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1 PRELIMINARIES

In the present Chapter. we report some of the main results to be used in the
study of the propagation of light beams. In particular, we recall the paraxial
wave equation and give the expression of the (fundamental and higher-order)
Gaussian beams.

1.1 The paraxial wave equation

We consider onlv quasi-monochromatic light beams and we suppose that all
we have to know about the radiation properties can be derived from one
scalar quantity. say U/, which is the analytical signal associated to a general
component of the electtomagnetic field carried by the radiation. Under these
hypotheses, the general solution of a propagation problem in vacuo can be
obtained by solving the following Helmholtz equation:

V2 (r, 2) + k2U(r,z) =0, (1)

where r and z are the transversal and 1ongitudinal coordinates, respectively,
of a suitable reference frame, and k = 27 /A is the wavenumber.
[t is customary to wrise the function U(r, z} in the following form:

U(r,z) = @(r.z)explikz) . (2)

whick is particularly fit to introduce the paraxial approximation. In fact,
when the function ¥{r, z) is sufficiently smooth with respect to z, if compared
to the oscillating term exp(ikz), then Eq. (1) can be replaced by 1]

V24(r, 2) + 2tkd{r,z) =0, (3)

which is the paraxial wave equation. Here, the symbol V3 denotes the Lapla-
cian operator wth respect to the coordinates across the transverse plane.

It is well known that Eq. (3) holds, in particular, in those cases when the
light distribution, during propagation, remains almost concentrated around
the =-axis and then it can be used in the study of the propagation of light
beams.

It can be easily shown that one solution of Eq. {3) is
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where the function ¢(z) must satisfy the following condition:

¢(z)=1. 5)

To this aim. a possible function is g{z) = z — z,, which leads to a solution
of the form

1 ikr?
wir, z) = ex \ 6
(r, ) z— 1z p[?(:—:g)] (6)
which coincides with a spherical wave centered on the z—axis at = = z,.

When the paraxial conditions are met, indeed, a spherical wave can be ap-
proximated as )

— 2o
{7}
which is exactly of the form (6).
Equation (6) establishes the link between the paraxial wave equation and
the Iresnel propagation formula [2]

vir,z) = ;b [Uig0)exp [i;—z(ﬁﬂ )} d%5 )

where the solution is expressed as a linear combination of functions of the
form (6) with zo = 0 and therefore is still a solution of the paraxial wave
equation.

A slightly more general expression of g(z) satisfying condition (5) gives
rise to the Gaussian beams as will be shown in the next Section.

1.2 The fundamental Gaussian beam
A different functional form satisfying condition (5) is the following:

g(z) =z—z9—:L. (9)
with L a positive parameter.

On introducing the latter expression into the solution of the paraxial wave
equation [Eq. (4)]. one obtains



{z ke 1 )
w(r.z) = l;((:)) exXp [_i‘b(:)}exp{[gé(:) - -w?(z):\ r_} ) (10)

where the following parameters have been introduced:

R(=) = (= — =) [H(:f:oﬂ - (12)

®{z) = arctan (MEH(J) . (13)

and L. which is referred to as the Rayleigh range of the beam, is expressed
by

Tw?(zp)
A
Parameters in Eqgs. (11)-(13) are the spot size, the curvature radius, and
the phase anomaly, respectively. of the beam. The axial position z = zg 1s
referred to as the waist of the beam and coincides with the position where the
spot size is minimum, the curvature radius is infinite, and the phase anomaly

is zero.

The parameter g(z). introduced in Eq. (9) is referred to as the com-
plez radius of curvature of the beam [3] and allows the propagation through
paraxial optical systems to be treated in a very simple way, as we shall see.
It is related to the real parameters of the Gaussian beam by the relation

L= (14)

1 1 1 2
q(z)

= — = fi— 15)
(z—z)—1:L  Rlz) ku?(z) (
When a general optical system can be characterized by a ABCD ma-

rrix [4). indeed. the complex radius of curvature of the propagated Gaussian

beain. say qi, is related to the analogous quantity for the input beam, go.
through the rule [3]

_ AqD -+ B
g1 = qu D .
from which the parameters of the propagated beam can be immediately eval-
vated.

(16)
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Note that apart from A the beam is completely characterized by two pa-
rameters, namely, position and width of the waist. Furthermore. the chosen
reference frame ensures that the beam is centered around the transverse co-
ordinate r = 0 and propagates along the z-axis. In the study of general light
beams. of course, transverse location and propagation direction of the beam
are to be considered as further free parameters.

In the following. we will refer to the intensity of the field as the square
modulus of the function ¥(r.z). In the case of a Gaussian beam we have

Ies) = S e |- 22 ()

w?(z) _wz(::)

so that the transverse intensity is Gaussian at any plane z = const. Further-

more, the total power carried by the beam, conventionally defined as

Pur = [ 1r.2)d%r, (18)

turns out to be mw?(zg)/2.

1.3 Higher-order Gaussian beams

Further solutions of the paraxial wave equation are the so-called higher-
order Gaussian beams. Depending on the used geometry, we can define two
classes of higher-order Gaussian beams: Hermite-Gaussian (HG) beams for
rectangular geometry and Laguerre-Gauss {(LG) beams for polar geometry

In the first case, we have

z k
HGpm(r, 2) = .41((30)) exp—i(n + m + 1)®(z2)] exp{[z;z(z) - wzl(:)} (4 y
2] [
x H, lw(:)} H.. [w(:) .

(n,m=0.%1,...)
(19)
where H, is the Hermite polynomial [3] of order n and A is an arbitrary
constant.



In the case of polar coordinates. we have

LGi(r.z) = A :L;((ZO)) exp [—i(20 + {s] + 1)®(=)]exp { {2};‘1(:) - wzl(z)] rz}
\/'ET' |s] s -2,,2 L
Jaal e[ e

({=0.1....;8=0,x1....}
| (20)
where L is the Laguerre polynomial [5] of order  and index s. In both
cases, the parameters w, R, and @ are the same as for a (Gaussian beam. It
is clear that the Gaussian beam presented in the previous section represents
the zero-order, or fundamental, member of both the above classes.

A remarkable property of higher-order Gaussian beams is that the shape
of their tranverse intensity distribution remains unchanged upon propaga-
tion, so that they constitute two classes (actually, the only ones) of shape-
invertant coherent light beams.
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2 PARAMETERS OF A LIGHT BEAM

We saw that Gaussian beams, whose expressions were given in the previous
Chapter, are completely specified by a very small number of parameters.
Nonetheless, they represent a useful model for many light beams produced
by stable laser cavities.

As could be expected, however, one often is faced with cases in which
the beam to be analyzed differs significantly from an ideal Gaussian beam,
sometimes because of precise requirements about the beam properties. In
a general case, 1t is also rather difficult to find beams parameters that are
defined in an unambiguous way and. at the same time, are sufficiently sig-
nificant for the propagation properties of the beam. This remains true even
in the case of continuous-wave. perfectly coherent and uniformly polarized
beams, because the significant parameters can be different, depending on the
applications one is interested in. For example, one would like to know the
total power carried by the beam, but also the amount of the power encircled
in a given region of the transverse plane. or how much the beam profile is
uniform. Yet, one could be interested in detecting the presence of vortices
in the wavefront of a beam, or in evaluating the longitudinal distance along
which the beam maintains some properties, i.e., for instance, its shape or
some other features of its tranverse profile. As is obvious, the number of post
sible parameters farther grows if partially coherent, polarized and/or time
varying light field are considered.

In the present Chapter we present some concepts, useful for characterizing
light beams, which are of a very general nature, so that they can be applied
to very wide classes of laser beams. In particular, the formalism of the beam
moments will be shown, leading to the definition of a quality parameter that
measures the propagation properties of a general light beam, as compared to
those of a fundamental Gaussian beam, which is taken as the prototype of
the “diffraction-limited” beam.

2.1 The width of a beam

One of the most widely used parameters for characterizing light beams is its
width, or diameter. Nonetheless. a unique definition of the width for a general
beam is still not accepted. In the case of Gaussian beams, the definition of
spot-size sterns from their well defined functional form so that thev are said
to have a finite width even though. from a mathematical point of view, their



profile fills the whole transverse plane. On the contrary, when the beam to
be analyzed is not characterized by a precise functional form or when light
beams of different types have to be compared, finding a unique definition of
width seems not to be an easy task. In practice, several definition of width
are used each of them arising from a particular technique used to measure
it [ 9]

However, anv quantity used as the measure of the beam width should
satisfv some requirements. For example, it should be detectable by a reason-
ably simple experimental procedure. Furthermore, it should be minimum for
only one value of the longitudinal coordinate and, possibly, its behavior on
propagation should beregular enough.

A possible definition of width (Percent of Peak) is given by the radlal
coordinate in correspondence of which the intensity of the beam is reduced
by a given factor, say 7, typically n = 1/e* (see Fig. 1). In formulas, the
width W is such that

[(r = W/2) = nlnaz (21)

In the case of a Gaussian beam having spot size w, the width turns out
to be W = 2w (with n = 1/¢* = 13.33%).

I(r)

. S S

Figure 1: Definition of width in terms of Percent of Peak

Although such definition could be extended to asymmetric beams on in-
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troducing two different widths along two orthogonal axes. it makes sense only
if the beam .intensity is symmetric enough and does not present significant
angular oscillations.

A very used variant of the previous definition (Zero Width Sht) makes
use of the value of the intensity integrated on thin stripes, instead of those
of the intensity itself (Fig. 2).

[

~

W’/Qy) dy =n ] I(:Cpeah y) dy . (22)

7
)

Figure 2: Zero Width Slit definition of width

.

S

In this way not only it is possible to define a width for any axis in the
transverse plane, but the integration process also reduces the irregularities of
the beam profile. Furthermore, the experimental determination of the width
is simpler. On the contrary, some problems arise from the fact that a finite
width of the stripe gives rise to a convolution of the actual intensity profile
with a rect function.

A different definition (Variable Aperture Diameter) uses the values of the
power transmitted by an aperture centered on the beam axis (see Fig. 3}.

More precisely, the beam width is defined starting from the radius of the
circular area in which a given fraction, say 7, of the incident power falls. In
formulas, we have

10
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‘ Figure 3: Variable Aperture Diameter definition of width

W

f I(r, z) d*r = 7P , (23)

r<W/2

where the integration domain is the circle of radius W/2, centered at the
origin. When 1 = 86.5% and we consider the same Gaussian beam as above,
this definition gives W = 2w again. From an experimental point of view,
some problems arise form the difficulties of a correct centering of the beam
on the aperture. Furthermore, asymmetries of the profile are hardly detected.

The last definition we give in this Section is the one (Knife-Edge) based
on the power that is transmitted when the beam impinges on an opaque
half-plane, parallel to one of the axes, say y, of the transverse plane (Fig. 4).
The hall-plane is shifted along the v-axis and two positions are detected, for
which the value of the transmitted power is equal to some given fractions
of the total power (typically 10% and 90%. respectively), i.e.,

f:@ dy /m (e, yide = 7P - (24)

The distance between these two positions furnishes a measure of the width
of the beam along the z-axis. In order for the obtained value to be comparable
to the ones given by the previous definitions. the distance between the two
z-positions must be multiplied by a suitable factor. whose value depends

L1



on the shape of the profile. For a nearlv-Gaussian profile. for example. the
moltiplication factor is 1.361.

Figure 4: Knife-Edge definition of width

Modern beam-analysis systems often use solid-state image detectors. In
such cases, intensity profiles are acquired, digitalized, and postprocessed, so
that any of the above techniques can be emulated numerically. The main
drawback 1s due to the possible presence of noise on the intensity data, but
it can be reduced by suitable numerical a posteriori techniques.

In the following Section, we will give a further definition of width, which
is particularly fit for characterizing light beams and is governed by very
simple and general analytical expressions during propagation. Due to these
reasons, despite some problems connected to its evaluation, it seems that it
will become the standard definition of the width of a light beam.

2.2 Moments of a beam

A very efficient way for characterizing transverse profiles of a laser beam con-
sists in using the moments of the intensity distribution , which are defined as
for the case of probability distributions [10]. In fact, for any given transverse
intensity profile I{z, z), the following quantities can be defined:



1 o )
U = Pmt/x [z, z)de . (25)

For simplicity. here and in the following we shall limit ourselves to consider
twodimensional beams, 1.e., beams whose profile depends oniy on one of the
transversal coordinates, say x. The extension of the obtained results to the
case of threedimensional beams will be treated later.

Of course, assigning u, for any value of n is tantamount to specifying the
intensity profile of a light beam in an unambiguous way. Nonetheless, as we
shall see. lowest-order moments are often sufficient to characterize the main
properties of a beam. The first-order moment. for instance, that is

)= = %;/z[(;r.:)d:c —_— (26)

is the so called centroid and specifies the “center of mass” of the profile,
while the second-order moment is related to the new definition of width we
mentioned above. The width of a beam at the transverse plane z =const,
in fact, is defined as proportional to the standard deviation of the intensity
distribution I(z, z), that is

o(z) = \/%f [ = 3(=)) Iz, 2)da (27)

In the following, for convenience, we shall refer to the standard deviation
(27} as the width of the beam, neglecting the proportionality factor, which,
to make the comparison possible with the previous definitions, is chosen as 4
(i.e.. W = 40). We recall that the square modulus of the standard deviation
is generally referred to as the variance of the distribution.

Of course. in order for Eq. (27) to be meaningful, it is not sufficient
that the beam carries a finite energy, but it is required that the integral in
the right-hand side of that equation is nondiverging. This is actually one
of the most serious drawbacks of the definition of width based on intensity
moments. In some significant cases. indeed. such as the far-field distribution
produced by a slit or a circular hole, the integral in (27) cannot be evaluated.
Actually, it diverges whenever the intensity profile is produced by diffraction
of a field presenting discontinuities. in which cases the standard deviation of
the profile cannot be defined.

Furthermore. even with well behaving intensity distributions some diffi-
culties still remain. because the presence of the noise on the intensity data

13



can alter the value of the integral in a significant way. For this reason, several
techniques have been proposed to suitably limit the integration domain an
to reduce the effects of noise in width measuremets [6, 7, 8, 9].

For a fundamental Gaussian beam. the relationship between width and
spot size can be easily deduced. and turns out to be

1
o{z) = 3w(z) . (28)

4

Higher-order moments can be used to characterize the shape of an in-

tensity profile. The best-known shape parameter is the so called Kurtosis,
defined as [11]

- 2 ][gg — #(2)]* [(z, 2)dr

- P.,
IX(:) = tot 04(7)

which gives a quantitative measure of the flatness of a profile. It is 3 for
“mesokurtic” beams {such as the fundamental Gaussian beam), it is less
than 3 (“platykurtic”) when the profile is flatter, and is greater than 3 (“lep-
tokurtic”) when the profile is sharper than a Gaussian one with the same
variance. Three examples are shown in Fig. 5.

(29)

--------- platyk. (K<3)
— mesok. (K=3}
— — -leptok, (K>3)

Figure 3: Three examples of intensity distribution having different kurtosis.
Values of the total power and the variance are the same for the three cases.
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2.3 Propagation of moments

Up to now, moments of the intensity profiles have been defined at a fixed
transverse plane and, of course, they cannot give any information about the
propagation features of the beam. A more complete characterization of the
beani vn propagation can be obtained by intruducing the moments of the
intensity profile in the far field. By recalling that the far-field intensity is
evaluated through the Fourier transform of the field at a plane z =const [2],
we let

/t,b z)expl —LQTrp:z:)d:r , (30)

where p is the variable conjugated to z and therefore is related to the angular
variable individuating one direction across the plane (x,z). More precisely,
J, = Ap is the angle between a typical direction and the z-axis. The same
moments introduced above can now be defined for the far-field intensity. In
particular. we have

p= 5= [ plaipdp (31)

which gives the average propagation direction of the beam. The normaliza-
tion factor is still P,,; because, from the Parseval theorem [12],

/[ﬁ*(p)dp - /[(a:,s)dx, (32)

as it should be evident from the energy conservation.

It can be easily shown, as a consequence of Eqgs. (26} and (31), and from
the Fresnel propagation formula, that the position of the centroid is a linear
function of the longitudinal coordinate =:

F(z) = &(z0) + Ap(z — 20) - (33)

This means that the centroid of a light beam exactly follows the same prop-
agation law which is valid for a ray in ray optics.

This fact allows us to choose a reference frame such that the propagation

axis of the beam centroid coincides with the z—axis. In such a case, indeed,
all first-order morments (both in the near and in the far field) vanish, i.e.,

Hzy=p=10 Yz, (34)

15



and the evaluation of higher-order moments is simplified.
On exploiting condition (34). the variance of the far-field distribution
turns out to be

]' 2
I dp . 3
mep g(p)dp (35)

and is related to the average divergence angle of the beam v = Aog. For the.
fundamental Gaussian beam having waist size w(zp), Eq. (35) gives

2
Tg =

1

= Tl

‘ ag (36)

As for the centroid, also the variance of the intensity profile takes a v-ery-
simple form on paraxial propagation. In fact, it is not difficult to show that,
for any paraxial beam, the following relation holds:

o?(z) = 0*(z) + /\20?{(;* - z9)?, (37)

where z = 25 is the plane where the width of the beam is minimum (waist
plane). We will discuss this result in more detail in the following. Now,
we only stress that Eq. (37} is formally identical to the law governing the
variation of the spot size of a Gaussian beam {Eq. (11)]. .

The few resuits obtained in this Section may give an idea of how appealing
could be the use of the moments formalism for the characterization of light
beams.

2.4 The M? factor

In the previous Section we saw that the variance of a general light beam
on paraxial propagation follows the same quadratic law valid for the spot
size of a Gaussian beam. For convenience, we report here the law for the
propagation of the width of a Gaussian beam [Eq. (11)], were the standard
deviation & is used instead of w:

a*(z) :(72(;_;0)_{_[ 4 } (z—20). (38)

dro(zq)

On comparing Eq. (38) to Eq. (37). we note that the only difference is
that. in the latter. the coeficient of the quadratic term in z depends on the
far-field width og. This. in turn. not only depends on the width of the beam

16



at the waist plane. as in the case of a Gaussian beam. but it takes also into
account the shape of the beam profile.

From the values of the widths of the beam at the waist and in the far
fieid. the so called M? factor can be introduced. as the quantity {13, 14, 15]

M* = dro(zo)ox (39)

whence the propagation law (37) takes the form
‘ . M2y ? A

O ETAE | (== =z0)*. 40

o ) ?( o) + {47?0(30)} o) (40)

The M? factor is 1 only for the fundamental Gaussian beam [see Eqgs. (28)
and (36)], while is greater than 1 for any other kind of beam. The average
diffraction angle (¥) of the beam, shown in Fig. 6, turns out to be M? times
greater than the equivalent angle for a fundamental Gaussian beam with the

same waist width, iL.e.,

0= M, . (41)

general
beam

gaussian
beam

Figure 6: Sketch of the propagation of the width of a general light beam,
compared to thai pertinent to a fundamental Gaussian beam having the same
variance at the waist.



The M? factor is generally used as a figure of the quality of a light beam.
in that it measures the spreading attitude of a beam. once the waist width
has been fixed. This is why it is often referred to as the “quality factor”, or
more properly, the “propagation factor” of a beam.

The fact that the M? factor cannot assume values less than 1 has a
famous counterpart in Quantum Mechanics with the celebrated Heisenberg's
uncertainty principle [16). In fact, for any given wavefunction of a particle
in the position representation. say ¢.(z), the variance of the probability
distribution is evaluated as [16]

(a2 = [fueta) (e = £ de (42)

Yet, the wavefunction in the momentum representation ¢,(P)}, can be
used to evaluate the analogous variance of the probability distribution of the
momentum F:

(AP) = [ |uy(P) (P = P)? dP. (43)

The Heisemberg’s uncertainty principle states that, for any quantum par-
ticle, the following disequality must hold:

N .
Ar AP > — . (44)

4r

with h the Planck’s constant, or, equivalently,

drAz A (%) > 1. (45)

Actually, Eq. (44) 1s a consequence of the properties of the Fourier trans-
form [12]. Indeed, the wavefunctions in the two representations are related
to each other by the following relationship [16]:

- (P |
“(P= ZF (e () (46)

and therefore a perfect analogy exists between the wavefunction of a quantum
particle in the position representation and the function describing an optical
field, as well as between the wavefunction in momentum representation and
the far-field light field. Following this analogy, it is not difficult to recognize
the M? factor in the left-hand side of Eq. {45).

18



Although the use of the W? factor as a figure of the quality of a light beam
is more and more frequent and it can be often found on datasheets of laser
sources. some researchers still look suspiciocusly at it. Main objections stem
from the fact that it is defined in terms of second-order moments, whose
measurement is often somewhat problematic. Moreover, as we saw above,
the variance of a beam profile may diverge in rather frequent experimental
conditions. For instance, when a beam suffers diffraction from an hard edge,
the value of its W? diverges, while its “quality” may often be considered not
so bad from a practical point of view.

The origin of this anomalous behavior is in the fact that the formalism
if the M? factor is based on the formulas of paraxial propagation, while
the presence of hard edges inavoidably introduces very high frequencies in
the Fourier spectrum of the beam. which are responsible for the diverging
behavior of og. Actually, any divergence is eliminated if the integrals in
the Fourier domain are evaluated on a finite region [17, 18]. For instance,
a truncation in correspondence of |p| < 1/A, i.e., within the homogeneous
region, is quite reasonable because evanescent components do not contribute
to the far-field profile [19]. Nonetheless, the utility of the M? factor is still
rather debated [20].

Before ending this Section, we quote a very important property of the M?
factor: it is invariant after propagation through any paraxial optical system.
So, we can say that it represents an intrinsic characteristic of a light beam,
regardless the optical systems it passes through. Such a property is generally
exploited in the experimental determination of M?, where some values of the
beam width are taken at different transverse planes and a fitting procedure
is used to find the coefficients of their parabolic behavior. If the beam is well
collimated, however, it must pass through an optical system (even a simple
converging lens) to make the width variations more evident.

2.5 The embedded Gaussian beam

As we saw in the previous Sections. Eq. (40) is identical, except for the
presence of M?. to the expression governing the variance of a fundamental
Gaussian beam. This fact suggests that one could assocliate, in some way, to
any paraxial beam a fundamental gaussian beam, whose width is proportional
to that of the beam under analysis at any transverse plane (see Fig. 7).

To this aim, it is sufficient to divide both sides of Eq. (40) by M? and set
g.(z) = o(z)/vV M?. We then obtain
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Figure 7: Sketch of the propagation of the width of a typical light beam
(solid) together with the one pertinent to a fundamental Gaussian beam
(dashed). The waist size of the latter is chosen in such a way to be propor-
tional to that of the general beam at any tranverse plane.

A : 2 ~
2 Jer

2 ) = g3z
oi(z) =oc(z0) + [4#05

which is exactly the law valid for a fundamental Gaussian beam whose waist
size is 0.(20). Following Eq. (28), the spot size of this Gaussian beam is

(48)

Such condition guarantees that the spot size of the Gaussian beam remains
proportional to the width of the real beam at any transverse plane, the
proportionality factor being 2/v'MZ?. This Gaussian beam is referred to as
the embedded Gaussian beam {EGB. for short) and represents a very useful
tool for studying the propagation of light beams passing through paraxial
optical systems [14, 21}.

Before exposing the reasons of the importance of the EGB, we introduce
a new quantity characterizing a beam profile: its equivalent curvature radius.
As may be easily understood, the latter corresponds to the parabolic curva-
ture radius fitting the real wavefront of the beam at its best. It can used, for

20



instance. to determine the focal length of the lens needed to collimate the

beam. From an analytical point of view. it can be shown that the equivalent
curvature radius is expressed. at any transverse plane, by the relation [22]

: /J:Im{tb'(.r.z)axw(x.z}}dm

— =27A
R.(2) /.zrg‘r(.r. Hda (49)
27 A
= —— I e o rl,‘ Ir.z d .
T /r m{™(z, 2)0u(z. z) b dr

A very remarkable property of the equivalent curvature radius is that on
paraxial propagation it follows the same law as the curvature radius of a
Gaussian beam. that 1s

20 2
R.(z) = (2—3{}){1 + [M?—-:Ez(wz%}_)] } . (50)

More precisely, how it is evident from Eqs.(50) and (48), it coincides with
the curvature radius of the EGB.

This fact allows one to replace, to any real beam, its EGB to study its
propagation through paraxial optical systems, if a description in terms of
second-order moments is required. In these cases, indeed, it is sufficient
to know position and width of the beam walst (or width and equivalent
curvature radius at a general transverse plane) together with the M? factor,
to recover the width after the passage through any paraxial optical system,
as is sketched in Fig. 8. To this aim, the technique based on the complex
curvasure radius, recalled in Sect. 1.2, is particularly convenient. In passing,
note that a general beam is completely specified (up to the second-order
moments) by three parameters.

Before ending this Section, we report a useful formula relating the second-
order moments of a beam at a general transverse plane:

oc(z) = {z — ) MogRe(z) . (51)

2.6 Moments of the Wigner distribution function

A very compact and unifying approach to the parameters introduced in the
previous Sections can be given in terms of the so-called Wigner distribution
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general
beam
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Figure 8: Example of beam propagation through a paraxial optical system.
Solid curves refer to the behavior of the standard deviation of the tranverse
profile of a typical light beam. Dashed curves shows the analogous quantity
for the pertinent Embedded Gaussian Beam.

Function (WDF) [23]. Limiting ourselves to the case of perfectly coherent
twodimensional fields, the WDF of a light beam at the plane z =const is
defined as [24]

Wiz,p.2) = [l +€/2:2007 (2 - £/2,2) exp(—i2mp)d . (52)

It is a function of z and its conjugated variable p, simultaneously, so that it
is said to give a representation of the beam in the space-frequency domain.
The use of the WDF, borrowed from Quantum Mechanics [23], offers several
advantages, mainly from a formal point of view, because if often leads to a
very compact analytical description of phenomena related to paraxial prop-
agation (6, 7, 8. 9]. Although we will not use the WDF formalism here, it is
dutiful to mention it because it is the preferred tool of many researchers in
this field.

All the quantities defined above can be introduced starting from the
WDF. In particular, it can be easilv seen that the integral of the WDF
extended to the whole p-axis gives the optical intensity of the beam across
the plane z =const, that is

2]
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/' Wic.p.z)dp = I{r.z). (53)

while if the integral is summed on the r-axis, it gives the far-field intensity,
le.,

f Wir.on 2\dr = Igfph . {54)

Of course, the integral over the whole (z.p) plane is the total power carried
by the beam. F;. It is also possible to define moments of any order as
follows:

1 - ‘,
- ]r”p’”ﬂf’(:ﬂ,p,z)drdp- - (53)
Ptot

First-order moments, 19 and pop, represent the mean values of z and p,
respectively.
The four second-order moments may be arranged in one 2 x 2 matrix:

1 22 1p r
Ptot // ( p:L' p2 ) LI( (‘I"’ ps-‘)dl:dp,. (56)

which presents verv interesting properties. When the reference frame is che-
sen in such a way that the first-order moments vanish. the elements V;; and
Va2 give the variances of the intensity at the plane z and in the far field,
respectively. The diagonal term (Vj; = V3,), after using some properties of
the Fourier transform and of the Dirac delta function, can be written as

Hopm

V=

2 a?(z)
Vials) = Pro: AR.(z)’

where the definition of equivalent curvature radius (49} has been used.

Several useful relations can be derived from very general properties of the
WDF [6, 7. 8, 9, 25]. For instance, it can be shown that the determinant of
the matrix V' is invariant under paraxial propagation and is related to the
M? factor. Indeed. we have

/Ilm{'lb'(x,:)ar‘lf)(m,z)}dx - (57)

3 3 NE M : i
detV = c*(z)of )‘QU—R(;)(% = (4—_) ; (53)

il

where Eqs. {36). (57), {51). (37). and (39) have been used.
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2.7 The three-dimensional case

The extension of the previously exposed ideas to the case of threedimensional
beams does not present any further conceptual difficulties. However, the
increase in the dimensionality leads to a much richer variety of beam types.
It is customary to divide light beams into three classes, depending on their
symmetry properties [26. 9. The simplest case is that of beams showing axial
symmetry, both in amplitude and in phase. Such beams are referred to as
stigmatic (ST) and, in particular. present the same values of the second-order
moments along any direction across the transverse plane. It follows that, as
for the twodimensional case, three parameters are sufficient for a complete.
second-order characterization of the beam (for instance, position and width
of the waist and M? factor). . L
A slightly more complicated type is that of simple astigmatic (SA) beams,
for which it is possible to find a pair of orthogonal axes across the transverse
plane, along which the beam behaves like a twodimensional beam. In partic-
ular, positions and widths of the two waists can be different from each other
and, as a consequence, the curvature radius will be generally different along
the two directions. The number of independent parameters needed to the
second-order characterization of $A beams is 6, that is twice the parameters
of a twodimensional beam. -
The third class is that of general astigmatic {GA) beams, wich cannot be
“decoupled” along two orthoigonal transverse axes. As an example, beams
whose intensity profile rotates upon propagation without modifications of the
transverse shape (the so-called “twisting beams” [27, 28, 29, 30]) belong to
this class. Just to get an idea of a possible way to generate GA beams, we
could think to a SA beam passing through a cylindrical lens, whose principal
axes are rotated with respect to the axes of the incident beam by an angle
different from 0 e da 90°, as it is shown in Fig. 9. It could be shown that the
number of independent parameters of GA beams is 10 [9].
In the case of threedimensional beams it is still possible to define the
second-order moments of the WDF, and arrange them in one matrix V, with
4 x 4 elements:

v

V= ! /]f/ yr Yy y‘g Y49 Y Wiz, y.p.q. z)dzdydpdg . (59)

Piot Tp yp p° P
zq yq ap q°
24



SA beam profile

N
| '

\ Wmd cylindncal lens
\'\
Y
~

Figure 9: A possible scheme for generating GA beams, using a SA beam and
a rotated cylindrical lens.

where ¢ is the variable conjugated to y. Starting from the symmetry prop-
erties of V. it can be shown that the number of independent parameters 18
3. 6, and 10. for ST, SA, and GA beams, respectively [9]. '
In order to simplify the present exposition, in the following we shall limit
ourselves to ST and SA beams. In these cases, the extension of the results
given in the previous sections is quite trivial. For a ST beam, however, a
different definition of M? is often used, which is based on the radial variance

/000 I(r, =) dr
]:O I(r.2)rdr

Note that. since the profile is sopposed to be axially symmetric, 1t turns out
that

or(z) =

(60)

]j"[(rty‘:)rz dzdy B /[(r\z)rz rdeCOSQﬁ dv _ _lo'f(z).

f] I(z.y, =) drdy -zwff(r,z)rdr 2

7z =

(61)

[
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Analogous symmetry properties must hold for the far-field pattern of a
ST beam, so that the radial M* factor is defined as

M? =270 (2006, . (62)

where 7g . is the radial variance in the far field.
For the fundamental Gaussian beam having spot size w(=). the definition
of the radial variance leads to

(63)

and to a value of the M? equal to 1 again.

2.8 Examples

Although the M? factor can be calculated for any paraxial beam, some cases
exist for which it takes very simple analytical closed forms. Here, we see
some examples.

Hermite-Gaugss beams
Let us start from a twodimensional HG beam, whose expression is re:
ported here for convenience:

; 1/4 2
HGu(z;vo) = (—2—2) ! exp l:_;z jf H, [I\/ﬁJ . (64)
b

TV Vann! vd Vo
The waist plane has been chosen as the plane z = 0 and we let w(0) = v,.
Normalization factors appearing in Eq. (64) have been introduced in order
to obtain a unitary total power P,.
The variance of the beam profile at the waist is evaluated from Egs. (27)
and (64). After some calculations. we get

2 /J'QHfl(.r) exp (—.1,'2) dx
a%(0) = -()ﬂ -
- /Hi(:c}exp (—‘rz) dx
Intensity profiles of HG functions are shown in Fig. 10, together with the
pertinent standard deviations.

The far-field variance has to be calculated starting from the squared mod-
ulus of the Fourier transform of the field {64). For a HG profile it can be

2
- yf(?n+1). (65)
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Figure 10: Transvere intensity profiles for some HG modes with vg = 1.
Values of the pertinent standard deviation are also shown.

easily verified that, apart from a proportionality factor, its Fourier transform
coincides with the profile itself, so that

F{HG (z:v0)} = i "HG,(VTwop) . (66)

This fact is expressed by saying that HG functions belong to the class of
the self-Fourier functions [31, 32]. As a consequence, the expression of oi is
analogous to the one evaluated at the waist plane, and turns out to be

(2n +1) -
O’fzf = T%é \ (6‘)

whence the M? factor is
M= (2n+1). (68)

It is 1 when n = 0 and increases with a linear law on increasing n. Fur-
thermore, as was expected, the EGB of the n—th order HG beam is Just the
fundamental Gaussian beam having the same waist size vg, as it is evident
from Eqs. (68) and (48).

The present results are still valid for the z— (y—)component of a three-
dimensional HG beam.

R
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Laguerre-Gauss beams

Since the profile is axially symmetric. we can evaluate the radial variances
#%(0) and o3 ., and then the radial M? factor, too. Even in the case of LG
beams, we can exploit the invariance of their profile under Fourier transfor-
mation {also LG function are self-Fourier functions), so that the evaluation
of M* follows that of the previous example. in conclusion, we have, for a LG
beams with indexes { and s,

Mi=(2l+s5+1), (69)
and the quality of the beam get worse and worse on increasing the order of
the beam. -

Supergaussian beam

Another significant example is represented by beams having a flat-top
profile at a given transverse plane. One of the (many) models used to describe
such kind of beams is through the supergaussian function, defined as

SG.(r;vg) = exp [—- (L)N] , (70)

vg

which reduces to a Gaussian when v = 1 and gives a profile more and more
flattened on increasing v (see Fig. 11).

e

1.0 .
[ SGm1) 7

;
o8 ; /

Figure 11: Supergaussian profiles with vo=1. for different values of the pa-
rameter .

The M? factor of beams described by a field of the form (70) at the waist
plane is [33]
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20(2/y)

with [ the Gamma function [3], showing that the beam diffracts more and

more il increasing the flatness of the profile. Plots of M/? for different values

of ~ are reported in Fig. 12.

3.0

3
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—
L
.
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Figure 12: M? factor of supergaussian beams, as a function of the parameter
¥,

‘

Spherically aberrated Gaussian beam

It may be interesting to see how the M* factor gives account of aberration
on the phase profile of a fundamental Gaussian beam. The case of spherical
aberration leads to a particularly simple form of the M*, In this case we can
write the field emerging from an aberrated optical svstem as

. rt ket s -
['(r) =exp (—U—g—;—zzRo) exp (5.31") , (72)
where 3 is related to the Seidel coefficient Cy (3 = £C), responsible for the
spherical aberration [34].
Siegman showed [35] that for this kind of an aberrated beam, the M?
factor takes the form
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M= 1290

(73)

Plots of M? are reported in Fig. 13 as function of 3. for different values of
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Figure 13: M? factor of a spherically aberrated fundamental (Gaussian beam,

as a function of the parameter 3.
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3 INCOHERENT MIXTURES OF
GAUSSIAN MODES

In the previous Chapter, some aspects of the characterization of perfectly co-
herent light heams have been presented. What hannens in nractice. however.
is that one has to deal with light beams that are only partially coherent, both
from a spatial and from a temporal point of view. Due to these reasons, much
research is currently carried to find out algorithms and experimental tech-
niques devoted to a complete characterization of partially coherent beams.

One of the most significant results in this field is the extension of the
concepts presented in the previous Chapter to the case of beams in any state
of coherence. For these beams, in fact, 1t is still possible to define second-
order moments. and then the M? factor, the embedded Gausstan beam, the
equivalent curvature radius, and so on, following exactly the same procedures
as for perfectly coherent light beams [6, 7, 8, 9, 36, 37]. Even in this case, the
WDF. suitably defined starting from the cross-spectral density of the field,
leads to the correct results in a very straightforward way [38].

In the present Chapter we dwell upon the study of a particular, but
vet very important. class of partially coherent beams: the ones obtained as
the output of a multimode laser cavity. More precisely, we will consider
light beams obtained as the superposition of several transverse modes of a
stable optical resonator with spherical mirrors. In such a case, if the mirrors
are large enough and the elements present inside the cavity do not perturb
significantly the resonator geometry, modes that can oscillate inside it are
HG, or LG, modes [3]. So. in general, the beam emitted by a laser of this
type can be modelled by a superpositionof higher-order Gaussian modes.

Under these hypotheses, it is quite reasonable to expect that the modes
of the resonator have their waists at the same axial position, with the same
spot-size, and propagate along the axis of the resonator. On the contrary,
the power carried by each mode will strongly depends on the presence of
obstacles inside the cavity and on the gain features of the active medium.

A more subtle question is whether the modes oscillate independently of
one another, or they show mutual correlations. In principle, one cannot ex-
clude that they could present some kind of correlation but, if they oscillate
at different frequencies and measurements on the resulting beam are per-
formed on time intervals longer that the beatment period, the modes can be
considered, at least approximately, as completely uncorrelated. This is the
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situation we will consider in the following.

It should be stressed, however. that sometimesa correlation among higher-
order Gaussian modes must be taken into account. This is the case, for ex-
ample, when one does not know the analytical form of the modes that really
oscillate inside the cavity and uses a representation as the superposition of
HG, or LG, functions with unknown coefficients. In this case, higher-order
Gaussian modes represent only a mathematical basis to represent the actual
modes and, of course, are supposed to be completely degenerate in frequency.
Thus, even though the actual modes are uncorrelated from one another, this
is not true for the Gaussian modes.

" Given a multimode-laser beam, one of the problems one is often faced
to is to determine the power content of each component mode. From this
knowledge, indeed, it i3 possible to get all information not only about the
propagation parameters of the beam (such as position and width of the waist,
and M2 factor), but also about its coherence properties [39, 40, 9]. In par-
ticular, it is possible to perfectly recover the mutual coherence function for
any pairs of points in space. Furthermore, important information about the
workimg conditions of the active medium can be gained [41].

In the Sections to follow, the problem will be based mathematically, and
a procedure will be given for the determination of the modal weights starting
from values of the beam intensity at a transverse plane [42, 43]. In doing so,
we first limit ourselves to the twodimensional case, taking into account inco-
herent superpositions of modes of the HG,, type, whose waist is supposed to
be known. Later, we will see that the extension to the threedimensionale case
presents very serious problems. In this case, in fact, it becomes possible that
different combinations of modal weights give rise to laser beams which are
absolutely undistinguishable from an intensity basis, but yet present different
physical properties, such as their coherence state.

3.1 Propagation parameters

Let us start from the expression of the disturbance of the nth HG mode at
its waist [Eq. (64)]. The functions in Eq. (64) are normalized in the sense
that

+oo
/ HG2 (2; vo)de = 1 vn . (74)

-0
Since the modes are supposed to oscillate indipendently from one another.
they do not interfere in a stationary way. So. we can conclude that the
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transverse intensity profile of the beam at the waist plane has the form

0
= Z cnHGE (21 o). (73)
n=0
The ¢, coefficients are positive coefficients and. thanks to Eq. (75), they can
be thought of as the power content of each mode.

As a simple consequence of the knowledge of the modal weights c,, we
now evaluate the M? factor of a multimode laser beam [14]. To this aim, it
is sufficient to calculate the variances of the beam profile at the waist plane
and in the far field, by exploiting the fact that the modes are supposed to be
mutually incorrelated.

Starting from the expression of the transverse intensity [Eq. (75)] and
using the definition of variance [Eq. (27)]. we get

ch 2n +1)
—1ch

where the expression of the variance of each HG mode [Eq. (635)] has been
taken into account.

In an analogous way, from Eq. (67) the far-field intensity variance turns
out to be

o (0) =

(76)

ch(Qn +1)
Of = e (77)

4riwd ch

so that the M? factor turns out to be

Z cnlZn + 1)
M= (78)
> en
n
Le., 1t 1s given by the average value of the M? factors of each HG modes,
weighted by the ¢, coeflicients. Therefore it is evident that, as far as the
diffraction properties of the beam are concerned. the beam quality decreases
on increasing the power content of higher-order modes.
The evaluation of the M? factor can be performed in a more easy and
direct way by resorting to the properties of the embedded Gaussian beam.
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In fact. since the spot size of all the component Gaussian modes widens
following the same law and the modes do rot interfere with one another, the
embedded Gaussian beam must coincide with the component mode of zero
order. Therefore,

we(0) = vo , (79)
and, recalling Eq. (48). we can write
452(0
M= “E), (80)
Yo

which leads to the evaluation of the M? factor directly from the knowledge
of the waist size of the modes and the variance of the beam width. The
importance of Eq. (80), however, is in the fact that the spot size of the
component modes can be recovered from the knowledge of the beam quality
factor and of the variance of the intensity profile at a transverse plane.

3.2 The inversion algorithm

What we are going to obtain is a general tool to evaluate the set of ¢,
once the intensity profile is known. The difficulty stems from the fact that,
while the HG,’s constitute an orthogonal set, their squares obviously do
not. Consequently, the usual scalar product rule that we would adopt for
evaluating the coefficients of a series expansion into orthogonal functions
cannot be applied. We can even wonder whether a unique solution exists
for the ¢,’s. Surprisingly enough, it happens that on passing to the Fourier
transform domain the coefficients can be evaluated by the scalar product
rule. This may sound contradictory because the scalar product is conserved
under Fourier transformation. As a matter of fact, the property we are going
to exploit is slightly subtler. Substantially, it turns out that the Fourier
transforms of the HG2’s, while not orthogonal on the whole p-axis (p being
a spatial frequency variable). are indeed orthogonal on the half-axis p 2 0
with respect to the variable p*.

Some comments have to be made about the intensity profiles at transverse
planes other than the waist plane. HG modes have the property that their
transverse shape does not change under paraxial approximation, apart from
phase factors and a scaling of the transverse coordinate, deriving from the
propagation law for the spot-size of Gaussian beams. This implies that beams
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obtained as incoherent superpositions of HG modes are shape invariant, i.e.,
the expression of their intensity distribution remains of the form (75) at any
transverse plane. provided that the quantity v, is replaced by the spot-size,
say v.. of the modes at that plane [44]. Thus. we shall refer to Eq. (75) as
our starting point.

Coming back to our problem, we first note that the following notable
refation holds:

F{BG (ziv)} (p) = Walr2edp?) . (81)
where the functions

V(b = Laltiexe (- 3) (82)

have been introduced, L, being the nth order Laguerre polynomial. A very
useful property of the W, functions is that they are orthogonal on the half-
axis t > 0, 1.e.,

/:’ U)W ()dE = 6o, (83)

dn,m being the Kronecker symbol. This fact leads to a very simple procedure
for recovering the weights ¢, starting from values of the intensity.
First, by Fourier transforming both sides of Eq. (75) and using Eq. (81),
we obtain N
I{p) = Z Cn@n(ﬁzvgpz) - (84)
n={
Then. by exploiting the orthogonality of the ¥, functions [see Eq. (83)], the
following expression for the expansion coefficient ¢, is found:

tn = Qﬁzvéfo I[(p)U..(x*v3p”) pdp . (85)

This equation allows us to evaluate the power content of each mode start-
ing from the knowledge of the spot-size of the modes and the Fourier trans-
form of the transverse intensity profile of the beam. f(p) can be obtained by
Fourier transforming the intensity profile of the beam at a transverse plane.
It is interesting to note that values of /{p) for p < 0 do not affect the integral
in Eq. (85}, This is not surprising. because I{xz) is real and the Fourier trans-
form of a real function is Hermitian, namely, [{—p) = [*(p). Thus, negative
frequencies actually do not carry any further information with respect to the
positive ones.

In the Sections to follow we will see some examples of application of Eq.
(85) to cases of common interest.



i.:A F O N

114 LE

3.3 Two examples

In the present Section, Eq. (33) is applied to two classes of partially coherent
beams obtained as the incoherent superposition of HG modes and for which
the distribution of the ¢, coefficients has already been investigated. The first
of them is the class of the so-called Gaussian Schell-model beams [45]. They
are characterized by a transverse intensity distribution and a degree of spatial
coherence [46] that are both Gaussian and represent the most celebrated’
example of partially coherent beams, due to both their simple analytical
representation and their ability to model real laser beams [47, 49, 51, 52].

The second class is that of beams showing a flat-topped transverse inten-
sity profile. Beams of this kind are encountered, for instance, as the output
of high-power multimode lasers and their flatness has been related to satu-
ration effects of the gain medium {41]. The mode distribution inside such
cavities was first studied through a least-square optimization procedure [41],
and later by means of an analytical approach based on the so called flattened
Gaussian {FG for short) beams [60, 43].

3.3.1 Gaussian intensity distribution

Let us consider the profile
ol

[{z) = [yexp (—;7) , (86)

0]
with Iy and o positive parameters (see Fig. 14).
The Fourier transform of I(z) can be easily evaluated, yielding

I(p) = IpV2m orexp (—271'20?}32) . (87)
On substituting from Eq. (87) into Eq. (35), we obtain

20 t 4ot
cn = lpV/2% mf L, (tyexp —S\1+— dt
0 2
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Figure 14: Intensity distribution [{x) for a Gaussian Schell-model source
with fp = 1. and o7 = 1. )

where the variable ¢ = 7?02p? has been introduced and use has been made
of formula 7.414.6 of Ref. [48]. On defining the quantities

and

q4= o N2 (90)
1 9
+ (201)
the ¢, coeflicients can be written as
en = cogqt, (n=0.1.2....). (91)

This is just the expression. derived by Gori [49] and Starikov and Wolf [30],
for the expansion coefficients of a Gaussian Schell-model source (GSM), that
is a source having degree of coherence given by

e *fz);} - (92)

plo. ) = exp [“ Sy



where

L _ 1 20\ ! )
;_EKU—J mll. (93)

3

We note that the condition rri > 0 implies that vy < 207 and. in turn. from
Egs. (90) and (91), that ¢, > 0 for any n.

The behavior of the modal weights for several values of the parameter ¢
are shown in Fig. 15, where the coefficients have been normalized according -
to the condition ¥, ¢, = 1.

Figure 15: Normalized coefficients ¢, for a Gaussian intensity profile for
several values of the parameter q.

This example shows how, starting from the transverse intensity distri-
bution of a beam, Eq. (85) leads to the complete characterization of the
partially coherent beam.

Application of Eq. (80) to the present case gives at once

B

or, equivalently, on introducing the parameter o,, which gives the width of
the degree of coherence on the waist plane [see Eqs. (92) and {93)].

M= 14+ =L (95)



This expression puts into evidence the contribution of the spatial-coherence
properties of a beam to its propagation factor M.

3.3.2 Flat-topped intensity distribution

Among the various mathematical models used to describe flat-topped profiles
[53, 34, 33], we choose the so-called flattened Gaussian (FG) model [54], which
proved to be particularly fitted to study paraxial propagation of coherent flat-
topped light beams [56, 57, 38, 39]. So, we start from an intensity profile of

the form
- A% N A%, n
Hﬂ:hapPQ%;hﬂzl[Qu;%ﬂ. (96)

ot
wg i n! wé

Here NV is a positive integer and wy is a real, positive parameter. wo and vV
are related to the width of the transverse region on which [ is appreciably

different from zero and to the rapidity of the transition from the maximum
value to zero. respectively.

1.0

Figure 16: Flattened Gaussian intensity profiles for wo = 1, lo = 1, and
several values of V

The intensity behavior. as a function of x. is shown in Fig. 16 for wy = 1,
Iy = 1. and several values of the parameter .V.

It was shown in Ref. [60] that a precise relationship between wo, N, and
the spot-size of the underlying HG modes exists. that is

D 1/2
tbzum(y+l) . (97)
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The Fourier transform of [ can be evaluated analytically [43] and takes the
simple form

. ("I)N
Ip) = 1o JRIENATN T

q Twep \ Téwpp?
XxHyny1 | ———= |exp | ——— | .
ARANYZ A W

On inserting from Eq. {98) into Eq. {83) and taking Eq. (97) into account.
after some manipulations we obtain

(=1~ 2\ /2
e = Jowo v (.\r+1)

x / " Hon1(6) La(2€?) exp(—262)dE.
o

{98)

(99)

It can be easily shown that, due to the properties of Laguerre and Hermite
polynomials {5], all ¢, vanish if n > N.

]'.—i__‘
100
n

Figure 17: Normalized coefficients ¢, for FG intensity profiles with several
values of the order V.

Values of ¢,, normalized according to the condition ", ¢, = 1, are shown
in Fig. 17 for some values of the order N. They can be compared with
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those derived in Ref. [60] using a different approach. Curves of the degree of

spatial coherence are shown in Fig. 18 as a function of z,, for different values
of r, and N.
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Figure 18: Curves of the degree of spatial coherence aa function of x4, for
different values of z; and N

In this case the evaluation of the M? factor velds

2
MP=1+IN. (100)
3

3.4 The three-dimensional case

Up to know, we considered incoherent superpositions of twodimensional higher-
order CGaussian beams. We saw that, in such a case, for any given intensity
profile of the resulting beam the set of the modal weights ¢, is determined
without any ambiguity, and a precise mathematical procedure exists to re-
cover it. In the present Section. we give an example of a threedimensional
case and we show that different combinations of ¢, can give rise to identical
intensity distributions. This means that it is no more possible, in general, to
recover the power content of the modes starting from the sole values of the in-
tensity of the resulting beam. This agrees with general results obtained from
the properties of the cross-spectral density on paraxial propagation [61, 62]
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As an example. we consider the supernosition of two modes of the tvtpe

2

’ )e*{p(:i:u}) , (101)
0 .

VE(r,0) —re‘{p(

which coincides. apart from proportionality factors, to LG modes having
indexes { =0 e s = 1 [see Eq. (20)].

The argument of the last exponential in Eq. (101) gives account of the -
helicoidal structure of the phase front of the modes. The only difference
between the two modes is the sign of the argument. which implies that one
of them skrews clockwise, while the other one in the opposite sense. Similar
phase structures are kriown as optical vortices and the integer factor multi-
plying the variable ¥ (in these cases +1 and -1, respectively) is referred to’
as the charge of the vortex [63]. '

Although the two modes are physically different from each other, they
give rise’ exactly to the same intensity profile, that is

2r?
IE(r,9) = r?exp e | (102)
¥g
The transverse pattern, shown in Fig. 19. justifies the name, donut modes.
given to modes of the form (101).
When an incoherent superposition of such modes is considered. wnh
weights ¢; and c_, respectively, the intensity of the resulting beam is given

by

[(r,9) = (cp +c_)riexp (—?—2—2> \ (103)

Vg

and it is the same for all those cases for which the condition

¢+ + c_ = const (104)

is met. Furthermore, since LG modes are shape-invariant on paraxial propa-
gation. any incoherent superposition of LG modes will be shape-invariant as
well, so that all beams obtained within condition (104) will present exactly
the same intensity profile at any transverse plane. Therefore, they cannot
be distinguished from one another on an intensity basis. Finally, it should
be noted that profiles of the form shown in Fig. 19 can be also obtined by
incoherently superimposing threedimensional HG modes (01 and 10 with the
same power).



Figure 19: Intensity profile of a donut mode

It must be stressed that the difference among these beams is far from
being only formal, and it has important consequences from the physical point
of view. Actually, they differ in their coherence properties: It is suffictent
to note. in fact. that the resulting beam is perfectly coherent when one
of the modal weights vanishes but is only partiallv coherent in the other
cases. as could be shown bv explicitily evaluating its degree of coherence
[62]. So, the only way to determine the modal weights is to perform coherence
measurements on the beam [64. 39].

An example of this behavior is given in Refs. [66] and [63], where three-
dimensional flat-topped beams with the same intensity distribution are ob-
tained superimposing uncorrelated HG modes and LG modes, respectively.

Actually, such a situation is not limited to the case of superposition of LG
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modes. but is encountered whenever the component modes present vortices
in their phase profile. In such cases. the shape-invariance of the beam is
generally lost. but the intensity profiles obtained within condition (104) are
always undistinguishable from one another at any transverse plane [61, 67].

e |
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NON-DIFFRACTING LIGHT BEAMS

There are beams whose profile does not change

during propagation (both in shape and in size):

— non—diffraéting or diffraction-free beams.

e |s their behavior consistent with the laws of ‘prop-
agation?

e What about their second-order moments?

e Why do they seem to spread less than a funda-
mental Gaussian beam?



A two-dimensional example
Sinusoidal

X
. (P i
interference

Plane waves pattern

U(:U, Z) A eiksin T ez’kcosgoz

I

+ A e—iksin T eikcosz,pz

— 2AetkCOS® 2 cos(k sin ¢ )



= I(x,z) = 4A® cos®(k sin px)

The transverse intensity pattern does not depend on z

The two component plane waves suffer exactly
the same dephasing along the z-axis:

eik Cos p z

so that the interference pattern is the same, for any
value of z (regardless of the values of the two ampli-
tudes)



The three-dimensional case

We consider a superposition of plane waves. The only
condition is that all of them have the same component
k> of the wavevector.

= All wavevectors lie on a cone.

h

Yy

/ )

On the basis of what we saw in the two-dimensional
case, we expect that the interference pattern will not
change during propagation.



k =4k (cospZ+sinpcosai + singsinaf)

so that a typical plane wave is written as

A(a)ezk-r — A(a)ezkcosgpz ezksmtp cosax ezksmgo sin oy

or, in a cylindrical reference frame (r, ¥, 2),

A(O&)eik'r _ A(a)eik cos z kv sin ¢ cos(¥—a)



Any (possibly continuous) superposition of such plane

waves,

U(r,d,z) = plkcos gz f A(a) pLkT sin @ cos(v—a) doy

gives rise to a transverse intensity profile independent
of z:

: : 2
= I(r,9,2) = \/A(Oﬁ) pthr sin g cos(d—a) 4,

for any choice of the weighting function A(«).

e Necessary and sufficient condition for a beam to
be diffraction-free is that it can be expressed as a
superposition of plane waves whose wavevectors
lie on the surface of a cone.



The simplest case

If A(a) = A = const:

U(r, 9, 2) = A Jo(Br) €5959% (5 = ksin )

— Bessel beam of zero order

SRk !

=)
>
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Pr
The size of the central lobe of the beam depends on
A and can assume values of the order of A

(central-lobe diameter =~ A/ sin @)



Higher-order members

If we take A(a) = A e!™®  (n integer),

Un(r,®,2) = A Ja(Br) e e!Feos@2 (B = ksing)

= nth-order Bessel beams

e All of them (except for n = 0) have a null on the
Z-axIs

e They present a vortex of charge n at the origin
(r=0)

e Any combination of Uy is a diffraction-free beam



Application fields for nondiffracting light beams are
virtually infinite (communications, energy concentra-
tion, metrology, laser machining, triangulation sys-
tems, atom trapping, ...)

The only drawback is that nondiffracting beams
are not physically realizable, because they carry an

infinite energy:

/I(T)T’ dr = oo

Nonetheless, approximate versions of nondiffracting
beams can be realized. They are generally referred
to as quasi-nondiffracting, or pseudo-nondiffracting,
or limited-diffraction beams.



A possible experimental set-up

incident
plane wave

1T

X

Ly

+y
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feot WA

/

thin annular

aperture



The obtained beam is only approximately nondiffract-
ing, because it maintains its transverse profile up to

a finite distance zmax from the lens (diffraction-free
range).

This occurs because the plane waves are truncated by
the lens, and truncated “plane waves’ overlap only
within a finite distance.

R D
PR R —
f

Any transverse limitation of the beam leads to a re-
duction of the diffraction-free range




Apertured Bessel beams

All we can physically obtain is an apertured version of
a Bessel beam, so that: |

U(r,d,0) : AJn(ﬁr)einﬁf(r)

The presence of the windowing function f(r) gener-
ally gives rise to complicated expressions for the prop-
agated beam.

The shape of the windowing function influences the
features of the beams on propagation.



Which choice for f(r)?

e circ function (as in the previuos set-up)

2r

£(r) = circ (—D—)

It i1s-the most natural choice, but presents some
drawbacks related to the oscillating behavior of
the on-axis intensity, to be ascribed to the Fresnel

diffraction of the component plane waves by the
circular aperture.
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e Gaussian function

T’2
f(T) = EXp (_F)

0
It gives rise to the Bessel-Gauss beams (BGB).

They are the most widely known and studiéd quasi-
nondiffracting beams, because of their very ap-
pealing analytical features.

Within the paraxial approximation:

Un(r,8,2) = A (’%5) I (%?ﬁr)

2, 232 /1.2
X exp [-—T T2 Q /k } exp(ind)

we

where w2 = w3 + 2iz/k



on-axis intensity (L = kw%/Z)




Far

14 im:
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They can be viewed as the superposition of fun-
damental Gaussian beams on a cone:
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The diffraction-free range can be expressed in terms

of the spot size wg and the cone angle :

For 2 > zmax the transverse profile tends to a
Gaussianly-shaped annulus.
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e Flat-top windowing profile (a good compromise):
f(r) = SG~(r,vp) (Super-Gaussian)
or

f(r) = FGx(r,vg) (Flattened-Gaussian)

I S| — 1
0 200 400 600 800 1000 1200
z [mm]




he resemblance effect

The on-axis profile of an apertured Bessel beam seems
to reproduce, in some way, the shape of the aperturing
function.

This fact can be understood by recalling the superpo-
sition scheme in terms of plane waves on a cone.

r

windowing
function

Plane waves I

Each plane wave is diffracted by the aperture



All the plane waves on the cone produce the same
on-axis field

Within the paraxial approximation, the following schemes
are equivalent:

f?’ r

W tilted axis
N il 0

Ny
My

(a) (b)

— the on-axis field in Fig. (a) corresponds to the
field in Fig. (b), say V, evaluated along the tilted
axis (r = zsin ).
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On-axis intensities for a flattened aperturing function
for different values of the steepness (FG profile with
different N-values)
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Second-order moments

Is the behavior of nondiffracting, or quasi-nondiffracting
beams compatible with the general laws of the mo-
ment propagation?

o Moments of Bessel beams cannot be calculated
because of their infinite energy.

e Moments of apertured Bessel beams, in some cases,
can.

e The behavior of the moments of a Bessel beam
can be obtained through a limiting procedure (aper-
ture size — 00).



The case of a Bessel-Gauss beam of zero order:

on incresing the spot size of the Gaussian windowing
function (keeping fixed the size of the central lobe
of the beam) it becomes more and more similar to a
Bessel beam.
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The M? factor can be evaluated:

0 — P
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35 40

The propagation laws of the second-order moments
are still valid, but they do not give useful information
about the nondiffracting properties of the beam.

M? diverges in the limit of a pure Bessel beam.

If wog < 1/8 the BGB tends to a fundamental Gaus-
sian beam, so that M? = 1.



Generation of quasi-nondiffracting

beams through optical elements

e Refractive Optical Elements:

The superposition scheme in the two-dimensional
case-can be realized by means of a prism:

I
A\

triangular prism



In three dimensions:

axicon

The rotationally symmetric threedimensional ver-
sion of a prism is an axicon.



Some features:

— The ouput beam can be well approximated by
a (truncated) Bessel beam.

— The on-axis intensity is expected to increase
with the distance from the element, up to a
maximum value, and then to decrease.

— Higher-order Bessel beams could be obtained

through a modified axicon (trochoson), which
introduces a vortex in the phase profile of the
beam.

— Refractive optical elements are not very con-
venient for generating non-diffracting beams.



a2 = o 2

e Diffractive Optical Elements:

The axicon gives the incident field a phase struc-
ture of the type: |

e—zﬂfr ’
which corresponds to the transmission function of
a “radial” prism.

The same function as an axicon can be performed
by a DOE (Diffractive Optical Element):

— DOE's exploit diffraction (instead of refraction,
as conventional optical elements do) to per-
form unconventional transformations of a beam.

— Phase-only DOE's generally consist in microstruc-
tures engraved on a dielectric substrate, and
give rise to the maximum diffraction efficiency.

— They are much lighter, cheaper, and more
versatile than refractive optical elements

— synthesis of generalized axicons
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