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Introduction

Electronic Speckle Pattern Interferometry (ESPI) is one of the most common optical methods
for deformation testing. This method allows us to measure the full-field surface deformation of a
scattering object. It has been used in many fields, among which, the study and characterization
of building materials, the assessment of the conservation state of pieces of artwork, and the
inspection. of civil structures. Besides, an interesting feature of the system is the possibility of
grabbing frames continuously from the deforming object and subtracting them in succession
from the reference. In this way it is possible to observe the real time evolution of the fringe
pattern related to the deformation of the investigated surface.

The surface of an object under test illuminated by a laser appears to have a "speckled”
structure of irregular light and dark areas. Waves of laser light scattered by various surface
elements are superimposed with a random phase relationship in space. Constructive or destruc-
tive interference of the scattered waves leads to this statistical distribution of light and dark
areas, known as a speckle pattern.

If the scattered waveform emanating from the diffusing surface of the object is recorded
simultaneously with a reference wavefront on the photosensor of a CCD {Charge-Coupled De-
vice) camera, the observed speckle pattern is formed by the interference of two coherent fields
and the intensity of resulting field depends on the phase difference between the two fields.

The resulting image of the illuminated object at rest is in fact a speckle pattern very hard to
use for subsequent interpretation. If a second speckle pattern of the object at rest is grabbed, it
will be exactly identical to the first one. However, when a stress produces a deformation of the
order of some micrometer in the surface of the test object, it shifts the phase of the scattered
waves. The sensor picks up the resulting change in the speckle brightness. The change in
brightness of a particular speckle as the surface is moved from a reference to a deformed state
is related to the surface displacement.

In practice, the intensity distribution in the detector plane is stored with the object in its
reference state. The object is then deformed and a second frame is stored. The two frames
are then subtracted electronically to give a resultant intensity distribution. This looks like an
interferogram showing fringes corresponding to the local displacement, but modulated by a

superimposed speckle pattern.



The aim of this paper is give the basic notion of the ESPI technique and a brief description

of the optical phenomena that are at the base of its operation.



Chapter 1

Principle of superposition and

interference of waves

1.1 Intensity

Let U (z,y, 2;t) be the analytic signal representation of a single polarization component of the
electric field at observation point (z,y, z) and time instant ¢. For a strictly monochromatic and

linearly polarized wave, the analytic signal takes the form|1]

Ulx,y,z;t) = u(z,y, z) exp (—2mivt), (1.1)
where the quantity

u(z,y,z} = [u(z,y,2)jexplig (z,y,2)], (1.2)

is known as the complexr amplitude of the field.

Since the optical field oscillé.tes at an extremely high rate (v is of the order of 10!° Hz),
light detectors (eye- photodiode, CCD, etc.) can measure only the time-averaged value of the
optical power per unit area, namely irradiance or intensity.

Intensity is defined by the energy flux through a unit area per unit time. Therefore, the

intensity is proportional to the square of the complex amplitude. Then, neglecting the propor-



tionality factors, we can write

I{z,y,2) = (U (2,3, ) U" (z,y,51)) = u(z,9,2) 4" (z,9,2) = [u(z,y,2)|", (1.3)

where the asterisk denotes the complex conjugate, and the angular brackets denote a long time

average.

1.2 Interference of two waves with equal frequency

The principle of superposition of waves states that if two or more waves of the same nature
travel past a given point at the same time, the total amplitude at that point is the sum of
the instantaneous amplitudes of the individual waves; a system which obeys this principle is a
linear system. We should keep in mind, however, that large-amplitude waves, whether sound
waves or high-intensity laser beams, can generate a non-linear response.

In optics, interference effects occur if two or more coherent light waves are superposed|2, 3,
4]. We first consider two waves, linearly polarized in the same direction, emitted by the same
strictly monochromatic source, with different complex amplitudes. Then the analytic signals

associated with the two waves can be written

Uy (z,y,z;t) = wu{x,y,z)exp(—2wivt) = juy {x,y, 2)| exp [id; (z,y, 2)] exp (—2mivt) (1.4)

Us (z,y,z;t) = wu2(x,y,z)exp(—2nivt) = |uz (x,y, 2)| exp [idq (z, v, 2)] exp (—27ivt) (1.5)
The total complex amplitude is given by
Ur{x,y,zt) ¥-u1 (x,y,z) exp (—2mivt) + ua (x,y, z) exp (—27ivt) . (1.6)
The intensity is then readily found to be

I = uptdh = Ju|? + fua)® + 2 | [uz] cos (¢y — ¢y . (1.7)



Hence, we can write

It = I + Is + 2v/ 1 Ip cos (¢, — 3}, {1.8)

where I, I are the intensities of u; (z,y, z) and ug (z,y, z). For the sake of brevity the depen-
dence of I} and I7 on z,¥, z has been dropped.

As can be seen, the resulting intensity is not simply the sum I + I3. One says that the
two waves interfere and 2¢/I1 I3 cos (¢; — ¢s) is called the interference term. The resulting time
independent pattern, described by equation {1.8), is called interference pattern, the fringes are
called interference fringes.

Up to now we only have investigated parallel polarized waves. The other extreme is the case
of orthogonally polarized waves. These waves do not interfere, their superposition only leads

to the addition of the intensities
Ir=hL+ L5, (1.9)

For other angles between the polarization directions the field vector has to be decomposed
into components of parallel and orthogonal polarizations. The result contains interference terms
as well as an addition of intensities.

Reasons for the additive intensity term not only may be mutually oblique polarization direc-
tions, but also an insufficient coherence of the interfering waves. Because in the superposition
of incoherent light we always observe a pure addition of the intensities without interference, the
additive term is often called the incoherent part, or we speak of incoherent superposition.

The visibility of an interference pattern is defined by

Imax - Imin vV

visibility = 77— ,
max min

(1.10)

where Inay and Iy, stand for the maximum and minimuin value of the intensity, respectively.
when we move across the pattern.
If two parallel polarized waves of the same intensity interfere, we have the maximal visibility

of V =1, whereas we have minimal visibility V' = 0 for incoherent superposition.



1.3 Addition of two Quasimonochromatic Fields

Detection of light (i.e. intensity measurement) is an averaging process in space and time. In
developing equation (1.8) we did not average because we tacitly assumed the phase difference
(¢ — ¢9) to be constant in time. This means that we assumed u; and uy to have the same
single frequency. However, sources emitting light of a single frequency do not exist.

Equations (1.4) and {1.5) may be seen as the optical disturbances in the (z,y, z) point due
to two different arms of an interferometer (for example a Michelson interferometer) with some

path difference, say
¢

where ¢ is the speed of light and 7 is the time delay. For a narrow spectral width {i.e. quasi-
monocromatic light)![5], the complex amplitude varies with time. Therefore, at the observation

peint we have

Uy (z,y,2;8) = u(x,y,z;t) exp ([—2miwt))

= |uy (=,y, z; )| exp [i¢) (2,9, z;1)] exp (—2wivt), (1.12)
Us(z,y,z;t +7) = wua{z,y,z;t+ 7)exp|{—2miv (¢t + 7)]

= Jup (2,9, 7t + 7| exp lidy (2, 21t + 7)] exp [~2miD (¢ + 7)), (1.13)

where ¥ is the average frequency of the light. The overall disturbance at (x,y, 2) is

Ur(z,y,zt) = U (z,y,2;t) + Uz (z,y, 2t + T}, (1.14)

'Quasi-monochromatic light is characterized by the condition that the spectral width of radiation (Av) is
very small compared to the mean frequency {(Av << 7).



so that the intensity becomes

IT ("Esyvz) = <UT (3:1 y;z;t) U’; (‘E,y,z;t))

U (z,y, ) UL (2,0, 2:)) + (Ua (2w, 25t + 7 Us (z,y, 23 + 7))

Uiy, 5 Uz (@9, 2t + 7)) + (V2 (3,9, 25t + 7) U (2,9, 2,1))

hi(zy,2) + L (2,y,2) + 2Re {(Uh (2,4, 5:) U3 (z,y, 25t + 7))}, (1.15)

where Re denotes the real part.
Since, the complex degree of coherence is defined as
_ (Ul (:’vaaZ; t) U2* ('T’yrz;t + T))

Y12(7) = L (5.9,2) 2 (5,9, 2)] = 712l exp (iB13) , (1.16)

equation (1.15) can be rewritten as

IT(z,y,2) = Ii(z,y,2) + I (z,y,2)

+2 I (z,y, 2) L2 (z,y, 2)]"? |715] cos (By) . (1.17)

Equation (1.17) is the generalized interference law for partially coherent quasi-moneocromatic
light.

Now we can discriminate between perfectly coherent light with |y,5| = 1 and incoherent
light with lv;,] = 0. For intermediate values of |y,4|, the radiation is termed partially coherent.

The modulus of the degree of coherence is easily measurable. Indeed if we consider equation

(1.17) taking Iy = I, = [ we have

Imax = QI[l + h’l?” H

Imin = 201~ |vel].
Therefore the visibility of the fringes, defined by equation (1.10) becomes

V:|712“ {1.18}



|

The visibility is then a measure of the modulus of the complex degree of coherence between
the two interfering beams, provided that the intensities of the two beams are identical.

We can introduce the coherence time 7. as the time shift at which the visibility is fallen
down to a negligible value?. The time shift is realized in interferometers by different optical

pathlengths, so one can define the coherence length
£e = cre. (1.19)

1.4 Coherence length of laser light

Laser light has a rather well-defined wavelength (or frequency). It has nevertheless a certain
frequency spread. By spectral analysis of the light, it turns out that it consists of one or more

distinct frequencies called resonator axial modes, separated by a frequency difference equal to

(6]

Av = — .
v=oT (1.20)

where L is the distance between the laser mirrors, i.e. the resonator length. Thus, the spectral
distribution of the light from a multimode laser is typically as given in figure 1-1.

For ESPI one often uses He-Ne lasers with internal mirrors. In that case, an important fea-
ture of neighboring laser modes, besides their separation, is that their polarization is orthogonal
to that of their neighbors (see figure 1-2). Thus, if we examined a three-mode laser (modest
power laser produce, usually, only three axial modes) with the appropriate tools, we would find
that two of modes have one polarization and the other has a perpendicular polarization. This
means that, while axial modes are separated in frequency by ¢/(2L), modes with the same
polarization are separated by ¢/L.

Now, assume that we use a laser with two axial modes in a interferometerm, for example a

Michelson interferometer, whose two arms have a path difference ¢.

?Depending on the spectral properties of the radiation field such value may be zero {see next section) or a
suitably small number (e.g., 1/e).
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Figure 1-1: Laser mode distribution. Plot of power in laser output as a function of frequency.

We then have two wave fields Uy and Us with frequencies

V1=,\—cl and u2=-xc;=v1+Au. {1.21)

Uy will interfere with itself, but not with Uy and vice versa, and the total intensity thus

becomes®

¢
Ir(€) = 21 {1+ cos Y 1 or (14 cos T228Y (1.22)
C [

where we have assumed U} and U to have the same intensity I. Equation (1.22) can be

rearranged to give

It (&) =41 [1 + cos 2m (1~ va) € cos 2m {11 + v2) f] .

% o (1.23)

We see that the interference term is the same as that obtained with a light source with

31In a Michelson interferometer fed by monochromatic light with wavelength A we have an intensity distribution
given by

It (£) =21 (l +cos¥) ;

10
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Figure 1-2: Output from a three mode laser. The relative polarization of each mode is indicated
at its base.

mean frequency (v; + v3) /2, but multiplied {modulated) by the factor

2r(vy — o)l
1 —va) b 1.24
cos e (1.24)
This means that each time
M:m, form=20,1,2,... ie. ¢ = m—— = m2L (1.25)
c Av

the visibility of the interference pattern will have a maximum. The visibility, and therefore the

modulus of the complex degree of coherence (see eq. (1.18)), in this case is hence equal to

wAvf
cos

Y12 (7) = . (1.26)

The path length difference corresponding to the first minimum of the visibility function

(when the argument of the cosine in eq. (1.24) equals 7/2) is

[4

b, = — = 27
“T 2Ap L, (1.27)

which is called the coherence length. This is illustrated in figure 1-3.
When more than two axial modes are oscillating, the result is essentially the same, i.e. the

same locations of the minima, but with a more steeply varying visibility function -y, (7). From

11
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Figure 1-3: Visibility function resulting from two resonator modes of a laser.

this we conclude that when apply a laser in interferometry, the path length difference should

be near to zero or to an integer number of twice the resonator length.

12



Chapter 2

The speckle effect

2.1 Introduction

When a diffusely scattering object is illuminated with coherent light its image has a granular

appearance. In Figure 2-1, coherent light is incident on, and scattered from a rough surface

with height variations greater than the wavelength A of the light.

Figure 2-1: Light scattering from a rough surface.

The rough surface can be considered as an ensemble of scattering centers producing scattered
wavelets with random phases, which will vary from point to point in proportion to the local
surface height. These scattered waves mutually interfere and form an interference pattern

consisting of dark and bright spots, called ”speckles” {7]. A typical speckle pattern is shown in

13



Figure 2-2!.

Figure 2-2: Photograph of a speckle pattern.

There are two types of speckle: Objective and subjective.

An objective speckle pattern is viewed when the light scattered from an object is projected
directly onto a screen or the surface of the photodetector without passing through any imaging
optics (see Figure 2-3a).

When waves from the scattering medium are imaged by an optical system, the resulting
speckle pattern is said to be subjective (see Figure 2-3b). The reason for using this name is
that this type of speckle pattern is perceived when a coherently illuminated surface is viewed
directly with the eye.

Speckles have known properties which can be advantageous. On the other hand, there are

just as many applications where speckles should be eliminated to obtain measurements.

A similar effect oceurs in coherent radar and ultrasonic imaging.

14
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Figure 2-3: Formation of a speckle pattern. (a) Speckle formation in a free-space geometry. (b)
Speckle formation in a single-lens imaging system.

15



2.2 Speckle Properties

The accepted theory of laser speckle makes use of the solution of the well-known statistical

problem of the "drunkard’s walk”. The final position of the random walk is the sum of many

independent steps, each of them represented by a displacement vector. For the speckle phe-
nomenon the optical field at an observation point (z,y,2) is made up of a large number, say
N, of independent contributions representing the wavelets coming from N elementary areas on
the scattering surface. Mathematically, the two cases are identical since the final optical field
at (z,y, z} is the vectorial sum of many independent amplitudes associated with the scattered
wavelets. The complex amplitude at a typical point in a speckle pattern can therefore be written

as

N N
wz,y, 2 \/—guk (z,9,2 ngk (z,y,2) exp [igy (2,y, 2)] - (2.1)

By assuming that:
1. all components u (z,y, 2) are mutually coherent and polarized in the same plane;

2. the amplitudes and phases of each component are statistically independent and also in-

dependent of the amplitudes and phases of other components;
3. the phases ¢, are uniformly distributed between — and +n;

the complex amplitude of the speckle pattern obeys a circular Gaussian statistics in the
complex plane [7]. Essentially, this conclusion can be reached by making use of the central
limit theorem. Here, however, we shall simply quote the results of interest.

The probability density function Py (I) for the intensity in a speckle pattern is given as

1 I
P[ (I) = <—I-)- exp (—m) 3 (2-2)

where (I is the average intensity over many realization of the experiment (the mean intensity).
The intensity of the speckle pattern thus obeys negative exponential statistics. Figure 2-4 shows
a plot of Py (I). The most probable irradiance in a speckle pattern is seen to be zero, that is,

black. This implies that black speckles are much more likely than bright speckles.

16
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Figure 2-4: Probability density distribution of irradiance in a speckle pattern.

The speckle contrast is defined as the ratio

where 7 is the standard deviation of the intensity given by
ot = (=) = (PP =2D I+ (1) = (1) — (17,
the brackets denoting again ensemble averages. By using
(e o)
(1) ﬂ/ Pp (1) I%dI = 2(I)?,
0

we find the contrast C in a speckle pattern to be unity.

(2.3)

(2.4)

In all the techniques based on a quantitative measurement of the intensity of light scattered

by a rough surface, speckle behaves as a noise source. Indeed, its effects are severe, since the

signal to noise ratio

S_4

N Ty

17



equals one whatever the value of {I).

2.3 Speckle Size

To find a representative value of the speckle size, consider Figure 2-3a where a rough surface
1s illuminated by laser light over an area of cross-section D). The resulting objective speckle
pattern is.observed on a screen § at a distance z from the scattering surface. For simplicity, we
consider the intensity variations along the y-direction only. An arbitrary point P on the screen
will receive light contributions from all points on the scattering surface. Let us assume that the
speckle pattern at P is a superposition of the fringe patterns formed by light scattered from all
point pairs on the surface [2]. Any two points separated by a distance £ will give rise to fringes
of spatial frequency p = £/(Az) (see Young’s interferometer {1]). The fringes of highest spatial
frequency pmax will be formed by the two edge points for which pyax = D/{Az). The period of

this patterns is a measure of the smallest objective speckle size o,, which therefore equals

Az .
Tp = —5 (26)

Figure 2-3b shows the same situation as in Figure 2-3a except that the scattering surface
is now imaged onto a screen by means of a lens L. The calculation of the size of the resulting
subjective speckle is analogous to the calculation of the objective speckle size. Here the linear
extent of the illuminated area has to be replaced by the diameter of imaging lens. The subjective

speckle size g, is therefore given by
(2.7}

where b is the image distance and D now denotes the lens diameter. By introducing the

f—number of the optical system f/#

=5, (28)

18
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where f is the focal length, we get

05 = (1+M)Af/# (2.9)

where M = (b — f)/f is the magnification of the imaging system. From this equation we see
that the speckle size increases with decreasing aperture (increasing f-number).

Figure 2-5 shows four different speckle patterns obtained with different f—numbers.

19



Figure 2-5: Different speckle patterns obtained with different f—numbers: (a) f/8; (b)f/16;
(c) f/32; (d) f/64.
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Chapter 3

Electronic Speckle Pattern

Interferometry Devices

3.1 Introduction

The electronic speckle pattern interferometry (ESPI; also called TV-holography)} was developed
in the early 1970’s as a method of producing and recording interferometric pattern without using
photographic or holographic mediums [8, 9, 10]. It is based on the measurement of changes in a
speckle pattern obtained by the coherent superposition of two independent fields, as a function
of the phase difference between the two fields.

A speckle pattern, formed by a rough surface illuminated by a laser, is allowed to interfere
with a reference wave. This interference pattern is captured by a CCD camera and transferred
to a frame grabber on a computer, where it is saved in memory and displayed on a monitor.
The resulting image of the illuminated object at rest is a speckle pattern very hard to use
for subsequent interpretation. A second speckle pattern of the object at rest will be identical
with the first one. However, if the object is slightly deformed, the second speckle pattern is
somewhat different.

Comparing both speckle patterns, before and after deformation, information about the
surface displacement can be obtained [11].

To sum up, when the object under investigation has been deformed, a second speckle pattern

is transferred to the computer and subtracted from the previously stored pattern. The resulting

21



interferogram is a pattern showing dark and bright fringes, called correlation fringes. An
interesting feature of the system is the possibility of grabbing frames continuously while a
deformation is occurring and subtracting them in succession from the reference frame. In this
way it is possible to observe in real time formation and progressive change of the fringe pattern
related to the deformation of the investigated surface.

The whole process: the speckle pattern acquisition, the correlation fringes calculation, and
the fringe‘pattern display is carried out by electronic systems. This was the reason to call it
“Flectronic Speckle Pattern Interferometry”.

Depending on the optical configuration of the ESPI system, it can be made sensitive to
out-of-plane displacement, i.e. parallel to the observation direction (see fig. 3-1a), or in-plane

displacement, i.e. perpendicular to the line of sight (see fig 3-1b).

3.2 Fundamental concepts

Consider the superposition of two speckle fields in one of the interferometers presented in fig.
3-1. In both setups the coherent light is separated into two components U; and Us.
The complex amplitudes of the wave fronts, at starting steady conditions, in any point (x, y)

on the image plane, can be written as

Uz (z,y) = U1 (z,y)| exp [i¢ (z, )], (3.1)

Uz (x,y) = Uz (z,y)| exp [ido(z, y)], (3.2)

respectively, where |Uy(z,¥)| and {Ua(z, y)| are the real amplitudes, ¢,(z,y) is the phase of the
of the arm #1, and ¢o(x,y) is the phase associated with the arm #2. The speckie pattern,
obtained with the test surface in its initial condition (e.g. in the condition that we assume

as the reference state), presents an intensity I.,. This intensity distribution, picked up by the

22



Reference beam
Incident illumination beam

n Speckle pattern

/_. on the CCD

Object to be measured Interference
(a)

ﬂ___ CCD Camera
g'9 Ifumination
beam
Obiect Surface -
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Figure 3-1: (a) typical out-of-plane setup; (b) typical in plane setup.
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camera target, is given by the expression

Lg(z,y) = Uiz, ) + |[Ua(z,9)]°

+2|Ur (=, )| {Uz(=, y)| cos [@ (2, y)], (3.3)

where ® (z,y) = ¢,(x,y) — ¢o(z, v) represents the phase difference between Uy (z, y) and Us(z, y)
due to the two different arms lengths. Because of the surface roughness, ® (z,y) varies randomly
across the image. It represents the phase of the speckle pattern.

When the object is illuminated, and any displacement occurs, U;(z,y) phase (out-of-plane)
or both U3(x,y) and Uz(x,y) phases (in-plane} are changed and so ® (z,y) turns into ® (z,y) +
¢ (z,y).

Consequently, the intensity becomes Iz ¢ , where

Iieg (z,y) = Ui y)f + Ua(z,9)f*

+2|Ui(z,y)| [Ua(z, y)| cos [B(z,y) + p(z,y)] - (3-4)

If the phase change ¢(z,y) is not significantly large, the amplitude of U1{z,y) and Us(x, y),
and the phase difference ®(z,y) are assumed to be the same in egs. 3.3 and 3.4.

If o(z,y) = 2nw , then I, and Iz are equal, otherwise the two intensity values are
different. Thus, if one image is subtracted from the other, the regions where  (z,y) = 2n7 will
have zero intensity, while other regions will show an intensity randomly varying (i.e. a speckle
pattern is obtained) {12].

The interference pattern of eq. 3.4 can be recorded by a CCD camera. In this way, the
variations in the texture of the speckles can be converted into a variation of brightness.

If the video signal detected by the CCD is proportional to the light intensities of the speckle

image, the output signal from the TV camera, say By, (z,y), corresponding to the light exposure

I, (z,y) of the nth video frame may be expressed as

By (z,y) o< In{z,y) . (3.5)

24



These image patterns can be digitized and stored in a frame grabber. Then

Beq (%,y)  Ieg(z,y) and  Bues (z,y) x laes (€,y) (3.6)

can be subtracted to obtain speckle fringes 1. The magnitude of the difference between the two
speckle patterns can be displayed on a video monitor. Since the video monitor responds only
to positive signals, the subtraction signal is square-law detected before being displayed on the

TV monitor. The brightness on the video monitor can be expressed by

B(2,y) = [Beq(2,y) — Bues (z.y))*

o [qu (:B,y) - Idéf (‘r:y)]z =N (xvy) S(-’E,y), (37)

where
N (@) =8I0 @) (o) sin® { [9Ge,0)] + 252, (38)
§ @y) = 1 - coslle, )] (39)

Here N (z,y) represents the speckle noise, and S (z,y) describes the fringe pattern [13, 14].
Figure 3-2 shows, schematically, how the fringe pattern of eq. (3.7) is produced by digital

subtraction [15].

Equation (3.7) represents a typical ESPI interferogram obtained by subtraction techniques.
This interferogram is affticted with speckle noise that appears as a multiple of tiny spots of
varying intensity, superimposed on the true image (the fringe pattern). Figure 3-3 shows a

characteristic speckle interferogram of a disbond on an aircraft component.

'One tipical limitation in ESPI is that the individual speckies must be resolved by the TV camera. If the
separation of the maxima and minima of cos [® (z,y)] and cos [®{z,y) + ¢(z,¥)] in egs. 3.3 and 3.4 is less than
the spatial resolution of the TV camera, the last term in these equations will be averaged to zero and no variation
will be observed. This requires matching the numerical aperture of the imaging system to a particular sensor.
The mean speckle size must be equal to the size of a single pixel of the CCD.
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Figure 3-2: Digital subtraction of succesive speckle patterns, and the resulting fringe pattern.
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Assuming that fringe spacing is large enough compared with the mean speckle size, this
noise can be considered a high frequency random noise term. Therefore, random speckle noise
can be smoothed by using a lowpass filter and a convolution or median window. If we perform
an average of the equation (3.7) over all speckle phases (smoothing operation), taking into

account the statistical properties of the speckle pattern, we obtain

(Bo (2,90 « (Maes (@,9) = Leq (@ 9))*) = (N (2,9) S (=,9))
= (12 @wP) (U2 @y ) {1 - cos o (@, p)]} (3.10)

The angular brackets denote ensemble averaging.

Equation (3.10) is equivalent to the classical interferometry equation.

To obtain eq. (3.7) we assumed |Ui(z,y)| and |Uz(z,y)| equal in egs. (3.3) and (3.4).
In practice, the speckles are decorrelated, due to the object deformation as the effective rays
collected by the imaging lens are not the same for the first and the second frame [16]. As a
consequence, the complex amplitude terms |Uy(z,y)| and |Uz{z,y)} in egs. (3.3) and (3.4) are
not identical and do not cancel out in equation (3.7). Therefore, the fringes visibility is reduced.

To take this problem into account, the function (B, (z,y)) can be written as

(Bs (@,y)) = (11 (z.9)7) (102 (2, 9)) {1 = veoslp (@, v} (3.11)

where v is a visibility factor depending on the speckle size and the object deformation.
Equation (3.11) represents the smoothed ESPI interferogram. Since the phase change o{z, y)
is a function of the displacement of the surface, information about the relative displacement of

different parts of the surface can be obtained.

3.3 Optical geometry in ESPI systems

As we have seen, ESPI systems can be arranged so that the phase change ¢ (z,y) is sensitive
to displacement in a particular direction.
The arrangement, shown in fig. 3-4, is commonly used to give fringes which are predomi-

nantly related to out-of-plane displacement.
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Figure 3-4: An optical ESPI arrangement giving fringes representing out-of-plane displacement.

Coherent light coming from a laser is coupled to a single -mode fiber and a bi-directional
coupler splits the incident light into reference and object beams. The object beam diverges
from the point S and impinges at a small angle ¥ on the surface. The light scattered from

the object is collected by a lens and imaged onto the sensitive area of a TV camera where it

Ix-e cnbaremgles o o RO AR I I PIPRS PO Y P B S ISR g e nming Yo ard 25 a b o -
mix T AR r

plaiic vt tne 1V cacia, Wikl the reierclice LeaIn WRICH divelges [TOL (. 1 1€ POLNL £ Wollid e
approximately conjugated with the center C of the viewing lens {e.g., the beam would appear to
diverge from C). This is necessary because the interference between the object and the reference
beam must not fluctuate at a spatial frequency which is too high to be resolved by the video
camera.

In order to satisfy the coherence condition, the optical path difference between the reference
and the object beam can be changed by coupling (i.e., through a GRIN lens) a single-mode fiber
of appropriate length to the arm of the reference beam (this problem, present with conventional
gas laser, is removed utilizing solid state lasers with a long coherence length). Moreover, by
controlling the coupling, the intensity ratio of the reference and object wave can be adjusted
and adapted to the object reflectivity. Now we consider fig. 3-5, where a point Oy on the
object is moved along the displacement vector d to the point Op after a deformation of the

object. If the displacement d is considerably smaller than the distance between the object and

28



i &

FRE S

-

1R

i

i

Figure 3-5: The change in optical path associated with a displacement vector d {for out-of-plane
ESPI interferometer).

the point of divergence § of the illuminating source {or if we use collimated ilumination), we
can consider the object to be illuminated by a plane wave with the propagation direction ng.
Besides, if d is smaller than the distance between the object and the viewing lens, it is possible
to assume that the object is looking from infinity along the direction ny,. In this configuration
the angle between ng and ny, is 9. The geometrical path length from the light source via the
object point to the point of observation will be different before and after the deformation has
taken place. In our case, this difference is equal to the path length Al = dg + d,, therefore the

phase change is
2n
o (@,9) = 5 (ds + ), (3.12)
which by simple trigonometric relations becomes
27 .
o(z,y) = Y [d, (14 cos¥) + dysind], (3.13}

where d, is the out-of-plane displacement and d, is the in-plane displacement. The possible
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displacement in the z direction (with the approximation about the illumination beam and
viewing direction mentioned above) does not cause phase change.
If an illumination angle ¥ of at most a few degrees is used, one can put 1+ cos? >> sind

and cos?d =2 1. Thus we see from eqs. (3.9) and (3.13) that dark fringes are observed in the

subtracted speckle pattern when

d, =m% , m=1,2,34,... (3.14)

Thus, the fringes represent contours of constant out-of-plane displacement.
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- IL BACKSCATTS{D’ 200K LENS °
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L
l L
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BOARDSE; X ccp
COUPLER
]:I CAMERA
MICROCOMPUTER

Figure 3-6: An optical ESPI arrangement giving fringes representing in-plane displacements.

An in plane sensitive interferometer can be made by using the apparatus illustrated in fig.
3-6. Here the coherent light coming from a laser is coupled to a single-mode fiber and then
amplitude-divided into two beams of equal intensity, which illuminate the object at equal and
opposite angle ¥ to the normal surface. The surface is viewed in the normal direction by an
imaging lens. The phase change A¢; and A¢, in the two speckle patterns, due to a gencral

displacement d, are given (with the same approximations about the illumination beam and
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Figure 3-7: Phase change related to a general displacement d (for in-plane ESPI interferometer).

viewing direction mentioned above) by (see fig. 3-7)

A, = %\E [d, (1 4 cos¥) + dy sind}, (3.15)

Agy = -2-/\71 [d: (14 cos®¥) —dysind]. (3.16)

The possible displacement present in the x direction does not cause change. Hence, the

relative phase change between the two back-scattered beams is given by
27 .
w = A¢, — Dy = ~ (2dy sind) , (3.17)
and dark fringes are observed in the subtracted patterns when

A
dy:masim?, m=12,3,4,..., (3.18)

so that the fringes represent contours of constant in-plane displacement {independent of the

presence of out-of-plane displacements).
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Chapter 4

Phase Extraction

4.1 Introduction

The fringe patterns represent the displacement of the surface during deformation. Fringes have
a sinusoidal intensity profile, it is common to say that a full cycle, a dark and a bright fringe,
corresponds to a phase change of 27. The pixel by pixel analysis of the phase will lead to the
determination of the real 3D displacement of the inspected surface.

For quantitative fringe evaluation two methods are commonly used:
¢ phase shifting;

# Fourier transform method.

4.2 Phase shifting techniques

Phase-shifting is based on the introduction of a known amount of lateral shift, called the phase-
step, in the interferometric pattern. The resuiting effect is a movement of the intensity values
across the pattern. The phase step is introduced as calibrated phase step. The phase change
may be implemented in different ways, e.g. a micro-metric movement of a piezoelectric driven
mirror, a tilt of a glass plate, an elongation of an optical fibre, a translation of a grating, double
refraction in electro-optical modulation, and a refractive index change.

From the computational point of view, a variety of version of the method exist, all of them
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sharing the ability to eliminate the background and contrast terms by simple arithmetic or
trigonometric operations on the acquired images [17].

The phase shifts, however, have to be introduced when the fringes are perfectly still, so
the application of phase-shifting techniques is limited only to static or quasi-static deformation
measurement.

Phase shifting can be applied to ESPI fringes in a simple and effective manner. The most
common phase—shifting technique is one in which the phase change in one arm of the interfer-
ometer is divided in N equal and controlled steps so that the total phase shift is 2.

At each step, a shifted pattern is grabbed. At each shifted speckle pattern corresponds a
speckle intensity equation. Using image processing technique and combining the resulting N+4-1

equations, one eliminates the trivial unknowns in the interference equation to solve for ¢ (z,y).

4.2.1 Phase retrieval
Matematically, one can demonstrate the phase shifting process, starting from eqs. (3.3) and

(3.4):

Lg(z,y) = [Uh(z,9)]* + [Va(z,y)?
+2|U (=, )] [Ua(z, y)i cos [@ (z, )], (4.1)

with @ (z,y) = ¢, (z,y) — ¢o(x, ¥}, speckle phase of the reference frame;

Iy (@y) = U@y + 1U2(z, )

+2 !U](.’L‘,y)l |U2(:c,y)| cos [‘i’(:{:,y) + 90(1:1 y) + O!] ) (42)

®(z,y) + @(z,y) + o being the sum of the phases relative to the reference frame speckie, the
displacement and the phase shift.
The solution may be easily found if we choose for @ 3 particular values, 7 /4, 3w /4, 5m /4.

The selected values produce, after digital subtraction and filtering, three brightnesses that may
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be expressed as

(Bs @)y o (IU (2,9)1*) (12 (3, 9)/*) {1 = coslip (z, ) + n/4))
= (|U1(sc,y)|2>(|Ua(x,y)|2>{1—?{cosso(x,y)~sinso(a:jy)]} (4.3)
By w (10 @) P) (102 0P {1 = coslo () + 3n/4)

= (Il @) (1Us (= )P ) {1 Y2 s (a,9) - sim yn} (4.)

(Bo(@9))y o (U1 @ y)l*) (e (2, 9)7) {1~ cosfip (z,) + 5m/4])

= ([0 (z,0)]*) (U2 (z,)* 1—Q[—cow(m,ywsmw(w,yn -(4.5)
2

If the <|U1 (:c,y)|2> <|U2 (x,y)[2> term is even in all the equations, by simple trigonometric
operations it is possible to show that the phase can be calculated using
e B ).

T oy~ By (m))y (4.6)

4.3 Techniques based on Fourier analysis

The application of Fourier transform techniques to fringe analysis has been the sub ject of many
scientific investigations in the field of interferometric measurements. The interest is Justified
since the interference phase can be retrieved from one interferogram only. In particular, the
Fourier techniques are particularly attractive for a quantitative analysis of the fringes when the
measurement is made in difﬁcu[t environmental conditions (for example in transient phenomena

or in presence of external disturbances) [20].

34



FAE-

L]

i &

o

.

iz

l
-

4.3.1 Background concepts

The Fourier transform method {18, 19] is a global operation based on retrieving the phase
function in the spatial frequency plane. A phase variation, between complex amplitudes of the
current image and of the reference one, is introduced by translation of the object beam. To
realize the translation, the fibre, which illuminates the object, is mounted upon a x,z translation
stage, adjustable by a piezoelectric device. This shifting causes a carrier spatial frequency
modulation to appear, added to the phase difference due to the deformation.

The resulting intensity distribution, say Bs(z,y), of a two-dimensional fringe pattern, can

be rewritten as follows

Bi(z,y) = N(z,9)E(z,y) = N(z,y) {1 ~vcos[2n (fox + fyy) + »(z,y)]}

= N(z,y) {1 - vé exp (ip(z, y)) exp [i27 (fz + fyy]

g expl-ip(a, )] exp -i2n(fz + £} (47

where f, and f, are the linear components of the imposed translation and @{x,y) is the phase
change related to the object surface deformation.
The Fourier transform B,(n,£) of the function B(z,y) is the convolution of the signal and

noise spectra, i.e.

Bu(n, &) = N(1,6) ® E(n,€), (4.8)

where N(n,€) and £(7,£&) denote the Fourier spectra of N(z,y) and E(z,y), respectively. If
fo=+/2+ fy2 is made larger than twice the largest spatial frequency component of the phase
variation, then the Fourier transform of E(z,y) will have three distinct regions of non zero

values centred at +fg and at 0 (i.e. DC term)

g('ﬂai) = AE(”:&) “C(U - fz:f - fy) _C*(_Tf - fI’_g - fy)s (49)

with Ag(n, €) and C(n, £) representing the Fourier transform of 1 and C(z,y) = 'y% exp [z, y)],

respectively. Roughly speaking, Ag{n,£) can be thought of as an impulse. Therefore, it will be
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considered a Dirac function &(n,£) in the following.
For a typical speckle pattern, N(z,y) will be a function with rapid local variations but with

a slowly varying local mean value. The Fourier spectrum of N(z,y) is
N(n, &) = An(n,€) + S(n,£). (4.10)

In this case too, the sharply peaked function An(7,€) , corresponding to the slowly varying
part of N(z,y), can be assimilated to a Dirac function 8(n,£). S(n,€) denotes the Fourier
transform of the fluctuating part of N(z,y).

Hence the spectrum of Bs{x,y) can be written in the form

Bs(n,8) = A(n,&) +C(n — fz,€ — [} +C* (=0 — fo, =€ — fy) + Q(n,£). (4.11)

A(n,€) is again an impulse-like function arising from the convolution between Ag(n, €) and
An{(n,§). Q(n,£) is the noise floor {the convolution of S(n,£) with C(n,£) and € *(5,£) ). If the
carrier frequency is small, the speckle noise and the fringe information can be separated in the
Fourier plane. In this case, it can be seen that, for values of n and € such as either the function
C(n, &) or the function C *(n, £) is appreciable, the contribution from A(7,£) and Q(n, £) can be
neglected.

The components centred at fo can be isolated by a bandpass window. If these components

are now shifted by a spatial frequency of — fy, after an inverse Fourier transform, the complex

function

Clwy) = 73 explio (2,) (112)

is obtained. From this equation the phase w(z,y) can be calculated pointwise by the relation

-1 8[Cz,y)]

Pw(x,y) = tan R(C(z,y)]’

(4.13)

where & [C(z,y)] and R [C(x, y)] represent the imaginary and real part of C{x,y).
The phase calculated by eq.(4.13) gives principal values ranging from —m to 7. The phase

distribution is said to be wrapped into this range and 27 jumps occur for variations of more
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than 2.

4.4 Phase unwrapping

Ounce the phase data have been extracted with phase-shifting or Fourier technigues. final pro-
cessing is necessary to eliminate the discontinuities which are still present in the wrapped phase
map. Phase unwraping consists of preliminary detection of the fringe order. and further recon-
struction of the absolute phase jumps between two adjacent fringes. If the difference between
two phase of two pixels P, and P, is greater (or smaller) than a defined threshold (nonually
taken as m) then it is assurned that the pixels lie in two distinet fringes. The absolute phase
value is obtained by adding (or subtracting) 27 to the phase of P, Figure 4-1 shows au example

of modulo 27 phase calculations and unwrapped phase.

(a) (b) :

Figure 4-1: (a) modulo 27 phase caleulation and (b) unwrapped phase.

The presence of noise or geometrical discontinuities make this process coniplex and errors are
usually difficult to avoid. However. new improved phase unwrapping algorithms are continvally
being developed to overcome these inefficiencies [21].

Figure 4-2 shows a schematic diagram of the complete procedire of phase extraction by the

Fourier method.
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