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OPTICAL WAVEGUIDES

e An optical waveguide is a cy'indrical dielec-
tric structure consisting of a high-index region
(core or film) surrounded by a relatively lower
index region (cladding or substrate/cover).

e Fiber waveguides: cross-section is circularly
symmetric: nz('r)

e Integrated Optical Waveguides: cross-section
is rectangular (non-circular): n?(z,y).

e The index may be piecewise homogeneous in
diffrent regions: step-index waveguides.

e Or, it may be continuously varying: graded-
index waveguides or diffused waveguides.
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Wave Propagation through
Optical Waveguides

o Optical Wavegnides are dielectric structures and the wave propagation
through them is governed by Maxwell's equations.

o Maxwell's equation in a charge-free, non-magnetic medium can be
transformed into a vectorial wave equation

&

5 5 9 Vn?
V'E+ kin°E +V 7 E ) =

n

with time dependence as €™t and ky = w/e.

2 . . . . . .
e The term %?3— represents relative variation of the refractive index and if

the index varies slowly such that its relative varlation over a wavelength
1s small, this term can be neglected. Then,

V°E + kIn’E = 0

e Assuming the cartesian system for vectors, it follows that each compo-
nent of E satisfies the same equation

V0 + kZnU =

Here W is one of the cartesian components (say, £.) and the others
(£, and F.) are obtained using Maxwell’s equations.

¢ Thus, under the slow variation of the index, the fields can be expressed
in terms of a scalar field ¥ which satisfies the scalar wave equation or
the Helmholtz equation

2T 92y /Uy |
Oz? t Oy? + 92 + kgnz(xayaz)q’(:c,y,z) =0
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Modes of Uniform Waveguides

e If the waveguide is uniform along the direction of propagation, z,
then
2 _ 2 a2
n (Ivyaz) =n (IB,?J) =n (T,¢)

e The scalar wave equation then takes the form

V2 + kgn®(z, y)¥ g2

4 k(@ )0, ) = ~ 5

o Separating the z-dependence as U(x,y, z) = Y(z,y)Z(z), we can
obtain

Z(z) = exp(£18z)

and the scalar field ¥(z,y) satisfies the wave equation
Vi + [kEn*(z,y) — B(x,y,2) =0

e Thus, ¥(z,y,2,t) = ¥(z,v) eiwt=82) represents a forward (+z)
propagating mode [for a backward propagating (—z) mode, the
argument of the exponential has a 4-ve sign in front of 3].

“A mode is defined as a field configuration which
propagates along the waveguide without any change
in polarisation or in the field distribution except for
a change in phase.”

The constant 8 is called the propagation constant which defines
the phase velocity of the mode and the function ¥ (z,y) is the
mode field distribution or the modal field.



Characteristics of Modes

® The scalar wave equation for modes
Vet kon® (e, )l (2, y) = (2, y, )
is, In fact, an eigenvalue equation with 6% as the eigenvalues and
Y(z,y) as the corresponding eigenfunctions of the operator [V, +
kin®(z, y)] defined by the refractive index distribution of the waveg-

uide (the boundary conditions to be imposed are: 1 and its first spatial
derivatives should be continuous everywhere).

® In general, a waveguide has a higher refractive-index region surrounded
by a lower index region which is usually uniform:

2 2, ¢
n{z,y) = n +én(z,y) < n,
where ng is the lower uniform index of the surrounding region, n,, is

the highest index and én(z, y) represents the variation of the index of
the waveguide,

® The eigenvalues, 8, have only distrete values in the range k,,ng > 8 >
kons and the corresponding modes are called the guided modes.
For 8 < kyn,, a continuum of modes, the radiation modes, exists,

Radiation Guided

modes modes No
(continuum) (discrete) WAVES

[
kons k‘onm 3

® The modal field is oscillatory in nature when n(z,y) > 3/ky and
monotonic when n(xz,y) < 8/k,.

o It is possible, in general, to choose such index variation and dimensions
that above a certain wavelength only one guided mode exists. Such
waveguides are called single mode or monomode waveguides. Multi-
mode waveguide. on the other hand. support a large number of guided

modes,
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Different Waveguide Geometries

Planar Geometry

n¥(z,y, 2) = n*{z)

Extends from —oo to co in y and
z directions.

U(z,y,2,t) = v,b(:z:)ei(“’t“ﬁz)
d?

2.2

8+ Bt (e) - B(a) =0

dx?

Circular
n2(z,y, z) = n?(r, ¢, z) = n*(r)

U(r, ¢, 2,t) = (r) &' &5

2. 2
Pple) | 140 Py

dr? rdr r2

Geometry

="



Exactly Solvable Profiles
(Guided Modes)

Planar Step-Index Waveguide

e Profile:
no * I
9 2 < a (j
n‘(z) =ni |z|<a n, | Ly .
=n3 |z|>a —5 —a 5 n*(x)
: ny < ny n
e Symmetric Modes: )
n;
Ys(z) = A, cos(Uz/a) lz] < a

= A;cos(U) exp[-W([z|/a - 1)] lz| > a
The eigenvalue equation (obtained using continuity of di(z)/dz):

U tan(U =V V2-U?
U=a\kin?— 32 W = a\/ﬁ2 — kgng, and V' = kyay/n? — nl

¢ Antisymmetric Modes:
Yo(z) = A, sin(Uz/a) lz] < a
= Agsin(U) e Wlela=1) 5 5 4
= ~Agsin(U) eV/atl) 7 <«

Symmetric

Mades

The eigenvalue equation (obtained
using continuity of dip(x)/dzx):

Ucot(U) = -W

“8012354, 673
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Exactly Solvable Profiles
(Guided Modes)

Step-Index Fiber

e The Index Profile: T
n(r) = n 0<r<a core 0= n(r)
= My r>a cladding

e The modal field, ¥(r, ¢) for the LP,-modes

Y(r,p) = e?AJ(UR) 0<R<1
164 JilU)
= ¢ilPg K (WR R>1
A o K ) >
r

R-:E; U = av/kin} — 5% V = kgay/n? — nj
k Z?E_- W =a ﬁz_kznz. b=W2/V2= ﬁz—-kgn%
o= WeeVFTRm R

¢ The eigenvalue equation (obtained from continuity
of dip/dr at R = 1):

— Ja(VVITh) _ KV
O e I Vs

LHS RHS




Exactly Solvable Profiles
(Guided Modes)

Parabolic-Index Medium

¢ One-dimensional (1-D) Medium

— Profile:

n?(z) = n?l — 2A(z%/a?)] /}m\g(x)
A - grading parameter

— The modal field, ¥(z)

V() = Ny H(€) o3

§=oaz, a=(kin}2A/a?)/* = VV/a, V =kyanvon
— Eigenvalue equation: [/? = V(2m +1)

¢ T'wo-dimensional (2-D) Medium (Cartesian)

— Profile: n*(z,y) = n2[1 - 2A(2* + y2) /a?]
— The modal field, ¥(z, y):

¢($ay) = Nm Nn Hm(f) Hn("?) e_%(§2+n2)
— Eigenvalue equation: U? = 2V(m+n+1)

3 n=ay

® Two-dimensional (2-D) Medium (Polar)

— Profile: n*(r) = n2[1 — 2A(r? /a?)]
— The modal field. v (r):

Yir) =N, r'L!

!

— Eigenvalue equation: /2 = 2V(2m +n+1)

‘ 1
(ar?) emz0r?
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GENERAL WAVEGUIDES

e Arbitrary profiles

n*(r) or n*(x)  or n*(z,y)

e Quantities of interest

¢ — modal field

11z

(3 — propagation constant

SL

B'(\),8"(X) — derivatives of B(for dispersion)

o Effective-index nes = B8/ko

11

ny < B/ky <ny
1 < Meff < Ny

Typically ny — ng ~ 1073 (fibers).
Hence accuracy required in meg > 107>,
For, ' & (" the accuracy should be > 1076,107".

ik

e Various methods used are:

WKB . multimode waveguides for 8

a

Perturbation : for individual modes for 3

Ik

Variational @ for single mode/multimode

for B & v and also 8" & "

1}

Numerical ¢ . 3.8 & 87 (few mode)
{direct)

——
——
e




VARIATIONAL METHOD

¢ The wave-equation is
Vi + [kin¥(e,y) — 67] (z,y) = 0

¢ The integral form can be written as

g2 = N K@, )19 dedy ~ [ [V dedy
I 1V dzdy

e The right hand side is STATION ARY with respect to varia-
tions in ¥(z, y).

¢ If we substitute a function Yi(z, y) for (x, y), the stationary
expression gives an estimate 32 for 42 which is always such
that [for fundamental mode]

2 2
/Bt < exact

* If we try a number of trial functions Yi(z,y) and estimate
corresponding 32, then the largest value of 57 would be clos-
est to the exact value and the corresponding, ¥(z, y) would
represent the best approximation for the modal field, 9(z, y).

® A variational estimate of 32, thus, represents a lower bound
for the propagation constant.
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ALGORITHM FOR VARIATIONAL
METHOD

o Set-up a trial field

‘I’t(wa Yy,P1,P2, 03 - - pn)
D1, P2, - - - Pn are n-parameters which are adjustable.

e The functional dependence of ¥; on z,y is chosen in such a
way that it resembles the modal field as far as possible.

e This field is then used in the stationary expression and 87 is
maximized with respect to pi, P2, - - Pn-

e The maximum value of 37 is the estimate for the propagation
constant & the function ¥ (z, y; p1, - - - Pn) With optimized val-
ues of p1, P2, . - - Pn is the approximation for the modal field.

e Generally, by increasing the number of parameters, in a suit-
able fashion, the accuracy of a trial field can be increased.
But, a better trial field with a smaller number of
parameters is always sought for.



VARIATIONAL METHOD (contd.)

EQUIVALENT WAVEGUIDES

e The optimized trial field Yi(z,y) and the propagation con-

stant, 57, when used in the wave equation give an index profile,
ni(z,y):
1 1
2 2
n;(z,y) = — - —V
t ( ) y) kg [ﬁt @bt th

e Within the accuracy of the trial field, the index profile n}(z, y)

represents a waveguide EQUIVALENT to the given waveguide

as far as the mode used is concerned. This is useful for single
mode waveguide.

PERTURBATION METHOD AS A
VARIATIONAL METHOD

¢ The variational estimate obtained by simply substituting a

trial field. ¥ p(z, y) without optimization is same as the one ob-
tained using the FIRST ORDER PERTURBATION METHOD
with the unperturbed profile ag nh{z,y) (

¢P($a y))

® The optimized ¥, (z, y) is such that the correction obtained by
first order perturbation theory is zero

corresponding to

e So. the first order perturbation method

UNOPTINIZED variational method

can be regarded as
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Rayleigh-Ritz Method

e TRIAL FIELD:

M
Pz, y) = Y Cndlz,y) m=1LM
m=]

¢ ¢.(z,y) are orthonormal set of functions:
// qb:n(:l?, y) Qbm"(xa y) dz dy = b

e The stationary expression then becomes:

B 2. Z CrmCm! ff L by dz dy

= 2 5 ememe [ (Kon*(@: Y} = Vi8y, - Veduwl) da dy

o Maximizing w..t ¢,,: 88%/0¢cm = 0 leads to
HC = B*C

where

H = {Hmm.’ = ff [k3n2($79)¢*m¢nz’ o |Vf¢:n ’ th;bmfl] dx dy}
C = {Cn}

¢ The matrix eigenvalue problem gives M eigenvalues of which
some may correspond to guided modes & others to discrete
representations of radiation modes. However, only higher val-
nes of 32 have good accuracy.



DIRECT NUMERICAL METHODS
PLANAR WAVEGUIDES

e Wave Equation:

d*y 2 2 2
o + [kin* (2) = 87 y (@) = 0
— Second order homogeneous ordinary differential equation.
— One could use:
* Runge-Kutta Method (self starting)
* Predictor-Corrector Methods (require a starter)
— Boundary conditions
* Y & dy/de — 0at z — +oo
* both ¢ & dv/dx are continuous everywhere.

¢ Eigenvalue Determination:

— Since the equation is homogeneous one of v & ¥ (z) is
arbitrary.

— For a given 3, the equation can be solved for an initial
VY &/

— The boundary condition at z — +oo would be satisfied
by only certain 3, which are the elgenvalues.

— 30, by varying 3, those 3 are found for which the boundary
conditions are matched.
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Algorithm

e Select a point z = a such that the refractive index is constant
for £ < a or at least can be assumed to be so. Let the index

be n..

The solution for z < a is then

¥ (@) = Aexp |+/BF — ki (== @)
(@)= VB — ki (@)

e Similarly, select a point z = b such that the index is constant
or can be assumed to be so for > b. Let the index be n;.
Then for x > b

W (z) [ (z) = =/ B — kons

e Starting with ¢ (z = a) =1 and W =1)=—B— kin?

one can numerically solve the wave equation to obtain Y () /¢ (@) o

This quantity would be a function of 8. Thus,

» The eigenvalue (transdental) equation for determining 3 1s

F(B) = —\/ 8 — kins

r=bh



Convergence Tests

e There are two convergences to be tested:

a) Convergence of the numerical solution of the differential

equation with A, the extrapolation interval i
Kutta method.

b) Convergence of 3,

n the Runge-

® The transcendental equation can be solved by either bisection

method or secant method (since it is not easy to compute the
dervvative of the function w.r.t )

Riccati Transformation

e The transformation:

may be used to obtain

G'(z) = —G* ~ [kin(z) — g
— Ist order differential equation
— leads to shorter computation time

— useful for lower order modes particularly the fundamental
mode

e For higher order modex, as ¢ (z) =0, G(z) — oo and hence
beyond G (z) = 1. one should switch to Flz)=1/G(z) &
nse:

Fi{z) =1+ F [kin?(z) — 87
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OPTICAL FIBERS

e For optical fibers, the equation 1s

ik + 1%—@4— [kgnz('r)—ﬁz] P (r) =0

dr? rdr r?

e The index profile is

nt(z)= n*(r) r<a

T T>a
e For r > a, the solution is W = a\/3% — k%nil]
K;(Wr/a)

v = ATk w)

Vo _I/Y_K’(W"r/a)
Y (z)= A~ "K[(W)

W K| (Wr/a)
a K (W)

or, ¥'/¥(r) =

e The boundary condition at 7 = 01s

G (r) p(r)=0 for  1=0
b(ry Y (r)y=0  for  1#0

e It is better to start the solution at r = a and solve backwards

to obtain the equation (for I = 0)
".,b’
E r=0

which is transcendental eigenvalue equation.

(8) =10

e Riccati transformation can be helpful here too!



STAIRCASE (OR MULTILAYER) METHOD

e The graded part is divided in N- 2 =2 = K
. IN-1 N
parts such that the interfaces are at tny PR = KR
. 2, =K32
T1,T9,x3...TxN_; and the index between, *~-3 :g"j — Kg‘ﬂ
. TN—4 =3 = =3
T and ,,41 s N2, = K.
® The lowest layer (substrate) between
—00 < = < 7 has an index n? = K,
and upper most layer (cover) between
: 9 Y
Zy-1 < < 00 has an index nZ = Ky e
T2 y R——
. . . n; = K
¢ We start with an exponentially decaying * o 7
solution in the substrate:

Y1 (33) = A exp[fna:] —0o<z<z =0
e The solution in the m* layer would be

Sin [y, (x — )]
Ym

LTm—1 SCL'SCUm

Y (T) = A cos [y (z — 2,,)] + B,,

with v, = ko [K3 — K,,]'/? & Kj = (B/ko)* = nlg

= It K3 < Ky, is a layer then +,, = ix,, and in the field expression
simply replace cos by cosh and sin [, ...] /7., by sinh [k, ...] /&,

¢ The boundary conditions: 1 & dy /dz continuity is applied at each
interface

e In the final layer vy = iky and only a decaying solution should exist
& hence

Ay +(By/ky) =0 = cigenvalue equation
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EVALUATION OF COEFFICIENTS A, Bn

e Using the continuity condition, one can obtain a simple recurrence
scheme to evaluate A, & B!

A; = Arbitrary = 1(say)
A=A By =m4

Apst = Am 0S(Ymdim) + B SIn(Ymdm)

Bm-H = [_Am’}’m Sin('dem) + By, COS('Ymdm)]

e Using above recurrence relations one can obtain,

Fy = An + (Bn/kN)
which is a function of B #x = Fn(8).

e The eigenvalues are then given by as the solution of
Fy(8)=0

e Convergence has to be tested with respect to N and for the value of
B.

e The above procedure is valid even when one or more layers have com-
plex refractive index (absorbing /amplifying media). All the quantities,
then become complex and a two dimensional search is required to ob-

tain B. since it is also complex.



PLANAR WAVEGUIDES

o General structure gy e
I
n(y) = n? y <0 Cover d-- o _
— n}(y) y >0 IFilm O:—-—- L
Substrate na2(z)
o,
e Step-index waveguides
Zy L2
'n,?(y) = nf y <0 Cover d: na_
=n; 0<y<a Film a
| . -
ng y>a Substrate 0 na(z)
n,
e Analytical solutions of the wave equation:
cos(Ug) eVev/a co<y<0
Ply) = { cos[U(y/a~ o) 0<y<a

cos[U (1—a)] e (i) 4 <y < 0o

U =ay/kin; - 52 W =a\/F — KnZ, W, = a\/F — k2n

® The continuity of dyp/dy at y = 0 and y = a gives

U(W,+W,)
tan U = i WSWC'

and o = & tan L (W,/U)

¢ = = o 1s the point where the field has a peak.



ARBITRARY INDEX PROFILES

x A R

-

e The general structure of graded-index planar waveguides can be written

.

as
4 n(y) = nl+2n,Anfly) y>0
! = ni(y) y <0
> e These waveguides are generally made by diffusion of ions into substrates

of glass, LiNb0O3, etc. and generally have profiles which can be well
modeled through:

- fly) =exp(—y/D)  exponential

| = exp (—y*/ D?) Gaussian

> = erfc (y/D) complementary error function
= D—diffusion depth (a constant)

e Propagation constant is generally expressed as

- B = [n; — n{] /2n,An

o where n.qg = (3/ko is called the effective index of the mode.

f e The values of n, are ~ 1.5 — 1.7(glass) 2.2-2.3 (LiNb03)
e Typical values of An ~ 0.002 —0.01

e The error in B — AB can be written as

AB = An’g /2n,An = Aneg /An

B

Hence, for an accuracy of 103 in neg, the accuracy required
in AB ~ 1073,

11 iE



VARIATIONAL METHODS FOR
PLANAR WAVEGUIDES

e The stationary expression is

2

}Okgnz(y)ltbt(y)lz dy — j'o dy

63 T —OQ

‘ T )P dy

dyy
dy

¢ By making different ansatz for Y:(y) and maximizing 32, one ob-
tains different models:

— Hermite-Gauss Model (HG) Korotky et al.(1982)
— Cosine-Exponential Model (CE) Mishra & Sharma (1985)
— Secant-Hyperbolic Model (SH) Sharma & Bindal (1934/94)

A. Hermite-Gauss (HG) Model

Trial field
Uily) = 0 ‘ y <0
= Aly/d)e v /" 4>

e A simple function
e Only one variational parameter: d

e Assume that field vanishes in the cover. Due to large index dif-
ference between the film & the cover at y = 0, this assumption
has been made.

e But the field varies as a Gaussian deep in the substrate rather
than as an exponential,
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B. Secant-Hyperbolic (SH) Model
Trial field

di(y) = Asin(y/D)sech’(y/D) y 20
=0 y<0"

¢ Simple function

¢ Only one variational parameter: 7

e Also assume vanishing field in the cover.

e The field deep in the substrate varies more like exponential as
it should indeed be.

C. Cosine-Exponential (CE) Model

Trial field

Ui(y)

A cos(pr) ePran P (y/D) y <0
Acos[p{%-—a}] 0<y<é&D
A cos [p {£ —_ O'}] e—ptan{p({——a)}[(y/D)—E] Y Z ED

o 1,(y) is assumed to be the mode of an asymmetric 3-layer

waveguide.

e Relatively complex function

e Three variational parameters: p,§, o

e No assumption of vanishing field in the cover



RESULTS FOR

PLANAR WAVEGUIDES

Values of B = [(3/k,)? — n?]/2n,An

g(y) [Exact HG | CE
'20 0.082 /10.005{0.078
exp (- yz/D2) 30 0.275 10.216 | 0.270
40 0.413 | 0.3700.408
!2.0 0.105 {0.066 | 0.100
exp(-y/D) 13.0]0.229|0.193 0.223
4.0/ 0.321 [0.289/0.316
erfc(y/D) 3.0 0.068 |0.015 0.064
4.0| 0.169 |0.121 0.164J
Gaussian
0.4~ Exact Profile
~---- Present (CE)
—= ~— Hermite Gaussian
—~— WKB
0.3~
0.2+
013
| S
0.0 1 //:1;

4
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n?(y)

2.'06
——— Exact Profile
B — = — Step priflie for CE
2.102 —-— sech? profile for SH
——————————— Parabolic Profile
for HG
2.100+—
24096 =
— - ﬂ\:_:-- :—.__.- —————
20 096 —_ \\ B ——
, | l\ ! | |
2.094 5 7 4 8
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SINGLE MODE OPTICAL FIBERS

¢ Only one mode LPy;

¢ The field is symmetric without any zeroes

e The profile:

n?(r) = n?f(r) r <a (core)
2

= ns r > a (cladding)
e The field
Y(r)= F(r) r<a
_ (a) Kg (W'r/a) ~
- Ko (W) =@

e In the single mode region a sizable fraction of power flows in the
cladding and hence the field in the cladding, particularly near r = ¢
region is important.

e The modal field ¢ (r) and the propagation constant, 5%, have been
obtained through approximations:
— Gaussian
— Gaussian Exponential(GE)
— Gaussian exponential Hankel{ GEH)
— Equivalent Step-index(ESI)

e The dispersion has been obtained using

— Direct numerical method

— Rayleigh-Ritz method
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APPROXIMATE MODELS FOR SMFs

A. GAUSSIAN APPROXIMATION

e The simplest & earliest model (Marcuse, 1976)
e Trial field

2

—r2 [a
boa (r) = Ae™/
e w — spot-size of the width of the Gaussian field.

e w is obtained either by maximizing the coupling efficiency of the
field, ¥ga (r) to the fiber mode (Marcuse, 1976) or by the varia-
tional expression (Snyder & Love, 1983).

o The approximation works well for fiber operating near the edge of
the single mode region, but is very poor for lower V-values since,

the field in the cladding decays too rapidly that the Ko (Wr/a)
function.

B. GAUSSIAN-EXPONENTIAL(GE) APPROXIMATION

e Replaced the Gaussian field in the cladding by a matched expo-
nential function (Sharma & Ghatak, 1981).

e Trial field ,
Yar(r) = Ae™® r<d
= Ae =0 r>d
Variational Paranieter: « & d.

e The ficld is Gaussian upto = d and exponential for r > d. The
r = d, the field and its derivative are matched

e The performance improves for smaller V' values.



C. GAUSSIAN-EXPONENTIAL HANKEL(GEH)
APPROXIMATION

e To improve the field in the cladding further the GE was modified
to replace the exponential in the cladding by K| function.

e Trial Field

2

Yopu (1) = Ae™o" r <
= Ae—d(2r—d) d <r<a
— —ad(2a—d) Ko(yr)
= Aeiodfis v >

The continuity of derivative at r = ¢ gives

_ 7 Ki(ya)

——

" 2dKy(va)

e The variational parameters are v & d.

e Performance was extremely good even when V & 0 & the field in
the cladding was also modelled quite accurately.

D. EQUIVALENT STEP-INDEX(ESI) APPROXIMATION

e The field is assumed to correspond to some step-index fiber,

¢ The variational parameters are usually A, = (n? — ni/ 2n}) and
a. (the radius of core) of the step-index fiber.

e The field: Iotur/as)
_ 1] Uurfdae

Y(r) = A[’%O(.tf} | r < a.

TR T2

u & w correspond to V., = koacna/2A,; ng = cladding index of
the given fiber.
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DISPERSION IN
SINGLE MODE OPTICAL FIBERS

e Dispersion is due to wavelength variation of the effective

index n, = 3 /ky.

o The dispersion coefficient (ps/ km-nm) is defined as (chromatic disper-
sion)

. —_4\ ~ —1 2d2n5 ES
ATeh = o, DZ (The) 2 0.0003 (A dﬂ) km.nm
(A — pum)
¢ Assuming:

n2 (T) = n% + (n% - n%) f (T‘) { Off(;’) indep.

. (1 _ ' ln
= ( . ) Ara =1 ) vy +bui + 2 + -1

L A
—— n2n2+b¢+-2~b9

ne

%]

with )
vi= nn +n] 1=12
¢ = nin; — nynj: ¢ = ni — n3
1 d _ ¢ l
b = a(b)—bV(a——

" i vi—vy _ 2 2
b_bV(9 7 "t

+bV?2 (g - %))

b
S

"=d/d\ & = d/dv
N . A . . 2 .
Required quantities: b, b = % p = ;’72 and n/,nY, n},, n} which are

obtained from Sellmeier's coefficients.

. ) n'f—ng
® Since A = 12,
20

= ni = n3 (1 +2A)

= n; = n;\/1+23
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e An approximation often made is that A is independent of A, then the
A-dependence of n; is related to that of ms, which is usually silica.

e For silica, the A-dependence is modelled as

2 (3 AN? C X2 EN?
n”( ):1—{-)\2__5,2+)\2_1)24-)\2__14_,2

where A, B,C,D,E, F are Sellmeier’s coefficients:

A = 0.6061663; B = 0.0684043; C = 0.4079426
D = 0.1162414; FE = 0.8974794; F' = 9.8961610

[Malitson, J.Opt.Soc.Am. 58, 1205-1209(1965)]
The empirical formula is valid for the entire A-range used in optical
communications.

e Waveguide dispersion:
If n, & ns are assumed to be independent of A, then we have waveguide

dispersion

— vV
0.0003\ dV*
e Material Dispersion (of cladding)

1 d2n2
ATy, = ~ 50003 ()\2 d)\'z) ps/km.nm

AT, = ps/km.nm

e To a good approximation:

AT 7 ATy + AT, (for ng)



DIRECT NUMERICAL METHOD FOR
DISPERSION IN SMFs

e Wave equation

® Riccati transformation: G (r = (dy/dr) /¢ (1)
dG

('V
- 2 2 —_ 2:
RTCHEHVI(R) - W =0 (1)

WKy (W
B.C:G(0)=0:G (1) = -5 = F(w)
with R=r/a  V = kya\/n; — n, W = /B2 — kind

¢ Differentiating w.r.t V: *=d/dV
dG G .
dR+QGG+R+2Vf( )—2WW =0 (2)
BC:G(0)=0;G(1)= F(W) = Wi
e Further,

£+QG~+2GG+§+2NM~2W2—2WW=0 (3)

B.C: G(0)=0; G =+ W4k 4 wy2ir
e Solve (1) to obtain: W & G (R)
Solve (2) to obtain: W & G (R) using W, G (R)
Solve (3) to obtain: W using W, W, G,G (R)
e Finally:
b= W?/V?
b= gt =2(Wvb-1b) /v
b= 2(W3+WW—25V—b)/V2

dv2 T

=> Ten © the chromatic dispersion,
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Equivalent Slab Model for Single Mode Optical Fibers

e In a number of devices the circular symmetry of the fiber is broken
and one has to model these devices in cartesian coordinates. Examples

include directional couplers, polished fiber devices such as couplers half
blocks and devices based on D-fibers.

e Using the cosine-exponential (CE)-fields, we have developed a step-
index slab equivalent for a single mode step-index fiber [J. Lightwave
Technol., 8, 143-151 (1990)], which is very useful for modeling these

devices. 2 >
m/rfﬁ\n

¢ The fiber profile: &t He
n?(r) = n?, r<a Kj/

N

L

— 2
- M r>a -ra.J ca,
e The equivalent slab is defined as nz, ] Ny, n’ft
X
n¥(z) = nZ, = n? — (U? — p2)/(koa?, 2| < oa
= ni, =n? — p’sec?(po)/(kya)?, |z} > oa

where p and o are obtained using the variational method.
e However, simple empirical formula for p and ¢ are obtained as

po = —1.3528 + 1.6880 V — 0.1894 V2
o = 0.8404 4 0.0251V — 0.0046 V2

where V' = kopay/n? — n? and the maximum error in the empirical
formula in the range 1.5 <V < 2.5 1s

(P)error < 0.03%, (0)error < 0.008%

e The value of U in the above formula could be obtained using Neu-
mann'’s approximation

U=+V?—(1.1428V — 0.996)2

which has an error of less than 0.1% in the above mentioned V-range.




Equivalent Slab Mode] for Fibers: Applications

* Fiber Directional Coupler:
A directional coupler consisting of two parallel fibers cap be modelled
as a directional coupler made of two staby wavegnides and the coupling
length can be obtained from al analytical expression:
2 . n \
whha” Zp~sin“(po) . )
Kp == — “exXpi—2ptan(po){(d'/a) — o
O L T Tl gt P2 tanpo){(@fa) — o)

where 3, is the Propagation constant of the mode of the isolated fiber.

l. is the conpling length and x, represents the normalized coupling
coeflicient .

2
| Ny
| =
!
1 | 1 ‘ S
i f % —oupled V=2.5
K——2d - Théce®
! ! ! 3] 7 - - Slab mode)
; \Q ! ' L
2 " 2.0 3.0 4.0
2 ﬂ,“ j ﬂ)”_ r}:: d/Q —r
Pxy ﬂ:,_ M using exact feends
—20Q i——'qu-—ﬁ

* In a similor way, a directional coupler with a buffer layer can be mo-
delled. This would require the solution for the first two modes of a
multi-layered planar waveguiding structure.

* Further, polished half block devicos can also be modeled as 4-layer

planar waveguides and the effects of diclectric and metallic overlays
can be modelled.
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RECTANGULAR WAVEGUIDES

e Profile T
2
TIQ(JHZQ) — 71% laﬂ < GG\EH <b n;
= n% otherwise b r n
(n]_ > nZ) n% .-_a' _______ O : a
b
n

e The wave equation
8% 0%
8392 oy?

_ not solvable analytically for any profile.

+ [k2n2((z,y) — B (z,y) =0

e Approximations:
The main assumption is

P(z,y) = Y)Yy (y)

In the framework of this assumption following
methods have been developed:

- Marcatili’s method (1969)
_ Perturbation correction (1983) Kumar et al.
_ Variational method (1983) Sharma et al.

Another method commonly used is

_ Effective index method (1970) Knox & Toulios



A. MARCATILI’S METHOD

* Assume that both ¢,(z) and 1,(y) are the
symmetric modes of the slab waveguides obtained
by ignoring confinement in the other direction.

e Thus

Y. (z)=fundamental
mode of n2(z)

ni(z) = nf fo] <a e
ng n3
& n2 TL2 n2 n2 r
¥, (y)=fundamental ’ 1 2 211)
mode of n’(y) 2 .
ny(y) = ni |yl <a e

= nj |y| > a

e The field ¥(z,y) = ¥.(x) - ¥,(y) is then the modal
field of the profile

722, y) = ni(x) + n2(y) — n?

o If 3; and j3? are the propagation counstants
obtained for z- and y- slabs, then for the 71%(z, y)
the propagation constant would be

8% =5+ 6] — kind



— The profile 7*(z, y):

2 2 2 2 2
2ns —n{| ng |20y — 1N
n3 ny ng
"
- 27‘1% — n% n% Qn% — n%

[ I

e In the corner regions:

9 2 2 y 2
2”2"”1:”2““(”2‘“”1)%”%

12,

if 1 — N2 <KL n.
Thus, the error a 713 — ni.

&

o If the mode is well guided, then the power
fraction in these corners 18 small and a reasonable
accuracy can be obtained.

e For single mode fibers, however, a relatively large
fraction of power flows in these corners & the
accuracy is not sufficiently good.

B. PERTURBATION CORRECTION

1§ o

11

L

o The small difference in n?(z,y) & n*(z,y) is
il ideally suited for a perturbation correction.

. e The correction does improve the value of 32
particularly near the limit of the single mode
reglon.

ik



C. VARIATIONAL METHOD

e In Marcatili’'s method, the slab waveguides, have
the same index distribution as in the given
waveguide.

e If the indices in the core & cladding of the z- & y-
slabs are made variational parameters, accuracy
can be improved.

e Further, since scalar mode field shape depends
only on the index difference, only the difference of
indices of the core and the cladding need be made
parameters.

* Cosine Exponential (CE) Model
Trial field:

V.(x) = Ajcos(pz) z|<a
= Al COS(pa,) 6-ptan(pa)-[]a:|-—a] .I', 2 a
y(x) = A cos(qy) yl < b
— A2 Cos(qb) e—qtan(qb)-[[y}—b} yl _>_ b

= D, q are the variational parameters.

* 3*(p, q) is obtained through the stationary
expression is maximized w.r.t p, ¢:

g = J K@, y) [VF dedy — I |Vl dedy
I IVl® dady




D. EFFECTIVE-INDEX METHOD

e In this method, first the slab, which has shorter
width is solved to obtain 3.

e This 3/ko = ness is then used as the core index of
the other slab and the cladding index is kept
unchanged. This slab is then solved to obtain 3
which is taken as the 3 for the rectangular

X = _

[ W -

waveguide.
2
= oo e [ 78
- Ny | Teff = B, /ks ns
n; nj
= 2
n ni ny ni= B
= 3 7
| e The effective index method overestimates the
propagation constant In most cases.

IR
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COMPARISON OF METHODS

e Marcatili’s

e Perturbation

e Variational

o Effective index

simple
low accuracy
extendable to other modes.

only improved 3 on Marcatili’s
method.

better accuracy

field is also more accurate
generally not extendable to
other modes

requires optimization

simple
low accuracy
extendable to other modes



1 XE.

132

ik

N g

b i

a

DIFFUSED WAVEGUIDES

e Fabricated by diffusion of ions in LiNbO; and
glass

e Index profile obtained is inhoinogeneous; actual
shape depends on the conditions of diffusion

e PLANAR WAVEGUIDES

2
PN n, + anAn ' >0
) = {n2 9(y) v
C y < 0
cover ‘ t
___________________________ | n n)(y)
film Tte /
E / nl + 2n,4n
substrate Yy /

e CHANNEL WAVEGUIDES

2z ) = {ni +2n,Anf(z)g(y) y >0

n: y <0
¢ cover E )
i xI : n, P '
film ': 5
substrate
Y y
0 T

2
n.=n?42n,4An




Single Mode Diffused Channel Waveguides

e Index Profile

2
2z, y) = { n; +2n,Anf(z)gly) y >0

ng y <0

(1)

where n = substrate index; n,= cover (air) index; An= the maximum
index change from substrate to the guiding region. ng = /(n? + 2nsAn) ~
ns + An= the maximum index of the film, generally at the central
pomnt (z = 0) on the top surface (y = 0) of the waveguide film.

e The wave equation for such a guiding structure is given by
0%y 0%y

5.’.;33 + "(9_y_2 + [k§n2($r y) - ﬁz]q/)(xa y) =0 (2)

¢ In a channel waveguide, the refractive-index distribution is symmetric
along the surface of the waveguide (along the z-direction) and the
commonly used functions to model the index variation are

flz) = exp(—z?/W?) Gaussian
v = lerf {1} _ orf {#551] / [2etf(W/D)] error functiox(l )
3
On the other hand, the refractive-index distribution along the depth
(the y-direction) is highly asymmetric and the commonly used fun-

tional forms for g(y) are

exp(—y/D)  exponential
9(y) = { exp(—y*/D?) Gaussian (4)
erfc(y/ D) complementary error function
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OPTIMAL VARIATIONAL METHOD
FOR CHANNEL WAVEGUIDES

e In the variational methods describe earlier the accuracy is hm-

ited on account of

— Assumption of separability of P(z,y):
P(z,y) = x(z) y)

— Assumption of specific field forms for x(z) and ¢(y).

e In the Optimal Variational (VOPT) method, any specific forms
for x(z) and ¢(y) are not assumed and these are automat-
ically generated by the variational method in the process of

optimization. However, the separability is still assumed.

e Thus, under the assumption of separability, this method gen-
erates an optimal trial field and gives the best accuracy for

the propagation constant.



THE OPTIMAL PROCEDURE

* With yy(z,y) = x(z) ¢(y), the variational ex-
pression becomes

2 2
do
dzr — (|22
2=/ Idy 4y

d
5 = [/ K@) (o dedy - ]| X
Normailsation is assumed: | |x|’dz =1 = |¢[2dy.

* Consider a planar index distribution n2(x)
and rewrite the variational expression as

g = I kgnl(z)|x(z)|%dz — f'g—_f,? dz 2
ksl [1{n¥(z,y) — n(x)}|x(x) 2dz] dy ~ /1% dy

or,
G°= Term#1 + Term#2

e Term#1 =s kin?|x|?dz— / |dx/dz|’dz is sim-
ply the variational expression for the profile
n;(z) and has a maximum value, say, 32

e This 3? is the propagation constant of the
mode of the waveguide defined by n2(z) and
x(z) is the corresponding modal field. These
can be evaluated by any standard numerical
method. y(z) is then normalised.
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Term#2

2
dy

[ K311 [/ {n’(x,y) — ni(2)}Ix()*de] dy - /1%

n2(y)

e This term is also the variational expression
for a planar index profile defined by

ni(y) = [{n*(z,y) — ni(2)}Ix(2)|"dz

e The maximum value of Term#2, therefore,
is 63, the propagation constant of the mode
of the waveguide defined by ng(y) with ¢(y)
being the corresponding modal field.

e These can again be evaluated by a standard
numerical method and ¢(y) can be nor-
malised.

e In the evaluation of ni(y), use is made of
n’(z) and x(z) of the Term#1.



THE OPTIMAL PROCEDURE (CONTINUED)

e Next, using n (y) obtained in Term#2, we
can rewrite the variational expression as

B° =15 wley)Pdy ~ |2 dy
HkIX(@)[ [1{n*(, y) - n2(y)} $(y) 2dy] dz — | do
or, B*= Term#2 + Term 43

e The maximum value of Term#2 has already
been obtained as ﬁg.

¢ The maximum value of Term#3 is 32 which
is now the propagation constant of the mode
of the waveguide defined by

n(x) = [{n*(z,y) — n2(y)}(y)2dy

® x(z) is the corresponding modal field which,
alongwith 37, can be evaluated by any stan-
dard numerical method. x(z) is then nor-
malised.

e Thus, 32+ 32 gives an estimate for $3° and

x(z)#(y) is an approximation for Yz, y).
e This completes one cycle of iteration.

e The ni(z) of this cycle is used for the next
cycle and the iterations are continued till a
desired convergence is obtained for 3% + 3.
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IMPLEMENTATION

STEP 1:
STEP 2:
STEP 3:

n,(y)
STEP 4:

STEP 5:

ni(z)

STEP 6:

STEP 7:

STEP 8:

PROCEDURE

Choose an n2(z). A good choice
is n’(z) = n’(z,y = 0).

Obtain 2 and x(7) numerically.
Normalize x(z).

Obtain ng(y) using

= [{n*(z,y) — ni(2)}x (=)’ dz

Obtain ﬁj and ¢(y) numerically.
Normalize ¢(y).

Obtain ni(z) using

= [{n*(z,y) — ny(y) }$(v)[*dy

Obtain 2 and x(z) numerically.
Normalize x(z).

Compute (7= 2+ ﬁg. Check for
convergence in (7.

IF Converged, GOTO STEP 8
OTHERWISE, GOTO STEP 3
B; and i(z,y) = x(z)é(y) are
the required propagation con-
stant and the modal field.

1



RESULTS FOR
CHANNEL WAVEGUIDES

Profile

_erf (&A1 erf (=11
) = Qgrf(W/D) :

9(y) = exp(—y’/D?)

Values of B = [(B/ko)? — n¥/2n,An

Table 1: W=3.¢9 pm, D=3.35 ym,
(thickness, 7 of Ti film varies )

St] V [Vorr| HG 'EHG] SH [ESH| CE |
2012.12/0.133[0.112(0.125/0.118|0.130 | 0.123
30/2.59 1 0.24810.233 |0.247 0.245 | 0.234
40/3.00|0.329 10.313/0.328 0.327/0.318

Table 2: =720 A, D=5.08 ym
(width, W, of Ti film varies)

40/2.8610.328 [0.3150.324
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EQUIVALENT
1-D WAVEGUIDES

®* The index profiles n.(z) or n:(y), generated in
the numerical method, can be used to obtain
1-D equivalent profiles for the given channel
waveguide, n*(z, y):

Tie(®) = [{ne,y) = nd(y)}o(y) Py + B2/ k2

Teql¥) = [{7¥(z,y) = (@)} () Pdz + 52K

e n? (z) represents a 1-D waveguide the mode
of which has the same propagation constant
and the z-variation of the field as those of the
mode of the given waveguide n*(z,y). In other
words, its mode is a Projection of the actual
pPropagating modal field Y(z,y)e”” on the z-2
plane.

* This equivalent waveguide n2.,(z) [or, e eo(Y)]
can be used to simulate various effects and jn-
teractions in the z-2 [or, y-z] plane.
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Rib Waveguide Directional Coupler
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_ ' 3-D Structure
n; i

2
"y
n?
n2, a2, 2 e n2, Equivalent
z vy by 2-D Structue

S O N

e A full 3-D analysis is very involved and time consum-
ing.

e An equivalent 2-D model can be used with good ac-
curacy for a majority of waveguiding structures.

e This requires an equivalent plai:ar waveguide for a
2-D waveguiding structure (cross-section).



Methods for Obtaining
Equivalent Waveguides

* EFFECTIVE-INDEX METHOD

~ Most commonly used method
— Usually overestimates the propagation constant

— Can be time consuming

e VARIATIONAL METHODS

— Limited by the choice of the form of the trial field

— More accurate than the effective-index method
¢ PRESENT METHOD

— Based on the variational principle

— Does not require ¢ priort ansaiz for the form of the
field __

— The only assumption is V(@ y) = Yo(x) 9,(y)

—~ The fields v, (2) and ¥y(y) are automatically generated

and hence are optimal approximation for the modal
field
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Principle of the Present Method

e Using the variational principle and the assumption
Yz, y) = ¥, (2}, {y), we obain the expressions for equiv-
alent index profiles [Sharma and Bindal, Opt. Quan-
tum Electron. 24, 1359 (1992)]

n2(z) = / (n(z,y) — n()} () oy -+ B/ (1)

n}“j(y)“—"/{nz(w,y)*“nf-(&f)}ltb.r(w)\?dﬂr 0k (2)

Algorithm

. Choose a starting index profile n%(z).

. Obtain the modal field, ¥,{z) and the propagation
constant, 82 for n’(z). Normalize ¢ (z).

. Compute n’(y) using Eq.(2) above.

. Obtain the modal field, ¥,(y) and the propagation
constant, 82 for ni(y). Normalize v, (y).

. Compute n’(z) using Eq.(1) above.

. Repeat steps 2-5 till convergence in B and Bj is ob-
tained.

. In the converged state, n}

z-slab and n’(y) defines the equivalent y-slab.

(z) defines the equivalent

Typically 3-4 iterations are sufficient.
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Table-I
Coupling Length (mm) of a Directional
Coupler

Parameters

Present EIM Experiments[1

An=0.006, s=6.08m
An=0.006, s=6.58um
An=0.004, 5=6.08m
An=0.004, s=6.56m

5.8019
10.536
3.6892
9.5463

7.9054
11.687
4.5916
2.8601

2.2850
10.600
3.4000
2.2850
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Present
Schulz et al.




DIRECTIONAL COUPLERS

¢ Index profile:

2 . e .
9 n,+2n.Ang(y)[f(e — sl+ flz+8 y>
n(:c,y):{n.:, | ;i<(>

¢ An equivalent 1-D directional cou

pler profile
would be

2 2 )
ng(x)=n;, (z —s)+ (o +s) — Moy

¢ This 1-D directional coupler is much easijer to

analyse in comparison to the actual 2-D direc-
tional coupler.
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RESULTS FOR
DIRECTIONAL COUPLERS

TL2

C

n’(z,y) = {

f(x) = exp(—z*/W?)

D =50um, ngs=2.152,

n’ + 2n;An g

Profile

(W[f(z—s)+ flz+s)] y>0

y <0

g(y) = exp(—y*/D?)

W =80 pwm, n.=10

Values cf Coupling Length, [ in mm

Process Parameters

2-D Analysis

1-D Analysis

An=0.006 s=6.08 ym
An=0.006 s=6.56 ym

An=0.004 s=6.08 ym|

An=—0.004 s=6.56 pm

5.7965
10.5211
3.6956
5.5469

5.8016
10.5360
3.6892
5.5463




