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Preface to the Manuscript

I have taught from this and predecessor material for a number of years now, always at the
introductory graduate level. Chapters 1 through 9 can be covered easily in a one-quarter course on
Fourier optics, assuming that the students have had some introduction to one-dimensional Fourier
theory. If desired, chapter 10 on spatial light modulators and chapter 11 on holography can be
included for a fast-paced one-quarter course, perhaps with the omission of chapter 9 on coherence
theory and speckle. Alternatively, Chapter 12 on coherent optical spectrum analysis, 13 on
coherent spatial filtering, and 14 on incoherent spatial filtering can be covered. The entire text is
well suited to two quarters or one semester of instruction.

A comparison of this text with Goodman’s Introduction to Fourier Optics 1s likely to be
of interest to those who have already studied or taught Fourier optics. 1 first learned Fourier optics
from Joseph Goodman, and for many years I taught out of his classic text. I found it difficult to
begin writing a book of my own that would be compared with his. Uleimately I decided in favor of
the project because over the years I have developed what I think are improved ways of looking at
some of the basic material of Fourier optics and, frankly, I was afraid someone else would put
them into a textbook before [ did! Distinctions 1 find important between my treatment of Fourier
optics and Goodman's include a greater emphasis on the angular spectrum concept, focus on
spherical wave (both expanding and converging) illumination of a transparent object as the key to
understanding the Fourier transform property of a lens, a corrected and more general treatment of
monochromatic image formation, a clearer distinction between coherent and incoherent imaging
systems, the introduction of key concepts from coherence theory, a clearer discussion of the
meaning and significance of the assumption of quasimonochromaticity, and the use of more
concepts from geometrical optics. In addition, there is a somewhat different variety of applications
of Fourier optics presented in the two texts. Goodman's text presents by far the more thorough
treatment of the classical diffraction theory as presented in the Fresnel-Kirchhoff and Rayleigh-
Sommerfeld theories. The notation used in this text is similar to that used in Goodman's, although
where convenient I rely on an operator notation not used by him. The basic organization and flow
of material in the first half of the text—diffraction theory, the Fourier transform property of
spherical lenses, coherent and incoherent imaging, and an introduction to holography—is very
similar to that in Goodman's book, and people who are familiar with his text should feel
comfortable teaching from this text, despite the differences.

The text as it currently stands suffers from a lack of good bibliographical materials.
References must be added before I will consider it ready to publish. More importantly, some of the
applications chapters are as yet incomplete. In addition, I think the text would benefit from the
inclusion of more figures. Figures are expensive from a publisher's (and, ultimately, the student's)
perspective, but they can do much 1o increase the learning rate for the student. Finally, the text will
benefit from use in its preliminary form by other teachers who can—and, I hope, will—bring to
my attention the deficiencies they find in using it themselves as a primary text for their courses.

Atlanta
January, 1997

Principles of Fourier Optics

WILLIAM T. RHODES
Georgia Institute of Technology

This material is not for general distribution. It is reproduced by special permission of the author
from materials to be published as a textbook titled Principles of Fourier Optics.
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1. Introduction

i

Historically, the subjects of optical wavefield propagation and formation of optical images were
introduced in physics courses, usually in the form of geometrical optics and diffraction theory. In
the 1960's, however, university engincering departments began introducing their own courses in
optics. The movement of oplics into engineering programs was concurrent with the development
of the laser, which produced greatly renewed interest in optics among both the scientific and the
engineering communities. Electrical engineering departments in particular, which had grown
considerably in size and imponance during the eariier part of the 20th century, were eager to
embrace courses thal related to this significant new technology.

Of extreme importance in bringing optics courses to engineering programs was the set of familiar
mathematical tools that the engineer could use in the analysis of wave propagation, image
formation, and related phenomena. In particular, it was noted by scientists in the 194('s and
1950's that linear systems theory, long of use in the analysis of electrical circuits and radio signal
modulation and demodulation could also be applied to optical systems.

1.1 THE ROLE OF LINEAR SYSTEMS IN OPTICS

The theory of linear, shift-invariant systems is well known to the upper-division electrical
engineering student. Linearity implies that the amplitudes of signals in, for example, an electronic
circuit can be added. Shift invariance, in the particular form of time invariance, implies that the
response characteristics of the circuit do not change with time: rather, a delay in applying the input
ex¢itation produces only a corresponding delay in the production of the output response.

From a physical standpoint it is not at all surprising that analogous conditicns apply to the
propagation of optical wavefields and (o the formation of images. Linearity in optics is found in
the additivity of electromagnetic wavefields, an attribute that both electrical engineering and physics
students take for granted: voltages add, Maxwell's equations imply linearity, etc. With certain
restrictions (differences that exist between laser light and non-laser light are sometimes important in
this regard), linearity implies that light intensities add, too: the light intensity pattern produced by
two desk lamps equals the sum of the pattems produced by each lamp individually.

Shift invariance appears in its most impontant form in the space invariance of optical
systems investigated in this text. Two simple examples suffice to illustrate. The first, suggested in
Fig. 1-1, is that of a source of light—a flashlight—that produces a particular light intensity
distribution on a distant watl. Move the soutce in a plane parallel to the wall and the pattern on the
wall moves with it, but otherwise remains the same. The shift in source position is matched by a
corresponding shift—but otherwise no change—in the resulting light pattern on the wall. The
overall system, with source serving as input and pattern on the wall serving as output, exhibits the
characteristics of shift invariance. We say that the system is space invariant. The other example is
that of image formation. Assume that a simple imaging system produces an image of a planar
object. If the object moves laterally in its plane, the image moves a corresponding distance in its
plane, suggestive of shift invariance—i e., a shift in the position of the object results in a
corresponding shift in the position of the image but otherwise no change.
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Fig. 1-1. Example of space invariance in optics. Moving the flashlight a given distance in a plane paralic] to the
wall moves the illumination pattarn on the wall through the same distance but leaves that pattern otherwise
unchanged.

The attributes of linearity and shift invariance in optical wave propagation and image
formation are exploited extensively in much of this book. Among other things, these attributes
imply that many optical systems can be analyzed using the tools and technigues of convolution,
Fourier transforms, and transfer functions. It will be seen that these tools are powerful indeed in
helping the engineer and scientist analyze, understand, and use a wide variety of optical systems.

1.2 THE ORGANIZATION OF THIS BOOK

This text splits naturally into two parts. The first part, comprising Chapters 3 through 9, along
with the two-dimensional functions and transforms material of Chapter 2 as background,
emphasizes the basic physics of optical wave propagation and image formation. The poiat of view
is that of analysis: How do we analyze these phenomena? How do we understand them? Chapter
3 introduces mathematical models for optical waves and describes how wave intensities relate to
wave amplitudes, Chapter 4 describes the basic phenomenon of optical wavefield propagation: in
classical terms, the theory of diffraction. Chapters 5 through 8 introduce the characteristics and
capabilities of lenses in optical systems: their ability to transform one wavefield into another in
accord with the Fourier integral transform (Chapter 5), their ability to form images of wavefields
produced by laser sources {Chapter 6) and non-laser sources (Chapter 7), and the resuls of their
use in imaging systems with transparent objects (Chapter 8). Both space-domain (convolution)
and frequency-domain {transfer function) approaches to imaging system analysis are emphasized.
In Chapter 9, the distinctions that apply to light from different kinds of sources—specifically, laser
light as compared with light from incandescent, fluoréscent, or other non-laser sources—are
elaborated upon and modeled anatytically. The concept of partially coherent wavefields is
explored, and the interference of such wavefields is briefly analyzed.

The remaining chapters, by way of contrast with the first nine, take the point of view of
synthesis and application. How do we apply these concepts—the basic physics of wave
propagation, image formation, etc.—to the processing of information? Chapters 10 and 11 are
transiional. In Chapter 10 photographic film and spatial light modulators, which provide us with
means for controlling light intensity and wave amplitude distributions, are discussed. In Chapter
11 holography is described, both as an example and as an application of basic optical wave
phenomena. Chapters 12, 13, and 14 build from the analytical foundation provided in Chapters 5,
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6. and 7 by describing the Fourier transforming and spatial filtering characteristics of systems
constructed of lenses, but now from the perspective of application. Chapter 15 describes the
construction of optical elements—computer-generated transparencies, for example—that can be
used in spatial filtering systems. The remaining chapters of the book describe a variety of other
important applications of Fourier optics concepts and techniques, ali for processing signal
information of one form or another. Chapter 16, on acousto-optic signal processing, emphasizes
the processing of one-dimensional signals (e.g., radar, telecommunications) using devices that
impose information on light waves through the interaction of those waves with sound waves. In
Chapter 17, which introduces concepts of nontinear optical signal processing, it is shown how
linear, shift-invariant optical systems can be combined with simple nonlinear operations to perform
powerful image processing operations. In Chapter {8 attention turns to more computationally-
oriented signal processing, specifically to the use of optical systems (o perform algebraic
computations (€.g., vector-matrix muitiplication), The idea of exploiting the interconnectivity
afforded by optical beams is introduced. In Chapter 19, on shift-variant optical processing
operations, it is shown how the limitations presumably inherent in a shift-invariant system can, to
an extent, be overcome, allowing certain useful shifi-variant operations to be performed. Chapters
20 and 21 introduce several historically important applications of Fourier-optics-based processors:
the processing of synthetic aperture side-looking radar images (Chapter 20) and the application of
Fourier optics to coded aperfure imaging and tomography (Chapter 21). Finally, Chapter 22
introduces a potpourni of techniques chosen for their novelty and/or cleaverness in exploiting
capabilities and principles of optics in information processing applications,

INTRODUCTION
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2. Two-Dimensional Functions and
Transforms

Two-dimensional {2-D} functions play an important role in optics. In the diffraction and imaging
of light wave fields, for example, the distributions of concem are usually functions of two spatial
variables. Furthermore, stops, apertures, lenses, and similar elements in an optical system are
normally modeled by 2-D functions.

Two-dimensional mathematical operations are also important. For example, in both wave-
field propagation and imaging problems, 2-I convolution can be used to describe the relationship
between light distributions in two different planes. And this fact suggests in turn that the
relationship between the two distributions can also be described in terms of 2-D Fourier transforms
and 2-D wansfer functions.

The purpose of this chapter is to introduce a number of two-dimensional funcrions that can
be used to model simple apertures, light intensity pattems, and other distributions of interest in
imaging and optical wave propagation and to introduce 2-D convolution, correlation, and Fourier
transform operations. Also introduced are the Fresnel transform and the application of the 2-D
Dirac comb function to sampling and replication in two dimensions. Much of what is presented in
the chapter is a straight-forward extension of corresponding one-dimensional (1-D) material.

2.1 TWO-DIMENSIONAL FUNCTIONS

{tis convenient to have a compact notation for certain 2-I functions that are used throughout the
text. Included among these are the 2-D unit rectangle and unit miangle functions, the standard 2-D
Gaussian ,the 2-D sinc function, and the 2-D delta and Dirac comb {sampling) functions. These
functions are illustrated in Fig. 2-1 in perspective drawings and, excepting the 2-D delta and comb
functions, as grayscale images. Each of these functions is a direct extension of its 1-E} counterpart,
having the form f(x,y)=g(x)g(y), where g(x) is the corresponding standard 1-D function. Thus,

rect{x, y) = rect(x)rect(y), (2.13
i, y) = wiatri(y), (2.2)
sinc(x. v} = sinc{ x)sine( y), 2.3)
exp{—fr(x2 + )'2]] = cxp(fmrz)cxp(—lryz), 2.4)
S(x,v) = 8(x)é(y), (2.5)
combf(x, ¥} = comb({x}comb( y}. (2.6)
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comb{x,y}

&(x.y) #
", / x
x "
4 7

(e) ! t

Fig. 2-1. Six standard separable 2-D functions: {(a) rect(x.y}, (b) tri(x.y), (c) Gaussian, (d) sinc(x.y) {with bias in the
grayscale representation to accommodate negative values), (e} delta function, (f) comb(x,y) (central portion anly).



TWO-DIMENSIONAL FUNCTIONS AND TRANSFORMS

The component 1-D functions rect(x), tri{x), sinc(x}, and comb(x ) are defined as follows:

t Ixl< /2
rect(x)=41/2 Ixi=1/72, 2.7y

0 otherwise
o I-lxl lxi<] 28
triCx) = 0  otherwise’ 28
sinc(x) = snm (2.9}

x
comb(x)= ¥ &(x—n). 2.10)
fmmem

These t-D functions are illustrated in Fig. 2-2. Note that sinc(x) equals zero for x=x1, +2, +3,
etc. Also note that, since 8(x,y)=8(x)8(y}., comb(x.y} can be written in either of two forms:

1] rectix) /'E tri{x}
-2 1 12 X -1 1 b
1| sincix} comb(x)
. o T T ! r T "
-2 -1 1 2 x 2 A 1 2 x
Fig. 2-2. Standard i-D fonctions.
comb{x, y) = 2 ZE(x—m.y—n) (2.11a)
Hi=—ee iz
or
comb{x,y) = 2 Eﬁ(xum)ﬁ(yfn}. (2.11

RE—t0 R=—

Although the same name may be applied to both the 1-D and the 2-D version of a particular
function (e.g.. rect), explicit use of variables removes any ambiguity as to whether the function is

one- or two-dimensional. The functions rect(x,y), tri(x.y), sinc(x,y), and exp[-m(x2+y2)] are

defined so as to have unit value at the origin and to have unit volume. The function cos[2m{ux +
voy)]. illustrated in Fig. 2-3 and also of great importance in the text, is not separable, but it can be

writlen as the sum of two separable functions, {1/2)exp[j2mugx Jexp[j2rvoy] and (1/2)expl-
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j2rugxlexpl-j2rvoy ). The function comb(x,y} has unusual scaling properties becausce of the
behavior of the Dirac delta function under scaling:  §(ax) = (1/lahd(x). As a consequence, if it is
desired to represent a regular aray of unit volume impulses spaced by X and Y inthe x and y
directions, the function (1/1XY hcomb{x/X,y/Y} must be used, not simply comb{x/X.¥/¥). This
characteristic of the comb function is established in one of the homework problems. Line
impulses, of the form 8(x}I(y) and 1(x)&(y). where the function 1(.} is unity for all values of its
argument, are of use in representing slits in otherwise opaque masks. Their properties are
explored in a homework problem.

Fig. 2-3. A portion of the function cos[2m(ugx + vgy)) as seen from above the x-y plane. The bright lines
represent maxima (crests) of the furction. ie . lines where the phase 1s an nteger multiple of 2x radians. The dark
lines represent the intermediate minima

Two functions of considerable use in modeling circular openings such as apertures in an
imaging system are the unit-diameter cylinder function and the unit-radius circ function, defined
respectively by

1 red
cylir) = T (2.12
Y 0 otherwise )
and

7 1 rsi "
curetr) = 0 orherwise 214

where r is the radial coordinate given by
reyfe ey 214

These functions, which in graphical form look like cylindrical hat boxes, are illustrated in Fig. 2-4.
Being functions of r alone, they have circular symmetry. It is not really necessary to work with
two different functions of this kind; one would suffice. However, both functions are in regular
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use, and familiarity with them both is therefore desirable.! The cylinder function, being directly
comparable in width to the 2-D rectangle function in that cyl(r) and rect(x.y) both have unit width,
is preferable in cases when direct comparison of optical systems with square and circular apertures
are 10 be made. The two functions are related by the equation cire(r) = cyl(r/2). The 2.-D

Gaussian function, which can be written in the form exp[-nr2], is also circularly symmetric. As
noted carlﬂer, most of the standard functions are defined so as 10 have unit central ordinate (value at
the originjand unit area or volume. The cylinder and circ functions are exceplions, being defined
for unit diameter and radius, respectively, rather than unit volume.

cirs{r}

Fig. 2-4. The circularly symmetric functions cyb(r) and circ(r), where r is the radial coordinate. The cylinder
function is defined to have unit diameter, whereas the circ function has unit radius.

Shified and scaled versions of the basic functions are obtained by straightforward
modification of their arguments. For example, a rectangular function of height 2 units, width in
x of 2 units, and width in y of 3 units, and centered at coordinates x=4, y=5 is represented

by

2rcct[x_4,£§).
2 3

It is important to note that the arguments of all the speciat functions used in this text—
rectt-,-), sinc(-,), etc.—are dimensionless. Thus, in the above expression, (x-4)/2 must be
dimensiontess. In later chapters, variables x and y have dimensions of length, implying that all
associated shift and scaling parameters must also have the dimensions of length. For example, in
the function rect[{x-xo¥W {y-yoWH], if distances x and y are given in millimeters, quantilies X,
Yo, W, and H must be also.

An important operator used in this text is the rotation operator, denoted by %, { }. This

operator produces a rotation through an angle 8, of the 2-D function enclosed in the brackets. The
positive direction of rolation is taken to be in the counter-clockwise direction, consistent with the
convention applied to rotating phasors in engineering courses. The axis of rotation is always at the
origin. Figure 2-5 shows some examples of application of the rotation operator. A simple
analytical example is Kggeirect(x/2,y)} = rect{x,y/2). Note that care must be taken when rotation
of a function is combined with a shift [e.g., Fig. 2-5(b)}. Formally the rotation operation can be
defined by the equation

! Bracewell, Ref. 2- 1, uses the function rect(r) instead of cyb(r). The functions are essentially equal.
However. the nolations cyl(r) and circ(r) conjure up an image of a circularly symmetric function in a way that rect(r)

may Rot.
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glx.y) =R, {f(x.9)} = flxcosB, + ysinb,. ycos8, — xsind, ). (2.15a)

However, except in numerical calculations, there is rarely a need to use this formula. A more
compact definition can be given in polar-coordinate notation:

R, 1S O} = £,(r.6-8,), (2.15b)

where fp(.,.) denotes the function f(x,y) expressed in polar coordinates.

Fig. 2-5. Example of the rotation operation: {(a) %oﬂlrecl(%,y)]. th) .‘Rzo‘:'[rect(%,y)].

2.2 TWO-DIMENSIONAL CONVOLUTION AND CORRELATION

The 2-D convolution of functions f{x,y) and g(x,y} is defined by the integral expression

wxy= [ & met-Ey-mdEdn. (2.16)

—ga —ou

Throughout the text a 2-D convolution operation will be denoted by a double asterisk:
h(x,y)= f(x, y)r*g(x.¥). (2.17)

1t iis easily shown by substitution of variables that the convolution operation is commutative, that
is,

Sl yyeg(x,y) = glx, yye* fx.y). (2.18)

The integral in Eq. (2.16) can be interpreted picterially as follows. First, the function f(.,.)
is skeiched as a function of integration variables & and 1. The function g{.,.) is then rotated
through 180° and positioned along the & and 1 axes with displacements along those axes in the
amounts x and y. Thus, what was at the origin in a plot of g(-£,-1) is positioned at coordinates
E=x, }=y. The product of f(£,n) with the rotated and shifted function gix-£,y-1) is calculaied,
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TWO-DIMENSIONAL FUNCTIONS AND TRANSFORMS

and the two-dimensional integral, o volume, of the product is evaluated. A particularly simple
case occurs when f(x,y) and g(x,y} equal either 1 or 0, for then the product is either zero or unity
and the integral equals the area of ovetlap of f(E.n) and g(x-§,y-n). Anexample of key steps in
the convolution of two such one-zero binary functions is shown in Fig. 2-6. For the case where
both f(x.y) and g(x.y) equal the unit rectangle, the result can be easily shown to be the unit triangle
function: rect(x,y) ** rect(x.y) = tri(x,y}.

¥ y R
fix,y) /\ alx.y) J
B iy
x L1 N f
X
' £
i xl-.—
(a) (b} (c)

Fig. 2-6. Example of the convolution of two ohe-zero binary functions f(x,y) and g(x,y). The two functions are
shown in (a) and (b} from above. The darker shaded regien in (c} shows the area of overlap for the particular values
of x and y chosen. Note that in (c) the function pi...) has been rotated through 180°.

An important convolution relationship is expressed by
Flxyr=d(x—x,, vy, = fla=x, v %) (2.19)

which says that a shift in the x-y plane of function f(x,y) can be represented by a convolution of
f(x,y) with a shifted delta function. Mixed cartesian and polar notation can be used, as, e.g.. in the
expression cyl(r)*#8(x — x,,y— y,) to represent a shifted cylinder functien.

Two-dimensionat correlation is similar to 2-I convolution, but there is no rotation of either
of the functions, only a relative displacement, and one of the functions is conjugated. Thus, using
the symbol &% to denote 2-D correlation,?

stxy) = flx, vhg(x, y)

T . 2.20
= [ [r&me&-xn-ydidn (2.20)

Note that the correlation operation is not commutative. Rather, if f{x,y)w#g(x.y) = s(x.y), then
Uy IR f(xy = s (-x-y).

2 There is. in fact, no universally accepted definition for the 2-D correlation integral (or the 1-D correlation
integral, for that matter). Somc authors include the canjugation in all cases, whereas others add it in when complex-
valued functions are invelved. Some shift the first function. others the second. The definition of Eq. (2.20) for
correlation is attractive because of its simple relationship to convolution, as expressed in Eq. (2.23). Note that the
definition in Eq. (2.23) is consistent with defining fasg in terms of its Fourier transform: fesg > FG*.

27
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Two useful relationships invelving convolution and correlation are given by
[Fx.y) +x g(x,yIPex(f(x,y) #5 glx,¥)] = [f(x.y)dexilxy)} => {gxy)eagixy)] (2.20)
and
Ff(x)gn] *+ [qiairy)] = [f(x) * qUx)lgly) * ciy)]. (2.22)

In the latter equation, ** denotes a 2-D convolution, whereas + denotes a 1-D convolution.
Equation (2.21) states, in loose terms, that the autocorrefation of a convolution can be written as
the convolution of autocorrelations. Equation (2.22) says that the 2-D convolution of two
separable functions can be evaluated by calculating simpler 1-D convolutions. It can also be
shown that

Flr, vixag(x,¥)= flr y)xxg*(—x,-y)

. (2.23
= flryis Ry {2 * et )

In words, the cross-cormelation of fix.y} with g(x.y) equals the convolution of f{x.y) with an
inverted {rotated through 1807} and conjugated version of g(x.y).

2.3 THE TWO-DIMENSIONAL FOURIER TRANSFORM

The two-dimensional Fourier ransform is a straight-forward extension of the one-dimensional
Fourier transform {see Appendix A for a summary of basic 1-D Fourier transform relationships).
In this text, the 2-D Fourier wransform of function g(x,y}. denoted G(u.v), is defined by

Glu, vy = J J,[:(.r,y}cxp[—jZJ'r( ux + vv)|dedy. (2.24)

The variables x and u must have reciprocal dimensions in order for their products to be
dimensionless, and similariy for the variables y and v. Thus,if x and y have units of
millimeters, variables u and v must have units of cycles per millimeter, or mm-?. In such a case.
x and y are referred to as the space domain vanables. and u and v as the spatial frequency
dumenin variables, or simply the spatial frequency variables.

The integral expression in Eq. (2.24) is conveniently expressed using operator notation:
Cliv) = Flata vy (2.25)

The reciprocal relationship is given by

- ‘
gz ) = F G} = I J(F(u.u)cxp{‘,'.?fr(ux+v_\')idmil‘ . (2.20)

Frequently in this text the relationship between g(x.y) and G(u,v) is denoted by a two-headed
arow:

alx.y) & Gluv)
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In most cases upper-case characters witl denote the Fourier transforms of functions denoted by Table 2.1. Properties of the Two-Dimensional Fourier Transform
lower-case characters, when necessary, a hat () will be used. Thus, F(u,v} is the Fourier

A
transform of f(x,y}, U{u,v} is the Fourier transform of Ugx,y), etc. 1 Linearity

Note that Eq. (2.26) represents the function g(x,y) in terms of a superposition of agxy) + Bhlx.y)) & aGluvy+ BHuv),

ulcmcmarﬂi components each of which has the basic form exp[j2n{ux+vy)). Although such (a and b may be complex valued)
functions gannot be visualized directly, the corresponding real and imaginary parts cos[2r{ux+vy)] 2, Similarity (Scaling)
and sin[2n(ux+vy}] can be, these functions being suitably represented by surfaces with the LA PN b1 Gla, by)
appearance of corrugated roofs. Figure 2-1 gives some indication of how such a surface would & a @ diov
appear from above. Only a central portion of the function is shown: cos[2m{ugX+voy)] extends, in (cx.dy) 1 G(E v)
fact, to infinity in all directions. The crientation of the corrugations, indicated by 8, in the figure, guenay tedl \c'd R
is easily shuwn to be given by ab. c and d real
e 3. Shift
6, =tan™ -2 | 2.27) 8lx =%y, ¥ = ¥y ) 3 Glu, v)exp[~ 20 (x,u + y,v)]
x5 and y, real
The spatial period L, also shown, is given by 4 Combined Scaling and Shift
X—x, v—¥, .
L= ’I . (2.28) g[—a—(&,#J ©lab! Glaw, bvyexpl—-j2r(x,u+ y,v)]
u, +v .

s, Skew and Shift
The calculation of 2-D Fourier transforms can in many cases be difficult, Special cases flax+by+e.ax+by+ o)
whete simplification occurs, such as when f(x,y) is separable in cartesian or polar coordinates, are ' A : :
treated in the following two sections.

l . b, a4, H o,
2.3.1 Basic Relationships @ expl-s2ntapct sl Ju-Jvmput oy
A number uf basic properties associated with the 2-D Fourter transform, sometimes referred to as where
theorems, are used throughout this text. These age listed in Table 2.1 without proof. With the be —be, _ax—ag
exception of the rotation, skew-shift, and projection-slice theorems, which have no one- D=ab, —ab, "o~ D Yo = D
dimensional counterparts, the theorems are proved in essentially the same way the cormresponding t '
theorems for the 1-D Fourier transform are proved. The rotation theorem, formally written as 6. Modulation

SO, yyexp( 2, x + v, y)] € Fla—u,, v - Vo),
Ko, 18(x.9)} & Ry, tGlu, vl (2.29} .

Convolution
Flx.¥)*#glx, vy & Flu,vIGlu,v)

states that rotation through angle 8 in the space domain corresponds 10 an identical rotation in the
B e y po Flapg(ay) & Flu,v) **Glau, vy

Fourier domain. Relationship 16 involving functions in polar coordinates is proved later in this
chapter. The relationships f*{x,y) o F*(-u,-v) and f*(-x.-y) & Fuv)are easily remembered 8. Derivative
in verbal form: Conjugation in one domain corresponds to conjugation and inversion through the

d .
origin (rotation through 180° in the other. ‘é;f("" » » j2muFu,v)

Table 2.2 lists a number of 2-D functions and their 2-D Fourier transforms. In this table if(x y) e j2VE (i, v}
and elsewhere in the text the function 1(-) equals unity, independent of the value of its argument. oy
This function is used occasionally in the text as a placeholder to emphasize that a particular function 9 Correlation

is being considered in a 2-D framework, even though the function varies only in one direction. .
Sy kgl y} € Fluv)G (u,v)
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11

12,

13.

14,

15.

16.

17.

18.

TWO-DIMENSIONAL FUNCTIONS AND TRANSFORMS

S vIg*(x, v o Fluv)kxGlu,v)
Autocorrelation

Flx, yyerf(x.y) ) Flu,v) i2

) € FuviesFiay) .
Duality

if glx,y) & Ga,v), then

Glxy) » gl-u,-v).
Rayleigh's Theorem

I j[g(x.y)|1dxdy= _[ J|G(u. VI dudy.

Rotation

R, (8.1} & Rg, {Gum}.
Separability

Flxdgly) & F)Gv)
Central Ordinate

| [Favydudy = £(0,0)

I If(x.y)dxdy = F(0,0)

Circularly Symmetric Functions
£ (r) e G,(p)

where

G,(p)=H, (g (N} =2r[rg,(n)J,2arp)dr
a

r:\!xz +y2. p=\/u2 +7
Projection Slice Theorem

fx )Ry {S(OUN} & Flu Ry, {1)8(v)}.
Symmetry Properties

If fix.y}is then Flu.v}is
real hermitian*
hermitian® real

even in x eveninu
even in y evenin v

odd in x oddinu
oddiny oddinv
imaginary antihermitian*
antihermitian* imaginary

19.

TWO-DIMENSIONAL FUNCTIONS ANT TRANSFORMS

circularly symmetric circularly symmetric

* A function g(x.y) is hermitian if Re(gix.y)} 15 even and Im{gix,y)} is odd. This condition
implies that g*(x.y) = gl-x.-y) and that lgix.y)l is even and arg{gi(x.y}} is odd The function
g{%,y} is antibermitian if Re{g(x.y)} is odd and Im{a(x.¥)) s even

Coordinate Reversal and Conjugation

f(-x.y) > F(-u,v) f(x.-y} > Flu,-v}
f(-x,-y} o F(-u,-v) *{x.y) « F*(-u,-v)
*(-x,-y) “— F*{u.v)

2-12
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Table 2.2. 2-D Fourier Transform Pairs

Function

gix.y)
rect(x,y)
sinc{x,y)
ri(x,y)

sincz(x.y

cxp[-n(x2+y2)]

exp(~m"2)

Glu.v) = J Jg(x,_v)cxp{—ﬂn(ux + vy)ldxdy

gl y)= I JG(H. viexp(j2miux + vy)dudv

2-D jer

Glu,v)
sinc{u,v)
rect(u,v)
sincz(u,v)
H triu,v)
exp[-n(u2+v2)]

expt-np2)

ool {2 | e xe|-(' |

cxp[—jfrrzl —jcxp[j?l‘pzl
r i L2
cxp[—n{a e ]:l az0 {a+ ;c)cxp[—n'(u + jelp ]
3 1 2

exp[ﬂt(a + joyr ] az0 (u+j¢'}e’(p|:—x[a+jc)]
8(x,y) 1
S(x)1(y) Hu)d(v)

1(x)B(y) Bl (v)

I &(u.v)
8(x-a,y-b} exp[-j2miau+by)]
sga(x}1(y) —ﬁé(u)

TWO-DIMENSIONAL FUNCTIONS AND TRANSFORMS

explj2m{uox+vey)]
cos2m{uyx+vyy}

sin2re(ugx+vey)

comb{x,y)
1
Aomb % §)

comb{x)3(y}
comb{x)1(y}

cyl(r} [diameter = 1]
circ(r} fradius = 1]
c l(i)
2
()
circ) —

rl)

S(u-ug,v-vo)

% [B{utug, V+vg) + Su-U5.¥-vo)]

'iz- [B{utug, v+vy) - Blu-ug.v-vy)]

comb(u,v}
al_b [ abcomblau,bv) ]  (a,b>0)

comb{u}i(v)
comb{u)d(v)

[y (x)
[412 2L |=(% romber

Jr[?. hgﬂ—?] = rsomb(2p)

d&’n\ ) (=dp) d'r
dR),ulmap)y (a4 x
( 2 o :| ( 2 )somb(dp)

rjvr[Z %’T] =(r,2mysomb(2r,p)

2.3.2 Transforming Functions Separable in Cartesian Coordinates

As noted earlier, many of the 2-D functions of interest to us in this text are separable in Cartesian
coordinates. The Fourier transforms of such functions are easily found using 1-D Fourier theory
because of the following relationship: If g(x.y) is separable in Cartesian coordinates, that is, if

gix,y) is of the form

then

gxy) =g (08,

Fletey}= J jgx(x)g_‘.(y)exp[—jln(ux + vy)jdredy

oo oo

= _f jg,(x)gy(y)exp(— F2rux)exp(—j2mvy)dx dy

—o0 —ca

= J-gx(x)exp(—ﬂmx)dx jgy(y)cxp(—ﬂnvy)dy

—oa

=

2-14
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= F{eto} R {0},

where %, and ¥, denote 1-D Fourier transform operations. In compact form,
% y pe P

Flerng, (0} = G w)Gyv). (2.30)

“This relationship says that the 2-D Fourier transform of separable function g,(x)gy(y) can be
obtained by finding the 1-D Fourier transforms of g,(x) and g,(y) independently and multiplying
them. Note that separability in the space-, or (x.y). domain implies separability in the spatial
frequency, ot (u,v), domain. As a simple example, consider the 2-D Fourier ransform of the 2-D
function rect(x/2,y/3):

slree( 50} = e S 3} = 7 fee( 3 {3

Recalling from §-D Fourier theory that Feirect(x)} = sinc(u), we obtain
T{rect(%,%)} = 2sinc(2u)3sinc(3v) = 6sine(2u. 3v).

Tables of 1-D Fourier transform pairs and properties of 1-D Fourier transforms are presented in
appendix A for use in connection with 1-D transform evaluation.

2.3.3 Transforming Functions Separable in Polar Coordinates

Various functions of interest in optics. such as the cylinder function, are best expressed in terms of
polar coordinates r and 8. As a general rule, the Fourier transforms of such functions are
themselves also best expressed in polar coordinates. In this section the form of a polar-coordinate
Fourier transform is established and simplifications ar¢ introduced for functions that are separable
in r and 8.

Consider a 2-I space-domain distribution g and its 2-D Fourier transform G, both

expressed in polar coordinates: g(r.8)e>G(p.¢). Making the following identifications between
rectangular and polar coordinates,

r=alx+y x=rcosf {2.31)

g= tan’{l) y=rsin (2.32)
X

p=Vul +v u=pcosg (2.33)

2-13

TWO-DIMENSIONAL FUNCTIONS AND TRANSFORMS
afv .
g=tan"'| — v=psing (2.34)
i

]: dedv:TjrrdrdQ (2.35)

v Gn

and making appropriate changes in the integral expression of Eq. (2.24), we obtain the following
expression for G(p.¢):

Glp.p)= j{Jrg(r_G)exp[—j?npr(coq Bcos¢ +sindsin tp}]dr}del (2.36)

hLe

The integral expression is in general difficult (o evaluate. However, if gfr.@) 1s separable 1 polar
coordinates, that is, if

gir.8) = g,{r)gg0),

simplifications result. First, substituting for g(r.6) in Eq. (2.36), rearranging terms and
introducing the trigonometric identity cos(or — B) =cosacos B +sinasinf yields

o 2m
T{g(r.ﬂ)}:]{g,(r)ge{ﬂ)}zjrg,(r) jgg(a}exp[fj?_rrprcos(e—¢)]d9 dr. (2.37)
0 0

Further simplification is obtained by noting that £4(0) is periodic with period 2 and can therefore
be written in the form of a Fourier series:

o

2o(BY= Y. cpexpljm8). (2.38)

mz—ea

It is thus only necessary to find the polar-coordinate transform for separable functions of the form
grjexp(jm8), m integer, and exploit linearity. The result. obtained in problems 2.11 and 2,12, is
the following:

oo

Fle, (g} = 3 Hp{g, (o= explimp). (2.39)

m=—aa

where ¢y is the normal Fourier series coefficient.

|
s = | 291 0) expi—jmB) d8, (2.40)
“w=op IJ,A@ ) expl=f
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and where Hy{g(r)} is the mth-order Hankel transform of gdr), given by

H (g, 1) = 25 g, ), 2mrp)dr, (2.41)

| 0

Iy denotihg the mth order Bessel function of the first kind. Note that separability of g in (r,8)
does not imply separability of its Fourier transform in {p,¢).

Of particular interest is the special case where g(r,0) is circularly symmetric, that is, a
function of r alune:

g(r,9) = g (r)1(8). {2.424
In that case, only the zeroth-order Hankel transform is needed, since all Fourier series coefficients

in the summation of Eq. (2.39) equal zero except for ¢, and the Fourier transform operation
reduces to

Hadnt®)} = GylpHip), (2.43)

where Go(p) is defined by

G,p) = ,'H,,{g,(r)} = ZJ‘I.'J rg (r) 2 rorpydr . {2.44)
it

We see that the Fourier transform of 4 circularly symmetric function is itself circularly symmetric
and can be found by evaluating a 1-D integral, the zeroth-order Hankel transform of ge(r). This
form of the 2-D Fourier transform is sometimes referred (o as the Fourier-Bessel transform.
Note that for this special case of circularly symmetric functions there is a one-to-one
correspondence between the 2-D Fourier transform and the zeroth-order Hankel transform:3

FoH (2.45)

Certain consequences immediately follow from this observation. For example, since a function
that is circularly symmetric is also symmetric in x and y, it follows immediately that #{, = %‘1

(since for a symmetric function F= #-1}, or

gAr =2n j PG APV A2mrp)dp. ' (2.46)
0

Furthermore, a direct application of the similarity (scaling)} theorem leads to the relationship

3 There is a subtile distinction in the ways the two operators .} and Hp(.) are used in that the operand of
¥ exists in a two-dimensional space whereas the operand of H is strictly one-dimensional: it is appropriate o

write #]g.{r)} in the form ﬂg,\ﬂﬂﬁ}; such u substitution for r in Hi{gdr)) is questionable at best.
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a
Ho(gar)} =5 Gol 5. (2.47)

The proportionality factor 1/a2 on the right side of the equation results because both x and y are
scaled by a in the distribution g(ar). In general, for circularly symmetric functions, the zeroth-
order Hankel transform can be thought of simply as a mathematical route to the 2-D Fourier
transform, and any characteristics of the 2-D Fourier theory must carry over.

The zeroth-order Bessel function J,(-} entering into Eq. (2.44) is plotted in Fig. 2-7 in the
form J(nL). Note that J,(n) equals unity at the origin. lis zero crossings are aperiodic, the eight
shown occurring where § equals £0.765, £1.757, £2.755, and +3.753.

The circularly symmetric function of greatest use to us is the cylinder function. Use of the
zeroth-order Hankel transform leads to the following expression for its 2-D Fourier transform:

(134

Reyln)} = Hyfeylin} = 2EJrJJ2n‘rp)dr.

Applying the change of variables r” = 2#rp and using the identity

1 T T T T
Joimd)
0.5

[=]

0.5

aWA AW
ViV

Fig. 2-7. Plot of Jg(nE). The values of § at zero crossings in the figure are £0.765, £1.757, £2.755. and +3.753

I

[n1,(mdn=x3(x), (2.48)
0
WE can write
1 7 I
H {oyl(r}} = 2n? ({f I ' = 250w,
yielding

2-18
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Fleylin} = %[231%”)]. (2.49)

This function, illustrated in Fig. 2-8, is circularly symmetric (as of course it should be, since it 13
the Fourier transform of a circularly symmetric function), consisting of a central lobe and a series
of side lobes. The function in brackets, which gives the Fourier transform of the cylinder function
its basic shape. is sufficiently important in Fourier optics that Gaskill (Ref. 2-5) has given it the

name sombrero function, denoted somb(p).

sombi(p) = ZM. (2.50)
e

Fig. 2-8. The sombrera function sombi(p), the wwo-dimensional Fourier transform of cvi{(r}.

1
scmb(E)
N /‘\.V
Y \
-4 -2 n 2 4 &

Fig. 2-9. Cross-section of the sombrero function. Zero crossings in the figure are at £ equals +1.220, £2.233,
43.238, and 14.241.

The term besine is also sometimes used in connection with this function, because it contains a

Bessel function and because of its resemblance to the conventional sinc function. The sombrero
function is shown in cross section in Fig. 2-9. Note that it is defined to have unit value at the

origin. The valugs of p for which somb{p) is zero coincide with the non-perindic zeros of I (np}.
The first four occur at p = 1,220, 2.233, 3.238, and 4.241. An application of the similarity

theorem leads to the follawing useful 2-D Fourier transform relationship for a cylinder function of
arbitrary diameter d:

TWO-DIMENSIONAL FUNCTIONS AND TRANSFORMS

?{ cyn(ﬂ} = [%’E]snmh(dp}. (2.51)

This function has its first null where dp=1.220. or where p=1.220/d.

Occasionally it is convenient to use mixed polar and Cartesian notation in representing
functions. For example, 4 pair of cylinder functions of unit diameter spaced by 4 units in the x-
direction can be conveniently represented by the mixed-notation function

eyl(rpe[8x +2,y) + 8(x - 2. ).

The Fourier transform of this function is alse most easily expressed in mixed notation, having the
form

[%somb(p)]{i’ cos{2r2ud]

2.4 SAMPLING AND REPLICATION IN TWO DIMENSIONS

Sampling and replication in two dimensions is a relatively straightforward extension of 1-D
sampling and replication (see, e.g., Ref. 2-1}. Consider the 2-D sampling operation first. Assume
that a band-limited function f(x,y) is to be sampled in twe dimensions through multiplication by a

sampling comb of unit-volume impulses spaced by X in the x-direction and Y in the y-direction.
The resutlt is the function

_f.\()c.vv):f(x,_v)[—xl—ycomh(%,%}]. (2.52)

From basic definitions this function can be written in the form

filoy)= fla ) 2 Eﬁ(xfm)(.y—n}’}

m=—eap=—m

= Y ¥ fimXn¥)dte—mX.v-n¥). (2.53)
e,

Fourier transforming both sides of Eg, (2.52) yields

|
F () = =— Flu v p#| XFeomb(Xu Yv)
Tk [ }
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; - n n
= WF(u,v)**[ >y S(MA}-‘V—?):'

Mix-wR==oco

v w | m n
, =y E}?F(u—;,v—?). (2.54)

M=—es g=m—ca

|
Eguation (2.54), which shows Fs(u,v} to consist of an infinite number of equally-spaced replicas
of F(u,v), is valid for all functions f(x,y). In the special case when f(x,y) is band limited and the
sample spacings X and Y are sufficiently small, the replicas of F(u,v) are non-overlapping.
This is the case if, for example,

Fluvi=0, Y+ >8 (2.55)

and

1o Loop (2.56)
X Y

Figure 2-10 shows the appearance of the non-overlapping replicas, assuming that F(u,v} has a
cireular region of support of diameter 2B. Note that the replica centered at the origin is given by
(1/XY)F{u,v} and that F(u,v) can therefore be obtained by multiplying Fg(u.v) by
(XY)rect{Xu,Yv):

Flu,v) =F_,(u,v){XYrccl(Xu, Yv)]‘ (2.5

Fip. 2-10. Portion of the spectrum Fg(u,v) of the sampled 2-D function fg{x,y). The white areas represent the
regions of support of replicas of F(u,v}.

The equivalent expressions in the space domain is the convolution
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f(x,y)=f,(x,y)**sinc(%,%). (2.58)

Replication by convolution of a function with a 2-D comb function can be used 10 represent
functions that are periodic in two dimensions. For example, the function

8lx, y) = rect(x, 2y} *écomt{%,-;-’)

represents an infinite 2-I array of unit-amplitude rectanguiar pulses spaced by two units in the x-
direction and by three units in the y-direction. Each pulse is one unit wide in x and one-half unit
wide iny. A general periodic function with period (X,Y) is given by

I x y)
Y= Vo] —=comb| —,= ||, 2.59
Flx,y}y= p(x,y) [XY“’ (X v ] (2.59)

where p(x.y) is the base period function. The Fourier transform of f(x,y} is given by

F(u,vj=-/\—jFP(u,v){XYcomb(Xu, ], (2.60)

which can be written in the form

oo oo l
Fuv= 3 3 + %,'—;}f[ug%v—%} 2.61)

H=—o0 n=-—s0

The spectrum is seen to be impulsive, being zero for all frequencies except where u is an integer
multiple of the fundamental period in the x-direction and v is an integer multiple of the
fundamental period in the y-direction. Normally the region of support of p(x,y) will be smaller

than XY, although it is not necessary that that condition be satisfied. A function representing an

MXxN array of replicas of a base function p(x,y) can be expressed, in the case where M and N are
add, in the form

= ! EIFAN V. J_‘)
glx,y)= p(x,y)..[xy comb(x . Y)recl( WX NY ] (2.62)

Note how the rectangle function truncates the replication array. A homework problem treats the
case of even M and/or N.

2.5 FRESNEL TRANSFORMS*

Convolution with quadratic phase factors is important in the mathematical description of the
propagation of electromagnetic wave fields. In this section, properties associated with such
convolutions are presented, and a particularly important relationship, referred to in this text as the
Fresnel transform, is introduced 4

4 The Fresnel ransform is named after French engineer Augustin Fresnel, who contributed sigaificantly to
the development of diffraction theory. There is, in fact, no standard definition of the Fresoel transform. The
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A
In one dimension the Fresnel transform fo(x) of a function f(x} is defined by the
convolution

- 1 s
Solxy= flx)s— cxp(j—x‘). (2.63)
Ve a
Equation (2.63) can be expressed in more compact form by

FalD) = fx)*hy(0) (2.64)

where the convolution kernel kg (x) is given by

h ()= J%ex{jgxﬁ). (2.65)

The parameter o is restricted to be reat-valued. Note that the Fresnel transform of f(x), unlike the
Fourier transform, is itself a function of x, i.e., there is no change of domains. Note also that the
Fresnel transform produces an entire family of functions with o as a parameter. In two
dimensions the Fresnel transform is defined by

Falry)= flx.yy*hy(x,y), (2.66)
where h,(x,v) is given by
h,,(x.y):,chp[jﬁ(x2 +)'2)]. (267
ja a

The functions hy{x) and hy(x, v) have impulsive autocorrelation properties. In particular
it can be shown that

ho{x)%h (x)*—i—exp(i’r—xz)* ! ex (_-Exz}
al I¥ha (X = e B ) e T e (2.68)

= 8{x)

1 N ) 1 [ i3 ii
} . **l : -):_ —_— + v * % —J—1 4y
INERIT L TR jacxp[;a(x ¥ ]] o P Ja{‘ ¥ ) 2.69)

=8(x.¥)

Using the above identities one can easily establish the following inverse transform relationships:

definition used here is particularly convenient in connection with wave propagation modeling, as shall be seen in
Chapt. 4.
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Fln= fo i (cy, (2.70)

Flais fylxo) s xhnlay) . (2.71)

The convolution relationships of Eqs. (2.64) and (2.66) ¢an be cxpressed in the Fourier
domain by

[':a(u}=F(u)Ha(u) (2.72)
ﬁa(u,v)zF(u.v)Ha(n.v) (2.73)

where H_ () and H,(u.v) are the 1-D and 2-D Fourier transforms of, respectively, A, (x) and
Jip(x.v). Using the relationship

1N

?({exp(—jrﬁrz )} _—.cxp(jmtzl-\/i(l -t
. (2.74)
N L
:cxp(—jz)cxp(jml')
which is established in a homewaork problem, it is possible to show that
H ()= 1 A R 2
)= Fq—==exp, j —X -cxp(—ﬂr(xu ] (2.75)
Via o
and
g ! LI e AN | R B 1,2 5
Ha(tr.b_l—f{}gexp[j-&(x + ¥ )j|}fup[ pm((u +v )I (2.76)

These two equations indicate that the Fresnel transform changes the phases but not the magnitudes
of the frequency compunents of f(x) or f{x,y).

Two particularly interesting relationships involving quadratic phase factors are stated as
follows:

{lecrexpi=jm®jrexptjme? fexpi=jme) = Fla g (277)

{[f()c)='=r:x|3-:jz'car2 )]-:xp(—jm2 }*cxp(_mrz) = exp(j E)F(.\‘). (2.78)

where f(.) and F() form a Fourier transform pair. These two equations state that the Fourier
transformt can be evaluated through a combination of multiplication by a quadratic phase factor and
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convolution with a quadratic phase factor.s The proof of Eq. (2.77) is simple; Ey. (2.78) is
proved with somewhat more effort. It will be seen in Chap. $ that these relationships have
courderparts in specific optical systems.

2.6 TWO-DIMENSIONAL LINEAR SYSTEMS

It is assumed in this text that the reader is familiar with basic concepts of linear and linear shift-
tnvariant systems. Such concepts are introduced for one-dimensional signals in a number of
urdergraduate electrical engineering texts. In this section the characteristics of two-dimensional
linear and linear shift-invanant systems are briefly summarized.

The input-ouiput relationship for a 2-D linear system is characterized mathematically by a 2-
D superposition integral:

S = [ JeE ey mded. 2.79)

—oa—m

where gix.y) is the system input, f(x,y) is the system output, and where h(x,y;£.1) is the response
at coordinates (x.y) to a unit 2-D impulse applied at coordinates (1), i.e., the response to &(x-
E.y-ny. In the special case of a shift-invariant system the impulse response h depends only on

the coordinate differences (x-£) and (y-n}, and the superposition integral assumes the form of a
convolution:

oa o

fley)= I jg(f,n)h(r-g,_\'—n)dfd?}, (2.80a)

ar
Sl =gy, ylxh(x, v} (2.80b)

Shift invariance implies that a shift in the inpul results in a corresponding shift—but no other
change—in the output distribution. Thus, for a system described by Eq. (2.80), if input g{x.y)
produces output f(x,y), then input g(x-x,,y-yo) produces output f(x-x,,¥-yo). If x and ¥
represent spatial coordinates, as they do in this text, systems that are characterized by a
convolutional input-output relationship are referred to as being space invarignr. If the system
requires the more general description of Eq. (2.79), it is referred (o as being space variant.

Space invariant systems assume a particularly simple representation in the spatial frequency
domain. Taking the Fourier transform of both sides of Eq. (2.80) yields

Flue,vy = Glu, vIH(u,v). (2.81)

§ Because of the presence of the quadratic phase factors, which are also known as linear FM functions or
“chirps.” these expressions are sometimes referred to as chirp-algorithm implementations of the Fourier wansform

operation. in discrete systems the rerminology chirp-Z transform is used.
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The function H(u,v) in this equation is called the transfer function of the system. Usually
complex-valued, it specifies how the magnitude and phase of spatial frequency components of the
image are modified by the system to produce the output.
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2.1

2.2
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PROBLEMS

The functions illustrated in Fig. P2.1 equal unity in the shaded regions, zero elsewhere.
The grid spacing is unity, Represent the functions in terms of the standard 2-D functions
used in this chapter and find their Fourier transforms. The rectangle functions in (a), (d},
and (e) all have the same size. The rectangle in (e) is rotated from the horizontal by 20°.
Represent the function in part (f) by convolving an appropriate rectangle function with a
truncated comb function, as in Eq. (2.62).

{d) (e} Wl

Fig. P2.1.

Using the format of Fig. P2.1, sketch the following two functions for the case & = 90°.
Note the brackets: these two functions are not the same.

(@) Kgg'{rect(-z.y)nﬁ(x -4, _v)}

b R%-{recl(g._\')}**5(x-—4,_v)
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2.4

2.5
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By appealing to corresponding properties for i-D delta functions. establish the following
properties for 2-D delta function

(a)y  Slax.by) = Ell—b-l 8(x.y) [start with the identity 8(ax) = (1a)d(x)]

oa 0o

) f [stxydedy=

(c) A}?l}-comb( =)= Xﬁi,t—mk’) 26(‘\'711)’)= 2 25(.r—mX..\'-nY)

mM=—o0 n=-oa m=—oap=—o0

1.&., that the function (1/XY )comb(x/X.y/Y ) represents a 2-D array of unit voliome
impulses spaced by Xand Y.

Noting that fi,y}8(x - xg,¥ - Yo) = f(Xo,¥a}d(X - X4,y - ¥o). find the value of the constant
Ao in the equation
. 1 1 N 1 1
tn(_r‘_v)ﬁ(x - Z\ - Z) =A, r)( P Z"\‘i Z]

Show by integration in polar coordinates that ()" 18(¢) is an impulse at the origin having
unit volume, i.e., that (wr)"13(r) has the same properties as 8(x,y}).
Show that the line impulse 8(x}1(y} has unit volume per unit length.

The rotation operator can be defined in polar coordinates hy ?{%[g{r,ﬁ)} =g(1.8 - B,).
In Cartesian coordinates the definition has the form Reo [fix.y)] = f(x cosBg + y sing,,.

y cosBq - x5inB;). Test the validity of this latier definition by proving that
fR_g” {8(x~ I._\?)} can be written in the following forrns:

(a)  Sa—1y) for 8, =0"
(b) Sexy=1y for 8,=90°
tc) S(x+1y) for 8,=180°

(d) S,y +1) for 6,=270°

|
Using the rotation operator, find analytical representations for thetwo diamond-shaped
ane-zero functions sketched in Fig. P2.6.
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>
2 —(—

(a) {b)

Fig. P26

Prave by setting up the corresponding convelution integrals that the expression
JUx, vy * g{x) * k(x} is equivalent to the following two expressions, where * denotes 1-D
convolution and where ** denotes 2-D convolution;

(a)
(b}

Jix y) = ¥ gl y})
flx y) ##[glx)l ()]} *[ 1L x)R(¥)].

Find the 2-ID Fourier transforms of the following functions:

(@)

(b)
{c}
)
(e)

ity

_ x-2 y+l
f(_r,_})vn:ct( 3 ,—4 )

glx,yr= {rcct(2x)exp[i27r3.r]}i(_v)
hx, )= rect(x, y)*#tri(2x,3y)
glx, y) = [rect()mv )+ [l 2x yrect{3y)]

r{x,v) = [recttx)trily)]* Hcyl(r)I(8)]

sx,v)= rcct(ﬁ v)** rect[£ }')
o + ! 2 L 2 +

The function f(x,¥) isgiven by f(x,¥)= rcct(%,y}(l +¢cos(275x)).

{a)
(b

Find its 2-D Fourier transform.
Sketch the 1-D cross-section functions f(x,0) and F{u,0).

Find and sketch the Fourier transforms of the following functions (use dotied lines to
denote imaginary componenis):

(a)

f(x,y) = exp[j2m(x+2y)].
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(b) gix,y) = cos[2m(x+2y)].

(c) hix,y) = sin[2m(x+2y)].

Fluyv)=8u-1,v-2)

Glu,v) =

Hu,v) =

2.13

214

2.15

2.18

S+ Lv+2)+5u-Lv-2)
2
I'.5(u+].|.w+2)—6(u— Lv=-2)
2
Use Fourier-domain reasoning to show that
[f(x)gly ] #» {q(x}(y}] = [f(x} = q(x)])[B(y) * t(y)].
where ** denotes a 2-D convolution and « denotes a 1-D convolution.

Use the result of Problem 2.13 1o determine the following 2-D convolutions.

x X
: = t =, * % t| =, .
(a) flx,yy=rec ( y) rec ( y)

(b) glx,y)= rect(%,%)**rem(x.y') .

(3] hix,y) = rect{x + 2, y)**rect(x — 2, y).

x-3 yJ
d t{x, y) * * rect, SR
) rect(x,y) rec[ L)

Show that if f(x,y)} =* g(x,y) = h{x,y), then f{ax.ay} =* g(ax.ay) = {1/lal?)h(ax ay):
(a) by direct substitution in Eq. (2.16).
(b} by Fourier domain reasoning.

Sketch the function f(x,y)= RQO-{rect(%,y) **G(x — Z,y}} and find its Fourier
transform.
Use the shift thearem to find the 2-D Fourier transform of the function
f(x.y) = cos[2m{ox + Py} + 6]
Compare with the result you obtain applying Euler's equation.
Use the zero-order Hankel ransform to find the 2-D Founier transform of the function
£(£.9) = 8(r - 1,)1(8).
Note that this function can be used to represent a narrow annulus.

Starting with the equality that exists for circularly symmetric functions between the zero-
order Hankel wansform and the 2-D Fourier transform, show that the 2-D Fourier
transform of the one-zero function fix,y) sketched in Fig. P2.16 equals
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J](er (2u2)+v2) 2.23

Flu,vy=2 > > .
Q(Zu J+v 224

fley)=1lin
shaded region

Fig. P16

2.20  Use Fourier-transform-domain reasoning to prove the retationship (f +* gk (f #*+ g) =
(fa*ef) ** (gokg), and use this reladonship to show that the autocomrelation of the function

rect(x.y) #* [S(x+2.y} + 8(x-2,y)) equals mi(x,y) *+ {S(x+4,y) + 28(x,y) + 8(x-4,)].
Sketch this latter function in a perspective drawing.

2.2t Using the relationship
exp(jasinx) = Zlm(a)exp(jm.x).

Hi=-co

show that if g(r,8) is of the form

g(1,8) = g(r) exp[jmB], m integer 226
then

Fgr.8)) = (-)H™ explime] Hy (gdr)},
where H,{ } denotes a Hankel transform of order m:

H (g irt= ZIrIrg,(r)Jm(errp)dr.
O

2.22  Show by expanding g4(8) in a Fourier series and using the results of problem 2.18 that

f{g,(r)go(e)] = Z(‘j}k(} exp(jk¢YH (g},

fr—w

where

| =
o =— Jgg(ﬁ)exp(—jke)de.
2=,

TWO-DIMENSIONAL. FUNCTIONS AND TRANSFORMS

Find the constant d for which the function g{rN(8) = cyl(r/d H(B} has both unit central
ordinate and unit volume and find the 2-D Fourier transform of g(ry1{8; for that case.

Sketch the following dismbutions as viewed from above the x-y plane. Use shading to
indicate where the functions have values of zero and unity.

(a) rect{x, y}* *[%coml:{%%)rect(%%ﬂ .

by [cyl(r}**comb(x.y)]rect(%.‘—z)

The x-axis projection of f(x,y} is given by
pAx) = J’f(x‘ vy,

(a) Show that pr(x} can be expressed in terms ol a convolution of fix,y) with line
impulse 8(x)1(y} as

pxy=[fley*&ennmf

(b) Evaluate pg(x) for the following functions:
(i) rect{x + 2, v} + rect[,r - 2%)
{ii} tri(x, v}
(i)  circ(r)
A generalization of the projection operation of the previous problem is of the form

p, () ={ R, ) =80 y)]r:n.

It is easy to show that pgg(x} is the same distribution that would be obtained by projecting

f(x.y) onto an axis that makes an angle 8 with the +x axis.

{a) Show that

7{p, 0= R P,

(b) Sketch pygix) with 8=45" for the following:

(i) rect{x, v)
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.. X
fw “"(5'-‘) 2.9  INDEX - CHAPTER 2

i) cyl(nld) Antihermitian function 11
. 5 . 3 Bessel function i6
Show that @ exp[jm{cx)?] * cexp[-jm(ax)?] = 8(x). Circ function 4
3 ; ; Comb function
U.}f the relationship 2D 4
T Convolution
j cosnEldE = jsin REHE=1/V2 definition 6
— interpretation 6
Correlation 7
Cylinder function
3 9 a1 . definition 4
T, {cxp(—ﬂru )} =expljax” )ﬁ(] -i Fourier transform 19
Fourier transform, 2-D

[
il
-4

Ind
b
o

153

10 show that

T a2 definition 8
=expl—) I)ﬁXPUH ) polar coordinate transform 15
properties 9
and thereby establish the validity of Eq. (2.74). separable function 14
] transform pairs 13
2.29  Given that F[exp(jnx2)} = exp(jr/d)exp(-jau?), find the Fourier transform of cosx? and Fourier-Bessel transform 17
sinmal, Fresnel transform 22
Gaussian function, 2-D 5
2.30  Prove Eq. (2.77). Hankel transform 16
i ; ; Hermitian function 11
3 neti Y= -y, una
2.3 gil;it(clllu‘ :llcu ;’u ction f(x,y) = rect(x-y.y) and show that its Fourier transform equals Replication 20
rotation operator, 3
Sampling 20
Sombrero function 18
Space-invariant system 25
Space-variant system 25
Transfer function 25
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Appendix A. One-Dimensional Fourier
Transforms and Relationships

Al DEFINITIONS

Fourier Transform and Inverse Transform

Fu) = ffooezm ax fu) = fFujeimn dx
Convolution - -

flx) » g(x) = };(UJg(x-U)du
Correlation -

£x) % g(x) = f(x) * g7(- x)

f{x) * p(x) = t};(u}g"‘(u-x)du

Comb Function

ZS(x—mT) = %comb(%)
M=o
Hermitian Functions
Hermitian: (real,even) + (imaginary,odd)
Antihermitian: {real,odd} + (imaginary,.even)
{for both, the magnitude is even, the phase odd)

A2

APPENDIX A. ONE-DIMENSIONAL FOURIER TRANSFORMS AND RELATIONSHIPS

TRANSFORM RELATIONSHIPS

Linearity

f(x) + g(x) — F{u) + Glu)
Scaling

f(G) — Ibl Fibuy
Shift

f(x-ay — Flue-i2mau
Scale and Shift

5 — IbiF(buje-i2mau
Modulation

f(x)elmx oy Fu-a)

f(x)cos2max — %Fl’u-!—a) + %F(u—a)
Modulation and Shift

f(x-a)ei2C — [F(u)e 127m] * §{u-b} = F{u-b)e-i2ratu-b}

Modulation and Scale
Ibifh xje32msx 5 FEE
Convolution and Correlation
f(x)g(x) -3 Flu) * G(u)
fOx) * g(x) - FunGlu)
fix) * g{x} - Flu)G*(u)
fix) % f(x) = IFau?
Derivative
f(x) = j2ruF(u)
-2rxfix)y — Fiu)
f'(ax) —» é_img Hgn

Reversal and Conjugation

ft-x) = Fi-u) (reversal — reversal)
f*(x} = F*-u) (conjugation — conjugation & reversal)
f*{-x) — F¥u) (conjugation & reversal — conjugtion}



APPENDIX A. ONE-DIMENSIONAL FOURIER TRANSFORMS AND RELATIONSHIPS

Symmetry

even — even

odd = odd

{real,even) — (real,even)
(real,odd) -» (imaginary.odd)
real — Hermitian

imaginary — antihermitian
Central Ordinate

j'f(x)dx = Fl0) jF(.\')ds = f(0)
- and -
Rayleigh's Theorem

I[f(x}{zdx = j|F(s)|2ds
Power Theorem

[ 1 ixnde = [Fio)G*(s)ds

—oo —on

A-3

APPENDIX A. ONE-DIMENSIONAL FOURIER TRANSFORMS AND RELATIONSHIPS

A.} TRANSFORM PAIRS:

rect(x} — sinc{u)

tri(x) — sincZ(u)

sgni{x) -+ - A
U

step(x) — %S(u) - ﬁ

3'”2 - (:'“‘-’2

il gimid gime?
comb{x)} — comb{u}
8(x)— u)=1
8(x-a) — e-jinau
etitmax s S(u-a)

N sgn(u}

nx

exp(j2rugx) — u-ug}
cos(2nax) — %{S(I.Ha) + &(u-a)]

sin(2rax) = jz-[ﬁ(u+a) - 8(u-a)]

A4
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3. Optical Wave Fields and Their
Representation

In this chapter complex-valued phasor representations for monochromatic waves are introduced,
including those for spherical and plane waves, and the relationship between the complex wave
amplitude and the optical intensity is presented. The interference of waves is discussed, and
complex amplitude and intensity transmittance functions are defined. Nonmonochromatic waves
are described in terms of time-varying phasors, and the concept of the coherence of wave fields is

introduced.

3.1 MONOCHROMATIC WAVES AND COMPLEX WAVE AMPLITUDES

Light waves are normally described mathematically by the variations of their eleciric fields as
functions of time and space. In a complete description the direction or polarization of the field
oscillations must be specified, for example by means of a vector representation. However, in many
cases of interest polarization can be ignored, and a much simpler scalar, or non-vectorial,
representation is used. In this text optical wave fields are described by the scalar quantity u, which
characterizes the instantaneous amplitude of the electric field of the optical wave as a function of

position in space:!
u=u(x.y,2.1), (3.1)

where ¢ denotes time and (x.y.z) is a point in a three-dimensional Cartesian spatial coordinate
system.

Of particular importance in the mathematical modeling of optical wave fields are
maonochromatic waves, which osciliate at a single frequency. For monochromatic waves,
uix,y,z.0} assumes the form

w(x, v,2,0} = a(x,y,z)cos[erw + ¢v(x.y.z)]. (3.2)

where v is the frequency of the oscillations, in hertz, a(x,y.z) is the amplitude of the wave (a > 0)

and $(x,y.z} the phase. The meaning of this expression is clarified by a simple thought
experitnent. Assume that an extremely small dipole antenna is used as a probe to measure a
monochromatic optical wave field in a room, The probe is connected to a two-dial display; as the
probe is moved about the room the dials register the amplitude a(x,y.z} and phase §(x,v,z) of the

wave field oscillations, {(In such an experiment the phase ¢ must be measured relative to some
reference phase, e.g., the phase of the oscillations at the origin of the coordinate system.) If the
probe is held stationary, the amplitude and phase readings do not change with time, consistent with

I' For polarized light, the scalar amplitude u is proportional to the oscillatory electric field E; for non-polarized
light, the relationship is generally more complicated.
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the single-frequency nature of the monochromatic waves. Note that this experiment can only be a
thought experiment, because in practice it is not possible to make such electric dipole
measurements at the extremely high frequencies of optical waves—-roughly 5.5x1014 Hz for light
in the middle of the visible part of the optical spectrum.

_ Just as for sinusoidal signals in linear systems analysis, it is convenient to represent the
function of Eq. (3.2) using a complex-exponential, or phasor, notadon. We obtain such a
representation by writing

w(x,y.z.0) = Re{Ufx, v.2)exp(— j2mve}}, (33

where
Ulx, vy, z) = alx, ¥, 2)expl—Jolx, v.2}], (3.4)

and where Re{.] denotes the real part.? So long as it is remembered that the wave fluctuations are
cosinusoidal in time with frequency v, then the complex-valued function U(x,v.z) conveys the

same information as does the real function w(x,y.z.£): given Ux,y,zyand v it is possible to obtain
u(x.v,z2,7) via Bq. (3.3). The function U(x,y,z) is referred to as the phasor representation of the
scalar wave amplitude u(x,y,z.1), or the complex amplitude. We shall generally represent optical
waves by their complex amplitudes.® In many cases later in the text we shalf be interested in the
complex ampliftede distributions in planes of constant z. In such cases it will be convenient to
write the complex amplitude etther in the form U(x,y;z), setting z off by a semicolen, orina
subscripted form, e.g., Ug{x.y}, where the subscript denotes the plane of concern. Note that if ¢ is
set equal 1o zero, Re{Utx, v.z)exp{—;2mvr)} has the same vatue as Re{Ulx.y.z}}. Thus, we can

say that the real part of complex amplitude U(x,y.2) gives the scalar amplitude tx,v,z.0) at time
=0

The scalar amplitude w(x,y.z.1} must'satisfy the wave equation, and a(x,v.2) and §x.v.2)
can therefore not be completely arbitrary. In free space—i.c.. in the absence of charges or
currents—the scalar wave amplitude #(x,y,z.0) satisfies the time-dependent scalar wave equation,

2
1 J°u
V-5
ot or

where ¢ denotes the speed of light (3x1 ¥ m/s) and where V2 is the Laplactan operator:

=0, (35)

Vz:i-'.c?Z JZ

L+ 2 (3.6)
ER

2 Boldface is used in the text to denate phasor representations for waves and associated quantities. Note that L(x.v.2)
could be as easily defined by writing u(x.y.z.1) = Re[Ulr.y.2)exp(i2mvn |. The consequences of choosing - in the
exponential of Eq. (3.3} is explored in a homewark problem.

3 Scalar amplitude u(x v.z.7) and associateed complex amplitude Uik .v.z) are defined such that. as discussed in
Section 3.3, U(x,».2,)I? is proportional to the power per unit area flowing theough the plane z = z,, in the
immediate vicinity of point {x,y). According to one convention for polarized lipht, Ulx,v.z) is defined so as to equal
the irradiance of the wave, rr/zn\fw_y(é' « £3, where £ (s the electric lield vector and where <> denutes a suitable

time average. If a second convention is followed, IUIZ equals simply {F « &)
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Similarly, the complex amplitude U(x.y.z) satisfies the time-independent scalar wave equation,
known as the Helmholtz equation:

2
l:V1+(2W) :|U(x,y,z)=0. 3.7)

| c
Because oﬁthc linearity of the wave equation, if Uy(x,y.z) and Ua(x,v,2) satisfy Eq. (3.7), then
so does the weighted sum « Uj(x,y,2) + p Ua(x,y.z), where o« and B are complex constants.

3.2 PLANE AND SPHERICAL WAVES

Two particular wave-field functions are of special inierest to us, one representing plane waves, the
other representing spherical waves. Mathematical models for both types are developed in this
section.

3.2.1 Plane Waves

Planar optical waves are observed regularly in nature—the light waves from a star, for example,
are virtually planar by the time they reach the earth—and they are of great importance in the
development of the theory of wave propagation presented in the next chapter. In the laboratory,
planar wave fields are easily produced by expanding a laser beam with a pair of lenses, as
suggested in Fig. 3-1.

Laser beam

Fig. 3-1. Planar wave fields can be produced by expanding and collimating a kaser beam

It the collimated output of the beam expander is aligned to travel in the +z direction, the optical
wave field in the central part of the expanded beam can be modeled by the scalar amplitude

ulx,y,z,0) = Acos|2mv — kz + ) (1.8)

or by the associated complex amplitude

Ulx, y.2) = Aexp(—jy)expl(jkz), (3.9a)
which we can write as
Ulx, y,z} = Aexp{ jkz), (3.9b)

where A= Ae™ /Y. Equations (3.8) and (3.9) represent a monochromatic plane wave of amplitude

A and phase W traveling in the +z direction, The parameter & is the so-called wave number of the
wave. [t is related to ¢, the speed of light, and to A, the wavelength of the light, by the relations
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2
k=—, 310
1 { )
c=Av. 3.1

For visible-band optical wavefields, the wavelength A lies in the approximate range 400 nm to 700
nm, corresponding to a tange for v of roughly 4.3x1014 Hz to 7.5x1014 Hz.

The motion of the wave through space is emphasized if u(x,y.z,t) is written in the form
u(x,y,2,1) = Acos[k(z — ct)— ¢ ]. 3.12)

Recalling that f{x-x,) is the function fix) shifted a distance x, in the +x direction, we see that the
cosine function in Eq. (3.12) ranslates in the +z direction with speed ¢. A graphical representation
for the scalar amplitude as a function of z and at time £=0 is shown in Fig. 3-2. Planes of constant

z for which the argument of the cosine equals #27, r integer, are called the phase fronts of the
wave.? The straight lines to the right of the collimating lens in Fig. 3-1 represent the phase fronts

of the plane wave at some instant in time, typically chosen to be +=0. Since the phase angle y
cannot be measured at optical frequencies, it is often set equal 1o zero.

v
> Directiont of movement

| m m n m _, Aongzaxis
U Y 2

Fig. 3-2. Scalar amplitude u(x,y,z.1) = Acos[k(z -cf)— w] associated with plane wave propagating in +z direction,
plotted for time £=0.

A unit-amplitude plane wave traveling in some arbitrary direction can be modeled by the
real scalar amplitude

u(x.y.z,r)zcos[2m—k(ax+,8y+}z)} (3.13)
or by the associated complex amplitude
Ulx, v.2) = exp| jic(ax + fy + 72)]. (3.14)

The parameters @, B, yare the direction cosines of the wave, defined by

4 The term wavefront is sometimes used interchangably with phase front. Usually, however, a wavefront is
considered to be a surface all points on which are equal travel times from a point source. In the case of
monochromatic waves, a wavefront can also be a phase front.

3-4



OPTICAL WAVE FIELDS AND THEIR REPRESENTATION

o =cosg,, (3.15a)
B=cos¢,. (3.15b)
Y =cos¢,, {3.15¢)

where the angles @y, ¢, ¢, are the angles the wave propagation direction vector makes with the +x,
+v, and +z axes, respectively. The so-called wave vector associated with the plane wave, denoted

by & . is defined to have magnitude & and direction given by o, B. and ¥. Thus, "E“ =k The

relation between & , @1, @, and ¢ is illustrated in Fig. 3-3.

Fig. 3-3. Relationship between the wave propagation vector Eand the angles g, ¢y, and @; associated with
direction cosines or. . and ¥.

The direction cosines o, B, ycannot be specified completely arbitrarily but are subject to
the constraint

az+ﬂ2+72=l (3.16)
So long as condition (3.16} is met, the complex amplitude of Eq. (3.14) satisfies the Helmholtz
equation. Consistent with the conventional assumption of left-to-right propagation of light, we

consider only plane waves for which

y>0. 3.17)

Of speciat interest (o us later is a wave field whose complex amplitude in the plane 7=0 is
given by

U(x,y,0)= exp[ﬂn‘(uox + v(,y)]. (3.18)

5 The convention of teft-to-right propagation of light will be followed throughout this text. Indeed, this convention
is 5o strictly observed within the optics community that people anending optics research conferences are often
temporarily confused when a diagram of an optical system shows light propagating from right to left?
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Comparison with Eq. (3.14) suggests that this complex amplitude represents a unit-amplitude
plane wave with ditection cosines ozand /3 given by

o= A, 319
B=Av,. (3.20)

In fact, it can be shown that, since U{x,v.0) is governed by the Helmholtz equation, the
expression on the right-hand side of Bq. (3.18) must represent a plane wave, evaluated in the z=0

plane, The remaining direction cosine, ¥ from Eq. (3.16). and, through the plus sign. consistent
with assumed left-to-right propagation, is given by

¥ = 4l (A = (A, 02 (3.21)

Continued off the z=0 plane the complex amplitude of Eq. (3 18} is thus given by

. Lz RSN
Ulx, vz} = cxp[ﬂn‘(u”x + v(,,v)]exp(_f r 7 L= (A, )" = (v} ) (3.22)

Special Case: B=0andz =10

Consider the special case where §= 0 and the wave is observed in the z=0 plane. The comiplex
amplitude of the wave in that plane is given by

Ulx, y.() = exp( fkox) = cxp(ﬂn’% ,r) =exp{j2 ,,x].

where

;2@ _cosgy sinb
A A A

&, being the complement of the angle ¢,. In this case & lies in the x-z plane making an angle ¢,
with the +x axis and angle 8, with the +z axis, as illustrated in the figure.

|
i
|
i If 8, is small, then sin8, = ,, and the spatial frequency f, is given by f, = 8/4 Note that fy is

the reciprocal of the spatial peried of the wave field in the x direction. This period is the distance in
| the x-direction over which the phase of the complex wave amplitude changes by 2 radians. (Twao
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of the tiny dipole antennas of the carlier thought experiment, if separated in the x-direction by Lf,

= Msin6y, would measure exactly the same sinusoidal oscillations, i.e., exactly the same amplitude
and the same phase, A change in the separation of the antenna elements in the x-direction would
produce a change in the measured phase.}

T

Figwure 3-4 shows the intersections of the phase fronts of such a wave with the x-z plane for
t=0. The counter-clockwise tilt of the lines means that the frequency wu, is positive. Note that the
phase fronts intersect the x-axis at distances separated by [/u,. As time ¢ advances, the phase
fronts move upward and to the right, shifting the intersection points in the +x direction.

1fu

Fig. 3-4. Intersection of phase fronts with x-axis.

[F &, and v, both equal zero, the complex amplitude of Eq. (3.18) assumes the particularty
simple form

Ulx,y,0) = 1,

which represents a unit-amplitude plane wave in the z=0 plane with k-vector in the +z direction.

3.2.2 Spherical Waves

Much like planar waves, converging and diverging spherical waves can be easily produced by the
focusing and subsequent expansion of a laser beam. Figure 3-5 illustrates a wave field focused to
and diverging outward from 3 point, If the point of focus is assumed to be at the origin of the
coordinate system, the complex amplitude

Utx,v.2)= A 3 —1—2 exp[jkﬂxz +y2 + zz] (3.23)
‘\(I.X +y +z2

would, upon initial inspection, appear to provide a satisfactory model for the wave, at least in the
region away from the edge of the beam (where the amplitude would fall off, perhaps abruptly) and
away from the focus (where the above expression suggests a non-physical infinite amplitude). In
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Converging Expanding
region | region

I
|

u £ *‘H—}) - 7
|

~h

| l\
|
2=0

Fig. 3-5. Focused light beam showing converging and diverging spherical waves. The different offsct of the wave
fronts to the right and left of focus is indicative of the 90" phasc shift cxperienced by the waves at such a focus.

particular, the phase fronts of the wave expressed in Eq. (3.23) are separated by A, and the
magnitude decreases linearly with distance from the point of focus. However, this expression is
not fully suitable as a model because it fails to convey the sense of left-to-right propagation of the
waves. Rather, it represents a spherical wave that is expanding outward in alf directions from the
origin, as from a hypothetical point source. Instead of the above expression, we take as our model

the complex amplitude
cxp{jkz,’l +(x2 +y2)!zz:|

Uz =4 le +(x2 +y2):'z.2

. (3.24)

Note that the factor z,{l +(x2 +y2)l.22 has the same magnitude as 2+ yz +2° butit casies

with it the sign of z. Through its dependence on the sign of z, the expenential in Eq.(3.24)correctly
models left-to-right advancement of the phase fronts.® Use of the sign-dependent quantity

z,,l +(x2 + yz)f 2> instead of ~.ﬂx2 + y2 +2° in the denominator may seem inappropriate since it
leads to 2 180 shift in the phase of the waves as they pass through the region of focus. In fact,
however, such behavior is consistent with the wave equation, and a w-phase shift is indeed
observed when converging spherical waves pass through a focus. If 4 = 1, Eq. (3.24) represents a

unit-amplitude spherical wave. Note that for such 2 wave the magnitude [Ul = 1 at unit radiat
distance from the onigin, or focus of the wave,

Although the complex amplitude of Eq. (3.24) does not, without further modification,
satisfy the wave equation exactly (some indication of the necessary modifications is presented in
Sect. 4.8), it nevertheless provides an excellent model of a converging/diverging spherical wave
for distances away from the focus and from the edges of the light cone,

Often we are interested in spherical waves in planes of constant z that lie some distance
away from the point of focus. If the region of concern is sufficiently close to the z-axis, the

6 Note that if x and y are set equal to zero, Eq. (3.23) yields (1/z)exp(jkz). the factor exp(ikz) being consistent
with the left-to-right propagating plane wave of Eq. (3.9).

3-8



OPTICAL WAVE FIELDS AND THEIR REPRESENTATION

complex amplitude representing the wave can be written in a mathematically more useful form. Let

the distance z from the focus to the plane of interest and the distance NPLEs y2 from the z-axis to
the observation point satisfy the condition

J:2+y2 << 7" (3.25)

The binomial expansion, (1+ el =142/2-£%18+ ..., allows us to write

2

2 2312 2 2 x2 + 2

+ x4+ ¥

1+ 22 =z+-————y—(—4)—+... (3.26)
2z 2z 8z

[n using this expansion to rewrite Eq. {3.24), we retain the first two terms on the right for the

exponent whereas for the denominator we retain only the first term,” with the result

Utx,y.2)= AMCKp[ji(xz +y2)]. 327
z 2z

Equation {3.27) gives the mathematical form for a converging/diverging spherical wave in the
quadratic-phase approximation. [f the wave field is observed in a specific plane of constant z,
e.g., I=Zp. the factor AR 2,, can be combined into a single complex constant A with the
following result:

ok
Ulx, y,z,}= Aexp[j—(_tz + yz)]. (3.28)
2z,

0

The condition Al = 1 corresponds to a unit-amplitude spherical wave, This function represents an
expanding spherical wave if the plane z=z, lies to the right of the focus (2,>0), a converging
spherical wave if to the left (z,<0). The fact that a plus sign is associated with a wave that grows
with time provides a convenient memory aid. The function exp[j(k/6}(x2+y2)] thus represents, for
a given wavelength 1 and for a given plane z=z,, the complex amplitude of an expanding spherical
wave of radivs 3 meters, assuming that x and y are measured in meters. Figure 3-6 shows by
means of dots the intersections of the phase fronts with the x-axis for a spherical wave expanding
from a focus to the left of the origin. Note that as the wave expands, these dots move outward
from the z-axis. The figures to the right show the real and imaginary parts of the complex
amplitude, representing the scalar amplitude along the line at #~0 and at =1/2v, i.e., one-half
oscillatory period later.

7 The more accurate approximation is used in the exponent because there the distance is multiplied by k=21/A, an
exceedingly large number at optical wavelengths.
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Re{Wx.y,2,}}
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Fig. 3-6. The guadratic phase esciliations shown graphically.

The two approximations for z l+(.x2 +_\.!2)/:,2 used in obtaining Eq. (3.27) are known

as the Fresnel approximations, named after the French scientist-engineer Augistin Fresnel who,
in 1818, first introduced them in his mathematical treatment of Huygens' principle. The resulting
complex amplitude of Eq. (3.27) is thus often referred to as the Fresnel approximation to a

spherical wave. Note that in replacing 3\ﬁ+(x2 + 7‘,2),:2 with z+(x% + yl)IEz_, we have in
essence replaced spherical phase fronts with parabolic phase fronts, as suggested in Fig. 3-7. So
long as the distance \sz +v% s sufficiently small compared to !zl the difference between the
original spherical wave and its parabolic approximation can be neglected. This condition is, in fact,

often not met in many laboratory experiments. For example, a phase error exceeding 2n/10 radians
(comesponding to a tenth of a wavelength) is incurred in using the quadratic phase approximation
for a spherical wave of wavelength 633 nm measured little more than 5.5 mm off axis a distance
[({} mm from the focus. However, despite the apparent {imitation of the Fresnel approximations,
they are often used in calculations and, for reasons discussed Jater in the text, generally with

excellent resuits.
i)

Fig. 3-7. In the Fresnet regime. spherical phase fronts (thick knes) are approximated by parabolic phase fronts (thin
lines).
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3.3 WAVYE INTENSITY AND INTERFERENCE

The scalar wave amplitude u(x,v.2.1} is proportional to the instantaneous electric field associated
with the optical wave disturbance. When an optical wave field is probed, either by our eyes or
some other detector, the response is not to the instantancous wave amplitude itseif but rather to the
power conveyed by the wave. The amount of energy flowing per unit time through a suitably small
area AxdAy in the vicinity of point (x,y) in a plane of constant 7 is proportional to
<ul(x,y.2.th>AxAy, where the angle brackets denote a time average. Accordingly, the oprical
intensity of the wave field, l(x,y.z). is defiped by

l(x,y.z):2(u3(x,y.z,r)). (3.29)

Instruments for measuring optical power are usually calibrated in terms of the light wave
irradiance, which has the units of power per unit area. The irradiance and the optical intensity of a
wave are proportional. The factor of 2 is introduced in the definition as a convenience, as will be
seen in connection with Eq. (3.30) following. The duration of the time average is determined by
the reciprocal of the temporal frequency bandwidth of the wave field or by a suitable characteristic
time of the experiment performed, whichever is shorter.®  For light from a filtered low-pressure
gas-discharge lamp the reciprocal bandwidth is perhaps a tenth of a microsecend; for light from a
gas laser it might be several milliseconds or longer. For ideal monochromatic waves, the time
average of Eq. (3.29) is taken to be infinite, in which case /(x,y,z) can easily be shown to have the
form

1x,y,2)= Ulx, 3, DU (1, 3,2)
= Ui y.2)f (3.30)
Note that the optical intensity of a plane wave is uniform throughout space. Sometimes we are
interested in the total power carried by a light wave as it passes through a plane. The actual power
Mow, in walts, is given by the spatial integrat of the incident irradiance distribution across the

plane. Proportional to that quantity is what will be referred to in this text as the optical power.
Thus, the optical power flowing through the plane z=z, is defined by

P= I jl(x,_v,z(,}dxd_v
—oo—ca . 3.31)
Of particular importance is the optical intensity produced by two or more plane waves or
spherical waves incident on the same plane, Consider first the sum of two monochromatic unit-
ampliwde plane waves, given by

U, (x.v.2)=expljkiox + By + 7,.2)]+ expljk(c,x + Byy + 1,01 {3.32)

The associated optical intensity, for convenience evaluated in the z=0 plane, is given by

Hx,y.0) =[U,,ix,y.0f =U,,(x,», 00U, (x,.0)

8 The issue of what constitutes the proper intervat for the time average can, in fact, be a complex one. Special
considerations apply, for example, in the case where a laser source is modulated to convey signal information.
Specific homework problems in the text are designed to illustrate some of the complexities.
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= {cxp[jk(a’lx + By +expljk(a,x+f 2y)]}{exp[—j.‘c(cr,x + By +expl—ikia.x+f 2yj]}

=2+ 2Re{expjki(a, — ay)x +(B) - By}

=2{l+cos[2k(i—ax+i—ﬁy]]}. (339

Aa = g - 0z = cosfy | - COSxs, (3.34a)

where

AR = By - B2 = cosdy, - cosdy,. (3.34b)

The sinusoidal variations in this optical intensity distribution have spatial period AAct in the x-

direction and A/AP in the y-direction. This distribution is often referred to as an inrerference
fringe pattern or a set of interference fringes, corresponding to the interference —alternatingly
constructive (adding) and destructive {subtracting}—of the two plane wave amplitudes, A
photograph of such a sinusoidal fringe pattern is reproduced in Fig. 3-4 with the spatial periods in
the x- and y-directions indicated. The contrast of the fringe pattem of Eq. (3.33) is 100%, owing
to the equal amplitudes of the interfering plane waves. More generally, for plane waves of different
amplitudes and phases the optical intensity pattern in the 2=0 plane has the form

I(x.y,()):lﬂ{l+ycos|:2}r(~éf-x+i—ﬁy]+w:|}, (3.35)

where | is a measure of the fringe contrast (generally referred to as the fringe visibilityy and
gives the spatial phase of the fringes (see homework problem).

L_NA(I

Fig. 3-4. Photograph of sinusoidal fringe pattern produced by the interference of two plane waves. The spatial
periods in the x- and y~directions are indicated,

As a second example of a wave interference calculation, consider the optical intensity in the
z = z,, plane produced by the addition of two monochromatic unit-amplitude spherical waves
expanding from points in the z=0 plane separated by a distance S. The geometry is shown in Fig.
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3.5. For simplicity both points are assumed to lie on the x-axis at distances £5/2 from the origin.
Assuming z, to be sufficiently large to allow the quadratic phase approximation, we can
generalized from Eq. (3.28) to write

'™
\ screen
X:sz
z
=-5/2
/= ZO
z=0

Fig. 3-5. [nterference geometry for twa expanding spherical waves.

2 2
.k s
Uy (x.3.2,) = Aexp jL (x+-§) +y2 +Aexpyj (x——) +y2
2z, 2 2z, 2
k2 2 8 k|2 2 82
=~ Aexpl it X2 +v? +— +Sx [t + Aexps j— [ x" +y  +——5x
p[J 2z,,{ Y LT MR

‘The corresponding interference pattem is described by the optical intensity

(3.36)
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Hx,y.2 )—A2 ex i~ x;+§i+;vz+5x +ex L x2+i+ 2 _§x
s Y 2o PJZZH IR P]zzo 4 ¥
2 2
X4 eXp 7jL x2+s—+_\'2+5’,r +exp 7,"7&— x2+£-'+ Vi - Sx
220 4 230 4 '
=A% 2+ex j—k—-ZSX +exp| -J oy
220 2‘-11
= QAZ[I +cos 21{%}:]
? (3.37)

We see that, subject to the conditions and approximations imposed in the analysis, the interference
of two spherical waves also produces a sinusoidal interference fringe pattern, The spatial frequency
of the sinusoidal fringes is proportional to the separation of the source points S and inversely
proportional to the wavelength of the light and to the distance from the plane of the two source
points to the (paraliel) plane of observation. The spatial frequency of the sinusoidal interference
pattern depends only on the separation S of the two source points in the plane containing them, not
on their absolute positions, Thus, if one source point were at the origin and the other at
coordinates (5,0) in the z=0 plane, the resulting interference pattern would have the same form as
that given in Eq. (3.37), to within a shift in phase of the cosine function. A different result is
obtained if the source points do not lie in a plane parallel to the observation plane or if the quadratic
phase approximation is not used.

3.4 OPTICAL TRANSMITTANCE FUNCTIONS

When an optical wave passes through an aperture or photographic transparency, it is in general
modified both in magnitude and in phase. The modification can be represented mathematically, as
is now discussed.

Consider 2 monochromatic wave incident on a photo-transparency or other thin transparent
object, as illustrated in Fig. 3-6. For convenience, assume the transparency to be in the z=0 plane.
The incident complex amplitude is given by the function Ulx,y.0-), which describes the wave field
just to the left of the z=0 plane. For compactness in notation we denote this distribution by
Ujpc{x,y). As the wave passes through the object, it is attenuated by varying amounts in different
places, and it may also be retarded to a greater or lesser degree, depending on whether the object
has variations in thickness or refractive index. The resultant transmitied wave Utx.y,0+) just to the
right of the transparency is denoted by Uypans(x.¥). The ratio of Ugans{x.y} t0 Uine(x.y) is, by
definition, the complex amplitude rransmittance of the object, written £(x.y):

Urgns (X ¥)

(3.33)
U (. ¥)

tlr, vi=

Note that the magnitude of t(x.y) must satisfy the condition 0 = [t(x,v)! < 1, since the wave
amplitude can enly be anenuated, not amplified. The complex transmittance function $(x.y) allows
us to represent mathematically many commonly used apertures and mask functions—e.g..a
circular aperture of diameter d can be represented by cyl(r/d)—as well as more general thin
transmissive objects such as photographic film or an object on a microscope shide. It is assumed
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that the object is sufficiently thin that its ransmittance does not depend on the angle of incidence of
the jilumination. (Viewed from a ray-optics perspective, a "thin” object satisfies the condition that a
ray ¢ntering the object at given poini leaves the object at the same point.} Note that if a mask in the
=0 plane with complex transmittance t{x,v} is illuminated by a normaliy incident unit amplitude
plane wave, the incident wave field is represented by

I
y U, (xw)=1, (3.39)
|

and the transmitted wave distribution is

Ulrns (2.0 = 105, ). (3.40)

A wransparency that changes only the phase of the transmitted wave (for example, by refractive
index variations within the transparency) is represented by a transmittance function of the form

t(x,y) = exp{j@ix,y)]. Consistent with our scalar treatment of light waves, we require that the
transpareticy not affect the polarization of the light passing through it. This requirement generally
means that the transparency may not be birefringent and that the finest-scale structure in the
transparency must be somewhat larger than the wavelength of the light.

If two masks or transparencies are placed in close contact, their transmittance functions

multiply. Thus, a pair of transparencies with complex amplitude transmittance functions t;(x,y)
and t,(x,y) would, if placed one immediately behind the other, be represented by

Uix,y,0-) = Uinc(x.y} Ulx,y.04) = Urrangtx.y)

Ux.y) = Utrans(x,y)
Uinc(x.y)

z=0

Fig. 3-6. Incident and rransmiteed waves at a thin transparency.

tx, ¥) =t {x, y i (x, v). (3.41)

Often it is the optical intensity transmittance of a thin ransmissive object that is of

interest. The intensity transmittance, denoted T(x,y}, is defined as the ratio of the optical wave

intensity ransmitted by the object at point (x,y) to the optical intensity of the wave incident at that
point. It is easily shown that intensity ransmittance and complex amplitude rapsmittance are
related by

e, y) =ty (3.42)

OPTICAL WAVE FIELDS AND THEIR REPRESENTATION

3.5 NONMONOCHROMATIC WAVES AND SPATIAL INCOHERENCE

In reality, monochromatic waves do not exist. Although frequency-stabilized lasers can produce
waves with extremely small fractional bandwidths, the magnitude and phase of these waves
nonetheless vary with time, with bandwidths exceeding hundreds of kilohertz for all but the most
frequency-stable lasers,

In order to accommodate nonmonochromatic waves, the concept of the time-varying
complex amplitude is introduced. Consider the nonmonochromatic scalar wave amplitude

u(x, y,2,1) = A(x,y, 2,2} cos[ 20Vt + ¢(x, y, 2.1)]. (3.43)

Whereas for the monochromatic case both amplitude A and phase ¢ are constant with time, in the
nonmonochromatic case they vary. The frequency V is the center, or average, frequency of the
electromagnetic field oscillations. The temporal frequency bandwidth of the wave, Av, depends on

the linewidth of the source, A, For the best frequency-stabilized lasers, the bandwidth of
u(x,y.z.t} can be as small as several kiloheriz, corresponding to a fractional bandwidth of roughly
10-12. For a white-light source, the bandwidth is almost 300 terahertz (one terahenz equals 1012
hertz), corresponding to a fractional bandwidth of roughly 0.5. For the case when the fractional
bandwidth Av/ V satisfies the condition

@ << 1, {3.44a)
v

we say that the wave field is narrowband. It is easily shown that this condition is equivalent to the
condition

%f: <<, (3.44b)

where L denotes the average wavelength of the waves.

Like monochromatic waves, nonmonochromatic waves can be represented by complex
amplitudes, Specifically, u(x,y,z,f) can be written in the form

u(x,y z,t)= Rc{U(x,y,z,r)exp(—jZﬂVr)}, (3.45)
where U(x,y.z,1), given by

Ulx,y.2,t) = Alx, y. 2, hexp[ - jdix, y,2,0)], (3.46)
is the time-varying phasor associated with the real scalar amplitude disturbance. For thermal light

sources, such as tungsten filaments and gas discharge tubes, the variations in the magnitude
Alx,y.z,t} as a function of time can be quite large, and the phase ¢(x,y,z.1) can make excursions

that are extremely large compared to 27t radians over a time comparable to or greater than 1/Av, the
reciprocal bandwidth of the source, Even for sources such as gas lasers, the amplitude A can
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easily vary by ten percent or more over time, and temporal variations in ¢ are still large compared
to 2x radians.

The optical intensity associated with a nonmonochromatic wave is given, as before, by Eq.
{3.29). In terms of the time-varying phasor representation, /(x.y,z} assumes the form

1x,3,2)={U(x.y. 2.0U"(x, 3, 2.00)
= (jBxy.z.0f ), (3.47)

where again the time average is evaluated over a suitable interval, typically at least several times the
reciprocal bandwidth of the source, 1/Av. Although /(x,y,z) is not written as a function of /, that
fact is not meant to imply that the optical intensity cannot in fact vary with time, However, the
temporal variations that we are normally aware of through our eyes or some other detector—the
modulation of a laser beam by a shutter, for example—are on a ime scale much larger than 1/4v.
Because such variations are usually of no concern Lo us in this text, the optical intensity will in
most cases be expressed as an explicit function of spatial coordinates only.

Of special interest are nonmonochromatic waves for which the time-varying phasor
amplitudes at all points in a given region of space maintain a fixed relationship, that is, waves for
which the ratio of the complex amplitudes at two different spatial locations in that region does not

vary with time but only as a function of the two spatial positions.? In such a case, The complex
amplitude can be written in the separable form

Wix y2.0)=Uldlx, v, 2)B(1), (3.48)

where the time-independent spatial distribution Us(x,y,z} gives the phasor amplitude relative to
some reference amplitude. Such waves are said to be spatially coherent in the region of concern,
Often the functon B(t} is given by

0(0,0,0.1)

. (3.49)
{jU(0,0,0.0f )

in which case the region over which the wave is spatially coherent is in the vicinity of the origin
and the reference amplitude is chosen as that at the origin. Note that B(1) is normalized so as to be
dimensionless. and Ug(x.y.z) thus has the units of U(x,y.2) itself. If B(1) is normalized as in Eq.

(3.49), the optical intensity of the wave is given by [x,y,z) = |U3(x,y.z)|2.just as though the
wave were monochromatic. In later chapters we shall be concemed with waves that are spatially
coherent in a plane of constant z. In such cases we can suppress reference to z altogether and
write simply

Ui, y.0) = U (x, y)B(1). (3.50

The intetference of nonmonochromatic waves is more complicated to analyze than s that of
monochromatic waves. Consider first the optical intensity asseciated with two overlapping

Y Such conditions occur, for example, when light from a point-like narrowband source is observed ir a volume for
which all optical pathlengths from the source differ by amounts small compared to /Av.
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nonmonachromatic waves Uy and Ua. The total complex amplitude in a plane of constant z is
given by

U, levy=Ujta, vo) + Uyl th (3.50)

the associated optical intensity being
Lol y) = <|Ul(.r._\‘,r) + Uz(,\',_\’.f)|2>
= (}U](x, y,r)}z> + (!Uz(x.y,r}lz) + (U](x,_\',f}U;(.x. ).J,r))+ (U;(,\;_\-:I)UQ{.‘(,}.;I))' (3.57)

The first two terms in this expression equal the optical intensities that would be observed if,
respectively, only wave field Uy or Uy were present. The term (U, (x, y.!)U; (x.y r)> and its

conjugate correspond to the temporal correlation of Uj(x.y.t) with Uz(x.,y,t) at point {x.y}. If we
denote the first two terms by fy(x, y) and fH(x,v). then [, (x, ¥) can be written in the form

Lo e ) = Bz, y) + F(x V) + 2Re{(U](.x.y,r)UE(x.,v,r))}. (3.5%)

The value of the third term in Eq. (3.53), which represents the interference of the two waves,
depends intimately on the specific amplitude and phase functions associated with Uy and U;. The
term could be posittve, correspending to the case of constructive interference, or negative,
corresponding to destructive interference.

Of great importance is the case when the two wave distributions U (x,y.t1) and Ua(x.y.t)
are produced by independent sources—e.g., different lasers. atoms in different regions of a gas
discharge lamp, or atoms in different regions of a radiating tungsten filament—for in that case the
cross-correlation of the two wave fields evaleates to zero, with the simple result

T (x ¥y = H(x vy + f0xv). (3.54)

Under such circumstances, we say that the two wave fields U; and Uy are mutually incoherent,
or that they add incoherently. For mutually incoherent wave fields, it is seen that there is no
interference of the waves and that the wave fields can be added directly on an intensity, or power.
basis. ¥ Similar conditions hold if the wave fields from more than two independent
nonmenochromatic sources are present: all cross-product terms in expressions like that of Eq.
(3.52) have zero time averages, and the total optical intensity can be determined simply by adding
the wave intensities associated with the individual contributing wave fickds rather than by going
through the intermediate step of calculating the total complex amplitude.

REFERENCES

|
31 ). W. Goodman. Intraduetion to Fourier Oprics, 2nd ed | McCGrraw-Hill, New York (1996)

10 1t can be argued that there is interference that remains relatively stable aver an interval that is smatl compared to
the reciprocal of the wave-field bandwidth. However, for non-laser sources this interval is so shorz that such
interference cannot be observed by available detectors. and the issue of whether there is or is not shotl-term
interference is thus of no practical importance



OPTICAL WAVE FIELDS AND THEIR REPRESENTATION

32 1. D Gaskill, Linear Svstems. Fourier Transforms, and Optics, John Wiley and Sens, New York (1978).

PROBLEMS

3 A monochromatic wave in the =0 plane is represented by the complex amplitude Ufx,y) =
rcflt(x.y)exp(jzmn.

I
[£:3) Assuming the temporal frequency of the wave to be v, find the coresponding real
(scalar) distribution in that plane, u(x,y,0,¢).
(b) Describe the nature of this wave in words,

3.2 Inthis and many optics texts for engineers cosax is represented, consistent with Eq, (3.3),
by Re{exp(-jax)}, a phasor in the complex plane that rotates clockwise with time.
However, some authors follow the opposite convention, representing coset by
Re{expljax}}, a counter-clockwise rotating phasor. Assuming that this altemative
convention is followed, find the complex amplitudes for (a} a unit amplitude plane wave
with direction cosines @, §. ¥, and {b} a spherical wave, traveling nominally left-to-right,
that converges to and diverges from the origin, Compare your results with the expressions
in Eqgs. (3.14) and (3.24).

33 Assuming that a monochromatic scalar wave amplitude u(x,y,z,t) satisfies the real scalar
wave equation, show by using Eq. (3.3} in Eq. (3.5) that the cormesponding complex
amplitude U(x,y,z) satisfies the Helmholiz equation, Eq. (3.7).

34  Show that complex amplitude exp[fk{ coc+Bv+72)] satisfies the Helmholtz equation if
02+F+ = 1 and k = 2mvic.

3.5  Find the phasor representation for a monochromatic plane wave whose k-vector lies in the
x-z plane and makes an angle of 30° with the +x axis.

3.6  Assume that the k-vector of a monochromatic plane wave makes a 20° angle with the +x
axis and an 85° angle with the +y axis.

(a) What angie does it make with the +z axis?
(b) Assuming A = 500 nm, find the spatial frequency of this wave distribution in the x
and y directions, Express your answer in cycles per millimeter {mm-!).

3.7 Assuming the k-vector of a plane wave lies in the »-z plane and that it makes an angle 8,
with the +z axis that is small, show that a = sinf, = 6,, =0.

3.8  Consider a unit-amplitude plane wave with k-vector in the x-z plane making an angle &8, =

1” with the +z axis.

(a) Find the corresponding compiex amplitude U(x,y.z).

(b) Assuming that A =633 nmand that y and z are held constant, by how much must
x change if the phase of U(x,y,z) is to change by 27 radians?
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{c) Assume again that 1 = 633 nm and that now x and y are held constant. By how
much must z change for the phase of U(x,y,z) to change by 2x radians?

A unit amplilude plane wave propagates with the k-vector in the x-z plane and making a

smatl angle 8, with the +z axis. Show that in the z = 0 plane the wave can be represented

by complex amplitude Utx,y,0) = exp{j2af,x), where f; = 84/A.

The lines in Fig. P3.11 represent the plane wave with complex amplitude U(x,y.2) =

expljk{ox+72)]. Provide a corresponding sketch for the wave U(x,y,2) =

exp(jar2)explik{cx+yo)].

Fig. P3.1
Assuming that (z-z,)2 is sufficiently large compared to [(x-x,)2 + (y-y,)%], show thata

spherical wave expanding from the point {x;,ys.2;), as observed at point (x.y,2}, can be
written in the approximate {(quadratic-phase) form

Ulx,v,2)=

. .k 2 2
expl jk(z -z, ){ex —-«mw[x—x +{y- } .
o plk(z-z,)] P{J 2(z~z,)( s + (=)

A spherical wave diverging from a point source at coordinates (0,0,-Z) is incident on the
z=0 plane. Find the quadratic-phase approximation for U(x,y,0} assuming that IU(x,y,0)|

Show that the equation U(x,y;z) = Aexp[jl .677r(x2 + ),2) gives the complex amplitude,

in the quadratic-phase approximation, for a spherical wave of wavelength A = 600 nm
expanding from the origin and observed in a plane a distance 1 meter in the +z direction,
assuming x and y to be expressed in millimeters.

Figure P3.15 shows a spherical wave converging to a point (x,,0.z,). Find the quadratic
phase approximation for the complex amplitude of that wave as observed in the z=0 plane.
Assume that IlU(xy,0) = 1,
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Fig. P3.15

Establish the validity of Eq. (3.27) by direct substitution in Eq. (3.26).

Find the optical intensity distributions in the z=0 plane assoctated with the following
complex amplitudes,

(a) Uix.y,0} = exp(j2nfax)

(b) Ulx.y.0) = expli2ifox} + exp(-2p%)

() Uir,y,0) = | + exp(j27fox)

) Uley0) =1+ expl-j2mfox)

(&) U(x,v.0) = | + explj@exp(i2afox}

Two unit-amplitude plane waves are incident on the z=0 plane. Their k-vectors, both in the
x-z plane, make angles £, to the +z axis.

(a) Show that the corresponding optical intensity distribution in that plane is given by

Hx,y,0)=2+ 2cos|:21r[2 E’;—e"-)x] .

(b} Repcat the problem, but assume that one of the waves has its k-vector along the +z
axis.

Show that the interference in the z=0 plane of the two plane waves

A exp{j[k(alx +Bn+ 91]} and A exp{j[k(azx +Byi+6; ]} produces an optical

intensity distribution of the form given in Eq. ¢3.35). Find the values for f, j, and y.

Assume that Ay and A are real.

Incident on a screen are a normally incident unit-amplitude plane wave and a diverging unit-

amplitude spherical wave, both monechromatic and at the same wavelength 4, as shown in
Fig. P3.19. Find the optical intensity of the corresponding interference pattern assuming
that the source of the expanding spherical wave is at the origin of the coordinate system, the
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observation screen is in the plane 7=z,,, and that the observation region is sufficienty small
compared 10 Z,, that the spherical wave can be prepresented in the quadratic-phase { Fresnel)
approximation.

N

q) \\ screen
)y

z=0 Z=12q

Fig. P3.19. Geometry for producing interference patiern.

The wave produced by a typical gas laser has a circularly symmetric Gaussian amplitude
distribution, Show that a wave field with complex amplitude distribution

Ulx,y0) = Aﬁxp(* X +v } = ACXP[-[I—) }
r r,

in the z=0 plane carries unit optical power across that plane if the amplitude A equals

(o2,

A unit amplitude plane wave is normally incident on a transparency with complex amplitude
transmittance t(x,y) = exp{-fa(x2+y2)]. Show that the resulting transmitted wave
corresponds to the guadratic-phase approximation to a spherical wave converging to a point
on the z-axis a distance z, from the ransparency and find z,. (In chapter 5 it is shown that
a simple thin lens has a complex amplitude transmittance function of this form )

A glass prism takes an incident beam and redirects it as shown in Fig. P3.22. Find a simple
expression for the complex amplitude transmittance for such a prism, assuming that the
prisim has ignorable thickness and that it tilts a normally-incident beam clockwise through

an angle &,.

Fig. P3.22
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3.23 A thin ransparency has optical intensity ransmittance suggested by Fig. P3.23: In the

middle strip (x,y) equals 1; for both side strips it equals 1/2. The strips are one unit wide INDEX - CHAPTER 3

in the x-direction and separated by unit-wide gaps. In the y-direction they are four units

long. Assume that the opaque part of the ransparency extends to infinity. Binomial expansion 8
Complex amplitude 2

(a} Find an analytical expression for the optical intensity transmittance of the

transparency. time varying 14

. Direction cosines 5
() Findan analytical expression for the complex amplitude transmittance of the Fresnel approximations 9
transparency assuming the left and right strips introduce no phase shift whereas the Fringes, interference 1!
strip in the middle shifts the phase of the incident wave by 180°. Helmholtz equation 2
Incoherent wave fields 17
Intensity, optical 10
¥ Interference 10
fringes 11
of plane waves 10
of spherical waves 11
Left-to-right propagation of light 5
Monochromatic wave field |
Namrowband condition | 5
x Nonmonochromatic waves 15
Optical intensity 10
Optical power 10
Phase front 4
Phasor representation
. monochromatic wave 2
Fig. P3.23 time-varying 15
Plane waves 3
3.24  Show that condition (3.44), Av/v<<l, is equivalent to the condition A/ A<<I, Power, optical 10 o
Quadratic phase approximation 8
Spatially coherent wave fields 16
Spherical wave 6
quadratic phase approximation 8
Transmittance
complex amplitude 13
intensity 14
Visibility, fringe 11
Wave equation 2
Wave fields
monochromatic |
mutually incoherent 17
nonmonochromatic 15
spatially coherent 16
Wave number 4
Wave vector 5
Wavelength 4
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4. Propagation of Waves: Diffraction Theory

In this chapter the mathematics describing the propagation of light waves in free space is
presented and the diffraction of light by apertures and planar transparencies is explored.
Traditionally, the relationships obtained are derived through one or another formulation of ihe
Huygens-Fresnel diffraction principie (Ref. 4-1). The approach taken in this text is based instead
on the so-called angular spectrum of plane waves, which allows the description of an arbitrary
wave amplitude distribution in terms of a 2-D Fourier integral and its propagation in terms of the
propagation of elementary plane wave components. A spatial-frequency-domain description of
wave propagation is first derived. Then, with the intreduction of simplifying approximations,
wave propagation is considered in what are referred Lo as the Fresnel and Fraunhofer regimes.
Examples of diffraction in both regimes are presented. including the singularly important case of
converging spherical wave illumination of an aperture and the resulting Fourier transform
relationship between the aperture function and the complex amplitude in the plane of
convergence. Conditions allowing exiension of the theory to non-monochromatic waves are then
given, and an exact expression for monochromatic wave propagation is presented,

4.1 THE ANGULAR SPECTRUM AND THE PROPAGATION TRANSFER FUNCTION

Assume that a source of monochromatic light produces a complex wave amplitude distribution
Ulx,.0} in the =0 plane of the system of Fig. 4-1. This wave propagates. nominally left-to-right
in the figure. producing the wave amplitude U(x,v.2) in 2 paratlel plane a distance z from the first.
How can Ulr,v.z) be determined given U(x,y,0)?

As suggested by Fig. 4-2, this problem can be viewed as a 2-D systems problem with
Ulx.v.0) being the input 1o the system, Ulr,y,z) the output, and z a parameter of the system.
Consistent with this point of view, the two wave amplitudes are written as Utx,v;0) and Ulx,y;2),
the semicolon emphasizing that ¢ is considered to be a fixed but arbitrary parameter of the system
rather than an independent variable of the wave field distribution.

¥ y
U{x,y.0) _ U(x,y,2)

z=0

Fig. 4-1. Courdinate sysicm [or wave propagation problem.
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Uixy:0) 2-D System: Uixy:z)

—— propagation through ™
distance z

Fig. 4-2. 2-T) syslem fepresentation [or wave propagalion

11 will be shown in the following analysis that (he relationship between Ulx,yiz) and
U{x,v:0) has the form of a convolution,

U(x.y;z) = U{x, vi0+h (), (4.1)

where hy(x,v) is the system impulse response appropriate to propagation of the wave through a
plane-to-plane distance z. Such a relationship tells us that the propagation operation is both linear
and shift-invariant.!

Application of the convolution theorem leads 1o an altemative input-output relationship,
obtained by Fourier transforming both sides of Eq. (4.1}

fJ(u. I fl(u,\';O)H:(Jr.t')' (4.2)

A A
where Ulu.v;2) and UGuv:0) are the 2-D Fourier transforms of Ufx,v:z) and Ulxr.v:0) with respect
to xand vy,

Uinviz) = F{UGr v}, 4.3
U(u,v:0) = 7{Ulx 0}, (4.4)

and where Hy(u,v), the wave prepagation transfer funicifon. is the Foursier transform of hy(x.v):
H (u.v) = Flh.(x.)} (4.5)

There are various methods for determining hy(x.v) and H; (r,v). The method used in this
text exploits the equivalence of form between a 2-D Founier component and the complex
amplitude of a plane wave in a plane of constant z. To begin with, Ulx.y:0) is wrntten as an
inverse Fourier ransform:

—_—

Ulx.v.0} = J Dn, v;O]exp{jZIr(ux + L{v)jduu’u (4.6

[

Each Fourier component in this infegral has the same form as does a unit amplitude plane wave
as measured in the z=0 plane. as can be seen by setting Z cqual to zero in Eq. (3.14):

b As discussed in Chapt. 1, the notien that the wave propagalion system is lincar and shft-tnvanant is reasonable
from an inluitive viewpoinl. The free-space superposition property of cleciromagnetic wave Gelds is of course well
knewn [rom eleciremagnetic theory, and 1he shill invariance of the sysiem is made cvident through simple
geometrical considerations. For example, the wave ficld surroending 2 point-source eminer moves with that cmitier
{To avoid complexities associated with the finite propagation speed uf the wave, we mus! assume that the source
motion is suitably slow.) If the input distribution 15 displaced by veetor distance (Ax,Av.Az}, the enlire response
wave ficld is displaced through the same distance
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U,,“.(xuv,zj s exp| jk{ax + ,B_v]] = cxp[jln:[%,r + g\)J

- : (4.7
With this ssmalarity in mind, the identities
- ,_8
i u=g, v=y (4.8)
are introduced and Eq. (4.6) is written in the form
o= fafa 8. e B a . p
U(x,,v.m_LLU[I,E,O}exp[,zn(Xx+IVJ}4TJI. (4.9

Whereas Eq. (4.6) describes U(x.v;0) in terms of a superposition of 2-D Fourier components, Eq.
(4.9) describes the input wave field in terms of a superposition of plane waves, all evaluated in
the z=0 plane, and all traveling in differefl\lt directions. The compoenent wave with r;i\ireclion
cosines a and {§ has complex amplitude Uler A, 4;0) d(o/A) d{B/4). The function Ulew,p/A;0),
which describes the relative amplitudes and phases of the different component waves, is known
as the anguiar spectrum of plane waves of U(x,;0) {angular because of its direction cosine

dependence, specirum because of its Fourier transform aspect), sometimes denoted A (a/L FA).

Equation (4.9) is specific to the z=0 plane. However. the analytical form of each plane
wave component making up the right-hand side of that equation is known for all values of x, ¥,
and z. Specifically, from Eq. (3.22), we know that a plane wave having the form given in Eq.
{4.7) in the z=0 plane has the form

Upplxyzy= exp[ﬂk(%x + %vﬂexp(ﬂ:r% t-a?— ,62 ] (4.10)
in a plane of arbitrary z, where we have used the relationship, from Eq. (3.16),2

2 2
y=yl-a® -8 @11

Since all the component plane waves in the integral of Eq. (4.9) must continue throughout the
coordinate system in accord with Eq. (4.10), the complex amplitude in a plane of arbitrary z,
U(x,y;2), must have the form

. TTolo ,B . o B . . z 2 2|, 8
Uu,y,z)__[ IU[I,I,O)exp[JZn{Ix+I‘\JJexp[jZnI1hﬁa -p ]dIdA’ (4.12)

—en —t

|

Substituting back for /A and A yields

Ulx,viz) = I I {ﬁ(u,v;()}cxp[ﬂ:ri«\}l - (i) — (Av)? ]}exp[jZﬂ'(ux +vv)ldudv,  (4.13a)

which can be written in the form

2 The choice ofa plus sign in front of the radical s consistent with a presumed nomina) lefi-w-right propagation of
the wave field
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Ulx.yiz) = ?_]{ﬁ(u,v;O)expl:jZn%\[I—f().u)?' —(155]}. (4.13b}

Companison of Eq. (4.13b) with Eq. (4.2) confirms the statement made earlier, that the system of
Fig. 1 is linear and shift-invariant, and yields the following equation for the propagation transfer

function:
H:(u‘v)=exp|jj2:lr-§»1,‘lf(lu)z ~(Av)’]. (4.14a)

This equation warrants discussion, for it is of fundamental importance in describing the
propagation of optical wave fields. First, note that Hy{u,v} has circular symmetry and can
therefore be written in the form

Hz(p)zexp[jZ;rr%\’l—(ﬂ.sz:l. {4.14b)

Second, note that the character of the transfer function changes dramatically depending on
whether p=Vu2+12 is greater or smaller than 1/A. So long as the condition

7, 2 1
p=vVut+v < —
A (4.15)
ts satisfied, the quantity ‘\! 1-(Ap)? is real-valued and Hz(u,v) is  pure phase function: in
propagating a plane-to-plane distance z, Fourier components of U(x,v;0) that satisfy (4.15)
undergo a shift in phase but are unchanged in magnitude. The amount of the phase shift depends

on &, z, u, and v. This aspect of H,(x,v) is consistent with the behavior of plane waves making up
the angular spectrum superposition of Eq. {4.12): plane waves propagating between two parallel
planes separated a distance z undergo a shift in phase—by an amount that depends on z, A, &, and

f—but experience no other change.

If, on the other hand, the condition
p=vut+1? > ll

is satisfied—i.e., if transverse spatial frequencies of the complex amplitude in the z=0 plane are
sufficiently high—the square root in Eq. (4.14) is imaginary and H,(,v} assumes the form

(4.16)

H, (u.v} :cxp{—,u(u,v)zl 417

)= 2 Jou? vt 1
=27p? 1132 (4.18)

.

where u(u,v), given by

is real-valued. There is no phase shift, and, indeed, there is no propagation of that part of U¢x,v:0)
corresponding to these higher spatial frequency components! The pure atiennation of Fourier
components satisfying (4.16) has its physical interpretation in so-called infomogeneous, or
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evanescent wave fields. Such electromagnetic fields oscillate at the optical frequency v, they

have finite amplitudes, but they do not propagate: they simply decrease in amplitude as z
increases, It should be noted that a wave field containing evanescent components cannot be
produced by the superposition of plane waves, since no plane-wave component containg spatial

frequencies exceeding 1/4 in any direction. Instead, it is necessary thal a propagating wave
interact with some material object—a high-spatial-frequency grating, a finely detailed photo-
transparency, an opaque mask with tiny pinheles in it, or some other such structure. Only then
will an evanescent field be produced. Evanescent wave fields are directly analogous to the non-
propagating electromagnetic fields in a microwave waveguide that is operated below its cutoff

frequency. Because at optical frequencies A is so small, evanescent optical wave fields become
negligible in amplitude for even very small values of z and so are generally ignored. Note that the

boundary between the propagating and non-propagating cases, where p=Vu? + v2 = /4,
corresponds 1o the condition &2 + B2 = 1. This condition implies, through Eq. (3.16), that y=
cos@, = 0, which is the condition for plane waves traveling in directions perpendicular to the z-
axis.?

Since evanesceni fields die out so rapidly with distance z, it is not unreasonable to ignore
them totally, and {o a good approximation Hy{u,v) can be written in the form

. Z\[ﬁ 3 2 1
H.(u.v)= exp[JZII 1= {(Au)y =(Av) ] for u” +v <-i-z—
0

otherwise . (4.19)

or, aliernatively.

H.(p)= exp[ jaml{ir = p? )]circ[”%). (4.19b)

4.2 PROPAGATION IN THE FRESNEL REGIME - FRESNEL DIFFRACTION

Equation (4.2} describes wave propagation through plane-to-plane distance z in terms of a
multiplication of the Fourier transform of the input wave amplitude by a transfer function,
H(u.v). given by Eq. (4.19). Corresponding to that transfer function is the associated spatiai
impulse response hz(x.v). The impulse response hy(x,v) can be found by a rather complicated
direct inverse Fourier transformation of Hy(u,v), as shown in Sec. 4.8, However, the task is
greatly simplified if the square root in Eq. (4.14) is removed through application of a binomial

¥ The alert reader may detect what appears (o be a Jogical flaw in the derivation of Eq. (4.13), for that equation is
described as representing a superposition of plane waves, whereas if p > /A the wave field components are nor
plane waves bul mther evanescent waves. Resolution of this apparent flaw in reasoning lies in recognizing that the
complex amplitde of Eq. (4 10) satisfies the Helmholtz equation regardless of whether Vi-a?- 52 is real or
imaginary. If the square root is rcal, Eq. (4.10) represents a propagating plane wave, and @, B, and ycan be
interpreted as the cosines of the angles $x. by, and 9, that the k-vectar makes with the x, y. and 7 axes, a3 discussed
in Sec. 3.2. 11, en the other hand, the square root is imaginary, Eq. (4.10) rep 5 a non-propagaiing wave field
cotmpunent, and the interpretation of «, B, and ¥ as cosines of real angles no longer applics. Equation {(4.13) is
nevertheless valid.
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approximation and H,{x.¥) is written in the form of a quadratic phase factor. Let the quantity (u?
+ v2) satisfy the condition

]

2y 3<<[‘]A (4.20)

H 1y - . 4
A

The binomial approximation can then be used to write

[t—(ﬁmﬁ—(/h-):]"2 =|-§(zuﬁ—%wﬁ o

Substitution of the above approximation in Eq. (4.19) yields the following approximate form,
denoted by l:I:(u, v}, For the propagation transfer function:

H (u.v) = exp(jln' %)exp[—j}rﬂ:(uz + 1'3]]. (4.22a)
or '
H(p)= exp(ﬂn%)cxp[fjrdzpz]. (4.23h)

Thas transfer function, being now separable in u and v, can be easily Founer transformed to yieid

the corresponding convolution kernel ﬁ:(x,_v]. Key to the operation is the Fourier transform
relationship, established in problem 2.28,

- . LI 7
9’7,'{cxp(—jn'uz)}:exp(—}z)cxp(;m’) (4.23)
Application of the similarity theorem, or scaling relationship, yields
L P 1 i R
exp|—jxidz }: ex [7 f}ex [ —X ] (4.24)
7 expl-imda Ny e i U
with the resule (setting 2rx/ A4 =k)
© expljks) [ LI J
h{x.v)=—"———expl j—{x" +v"}|. {4.25a)
(e = e o ()
or, alternatively,
- expl{ jkz) [ k 2:!
h.{r)=——exp|j—r | (4.25b)
- jAz & 2z

Although derived here by other methods and using different approximations, this result is exactly
the same as is obtained in what is known as the Fresnel regme formulation of diffraction theory
presented in many optics texts. We shall therefore refer to ﬁ:(x, v) as the Fresnel regime impulse
response. The transfer function of Eq. (4.22), accordingly, is referred to ds the Fresnel regime
transfer function. [t should be emphasized that the Fresne) regime expressions have been
obtained through application of the approximation given in {4.21}. The legitimacy of this step is
discussed in Sect. 4,8.

Having found flz(x.\'}, we ¢an now write the convolution of Eq. (4.1) in the forn
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: exp(jkz) [ ki }
Uz, vi2) = Ul v0) % g ———¢ —(x*+w 4.26a
x, 2 x.y:.0) { Ire Kplzz(" ‘) ( )
or

| . o
.y expljkz) . K ES:
; Ul yia) = = _{.,_j,.,mé'n'o)m ;E[u-@ +(v-n?]idéan  a26b)

Comparison of Eq. (3.27) with Eq. (4.25a) shows that h,(x.v) has the same analytical
form as a quadratic-phase approximation to o spherical wave expanding from the origin, (he
only difference between the two expressions betng the factor jX that appears in the denominator

of ilz(x.rv) but not in the sphencal wave representation. Consistent with this observation, the
wave amplitude U(x,v;z} of Eq. (4.26) can be thought of as resulting from the superposition of a
large number of spherical waves (in a quadratic phase approximation), with each spherical wave
originating at a hypothetical point source with coordinates (§,1) in the =0 plane. The point

source at that location has amplitude proportional to U(,1;0). This point of view is consistent
with the Huvgens-Fresnel principle, which forms the basis for classical diffraction theory. The
quadratic phase functions entering into the superposition integral represent what are often
referred to as Huygens-Fresnel "wavelets."

Equation (4.26} assumes that the input wave distribution is in the z=0 plane. In fact, there
is nothing special about the plane z=0, and Eq. (4.26} and other propagation formulas can be
rewritten to express propagation between paralle] planes of arbitrary z. As an example, the free-
space propagation of a monochromatic light wave distribution from plane z=z| 1o parallel plane
2=z is expressed by the convolution

U(x.wiz) = Ulrwig)+ *E%%@“P[f %(x2 + .\'2)]. (427)
where Zis given by
Z=z7,-3,. (4.28)

The propagation distance Z can be either positive or negative, depending on whether the plane
z=z2 lies to the right or the Left of the plane z=z|; in either case, Eq. (4.27) shows the relationship
between the complex amplitude distributions in the two planes. Note that the absence of
restrictions on the sign of Z allows U(x,v;zy) to be calculated from Ulx,v:z2) using the inverse
propagation formula

exp(—jkZ) ka2 }
Ulx,vig)=Ulx, viop Jr s ————"exp —j—=|x" + ¥ }i, 4.29)
(ro3iz) = Uiz )=+ =25 enp) =) 5 (57 47 (
the distance Z again being given by Eq. (4.28). Inverse propagation is governed by the same
convolution operation as forward propagation, with only the sign of the propagation distance
being changed: Z is positive for forward propagation, negative for inverse propagation, again
assurmning Jight propagates norminaily in the +z direction. The correctness of Eq. (4.29) is easily
proved if the right-hand side of the equation is convolved with the forward propagation kernel
[exp(ikZ)iAZ)expli(k/AZ)N x2+v2)]): properties of quadratic-phase functions discussed in Sect. 2.3
can be used to show that U{z,y;z7) results, as required.
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Equation (4.26) expresses wave propagation in terins of a convolution integral. An
alternate form results if the quantity [(x-E)2 + (y-1)?] in Eq. (4.26b) is replaced by [x2 - 2x& + &2
+v2 - 2y1 + 2], with the result, after some rearTangement of terms,

expl jkz) l ki 2 ]
Ux, v} =———exp| j—[x" + v
(x, vz} F 122( ¥ )

x| [ GEmren] j £ (8 + ) fexpl — 35 (x+ v [dEan
e 2z Az 430)

Noting that the last term of the integrand has the form of a 2-D> Fourier transform kernel (2n/A
has been deliberately substituted for & to emphasize this form), we can write Eq. (4.30) in the
convenient operator form

Uiz, v2)= ————exP(ij) expli_ji(,t2 + ,\'2 )},‘}-{U(x._v;O)exla[ji-(.x:2 + _\'2 ):IH‘,;,,,L, (4.3
jl’{Z 2z 2z vyl Az

This form indicates that one method of finding the output wave amplitude U(x,v;2) is to perform
the following steps:

[¢}] Muldiply the input wave amplitude Uix,v;0) by quadratic phase factor exp[j{/2z)(x24v2)].
(2) Fourier transform the resulting product.

3) Replace the Fourier variables w and v by xM.z_and vz, respectively.
(4} Multiply the result by the factor (14 Az)exp(iks)explilk/2z)x 2+ )],

Either Eq. (4.26) or Eq. {4.30), which express Ulx,y;z} in terms of what is referred 10 as a Fresnel
diffraction integral, can be used to calculate Ulr,v:z). The convolution form of Eq. (4.26)
emphasizes the linear, shift-invariant aspect of the propagation phenomenon. The Fourier
transform form of Eq. (4.30), on the other hand, makes that equation atiractive for numerical
computation of U(x,v;z), using, e.g., a fast Fourier transform algorithm on a computer. In either
case, the corresponding intensity pattem is obtained by taking the squared modulus of the
calculated complex wave amplitude.

The results of a numerical computation, shown in Fig. 4-3, illustrate the effects of
propagation on a wave having the form U(x,y,0} = rect(x/w,y/w} in the z=0 plane, obtained by
illuminating a square aperture with a normally incident monochromatic plane wave. The figure
shows the x-axis cross-section of the optical intensity of the propagated wave, i.e.. Kx,0;z).
Figure 4-4 shows photographs of the actual optical intensities associated with the cross-sectional
plots.

To be supplied
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Fig. 4-3. Propagation of wave amplitude U(r,y;9) = rect{x/w,y/w) in the Fresne! regime. Shown are x-axis ceoss
sections of the optical intensity of the propagated wave. Note that the scale changes for larger values of z.

To be supplied

Fig. 4-4. Photographs of light intensity distrtbutions comesponding o the propagated wave amplitudes of Fig. 4-3
The following observations are made in connection with these figures:
1. For small values of z, the propagated wave amplitude still has a highly rectangular

appearance. The principle effect of propagation through small distances is to introduce
small oscillations, or ringing, near the edges of the distribution.

i3 As the wave propagates farther, this ringing affects more and more of the distribution; in
addition, the intensity pattern begins to spread significantly.
3 With even greater propagation distances the spreading becomes quite significant, until for

sufficiently large values of z the width of the observed intensity distribution scales in
proportion (o z.

4. Finally, for z sufficiently large, the shape of the oplical intensity distribution ceases to
change significantly as z increases further. For such values of z, what is observed is
sometimes referred to as the “far field" intensity distribution associated with the input
wave amplitude. For reasons given below it is also referred to as the Fraunhofer intensity
distribution.

In the next section it is shown that this far field, or Fraunhofer, intensity distribution has the
functional form of the squared modulus of the Fourier transform of the input wave amplitude
function. In the case illustrated in Figs. 4-3 and 4-4 this distribution would have the form of a
2.D sinc? function. Observations 1 through 4, although made in connection with the wave
intensity distributions of these figures, apply generally to wave fields produced by illuminating
an aperture by a plane wave, whether the aperture is square, circular, or otherwise: ringing is
first observed near edges, then the distribution begins to spread in width, and finally the pattem
stabilizes to its far field form. Only the distances over which these transitions are observed differ
from case to case, for they depend strongly on the actual structure of the input wave amplitude
distribution.

Thus far in this chapter the terminclogy of diffraction has been largely avoided. Rather,
the emphasis has been on wave propagation, Egs. (4.26) through (4.31) being integral
manifestations of the physics governing the free-space propagation of electromagnetic waves. In
practice, however, patterns like the ones shown in Fig. 4-4 are usvally called diffraction patterns,
and the phenomenon governing their appearance is usually referred to as diffraction. In
producing the distributions of Fig. 4-4 a plane wave was made 1o illuminate a square aperture, or
opening, in an opaque mask. That aperture is often referred to as the diffracting aperture, and the
resulting wave is the diffracted wave.

Diffraction occurs whenever light waves interact with obstructing objects: masks with

holes in them, gratings. photo transparencies, fine hairs, etc. Rather than traveling in straight
lines. as the ray optics theories of Newton's time and earlier required, light appears to "bend” in
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the vicinity of such obstructions. The term diffraction, coming from the Latin word meaning to
break, was used to describe this perceived anomaly. There was of course no violation of the laws
of physics, only of what were at that time thought to be the laws of physics. The motion of light
through either vacuum or substance is properly described in terms of waves, a ray representation
of that propagation being only an approximation, an approximation that is more and more valid
for smaller and smaller wavelengths, since diffraction effects scale with wavelength.

The term diffraction is wsually used to describe the behavior of an optical wave that is
transmitted through an aperture in an opaque screen and that travels some distance in free space.
The precise physics of the wave's interaction with the screen may be difficult to specify.
depending on whether the screen is conductive, dielectric, ete., but the subsequent propagation of
the wave is described by the free-space wave propagation integrals in their variovs forms. The
usual assumption, in the case when the aperture is at least several times larger than a wavelength,
is that the incident wave is unchanged within the aperture and is reduced 1o zero amplitude by the
opaque part of the screen. Thus, by this assumption, a plane wave of amplitude A normally
incident on an opaque screen with a rectangular hole cut in it produces a transmitted wave of the
form Ulx,y) = A rect(x/w1,/w7). Stricily speaking, a complex amplitude like Arect(x/w|.w/w2)
violates the assemptions [e.g.. condition (4.20)] leading 1o the Fresnel-regime propagation
formulas, since the Fourier spectrum of such a distrabution can contain significant energy out to
high spatial frequencies. In practice, however, if w; and w, are at least several times A, the crrors
incurred are usually negligible.

4.3 PROPAGATION IN THE FRAUNHOFER REGIME -— FRAUNHOFER
DIFFRACTION

Despite the relative simplicity of Eq. {4.30). it is impossible 1o evaluate Ulx.y;z) in closed form
for many wave amplitude distributions of interest because of the presence of the quadratic phase
factor inside the integral. If this factor can be eliminated, then a simple Fourier transform
relationship exists between U{x,;0) and U(x,v;z). As will be presented in the next chapier, one
way of eliminating this factor is by imposing a lens in the path of the propagating wave.

It is not, however. necessary to actually eliminate the quadratic phasc factor; it is only
necessary that its phase remain close enough to zero that the factor can be ighored. Assume that
the input wave has zero or essentially zero amplitude in the z=0 plane beyond a radial distance
Fmay from the origin and that the plane-to-plane propagation distance z is sufficiently large that
the condition

max

Zir-’ << ], (4.32a}

or, equivalently,
n
2> 2( 7 (4.32b)
A max
is satisfied. Under this condition, known as the Fraurhofer condition, the.pperand of the Fourier

transform operator in Eq. (4.30) becomes negligible before the quadratic phase factor changes
significantly from unity, and U(x.v;z) can be written in the form

i + o a]T T n, .
Ulx.viz) = P_x.{,%exp[j%{x‘ HL)],L‘[,U(&' r];(})t‘xp[—jl—:(rg + m)}d@m, (4.33a)

or, alternatively,
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Uix v;zt= Mexp[}i(x‘z + }'2 l:l‘f{U(x.y;O}}
jAz 2:

n=x/!Az (4.33b)
=yl Az

The forinula presented in Eq. (4.33a) is known as the Fraunhofer approxination to the wave
prrepagation integral, or, simply, the Fraunhofer diffraction integral. Note that the quadratic
phase frcior in front of the Fourier transform integral cannot be removed in the way the one
inside the integral was, since the condition expressed in Eq. (4.32) refers to the input plane,
whereas the quadratic phase factor remaining in Eq. (4.33b) refers to the observauon plane, upon
which no condition has been imposed. Of course, if observation is restricted to a region

satisfying the condition (x2 + yl] << Az/x, then this latter quadratic phase factor can be

approximated by unity too. The quaniity of ultimate concer is frequently the associated optical
intensity, given by [using Eq. (3.30}]

2 R
foevin) = UCe vz )f? =[ﬁ} lu[f'fzo)‘
AL . {4.34)

The remaining gquadratic phase factor of course disappears in the calcutation of this latter
quantity. Equations (4.33} and (4.34) describe wave propagation in the Fraunhofer regime. If the
distance z is sufficiently large that condition (4.32) is satisfied, we say, as noted in the previous
section, that U(x,v;z) is the far field or Fraunhofer amplitude distribution associated with
Ur,v;0), Tt is evident from Eq. (4.34) that the far field optical intensity distribution does not

Al
change basic functional form; rather, i remains proportional to [UI2, simply growing larger as z
increases.

Note that in the Fraunhofer regime, wave propagation is no longer described by a
convolution integral; at a mathematical level the shift invariance property has been lost.
However, it must be kept in mind that Eq. {4.33) represents an approximation—valid only under
restricted conditions—to the Fresnel regime integral, the latter being valid under much broader
conditions. The shift snvariance of the wave propagation “system” is always present in a physical
sense. If, for example, the input wave field distribution is shifted transversely by some fraction of
its width, the corresponding far field distibution moves through the same distance. However,
because of the size of the Fraunhofer pattern, the motion of the far field distribution goes
virtually unnoticed.

It should be noted that the Fraunhofer integral expression in Eq. (4.33a) can be
interpreted as representing a superposition of plane waves. At the observation distance z the
radius of curvature of a Huygens-Fresnel spherical wavelet expanding from point (§n) is
sufficiently large that the wavelet is adequately represented by a plane wave of basic form expl-j

(2rhz) (x§ + ym)l .

The Fraunhofer condition, (4.32}, is quite severe at optical wavelengths because the wave
number & is so large. For example, at a wavelength of 500 nm and with a circular aperture of
iameter 2 em (corresponding to a value of 1 em for rp,,). the plane-to-plane propagation
distznee z must satisfy the condition

z »> 628 meters.

4.4 CALCULATIONS OF FRAUNHOFER DIFFRACTION PATTERNS
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In this section Fraunhofer-regime wave amplitudes and intensitites are calculated for several
simple but imporiant input wave amplitude distributions. The input distributions can be obtained
experimentally by illuminating a suitable aperture or photo transparency with a normally incident
plane wave.

4.4.1 Rectangular Aperture

Consider first a wave field produced by illumination of a rectangular aperture by a unit
amplitude, normally incident, monochromatic plane wave. The complex amplitude transmittance

of the aperture is given by to{x,v) = rect(x/wy,wwy), and Ulx,v;0) is thus given by

U(x, v, 0) = rec([i,i} (4.35)

we wy

in this expression, wy and wy are the width and height, respectively, of the aperture. To calculate
the Fraunhofer pattern we first calculate the Fourier transform of the transmitied wave amplitude:
FIU(x, y;0)) = ww,sinc(w,u,wv). Substitution in Eq. (4.30b) yields

.y = explikz] p[.i 2 2] ) ( X L]
Uix, vi2) —jlz ex jzz{ +v ] W, W, Sing w‘;lz'w‘y ) 436)

The corresponding optical intensity pattern, I(x,¥,2) = ]U(x.y;z]z. is given by

2
| _ WIWV .2 X ¥
I(X’y'Z)_[ Az J sine [zsz,‘mw,.]' (4.37)

The basic shape of the Fraunhofer pattern is seen to remain unchanged as z increases; only the
scale of the patiern changes, in proportion to z. The distance z must, of course, be sufficiently

large to satisfy the Fraunhofer condition. The factor (w,w,/ A2)” is consistent with energy

conservation, reducing the intensity of the pattern as it spreads out with increasing z. Figure 4-5
shows the x-axis cross section of this Fraunhofer intensity patiemn. The distance from the peak of
the central lobe of the pattern to the first zero in the x-direction is Az/w,, giving a full width
(distance between nulls) for the main lobe of

A, = 2E
We (4.38)

Note that increasing either A or z broadens the pattem, whereas increasing the aperture width wy
narrows the pattem. Figure 4-6 shows a photograph of this diffraction pattern produced by a
rectangular aperture with aspect ratio w/w, =2.

Sometimes it is the angular width of the central lobe (the angular separation between the
first nulls on either side of the lobe) of this Fraunhofer pattern, as viewed from the aperture

plane, that is of interest. This angular width, designated Ag, is given for the x-direction by

Ap= tan"'(A—‘J - mr‘{z i) x 2wi, (4.39)
2 Wy X
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where the approximation holds for the small angles implicit in Fresnel- and Fraunhofer-regime
calculations.

Fig. 4-5. X-axis cross section of the Fraunhofer pattem associated with a reclangulas aperture of width w in the x-
dircction.

Fig. 4-6. Photograph of Fraunhofer patlern produced by a rectangular aperiure with aspect ratio wx.'wy =2

4.4.2 Circular Aperture

If a circular aperture of diameter w is illuminated in the z=0 plane by a unit amplitude, normally
incident, monochromatic plane wave, the transmitted wave amplitude is given by

Uir0)= cyl[i), (4.40)
w
Assuming that the Fraunhofer approximation is valid, the observed wave amplitude a distance 2
away is given by Eq. (4.30b) expressed in polar-coordinate form:
exp{jkz) P( k 2)
U(riz)=———"expl j— Uir00) ,epras - 441
rig)= = =henn) o U Wperac (441
But
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O R

Ulriz) = E%exp(j E"Z-,z )[[%)somb(%)]

_ exp{jkz) [i; (&’ Jimwrf Az)
T R N ) ek |

and thus

(4.42)

JjAz

The corresponding opfical intensity distribution, obtained by evaluating f{U{r:z)I2, has the form

EAC ‘
ftriz)= (%} somb? (%)

. (4.43)
232 2
:[zrw ) [Zjl(nwr.f/h)]

Ii; owrd Ao

This intensity distribution is plotted in Fig. 4.7. The distribution has nulls at radial distances
given by

M 1220, 2.2, 3.23%.... {4.44)
Az
The central lobe thus has a full width between first nulls given by

a-zaa’e (4.45)
W

22% larger than the central lobe of the diffraction pattern from a square aperture of equal width.
The angular subtense of the central lobe is given by

.A(,:tan"[é]:1an"(2.44£}z2.4—4i (4.46)
F H LY

The optical intensity distribution of Eq. (4.43) is often referred to as the Airy distribution.
after astronomer G. B. Airy, who first determined its mathematical form. Figure 4-8 shows the
same pattern as a grayscale distribution. Contrast has been reduced to show mere cleardy the ring
structure surrounding the central lobe.
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Fig. 4-7. Surface plot of the Fraunhofer intensity pattern for a circular aperture: the Airy distribution. The radial
distance from the peak to the first nuil equals | 22Az/w, where w is the diameter of the apenure.

Fig. 4-8. Photograph uf Fraunhofer pattern from circular aperture.

4.4.3 Sinusoidal Amplitude Grating

Gratings play an important role in optics, most notably in grating-type spectrometers. A prating
structure of particular importance is the sinusoidal amplitude grating (usually referred to simply
as a sine grating), represented by complex amplitude transmittance

I m X ¥
tHrv)=| =+ —cos(2 L
{x,¥) [2 + 2 COS{ J:f‘,x)]rect(w J' @an

where the parameter m is real-valued and satisfies the condition Iml < 1. This function is plotied

in cross-section in Fig. 4-9. Assume such an object to be itluminated by a normally incident, unit
amplitude, monochromatic plane wave. To calculate the resulting Fraunhofer pattern itis
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necessary to evaluate the Fourier transform of t(x.y). This is done by invoking the cenvolution

theorem and neting that

1 1 m
7{'2‘ * %“"Sizmﬂ} =2 S+ (8wt o+ 8= fo.v).

and
Xy 1.
Flreet{=,=)} = w’ sinc{wu, wv).
wow
T+ T4x,0)
m -4
x
-} W .
Fig. 49, Sinusvidal amplitude grating transmittance function.
Thus

FIUGx, y:00} = Fle(x. 00}
= WTsinc(wu,wv)
w? w?
+Tmsinc[w(u + fo),wv] + -4—msinc[w(u - f(,).wv]

Substituting in Eq. (4.30b) yields
2 4
U(x,viz) = L exp("kz exp[ji(xz +y? )]
2 jAz 2z

. x ¥y

x{smc(/'l.sz'ilzlw)
m. [xtXkfy) ¥ ] L [(x—ﬂ-zf,l) y ]
+2smc[ Aztw CAziw +25|nc Adlw Aziw

The corresponding optical intensity has the form

416

(4.48)

(4.49)
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2y z
~ cof x ¥ m?  o(x+fA)
fixy Z)_[le] {smc (k/w‘izlw)+ 4 sine [ Aziw lziw

, . (4.52)
+ %sincz[m u ]+ cross - product 1crms}

Arfw Aziw

The cross-product terms are products of sinc functions separated from each other along the x-axis

by f,Az and 2f,Az. If the condition
i
fa>>— 4.53)
w
is satisfied, the sinc functions are effectively non-overlapping and their cross-products, which are
insignificant in amplitude compared to their self-products, can be neglected. The x-axis cross
section of this Fraunhofer pattern is shown in Fig. 4-10. In diffraction terminology, the central
structure of the pattern is called the zero-order diffraction component. while the two side patterns
are called the first-order diffraction components. Note that the higher the spatial frequency f,, of
the graling the farther from the zero-order component the two first-order components appear. As
viewed from the plane of the grating itself, the two first-order components have an angular
separation from the +z axis in the amount
9=+ian ' (f4). (4.54)

which is given approximately by +f,A for small angles,

1.0 Normalized
’ optical intensity
1| m2
AW A
- fo Az fo Az —™ X

Fig. 4-10. The x-axis cross section of the Fraunhofer pattern from a sine grating.

4.4.4 Sinusoidal Phase Grating

Another grating of interest is the sinusoidal phase grating, represented by complex wave
amplitude transmittance

tr )= exp{ jﬂsin(zzg;x)]rem(i.l) (4.55)
’ 2 wow
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In this expression the parameter m is the peak-to-peak excursion of the oplical phase shifi of the
transmitted wave. Such a grating can be manufactured by embossing a sheet of transparent
plastic in such a way that the thickness varies sinusoidally as a function of x. Alternatively, the
refractive index of a transparent sheet might somehow be made to vary spatially.

In calculating the corresponding Fraunhofer pattern produced when such a grating is
illuminated by a normally incident plane wave, we use the identity

ew[ﬂ:—sin(lrm,x)} ): J, [ }pr j2my,x) {4.56)

(note that the right-hand side of this equation is the Fourier series expansion for the periodic
phase function) to obtain

oo

AUy} = 3 wzf,,(?)stnc{w(u—njf,,},wv]. (4.57)

n=-—oa

Substituting in Eq. (4.34) for the Fraunhofer intensity pattern yields
I{x,_v;z):(—} 212( }smc [ (x—nf,,lz} —\=] (4.58)

where, assumning f, >> H/w, cross product terms have been ignored. Figure 4-11 shows the r-axis
cross section of this Fraunhofer pattern for the case m = 6.8. Light is diffracted by the grating
into a number of diffraction components, with the optical intensity of the nth component being
proportional to [w],,(le)l’kz]z. Note that where /2 is a root of J,,, the zevo-order component
vanishes.

To be supplied

Fig. 4-11. X-axis cross section of the Fraunhofer pattern produced by a sinusvidal phase grating.
Another grating of special interest is the square-wave grating, or Ronchi ruling. The
diffraction pattern produced by this structure is investigated in a homework problem.
4.5 CALCULATIONS OF FRESNEL DIFFRACTION PATTERNS
Although evaluation of the integrals in Egs. (4.26) and (4.30} is in general quite difficult, there
are several cases where it can be done with relative ease. One distribution for which the Fresnel
propagation integral can be caiculated in closed form is the Gaussian wavg amplitude

distribution. A Gaussian wave amplitude is of great practical importance.'for it is produced by
many tasers operating tn their lowest order transverse mode (see, e.2., Ref. 4-8)

4.5.1 Gaussian Beam Propagation
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Figure 4-12 illustrates a typical Gaussian laser beam converging to and expanding from a focus.
At the beam waist, denoted by z,,, the beam diameter is a minimum. There, the optical wave field
can be represented by complex amplitude

2 2

x4y

! Ulx,y;zy) = Aexp| ———— . (4.59)
i 1o

I\

Note that r,, the beam radius at the waist, gives the distance, measured from the center of the
beam, at which the wave amplitude is reduced by a factor i/e from its value at beam center. In
specification sheets for gas lasers, the beam diameter is the diameter at which the laser beam
irradiance is down by a factor 1/e2 from its value on axis. It is easily shown that the beam
diameter at the waist, according to this definition, equals 2r,. Assuming the waist (0 lie in the
z=0 plane, the beam amplitude can be written in the forn (with xevl=

i
Uir:0) = Acxp{:{f] ] (4.60)

According 1o Eq. (4.31), re-expressed in polar coordinates, propagation of this Gaussian wave
through distance z produces the complex amplitude

. 2
U(riz)= %":Z}GXP@%# )ff{ex[{— fz—]cxp(fzizrz)}

I

(4.61)

lo=ria:

millimeters

ra

z (meters)

Fig. 4-12. Gaussiun heam propagaticn. The bow-le pattern (note the different scales fur the horizontal and venical
axes) shows the 1/e2 intensily beam diameter (or a A=633 nm laser beam with a waist diuteter of 1 mm. The
circolar arcs show the wavefront curvaiure at z= 10 m, at the Rayleigh distance zg (z=1241 mm), and at the waisl

{where the wavelront is ptanar)

If the operand of the Fourier transform operator is writlen in the form
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E . —k} 2
expl 2 ——+iz— |
mr, "2z

the 2-D Fourier transform retationship (¢ and ¢ real, a>0; see Ch. 2}

2
La 2 1 Iy
expl-#{a + je)ri| e —exp| —% -
P[ ( ) ] a+ D[ a+jc] (4.62)
can be used in evaluating U{r;z). The final result, obtained after some manipulation, is
| k ¥ :
Ulr;2) = expl jkz)expl-j (z)]-——exp[' rz]:x -(—] . (4.63)
e e T )
where
2
N2)=r, I+{—Z—J . {4.642)
ZR
z 2
R(z)= z[l + (-&] ] {4.64b)
z
¥(z)= tan"[i]. (4.64c)
iR

The parameter z,, the so-called Rayleigh range of the beam, is given by
=mlid. (4.65)

Note first that Ufr:z) has a Gaussian magnitade for all values of z. The 1/e-amplitude radius ri(z)
equals r, at the waist and approaches the value Az/nr, for z large compared to the Rayleigh
range. Second, note that the phase is quadratic with r, the same as for a spherical wave in
quadratic-phase form. The wave U(r;z) has, in fact, the same curvature as an expanding spherical
wave with radius of curvature equal to R(z) and is generally referred to as a Gaussian spherical
wave. For large z, the radius of curvature R(z) approximately equals z, and as z—0 and z—ee the
radius becomes infinite. It is easily shown that the radivs of curvature attains its minimum value
when z =z, i.e., at the Rayleigh range, where R(z) equals 2Zg. At the Rayleigh range the l/e-
amplitude radius r} equals ro¥2. Additional information on Gaussian beams is contained in Ref.
4.9

4.5.2 Converging Spherical Wave [lumination of an Aperture

We consider as a second example of Fresnel diffraction the singularly important case of an
aperture illuminated by a converging monochromatic spherical wave. Assume, as illustrated in
Fig. 4-13, that the spherical wave is converging toward the origin and that the aperture,
characterized by complex transmittance t,(x,y), is in a plane an adjustable distance d in front of
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the 7=0 plane. The amplitude of the illuminating wave is obtained from Eq. {3.27) with £ set
equal to -d, yielding

U, vi—d+) = Aﬂ?.%@exp[~j%(x2 + y2]]t0(x.,v) (4.66)

for the wave immediately to the right of the aperture. The amplitude of the propagated wave in a
plane of arbitrary z {z>0) is given by Eq. (4.27) with 77 set equal to z, z1 set equal to -d, and
[from Eq. (4.28)} Z=z+d. Evaluating this expression for arbitrary z is no easier than calculating
the general Fresne] diffraction integral. However, for the special case z=0, the propagation
distance Z equals 4 and major simplifications result. Thus, from Eq. (4.27) and its expansion into
the form given in Eq., (4.31),

i k
Utx, 120y = Ul yi-d+) * *Egaz—mexv[igg(f + r"z)]

_ exp{Jjkd} k{22 - ckpa 2 :
_TEXP[}E(X + ¥ ) F Ulx, v,—d+)exp jZd(x + ¥ ) ‘::,{ﬂ

(4.67}

Substitution for U(x,y:-d+) and canceliation of common phase factors quickly leads to the resuit

A k2 2 ]T [ x v )
Utx, vi0) = = ) i | 4.68)
(x, Q) _Tj exp[; Zdu + vy} [T, (;

where Tq(u,v) is the Fourier transform of to(x,v).

d —»

z=0

Fig. 4-13. Converging spherical wave illumination of an aperture. The complex amplitude in the plane ef
convergence is proportional t a scaled version of the Fourier transform of the aperture function, i.e., to the
amplitude of the aperture Fraunbofer pattern

The corresponding optical intensity is given by

i 2
. “‘”:[;ﬁ)
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which is seen to be proportional 10 the Fraunhofer intensity pattern associated with the aperture.
scaled by the factor Ad.

As an example, consider the case of a square aperture of width w. Then 4,(x.v) =
rectx/w,vfw), Tplte,¥) = wisinc(wu,wv), and the complex amplitude in the ;=0 plane is

o A ka2 EE,‘ x ¥
U(x._\.O)—Mexp[Jﬂ[x +y ]}(d) S'"L[m‘mm]' 14.70)

Note that the magnitude of this wave depends on the aperture width w and the convergence
distance 4 onty through their ratio w/d. This condition implies that il w and o are increased
proportionately—e.g., if both are doubled in size—the magnitude, and therefore the intensity. of
the wave distribution in the plane of convergence remains the same. Only the quadratic phase
factor in Eq. (4.70) changes. This conclusion is net unique to the case of a square aperture but is.
in fact, quite general.

Equation (4.68) siates that converging spherical wave illumination of an aperture
produces, centered on the nominal point of convergence, a camplex ampistude distribution
proportional to the Fourier transform of the aperture transmittance function, scaled by the
wavelength times the convergence distance. This result is one of the most important reached in
the development of Fourier optics. It plays a central role in cornection with the theory of image
formation by spherical lenses, and it also leads to many of the important signal processing
applications of optical systems. Although illustrated for the case of a wave converging 10 a point
on the z-axis, it can be shown to hold alse for the case where the point of convergence lies off-
axis (see homework problem).

4.6 NON-MONOCHROMATIC WAVE PROPAGATION: THE QUASI-
MONOCHROMATIC CONDITION

Thus far in the discussion of wave propagation it has heen assumed that the wave is
monochromatic. However, as noted in Chap. 3, truly monochromatic waves do not exist in
nature. The important question thus arises, what must be done 10 modify the theory of wave
propagation to properly take into account the finite spectral bandwidths of real-world wave
fietds? The answer depends strongly on how large the spectral bandwidth is. For narrowband
wave amplitudes. the modification ts much simpler than for the case of breadband wave
amplitudes. The interested reader is referred to Refs. 4-7 and 4-8 for a discussion of the general
theory. Fortunately, in many cases of practical interest the spectral bandwidth is sufficiently
small that the theory for monochromatic wave fields provides accurate results even for time-
varying phasers, and the various equations in this chapter can be used directly if Ulr.v.z} is

replaced by U(x,v.z.0), A by A,k by k. and v by ¥, where the bars denote the average
values. In order for such a procedure 1o be allowable, the following two conditions on Av are
imposed:

Av A @
v A
and
‘
AV << —, (4.72)
d

where d is the longest optical path invoelved in the analysis. The first of these conditions ss simply
the narrowband condition of Eq. {3.44). [1 is necessary if significant scale changes with
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wavelength are to be avoided. The second, or small path condition, is a sufficient condition that
assures that the phase shifis represented by the transfer function of Eq. (4.19) are accurate over
the entire observation region for the entire range of values of A. The two conditions taken
logether constitute the quasimonochromatic condition, and light satisfying them is referred to as
being guusimonochromatic. As noted, light satisfying the quasimonochromatic condition can be
lrea[edii,n propagalion and diffraction calculations as though it were truly monochromatic. Light
from a laboratory laser often satifies the quasimonochromatic condition.

4.7 ACCURACY OF FRESNEL-REGIME CALCULATIONS AND THE EXACT FORM
OF hg@y)

The Fresnel regime wave propagation impulse response of Eq. (4.25), EZ(I“V). was obtained by
imposing condition {4.20) and approximating the square root in the exponent of H,{u.v) by the
first two ferms of its binomial expansion. Condition (4.20) can be interpreted in either of two
ways: U(x,v:0) contains only spatial frequency components that are well below the frequency

/A in any direction, or, equivalently, the plane waves that make up U(x,y;0) through the angulas
spectrum superposition integral of Eq. (4.9) all have k-vectors that make suitably smail angles
with the positive z-axis.

The actual error in the phase of l-{:(u. v} that 1s introduced through this approximation
increases in proportion to z, and simple caiculations suggest that the Fresnel regime
approximation for Hz(u.v) should be used only under highly restrictive conditions. For example,

if itis assumed that z = 1.0 m and A = 500 nm, and if the magnitude of the phase error is (o be no

preater than 211710, then p=Vu2+v2 may take on values no greater than about 50/mm . The
corresponding maximum angle the -vector may make with the +z axis is less than 1.5°.

However, in assessing the validity of the Fresnel-regime approximation, it is extremely
important that its effect on the propagated wave field Ulx,y:z) itself be considered rather than
A

simply its effect on the Fourier transform U(u,v;2). Stated differently, it is necessary to consider
not just the relationship between H.(4,v} and fl:(u, v) but—and much more importantly—also
that between U(x, v;0)* *h_(x, v) and Ulx, y;0)* *ﬁ:{x. ¥}. One way of assessing this
relattonship is numerically, using, for example, the discrete Fourier transform and knowledge of
H,(x,v) and ﬁ:(u, v) to calculate comvesponding values for Ulx,y:z). Alternatively, the results
obtained numerically or, when possible, analytically using flz(.t,_v)can be compared with
experimental results obtained in the laboratory. In either case, a wide variety of experiments have

shown that the use of the Fresnel kermel I.l_.(x.'v) will yield remarkably good results except when
small angle approximations are seriously violated, i.e., when angles involved in the problem
exceed £20° or so. The reasons are varied and complex and are not elaborated on here. However,

relevant discussions are to be found in Ref, 4-1 as well as in various journal articles (see, e.g.,
Ref. 4-12),
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[tis also possible to compare ﬁ;(x,_\') with h_(x, v) directly, for, as noted in Sect. 4.2, the

exact propagation kernel can be determined by direct evaluation of ™' {H_(u.v)} without the use
of approximations, as is now shown.

We start with Eq. (4. 14b) for the exact propagation transfer function, restated here:

H.(p)= exp[jzn%\h-(ap)z} (4.73)

Since this function has circular symmelry, its inverse Fourier transform can be evaluated using
the zeroth-order inverse Hankel transform. Thus,

hyir) = 2 {H ()} = 27 § pexp[m-}\./l -(Ap? ]J,,(Zﬂ'rp)dp. (4.74)
L

Stark {Ref. 4-10) points out that this integral can be cast in standard form and evaluated through
the use of integral tables. The result, after modification to allow for negative values of z, is

exp[jkz\}1+(x2+_v2)fzz) I (1— 1
jﬁzw,ll +(x2 + y2) 2 Jl +al v yhyiz? L jkz\ll +af + 8yt

[n classical diffraction theory this function equals the kernel of the general Rayleigh-Sommerfeld
diffraction formula, obtained through the application of Green's theorem and a panticular choice
of the Green's function (see, e.g., Ref. 4-1). No approximations have been introduced in
obtaining Eq. (4.75), which gives the exact expression for the propagation kernel.

h,(x.y)= J (4.75)

in almost all cases of interest the condition z>>A is satisfied, the second term in the
parentheses on the right-hand side of Eq. (4.7%) is therefore quite small compared 1o the first, and

h,(x,v) is well approximated by
| Irexp(jkz\,iu(xz-v—rvl)/zzJ

1
i \(]+(x2 +¥2 )t [ a1+ + 7)1 22

h,(x,v)= (4.76)

Comparison of this equation with Eq. (3.24) shows the function in brackets 1o be the complex
amplitude of our model for a unit amplitude spherical wave converging to and expanding from
the origin [which, recall, is the location of the "impulse” giving rise to the impuise response
h;(x,y)]. The spherical wave function is shified 90° in phase by the factor 1/}, reduced in
amplitude by the factor 1/3, and multiplied by 1/Y 1+(x2+y2¥z2. This latter factor is the modulus
of the so-called obligquity factor, which equals the cosine of the angle that a line from the
origin—i.e., from the source point—to the observation point (x,y,z) makes with the posttive z-
axis, If the region of interest in the output plane is reasonably small compared to z, the obliquity
factor is well approximated by unity and hy(x,y) becomes
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exp(jkz\jl + (x2 + _\=2 }J’Zz )

1
h,(xv)=— . (4.77)
: i z\/l+(x2+,v2)n'z2

It is now only a short step to the Fresnel regime approximation of Eq. (4.25). The
remaining approximations are the same as those made in going from Eg. (3.24)t0 Eq. (3.27)in

the representation of an expanding spherical wave: 2V 1+(x2+y2¥72 is replaced in the
denominator by z and in the exponent by [z + (x24y2)/2z), with the familiar result*

b (x.y)= Elq;(1417%""‘)«31(;;[ jziz(x’ + _\’2)] (4.78)

the same expression as given in Eq. (4.25) for E:(x,,\').

[t is interesting to note that the nature of the approximations used in this section differ
from those imposed in Sect. 4.2, yet with the same result for the propagation kemnel. In Sect. 4.2
a condition is imposed on the inpuf wave; Ulx,y;0) may not contain high spatial frequency
components. In this section, on the other hand, third and higher-order terms in the binomial

approximation to /x’ + v! +7* are ignored. thereby imposing a condition on the region of
observation in the output plane. As noted earlier, however, it is not so much the specific nature
of the approximations on FE or h that is important as is the effect these approximations have on
the propagation integral, and experience suggests that this effect is quite often not significant.

4.8 CONCLUDING REMARKS

Confusion easily arises between the terms interference and diffraction. The term interference, as
introduced in Chap. 3, is commonly used only when a smalk number of waves are involved or
when the optical system is ¢learly an "interferometer.” However, the distinction between
interference pattern and diffraction patiern is often vague. For example, the Fraunhofer
diffraction pattern from a two-pinhole mask is commonly described as a Young's interference
experiment pattern. However, when the pinholes become large or are replaced by a random array
of pinholes or by the 2-D transmittance function of a general 35 mm photo transparency, the
resulting pattem is more often than not referred to as a diffraction pattern. No advice is given
here, only an acknowledgment of the mix of terminology.

What is possibly the most useful equation in this text is the following:

_sinf,
P.=—

(4.7%)

where p, is the radial spatial frequency associated with a plane wave whose k-vector makes an
angle §, with the +2 axis. For the case when the k-vector lies in the x-z plane, Eq. (4.79) assumes
the form
sin @,
0, - .

4.80
5 2 (4.80)

4 These two approximations aze often referred (o collectively as the Fresne! approximations.
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where 8y is the angle the k-vector makes with the +z axts. Using this equation one can solve a
remarkably large nizmber of wave propagation problems without much effort. Keep itin mind.
Examples of its use will appear in later chapters. Note also that sing,, ~ tang,, =6, for small values
of 8,, simplifying results even more for many practical cases.
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PROBLEMS
4.1 Assumne that a square aperture of width w is illuminated by a normally incident, unit

amplitede, monochromatic plane wave.
(a} Find the angular spectrum fJ(afA.ﬂxl;OH of the transmitted wave field
n
immediately following the aperture and sketch its /A cross section, Ul A.0:0+1.

(b)  The angular spectrum of part {a) has pertodic zeros along the A axis. The
direction corresponding to the first null from the origin can be expressed in terms
of the angle # that the k-vector makes with the +z axis. Find that angle, assuming

that A = 633 nm and w =2 pm.
4.2 A monochromatic wave is modeled by coinplex wave amphitude

Ux,v,0) = 1 + cos(2af,x).

A
{(a) Find the angular spectrum U{a A, FA;(00 associated with thﬁs wave,
t

(b} Assuming A = 600 nm, for what spatial frequency £, in mm-!, does the cosine
term describe two plane waves with propagation directions at £45 to the 4z axis?

() Repeat part (b) for +30°.
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() Assuming the propagation directions of part (b). find the plane-to-plane distance z 4.6
through which the wave must propagate to result in a complex wave amplitude of
the fonn

| Ulr,viz) = 1 +exp(j8) cos(Zaf,x).

i where 6 is some constant that depends on the specific vaiue of z.

(e) The wave distribution of part (b} is incident on a square aperture 2 mm in width.
Skewch the oA cross section of the angular spectrum of the resulting transmitted
wave field, assuming f, = 50 mm- 1.

f) If £, > /A, the cosinusoidat wave field is evanescent and dies out with distance,
For what distance z is it reduced in amplitude by a factor of 10 if £, is 1% larger
than VA [i.e. f, = LOL1/A)]?

Figure P4.13 illustrates the propagation of a plane wave whose &-vector lies in the x-z
plane. Assuining that the phase of the plane wave is zero in the z=0 plane, use simple

trigonometry 1o show that its phase in the plane 1=z, is consistent with Eq. (4.10). 47
X k
z
z=0 =2z, 4.8
Fig. P4.13
An optical wave with complex amplitude Ulx,y;0) has angular spectrum
A
U2 B0y =80p-po).
where
7l
ay (BY
= — | +| £
P \/EA) (a)
(a) Find U(x,v;0).
(b) Using the wave propagation transfer function Hy{u,v} given in Eq. {4.19), find the 49
complex wave amplitude Ulx,v;z) obtained by propagation of the above wave
field through a distance z.
Prove the following statements: 410

{a) The condition Vu® +v° << 1/ A corresponds to the case of plane wave
components with k-vectors that make small angles 10 the +2 axis.

(by  The condition p = 1[“2 +vi=/a corresponds to the case of plane wave
components propagating in directions perpendicular to the z-axis.
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A Ronchi ruling-—a grating with a square-wave amplitude transmission profile (a Ronchi
ruling is manufactured by scribing grooves in a piece of glass and filling the grooves with
black paint or other opaque substance}—can be represented by the transmittance function

tix,v)= [rect(i)*icomb(i)] recl(i,l} d< A,
d} A A w h

where A is the grating period and 4 the grove width.
(a) Sketch the x-axis cross section of this transmittance function.

(b}  Assuming such a grating to be illuminated by a unit amplitude, normally incident,
mongchromatic plane wave, find the resulting Fraunhofer intensity patiern a
distance z away. Sketch its x-axis cross section, labeling all critical distances.

Assume that w >> A.

{c) Describe what happens in the special case when d = A/2.

An aperture consisting of two rectangular slits of width X and height ¥ and separated by a
center-to-center spacing D is illuminated by a unit-amplitude, normally incident plane

wave at wavelength A.
(a) Find the resulting Fraunhofer intensity pattern,

b) Sketch x- and y-axis cross sections of this pattern, assuming A = 500 nm, D = 5
mm, X = 0.5 mm, ¥= 20 mm, and z = 200 m.

A normally incident unit-amplitude, monochromatic plane wave of wavelength A
illuminates an annular aperture (essentially a circular slit in a mask) with outer diarmeter
D and inner diameter d.

(a) Find the resulting Fraunhofer intensity pattern.

(b) Show that as the difference between D and o becomes small, the Fraunhofer
patiern assumes the form

rALY z(ndr)
friz)=|—1 f5| —|.
(riz) [lz} Az

and find the constant A. (Hint: Represent the aperture by a delia function of the
proper volume.)

Show by integrating I{x,»,0) and I{x,¥;z) over the two respective x-v planes that the factor

(1/A2)? in Eq. (4.34) is consistent with energy conservation.

An object with complex wave amplitude transmittance
t{x,v)= [% + %cos(lnf,x) + %cos(Zfoox)}rect(i,%J

is illuminated by a normally incident monochromatic plane wave.
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(a) Find the angular spectrum for the transmitted wave and sketch its /A cross
section, assuming that f, >> 1/w. Be sure to label critical distances.

) In the vicinity of the object, assuming w >> A, the transmitted wave field
corresponds approximately to five beams of light of rectangular cross-section.
What is the angle & separating the nominal propagation directions of the beamns,
asssming A = 500 nm, f, = 50 mm- 1?7

(c} For £, is sufficiently large the higher frequency components of the wave field
amplitude become evanescent. For what approximate range of frequencies £, are

only three beams produced, assuming the same wavelength given in part (b)?
State any assurmplions you make.

4.11 A mask comaining two small pinholes at x = +0 is illuminated by a normaily incident,
unit-amplitude, monochromatic plane wave of wavelength A. Find the intensity of the
resulting wave a distance z away, assuming propagation in the Fresnel regime, and sketch
its x-axis cross-section. (Hint: Model the amplitude transmittance of the mask by a pair
of deita functions.)

4.12  An opague mask contains a circular opening of diameter D obstructed by an off-axis disk
of diameter [)/2, as shown in the Fig. P4.12.

(a) Write an expression for the complex wave amplitude transmittance of this mask.

(b} Assuming the mask to be illuminated by a normally incident unit-amplitude plane
wave at wavelength A, find the Fraunhofer intensity pattem resulting in a plane a
distance 7 away.

(c} Explain how your answer to part {b) changes if the illuminating plane wave is
obliquely incident on the mask, its k-vector lying in the x-z plane and making an
angle 8, with the +z axis.

-
D2

Fig. P4.12

4.13  In the Fresnel regime, propagation from the z=0 plane to a plane of arbitrary z is

expressed by the convolution formula Ux, v;2) = Ulx, vi0) **ﬁz(x. ¥)., where ﬁz (x.v) is
the Fresnel regime propagation kemnel.

4.14
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(a)  Show, by proving that b, (x, v} By{x,v) = 8(x. v). that h(x,v) is the inverse
propagation kernel in the Fresnel regime.

(h) Use the result from part (a) to prove that Ulx,v;0) can be obtained from Ulrx,viz)
by means of the formula U(x,v;0) = Ulx, y:z) * fl;(x. V).

{c) Show that, in the Fresnel regime. inverse propagation is represented in the spatial
frequency domain by the multiptication with the inverse propagasion transfer

e
Suncrion H,(4,v).
) Prove that, more generally. inverse propagation can be represented exactly in the

spatial frequency domain by multiplication with H;(u.v). where H, (i, v) is the
propagation transfer function given in Eq. (4.14) and, therefore, that inverse
propagation in the space domain is represented exactly by convolution with the
convolution kernel h,{x, v) given in Eq. (4.75).

Show that condition (4.72) is consistent with the condition « << f,.. where [ the
coherence lengrh of the light, equals the distance the light travels in a time equal 1o the
reciprocal bandwidth 1/Av.

As illustrated in Fig. P4.16, a spherical wave converging to a point at coordinates
{x5.¥,2) illuminates an apertute in the z=0 plane. Show that, as in the example of Sect.
4.5.2, the optical intensity resulting in the z=0 plane consists of the Fraunhofer diffraction
patiern of the aperture, centered on the point of convergence.

\

2=0  z=z,

Fig. P4.16.
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5. Lenses: Models and Properties

Lenses are among the most important elements in optical systems, for they can perform the
amazing feat of forming images of light distributions. In addition, they have the remarkable
property of being able to "calculate” the spatial Fourier transform of an input distribution, either a
complex amplitude or a complex amplitude transmittance function. In this chapter we explore the
properties associated with lenses and develop mathematical models for them and for the operations
they can perform in simple configurations. We begin with an introduction to the most basic
propetties and models for lenses, from both a ray optics and a wave optics perspective. We then
analyze the ability of a lens to form images of complex amplitude and optical intensity distributions
and investigate in detail the Fourier ransforming property . We conclude with a brief look at the
effects of non-monochromatic light, methods for modeling "thick” lenses, and certain practical
aspects of lenses and their use.

5.1 THIN SPHERICAL LENSES: BASIC PROPERTIES AND MODELS

Only a small set of properties and associated rules is needed for one to be able to understand the
behavior of lenses in a variety of systems. Basic ray-optics properties are discussed first, followed
by a wave-optics-based model for a lens illuminated by monochromatic light.

5.1.1 Ray-Optics Properties: Collimating, Focusing, and Imaging

A simple single-element spherical lens is illustrated in Fig. 5-1, It consists of a piece of glass (it
could be plastic) with two spherical surfaces of radii R, and R;. The centers of curvature of the

surfaces lie along the optical axis of the lens, taken in the remainder of the text as being coincident
with the z-axis.

optical axis
=

surface 1 surface 2

Fig. 5-1. Simple spherical lens.

As illustrated in Fig. 5-2(a), if a such lens is illuminated by a planie wave or, from a ray
optics viewpoint, by a collimated beam of light, the result is a focusing of the light to what
approximates a point in a plane a distance f beyond the lens. The distance f is called the focal
length of the lens, and the plane is the back focal plane, The point where the optical axis

intersects the back focal plane is refereed to as the back focal point. The location of the point of
focus is determined by passing a rmy through the center of the lens at the incidence angle and noting
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where that ray intersects the focal plane, as shown in the figure.! Similatly, a point of light in a
plane a focal distance f in front of such a lens—in the frons jocal plane—produces a collimated
beam of light that travels in the direction established by a line from the soutrce point through the
center of the lens. This configuration is illustrated in Fig. 5-2(b). If the point source lies at the
front focal point of the lens—at the intersection of the optical axis with the front focal plane—the
tesulting collimated beam travels along the z-axis.

Back
focal plane

Lo A

Back
——p focal point

(@)

Front
focal plane

Frant
focal point

Object plane Image plane

(c}

Fig. 5-2. Effect of a positive lens on light rays and waves: (a) focusing, (b) collimation, (c) imaging.

Figure 5-2(c) illustrates the imaging of light from an object paint to a comesponding image
point. From a wave-optics viewpotnt the effect of the lens is to convert di%erging spherical waves
into converging spherical waves. In this text we are concerned almost exclusively with the imaging

| The precise determination of the focal distance f is discussed in Sect. 5.4. The notion of a focal plane is
reasonable only if the angle of incidence the light waves make with the lens normal is refatively small. I the angle
of incidence is too large, off-axis aberrations become noticeable, and the light is focused to a blurred rather than to a
compact point. Furthermore. the point of best focus may be claser to or farther away from the lens than the
nominal back focal plane. Note that a large angle of incidence is inconsistent with condition (4.20) assuroed in
deriving the Fresnel-regime propagation formulas.
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of objects that are confined to planes of constant z. If paraxial conditions (see box) are satisfied,
the image of such an object is itself planar, lying in a second plane of constant z. The distances
between the planes containing the object, image, and lens are governed by the Gaussian imaging
formula? or lens law,

I
{ d,

1
+ -, (5.1)
!
where d,, is the signed distance (see box) from the object plane (o the lens plane and where d; is the
signed distance from the lens plane to the image plane. Because of the tightly coupled relationship
between these two distances, the two planes are said 10 be conjugate to one another, as are_object
and image points themselves. Figure 5-2(c) illustrates for the case where f, d,, and d; are all
positive. The transverse magnification of the image, defined by

L
di

M=—-gi, (5.2)

e

is negative for the single-lens system, agreeing with the inversion, or 180° rotation, of the image
relative to the object. Thus, for this systemn, if the object point is at coordinates (x,,¥o) in the object
plane, the conjugate image point is at coordinates (-dix,/dy,- voldy) or (Mx,,My,) in the image
plane.

Paraxial Optics

Except when the effects of diffraction are to be considered, systems of lenses are analyzed by
means of ray-trace methods: lines representing rays from points in object space are traced through
a diagram of the optical system to corresponding points in image space. Ray-trace analysis is
greatly simplified if small-angle approximations can be used for trigonometric functions. Such
approximations are valid if all rays of concern make only small angles with the optical axis and
change angle at lens elements only by small amousts. Such conditions will generally be met if the
lens elements share a common axis and if all rays of interest remain sufficiently close to the optical
axis—i.e., if all rays are paraxial. If these paraxial conditions are not satisfied, more exact
methods of analysis must be used. Throughout this text paraxial conditions will be assumned to be
satisfied untess otherwise stated.
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plane P2." If P lies to the right of Py, then d is positive and, as in the figure, is denoted by an
arrow pointing to the right—i.e., in the +z direction. The signed distance s in the figure is
negative—a condition conveyed by the arrow's pointing toward the lefi-—indicating that s = PPy,
i.e., the distance from plane Py to plane Pa. Since Py lies to the left of plane Py, this distance is in
the -z direction, and s is therefore negative. The signed distances o and s can be defined in terms of
the z-coordinates of the planes of concern. Thus, d=22-2;>0, and s=z4-7.<0. In Figs. 3-2, 5-3,
and 5-4, the arrows associated with focal distance f point to the right, signifying that f is positive
for these lenses. In Fig. 5-5, fis negative, a fact conveyed by the leftward-pointing arrow.

Py Pz Pa P

—_—— s ——

7y I3 £ I

In the analysis of the single-lens imaging systems in this chapter, object distance d,, is defined as
the signed distance from the object plane 1o the lens plane: d,, = P,Pp = 2, - z,. This quantity will
always be positive if the object piane lies to the left of the lens (as it must if we demand that light
travel left to right). Similarly, image distance dj is given by d; = P.P =z — z;. This distance is
positive if the image lies to the right of the lens. It can, however, be negative if z-z;<0, i.e., if the
image-—virtual in this case—lies to the left of the lens [Fig. 5-3(c)].

Signed distances are denoted in figures in the text through the use of single-headed arrows. If only
the magnitude of a distance is of concern (a rare case). a two-sided arrow is used.

Signed Distances

Using signed distances in connection with imaging systems is a little like giving a traveler
compass-point directions for driving from Philadelphia to Chicago. If he already has a sense of
where Chicago lies, it is adequate to tell him that it is about 700 miles distant. But if he doesnt
know the territory, it may help him a great deal to knew that his destination lies toward the west!

With reference to the figure, signed distances along the z-axis can be signified by notation of the
form d = B R . This equation should be read "d is the distance along the z axis from plane P) 10

? Named after German mathematician Carl Friedrich Gauss, whose work on imaging in the geomelrical optics
regirge led to this formula,
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Other examples of imaging with a singte positive-focal-length lens are illustrated in Fig. 5-
1. These examples tllustrate basic techniques in ray-trace methods. Note specifically that in each
case three rays are traced from the object point to its conjugate image point:
(a) A ray parallel to the optical axis. This ray, after passage through the lens, passes through
the back focal point of the lens.
(b) A ray that passes undeviated through the center of the lens.
(c) A ray that passes through, or whose extension passes through [Fig. 5-3(c}]. the front focal
plane of the lens, emerging parallel to the optical axis on the right side of the lens.
The intersection of these rays denotes the location of the conjugate image point. Clearly only two
of the three rays are actually needed to locate this intetsection, Note that in Fig. 5-3(c), where the
object lies between the front focal plane and the lens, the image is virtual: the rays of light
diverging outward to the right of the lens only appear to be coming from the image point; the light
rays do not in fact pass through the image point as they do for the real images points in Figs. 5-
3¢a) and (b).

Twa more definitions are of occasional us to us. With reference to Fig, 5-4, if alens of
diameter D and focal length fis used to bring collimated light to a focus, the lens is said to operate
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with an f-aumber (designated in this text by F*, in many photographic texts the symbol {/# is
used) given by

Po P

—_— = = Sl - oy - — - d, =4cm
t ; ‘""--Q ’ M= -1

f=2cm d,=6cm
d =3cm
M= -1/2
(b
t=2cm d,=1cm
- d=-2cm
M=2

Fig. 5-3. Examples of imaging with a single thin lens of positive focal length. The gridwork is in centimeters.
F' = i (5.3
D
Cameras with adjustable apertures can operate at different f-numbers. Thus, a camera with a 50

mm focal-length lens and an aperture adjusted to a diameter of 6.25 mm is sald to operate with an
f-number of 8.0 (often written /8). Note that the larger the aperture is, the smaller the f-number,
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and thus smaller f-numbers correspond 1o greater amounts of light reaching the focal plane. If light
is brought to a focus in a plane otber than the back focal plane of the lens, it is still possible to

speak of an effective f-number, Fe%, for the light cone. Thus, assuming the lens in Fig. 5-2(c}
has diameter D, we can say that the cone of light brought te a focus at the image point has an
effective f-number given by li} =d;/ D. In some cases, an effective f-number may be applied to
the cone of light on the object side of the lens.

Another frequently-used number characterizing a leas is its numerical aperture, designated
NA and given by the sine of the half-angle o shown in Fig. 5-4:

NA = sino. (5.4)

Since o can never exceed 90", the maximum possible value for NA is unity 3 [t is easily shown

that if ¢ is small the numerical aperture of the lens is approximately equal to 1/{2F¥). Larger NAs
correspond to greater amounts of Jight reaching the focal plane. Later we shall see that, because of
the wave nature of light and corresponding diffraction effects, the higher the NA the better the
resolution provided by a [ens used for imaging.

F'=t/D
NA = sina

t—p»

Fig. 5-4. Parameters relating to the f-number and numerical aperture of a lens.

In most cases our concem is with positive lenses, where fis greater than zero. Figures 5-2
and 3-3 illustrate the action of positive lenses. Occasionally, negative lenses, where [ is less than
zero, are of interest to us. A negative lens, illustrated in Fig. 5-5, takes an incident plane wave and
converts it into a spherical wave that appears to be expanding from a point a focal distance in front
of the tens, i.e., from a virtual source point. Negative lenses are thinner in the middle than at the
edges, whereas positive lenses are thicker in the middle.

3 This statement is not true in ail cases in that it assumes that the lens is operating in air. The actual definition of
the numerical apenure includes a multiplicative factor equal fo the refractive index A of the medium in which the
light is being focused: NA = nsina. Thus, if the focusing is in il having a refractive index of 1.5, an NA of 1.5 is
theorenically possible (theugh in practice an NA exceeding 1.3 is rarely achicved).
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Virtual
point source

«— [ —

Fig. 5-5. A nepative lens, when illurninated by a plane wave, produces an expanding spherical wave. The focal
length f for such a lens, being negative, is represented by an arrow pointing in the -z direction.

5.1.2 Wave-Optics Properties: Complex Amplitude Transmittance Function

We now consider the wave optics properties of lenses. One way to develop a mathematical model
for the effect of a spherical lens is to calculate the retardation of a monochromatic light wave
introduced by the lens as the wave passes through it. Such an approach is taken by Goodman (Ref.
5-1, Sect. 5.1.1), and the interested reader is referred to his analysis. An alternative approach is
simply 1o note that normally incident plane wave illumination of the lens produces what is
essentially a segment of a converging spherical wave. Assuming that the incident plane wave has
unit magnitude, i.e.. Upc(x,y}y = |, then immediately after the lens the wansmitied wave must still
have unit magnitude. Its phase, however, must be that of a spherical wave converging to a pointa
distance f away. If the quadratic-phase approximation of Sect, 3.2.2 is employed, the resulting
complex amplitude is, from Eq. (3.27), Uyans(x.y) = expli(ki2zy)(x2+y2)], with zo set equal to -f.
The resulting quadratic-phase-approximation expression for the complex amplitude transmittance
of u thin spherical lens of focal length f is thus given by

Lk
Lpn (2, ¥) = "'XP[_J ﬁ(xz + _V2 )] (5.5

The action of the lens is to modify the phase of the incident wave but not its magnitude. Note that
the quadratic phase approximation 1o the spherical wave factor is consistent with wave prepagation
in the Fresnel regime.

The form of Eq. (5.5} implies that the lens has infinite extent. The finite extent of an actual
lens can be modeled through inclusion of an appropriate wave transmittance function representing a

confining aperture. This transmittance function is generally referred to as the pupil function of the
lens, and is denoted by p(x,y). Thus,

Lk
Lens (0, V) = p(,r,y}exp[—jz—f-(x? + yZ).J’ (5.6)

where p(x,y) equals unity within the fens aperture and zero otherwise. In most cases pix,y} will be
a cire or cylinder function of appropriate diameter, or perhaps a rectangle function.

An assumption implicit in describing a lens by Egs. (5.5} and (5.6) is that the lens is
“thin." According to this assumption, a ray entering the lens at transverse coordinates {x,,¥,),
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although in fact bent by both front and back surfaces of the lens, exits at effectively the same
coordinates (X,,Yo). Equivalently, the action performed by the lens can be thought of as being
confined to a plane: the physical thickness of the lens is ignored. The assumption that lenses are
thin will generally be made in this text in the modeling of optical systems. Figure 5-6(a) illustrates
the behavior of a thin positive lens: all bending of the rays is modeled as occurring in a single
plane. Figure 5-6(b) shows a symbolic representation for 2 thin positive lens that is often used in
diagrammatic representations of optical systems. As illustrated in Fig, 5-6(c), real lenses have
finite thickness, and rays are bent at both front and back (and, possibly, intermal) surfaces.
However, as discussed in Section 5.4, thick, and even compound or multiple-component lenses,
can be modeled by the thin-lens expression.

(b) ()

Fig. 5-6. Concept of the "thin" lens. Rays passing through a thin lens can be assumed to be bent at a single surface,
as in (a). A thin positive lens is sometimes modeled diagrammatically as illustrated in (b). With a thick lens,
ilbustrated in {c), rays must be modeled as being bent at both front and back (and, possibly, internal) surfaces.

5.2 SINGLE-LENS IMAGING AND THE EFFECT OF DIFFRACTION

Having developed seme understanding of the basic geometrical-optics properties of thin spherical
lenses, we now work to obtain mathematical models for their imaging property in the wave optics
tegime. We consider the imaging of complex amplitudes and wave intensity disinibutions, both
coherent and incoherent, The system illustrated in Fig. 5-7 serves as the basis for our analyses.
The lens is assumed to have finite diameter aperture modeled by pupil function p(x,y); object and
image distances d,, and d; are assumed (o satisfy the lens law, Eq. (5.1},
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Object plane pix.y) Image plane

Em [

{ME, Mn)

L ]

de — di

Fig. 5-7. Single-lens imaging system.

5.2.1 [Imaging Complex Amplitudes

Consistent with the superposition property of light waves, we express the imaging operation for
complex amplitude distributions in terms of a general superposition integral:

Uim(en) = [ [U e mix, yi&mdtdn, (5.7)

—oa

where Ujm(x,y) and Ugg(x.,y) denote? the image- and object-plane complex amplitude
distributions and where A(x,y;E, 1} is the response at image-plane coordinates (x,y) to a unit-
impuise point source at object-plane coordinates (£,1), sometimes referred to as the complex
amplitude point spread function

According to the rules of geometrical optics, a point with coordinates (&£,17) in the object
plane is imaged, in the ideal case, to a point with coordinates (ME M) in the image plane, where
M is given by Eq. (5.2). Assuming that all light from the object is brought to the image plane with
perfect resolution and geometrical fidelity, an object intensity distribution f,5(x,y) produces image
distribution (1/M2} 4 i(x/M yiM), which we define as the geometrical optics image intensity
disrribution, Iglxy):

1 Xy
Te(x.y) =F1(,bj(ﬁ.ﬁ]. (5.8)

the factor 1/M?2 being consistent with conservation of energy principles. For a monochromatic

object wave field U,p;(x,y}, the corresponding geometrical optics image amplitude distribution.

denoted Ug(x.y), is defined by

4 The more compact subscript notation is now used since our concern is with complex amplitudes in specific
planes

59
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1 xoy
Ug(x.y):HU{,bj(E,H). {59

Noting that Ug(x,v) can be obtained by evaluating the superposition integral

)d&drp. (5.10)

o o | . y
U,y = Em—dle-tg- L
g(": ¥} J _[Ur)bj(é q)Ma(é M n "

we define the impulse response of the geometrical optics imaging system hy

1 x ¥
"z(x’-"‘f’m:ﬁ‘s(é‘ﬁ'”_ﬁ)' (5.1

The definitions just presented represent an idealization of imaging system operation, and
hg(x,y;ﬁ,n), as given in in Eq. (5.11), although useful to us in later formulations, is often an
unrealistic approximation to the actual impulse response of an imaging system. To begin with, it
ignores the effects of distortion and aberrations, generally present to some degree. In addition, and
of great importance to us in this text, it ignores the effects of diffraction by the lens aperture and
does not take the phase of the light waves into account.

To calculate the diffraction-ltimited’ impulse response for imaging in the wave optics
regime with the system of Fig. 5-7, we assume that the object amplitude distribution is given by a
unit impulse, 8(x-£,y-17). The resulting Fresnel-regime complex amplitude incident on the lens is
then, from Eq. (4.2523)

o ok 2 2
U,(x.,\)-ﬂ-exp{_;gn[u &7 +v-m ]} (5.12)

o
where an unimportant constant phase factor (1//)expijkd,,) has been discarded.® Multiplication by
the lens transmittance function, Eq. (5.6}, yields the transminted wave amplitude

v ) N LI - )
U,u(.x._»)—U,(x._\)p{x,,\}cxp[ JE(X +y )] (5.13)

and Fresnel-regime propagation through the distance d, {Eq. {(4.30)] then yields (again discarding
unimportant constant phase factors) the wave-optics impulse response for single-lens imaging,

denoted A, (x,v:E,1):

§ By diffraction-limited it is meant that the performance of the imaging lens is limited strictly by diffraction effects
and not by aberrations. Diffraction-limited performance is the best that one can achieve with an imaging lens of a
given aperture.

5 In the expressions for Fresnel- and Frawnhofer-regime wave propagation, the factor (Lj)exp[ikz] is retained because
the behavior of the wave distribution with changes in 2 is of interest. In the current case, however, the distance dyy
1s fixed. the corresponding constant phase factor (1//)exp(jkd,,) has no practical significance, and it is consequently
dropped for the sake of simplicaty and campactness in the resulting expression. In the remainder of the text, consiant
phase factors will be dropped consistently.
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. . -k 2, #2
hw(x,)é,n)—EJ‘ jUr(u,C)exp{fz—dl{(x-ﬂ) +(y=4) ]}dudc. (5.14)

Substituting from Eqgs. {5.i3) and (5.12) and invoking the lens law. Eq. (5.1), yields, after some
effort, the'result
{I

h (x.¥En) = Cxp[j%(g?- + nz)]exp[j%(xz + yz)]
(¢ i

TT IR SRR K '
Lip{u,::)exp{ ;k[{ PR ]u +[ i ]c]}du Ple

The integral expression has the basic form of a Fourier transform integral, allowing k. {x.y;E.17) to
be written in the more compact form

(5.15)
1

X
A, d;

ok (2 1 & x n ¥ .k (2 2
hoxyiEm =expl j——(&7 + = bE = :
ot Y8 1) “p[j 2d, (68 +m )]Azd,,d, i, Ay, ad, A ) T 24,-(" +?)

(5.16)

where P(u,v) is the Fourier transform of the pupil function: P{u,v}= f{p(x.y)}.

The above expression for ky{x,y:&.R) is the principal result of this calculation. Although it
can be written in a variety of forms, h,{x.y;&, 1) cannot be wrilten as a function of the differences

of coordinates, i.e., as a function of (x-&), (y-17), alone. We thus conclude that the single-lens
imaging system of Fig. 5-7 is space-variant and must be represented by the general superposition
integrat of Eq. (5.7) rather than by a simpler convoiution integral. In part the space-variance Comes
from the inversion and magnification of the image, although in the next chapter we shall see that
that aspect of its shift-variance is relatively unimportant. Of much more fundamental imporniance is

the phase Factor involving object-space coordinates, expljtk/2d,)(&2+72)].

How this factor can introduce significant space-variance in the imaging operation is seen by
way of a specific example. Assume that the imaging systemn is characterized by pupil function

plr, v) = rect{x/ w, y{ w} (5.17)

and the object by
U,,bj(x,y}=5[x+x(,+1—M,y)+5(x+xu—l—-.y). (5.18)
2w 2w

comesponding to a pair of point sources at mean location x,, and separated by Adfw. It is not
difficult o show that optical intensity in the image plane is given by
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Lim(x v)=(l)4 sinc(x+x"+'wl2w J )
e Ad Adfw TAdtw

)
|  fx+x,—-Adi2Zw y -
+exp[-;21r;xo}smc[ ;d.'w , M."W]}

Consider this expression for two specific values of x,. For x,=0, linfx,y) evaluates to

4 2
wYh. (x+Ad/2w ¥ C (x-Adi2w ¥
li"'(x'y)llff}:(ﬂ) 1smc( Adlw ,le]+smc[ Adfw ’lel (520

whereas for x,=w/2 the result is

4 2
\ Ad/2w ¥ o (x-Adi2w ¥
L%, == rradfor |- (——~ Y 520
ESY NI (m) ‘sm‘{ Adiw M/w) s yymatar v RIS

The sum of the two sinc functions within the squared-modulus bars has changed to a difference.
The x-axis cross-sections of these two intensity distributions are shown in Fig. 5-8. The effect of
moving the two points off axis, and by an amount equal to only half the lens aperture width, is
seen 1o be quite significant. If the imaging operation were shift-invaniant, a change in x, would
have no effect on the shape of the image: it would only shift its position.

, (5.19

Equation (5.16) for h.{x.y:£,17) takes diffraction ar the finite lens aperture into account. If
the lens is sufficiently large compared to the object and the object spatial frequency bandwidth is
sufficiently small (see homework problem), essentially aif of the light from the object passes
through to the image plane, and the effect of the lens aperture can be neglected. To determine the
corresponding form for h(x,y;&,1), let p(x,y) = 1, in which case P(u,v) = 8(u,v). Substituting
for P(...) in Eq. (5.16}, letting -dy/d,, = M, and applying the scaling relationship for impulses
(Section 2.1} results in the equation

e -"ZZL(_L_L) LI 2
h,.,(x.y,ﬁ,n)—cxplijzdn(é +7 )]MS é M,r,l i exp jld,—(x +y ) s (5.22)
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lim (x,0} lim(x.0}
for xo =0 for xo = wf2
X Xo =X
{a) (b)

Fig. 5-8. Effec of space variance on image of two closety-spaced monochromatic point sources: {a) points centered
on-axis; (b) points centered off axis a distance equal to half the lens aperture width,

where the subscript = is suggestive of the infinite-aperture assumption. The sifting property of the

delta functicn allows the first phase factor to be rewritten as exp[j(k! 2M2d(,){x2 + y2 )]

Combination of this factor with the remaining quadratic phase factor and application once again of
the lens law yields

Em=tseE o expl j =K (x? ,z]
hm(x.,v.é,n)-Mﬁ(é o MJCXP[JM,(X +57)| (5.23)

where the distance 47 is given by
d’=id; - f). (5.24)

The wave-optics impuylse response associated with an infinite-aperture lens is thus seen to equal the
geometrical-optics impulse response of Eq. (5.9) times a quadratic phase factor.

It should be emphasized that Eq. (5.23), if it is to be useful, requires not only that
diffraction at the aperture be negligible but also that distortion and the effects of aberrations
introduced by the lens can be ignored. It can provide reasonable results only when paraxial
conditions hold and when essentialty all of the light from the object passes through the lens,

5.3 FOURIER TRANSFORMING PROPERTY

We now turn attention to the second important property of a spherical lens, its Fourier transform
property. There are two distinct cases to consider. In one, the input to the Fourier ransform
“operation” is a complex amplitude Uy(x,¥) propagating toward the lens. In the other, the input is
considered to be a thin object, characterized by complex amplitude transrittance t,(x,y), that is
inserted in a plane before or behind a lens illuminated by light originating at a point source.

§5.3.1 Complex Amplitude Distribution as Input

We consider first the Fourier transform of complex amplitude distributions. The ransform
operation is related to the collimating and, particularly, the focusing property of a spherical lens.
Recall that a collimated beam of light is focused to a point in the back focal plane of a lens. In wave
terminology. a plane wave is focused to a point; in mathematical terminclogy a linear phase factor
is mapped into a delta function, one essential feature of the Fourier transform. Conversely, light
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from a point in the front focal plane of a lens is collimated: a point source is mapped to a plane
wave, or, in mathematical terms, a delta function is mapped to a lincar phase factor. Thus, we
could argue, from front focal plane to back focal plane, a lens performs a Fourier transform
operation: linear phase factors map into impulses. impulses into linear phase factors. To
investigate this relationship more fully, we consider the system of Fig. 5-9. To allow for maximum
generality, we assume a complex amplitede distribution Ug(x,y) in a plane an arbitrary distance d
in front of a spherical lens of focal lens f and derive the complex amplitude in the back focal plane.
in anticipation that this distribution will bear a Fourier transform relationship to Ug(x.y), we
denote the back focal plane distribution Ugr(x,y).

Ua(x.y) Uer(xy)

|
| |

““d-'-l—-——*f-——l—

Fig. 5-9. System for Fourier transformation of complex amplitude distribution. Complex amplitude Ugr(x.y)in
the back focal plane of the lens is proportionat to the scaled Fourier transform of the complex amplitede Uylr,y).

We begin by denoting the complex amplitude incident on the lens by U,(x. ¥} and that
immediately after the lens by Uj(x.¥). The relationship between these two distributions is given
by

P . LN I
U,n(,\,_))—U;(I.))exp[jzf(i +3 ]J (5.25)

where by neglecting a pupil function we have temporarily assumed that the [ens is infinite in extent,
Repeating the analysis of Section 4.5.2, it is easy to show that the complex amplitude in the back
focal plane, Upr(x,y). is given by

explikf) I R
Upp(aoyy = S8 ol i e e || 2 2. (5.26
=Ty e*p[jzf o )] ‘[ia,, L] ’

Furthermore. through an application of Eqs. (4.2) and (4.22), we know that
1

fJ,(u, v)= er,(tl. v)cxp(jZiT%)cxp[—j:r&f(ul + |‘2]], (5.27)

Combining Eqs. (5.26) and {5.27) and discarding unimportant constant phase factors yields the
result
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Uprtry) = exp{jik?[[l -% 2 *ﬂ]}}i}”f(}?‘ﬁ] (5.28)

We thus reach the extremely important conclusion that the complex amplitude in the back focal
planc of aipositive lens is proportional 10 a scaled version of the 2-D Fourier transform of a
complex amplitude in front of the lens. It is common to speak of this Fourier transform distribution
as lying idithe Fourier transform plane, or, alternatively, in the Fraunhofer plane, since Upr(x.y}
has the basic form of a Fraunhofer amplitude distribution with scaling parameter f.

In the majority of cases it is the optical intensity of the wave field in the Fourier transform
planc that is of interest. This distribution is given by

1 zh X ¥ :
wyy=|=—| U =2 . 5.28
frrtey) [Af) Y [ﬂf lf] .29

If it is desired to remove the quadratic phase factor of Eq. (5.28) from the Fourier
transform plane amplitude diswribution, either of two methods can be used. The more complicated
methad involves the insertion of a second lens in the system, just before the Foutier ransform
plane, as illustrated in Fig. 5-10. This lens, which must have a focal length f> obtained by solving

1 1, 4
154 (5.30)
h f( f)

is characterized by a complex amplitude transmitiance that just cancels the quadratic phase factor in
Eq. (5.28). The result is a Fourier plane distribution given by

L~ x ¥
Uprlx,y)=—U (4_—) (5.31)
MONM A
It can be shown that the focal length £ given by Eq. (5.30) is such that light from an on-axis point

source a distance d in front of the Fourier transform fens results in a plane wave in the Fourier
transform plane.

In the second, much easier method, the distance 4 is made to equal the focal distance f,in

which case the quadratic phase factor of Eq. (5.28) evaluates to unity. The result, once again, i3
the Fourier plane distribution given by Eq. (5.31}.
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Uo(x.y} Ugr{x.y)
d ——- f —-
(a)
Up(xy) Uger{x.y)
—_ = —-
{b)

Fig. 5-10. The quadratic phase factor accompanying the Fourier transform amplitude distribution can be removed in
two ways: (a) by inserting a second lens, of appropriate focal length, in the back focal plane of the Fourier transform
lens; (b) by setting the distance d equal to the focal length £
For an example of an optical Fourier transform operation, assume a complex amplitude

Uylx,y) given by

Xy .

U, (x,y) = rect| —,= |exp{ jkax}. (5.32)
wow

a distance d in front of the lens. This function represents a truncated plane wave traveling with k-
vector in the x-z plane making an angle cos™le with the +x axis or, alternatively, an angle sinlg
with the +z axis. Consistent with Fresnel-regime conditions, that angle is assumed to be small: &
<< 1. Noting again that k=277, we can immediate write the Fourier transform of Ua(x.y):

U, un= w? sinc(w, wv)* *S(u - %,v]

2. C{u—all v )
= w* sin¢f ———,——
1w 1w R (5.33)

with the result, upon substitution in Eqs. {5.28) and (5.29),

5-16



LENSES: MODELS AND PROPERTIES

2 - T
e L (7 ) e C R R I
and
w? : r—of ¥y
=X et AT Y
]PT(I-)’)—(AfJ sinc (Af!w'ﬂfiw)' (5.35)

The Fourier plane distribution is thus seen to consist of a sinc-squared-distributed spot of light
positioned off-axis in the x-direction an amount proportional to & and to f.

The effect of the finite lens aperture can in principle be calculated by including a pupil
function p(x.y) in the lens factor of Eq. (5.25). However, the result of such a formulation is
extremely complicated and lends little insight into actual limitations imposed by the aperture.
Instead, a method based on a combination of ray and wave oplics concepts is used. With reference
to Fig. 5-11(a}, consider light from the input distribution, Ug(x,y)}, that is focused to a point on
axis in the back focal plane. The amplitude of the light at that point conveys information about the
amplitude of the zero spatial frequency component of Ug(x,y). Now from a geometrical optics
standpoint, we know that only rays of light parallel to the optical axis are focused to that point.
Figure 5-11{a) shows the region of the input distribution, denoted by the brace, from which that
light can come. bt is evident from the figure that if the lens is smaller than the input distribution,
some of the input amplitude distribution-—that portion sufficiently far off-axis—is not included in
the Fourier transform “calculation” for the zero-spatial-frequency component; In order for
Ugr(0,0) to propetly represent the zero-frequency Fourier component of U(x,y), itisata
minimuem necessary that the lens be larger in diameter than the object.

Uolx.y} Upr(x.y} Uo(x.y} Uer(x,y)
X

(a) (b}

Fig. 5-11. Effect of finite-aperture lens in Fourier transform operation. Only a limited-spatial-extent portian of the
input wave distribution, indicated by the single brace, can contribute to the light focused to a point in the back focal
plane: (a) on-axis focus comresponding to the zero spatial-frequency component: (b) off axis focus corresponding (o a

frequency X/AS.

More generally, consider light focused to a point a distance X off axis in the Fourier plane,
as shown in Fig. 5-11(b}. Only rays traveling at angle e=tan-!(X/f) to the z-axis are focused to that
point. It is clear from the figure that for sufficiently large values of X there will be regions of the
input—again, those lying outside the region designated by the brace—that cannot contribute to the
light beam focused to that point. With an aperture around the lens, some portions of a centered
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input distribution cannot be "seen” from points far off axis in the back focal plane. Indeed, for
small on-axis objects and sufficiently large values of X, the entire input distribution may be
obscured from view by the aperture. We must conclude that the Fourier analysis performed by the
apertured lens is “frequency variant.” in the sense that only restricted portions of the input may
contribute to different portions of the Fourier plane spectrum. The basic effect—that a smalfer and
smaller fraction of the input is "seen” from points in the focal plane that are farther and farther from
the axis—is referred to as vignetsing by the lens aperture ?

Assuming that the lens has diameter Dy and that the input distribution has diameter Dg, itis
¢asily shown (see homework problem) that the maximum spatial frequency—in any direction for a
circular aperture—for which the focal plane distribution accurately represents the Fourier spectrum
of the input is given by

DD
pr= Lz,uo' (5.36)

For spatial frequencies below py there is essentially no vignetting. The spatial frequency above
which no light reaches the Fourier plane, even though the input may have non-zero Fourier
components at higher frequencies, is given by

_ D+

5.37
51d { }

P2

For spatial frequencies above p; vignetting is essentially complete: virtually no light reaches the
Fourier transform piane. Between these two frequencies—a range comesponding to partial
vignetting—only parts of the input distribution contribute to the Fourier plane distribution. It is
clear that if a lens is to be used to produce an accurate Fourier spectrum or Fraunhofer pattem of an
input complex amplitude, it is necessary that the lens be larger than the input and that the distance
separating input and lens be sufficiently small. The optimum configuration has the input
distribution Uglx,y) right up against the Fourier transform lens, i.e., with d equal 1o zero.

The relationship between the angular spectrum representation of a wave field and the
Fourier transform property of the lens should be emphasized. In particular, the angular spectrum
analysis tells us that each Fourier component of the input wave field cortesponds to a plane wave
traveling in a particular direction. The higher the frequency of the component, the greater the angle
the propagation vector makes with the +z axis. But the effect of a lens is to take a plane wave and
focus it to a point in the back focal plane, the distance from the axis being determined by the tilt
angle of the wave. It is this action by the lens on the plane wave components of the input wave
field that produces the Fourier transform distribution in the back focal plane of the lens.

5.3.2 Transparent Object as Input

|
In the previous section the notion of a lens performing a Fourier transforrt] operation on an input
complex amplitude U,{x,¥) was introduced. In this section we consider the Fourier transform
property of a lens in connection with thin transparent objects illuminated by spherical waves. The

7 The effects of vignetting are sometimes observed in photographs made with inexpensive cameras: the comers of
the image are noticeably darker than is the center. Vignetting was common with cameras built early in the history of
photography. it is somenmes deliberately introduced in photographic printing 10 yield an “old-time” appearance 1o
the phatographic pnnt.
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input to the transform operation is no fonger considered to be a complex amplitude but, rather, a
complex amplitude transmittance function t{x,v).

Two canonical cases, illustrated in Fig. 5-12, are considered. In the first case, illustrated in
Fig. 5-12(a}. a thin object transparency with complex amplitude transmittance t(x,y) is placed in
the path of a converging spherical wave produced by the illumination of a positive lens with
monochromatic light coming from a point source S. In the second case, illustrated in Fig. 5-12(b),
the objectil?es in front of the lens and is illuminated by a diverging spherical wave originating at the
point source. It will be shown that in both cases a complex amplitude proportional to the Fourer
transform of the abject transmittance function appears in the plane of convergence of the spherical
wave, centered on the image $° of the source point. These two cases lie at the heart of the Fourier
transformation of object ransparencies using spherical lenses and provide general principals
applicable to many imaging systems and to optical signal processing systems. A special case,
examined separately, is that where the point source is at infinity. In that case, the object is
illuminated by 2 normally incident plane wave, and, as might be expected from the analysis of the
previous section, the Fourier ransform distribution appears in the back focal plane of the lens. A
second special case, as shall be seen, occurs when the object transparency lies in the front focal
plane of the lens.

ta{xy) Urr(x,y) to(x.y} Urr(x.y)
<=t < ==t
d d
[ —_——
Zq - Z2 o Z1 . F a4 o
(&) ()

Fig. 5-12. Fourier transforming property of a spherical lens with illumination from a point source: (a) objectin
converging beam produced by lens; (b) object in expanding beam illuminating lens. Ln both cases a scaled version of
the Fourier transform of the object transmittance function tg(x.y) appears centered on the image $7 of the point

source S.

Analysis: Object in Converging Beam

For the case illustrated in Fig. 5-12(a), a monochromatic on-axis peint source S is imaged by a
positive lens of focal length £ to point §” in the conjugate image plane. A thin planar object with
complex amplitude transmitlance to(x,y) is positioned in the converging beam a distance d in front

of the point of convergence. The object is assumed to be sufficiently small in diameter that it is
completely illuminated by the converging beam. The wave incident on the object transparency is

modeled by complex amplitude exp[-j{k/2d)(x2+y?)], represemiative in the quadratic phase

approximation of a spherical wave, of unit amplitude, converging to the point 58 For convenience

the magnitude factor A is set equal to unity. Recalling Eq. (4.67) and the analysis of Sect. 4.5.2,

8 For this medel to be valid, the wave incident on the ohject transparency must be essentially free from diffraction
effects introduced by the lens aperture This condition will not be achieved if the distance from the lens to the object
is too large, a point discussed later.
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we can immediately write an expression for the complex amplitude, again denoted Ugr(x,y), in the
plane to which the illuminating wave is converging:

ko y | x v]
p=expl il 4y —Tf = 2 53
Uprle2) “"[’zd” v ’Ld "(J.d Ad ] (5.38)

where Tef...) denotes the Fourier transform of t(.,.} and where an unimportant constant phase
factor has been discarded. The notation Ugr(x,y) is again used to suggest the basic Fourier
wransform nature of this distribution. The corresponding optical intensity is given by

x \ :
T|=.>=]. 3
,,[M,Mj (5.39)

which is recognized as the Fraunhofer pattern associated with the object transparency, with scale
factor Ad.

1 2
In(x,y)=|Un(x,y)f :[ﬂ)

As an example, consider the case where the object is a Ronchi ruling. Such an object,
ilustrated in Fig. 5-13, is modeled by complex amplitude fransmittance

t,lny)r= {[rect(%) *%comb(%)]l(y}} rect[wix,;y;} S<A. {5.40)

The Fourier transform of this function is easily shown to be given by

wew d12 n C{u-niA v
T ue,v) =( ‘A) )Esmc(m]smc[T;’I—. UW_V } (5.41)

Inserting this expression in Eq. (5.38) and assuming that diffraction order overlap is sufficiently
small that cross-product terms can be neglected, the following Fourier plane optical intensity is
obtained:

wowd¥ & né x—-nid/A
Frptny) =| 22 i 2(_]5-“2 xonddiA v | 5.42
Ty ( AdA ]"Z A U il VT VT 42

WY

This intensity pattern, illustrated in cross-section in Fig. 5-14, is seen to consist of a multitude of
diffraction orders separated by a distance inversely proportional to the fundamental period of the
ruling.
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Fig. 5-13. Ronchi ruling.

Figure to be supplied.

Fig. 5-14. Fouricr-plane optical intensity associared with Renchi ruling.

Unlike the case considered in the previous section, there is no position for the object
transparency for which the quadratic phase factor in Eq. (5.38) disappears. However, if desired,
that factor can be removed by placing a second positive lens of focal length 4 in the Fourer
transform plane. The complex wave amplitude U“z7(x.y) immediately following the second lens is
then given by

k. .
UL (x,y)= Un(x-y)cxv[—jz—d(r +y‘)]

_J_T(i L]
Ad "\ Ad Ad ) (5.43)

It is assumed in the above analysis that the wave incident on the object has the form of a
converging spherical wave. However, this assumption is not valid if the effects of diffraction
introduced by the lens aperture itself are too large. From the discussion of Sect. 4.5.2 it should be
clear that a wave with complex amplimde exp[-j(k/2d)r2jeyl(riw) in the plane of the lens undergoes

a continuous transition to a wave having the form proportional to somb{wr/Ad) in the plane of
convergence: only in the plane of the lens does the wave actually have the assumed form, and if
the object is positioned too close to the point of convergence, the result obtained is far from the
Fourier transform relationship developed above. However, it can be demonstrated both
expetimentally and numericaily that results well-approximated by Egs. (5.38), (5.39), and (5.43)
are obtained if the diameter of the object is sufficiently small compared to that of the illuminating
beam, With reference to Fig. 3-15, restricting the object to lie within an illumination cone whose
apex lies roughly half the distance to 57 should generally yield good results.
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Fig. 5-15. Usually the object will be smaller than the illumination cone provided by the lens. In order to prevent
undesired effects of diffraction by the lens aperture. the ohject should be fully illuminaed by a cone of light (shaded)
that is significantly smailer than the actual cone

Analysis: Object in Diverging Beam

In the second canonical case, illustrated in Fig, 5-12(b), the object is inserted a distance  from the
point source, in the path of the beam expanding toward the lens. Again, the Fourier transform of
the object ransmittance function appears centered on the image point S “conjugate to the source
point S. In this case, however, the proof is more difficult. The approach taken here is 10 establish
first that there is a virtual Fourier transform distribution centered on the source point § itself.
It is the real image of this virtual Fourier transform that then appears centered on § -

The wave amplitude distribution illuminating the object again has the form of a spherical
wave of radius 4, but this time expanding: Ujnc(x.y} = explith/2d)x2+v2)], to within a constant
proportionality factor assumed to be unity. The complex amplitude immediately following the
object is given by

k
U,,;,j(.x',_\-) = cprﬂuz + },2 )]tu{x.y}, (5.44)

The form of the virtual Fourer transform centered on point § is defermined by means of a trick:
we ask ourselves the guestion, What wave amplitude distribution in the plane of the source would.,
after propagating through distance &, produce the same distribution in the plane of the object as
that given by Eq. (5.44)? To determine this effective source-plane distribution, denoted U, ¥},

we exploit the technique of inverse propagation, introduced in Sect. 4.2, by convolving Unpifxy}
with the inverse propagation kernel appropriate for ptane-to-plane distande d, (- LfjAd)exp(-jkd)
xexp|-j(k/2d)(x2+y2)]. The analysis proceeds almost exactly as that of Sect. 4.5.2 hut with the

distarice z, replaced by -d. The result, obtained after discarding unnecessary constant phase
factors, is the complex amplitude

k) 2} ! [—x —y]
Ul ) =expl == (x” +y7) || =T = 5.
AR exp[ Fo 0 [ e (5.43)
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This distribution is nearly the same as that of the distribution of Eq. (5.38). only the orientation of
the Fourier transform has been changed—by a 180" rotation—and the diverging spherical wave
factor has been replaced by a converging spherical wave factor. It should be emphasized that this
Fourier ansform distribution is virtia! in the sense that, as in the case of a virual image, the
wave amplitude distribution Ueﬁ(x,_v) does not actually exist in the plane of the source point: it
only appedrs to be there—for example, 10 an observer looking back through the object toward the
source poi?l."

The complex amplitude distribution Ugr(x,y) in the plane containing 5" is determined by
calculating the image in that plane of the virtual Fourier transform distribution U, (x, ¥). This
calculation is made by assuming the lens to be infinite in extent and using the imaging relationship
given by Eq. (5.10) with impulse response hodxy,E,1) given by Eq. (5.23%

_ ko202 ran 1 X ¥
Upplx,yy= exp[jz—d,(-r +y )] [ LU,ﬁ(é,n)HJ(§ o H]dédn. (5.46)
where
d'=z-f (5.47)
and
M=2 (5.48)
Evaluating the integral yields
A 2. ]1 -x -
UFT(I,y) = cxp{j 74 (xz +v {IH Ueﬂr(‘ﬁ,—ﬁ%)
k22 ] p[ .k 2 2] 1 ( x ¥ )
= = : - — 71| =
mp["w’(Jt YRR I Y agd e\ Td Ad
The two quadratic phase factors can be combined to yield the final result

k2 o 1 ( x ¥ ]
U gz y) = exp| - —T, =1, 5.50
rixy) cxp[ JZd,,Uf +y )IMM o\ T IMd (5.50)

where d” satisfies the equation

. (5.49)

1 1 __1 (5.51)

+
Z[—d 22+d” f

¥ A simple experiment scrves 1o iflustrate. Place a prating or other diffracting object transparency in front of your
eye and look through it toward a bright peint of light some distance away: a spot on a wall illuminated by a laser
beam, for example, or a distant street lamp at night. Apparently centered on the point of light wilt be the
Fraunhofer pattern associated with the object transparency. For the case of the street-lamp illumination, the
Fraunhofer pastern will be potychromatic, being made up of the A-scaled distributions associated with the different
wavelengths of the source.
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The comresponding optical intensity is

1y X v :
I =[— =, 5.52
ey ().Md) (AMd A.Md] ©-22)

Not too surprisingly, the main result of the imaging operation is a magnification of the Fourier
transform distribution and an inversion through the origin. The factor 1/AMd in Eqs. (5.50) and
(5.52) is consistent with energy conservation for light traveling the (lossless) path from the object

transparency to the Fourier ransform plane. The distance d” can be either positive or negative,
depending respectively on whether the object lies before or behind the front focal plane of the lens.

Two special cases are of interest to us. In the first, the object transparency is positioned
exactly one focal distance in front of the lens. In this case, the image of the object appears at
infinity, d" is infinite, and the quadratic phase factor of Bq. (5.50) simplifies to unity. Itis easily
shown that in this case Md=f, and Ugy(x,y} thus assumes the particutarly simple form

1 x ¥
U (x,y)=—T,[——.—J. (5.53)
" ¥ NN

In words, if the object transparency is in the front focal plane of the lens, the Foutier transform
distribution produced in the Fourier transform plane is governed by a scale factor that depends on
A and falone and is free from the quadratic phase factor that is characteristic of all other cases. This
condition is twue regardless of the distance z; to the source point (and, therefore, of the distance 22
to the Fourier transform plane). The form of Eq. (5.53) is of course reminiscent of Eq. {5.25) for
the Fourier plane distribution assuming complex amplitude Uy(x.y) in the front focal plane of the
lens. However, it must be emphasized that the physical conditions are quite different, and that in
the case of the transparent object treated in this section, the Fourier transform is in general not in
the back focal plane of the lens but, rather, in whatever planc is conjugate to the source point.

In the second special case of interest the point source § is removed (o infinity. The wave
illuminating the object is therefore a plane wave, and by the lens law the Fourier transform
distribution maves to the back focal plane of the lens. This special configuration is frequendy
analyzed in contemporary texts on optics—so much so, in fact, that there is a widespread
misconception that the only place that an optical Fourier transform can be found is in the back focal
plane of the lens.

To determine the form of the Fourier plane distribution in this case, we start with Eq.
{5.50) and note that as z, grows large, both z3 and the factor Md approach fin value, with the
result

. 2 1
U, (x,y) :cxp[—j 2_27(;“ + yI)IET,,[-j}—.%J], (5.54)

where 4 is again the distance from the back focal plane to the plane that is conjugate to the object,
as illustrated in Fig. 5-16. Note that in this figure d is now used to denote the distance between
object and lens rather than between source and object. The distance d”is easily expressed in terms
of this object-lens distance d, resulting in the alternative expression
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Upplx.y) = exp{j%(l - %}R + }-Z)Iﬁn(%,%ﬂ. (5.55)

It is particularly clear from this latter equation that if the object is placed in the front focal plane of
the lens, making d=f, the quadratic phase disappears, and the simpler quadratic-phase-free Fourier

transform relationship of Eq. (5.53) results: Upr(x.y) = (VAN To O/ ALY/ Af).

%,
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Fig. 5-16. Configuration with plane wave illumination of object. The selid lines show how a plane wave is
mapped into a point of light, whereas the dotted lines show how a poins of light is mapped into a spherical wave.

In calculating Ugz{x,y) for the case of Fig. 5-12(b} it has been tacitly assemed that the iens
is infinite in diameter. However, as for the case in Section 5.3.1 of the complex amplitude Ug(x,y)
being transformed by a lens. the effect of a finite-diameter lens is to reduce and otherwise modify
the amplitude of the Fourier plane distribution for points sufficiently far off axis, or, in other
words, for object spatial frequencies that are sufficiently high. Consider an object Fourier
component of spatial frequency fo. In the plane of the virtual Founier transform distribution there
appears to be a corresponding point of light a distance -X, off axis, where, in the usual small-angle
approximation, X is related to fo by Xo = Adf,. As indicated by shading in Fig. 5-17, some of the
light that appears, as viewed from the right-hand side of the object, to come from that point may be
blocked by the finite aperture of the lens. The image of that point, a distance X" = (z2/z3}X,, oft
axis in the (real) Fourier transform plane to the right of the lens, will not be as bright as it would be
were the lens sufficiently large. Such a partial obscuration of the source plane and accompanying
attenuation of off-axis portions of the Fourier transform distribution is another example of

vignetting by the finite lens aperture. Again there are upper and lower spatial frequencies p; and p7
that describe the ranges for which there is no vignetting, partial vignetting, and total obscuration by

the lens aperture. The calculation of py and o2, though straight-forward., is sufficiently complicated
that it is not reproduced here. Figure 5-18 illustrates the effect of vignetting on the spectrum of a
Ronchi ruling. This figure should be compared with Fig. 5-14, which shows the spectrum of a
Ronchi ruling in the absence of vignetting.

5-25

LENSES: MODELS AND PROPERTIES

Lixy)

o'

Z4 - Iy ————

Fig. 5-17. Vignetting by the finite apertare of the lens. Light traveling ray paths i the shaded region are blocked
by the aperture and do not reach the Fourier transform plane.

Figurs to be supplied

Fig. 5-18. Effect of vignetting on Fourier plane distribution with Ronchi psling object

5.3.3 Effect of Non-Monechromatic Light

It has been assumed throughout the preceding analyses that the light iffuminating the object 1s
monochromatic. Such a condition is not, in fact, necessary, though for nun-monochromatic
illumination the effects of different wavelengths must be taken into account. If the point-source
illumination is provided by the focused beam of a laser whose output is in a single spectral line. the
bandwidth is sufficiently small that the wavelength dependency of the Fourier plane distributions
can generally be ignored. If, however, the illumination is from a non-narrowband point source. it
is necessary to integrate over the spectral distribution of the source to calculate the optical intensity
it the Fourier plane. Thus, for the case of the object transparency behind the lens, the optical

intensity is given by

o

|32 NN
V)= SA) — | [T} =—,— | dA . 556
Trrtxn XJ‘ {M”“(Ad ,u] 556
0

where & is a proportionality factor and where S(X} i3 the power spectral density of the
illuminating source. The effect of spectral spreading of the Fourier mansform distribution is
immediately evident to a viewer peering through a grating at a distant incandescent or mercury-arc
street lamp at night. Since such a street lamp radiates light with a large spectral bandwidth, the
Fourier intensity pattern appears in multiple colors, each celor pagtern being scaled by its
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wavelength. Consistent with the A dependency of the diffraction phenomenon, the red-light
Fourier distribution is spreads out over a larger area than does the blue-light distribution.

5.3.4 Fourier Transform Modules

Because of their use 1o us later, we define as Fourier transform modules the single- and two-lens
systems of Fig. 5-19. Both lenses of the second system, which is analyzed in a homework
problem, have focal length fand are assumed to satisfy the thin-lens assumption, i.e., to have
negligible thickness. The relationship between the complex amplitude of an input wave field

Uy (x.¥) and the complex amplitude in the Fourier plane is given for both cases by

1
Ugrix,yy=—

¥ fJu( o ) (5.57)

Ty

A
where Uylu,v} = F{Uy(x,y)}. These particular lens systems are given special attention because
the Fourier-plane distbutions are free of multiplicative quadratic phase factors. As discussed
earlier, the systems not only map plane waves into points of light but alse points of light into plane
waves. The two-lens module is impractical in the form presented because its use requires that the
object be in intimate contact with the first lens and that the Fourier transform distribution be in
intimate contact with the second lens. This deficiency can be removed by a slight redesign of the
module, a point also discussed in a homework problem.

Uer{x.y) Ua(x,y) Uer(x,y}

Fig. 5-19. Fourier ransform modules: (a) single lens module: (b) two-lets module (lenses identical, each with focal
length ). Solid ray paths show cellimation of light from peint (point into plane wave); dotted ray paths show
focustng of collimated light (plane wave into peint).

5.4 THICK AND COMPOUND LENSES

The thin lens concept is an idealization: real lenses have finite thickness. Indeed, compound, or
multi-element lenses may involve many individual lens sections operating together, Multi-element
lenses generally perform better than simple thin lenses in exacting applications, for with multiple
elements it is possible to compensate for a variety of aberrations. Figure 5-20 illustrates a typical
thick lens. Front and back focal points are defined in the figure. A light ray from the front focal
point of the lens is brought parailei to the optical axis by the lens. Similarly, a ray incident from the
ieft and parallel to the optical axis passes through the back focal point of the lens, Note that a light
ray from the front focal point is refracted at both surfaces of the lens. If the in-air parts of that ray
are continued, as indicated by dotted lines in the figure, their intersection is at the front principal

5-27

LENSES: MODELS AND PROPERTIES

surfaee of the lens. Tangent to that surface at.the optical axis is the front principal plane. The
distance between the front focal point and the front principal plane is the effective focal length of
the lens, denoted f. An ideal thin lens of focal length f placed in the front principal plane has the
same effect on light coming from the front focal point, i.., it will cause that light to be collimated.

Ray parallel to axis

Front focal
point Back focal
point
Optical axis

) f = effective focal
Ray parallel to axis length

Back

F 3 -
principryzlluplane _,:(H “4—— principal plane

f—» —f -
Fig. 5-20. Thick lens.

The back principal surfuce is defined similarly, but for rays from the left that pass through the
back focal point. Tangent to the back principal surface is the back principal plane. The distance
between the back principal plane and the back focal point is the same effective focal length /. An
ideal thin lens of focal length f placed in the back principat plane will bring on-axis collimated light
to a focus at the back focal point.

A collimated beam of light incident on the lens from the left at some arbitrary small angle is
brought to a focus in the back focal plane of the lens at a point determined by passing a line parallel
1o the beam through the point of intersection of the back principal plane and the optical axis.
Similar results are obtained for light originating at an off-axis point in the front focal plane, except
now the front principal plane must be used.

So long as we work with the effective focal distance, measuring from the principal planes,
the action of a real lens for Fourier transforming and imaging is essentially the same as for an ideal
thin lens: light from points is still mapped into plane waves, and ligh. from plane waves is still
mapped into points, From a modeling standpoint, there is simply a little additional distance
involved, the separation between the principal planes. That distance {sometimes referred to as the
ellipsis of the lens) can easily be ignored in laying out conceptual diagrams for optical systems, by
effectively squeezing it to zero. Of course, when a system is actually built, the physical thickness
of the lens may be an important consideration because of mounting requirements.

5.5 ABERRATIONS AND OPTIMUM LENS ARRANGEMENTS

The system of Fig. 5-12(a) has certain practical advantages over other systems for producing the
Fourier transform of a planar object. To begin with, high-quality, low-cost lenses are available that
are optimized for imaging an on-axis point to an on-axis point over reasonable distances and with
negligible aberration. The sysiems of Figs. 5-12(b) and 5-9, on the other hand, require more
expensive lenses, because the lenses must work equally well with light coming from and/or going
off-axis as well as on-axis. In addition, the arrangement of Fig. 5-12(a) prevents vignetting by the
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lens aperture: so long as the entire object is satisfactorily illuminated by the converging light
waves, every part of it is Fourier transformed equally well for all spatial frequencies. Such
operation is not observed with the system of Fig. 5-12(b) or that of Fig. 5-9. Of course the system
of Fig. 5-12(a) introduces a quadratic phase factor in the Fourier transform distribution, However,
that factor should not be considered a blemish but, rather, simply a manifestation of the basic
nature of the system. Furthermore, as noted previously, the presence of such a phase factor has no
effect on the Fourier plane intensity distribution. If cascaded Fourier transform operations are to be
performed, such as in the next chapter, transform lens systems of the form exploted in problem
3.10 are sometimes used. These lens systems effectively eliminate vignetting, and like the ideal
two-lens Fourier transform module, they produce transform-plane distributions free of quadratic
phase facters. However, unlike the ideal two-lens module, they provide some relief or separation
between the object and Fourier transform planes and the lens elements themselves.
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PROBLEMS

5.1 Figure 5-6 illustrates a simple geometrical method for determining the location of the image
point conjugate to a given object point. Twao rays are projected from the object point. One
passes undeviated through the center of the lens; the other, originally parallel to the optical
axis, is bent by the lens so that it passes through the back focal point. Where the two rays
meet specifies the location of the image point.

(a) Confirm the validity of this procedure by constructing to scale the ray diagram for
the case do = 3 cm, f= 2 cm, h = | cm, where A is is the distance of the object point
from the optical axis. Confirm your result by application of Egs, (5.1} and (5.2)

(b} Use the same procedure but now with dg = ! cm. In this case, the image point is
virfual, light appearing to come from a point on the same side as the lens.

5.2 A monochromatic wave field given by complex amplitude

U,ixv)= %cyl{L)l +c0s27f, 1)

W

Is impressed across the front focal plane of a converging lens of focal length 50 cm and
diameter 5 cm. Find and sketch the x-axis optical intensity distribution in the back focal
plane of the lens. assuming that £, = 20 cycles/mm, w = 20 mm, and A = 633 nm. Label
the distance separating diffraction components, distances to nulls, etc. Be sure to check for
vignetting.
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A Fourier transforming lens of diameter £, is used to produce the Fourier transform

associated with an object distribution Uqg(x.¥} of diameter Dg a distance d in front of it,

(a) Assuming monochromatic, normally incident plane wave illemination, show that
Eqs. (5.38) and (5.39) correctly describe, respectively, (i) the maximum spatial
frequency p) for which the back focal plane disiribution accurately represents the

Fourier spectrum of the object wave and (ii} the spatial frequency p; above which
no light reaches the Fourier plane.

(b} For what spatial frequency. in cycles/mm, does vignetting begin if Dy =4cm. Dy
=2em,d=50¢cm, and & = 600 nm”?

A thin positive lens of focal length /= 30 cm is illuminated by a normally incident
monochromatic plane wave at wavelength A = 633 nm. lmmediately behind the lens is
placed a sinusoidal amplitude grating with fundamental frequency of 200 cyclesfinch. The
Fourier ransform distribution is observed in the hack focal plane of the lens. How far of(
axis are the diffraction components? Express your answer in millimeters.

An object transparency with complex amplitude transmittance

t(x,v)= [% +%cos 279*:4\} rec!(—é.%}

is placed in the front focal plane of a positive spherical lens of focal length f=25 ¢m and

illuminated by a normally incident plane wave of wavelength A = 500 nm. Assume that the
lens is masked by a square aperture of width D = 3 cm and that w = 1 cm. Show the effect
of vignetting by the lens by sketching the x-axis cross-section of the optical intensity
distribution as it appears in the back focal plane for (a) £, = 60 mm1, (b) f, = 120 mm-!,
and (c) fy = 180 mm-!.

A structure know as a Gabuor zone plate is characterized by complex wave amplitude
transmittance

t,(x.v)= %[l +cns(ar’)],

where 2 = x2 + y2,

(a) Show that this structure exhibits simultaneously the characteristics of a flat piece of
glass. a positive lens, and a negative lens.

(b} Find the focal length of the positive lens of part {a).

A pinhole spatial filter consists of a short-focal-length microscope objective with a pinhole
placed in the back focal plane. It is used to remove noise-like high spatial frequency
components of a laser beam that are produced by dust and scratches on the laser output
window. The microscope objective Fourier transforms the Gaussian-profile laser beam to
produce a compact Gaussian-profile spot of light, which is incident on the pinhole. If the
pinhole is of the correct diameter, it passes virtually the entire Gausstan-shaped [light
distribution but blocks most light scattered at large angies by dust and scratches. Assume a
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wavelength & of 633 nm, a diameter for the incident laser beam of 1.0 mm, as measured

between the 1/e2 intensity points on the beamn, and an effective focal length for the
microscope cbjective of 9.0 mm. How large should the pinhole be to pass 99% of the

power in the focused Gaussian beam? (Note: a plot or table of the error function. erf(E),
may be of use to you in calculating your answer.)

V.j:;ify that for sufficiently large values of z) the factor Md in Eq. {5.52) approaches fas a
lintiit, with Eq. (5.55) resulting.

Show that the two-lens Fourier wransform module illustrated in Fig. 5-19(b) yields the
. I ~fx ¥v}. .
complex wave amplitude U (x.y)= —U,|[ ==, | in the cutput Fourier transform plane
’ ot U, 013,65 if) ’ ’
if object amplitude U, (x, v) is impressed across the object plane.

The two-lens Fourier transform module of Fig. 5-19(b) is important conceptually.
However, it is impractical because there is no relief, or separation, between the lenses and
the input and output planes. Fig. P5.10 shows a modified form of the two-lens module that
provides some space between the lenses and the object and Fourier transform planes. As
suggested by the ray paths, light from a plane wave in the input plane (represented by the
parallel rays) is mapped into a point in the output plane, and light from a point is mapped
into a plane wave—the two key characteristics of a "quadratic-phase-free” Fourier
transform module, Using the imaging equation for thin lenses [Eq. {5.1)], find the required
lens separation § if the system of Fig. P5.10 is to have the desired characteristics, given
that £=30 cm and d=2 cm.

Object Fourier Transform

-—d g

Fig. PS.10. Two-lens Fourier transform module with separation o between the lenses and the object and
Fourier transform planes.

A planar transparent object 1.0 cm in diameter is placed a distance 2f in fromt of alens of
diameter 2.5 cm and focal length 10 cm and illuminated by a normally incident plane wave

at wavelength A = 0.5 pm. Find the maximum object frequency for which vignetting by the
lens can be ignored. Express your answer in mm-!,

A circular positive lens is illuminated by a nornmally incident plane wave. Find the
relationship between the cone angle of the light focused by the lens and the f-number of the
lens.
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5.13 Show that if the cbject transparency is right up against the lens, the two canonical forms of
illumination treated in Section 5.3.2 lead to the same results.

5.14 A monochromatic object distribution with complex amplitude Uyp{x.y) is positioned 10
cm in front of a lens of focal length f= 5 cm, producing a unit-magnification image 10 em
behind the lens. Assume that the object has a diameter of 1 ci, that A = 633 nm, and that

Uppj{x,y) contains no spatial frequency components above Pugx = 75 mm1. Use
reasoning similar to that used in the vignetting analysis of Section 5.3.1 to show that the

infinite-lens impulse response hu(x,y:£,1) can be used if the lens is at least approximately
2 cm in diameter.

New problems (to be ordered)

5.15 Sketch a ray diagram, to scale, similar to that of Fig. 5-2(c), assuming the following:

+ The diameter of the lens is 2 cm
» The object is positioned 9 cm in front of the lens
+ The focal length of the lens is 5 cm

Show clearly each of the three rays described immediately following the boxed material on
signed distances. Label all the distance in your figure. Use single-headed armows to indicate
the signs associated with the different distance quantities.

5.16 A planar object is positioned in the object plane of the system of Fig. 5-3(b) but with a
slight longitudinal position error Ad, .

(a) Find the comresponding shift Ad; in the longitudinal position of the image plane.
Assume that |Adyl << 1.

(b) Find the general expression for AdifAd,, for arbitrary do, again assuming that |Ad,|
<< |, This expression gives the longitudinal magnification of the imaging system.

() Relate the longitudinal magnification found in part (b} to the transverse
magnification given by Eq. (5.2).
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6. Imaging Spatially Coherent Wave
Fields

In this chapter we investigate the formation of images with monochromatic or spatiatly coherent
quasimonochromatic light. Such image formation is referred to as coherent image formation. The
use of systems consisting of a cascade of two Fourier-transform lens modules is considered first
because of their conceptual simplicity. The object-image relationship for these systems is given by
a simple space-invariant convolution expression. Single-lens and other more complicated lens
systems are then analyzed, including systems that are fundamentally space-variant. Results of the
monochromatic case are extended to include the case of quasimonochromatic coherent wave fields,
and the resolution charactenistics of such systems are discussed.

6.1 IMAGING WITH FOURIER-TRANSFORM MODULES: THE COHERENT
IMPULSE RESPONSE AND COHERENT TRANSFER FUNCTION

The formation of images of monochromatic wave fields can in certain cases be conveniently
described in terms of a 2-D Fourier transform followed by a second Fourier transform. The
system of Fig. 6-1, which consists of a cascaded pair of single-lens Fourier transform modules of
different lengths, serves to illustrate.

L P(x.y) Lo Uimn(x,
Uobitxs) . I im (%)
Qbject Pupil Image
—— o Losaa f Sty —
f f3 2 2

Fourier transform module Fourier transform module

Fig. 6-1. Imaging system consisting of twa single-lens Fourier ransform modules. Lens L has focal Tength f|.
lens L7 has focal length f3. The object distribution is assumed to be monochromatic.

Assume an object wave field Ugpi(x.y) as the input to the system. So long as vigneuing at
lens Ly can be ignored, the complex wave amplitude in the back focal plane of the first lens,
Utx,y). is given through Eq. (5.33) by a scaled version of the Fourier transform of Ugpj(x.y):
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Uf(x ¥y = 6.1

if "”’[Af i’ ]

where ﬁobj(u,v) = HAUgpi(x,y)}. Between the two modules is an aperture characterized by
pupil function p(x,y). The input to the second Fourier transform module, denoted U}(x, ¥h is
thus the product of Ug(x,y) with p(x.y):

Uz, y)= Jp(x ¥). (6.2}

f ""”'[lf A

Again using Eq. (5.33) we can express the wave amplitude distribution in the output image
ptane by a Fourier transform:

1
Ui (x, ) = — F{U%(x,y)
i '1.& { ¥

w=x/ Afy {6.3)
v=y/Af
Substituting for U(x, ) and applying the similarity theorem yields
1
Ui = - AP0 * Uiy it ~Hi)
2 w=x/ Afs
v=y1Afy * (6.4)

where P(u,v) = F{p(x.y)}. the Fourier transform of the pupil function. The minus signs in the
second term of the convolution resuit from the sequential application of two forward Fourier
transforms rather than a forward transform followed by an inverse transform. Writing out the
convolution integral and substituting for u and v yields

rm(x ¥y= J j ;I P(§ n)Uob;[ 'lfl(;tf f]- (i}—'—nJ]dng]

—w0 —on

_ fi x=Af2§ ¥y- Afzﬂ)d d (6.5)
U,, PEMYa, (f/f. g )

To simplify Eq. (6.5) denote by M the magnification ratio f2/fy,

m=12 (6.6)
fi

and introduce new variables u and £ given by
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H=Af, {=4fm. (6.7)
On substitution of these parameters, Eq. (6.5} becomes
e |
Uppx,y) = L Lﬁ{ﬁé)ub’(%%’{ EJ dudl. (6.8)

To simplify further, two new functions, the geometrical optics image Ug(x,y) and the
complex wave amplitude impulse response for coherent space-invariant imaging heoh(x.y).
often referred to as the coherent impulse response or coherent point spread function, are defined
in accord with

1 —x -
U‘(x,y) = EUM(EX,E}}J (6.9
and
1 : x ¥
b (xy) = ——-] l{—————) {6.10)
“ {lfz FTANTA
The wave amplitude in the image plane then assumes the form of a simple convolution:
Uin(xyr= [ {hu QUG- gty - E)dpedl. (6.11a)
or -
Ui, ¥) =hepp(x, v+ Uy ix, y). (6.11b}

The imaging system input-output relationship just derived can be expressed by the cascade
of two operations. First, the object wave field Uppi(x,y} is scaled to produce the geometrical
optics image Ug(x,y). The scaled function Ug(x,y) is then convolved with heoh(x,y), which is a
scaled version of the Fourier ransform of the pupil function. This cascade of operations is
illustrated in Fig. 6-2. Note that heoh(x.y) is not the impulse response of the overall system but
only of the post-scaling portion. Because the image distribution cannot be expressed directly in
terms of a convolution of Ugkj(x,y) with some impulse response, the overall imaging system is, in
a strict mathematical sense, space-variant. However, since the departure from strict space
invariance involves only the scaling operation, such imaging is commonly described as being space
invariant.

Ug(x,y) U, (%)
—

Geometrical Convolution 14—

Ugp (X.Y)
Scaling

A
I heon(x.y)

Fig. 6-2. Block diagram representing object-image relationship for coherent imaging system of Fig. 6-1.
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Note that the system of Fig. 6-1 is accurately described by Eq. (6.11) only to the extent that
vignetting by the lens apertures can be ignored. As illustrated by a homework problem, it is
ultimately the relationship between the size of the mid-plane aperture, the size of the object, and the
sizes of the lenses that determines the validity of this description.

The function Ug(x,y} represents the wave field that would be predicted by geometrical
optics, To see that this s so we let the wavelength A approach zero. Diffraction effects, which
scale with a, disappear. By inspection, as A—0, heon(x.y) grows narrower in width and stronger
in amplitude, in the limit assuming the characteristics of a delta function. It is shown in a
homework problem that, so long as the pupil function satisfies the condition p(0,0) = L, this delta
function has unit volume. The image obtained in the zero-wavelength limit is thus given by
Uim(x.y) = Ug(x,y} » 8(x,y), or by Ug(x,y) itself—a replica of the object wave, scaled in size
and amplitude and inverted through the origin. For finite values of Ug(x,y) is in general
smoothed by convolution with heon(x,¥). Modification of the Fourier transform of the object wave
by the aperture of the imaging system is thus seen to correspond to a spatial filtering of Ug(x.y).
The result is analogous to putting an electrical signal through a linear filter network.

To obtain a better physical sense of why the system impulse response should be given by
the Fourier transform of the pupil function, consider placing a point source—the physical
equivalent to 8(x,y)—on axis in the object plane of the system of Fig. 6-i. This source taunches a
spherical wave, which is converted to a plane wave by lens L;. That plane wave illuminates the
aperture, and lens L) Fourier transforms the resulting transmitted wave field, which is proportional
to p(x.y}. Thus, for example, a square aperture characterized by pupi! function

p(x,y):rcCl(i,l] 6.12)

LA

results in a coherent point spread function that has the form of a 2-D sinc function:

2
W . X ¥
h g {xy=— . o . 6.13
con{%: ¥} (Af ) Slﬂt(%lw lew] (6.13)

The factor { 1/Af2)2 in Eq. {6.10} is consistent with energy conservation, as is demonstrated bya
homework problem.

The spatial filtering operation represented by the convolution of Eq. (6.11) can be
expressed in the spatial frequency domain. Taking the Fourier transform of both sides yields

Upy (12,91 = U ()R, ), (6.14)
where fJim(u.V) = FUim(x,¥}} and fJE(u,v) = F{Ug(x.y)}. The function H opiu,v) is given by
H . uv)= Flh ,(x.v) (6.15}

This function is the complex wave amplitude transfer function of the imaging system, often
refetred to as the coherent transfer function. Substituting for higep{x.y) from Eq. (6.10} yields
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H,,p (1) = pl=Afou.—Afpv). (6.16)

The coherent Leansfer function is seen to be a scaled version of the system pupil function. The
minus signs, which result from applying a forward—as opposed to an inverse—Fourier transform
to P, can often be ignored. [n many cases of practical importance, in fact, p(x.y} is symmetric,
and the minus signs have no effect whatsoever.

THe relationship between the pupil function and the coherent transfer function is of
fundamental importance to an understanding of the imaging of monochromatic wave fields. Asan
example, consider again the case where the aperture is square and of width w, with p(x,y) being
given again by Eq. (6.12). The coherent ransfer function for the system is then given by

) = ,cc{ifz_“';é‘_zi)
W W
u v
=rect| ——,—— & 6.17
r‘“(wfz wflfz} 17

This function is illustrated in Fig. 6-3(a). Itis evident from Eq. (6.17) and the figure that the
highest, or cutoff, spatial frequencies of the image amplitude distribution in the x and y
directions, up and v, are given by

(6.18)

W
. =v

i :=21,f2‘

Through the relationship between spatial frequency and the quantity (1/A)sin® [See Eq. .70,
this upper limit on image frequency is seen to correspond to a maximum tilt angle for any plane
wave components making up the image distribution.

It should be stressed that w/2af; is the x and y cutoff frequency in the image amplitude
distribution. If it is recalled that the image and object distributions differ in scale by a factor M, it
should be clear that this frequency corresponds to an ebjecr spatial frequency given by M times
wi2ifa. If it is assumed that w = 20 mm, 2 = 100 mm, and A = | pm = 10-3 mm, then w/2Al =
100 mm-!. If f; = 50 mm, the imaging sysiem magnifies by a factor M=2. A smaller spatial
period (higher spatial frequency) in the object plane is thus mapped into a larger spatial period
(lower spatial frequency) in the image plane. Equivalently, a larger wave tilt angle in the object
plane is mapped into a smaller wave (ilt angle in the image plane. The maximum spatial frequency
of 100 cycles per millimeter observed in the image plane corresponds to a spatial frequency of 200
cycles per millimeter in the object plane.
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Fig. 6-3. Coherent transfer functions for system of Fig. 6-1 with {(a) square aperturc of width w, (b) circular aperture
of diameter w.

Typically, the aperture of an imaging system is circular, and the pupil function and, hence,
the coherent transfer function of the system are represented by cylinder or cire functons. In the
case of a circular aperture of diameter w the coherent transfer function for the imaging system of
Fig. 6-1 is given by

Heon(p)= cyi[ww /F;fz ) 6.19)
The cutoff frequency in any direction, pg, is given by
w
=— 6.20
P. 245, ( )

This function is illustrated in Fig. 6-3(b). Again, all spatial frequency components of the object,
up to a cutoff frequency determined by the diameter of the aperture, are transmitted to the image
plane without change in amplitude or phase. Beyond that cutof? frequency, no spatial frequency
components are passed. The optical system is seen to perform an ideal low-pass spatial filtering
operation in imaging the object.

It must be kept in mind that it is complex wave amplitude distributions, not intensity
distributions, that are filtered. The effect of the filtering on the corresponding optical intensity
distributions will have a nonlinear dependence through the squared-modulus operation relating
amplitude 1o intensity. This point is explored later in the chapter.

The operation of the two-lens system of Fig. 6-1 is duplicated by that of the four-lens
system of Fig. 6-4(a), since from an analytical standpoint the single-lens and two-lens Fourier
transform modules perform the same operation. The four-lens system has an advantage over the
two-lens system in that the lenses introduce no vignetting. The object-image relationship is again
expressed by Eq. (6.11) with heon(x,y) given by Eq. (6.10} and Ug(x,y} given by Eq. (6.9).

Pix.y)
Uobj(x.y) L4 L1 | L2
—-— 1 -—l -
{a)
Uobjix.y) Ly pixy) l Leg
- ] el -———
(b)

Fig. 6-4. Coherent imaging systems: (a) four-lens space-invariant imaging system and (b) related two-iens system
that produces the same image intensity dismibution; (c} system of (b) relabeled.
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For many applications, the four lenses of the system of Fig. 6-4(a) can be reduced io two.
An important result is a reduction in the number of glass surfaces, which can produce undesired
reflections and collect light-scattering dust. To begin with, so long as only the optical intensity of
the image distribution is of interest, the fourth and final lens can be removed, for its removal
merely contributes a quadratic phase factor to the image wave amplitude distribution that disappears
upon evaluation of the intensity. In a further simplification, the two lenses positioned at the central
aperture can be combined into a single, more powerful lens. To see this, we combine terms in the
transmittance function associated with the combination of the two central lenses and the aperture:

{« +}'2)]p{x,y). 6.21)

k (x2+y2) =exp| —J k
2f 2f,

2 oy

YR I

1
where fgq, the focal length of the equivalent combined lens, is given by

feq fl fl‘

It is seen that the powers of the two lenses-—their reciprocal focal distances—add in producing the
equivalent lens.

Both simplifications taken together result in the system illustrated in Fig. 6-4(b). The
object-image wave amplitude relationship is given by

Ui (.9} =[Ug(x, yye#h gy (x, y)]expl:j-z-;—(xz +y? )] 16.23)
2

where Up(x,y) and heoh(x.y) are given again by Eqgs. (6.9) and (6.10). The quadratic phase factor
results from the removal of the fourth and final lens. The cptical intensity of the image is given by

2
UMERIES INESTLL] ITERY I (6.24)

which is the same as is obtained with the system of Fig. 6-1, A revised system diagram
appropriate for this imaging system is shown in Fig. 6-5. Despite the geometrical scaling and the
post-convolution multiplication by a quadratic phase factor, coherent imaging systems
characterized by this block diagram are nonetheless often referred to as being space-invariant.

Uobi(x,y) Ug(x,y) Uim{x.y)
—

Geometrical

. Convolution
Scaling

T

Fig. 6-5. Block diagram representing object-image relationship for coherent imaging system of Fig. 6-4(¢).

Quadratic
phase
hcoh(x,y} factor
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Itis useful to relabel the system of Fig, 6-4(b} as in Fig. 6-4(c). The distances f] and f»
become object and image distances d, and d;, respectively, and the relationship between dg, dj,
and the focal length of the equivalent combined lens, feq, is then the standard single-lens imaging
condition:

| 1 1

—— (6.25
Fu 44 :
The magnification factor M is now given by
M= i (6.26)
d,
heonlx,y) is given by
2
h (X V)= _]“ Piti‘.ﬁ {627]
("h N Adl E M‘ M’ ' .
and the final multiplicative quadratic phase factor is given by
exp| jL();j + 3‘2} (628}

It is important to note that Lens L) in the system of Fig. 6-4(b) cannot be removed without
destroying the convolution relationships of Eqs. (6.23) and (6.24). Without lens L there is no

Fourner transform distribution U,,, incident on the pupil and, as a consequence, no transfer
function characterizing the imaging operation! As a consequence, the system shown in Fig. 6-
6(a), even though it satisfies the geometrical optics condition for imaging (1/f = 1/d, + 1/&). is
space variant in the way it images complex wave amplitude distributions. The cause of the space-
variance, intimately related to the vignetting discussed in Chapt. 5, is illustrated in Fig. 6-6(b}.
For the on-axis region of the object, labeled A, only low spatial frequency content of the object
distribution—comesponding to light rays traveling more or less parallel 1o the z-axis—passes
through the lens to be imaged: high spatial frequency content from that region is blocked by the

Object Image  Cbject Image

A1

f—— B { _,4-""- q—f_—
- dy— -~ — i - - dy — - i — -
(@) &)

Fig. 6-6. Space-variant single-lens imaging system. From a geometeical optics viewpoint, the single lens pravides
point-to-point imaging, as illustrated in (a). However, from a wave optics standpoint, as illustrated in (b), only low
spatial frequency content i region A is imaged. whereas only high spatial frequency content in region B is.
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aperture, For region B, on the other hand, only light corresponding to high spatial frequency
content of the object passes through the aperture to reach the image plane, whereas light
comresponding to low spatial frequency content is blocked. This system is analyzed in Sec. 6.3in
such a way that the space variance is brought out clearly.

6.2 SPACE-INVARIANT SINGLE-LENS IMAGING SYSTEM

k
Itis possiljle for a single-lens imaging system to be made space invariant if the object is smaller
than the lens and if an aperture, suitably small, is placed in the back focal plane of the lens. Sucha
system is illustrated in Fig. 6-7. Although this system is not made up of Fourier transform
modules, the input-output relationship can nevertheless be expressed, to within a quadratic phase
factor, in terms of a convolution. Let Ughy(x,y} again denote the input object wave amplitude
distribution. If the lens is sufficiently targe that vignetting can be ignored, then, from Eq. (5.30)
the wave amplitude incident on the aperture in the back focal plane is given by

] Lk o
U)«(x,y)zifexp[jz—f( —% X2 +y2):|U"bj(l_ff‘%f)‘ (6.29)
Ugp(x.y) | p(xy) Ujm(x.y)
T
f —— d B
do dj -

Fig. 6-7. Space-invariant single-lens imaging system. Limiting aperture is in back focal plane of lens.

In order to find the wave ampiitude in the image plane we take the wave field immediately
behind the back focal-plane aperture,

Up(.r,y):Uf(x.y)p(x,y), (6.30)

and calculate the effects of propagation through the distance d using the Fresnel diffraction
formula, Eq. (4.31):

o] ka2 k22
U,n,(x.))_ﬂcxpl:jﬂ(x +y )]}{Up(x.y)cxp[;ﬂ(x +y ) . 6.31)
=x

v=xlAd

where from the figure
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d=(d - f). (6.32)

In general this calculation does not lead to an imaging relationship. However, if the distance d
satisfies the relationship

—_———| ] - , : 3

the quadratic phase factor in the Fourier integral portion of Eq. (6.31) is canceled by the one in Eq.
(6.29), with the greatly simplified result

1 k 1 -
Uin(x) = 37050 74(x" +7 2)]T{§U"bj (%%)W'”} L 63
we=x / Ad
v:)x‘lld

Upon substitution for u and v and some rearranging of terms, Eq. (6.34) can be written in the
form

U, (x,y)= [Us(x,_v)" *h, (X, _y)]cxp[j%(.tz + yz )] R (6.35)

where Ugl(x,y) is again given by Eq. (6.9}, d = M, and heon(x,y) now has the form

2
1
h o (x,¥) =(ﬂ) P(—;;%) (6.36)
The magnification factor M is given by

d-f_ S 6.37)

The condition expressed by Eq. (6.33) can be combined with Eg. (6.32) to produce the
more familiar imaging condition,

UL (6.38)

If desired, the residual quadratic phase factor of Eqg. (6.35) can be canceled by placing a positive
lens of focal length d in the image plane. This phase factor is of course inconsequential in the
normally encountered case when only the image intensity is of interest.

It should again be emphasized that the input-output relationship for this system is correctly
described by a convolution only if vignetting by the lens can be ignored. As discussed in a
homework problem, this will be the case only if the lens diameter L satisfies the condition

Lawede?
f, (6.39)
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where W is the object diameter and w is the diameter of the aperture in the focal plane. Under
these conditions, we say that the aperture in the Fourier transform plane is the timiting aperture
of the system. If an aperture of an imaging system is the limiting aperture, then by definition
enlarging any other aperture in the system—in this case, €.g., the size of the lens—will not change
the wave field in the output plane of the system.

It is useful at this stage to review what we have done so far. Three basic systems have been
analyzed, those of Figs. 6-1 [and therefore 6-4(a)], 6-4(c), and 6-7. In all cases, the image
amplitude distribution is obtained, as shown in the block diagram of Fig. 6-3, by first scaling the
object distribution, convolving the result with hoon(x,y), and, when appropriate, multiplying the
result by a quadratic phase factor. The optical intensity associated with the image distribution is
obtained by evaluating the associated squared modulus. The block diagram of Fig. 6-5 has great
importance, for it correctly describes any coherent imaging system for which the limiting aperture
is in the plane where the Fourier transform of the object appears. That condition holds for the
systems noted above. It does not hold for the single-lens imaging system illustrated in Fig. 6-6,
where the limiting aperture is in the plane of the lens rather than in the plane where the object
transform appears.

It should be emphasized that the block diagram of Fig. 6-5 represents an image-space
interpretation of the image filtering operation, meaning that the convolution comes after the
geomerrical scaling operation. An altermative interpretation of a coherent imaging operation is
suggested by the block diagram of Fig. 6-8, which puts the filtering operation in object space. This
interpretation allows one to think of an effective object distribution Ugg(x.y), given by

U y) = Uppi(x. v} # *f2,, (%, ), which is imaged perfecily by the system and then combined
with an appropriate quadratic phase factor. Note that the convolution kernel ﬁcoh(x- ¥} is an object-

space kernel rather than an image-space kemnel, i.e., it operates directly on UgpAx,y) rather than on
its image-space counterpart Ug(x,y). For the system of Fig. 6-1 it can be shown that

Bonlx, ¥y =(1/Af; ) Pix/ Afj, ¥/ A} ). Note that the scale factor involves the focal length of lens Ly
rather than that of lens Lz. The corresponding transfer function is given by

H, . (0.v) = pl=Afiu.~Afiv).

Uobj(x.y) Uer(x,y) Uim(x,y)

————  Convolution -

Geometrical
Scaling

Quadratic
phase factor

T Ecoh(er)

Fig. 6-8. Modified block diagram pwts filtering in object space rather than in image space.

6.3 SPACE-VARIANT SINGLE-LENS IMAGING

Al of the imaging systems analyzed thus far in this chapter are consistent in opetation with the
block diagram of Fig. 6-3, in some cases with the quadratic phase factor equal to unity. Consider
now the single-lens imaging system illustrated in Fig. 6-9(a), which, as noted earlier, is not. This
system is easily analyzed by means of an artifice suggested by Fig. 6-9(b). In that figure the single

6-11

IMAGING SPATIALLY COHERENT WAVE FIELDS

lens of Fig. 6-9(a) has been replaced by an equivalent pair of lenses straddling the aperture. The
focal lengths of these two lenses equal the distances d,, and d;. as indicated, consistent with Eq.
(6.38). In additior, a pair of lenses with focal lengths -d,, and +d,, are placed in cascade in the
object plane and another pair of lenses with focal lengths +d; and -d; are placed in cascade in the
image plane. The lenses in each pair cancel one another and have no net effect optically.

However, if lens L is associated with the object distribution and lens L5 with the image
distribution, the remaining system, consisting of the four internal lenses and aperture, is seen to
constitute the space invariant four-lens imaging system of Fig. 6-4(a). Exploiting the results of the
analysis of that system, it is easily shown that the complex amplitude in the image plane is given by

1 —X -y k¥ ke
U, (xy= ({HU'"‘"(H'M}:XP[JE(F + I7E ]]}**h‘_”,,(x,_v)]cxpli; ﬁ'—(x +y ]] (6.40)

The term in braces plays the role of Uy(x.y), being obtained by multiplying the object wave field
by the transmittance function of the negative lens L'y and then scaling and inverting the product,

pix.y)
Ugh;(x.y} U,y
———— do—-—.-— di—-—-—-———-
(a)
p{x.y)
Ly Ly | Lo L
Uy U ()

dg=fy —= ' —, di=f2 _— -

F.T. module F.T. module
(b}
Fig. 6-9. Space-variant single-lens imaging system: (a) actual system; (b} equivalent system containtng space-
invariant core system consisting of two two-lens Fourier trarsform modutes. Lenses labeled L have a facal lengths
equal to dy: 1hose labeled L have focal lengths equal o di. The negative lenses L'| and 1" have focal lengths -d,,
and -d;. respectively.

Although Eq. (6.40) involves a convolution. because Ugpi(x,y) ig multiplied by the
negative lens factor the quasi space invariance we have associ._ue(f with systems studied earlier in
this chapier does not apply. A mathematically more elegant object-image relationship is in fact
obtained if the space-variance of the system is incorporated directly into the analytical description
of the system. Specifically, through a suitable substitution of vaniables, Eq. (6.40) can be
rewritten in the form -
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U, (o= [ JULE b, G y:6.mdEdn, (6.41)

where the space-variant kemel h (x.¥,§,7) is given by
[

! kg 2 1 X & » i Lk oga g
l'l LY, 'l = — _ P — —_— it —_— . 642
L&) e’tp[; 7] (& +n )]Agdud‘ (,u, Y ad M”}CXP[J 24,(" +y )] (6.42)

The core of this expression is the term involving, once again, the Fourier transform of the pupil
function. It is multiplied, however, by two quadratic phase factors, one a function of the object

plane coordinates (£,1) and the other a function of the image plane coordinates (x,y). Note that the
input to the superposition integral of Eq. (6.41) is the objecr distribution itself rather than the
geometrical optics image. Magnification of the image is accounted for by the scaling of x and ¥ by

di and of £ and 1| by dg in the pupil-transform factor of the kemnel, and inversion of the image is
accounted for by the plus signs in place of minus signs. The corresponding system diagram is
shown in Fig. 6-10. This block diagram is completely general and can be used to represent not
only the systems studied thus far {including, as special cases, those thal are space invariant) but
any coherent imaging system consisting of lenses and apertures . The basic framework for
determining such a representation is presented in the following section.

space-variant

U (%.¥)
system

Uim(x-y)
-

Fig. 6-10. General space-variant system diagram for coherent imaging system.

6.4 GENERAL FRAMEWORK FOR ANALYZING COHERENT IMAGING
SYSTEMS

If it is to apply to an arbitrary coherent imaging system, the kemel of Eq. (6.42) must be rewritten
with more general parameters R| and R replacing d, and d; in the quadratic phase factors and with
a more general system pupil function transform Pg replacing Pt

F]

ko I E x n .,y
h, (x,vig, M= = (& + Y |—P,| =+
NESTHN )] cxv[JZRl(é +n}:|}fdud, ,(q " 1!,.+3’,]

xcxp|:j u (x1+_v2)}
2R, (6.43)

A ray-oplics-based procedure for determining Ry, R2, di, do, and system pupil function
psix,y) is illustrated with the help of the example imaging system shown in Fig. 6-11. Although
this system is rather specific, it nevertheless contains all elemenis necessary to allow ittoserveas a
general example. It is assumed that the focal lengths of the two lenses are known and that the
focations of the object and image planes have been determined using geometrical optics methods
[Fig. 6-11{a)}. Furthermore, it is assumed that all apertures in the system are circular and centered
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on the optical axis. The first step of the procedure is to find the so-called aperture stop of the
system. The aperture stop is the same as the limiting aperture discussed in Sec. 6-2. it is found,
as shown in Fig. 6-11(b), by tracing a ray from the point on the optical axis in the object plane—
such a ray is called an axial ray—and increasing the angle it makes with the axis until the ray first
strikes an aperture somewhere in the system. That aperture is, by definition, the aperture stop of
the system. An axial ray that just grazes the aperture stop is called a marginal axial ray. The
aperture stop might be a specially-positioned stop, as is the case in the example, or it might be the
edge of one of the lenses, as would be the case with the single-lens system of Fig. 6-9.

Once the aperture stop has been found, the locations of the enrrarice and exit pupils of the
system must be determined. The entrance pupil is the aperture stop as seen front the object
plane. As shown in Fig. 6-12(a), in the example system the entrance pupil takes the form of a
virtual image of the aperture stop. Similarly, the exit pupil is the aperture stop as seen from the
image plane. In the example, as shown in Fig. 6-12(b), the exit pupil, like the entrance pupil,
also takes the form of a virtual image of the aperture stop. Having located the entrance and exit
pupils it is possible tw specify the parameters R) and R; in Eq. (6.43), for they are, respectively,
the distance from the object to the entrance pupil and the distance from the exit pupil to the image.
In the example, both Ry and Ry ase finite. In the case of the systems of Figs. 6-1, 64, and 6-7,
however, R; and, in some cases at least, Ry are infinite. The imptication of this latter condition
will be addressed shortly.

Lt ﬂ | Lz

Apetiure step
I

marginal axial ray |
_ " — _{ —

Fig. 6-i1. Example of general coherent imaging system: (@) basic system showing object, image, and lens:
associated focal planes are denoted by # for L} and x for Ly; (b) locating aperture stop by increasing angle of axial
ray until first iv strikes an aperture,

(b}
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Entrance Pupit ___ w1
(virtu:al) "

- Ay it
1)
{aj
"
1 ¥ Exit Pupi
n {virtual)
1"
g Ro >

LR

(b}

Fig. 6-12. Determining locations of entrancc and exit pupils: (a) entrance pupil is determined by locating image
of aperture stop as seen from object space; (b) exit pupil is determined by locating image of aperture stop as seen
from image space

The next step in the analysis is to determine a suitable system pupil function ps(x,y} and
associated distances d,, and di.* We do this by identifying the plane in which a single lens can,

’ The system pupil function and the two associated distances are in fact not uniquely specified for a given

imaging system but depend on what method is used to determine them. One method is introduced in this section;
another is presented in a homework problem. In either case, pg{x.y} will be a scaled version of the aperture stop
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from a ray optics standpoint, perform the same imaging operation. The location of the equivalent-
lens plane is determined by tracing marginal axial rays from the object to the image. as shown in
Fig. 6-13(a), projecting their object- and image-space segments back toward the center of the
imaging system, and noting where they intersect. The plane of intersection is the plane of the
equivaient single lens. The distances from that plane to the object and image planes are,
respectively, dg and d;. If the equivalent lens is to perform the desired imaging operation. it must
have focal length { satisfying the condition 1/ f=1/d, +1/d,. Since the rays locating the lens
plane are marginal axial rays, their intersection defines a scaled version of the aperiure stop. It is
this scaled version of the aperture stop that serves as the system pupil function. 1t has the same
functional form as the aperture stop pupil function (e.g., circ}, but its size depends on the
geometry of the imaging system. The equivalent single-lens system is shown in Fig. 6-13(b). Itis
important to note that this system is equivalent only in a ray-optics sense. The results of Sect. 6.3
indicate clearly that the quadratic phase factors correet for the single-lens system are different from
those for the system of Fig. 6-11.

n System pupil
o

(a)

/ equivalent thin lens
{ray-optics perspective)

(b}

Fig 6-13; Determining equivalent single-lens imaging sysiem and, thereby, distanceﬂd(. and dj. Location of
equivalent lens is determined by projecting marginal axial rays from object and image space and noting where they
intersect, as shown in (a). The system pupil is defined by the intersection of the collettion of all such marginal ray
projections. The equivalent single thin-lens system is shown in (b).

pupit function and will be characterized by & diameter w. Of great importance: the ratios w'd,,d; are characteristic of
the specific sysiem and is the same regandless of which method is chosen
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Once R|, Ry, di, do, and ps(x.y) have been found it is advisable 1o perform one additional
step to determine the maximum allowable object size for which there is no vignetting by other
apertures in the system, To perform this step, begin with the marginat axial ray determined in step
t {refer o Fig. 6-11{b)] and, while keeping the ray pinned (o the edge of the aperture stop, change
its angle until it begins to be cut off by the edge of a component—in the case of the example by
lens La. Figure 6-14 illustrates. Where that ray crosses the object plane determines the diameter of
the largest allowable object if vignetting is to be avoided.

.|4‘

Maximurm
object size

Fig. 6.14. Determination of maximum atlowable object size.

6.5 NONMONOCHROMATIC COHERENT IMAGE FORMATION

Throughout the preceding analyses it has been assumed that the waves in the image forming
process are monochromatic. If the object wave is not monochromatic, calculation of the image
plane distribution can be much more complicated. Fortunately, the added complexity is not great if
the system satisfies the quasimonochromatic condition, as specified by conditions (4.72) and
(4.73). Under this condition, as noted in Sec. 4.7, the wave propagation theary developed for
monochromatic waves can be applied with no modification other than the replacement of the
complex wave amplitude with an appropriate time-varying phasor and the substitution of 4 for

A . Asa consequence, imaging by space invariant systems of the type analyzed in this chapter is
stitl described by equations of the form given by Eq. (6.35), but with the complex amplitudes
explicitly ime-varying:

U (3,2 = [Ugl, v, 095 (1, y)]exp[ ja%(ﬁ w3 )] (6.44)

where & denotes the average value of the wave number, i.¢., k =27/ 4. The time-varying
geometrical optics image amplitude Ug(x,y.t) is simply a scaled version of the time-varying object
amplitude Ugpi(x,y,t). Consistent wilﬁ Eg. (3.47), the corresponding optical intensity is given by

L.0oy0 = (U, ) = (lUl(x, vD*sh (%, y)|2>, (6.45)

the time average being taken over an appropriate interval.

If the object distribution is spatially coherent, Ugpj(x.y.1) can be written in the form (see
Sec. 3.5}

6-17

IMAGING SPATIALLY COHERENT WAVE FIELDS

U, (63000 = Uy (5, 9)BG2), (6.46)

where B(t), assuming it is referenced to the origin. is given by

U,,(0.0,0)

Bi1) = — (6.47)
;K|U(,,,, ©.0.0f)

It is easily shown that under these conditions
U, (x,v0)= [U (x,v)**h, (x\v}]exp jlc_—u(xz + vz) B}, (6.48)
[ el R g, coh R IR R

where Ugj(x. y) is the geometrical optics image associated with the spatial-function part of
Uabj(x.y,r), i.e., with UU”J'J(I'—V)' Substitution of this expression in Eq. (6.43) shows that under
the assumed conditions the image intensity is given by

2
T (x, ¥) = U Croyprrh () (6.49)
which is effectively the same as the expression obtained for monochromatic wave fields.

6.6 RESOLUTION IN COHERENT IMAGING

In many cases we are interested in the ability of an optical system to faithfully image the detail in an
object. The ability of the system to resolve small detail is directly dependent on the spatial
frequency bandwidth of the imaging operation. As noted in Sect. 6.1, the spatial frequency cutoff
for coherent imaging with the system of Fig. 6-1, assuming a circular aperture, is given by pc =
w/2Af>, where w is the diameter of the aperture, This frequency is the maximum spatial frequency
that can be observed in the image plane wave amplitude distribution. The comresponding object
spatial frequency is given by w/24f7. Object wave amplilude structures containing spatial
frequencies up to w/24f; can thus be faithfully imaged. Recall that spatial frequencies for
complex wave amplitudes correspond directly to the tilt angles associated with plane-wave
components of the distributions. A plane wave component with a higher tilt angle corresponds to a
point of light focused farther off axis in the pupil plane of the system. Plane wave components of
the object wave field with sufficiently large tilt angles are focused to peints of light so far off axis
that they are blocked by the aperture, and the light never reaches the image plane.

It is informative to consider resolution in coherent imaging systems in connection with the
imaging of sampled wave amplitude distributions. Assume a bandlimited complex wave amplitude
object distribution Uglx,y) with cutoff frequency f,. This distribution can be Nyquist sampled
with a sample spacing equaling 1/2f, in the x- and y-directions. As was established in Chapt. 2,
U,(x,¥) can be recovered by subjecting the sampled distribution to an ideal lowpass filtering
operation, where the cutoff frequency of the filter equals f,. This operation comresponds to
imaging the sampled object distribution with a circular-aperture imaging system whose aperture
diameter w satisfies the condition w/if; = 2f,. Equivalently, Af/w must equal the sample
spacing. (The aperture could also be square with width w. See homework problem.}
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REFERENCES

PROBLEMS

6.1

6.2

6.3

64

6.5

Verify that the impulse response of Eq. (6.10) approaches 8(x,y) in the geometrical optics
limit, assuming the pupil-plane aperture to be clear on axis, How can you explain this
result physicaliy?

An imaging system of the kind illustrated in Fig. 6-1 has lenses of focal length ) = f2 = 10
cm. In the pupil plane of the system is placed the triangular aperture shown in Fig. P6.2.
Assuming monochromatic object distribution

Uplx.y)= %[] +cos(2af,x)|

at wavelength A = 500 nm, find the maximum spatial frequency fg, in cycles per
millimeter, for which the image distribution Ujn(x.y) equals the geometrical optics image

Joo
SN
1cm3 @L\

1cm

Fig. P6.2. Triangular aperture.
Show that Eq. (6.39) gives the correct condition for vignetting by the lens in coherent
imaging performed by the single-lens system of Fig. 6-6.
The following specifications apply to the 2-lens imaging system shown in Fig. 6-1: object
diameter D =2 cm, pupil diameter d =3 cm, f; =30cm, f; =40 c¢m, and A = 500 nm.

(a) Assuming no vignetting by the lenses, find the highest spatial frequency present in
the image plane wave amplitude distribution. Express your answer in mm-1,

{b) With reference to part {a), what is the corresponding object spatial frequency?

(c) How large must (i} lens L) and {ii) lens L; be to avoid vignetting? Express your
answer in centimeters.

The flow of radiant power {measured, for example, in watts) through a plane is
praportional to the spatial integral of the optical intensity incident on the plane,
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I II"’“("" vidvdy.

Show that the radiant pawer flow through the pupil plane aperture of the imaging system of
Fig. 6-1 equals the radiant power flow at the image plane, assuming for convenience that M
= l. Ignore vignetting.

Assuming the transfer function of Eq. (6.17). find the highest image spatial frequency that
can be found in the image and specify the direction of that spatial frequency.

The object-tmage relationship for the system of Fig, 6-1 can be expressed in the form given
in Eq. (6.41).

(a) Find the corresponding space-variant kernel b (/i E.1).

(b) Find the form of the kemel in the limit A—0.
With reference to step (4) of the procedure of Scc. 6.3, show that if Uobjix.y)=1. Eq.

{6.40) reduces to U, (x,¥) = consl.xcxp[j;—'R(,x" +y? }]
The imaging system can be analyzed following the procedure outlined in Sec. 6.4, find the
following parameters of the imaging system illustrated in Fig. 6-7. Assuming the lens to
be infinite in diameter:

(a) Find the distance trom the object plane to the entrance pupil, Ry.
(b} Find the distance from the exit pupil to the image plane, Ra.
(c} Determine the location of the system pupil and the associated distance d,, and d;.

(d) Show by substitution in Eq. (6.43) and appropriate change in variables that Eq.
(6.41) can be recast, for this system, in the form given by Eq. (6.35)—i.e., show
that the two methods to analyzing the system of Fig. 6-7, that of Sec. 6.2 and that
of 6.4, lead to essentially the same results.

(e) Assuming that the pupil function p(x.y} is given by rectix/w.y/w) and that the
system magnification is unity (di/dy=1). find an appropriate expression for the
system pupi function pg(x,y}.

In the following problem, refer to the system of Fig. 6-7 and assume the following

parameters: f=20cm, d, = d; = 40 cm. Assume further that the lens is sufficiently large in

diameter that there is no vignetting and that the fimiting aperture is characterized by pupil
function p{x.y) = rect{x/w,y/w), where w = | cm. The object consists of two
monachromatic point sources of wavelength A = 500 nm positioned about the origin on the

x-axis and separated a distance S. (Such an object could be produced by illuminating a

two-pinhole mask with a normally incident monochromatic plane wave.) The complex

amplitude of the image is therefere given by the sum of two sinc fl[mclions. perhaps with
assoctated quadratic phase factors. !

(a) For what point-source separation are the two sinc functions separated by their peak-
to-first-null distance?

(b} Assume that the phase of one of the object point sources in part (a) is shifted by
180" (e.g.. by placing a half-wave retarder in front of one of the pinholes). Show
by means of an x-axis cross-section sketch the appearance of the image plane
Hitensity.
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Assume that a paint object, represented by Ugp;(x.y) = 8(x-£.y-n). is located at
coordinates (£.1]) in the object plane of the system of Fig. 6-9(a). Use Eqgs. (4.26a) and
(5.1) to show that the complex amplitude distribution in the conjugate image plane is given
{to within a constant phase factor that does not depend on x, y, §, or 1) by the expression
of Eq. (6.42).

Thg imaging system illustrated in Fig. 6.4(c) is used to image a monochromatic object with
complex wave amplitude given by U il x, y) = 1+ cos 2f,x . Object distance do,

wavelength A, spatial frequency f, and focal length fe, are given by

d, =20em, A=633um, f,= A00mm™", =8cm.
(4 fa eq

On axis in the pupil plane of the system is placed a square aperture of width w.

{(a}

(b)
{c)
(d}
(e)

)
(g)

(I

(i)

()]

(k)

Sketch the spatiai frequency spectrum of the object amplitude distribution,
ﬁ,,bj(u‘ v). Scale the axes in mm-l,

Find the image distance d;, in cm.

Find the imaging magnification M.

Find the complex amplitude of the geometrical optics image, Ug(x.y).

Sketch the spatial frequency spectrum of the geometrical optics image amplitude
distribution, I-Jg(u.vy Scale the axes jn mm],

Find the optical intensity of the geometrical optics image, [g{x,y).
Sketch the spatial frequency spectrum of the geometrical optics image intensity
distribution. fg(u.v)A Scale the axes in mm-L,

Find the coherent imaging complex amplitude transfer function Heen(u,v).

Sketch the appearance in the Fourier transform domain of Ug(x,y} and Heop(u,v).
Show clearly the relationship between the spatial frequency components of the
geometrical optics image and the coherent transfer function cutoff frequencies in the
u and v directions.

Wha is the minimum allowable aperture size w, in mm, if the actual image
distribution, Uim(x,¥), is to be the same as the geometrical optics image?

Assume that the aperture remains the same size but that it is rotated through 45°.
How much larger may f, be in this case if Ujp(x,y) is still to equal Ug{x,y)?
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