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The monochromatic case

Strictly monochromatic light is always fully polarized

{Ex = A, cos(¢, — ot) E, = Axei(q’x ~o)
%

E,=A, cos((py - o)t) E, = Ayei((Py —ot)
E =A%

— io
E, =A™

Jones vectors



Examples

Linearly polarized light
(E, _
along x — axis
\0
(0 )
along y — axis
\Ey)
Linearly polarized light
(A

A) 7/ 4 with respect to the x — axis
\

/Aﬁ
\A

] n/ 6 with respect to the y — axis

Circularly polarized light
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] Right — handed

] Left — handed



Basis vectors
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Change of basis
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A first use of matrices

(o (L



Further uses of matrices

Rotation of the x,y frame by an angle o
E, ) (C -SYE C =coso.
E,/) (S C\E, S =sina
C S
R =
-S C

A rotator



A linear polarizer set along the x-axis
E, 0  OAE,
p 1 0
o o
A linear polarizer set at an angle o with respect to the x-axis

» C*> CS
P, =R'P,R =
CsS §?



Examples

Quarter wave plate

Half wave plate

Rotated wave plate

Wave plates



Matrices associated to rotators and wave plates form a group

Simon-Mukunda gadget

“Any wave plate or rotator can be synthesized by using two

QWPs and a HWP with suitable orientations”

R. Simon and N. Mukunda, Phys. Lett. 140A (1990) 165

V. Bagini, R. Borghi, F. Gori, M. Santarsiero, F. Frezza,

G. Schettini, G. Schirripa Spagnolo, "The Simon Mukunda

polarization gadget", European Journal of Physics, 17

(1996) 279



Complex plane representation

of polarized light

Re{n}

e
R A
0



Normalized vectors

A +A =1

We could set

A, =cosy Ay =siny

E, cosyY
— . d0=0, -
(Ey] (siny e‘ﬁj 8=, -9}

Polarization states mapped on a hemisphere




Polarization states mapped on a sphere

E, cosy/?2
- .
E, siny/2 ei®

Note that antipodal points correspond to orthogonal states.

This gives a connection with spinor formalism



Stokes parameters

so = A2 + Ai

s, =A% - Ai

s, =2A,A, cosd
s; ==2A,A, sino

For the mapping on the sphere (s,=1)

X =sinycosd = 2sin%cos—§—cos§ =S5,

PPN

y =sinysind = 2sin5cosasin8 =—s,

2 Y 2 Y

X = COSY = COS —2-—sin 5=s1

For the original Poincaré€ sphere: x =8,; y=5,; Zz=5;



Stereographic projection

bZSiIl'Y; B= 1_COSY =Sin21
B 2 2
B=2C?SY/2
siny /2
X=2C9SY/2c038=2Re Ei‘
siny/2 E,




Non-uniform polarization
1 \ei® 1 i/ cos®/2
i —i sin®/2

Example: two spherical waves with different curvatures

@ o< (x> +y?)




Vortex fields

Superposing two counterrotating circularly polarized beams

possessing single-vortices with opposite charges.
f(r)e (¢ f(r)e'®*® cos(9 + o)
. + _ =21(r)] |
if(r)e ) || —if(r)el®+®) sin(9 + o)

Note that no vortices are now present within the beam

section.



oo = 0: radial polarization




Propagation of radially or azimuthally polarized fields

For a vortex field we have

z=0:f (r)eiiﬂ
ia”
2z ~Fi® 1£p
z>0: g(r,9,z)=— ke e J f(p)e 22 J(gjpdp
Z 0 Z

Radially or azimuthally polarized fields, being the

superposition of vortex fields, obey the same law of

propagation.



Quasi-monochromatic case

E,(t)= A, ()elxO!

y(t)—cnt]

E,(t)= A, (D’

Polarization matrix




Completely polarized field

A,(Ayeia
-id 2
A Az Ay

Completely unpolarized field

- /2 0
10 1/2

How to estimate polarization with a single number (I, | is

not enough)

Note: On superposing two uncorrelated fields with matrix

M @
elements J J g We have

of o

. 1d (2)
s =353 + Top



Any polarization matrix can be decomposed as follows

[Jxx JXYJ [K 0) Al AA e
= -} )
Ty dyy 0 K AxAye_16 AZ

y

o= A+ A§

IunpoI =2K
Itot = Ipol + Iunpol
Degree of polarization
2 2
ol AT+A]

I, A;+Aj+2K

\/(J,{x I T\ I

J,U(+Jyy

Joy

P=

_ [, 4detd)

_\/ [Tr(D)]




Stokes parameters

They can be defined for partially polarized light too

s, = ([E.")+ <|Ey\2> =T~ Ty

Jyy

iEY>} =2

COSE

SINg

Jay

A possible representation of partially polarized light is then

through colums vectors of the form

The effects of anisotropic optical elements could then be
described by suitable 4 x 4 matrices known as Mueller

matrices.
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Partially coherent beams with partial polarization.

A matrix treatment.



Suppose we have two beams. We are told that they
are different and we have to find out where the difference
lies. We are also told that both beams are quasi-
monochromatic with the same spectrum and that the
difference has not to do with photon statistics.

How shall we proceed?



Presumably, our first attempt could be to get
information about the spatial distribution of the beam power.
For example, we measure the M -factor of the beams, or in a
more complete way, we measure the intensity distribution
across as many transverse planes as possible. With some
disappointment we will discover that distinguishing the two
beams is not that simple. They produce the same intensity

distribution everywhere.



We could suspect that the difference is about
polarization properties. Accordingly, equipped with a linear
polarizer and a set of wave plates, we try to determine the
polarization states of the beams. We will be disappointed

again. Both beams are simply unpolarized.



In all probability, our next step will be to inquire
about the spatial coherence properties of the beams. So we
pass to the use of a Young interferometer and measure the
degree of coherence for a sufficiently high number of point
pairs. The result we find is that the beams are partially
coherent from the spatial standpoint. In polar coordinates the

degree of coherence is described by a function of the form

i = cos(d) - ¥ )

However, we find that this formula holds equally good for

both beams. Consequently, they are still indistinguishable.



There is not much left. After further thinking we

decide to set up an experiment like this

.é)@*
.

Each aperture of the Young interferometer is covered by a
linear polarizer, the two polarizers being crossed. In addition
one of the polarizers is followed by a m/2 rotator so that the

outcoming fields can interfere (if correlated).



Here, at last we catch the difference. For one of the
beams we find that no fringes appear, irrespective of the
position of the two holes. For the other one, fringes can be

seen and the associated degree of correlation turns out to be

i = sin(By - By)

Incidentally, this is unity when the degree of coherence, as

measured without anisotropic elements, is zero.



Let us summarize. We have two beams that appear
identical in a scalar description as far és intensity distribution
and coherence are concerned. Furthermore, they are both
unpolarized. The only difference we found out is that
orthogonal field components at distinct points can be
correlated in one beam while are uncorrelated in the other.

Which theoretical tool should we use in order to

account for this difference?



I realize that some of you could think: “All right, we
found out a small difference between the two beams. So
what? Why should we worry about finding a theoretical tool

accounting for such details? Could not we simply ignore

them?”



The answer is that our previous example in a
particularly simple one. It merely aims at pointing out that the
scalar description of a beam or the use of ordinary concepts
drawn from the theory of polarized light can be insufficient
for a complete description of the light field.

In a more general situation the need for a suitable tool
can be more evident.

Just to give you an idea, let me add that one can easily
build up examples of optical fields that upon propagation
appear to be completely unpolarized at some planes and yet

polarized at some others.



It may be useful to recall the customary approaches
that can be used to describe polarized light beams.

a) Stokes parameters

b) Polarization (or coherence) matrix

Here we shall refer to the second choice.



We have seen that the polarization matrix is

sl ) \E,) \E,
T JIol (EE,) 'E,

Field components are taken at a typical point in a cross-
section and at equal times. Angular brackets denote times
averages.

The important point to be made is that in the previous
definition it is assumed that:

a) polarization state is the same at any point of a beam
section

b) spatial coherence is complete
Neither of these hypotheses can be taken for granted in

several cases of interest.



To deal with the most general case one should use the
complete tensorial theory of the electromagnetic field
developed by E. Wolf many years ago. This is not a simple
task because, even in the quasi-monochromatic case, it
involves the use of 3 different 3x3 matrices whose elements

depend on 6 space variables.



Beam Coherence-Polarization matrix

(PCB matrix)

Many fields of interest propagate in the form of beams
(multimode lasers, synthesized partially coherent sources).
In this case:
a) longitudinal field components may be neglected
b) a single vector, e.g. the electric field, may be used
(as for a plane wave)

One then introduces the matrix

c [T m27) TP (505 2:7)
F®(r,,1,,27) TO(x,.5,,2:7)

where

[, (r,r,,2;7) = (E;(rl,z;t)Eﬂ(rz,z;t + 1:)> (a,B=x,y)



In the quasi-monochromatic case we can limit

ourselves to the BCP matrix

J(r,r,,z)=
(5 72,2) J(r.r.2)  J,(r.r2)

. {Jxx(rl’rZ’Z) ny(r"rz’z)]

where
Jaﬁ(q,rz,z)z(E;(r],z;t)Eﬁ(rz,z;t)) (o, B=x.y)

The difference between the BCP matrix and the ordinary
polarization matrix is that the corresponding elements are
numbers (independent of z) in the latter while they are
correlation functions in the former.

It will be noted that the elements of the BCP matrix
have the same structure as the mutual intensity of the scalar

coherence theory.



In particular, for ry = rp, we have the local

polarization matrix. At first, it might be thought that,
disregarding coherence properties, such matrix could be
enough in order to describe the polarization state of the beam.
This may be considered as true across a certain plane of the
beam. However, when it comes to evaluating the propagated
quantities at a different plane knowledge of the local
polarization matrix is insufficient to solve the problem. We
need to know the BCP matrix at the starting plane because
propagation formulas apply to the correlation functions. In
other words, correlation and polarization properties are

strictly tied.



Let us discuss a few properties of the BCP matrix.
First, its elements can be normalized by introducing the

degrees of correlation

Jos(115,2)
J o (1511, 2) 55 (1,15, 2)

jaﬁ(rl’rziz)zx/

In particular jx, and j, are the complex degrees of | coherence
for the x- and y-components of the field. The anti-diagonal
element j,, is the degree of cross-coherence between the x-
component at ry, z and the y-component at r», z.

It is to be noted that Jy,(ry, rp, z) is not locally
connected to Jy,(rq, rp, z) and Jyy(ry, I, z) [except for ry =
rp]. So, for certain triples (rq, rp, z), Jxy can be different

from zero even if J,, and Jy are zero.



On the other hand integral inequalities are to be met.

For example

.”[fl*(rl )fl (r2 )Jxx(rl’rz’z) + f;(l‘l )fz (rz)Jyy(r,,rz,z)
+2Re{f(5,)£, (5,0 5 (11.1;,.2)}| dydr, 2 0

Locally, the degreé of polarization is computed

through the usual formula

Peg) 1 4detL{J(r, r,z)l
(Tr{] (r, r,z)})




When some anisotropic flat optical elements is

inserted across the beam its effect can be described by a

Jones matrix of the form

fm:[

a(r) b(r)J
c(r)  d(r)

The new BCP matrix is given by

~ ~ Fal

T (x,,x,,2) = T"(r,)J (x5, 2)T ()



As an example if we use a linear polarizer set at an

angle ¢ the element is described by the matrix
. (C* CS
T= )
CS S
where C = cos@ and S = sing.

The intensity emerging from the polarizer is easily

found to be

I(r,z)=J(r, r,z)C* + Jyy(r,r,z)S2 + 2Re{JIy(r,r,z)}CS



Let us see the role of the BCP matrix in the classical

Young interference experiment.

Z=Zp

The observed intensity distribution is

I(r )=| |[ (01,2, )+ T, (1,2 )]
+HK,| [ (11,2 )+Jyy(r2,r2,zm)]
+2Re{K] KZ[JH (r,r,.z,)+J,(r,5.2 )]exp( :271'\/1')}

where

RN I e e

C




Alternatively , we can write such intensity as

I(r, z,)= K[ 1(x,,2,)+|K, | I(x,,z,,)

+2 Re{Kl* K,J,, (r,,rz,zm)exp(—iZn'"v“’r)}
where we defined the equivalent mutual intensity
Jeq(rl,rz,zm) =J.(r.5,2,)+J,(5.1,,2,)
If no anisotropic elements are present the equivalent mutual

intensity is the sum of those pertaining to the x- and y-

components.
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If the Young mask is covered with a linear polarizer

the intensity across the observation plane is

pr(r’zp) = |K1|2 IQO(rl’Zm) + |K2|2 Itp(r2’zm)
+2Re{K K, J,,,(x.1;.2,, )exp(-i2nvT)}

where

J (rl,rz,zm)z

Peq

=J,.(r,5,,2,)C* + 1, (r,1,,2,)S” +2Re{ J_(x,.1;,2,,)CS}

This is a new type of interference law. In fact, it has to deal

with mutual intensities rather than mere optical intensities.



Let us come back to the example that we treated in
qualitative terms at the beginning.
Consider the incoherent superposition of two

Laguerre-Gauss modes of the form

rE“)( 0;t) = a(t) r,— f__,ﬁ\ (i)
r,0;t) = a(t ex exp(i

<

EP(r,0:1) = b(t rr_ex —— fexp(—it}

These are vortex modes with opposite charges. The first one
is polarized along the x-axis, the other along the y-axis. We

assume that

(a*@b®)=0; (a0 )= (b))



Consider now a different incoherent superposition.

) 2
EP(r,0;t) =[a(t)exp(i}) + b(r)exp(—i ﬂ)]%exp(— %)

U

E?(r,0;t) = ia(t)exp(i}) — b(t)exp(—iﬁ)]% exp(—-r—zj

\

This time the modes are circularly polarized with opposite

helicity.



It 1s not difficult to show that for both cases the

equivalent mutual intensity is

2 2

Jfg)(rprzs O) = IO E‘%CXP(—I.I_.:‘EZ“)COS(ﬁZ - 19']) (J = 1, 2)
vV ()

In particular the optical intensity is

) ) .
1°(r,0) = I, 5 exp ey (j=12)

This proves that the two beams appear identical in a scalar

description.



However the beams are physically different. This is

revealed by the BCP matrix whose elements turn out to be

20 2

[ 2 2
JO(x,x,,0) = I, 22 [_ 510 i(o, - 191)]
(¥

JO(r,,5,,0) =[JP(x,, K, 0)]
J)(r,r,,0)=0

..

J2(r,x,,0)=1, ;‘;2 exp( K 1—)!-1'2 Jcos(ﬁl -9,)

1J2(x,x,,0) =T (x,,x,,0)

J?(x,,x,,0)

xy

——Io-l:zz——exp( ry +r2 Jsm(ﬁ -9,)

| 20° v°

Note in particular the anti-diagonal elements.



On comparing scalar and vectorial treatments possible
pitfalls should be avoided. Let us discuss an elementary
example. A slit of width 2a is orthogonally illuminated by a
monochromatic circularly polarized plane wave. Half the slit
is covered by a linear polarizer with vertical axis and the other

half by a horizontally oriented linear polarizer.

///
<
7/
-

" /

We want the intensity distribution in the far-zone.



]

i om o -
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It may be argued that in a scalar treatment, in which
polarization is ignored, we deal with a uniformly illuminated
slit of width 2a. Accordingly, the predicted intensity will be
that of the diffraction pattern produced by such a slit.

On the other hand, taking polarization into account we
realize that the intensity in the far-zone is due to the
superposition of two (identical) patterns corresponding to a

slit of width a.



Shall we conclude that the scalar theory leads to an
incorrect prediction? One could simply say that the scalar
treatment 1S unsuitable because we cannot neglect the
vectorial features of the problem. There is, however, a
subtler answer. We can use a scalar theory but we have to
consider the slit as a partially coherent source. Indeed,
fields emitted from the two halves do not interfere with one
another.

The equivalence of the scalar and vectorial treatments
as far as only the intensity is of interest is easily proved.

We have already seen that across a certain plane the
connection between scalar and vectorial approaches is

expressed by the formula

Jeq(rl’rZ’zm) = Jm(rvrz’zm)"' Jyy(rlarzazm)

Since propagation formulas are linear this connection is at

once extended at any plane.



2 A _ A ..

In summary, we presented the basic elements for
describing both coherence and polarization properties
when the light field is beam-like. A single 2x2 matrix, the
BCP matrix, is sufficient for this. Its elements have the
structure of mutual intensities. Removal of the quasi-
monochromaticity hypothesis is easily accomplished.

Scalar coherence theory has a very large number of
applications to beam-like fields. It is likely that the present
extension, aimed at dealing in a simple way with vectorial

properties, can be of some usefulness.



1)

2)

3)
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Selected topics

a) Pancharatnam’s theorem
b) Angular momentum of light

c) Polarization gratings



a) Pancharatnam’s theorem
Preliminaries

We shall denote Jones vectors by a bold letter
(B )
COsS—

2

)
sin— e'?
2

The optical intensity associated to v is taken to be
2
=g, + |Ey| = cos’ (E) + sinz(ﬁj
2 2

and therefore equals one.
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Letting, for the sake of brevity

(i)

the intensity associated with the superposition of two waves

specified by certain vectors

a; a;
vV, = b s vV, = b
1 2

will be obtained by squaring the sum of the x-components and

adding the square of the sum of the y-components.



In symbols
I=|a, + a2|2 +|b, + b2’2
This can also be written

I= |v1 + v2[2 = 2[1 + Re{v1 - Vz}]

using the inner product

* *
Vl ‘V2 == 31212 +b1b2

where the asterisk stands for complex conjugate.
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Pancharatnam's connection

Pancharatnam started from the following problem. We have
two waves with different states of polarization. When can they
be said to be in phase? Many opticists could have argued that
there was no answer to such question. Consider in fact the x-
and y-components of the electric fields of the two waves. It
may well happen that the x-components are in phase while the
y-components are in antiphase (i. e. with a phase difference
equal to ). Therefore, the two waves are neither in phase nor
in antiphase. The question seems to be meaningless. The first
great merit of Pancharatnam was to insist that the question
could find an answer, at least in a conventional or operational

sensc.



To understand how, let us suppose that we are looking at the
superposition of two waves with equal polarization and that
we can change at will the phase of one of them. We
progressively turn some knob and we have to decide when the
two waves are in phase. How do we realise this is occurring?
No doubt, we say the two waves are in phase when the
intensity of their superposition reaches its maximum.
Pancharatnam suggested that the same rule could be adopted
for any pair of waves, regardless of their state of polarization.
The rule breaks down only for orthogonal states of
polarization, a case we shall exclude. Berry called this rule the

Pancharatnam's connection.



P x .
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We now take a further step by defining a sort of phase
difference between two waves in different states of
polarization. If the two waves are represented by Jones vectors

vi and vy, we multiply the second vector by exp(-io) and

maximise the resulting intensity

)
_ —iat
I=fv,+v,e

with respect to o.. Assuming the vectors to be normalized, I

can be written as

I= 2[1 + Re{(v1 v, )e ™ }] = 2{1 +|v, - v,|cosarg(v, - v,) - oc]}



We see that the value of o that maximises the intensity equals

afg("l 'Vz). We shall call it the phase mismatch between Vo

and vy and we shall denote it by y71. More explicitly

Yy = afg(vl 'Vz)

In order to put v and v, in phase we must change the initial

phase of v by -y»1. The scalar product can be written

Vi 'Vy = Cos—lcos—E+ 31n7s1n—2—cos((p2 —@,)+

+i sin%sin %sin((p2 -©,)

from which the phase mismatch can be evaluated.
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It is worthwhile to remark that y7| should not be confused
with the "angle", say P21, between the complex vectors v and

v7, which is customarily defined through the relation

which in the present case (Ivil =1 vpl =1) gives

cos” B, = |vI -V2|2



We now explore a most important consequence of the
Pancharatnam's rule by working out a simple example. Let us

consider the following three column vectors

el el o

The corresponding polarizations will be recognised as linear

along a line oriented at /4 between the x- and the y-axis (vy),

linear along the x-axis (v5), and right-handed circular (v3).



Let us evaluate the phase mismatch between v, and v;. On
computing arg(Vl -Vz) we find at once yp;=0 and we
conclude that v; and v, are in phase. Next, we evaluate the
phase mismatch between v3 and v,. Proceeding as before, we
find y32=0 and we deduce that v, and v5 are also in phase.
We could be tempted to conclude that vy and v3 are in phase
too. This, however, is not true. As a matter of fact, when we
insert the expressions of vy and v3 into arg(Vl -Vz) we obtain

y31= /4.



The present example shows that "to be in phase" in the sense
of the Pancharatnam's connection is not a transitive property.
For this reason, the quantity we called phase mismatch should
not be thought of as an ordinary phase difference. Indeed,
denoting by 1, y2 and y3 some arbitrary phases to be taken in
the usual sense, the identity: (3 - V2) + (Y2 - y1) = Y3 - Y1
would hold, whereas in the example that we have just seen
Y32 + Y21 # Y31.

We now possess all the necessary ingredients to work

out the Pancharatnam's theorem



The theorem

Let us suppose that we start from light with a certain state of
polarization. Using anisotropic devices, like wave-plates,
rotators and linear polarisers, we can change the state of
polarization. We can imagine this 1s done in a continuous way,
so that the state parameters are progressively changed by
infinitesimal quantities. We can arrange things in such a way
that, at the end of the transformation, we are back to the initial
polarization state. In other words, the light wave performs a
cyclic transformation, or a cycle. Suppose the form of the
cycle has been fixed, in the sense that all intermediate states of
polarizations are specified. Nonetheless, we can still choose at

will the initial phase of any intermediate state.



Now, following Pancharatnam, we make the hypothesis that
when we move along the transformation by infinitesimal steps,
any new state is kept in phase with the previous one. This will
be obtained by acting on the initial phase of the new state.
Because of the non-transitivity of the phase matching, we
understand that a typical state along the cycle need not be in
phase with the starting one, although it is in phase with its
immediate neighbours. Upon finishing the cycle, however, we
would expect the final state to be in phase with the starting
one. To our surprise, this is not true. In other words, we end
up with an accumulated phase change that is generally different
from zero. It can be said that the wave keeps a sort of memory

of the transformation it passed through.
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The magic is that Pancharatnam was able to find a very simple
expression for the accumulated phase change. If we represent
the cycle on the Poincaré sphere, the overall phase change is
simply equal to half the solid angle subtended by the cycle at

the origin. This is Pancharatnam's great theorem.

S. Pancharatnam, Proc. Ind. Acad. Sci. A, 44 (1956) 247



We shall limit ourselves to prove the theorem for an
infinitesimal cycle, like the curvilinear quadrangle ABCD

depicted below




i K.

We start from the polarization state corresponding to the point
A specified by certain angular coordinates ¢ and ¢. We move
to B on increasing ¥ by d¥ then to C on increasing ¢ by do.
Next, we go to D on decreasing ¢ by d¥ and then back again
by decreasing ¢. We denote the final state by A', meaning that
although this state has the same polarization as A, it may have
a different initial phase. Our goal indeed is to evaluate the

phase mismatch between A' and A.



The essence of the theorem can be grasped by comparing the
cffects separately produced by infinitesimal variations of
colatitude and longitude. We begin from the former, by

inserting the angular coordinates corresponding to B and A

1nto
V-V, = cos—+cos—2= + sin—Lsin —% cos(, — @ )+
L-72 2 2 2 2 2 I

9,8,
+1 s1n—~~2—sm—-2—sm((p2 -¢,)

More explicitly, we let 91 =8, 92 =0 + d% and @1 = @2 = ¢.

It is immediately seen that

do

V, Vg =COS—
A B
2

and this leads to the infinitesimal phase mismatch

dyg, =0



Therefore states A and B are in phase, so that we conclude that
states along the same meridian line are in phase. Let us then

see the effect of a change of longitude by moving from A to D.

Letting now 91 = 97 = 0 and @1 = ¢; @2 = © + d¢ we find

Vo Vp = cos’ g +sin® gcosd(p +i sin’ g-sin do

Taking into account the infinitesimal nature of d¢, the phase

mismatch dypa is seen to be

dyp, =sin® —g do



This means that states at different longitudes are not in phase.
In order to put D in phase with A we have to change its initial
phase by -dypa. It is to be noted that, for a given value of de,
the phase mismatch depends on ¥. This is a crucial point. In
particular, if we move from B to C we find the phase

mismatch




Let us now move around the cycle. States A and B are in
phase. The initial phase of C has to be changed by -dycg in
order to keep C in phase with B. States C and D are in phase.
Finally, in order to bring A' in phase with D, we change the
initial phase of A', by -dyap = dypa. The overall phase

change accumulated along the cycle is then

dy =—dy g +dyp, = [— sin” v +2d13 +sin’ %] do = —%sinﬁ dd do

where the infinitesimal nature of d has been exploited. It is
seen that dy is equal (disregarding the sign) to half the solid
angle subtended by the line ABCD at the origin of the sphere.
Hence, the theorem is proved for an infinitesimal cycle on the

sphere.



b) Angular momentum of light

A photon of right-handed (left-handed) light propagating along
the z-ax1s has an intrinsic (spin) angular momentum #7z{(—#Z2).
If such photon passes through a half wave plate its angular
momentum changes sign. As a consequence the plate
experiences a mechanical torque. This effect, which is also
predicted by classical electromagnetism was verified
experimentally by Beth as early as 1936.

In addition, light can possess an orbital angular momentum.
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The ordinary mathematical derivation of the orbital angular
momentum is rather long and intricate. In recent times, several
researches have been carried out on the orbital angular
momentum of light beams, in which case the paraxial
approximation can be used to a good approximation. These
ivestigations have led to a lot of new results and have greatly
clarified the subject. Furthermore significant applications of
these results have been demonstrated. We shall now discuss a
simple model for the orbital angular momentum of photons,
which can be presented with minimal prerequisites.
Essentially, the required concepts are that a photon possesses a
linear momentum and that the optical intensity can be thought
of as proportional to the spatial probability density of the

photon.



Let us consider a certain plane, to be taken as z = 0,
lluminated by a monochromatic licht beam. As mentioned
above the photon spin is connected with states of circular
polarization. As a consequence, if we assume that the beam is
linearly polarized, the expectation value of the spin angular
momentum 1S zero and we can focus our attention on the
orbital part only. In the scalar, complex representation of the
light beam, we can describe the field distribution across z = 0
through a function V(x, y). There is no need to specify the
exact meaning of V. For example, it could represent the
complex electric field of the wave. The important point is its
probabilistic meaning. Following the idea first put forward by
Born, we assume that for a single photon, the squared
modulus of V is proportional to the probability density that the

photon crosses the plane z = 0 at point (x, y).
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Examples

Suppose a TEMgo Gaussian mode impinges on the plane z = 0

centered at a point (xg, yg). Further, let us assume the axis of

the beam to be inclined with respect to the z-axis.

Neglecting the ellipticity induced by such inclination (assumed

to be small) we write the corresponding field distribution as

(x=xg ) =lv=vg)" \
- 3 K x+Kyv)

V(x,y)=Ae ¥

where A is an amplitude term, v is the spot-size, and Kx and
K., are the x- and y-components of the mean wave-vector of

the beam. In other words. K is directed along the beam axis.



‘Now, let kx and ky be the transverse components of k. Then

the z-component of the angular momentum of the photon is

m, = h(xky ~ ykx)

Of course, we do not know where the photon hits the plane
z=0. Therefore, we must content ourselves with the
expectation value of m;, which is to be computed through the
probability density for the crossing point. In view of the above
remark about the meaning of IV(x, y)l2 such probability

density, say p(X, y), can be written

l2

ol V(x,y)
p(x.y) ”|V(x,y)|2dxdy
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The expectation value for the angular momentum along the z-

axis is

hH gy — YKy p(x,y)dxdy

There remains to be seen how kx and ky can be derived from

the knowledge of V(x, y). To this end, let us write V(x, y) in

the form

V(x,y)= ,V(x,y)| g0y



If the wavefront is sufficiently regular, as in the case of

paraxial beams we can expand the phase in a neighbourhood

~£ .
UL

. S . i A I caimm s =
LA j} diid \«ULLDLQCL Ulll_y Ll.l J.lb [Gei LCLLU.D, 1.C.

o(x+&y+1)=d(x, y)+—§+—¢n

& and 1 represent small deviations along x and y, respectively.

When this expression of the phase is compared to the phase

distribution, say y(x,y), produced by a plane wave across the

plane z = 0, namely
W(&m) =0 + Kk, (x + &) + K (y +1)

where o, is an initial phase term, we see that the following

- equations hold
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On inserting these results into the expression for the expected

angular momentum we obtain

N

%0y i
(m,)=h JLX dy alev( )| dxdy

” IV(x, Y)|2 dxdy

This is the expected value for the z-component of the orbital
angular momentum of a photon. It coincides with the

expression derived from Maxwell's equations.



A few comments can be of help. We evaluated the expected

value of the angular momentum along the z-axis. A different

vraliva ~fan ‘-\p pvﬂp(\fpd ;-F AS¢=Y ?Q'FCH' fhp ann“]qr Yoy Aavrib e ey nan
- QTR tmm e

axis parallel to the z-axis but passing through a typical point

(Xa, Ya) at z = 0. In this case, the angular momentum becomes
I‘nz' = h[(x - Xa)ky - (y o Ya)kx]

and its expected value is

(m,'y={m,)- h(xa<ky> -y.(k, ))

- where

(ko) = [[Kapx.y)dxdy;  (o0=x.y)
are the expected values of the x- and y-components of the
wave-vector. It may well happen that both (k) and <ky>
vanish (we shall see an example later). In this case the orbital
angular momentum becomes an intrinsic feature in that it is
independent of the coordinates of the point at which the chosen

axis crosses the plane z = 0.



As a further remark, let us note that for certain types of field
distributions polar rather than cartesian coordinates are used.

Letting
x=rcos?; y=rsin¥

we can write

0 03 ddy_ 3 3
00 9x00 dyad . dy ° ox

so that the expression of the expected angular momentum

becomes

2Treo
H‘g—glU(r,ﬁ)‘zr dr do
(m, ) =h-o30

jj|U(r,ﬁ)|2r dr dd
00

where U specifies the field distribution at z = 0 in polar

coordinates.



Tae other idea we need is that a monochromatic photon of
frequency v possesses a linear momentum with modulus hv/c,
where h 1s Planck's constant and c is the speed of light. We
must specify, however, the direction of such vector. To this
aim, let us assume that in the neighbourhood of (x, y) the
wavefront of the beam can be approximated by its tangent

plane. In other words, we locally replace the wavefront by a

plane wave.

wave front \ X

-
*

tangent plane — /
‘/}'

Then the linear momentum of a photon passing at (X, y) can be
thought of as directed along the wave-vector, say Kk, of such
plane wave. Since k = 2mv/c. the linear momentum has a

modulus 7k.
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Using the previous expression for V(x.y) we find through

simple passages
(m, )= h(xOKy = yOKx)

It may be worthwhile to note that this is the same value that
would pertain to a photon crossing z = 0 at X, yg. This can be
interpreted by saying that such point plays the role of a center
of mass for the beam. It is seen that the present angular
momentum is not an intrinsic feature of the beam. Indeed it can
be made arbitrarily high (at least in principle) or vanishing
through a suitable choice of (xg, yo) and (K, Ky).



As a second example, we shall consider a well known class of
Laguerre-Gauss beams specified at their waist by the

distributions

2

U, (r,9) = A r"e*™ e v

where A is a constant and n is an integer number. On using

this expression we obtain

This beautiful result was first derived by Allen et al.

L. Allen, M. W. Beijersbergen, J. C. Spreeuw and J. P.
Woerdman, Phys. Rev. A, 45 (1992) 8185
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Writing ¢=tanl(y/x) we deduce that

- x o0 X =cos13

k—@?—-— y _sin® _ 90 _
*ox  x*+4y r Yoy xP+y’ I

It can be easily seen that the expected values of ky and ky

vanish. Therefore, the expected value of the angular
momentum has an intrinsic meaning. This can be traced back
to the form of the wavefronts. On moving around a circle of
constant radius at the plane z = 0 the phase steadily increases
by *+ 2mn. Therefore, the wavefronts, which constitute
examples of optical vortices, are helicoidally shaped. This
means that there is a local tilting of the wavefront with respect
to the plane z = 0. It is this shape of the wavefront that

determines the existence of an angular momentum along the z-

axis.

F. Gori, M. Santarsiero, R. Borghi and G. Guattari, Eur. J.
Phys 19 (1998) 439



c) Polarization gratings

Let us consider a set of strips cut from a linearly
polarizing film. The strips are arranged in a plane, side by
side, with the long sides oriented parallel to each other. A
coordinate system is used in which the x and y axes are
parallel to the short and the long sides of the strips,
respectively. The orientation of the transmission axis can
change when one passes from one strip to the other.
Accordingly, we speak of a local transmission axis. The angle
between the latter and the x axis is denoted by ¢@(x). We

assume @ to be periodic.
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Suppose now that a monochromatic plane wave in any
state of polarization impinges orthogonally (say, along the z
axis) on the grating. We can specify such a wave through the

Jones vector

We have already seen that the Jones matrix describing the

action of a linear polarizer is
C’ CS
P=
CS s?

Now, however, ¢ depends on X.



The vector specifying the emerging field, say E., is

/ . i8 - i8 )
A, N A, 1Ay € o2i0 A, + 1Ay e o210
E = 2 4
e . i . id
A, —iAx —1Ay e $2i0 +iAx +1Ay e 5210
\ 2 4

In order to interpret this result we have to make a hypothesis
about . For simplicity, we assume @ to be a linear function of
x. The period of @ is the interval over which @ changes by 7.
The terms containing exp(2i@) and exp(-2ip) represent
diffracted waves of the first order, while the remaining terms

pertain to the undiffracted field.



s

The corresponding Jones vectors, to be denoted by Eq, E

and E are

E 1A \
0 ZLAy e‘SJ

A, -iA, e (1
et

A, +iA, e (1
Ba=— i

The zero-order wave is identical to the incident wave except
for an amplitude factor. The order 1 is a left-circularly
polarized wave (L-wave), the order -1 a right-circularly

polarized wave (R-wave).



The states of polarization of the orders 1 do not
depend on the polarization of the incident wave. On the other
hand, the amplitudes of these waves depend on the
polarization of the incoming field. In particular, consider the
case in which the incident wave is circularly polarized, say an
L-wave. We easily find that the only first order wave whose
amplitude is different from zero is the R-wave. So,
disregarding the undiffracted field, an orthogonal incident L-
wave 1s converted into an inclined R-wave (and viceversa fon
an incoming R-wave). In general, it turns out that the
amplitude of the L-wave (R-wave) associated with the order 1
(-1) 1s proportional to the R-polarized (L-polarized) component
of the incident field.

It can be noted that there is a transfer of angular

momentum between the light beam and the grating.



We considered monochromatic and hence completely
polarized light. The treatment could be extended to partialy
polarized quasi-monochromatic radiation.

For broadband radiation, in which the polarization
properties can depend on the wavelength, an angular
dispersion effect will be present owing to the very nature of
the grating.

It can be shown that the decomposition performed by
the polarization grating can be used for evaluation of the

Stokes parameters of a light beam.



We worked with a simple linear law of variation for ¢,
but other situations could be considered. For example if @(x)
has the form yx2 (with real positive ¥) one finds that a plane L-
wave is converted into a converging cylindrical R-wave,
whereas an incident plane R-wave gives rise to a diverging L-

wave. The addition of a linear term to @ gives rise to a regime

similar to that characterizing off-axis holography.

F. Gori, Opt. Lett. 24 (1999) 584,

F. Gori, M. Santarsiero, R. Borghi, G. Guattari, Atti Fondaz.
G. Ronchi 54 (1999) 59.
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