terms in U(Ry) is to give rise to a free
thermal expansion of the material, which for a polycrystal is given as
o (T)=(3/9TW1=(1/3)(@V/aT)/V=KCL(T)Y1/3V where C_ is the phonon specific heat and Yy the
Gruneisen coefficient (y_=-dln(©p)/dInV and Op is the Debye temperature). Anisotropic
aLO‘B(T) thermal coefficients are obtained in the case of a single crystal ((xLaﬁ(T) being
symmetric, it has 3 independent compenents for triclinic, monoclinic and orthorhombic symmetry
and 2 independent components for tetragonal, rhomboedral and hexagonal symmetry - it is

isotropic as in a polycrystal for a cubic symmetry).

As already seen above with the Jahn-Teller effect, a part of the elasticity in a magnetic
material will depend on the magnetic states of the electrons and a coupling will exist between the
elastic and magnetic degrees of freeom in the materia!, which will define the magnetelasticity
of the material. On phenolomenolgical grounds, the strain tensor ugp gets dependent on both the
stress tensor and the magnetisation state of the material. An additional free energy should be
considered to take account of the associated magnetoelasticity. In the case of a ferromagnet, the
lowest order term invariant with respect to the time reversal is linear in the stress Oup and
quadratic in the magnetisation components My. It writes -LopysAapysOapMyMs where Agpys
is a 4th order tensor defining the magneto-elastic constants (Ao pyd=ABayd=Aapdy but
#Aysaf). A next term is —ZagyanptbaﬁygnpoaBoYaMﬂMp (arising e.g. from the morphic effects
associated with the dipolar interactions) [4]. For a polycrystal we would write the magneto-
elastic free energy as SMEQBGQQMQMB(l—5a5)+KMZ;\GmM;@ (with Sy and Ky the magnetic
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contribution to the shear elasticity and compressibility) if isotropy conditions can be assumed. Of
course, this is never rigorously the case: the existence of a magnetisation always lead to the lower
eo/mmm cylindrical symmetry. Assuming that it has no texture, the elasticity of a polycrystalline
ferromagnetic material is actually characterised by 5 elastic constants (instead of 2 due the
lowering of symmetry) and 3 magneto-elastic constants. Quite essential is also to emphasise that
the interplay between the elastic and magnetic degrees of freedom implies that the elastic and
magneto-elastic constants get dependent on the applied field and stress, making the analysis of the
elasticity of a ferromagnetic material extremely delicate. When the magnetisation distribution in
the material is not ferromagnetic, the lowest order term of the magneto-elastic free energy,
invariant with respect to the time reversal, writes -2k ZafysAkapysSpMryM.ks Where M, is
the k-Fourier transform of the distribution. On increasing the temperature, the variations in the
magnetic behaviours of the materials are mirrored in the elastic properties. A thermal
expansion of magnetic origin oy (T) comes out and, in certain instances, magnetic
Gruneisen coefficients Ym can be defined to relate op(T) and the magnetic spec.fic heat Cpy(T).

The magneto-elastic effects are due to the strain dependence of the previous basic
magnetic interactions. A detailed description of the different underlying mechanism is of course
out of place but a qualitative picture of a few cases can be given. A first mechanism of interest,
which may lead to large isotropic effects, is that connected with the onset of a pseudo-moment in
itinerant electron magnetism [42]: this onset causes a local electronic charge displacement at the
expense of the cohesion energy of the metal under concern. A large negative internal pressure
then arises, which is minimised by an essentially isotropic volume expansion. Accordingly, in
any metal, a change of the spin polarisation (e. g. with the temperature or an applied field) should
be reflected in volume changes. Conversely the application of a pressure should perturh the
magnetic properties of the metal. Clearly the effects will be the most drastic when there is a
magnetic instability: the phonon frequency and sound velocity of the material show then
strong anomalies and in some cases pressure or temperature induced first order magnetic
transitions can be observed. When a magnetic order sets up, a volume expansion of about
1%/ug? (in 3d transition metal based compounds) is experimentally found. If to a first
approximation the anisotropy in the strains can be neglected, the corresponding magneto-elastic
free energy may write -0X 3 AxM2 where w=AV/V is the volume strain and My the k-Fourier
transform of the magnetisation density M(r). A thermal expansion of magnetic origin is then
deduced: op(T)=(1/3B)ZiAR(<MK2>p-<My2>0) where B is the bulk modulus and <>r means a
statistical average at temperature T. In the weak ferromagnets the small k components of the
magnetic fluctuations are predominant and om(T) may be approximated by N{A¢/3B)[M1 %(T)-
M|.2(0)] where M2(T) is the mean square local amplitude of the magnetic fluctuations. On

increasing the temperature, My %(T) decreases in the ordered state and increases above the Curie
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temperature leading to a negative ay(T) within a given temperature range. When then the
magnitude of o(T) is close to o (T) we get an invar matenial, Another instance where strong
magneto-volume effects are met is in the materials showing f electron instabilities
(intermediate or fluctuating valence systems): the ionic radii of an f element differ markedly
according to its valence state and in case of valence fluctuations severe strain effects are induced,
giving rise to huge magnetovolume anomalies and magnetostriction, soft modes of phonons and
even localised phonons [43].

In the materials with well defined ionic spins S, the dependence of the exchange
integrals J;,y upon the (u,v) inter-nuclear separations in the inter-atomic exchange interactions
-22,v<plpvSy-Sy may also lead to strong magneto-volume effects. We may formulate these
effects (contraction or expansion) by considering a slight variation dV of volume out of the value
V minimising the elasticity of the material in the absence of the exchange interactions {44]. The
gain in magnetic en rgy at temperature T is then -2%), v<u(9J u/0V)8V<S,.Sy>1 while the cost
in elastic energy is (8V/V)2/6K (isotropic conditions). A new equilibrium volume is reached
when the two energy compensate each other i.e. for BVeqMIV=VKLZ“N<u(BJ uv/dV)<8y Sy>T,
as from which a magnetic expansion aM(T)=(1/3)(aVequaT)/V=KL2u,V<u(-aLnJuvlaLnV)
9(-2Jv<Sy; Sy>1)/dT is deduced. If a single parameter J,y dominate then op(T) is proportional
to the magnetic specific heat Cy(T) and a magnetic Gruneisen coefficient can be defined as
Yr=-dInJy/0InV. In warming from the ordered to the disordered state there will be an expansion
of magnetic origin if dJ,y/dV is negative whilst when dJ,,/dV is negative there will be a
contraction which, if sufficiently large, will also lead to the invar phenomenon. When
anisotropic, the inter-atomic exchange interactions give also rise to a linear
magnetost. iction i.e. a deformation of the solid at constant volume, involving the shear
elasticity S of the material.

Another origin of the magneto-elasticity of a magnetic material that we shall briefly
mention is that connected with the crystalline electric field potential [9]: this potential
breaks the rotational invariance of the orbital states of the electrons and stabilises a highly
aspherical electronic charge density about each nucleus. A cost in electrostatic energy exist in
rotating the charge density which will be minimised thanks to the elasticity of the material through
appropriate (anisotropic) strains. Conversely, an applied (anisotropic) stress, through the strains
it will induce, will change the effect of the environment on the electrons under concern which
should modify the asphericity of the charge distribution. A way to account for both effects is to
assume that in the expansion V(r,0,0) =212 1<m<1 a1 11 YIM(0,0) of the crystalline electric field
potential on the basis of the spherical harmonics, the a™ environment parameters are strain
dependent. One speaks then of a single ion effect because it solely involves the interaction of an

ion with its environment - multi-ion effects should be considered if the rotation of the electronic
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charge distribution of a given ion has such an effect on the environment that the charge
distributions of the neighbouring ions are also affected. In many materials, the quadrupolar
magnetoelastic effects associated with the spherical harmonics of order 1=2 are dominant.
Isotropic effects are again obtained but the largest effects are now anisotropic distortions
(mirroring the magnetic symmetry of the moment distribution).

OUTCOMES OF THE BASIC INTERACTIONS: QUALITATIVE APPROACH

A wealth of ground states and low energy excitations of magnetic nature emerge from
the basic interactions described above, depending upon the considered systems. Tthe electrons
under concern might be localised as in ionic spin systems, partly delocalised by hybridisation
with itinerant electrons as in anomalous rare earth based systems, delocalised to within the extent
of a molecule as in molecular or organic systems or fully itinerant as in metals. Within a given
model the relative strength of the interactions might vary to a large extent, a geometricai
frustration may come out,... A description of all the instances is clearly not possible, even at a
qualitative level, and only a few expected outcomes could be recalled in connection with the most

familiar magnetic behaviours of ferromagnetism and antiferromagnetism.

All the interactions under concern are invariant with respect to the time reversal. An
expected outcome of the exchange interactions is however to stabilise definite orientations of the
spin of the electrons relatively to each other, i.e. a collective state of the electrons that is not
invariant with respect to the time reversal. We shall then have a spontaneous breaking of the time
reversal symmetry in the spin space and, owing to the spin-orbit coupling interaction, in the
orbital space. Another observation that may be made is that the crystalline electric field is
explicitly not invariant with respect to the spatial rotations. We shall then have an anisotropy of

the orbital magnetism and, owing to the spin-orbit coupling interaction, of the spin magnetism.

Spin magnetism and magnetic ordering

A physical system is said to have a spontaneously broken symmetry when the
symmetry of its low energy states is lower than that of the interactions describing it. At the origin
of this phenomenon is the fact that the symmetry lowering allows the formation of correlations
that may minimise the overall energy of the system. A qualitatively different behaviour emerges
then at low temperature, giving birth to a symmetry-violating order parameter operator which

in statistical average is non zero solely in the broken symmetry states of the system. An
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overwhelming variety of physical systems exhibit such a symmetry breaking phase transition,
among which we may quote the ferroelectricity and broken inversion symmetry, the nematic
liquid crystal and broken local rotational symmeltry, the He3 liquid and broken gauge symmetry,
etc. A magnetic order is associated with the breaking of the time reversal symmetry and
corresponds to a freezing of the relative orientations of given spins with respect to each other.
Global changes of orientation involving all the spins coherently are not necessarily frozen and, in

particular, no absolute orientation of the spins exist if there is no anisotropy.

An order parameter is essential in giving insights about the nature of the spectrum of the
low-lying collective excitations in the ordered statc and of the fluctuations in the disordered
state. Onsets of topological defects inherent to the rigidity associated with the order as well as
the mechanism of the transition at the critical temperature at which the order sets up are also
intimately related to it [45]. A basic distinction is made according to whether the order parameter
commutes with the exchange interactions or it does not, as both possibilities exist in the strict

thermodynamical limit.

Commuting order parameters are those generating a group of transformations under
which the interactions are invariant. A broken symmetry state in this case is an eigenstate of the
interactions and can be a ground state. An important group of interest in that respect is the group
SO(3) of the rotation transformations. Continuous, compact, connexe and non-Abelian, it has
three generators which in the spin space are the components Sx. Sy and S; of the total spin S
under concern: the operator associated with a rotation of angle ¢ around an axis Q writes as
expli(¢ Q.8)] - S=ZMSH for a system of ionic spins Sy. If the order parameter is one of the S,
Sy or S, generators we have a ferromagnetic order. Such an order may emerge from e.g.
exchange interactions of the form chch='22u.v<u[J uvESpZSyE+] uv“—“(Su+Sv'+Su'Sv+)/2] with
Juv?2|Tv*[>0 and where SpF=SpxtiSyy-

Hexcp is invariant with respect to the full SO(3) group solely when JuVZ=JuVi. Any of
the generators Sy, Sy or Sz can then be an order parameter and the ferromagnetic state is (25+1)-
fold degenerate. If the eigenstate y associated with the maximum eigenvalue S of S is a
ferromagnetic ground state, the other ferromagnetic ground states y’ are obtained by applying the
ladder operator S=X,,S," to it: Y'=(57)%y (n=1,2,...25). A branch of true collective excitations
is deduced from that degeneracy: the spin waves, which are generated by no more than
applying locally out of phase ladder operators Sk=2pexp(-ik.ry)Sy " to the ground state .
Consisting in small spiral precessions of the (z-) quantisation axis of the total spin S, the spin
waves give rise to a gradient in the relative orientations of the individual spins S.
The stronger the gradient the larger the cost in exchange energy, leading to k-dependent spin
wave energy £(k). Left-handed (k) and right-handed (-K) precessions can be intuitively expected
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to cost the same energy, except in the non-centrosymmetric materials, therefore as the momentum
k goes to zero (long wavelength limit) e(k) may be predicted to vanish quadratically in the

components kg (0=x,y,z) of k: E(k)=):aBDaBkakB where Dqg is a symmetric tensor of rank 2.

As soon as Juyz>{Jyy?, the invariance with respect to the full SO(3) group is lost: Heych
is invariant with respect to only the rotations around the z-axis, which form an Abelian sub-group
of SO(3) with S, as its generator. Since all the representations of an Abelian group are one
dimensional, the ground state is unique and, in the case of ferromagnetism, is the eigenstate v,
associated with the maximum eigenvalue S of S, or the eigenstate Ty, where T is the time
inversion operator, associated with the minimum eigenvalue -S of S;. Applying the ladder
operator S'=ZP_SM‘ to y will now cost a finite energy €,n=gupShan; where hani can be
understood as an effective magnetic field that would, from isotropic exchange (szzJuvi), lead
to the same anisotropy as that associated with the inequality J w?>[Juvi]. Above that energy the
out of phase ladder operators Sk~ lead again to spin waves modes of excitation whose energy in
the long wavelength limit writes now E(k)=gMBS[hani+EaB(Daﬂ/gHBS)kakf3]-

Actual ferromagnets have in fact no perfect rotational symmetry even though the
exchange interactions are isotropic because the spins experience also the crystal symmetry
through the spin-orbit coupling interaction and a finite effective field hani will always be measured
in the dispersion relation €(k) for the spin waves, getting only a different meaning: the
magnetocrystalline anisotropy field. Of interest is also to observe that despite anisotropic
interactions, the excitation spectrum consists of spin waves which are created from the eigenstate
y of S; by means of the Suw=Sux-1Syy generators for the individual spins i.e. the initial S0O3)
symmetry of a free spin is involved. On general grounds, a dimensionality is ascribed to the
order parameter, defined as the number of generators of the group of transformations from
which the object whose dynamics is under concern emerge. When continuous that group allows
to built collective modes of excitations from the ground state. When not continuous (discrete
symmetry) the order parameter is said to be one-dimensional and no collective modes of
excitations may be built from the ground state. Examples are Ising or Potts models. Critical

fluctuations at a transition show universal behaviours depending crucially on that dimensionality.

Order parameters that do not commute with the exchange interactions are not constants
of motion and therefore none of the associated unsymmetric states can be a ground state. So the
question is: how come the spontaneously broken symmetry and the answer could be: wavepacket
pinning via the zero point motion or existence of quasidegenerate joint states or else collapse to
the ground state of very low energy states in the thermodynamical limit. A familinr example of a
non commuting order parameter is the “staggered” spin SxZ=X, R Su? where Ny=flisa

Boolean function that distributes the sites p over two equal size interpenetrating sublattices A and
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B. SxZ defines an antiferromagnetic order and may emerge from exchange interactions of the
form I-Iexch=°22u.,\’<|.1[JMVZS[.LZSVZ+J|J.V1-(S|J.+SV‘+S]J.-SV+)!2] with JMVZ<O and ‘Juvzl2|luvi|>o
The case |Juv#<Ppvt] and J3y?>0 or <O leads to other non conserving order parameters or in a

2D system of spins to binding processes of topological singularities.

When [Juv¥|=0 the ground state is the antiferromagnetic state = Tp|Su.Mu=R ;8> but
as soon as {Jy,*|#0 the pairwise spin-flip operators SutSy+Sy Syt mixes ¥ with other states:
Sx? commutes with -2X, veuJpvZSp28y? but not with 2T vepdpvESut Sy S Syt)2.
Applying spin-flip operators on a given state transform it into a state with the same total azimuthal
quantum number M so that the eigenstates of Hexcn can be labelled by M and expanded as
WM=Y o faMPaM on the basis of the states @oM=[1},|Sm, %> with Xym,*=M (ct is a label that

distinguishes between different spin configurations).

Now in each subspace of fixed M, there exist a non degenerate eigenstate oM of lowest
energy. If J,v¥>0, yoM is the state with faM>0 for any spin configuration c. YoM is proven to
be of minimum energy when foM>0 for all o by making use of the fact that
22, vepdpvF(Spt Sy +8) Sy *)/2 has solely nonpositive matrix elements - if foM vanishes for
some o, then it vanishes for all o in the same M sector so that in effect the strict inequality foM>0
should hold for all o - ygM is non degenerate because it is simply not possible to have yM with
all foM>0 orthogonal to WM i.e. such that <y MyM>=0). If J;y*<0, the lowest energy state
woM in a subspace of fixed M is the state YoM=Xq(-)F @ f MpaM with foM>0 for any & and
where [(o)=2u(1-R () (Sy+my®)/2 defines the Marshall sign criterion. YoM with the
Marshall sign criterion is proven to be of minimum energy in the case J uvi<0 in the same way as
when J,,,¥>0, by observing that a rotation of an angle 7 about the z-axis of all the spins S, of the
sublattice B, i.e. for which Ry=-1, transforms the states [Sym;®> into (-)T (%S, m,%> with

T{o,p)=(1-R  )}(Sy+my*)/2 and changes solely the sign of Jwi in Haxch) [46]. Since the sign

criterion thus deduced does depend solely on the fact that the matrix element of the spin-flip part
of the exchange interactions are nonpositive, the states of lowest energy y<gM in the M sector
associated with the interactions Hexch=-2J ZpvepSpZSvE-2TE X vep(SptSv+Su-Svh)/2 (1 in
A and v in B)= -(J-J£)S528p2-J%S 4.Sp should have the same quantum numbers as the states
oM, because the sign criterion of the two states is the same and therefore their overlap, involving
a sum of positive numbers, cannot vanish. It is then an easy matter to show that the ground state

of Hexch has quantum numbers M=0 and $=%,,S;, (when Jy;,®>0} or S=0 (when Juv<0).

woM=0 is a quantum superposition of macroscopically distinct states, the spin
configurations «, which may be pictured as a system of spins spatially correlated
antiferromagnetically but orientationally delocalised. It is invariant with respect to the time

reversal symmetry and is not an eigenstate of SxZ2. A spontaneously broken symmetry can
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nevertheless occur in the thermodynamical limit as an effect of a recombination of states via
the zero point motion that pin the spins in the antiferromagnetic spin configuration
[1u/Sp.Mp=X,S>. All allowed values of $ (from S=0 to S=%,Su=NS,, where N is the total
number of spins) have indeed members WopisM=0 (quasi-degenerate joint states) in the M=0
sector at cnergy that scales as sJ/N for S=s, where J is the strength of the exchange interactions.
We assume here that the ground state is the singlet state S=0 but the same arguments hold for the
other case S=3%,,S;,. As a consequence the macroscopic coherence between the different spin
configurations will have a finite forth and back tunnelling time 1 of the order of N/J. Coherence
is destroyed by the environment effects such as the coupling of the electronic spins with the
nuclear spins via the hyperfine interactions and N should be very small to get a measurable T.
Assuming there is in addition a magnetocrystalline anisotropy (K/NYZu X uSp2)? we have
T-1 © egpys exp(-{N2S2K/JT). As N increases the states WopisM=0 collapse to the ground state
and give rise to a long living antiferromagnetic wavepacket. T for ordinary macroscopic samples

is larger than the age of the universe by many orders of magnitude).

Collective excitations associated to non-commuting order parameters show also
differences with respect to the commuting case. A branch of spin wave excitations may be
generated by applying locally out of phase ladder operators Sk‘=2uexp(-ik.r“)8u" to the
antiferromagnetic state Hulsu:MuzxuS>- We get a dispersion relation (k) that cancels at the
ferromagnetic momentum k=0 (the spins of the sublattices A and B precesses then with same
phases) and at the antiferromagnetic momentum k=1 {the spins of the sublattices A and B
precesses then with opposite phases). e(k) vanishes linearly in the components ky, (0=x,y,z)
of k (and not quadratically) at these points i.e. we have e(k)=t[XapDapkakp]1/2 as k goes to 0
and e(k)=i[2a5DaB(ka—na)(k5—na)]”2 as k goes to m, where Dgpg is a symmetric tensor of
rank 2: when the true ground state of the system is symmetric, it makes no sense to distinguish
between left-handed and right-handed precessions as these precessions transform into each other
by the time reversal. Collective excitations deduced from the ground state with a linear spectrum
are characteristic of all the systems with an order parameter that do not commute with a
Hamiltonian. A familiar example associated with the notion of crystalline states and spontaneous
breaking of continuous translational symmetry is the acoustic phonon that shows a linear
dispersion relation as a result of the non commutation of the mean position X of the crystal with

the kinetic energy which is a function of the total momentum P of the crystal.
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Orbital magnetism and magnetic anisotropy

Whenever an interaction breaking the time reversal symmetry exists, as that
associated with an applied magnetic field, an orbital moment may be induced. If the ground state
of the system under interest is degenerate the orbital moment will be large whatever is the value of
the applied magnetic field as small as it might be, but the induced orbital moment will in general
not align along the applied field direction. Since the crystalline electric field potential is not
rotationally invariant, the orbital moment tends to align rather along given crystallographic
directions associated with the local crystal symmetry. At increasing the strength of the applied
field a rotation of the orbital moment towards the applied field direction may however be obtained
through a coupling of the orbital ground state with excited orbital states. A finite value of the
applied field is necessary to achieve the rotation, that corresponding to the magnetic energy
necessary to compensate the anisotropy energy. This energy is one of the basic parameters to
be maximised in a hard magnet and minimised in a soft magnet. Coupling the ground state with
the excited states is furthermore expected to change the amplitude of the orbital moment, which
defines a magnetisation anisotropy. If now the ground state is a non degenerate state
associated with a trivial representation I'; of the local crystal symmetry group then no orbital
moments may at all be induced except solely through a coupling with the excited states under
large applied magnetic fields: there is an orbital quenching.

When an ordering sets up in the spin space, the orbital magnetism experiences the
associated breaking of the time reversal symmetry through the spin-orbit coupling interaction. If
the spin-orbit coupling interaction is the strongest, it will at first couple the spin and the orbital
moment within an ion, so that within the Russell-Sanders approximation, these moments will
remain parallel. The exchange interactions will tend to induce on a given ion a large expectation
value of S, and therefore of L, according to a given axis of quantification, whereas the crystalline
electric field potential will tend to align the axis of quantification along particular crystallographic
directions. Exchange interactions and crystalline electric field potential compete if the relative
orientations associated with the former does not coincide with the absolute orientation assoctated
with the latter. An anisotropy energy develops which to the first order may be interpreted as
the change in energy of the crystalline electric field potential due to the rotation from one
direction (the easy axis) to another (the hard axis) of the highly asymmetric electronic charge
cloud associated with an eigenfunction of L,. This is e.g. the case for the 4f electrons in the Rare
Earth based compounds. On the other hand, if the spin-orbit coupling is the weakest, the spin
momeats will at first order relatively to each other and the orbital states will decompose according
to the local symmetry. Acting as a perturbation, the spin-orbit coupling interaction will then
couple the orbital ground state with the excited orbital states in a way similar to that of an applied

field Hs.o having the same gradient of orientation as that associated with the relative orientations
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of the spins. An orbital moment will then be induced which in turn will pin the spin moment in an
absolute direction through the spin-orbit coupling interaction. At applying a magnetic field, the
spin moments will rotate towards the applied field and the mixing of the orbital ground state with
the excited orbital states will change owing to the rotation of the spin-orbit coupling effective field
Hs.o. An anisotropy energy develops again which may be interpreted now as the cost in the
spin-orbit coupling energy to rotate the orbital moment along the hard axis of magnetisation.
This is the case for the d electrons especially in the 3d transition metal based compounds.

OUTCOMES OF THE BASIC INTERACTIONS: APPROXIMATE METHODS

Usually the different ground states are deduced from the exchange interactions
approximately, in somehow more or less sophisticated “mean field approaches” which merely
consists in replacing the interactions by an effective field. With a system of N ionic spins S,
interacting via the bilinear exchange -22“,\,411 uvSu.Sy, it is thus customary to assume that the
Fourier components Sk"—-Euexp(-ik_ru)Su of the spin distribution fluctuates independently (this
is referred to as the random phase approximation). In this approximation, the exchange
interaction takes the “Zeeman’ form -2kH.k.Sk where the effective field H.x=J.xk<S.x>T with
Jk=(l/N)-ZZp,K“JWexp(-ik.(ru-r\,)) seen by the k Fourier component of the spin distribution
depends self-consistently on that distribution at a given temperature T. It is then an easy matter to
show that the magnetic susceptibility would be x(K)=C/[(T-Tc)+( 1-Jk/J] at high temperature.
x(k) shows a divergence by decreasing the temperature to the critical value Te=Clg/(gup)? where
Q is the wavevector for which Ji is maximum. At low temperature, the system could be expected
to order in a structure defined by the Fourier componen. 8¢ (Q is then said to be the propaga:ion
vector of the low temperature phase) but not necessarily [47].

Another approach is to make use of judicious variational magnetic states. An example is
the variational spin density wave states W(q,0k,nko)=] [ka0tkst{0> considered in the case of the
Hubbard model -Xystyveusteys+(U72) T usnysny.s for itinerant electrons. W(q,bk,Nnks) is
constructed from the magnetic quasi-particles operators Ot]m:+=cos(¢k)cks=++sin(¢k)ck+qs=.
and oqm:_:—sin(¢k)cksx++cos(¢k)ck+q5=_ and its variational parameters are the ordering
wavevector ¢, the angles ¢k and the occupation numbers nyg that define for each state & the
Fermi surfaces that enclose the occupied states. yiq.0x.Nko) is a Fock state that factorises any
quartic term <cy*eyepteg> into <cu+cv><cp+cq>—<cu+cq><cp+cv> . It is then again an easy matter
to calculate the energy w(q,dk,nkg) and minimise it with respect to the variational parameters. We
get the Stoner criterion for the unstability of the paramagnetic state towards the formation of a
magnetic state: 2Uy{q)=1 where x(q) is the magnetic susceptibility of the electrons without the
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interactions U. x(0)=(1/2)Xx0f(ek)/ ek, would describe a uniform ferromagnetic spin order,
while %(q)=(1/2)Zk[f(Ek+q)-f(EK)V{(Ek+q-EK) would describe a spin density wave order.
f(e):(exp(e/kBT)H)'l is the Fermi function. %(0) scales with the density of orbital states at the
Fermi level while x(q) is optimised by the Fermi surface geometry (nesting and quasi-nesting).
As in the case of the mean field approaches, the Stoner criterion overestimates the magnetic
ordering and underestimate the effects of the spin fluctuations [41]: an order may be expected if
the Stoner criterion is satisfied but not necessarily. Another family of variational states used in the
context of itinerant electrons are the Gutzwiller states, which are however more difficult to handle
because they do not factorise the quartic interactions. A few exact theorem about the ground states
have been formulated. We shall quote the Lieb’s theorem which shares similarities with the
Marshall sign criterion for a system of ionic spins with antiferromagnetic interactions and which
states that the ground state g of the Hubbard model with hopping parameters tyy that connect
only between the sites of two interpenetrating sublattices A and B with respective number of sites
N4 and N has a total spin S=|N4-Ng|/2 at half-filling and that y is unique up to a trivial (28+1)-
fold rotational degeneracy (when N5=Np the ground state is, as in the case of the ionic spins
interacting antiferromagnetically, the singlet state S=0) [48].

A step beyond in the difficulties is the question of the dynamical correlations which
depend on the excited energy and states of the system. Use can been made of the ground state
correlations to built excitations on condition to keep in mind that these excitations are perhaps not
the only ones. According to the Goldstone theorem, if there is a spontaneously broken
symmetry in a system with short range interaction, i.e. decaying faster than the inverse square
power of the distance, then there always exist a branch of excitation called Goldstone modes, or
Goldstone bosons when second quantised, built from the ground state correlations and that
vanishes to the ground state energy for a given momentum. The converse statement is false i.e.
the existence of gapless excitations in a system does not imply that there is a spontaneously
broken symmetry in this system - if the spontaneously broken symmetry emanates from long
range interactions then there are “edge” effects that can lead to a gap in the excitation spectrum. A
subtle instance is when the system show also a local gauge invariance: the massless Goldstone
modes are "gauged away” - as examples the dynamical Coulomb correlations of electrons in a
metal get frozen below the plasma frequency and a superconductor has no gapless excitations - in
a field theory context that gap is interpreted in terms of mass generation: the Higgs boson
mechanism [49]. Goldstone modes in magnetism are the spin waves, which in the case of the
ferromagnetism or the antiferromagnetism of a system of ionic spins were found to emerge from

the ground state by means of the out of phase ladder operators.

An almost traditional way of dealing with the spin waves is to use the Holstein-

Primakoff representation: bosons operators by are built from the spin operators S, as
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Sut=(28,-n)1 26y, Su=bu*(28,-n,)172 and Sp?=-ny+8 with ny=by,*by, where the local z)-
quantisation axis is taken to be that of the spin at site W in the configuration obtained in the
classical limit of large Sy,. A disadvantage of this representation is that owing to the square root
function, an expansion is always made and truncated at a certain order, which is valid solely
when <ny> is much smaller than 2S,. Using these operators, ferromagnetic exchange
interactions -2J%, y<,S;1.Sy (J>0) expands as -S2INM/2 + Zxwibyitby + higher order terms
(in bg) where N is the number of spins, M is the number of nearest neighbours of a spin,
bk=(l/x/ﬁ)2“exp(-ik.ru)bu and wg=8,JM( 1—2(1/M)Zuywuexp(—ik.(ru-rv)) or more shortly
Wk=SuIM(1-vy) -SMEJNMIZ is the ground energy obtained in the classical limit of large Sy, the
second term in the expansion describes non-interacting spin waves and the higher order terms the
interactions between the spin waves incorporating the non linear processes of creation and
annihilation of the spin waves. With antiferromagnetic exchange interactions (i.e. J<0) the
following expansion is obtained SHZJNMIZ + (kak(ak+ak+l/2)+S“JNW2) + higher order
terms, with wy=S,(-HM(1-y,2)1/2, by first rotating by an angle 7 the spins of one of the
sublattices, then performing the Holstein-Primakoff transformation and finally diagonalising, by
a Bogoliubov transformation ak"':cosh(¢k)bk—sinh(¢k)b_k+ with tanh(2¢k)=-yk, the non
interacting spin-wave term JSMMZk[bk+bk+(bk+b-k++bkb.k)/2}. Unlike the ferromagnetic case,
a quantum zero point energy E-SuleM/2=(1/2)(—J)SMM2k[( 1-y,2)1/2-11 emerge, which leads to
a lower ground energy: the zero point quantum fluctuations, as already discussed above, reduce

the energy of an antiferromagnet.

At low temperature the statistical average of the order parameters will show a thermal
decrease associated with the spin wave excitations. In a ferromagnet the decrease is given as
AMF=S-<EMSHZ>=<E“n“>=ank where ng = (exp(wk/kgT)-1)-1 is the Bose function. In an
antiferromagnet the decrease writes AMAp=S-<X R uSp#>=<2,br*by>(with one sublattice of
spins rotated by 7t about the z-axis)=Xy(m+1/2)(1-1,2)- /2-N/2. A divergent summation is found
for the low dimensional system in both cases as k goes to zero (infrared singularity):
AMEg=T/ISk+...for d=1 and AMg=TLn(k)/JS+...for d=2 while AMEp=(-1/8)(T/JSn)3/2L(3/2) for
d=3, where {(z)=X.n"% is the Rieman zeta function - AMaF=(1-yk2) V2/2k+.. for d=1,
AMAR=TLO)(-DS V2 -(1-y2)"112/2+. for d=2 and AMap=6"72T2/J282_(1 .91 2)-V2/2+. for
d=3 [48]. Consequently, the initial assumption of the Holstein-Primakoff representation that the
fluctuations of the order parameter are small does not hold for the low dimensional systems,

On more general grounds, the Mermin and Wagner’s theorem [50] proves that
short range exchange interactions cannot give rise to a non vanishin g order parameter at any finite
temperature in one and two dimensions (d=1 or 2). Order parameters that are concerned by the
theorem are those with continuous degrees of freedom and not the one dimensional order

parameters associated with a discrete symmetry such as those of the Ising or Potts models. On the
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other hand the theorem does not apply at zero temperature. A long range antiferromagnetic
ordering in the ground state of 2D systems was thus demonstrated to be possible for spins S 3/2
[51]. It can also be shown that a system does not possess a long-range order in its ground state if
there is a gap in the excitation spectrum but the converse is false i.c. the existence of gapless
excitations does not imply a long-range order. An illustrative example is provided by the
antiferromagnetic spin chains whose physics is quite unusual. With integer spins there is a gap in
the excitation spectrum (Haldane gap) and the ground state is quantum disordered [52] but has
an hidden string order parameter associated with the breacking of a discrete Z2xZ2 symetry. With
half-odd integer spins, gapless excitations are found from the exact Bethe ansatz solution with the
dispersion relation @y=(m/2)|sink| [53] but the equal time spin-spin correlations decay as the
inverse of the distance and therefore do never diverge. One speaks then of quasi long range order
as in all the cases where there is a power law decay of the spin-spin correlations with the
distance. Gaplessness is now understood in terms of quantum interference of topological
Berry phases [54]. A theorem due to Lieb, Schultz and Mattis tells also that there exists an
excited twisted orthogonal state, which in the thermodynamical limit collapses to the ground state:
an admixture able to break a symmetry and to generate further new phases according to the
interactions [48]. At present, the interest on the low dimensional systems focuses at coupled
chains or ladder systems as the mean to investigate how the d=1 to the d=2 crossover takes place.
A ladder system of spins 1/2 with an odd number of chains is thus found to behave like a unique
chain of spins 1/2 while with an even number of chains it shows a gap in the excitation spectrum
as with the integer spin chain.

We shall end here by emphasising that spontaneous broken symmetry is not the only
way for a magnetic system to change its behaviour at low temperature. Other alternatives exist by
which a continuous transition to a qualitatively different behaviour could occur without a
symmetry breaking. An example is the Kondo transition [45]. Another type of transitions that
could be considered is the analogue of the liquid-gas transition as is the case with the Mott
transition {45]. We shall finally mention the quantum transitions at zero temperature which in an

itinerant electron system are expected to induce non fermi liquid behaviours [55].
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CONCLUSION

We do not purport to have given an overview of the field of condensed matter
magnetism. As already emphasised above, the task would have been impossible. Our aim was
rather to show the richness of the field and to stress on its impact in terms of applications as well
as on its theoretical interest in terms of a useful class of many body quantum statistical
phenomena. A lot has been learned from its investigations and considerable progress has been
achieved but many aspects of the field requires further investigations. Experiments are in that
respect of utmost relevance. Macroscopic behaviours can now be measured in various ways :
magnetisation, specific heat, ac and dc susceptibility measurements with more and more
sophisticated miniaturised techniques. A deeper insight requires however to probe magnetism at
the spatial scale of an atom within the largest time window to probe as completely as possible all
the dynamical spin correlations. A number of local probes exist that do give information on the
spin dynamics either based on resonant spectroscopy (NMR, ESR, Mossbauer effect,...) or on
the spin dependent emission associated with the decay of implanted unstable elements (Muon spin
rotation and depolarisation or muon spin resonance, 173-247 keV Y-Y cascade of the radioactive
1HIn->111Cd decay,...) but structural informations on the spin configuration are not obtained by
these methods. The unique way to probe both the structura) and dynamical correlations in a
material was for a long time limited to elastic and inelastic scattering of neutrons. With the advent
of synchrotron radiation facilities, new complementary doors are opened in that the experiments
allow to go into more fine details (separation of the spin and orbital contributions to the
magnetism by magnetic X-ray scattering, double selectivity in terms of orbitals and in terms of

atomic species by magnetic circular dichroism,...).
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