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Mathemakecs — gqueen of sciemce

Radiont-"v:, —_— %H'iu’ maid ) sevvau‘(‘

“Tt is wot ecpecially elegant ; it is wmot
Vevy popular, it has not been "vehd:“

but it is essenhal |, alwo:f evevy

pavt o} optical thafncew'uz "

W.L. Wolie (1338)
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RADIANCE
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Fig. 2. IHustration of the notation relating to the traditional defini-

d2%
d AcosO dLL

L

Equation of vadiative tvansfev:
s.wligs) = - ol(z,s) L(¥,s)
/ 7+ I{s (¢,5,5") L(2,5)dQ

+ D(z.g) \d.‘.}a,mnﬁal |

/' scattevi "y

vadiation

ectinction
(a.bSWP‘l‘io n,
scatten: aa)



CONVENTIONAL RRADIOMETRY

o vadiance L(x,s)

o Vadiant exitaunce (emﬂhuce)

_ 48

= JA M(x) = SL(!’..%\ wsOdL

vadiant incidance (ivvadiawnce)

E -g-% E(¥) = {Llx,5)0s0d 02

e Vadiaunt inhnm‘-l-u

I = g%_ I(.?.)=<osejL(r.§HH

=) On ph«isc'cal %vow\ds
all quawntities (L, MgE, I)

ave veal awd positive
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Table 2-1. Basic radiometric quantities.

Name Symbol | Equation Units
Energy o joule, J
Flux ® [P] agp/ot watt, W
Flux Density od/od

Exitance M[w] oD/oA W m?
Incidance E [H] o®/dA4 | W m?
Intensity I ao/oQ W st
Radiance LN] oD/3AcosBd | Wm? sr!

no velation between

L(x,8) and L(2sS)

% -

)



B Spectval vadiometvic quantities

dL(c,3) = L(zg,5,») dv -
o )V"

= L(x,5,A)dA s

= M (v¥) E(¥W I(gv)

B Photonic vadiomethee quantities
d Ev."" N, (W) dt photon ¢lux

M CPhotometvic (luminous) g_uanh‘h‘es

¢, = V() F (2 da

V(A) = absolvte :pedval vespouse
of the (avevage) human eye

Lumen

(%)
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BLACKBODY

— homagencous
— thevmal eqyﬂfbw'um
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(Planck's vadiation law)

T T T T F T T 7 T T 1T 17
2000 -
E
ES
=
™ |— —
£
z
-
2
2
B
1000 —
&
- -
L L1 1 1 17
0 1 2 3 4 5 8 7 8 9 1011 1213 14 15

Wavelength (um}

Figure 44. Planck radiation law for several blackbody temperatures. (Used with permissicn
from R. D. Hudson, /nfrared System Engineering, Wiley, New York, 1969.)
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RADIATIVE TRANS FER

Free space (s.0) L(x,s) = ‘_'.':&%"_-'-_! =0

dI - L JH;(O;O; dﬂawsea,

=L d2
- §
e A
didfevential thveughput
ledtendve”

Figwre 2.1¢. Disk Lambertian source irradiates the area clement dA,.



RADIANCE THEOREM
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SPACE-TIME COHERENCE

< scalar theory
< stationary & ergodic field

V(r,t) COMPLEX ANALYTIC SIGNAL
(only positive frequencies)

O(r, x,; ) = (V' (5, HV(x, t + 1)) MUTUAL COHERENCE FUNCTION

I(r)=T(r,r;0) = <| v, > (AVERAGED) OPTICAL INTENSITY
Y(x,,r,;7) = K, 5,0 COMPLEX DEGREE OF COHERENCE
2 oW — EX DE
v JIG)I(,)

DOMAIN D
0< |'Y(l'1, IZ;T)| <1 I(r,r,;1)= U*(1'1)1.1(r2)es:"imt

‘\ /‘ STRICTLY MONOCHROMATIC
(V+&)U(r)=0

INCOHERENT COHERENT =

YOUNG'S INTERFEROMETER

1 % Delay t -
Visibility ¥ o<|y,,(7)

Fringe location o phase of y




SPACE-FREQUENCY COHERENCE

\(V'*(rl,co)‘?'(rz,a)'» =W(r,,r,;0)8(e — o)

WIENER-KHINTCHINE
THEOREM

‘k CROSS-SPECTRAL DENSITY

S(r,m) = W(r,r,0) SPECTRUM (SPECTRAL INTENSITY)
. COMPLEX DEGREE OF
u(r,r,;m) = W(r, r,;0) SPECTRAL (SPATIAL)
JS(t., ©)S(r,, ) COHERENCE

0£|u(r1,r2;a))‘_<_1

A 4

INCOHERENT COHERENT mp-

DOMAIN D

*

W(r,r,;0)=U"(1,0)U(r,, o)

1

FACTORIZATION

= stationary field may be partially coherent at single frequencies !

YOUNG + SPECTRAL FILTERS

1 J_ T(w,, Ao)

L

7

%

As A® — 0

W{(r1 . rz;’t) = u(r1 , rz;mo)e(‘t)
8(1) ~ T(w)
8(0) =1

(1)



INTENSITY _

Y VEISus LU [(r):JS(r,m)da)
0

! }

space-time  Space-frequency NORMALIZED SPECTRUM
degree degree S(r, )
L N 4 Hro)=z—=
: [ 8(r, 0)dw
relation ? 0

EXAMPLE: Black-body

Lambertian
sinkjr, — 1, |
By 0) = ———=—
P _ A u(h r; ) k|r1-—r21
T | & \ﬁb d®) ~ Planck’s law
: : 1 temporal [y(0,7/a )|
homogeneous, isotropic .
E, H vectors spatial y(r/oc,0)
W =Te[ ")
h
a=—
KT
At~ 2T ( k ) =2.23a
w282 \KT
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PROPAGATION

< Wave equations for I'(r,r,;7)
< Sudarshan’s equations
< Helmbholtz equations for #{r,r,;®)

(Vi +k2)W(rl,r2;a)) =0

< Solutions:
+ Angular spectrum representation (exact)
+ 1st and 2nd Rayleigh Integrals (exact)
+ Extended Fresnel diffraction (beams)

(0 e 25}, 40),

¢+ symmetric lens systems (2 x 2 ABCD matrices)
* non-symmetric systems (4 x 4 matrices)
* tilt & decenter (5 x 5 matrices)

—ik ; _
U(p:zour) = T;'el&(detB) IIIU(pO’zin)

x explik{pTDB"'p~2p0 B'p+p3 B dpo) / 2]d’pq

EXTENSIONS

< Non-stationary fields (pulses)

< Electromagnetic coherence tensors
+ correlation functions
¢ Maxwell’s equations

< Partial polarization
+ Blackbody radiation unpolarized

<~ Higher-order correlations



COHERENT-MODE REPRESENTATION

W(r,.r,;®) continuous in ®

a) _U(W(rl,rz;w)rd rd’r, < oo (Finite energy, Hilbert-Schmidt)
b) W(r2 N o 0)) = W*(r1 N I (0) (Hermitian)
C) _U W(r1 N o (D) f *(rl ) f (rz) d’rd’r, >0 (Non-negative definite)

[any function f, eg. f(r) o< & far- ﬁeld}

= (Mercer’s theorem)

W(r1 X 0)) =D, ((x))\p:ic (r1 o, (r,, 0)) (4,20)

J‘W(rl,rz;co)tun(rl,w)d%l = M((D)\Vn(l'z,m) (Jviv,=5..)

(Fredholm integral equation)

(&= < Factorization —  each term spatially coherent
Helmholtz eq. —  coherent (natural) modes

&> < Let Ulr)= Y a,(o)y,(r,o)
(a) (@)a, (@) =1, ()3,

= W(rl,rz;(ﬂ)=(U*(rl,w)U(rz,mD

(correlation of ordinary functions !)



A A . Far

Space-time domain Space-frequency domain

{O(F, D} wervvemememm [0, @)} | {Q(r, 1)} e {u,r, )]
(forbidden) (forbidden)

FT FT

FQ(rlarza T) WQ(rl’rZ’w) FQ(rlvrzs T)""'—'—""'——"WQ,(I'I,I'Z, (D)

I“Q(rl 5y, = (Q*(r] 1) Q(rz, t+ 1'))1 WQ(rl N, @)= (U;(r , @) UQ(r2 , co))m

Field
{(V(rt)}
WV, A)

Mode vepretenfiom ol o vadinded Reld,

@)



EXAMPLE: GAUSSIAN SCHELL-MODEL SOURCES

SCHELL-MODEL.: ur,,r,;0)=g(r, -r;0)

W(r;,r;0 \/Srl, S(r,,0)g(r, —r;0)

2 2
1S(r,0) = S(@) e *%

' 2
or:0)= ¢ 21202
< og>> O, —> globally incoherent (quasihomogeneous)
G, >> A — locally coherent
G~ A — locally incoherent

Coherent modes (Hermite-Gaussian functions)

5 174 1 Six 212
Wn(x,u)) :[nwgﬁ) \/27n! H{WS\/EJe ’

() = ST ws 2 [1—‘—@-]

wS = ZGS

o= Se global degree
W of coherence

(0<B<1)

< Bessel J, -correlated sources
< Short-correlation limit

)



GQENERRLIZED RADIANCE

Fig. 3. Energy fiow In the tar zone of the sourcs.

Powev {low E‘“’(vs) Py, S(“)("S) S

‘as ¢—> 0
= J(s) = ;—l%_ = v1S®) (vs)
= 2 U)X

= (Arrk)acosle \;; (ks,,- "-'5.1.)
= a-'l-"-r-)"co 0 ([ W9, %)

-ik5e (40 g3 db,

s, J(g) = CDSGJC;B(!ZS) d&

—\

7 inyinity of possible Bly,s) @



Reqyi vements:

@) B(gs) = & {W(‘-G-. fa)}

(i) Blg,s8) 2 O

() B(ns) = O when v&d

@ 8(5,04¢ = (amk) o5 6 W(ksrks,)

= No Blgs) exicls +hat sahisdies
all conditions (i)~ (V).

Examples :

Bg2) = (;'g,-.)‘mse S\x/(!* 1, e-1e) RS

(ngme'l'ﬂ't. ovdeving ,

V/f%\newr dishvibution #und-ion)
8 s) = (}‘,—,-)’"cos Bj\x/(:‘ o) vk (e-¥)

(a ntnovwal ovdeviua)
)



Comwnohl:‘ asked guvestions:

i) I¢ B8(z,g) s neaa-live, does it mean
that enevyy dlows in -s divection

Pwnswev: NO

0.004 _

0.002
n .
G o
v i

-0.002

-0.004

Figure 3. Vertically expanded view of figure 2(b) illustrating the fact that the averaged
z-component of the Poynting vector assumes negative values in the regions of its minima.

3.) Should B(x,s) vanich when (lU(!')P) z0¢

Ruswevr: Hwwm...

~ - ’V
oint -7
S 77
souvces W phase shi¢t+

Sommevdeld vadiatbion wwdition

@y



PHASE SPACE

B(!‘,s) — Y ¢s coh:‘uaa‘fe vaviables
(p=tk = hks)

RADIANCE v 2 |
Conventional Mes Yes
\W/ave theovy Yes No
Quantum meds, No No

Maveival distvibutious ¢

coSeJ B(!',.‘.'_\d’Y = J(S) vadiant

= iwl'eusi-l-j
(30 (phytical)

jc(t,s) ws0dQ = E(£) qenevalized
(am) vadiant
emittance

(7 )



QURASI-HOMOGENEITY

P, 25 ,w) = g(g-¥a,w)

? | gotr' | 4 Solr)
1
b= A || :
l : ke
} i
—r — —r
g o ry T ra
Hri+rd
Fast function Slow function

Fig. 5.2 Illustrating the concept of a quasi-homogeneous source. The modulus
|gg(r’, v)| of the spectral degree of coherence of the source distribution
changes much more rapidiy with r’ than its spectral density Sp(r, ¥) changes
with r. For the purpose of illustration, the source is taken to be one-dimen-
sional. ‘

avea o+
whevence

souwce S(v)

PS %loball.a fugokev-eut D <L L

Iocalln whevent, ¢ AMA
locally incohevent, ¢ A=A

ar.



GENERALIZLED RADIOMETRY

(with quasi-howogeneous souwvce s)
B(,2) = k¥ew:0 §%) §Os,)

E(e) = SO) [ g k(edade
———

C = vadiation e{{i cien cﬂ

K(e) = k’: Jy (kv)
T alw (ke)¥a

J(g) = (k) eos?0 Seq) FC(1cs )

=2 coheveht* J(s) — §(e)
incohevent J(g) ~ s

Lambertian J(g) ~ wsO

* Unf{»ovw\



~/agd
Qavssian covvelation g(!")’-‘ (X s~

Bul(r,s)/Bup (r)

1.0

B(x,0) ors
B(¢,0)

025

O —i5° 30° 45 e0° 7> 90 8

Fig. 9. Anguiar distribution of the normaiized radiance from a
Gaussian correlated quasihomogensous planar source.

. -]
lombertian —,  — —— ~ __ 30
ke, =0 ™
TN

)
J (0)

Fig. 10. Polar diagram of the normalized radiant intensity from a
Gaussian correlated quasihomogensous planar source [after
Carter and Wolf8),
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_E_quivalcn'l' Gavssian souvces | (-hracl_e;oﬂ)

9 ') 59p,v)
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Fig. 5.12 The spectral degree of coherence g@(p’, v) and the distribution of
spectral density S@(p, v) across four planar, secondary, Gaussian, Scheil-
model sources which generate identical distributions of the radiaat intensity.
The curves in (@) pertain to a completely (spatially) coherent source (e.g. a
single-mode laser) and the curves in (d) to a rather incoherent source. The
parameters characterizing the four sources are: (a) 0y = ®, gs=1mm, A =1
(arbitrary units); (b) oy =5mm, o5 =1.09mm, A =0.84; (¢) o, =2.5mm,
os=1.6Tmm, A=036; (d) 0,=2.1mm, o5=328mm, A =0.09. The
normalized radiant intensity generated by all these sources is given by the
expression (5.4-16), namely J(6)/J(0) = cos?@ exp[—3(k5)*sin*6)], with &=
2 mm. (After Wolf and Collett, 1978.)

Og 2> dg,

Area of coherence

O

(a) Laser source

Scale:

e T Y
{b) Equivalent quasihomogeneous source 01234 5mm

Fig. 5.11 Illustrating the effective sizes of (a) a laser source and of (b) an
‘equivalent’ quasi-homogeneous source. The coherence area of the quasi-
homogeneous source is shown shaded in Fig. (5). (After Wolf, 1578.)
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CROSS-SPECTRAL DENSITY OPERATOR

e (v¥+ikH)U(D)=0

Ue) = fale) Lhlarges?) u o

wheve
Sy = ,/1—5} , ctlislea
=ofsi-1 | o Is.d31

Iwn plave =0

~aAv, U = s at)e gy

[%,5]=c¢x [4,5]=iX

Commutation velations dov
classieal q.ields!

&



Deﬁne

L

a = G(§! \
(gl a(£,3)12) =W(s.,2.)

Gevnevalized vadiawnce

Bl 5) = () ws® FY(s,5))
F@(g,5) = (amd)* (<8l 6(E 5.

. A‘a)(g'f ) -‘-.L‘gl) ‘&) daf:l.
dilter quuctions _Q (w,v)
=)

e As X0, opevators 2 and §, commute ;
all 8™(g 5) will bewome idenheal

o Fov quati-howmogeneous souvies
B(g,5) = k'ws® S)(e) §*(ks,)

hos all the onpev‘“es o} traditiomal vadiance

2



ASYMPTOTIC RADIOMETRY

B(g,5) = K'sp SYe) 3 (ks,)

8 (!‘, 3) cownstant alon’ sf\m“l\f
linves as K —> oo

Fig. 5.29 Nlustrating the notation relating to the formulas (5.7-108). The point
Qo in the source plane, whose position vector py is given by Eq. (5.7-104), is
the point of intersection with the source plane z =0 of the line through the
point P in the direction of the real unit vector s.

B(x,2) = k's, SO(x-& 5.) 4 Uks,)

Geometvic cesvlt that accoonts

{ov the whevence pvopevties
of the deld !



COHERENCE TRANSPORT

\K/(!i,!'a) = J B(&;&, -"-’-)

(am)

cks-(er8)) o

- &

e vechlineav pvopaaa‘h'qh o} B(¥,s)
o di4vachve vay-tvacing at =0

Sy = §o.l."v?(g)

.E |
a



RYICON LINE IMAGE

e Unifovm, Gaussian covvelated input

J cos® ., = cos® _, - %(p- dQ2
x
cosd ,, =cosd® ,, - %ip__
y

\

I= j B(p,2,5)dQ)
Q
5 3) = k2 O o\ ko )75
By(p,5) =k" cos® fo(P)(—Z"“)e :
T

o(p)=~Yoin[d, +a(p’ - 1))

+ asymptoticas A 9 0

+ rectilinear propagation of B
+ includes coherence effects



WAVE MODEL
AXICON LINE IMAGE

anavlav vade
RL= 2.5 v,

Rlz S.O YA

d2
i . 6507 .
Upz)=——e[[Ue™ &’
[J — pike(p) ] .
0 o(p)=—Yin[d, + a(p® —r?)]
_(pi+p3)

2
g

0.9 = () [[[LeoV1 o) V' Clorpipz0 e

2 2
R el o o do,
where
(p;pgcosgef—eg)) _J_kp(p,cosa,-p.,cose.,)
Clo,pupzc)=|le T e : do de




OElical le'ensi#u

o annviav aperiuve Ry= 4.5 mw
Ry= S.0mwm

* Longitudinal, transverse, and 3D image profiles by radiometry
* Calculations are fast and accurate even at low coherence levels

160
200} .

2 150} 2 120

c = 2 100

Q : O

o : ©

S i < 60

g o0 f o =0.25mm 3 3

') ; ' o 40
o 20

80 120 160 200 240
Axial distance [mm]

Spectral density

140} =

cg=0.25 mm

0 50 100 150 200 250 300
Transverse distance [um]




§E¢3tial Coherence

| 3 1.0} Complex Degree of
- & 0.8+ Spectral Coherence
£ o6t
o
Wi(ry,
= 0.4} w(ry,ry) = [S(rl)(;’(:jx/z
g 02l 09—0.5 mm
5
i Q‘ 0'0 - 1 i L s L i 1 n 1 A 1 )
‘ 100 120 140 160 180 200
! Axial distance [mm]
' 1.0+ Transverse Distributions
i 8:0-8' at z = 150 mm
c
D
] -g 06-
o
o
5 0.4-
X b
' o
o 0.2
. o5
1 Q
| 0.0 |

Transverse distance {pm]

* Radiometric and wave-theoretic results are indistinguishable!

H
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T ﬂ.uS"V&HOVii (Cl-) Lam LQV'HQ\Q

(b) Gavssiawn Wvvelation

(a)
C-Line:8s30° g
B-Line:8¢(5 ﬁ Cs
A-Lineg:8s 0%
T | Al
Cs
Source o C;L) ﬂ BA
S A ) » ?
C By
8;
8,
A, Ay Ag { , < l —
C-Line:@=30° o~
B-Line:8=5* Cs
A-Linc:eao- o~
x Cs
(b) 1 &
Source o f:"' é._/“_..h-
2 e~
£ < B, :

Fig. 2. Polar diagrams, calculated from Eq. (10), of the spectral radiance at different points in the x,y-
plane, generated by some planar, secondary, quasi-homogeneous sources. The points with subscripts 1,
2,3,4 and 5 are ar distances r = 4 ¢cm, 6 cm, 8 cm, 10 cm and 12 cm respectively from the cenzer ) at the
source. {(a} From an uniform, circular, quasi-homogeneous, lambertian source,

{u(O) [Sm ')/kr']}, of radiusa =2 cm. (b) From an uniform, circular, quasi-homogeneous,

Gaussian-correlated source, {“(0)( r')= cxp[ (—r'2/203 ]} of radius a =2 cm and with o, = 0.5x
(Afer J.T. Foley and E. Wolf, ref. 7].
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Abstract. Radiometry evolved over a long period of time around rather in-
coherent sources of thermal nature. Only during the last few years have
the effects of coherence begun to be taken into account in radiometric
considerations of light sources. In this review article the fundamentai
concepts of conventional radiometry and of the theory of partial
coherence will be first briefly recalled. The basic radiometric quantities,
namely the radiance, the radiant emittance, and the radiant intensity,
associated with a planar source of any state of coherence will then be in-
troduced. It will be pointed out that the radiant intensity, representing
the primary measurable quantity, obeys in all circumstances the usual
postulates of conventional radiometry, whereas the radiance and the ra-
diant emittance turn out to be much more elusive concepis. The
radiometric characteristics of light from incoherent and coherent
sources as well as from a certain type of partially coherent source, viz.,
the so-called gquasihomogeneous source, will be analyzed.
Quasihomogeneous sources are useful models for radiation sources
that are usually found in nature. Lambertian sources will be discussed
as examples.
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1. INTRODUCTION

Radiometry, being one of the oldest branches of optics, has
undergone extensive development and refinement over a peried of
several hundreds of years. The earliest notions of radiometry
originated in the studies of Bouguer and Lambert, who in the eigh-
teenth century formulated some empirical laws of optics.!
Radiometry was subsequenily developed in connection with the in-
vestigation of energy transfer by heat radiation. Notable ¢contribu-
tions are especially the introduction of the concept of blackbody by
Kirchhoff and Stewart and the discovery, in 1900, of the spectral
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distribution of blackbody radiation by Planck.2 In its conventional
form radiometry appears to have been systematized around this
time, the turn of the twentieth century.

Conventional radiometry describes the transfer of radiant energy
on a phenomenological basis involving intuitive notions such as
tubes of light rays. In that form it has been applied to a wide variety
of problems both in physics and in engineering, Yet it does not
seemn to be generally realized that the fundamental concepts and
laws of conventional radiometry have never been derived from the
presently accepted basic theories of light. Only relatively recently
the accuracy and the range of validity of conventional radiometry
have come under closer examination.

It is sometimes asserted that conventional radiometry describes,
in some unspecified approximation, light fields generated by in-
coherent sources and that incoherent sources are Lambertian, Ex-
perimental evidence indicates that light sources under thermal
equilibrium conditions, such as blackbody sources, radtate in ac-
cordance with Lambert’s law. This fact would imply that
blackbody radiation sources are incoherent, an assertion which is in
disagreement with recent researches in coherence theory.
Moreover, even the fields emitted by incoherent sources do not re-
main incoherent but instead, according to the famous van Cittert-
Zernike theorem, gain coherence by the mere process of propaga-
tion. This results in a great variety of radiation patterns that can be
found in nature but cannot be explained on the basis of conven-
tional radiometry with incoherent sources. The above observations
serve to illustrate the connection that must exist between the
radiometric and the coherence properties of a light source.

The first attempt 1o incorporate the coherence properties of a
light source into its radiometric description was made by Walther?
in 1968, Considering a planar source of any state of coherence, he
constructed a function that possesses several of the properties nor-
mally attributed to the radiance in conventional radiometry. This
paper has become the cornerstone of virtually ali of the subseguent
research on the relationship between the radiometric properties of a
source and its coherence properties. Other major contributions in-
clude an investigation by Marchand and Wolf* generalizing the
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1. A planar source o occupying a portion of the plane z = 0
radiating into the half space z > 0.

. 2. llustration of the notation relating to the traditional defini-
1 of radiance.

ic concepts of conventional radiometry to fields generated by
steady-state planar source (including fully coherent sources
h as lasers), and a study by Carter and Wolf® on the coherence
perties of Lambertian as well as non-Lambertian sources. Of
at importance also is a recent investigation by Carter and Wolf,*
~hich they introduce and study a model that can be used to
resent true natural radiation sources.
n the present article we will review some of the more important
sets that recent research on radiometry with partially coherent
t has revealed. Ip order to bring out the essence of these
nomena, we will make a number of simplifying assumptions.
it of all, the quantum nature of light will be entirely ignored. We
also neglect all polarization effects and hence take the light
d to be represented by a {fluctuating} complex scalar function.
‘thermore, we will consider only ficlds generated by two-
iensional (planar) radiation sources.

SOME FUNDAMENTAL CONCEPTS

‘ore discussing in seme detail the major effects that the
wrence properties of a light source have on its radiometric
racteristics, it will be convenient first 1o recall brietly the basic
wepts and laws of conventional radiometry and of classical
ory of partial coherence.

. Conventional radiometry

his article we are mainly concerned with the light energy emerg-
into the half space 20 from a planar source o located in the
ne 7 = 0 (Fig. 1). The central guantity in the traditional
iometric description of such a source is the radiance (ulso
ywh as the brightness or the specific intensity). 1t is defined in
following way : Let dd  represent the power, per unit frequen-
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¢y interval centered at frequency w, radiated by a source element do
surrounding a point P into a solid angle dQ around a direction
specified by a unit vector s (Fig. 2). Then, the formula
d¢,, = B (r,s)cosfdfida, (1
where 1 denotes the position vector of the source point P and @ is
the angle between the s direction and the normal n 1o the source,
defines the radiance B (r,s} at frequency w, at the poiut P(r), in the
s direction. The radiance B (r,s), which is simultaneously a func-
tion of both position and direction, thus represents the power (at
frequency w) radiated by the source per unit solid angle and per unit
projected source area, the projection being onto a plane perpen-
dicular to the s direction,

The fundamental relationship expressed by Eq. (1) can be used to
obtain expressions for the other radiometric quantities. The radiant
emittance, denoted by E (1), is defined as the power {(at frequency
w) radiated by the source per unit area around the point P(r). In
view of Eq. (1), it may be written as B

E_(r) I(zw) Bw(f,g)cosﬁdﬂ , (2)
where the integration extends over the 2w solid angle formed by all
the possible s directions. The radiant intensity, denoted by J _(s), is
defined, on the other hand, as the power {at frequency w) radlaled
by the source per unit solid angle around the s direction. Using Eq.
(1), it can be expressed in terms of the radiance as

1,(5) = cosf f B (r.s)dg, (E)]
a

where the integration extends over the source area o. [f the source is
of infinite extent, the integration is to be carried over the entire
source plane.

It is obvious from the definitions of the radiant emittance and
the radiant intensity that the total power (at frequency w) radiated
by the source g into the half space z:» 0, denoted by #_, is obtained
from either one of the following two formulas:

f E_(r)do = f
o - 27

In terms of the radiance B (1,s), an expression for the toral power
¢ would, of course, involve a double integration over the source
arca v and over the solid angle 27.

The three basic radiometric guantities defined above, namely,
the radiance B A3, the radiant emittance E LT and the radiant
intensity J 18 have certain characteristic prOperues by virtue of
their phystcai significance. In particular, they are always non-
negative for all possible values of their arguments, Moreover,
B {r,s) and E_(r) assume a zero value whenever the vector r
rcprcsanls a ponm located in the seurce plane outside the source
area o (it the source is of finile extent). To these properties we must
add still a further requirement on the radiance B (r.5) in the half
space z> 0. For this purpose we first need to generalize shghtly the
definition (Eq. (1)) of B_(r,s), where we assumed that the point P(r)
is located in the source plane z = 0. We will now allow the vector T
10 Tepresent a point in any plane 7z = 7 with z, 2 0. Hence, Eq. (1
then defines the radiance B LArsiata poml P(r)in the plane » — »,.
The unit vector s SDCLlfIE'\ a direction Towards z>z,. The

ERCE ()

dependence of B_(r,s) on z is left implicit for simplicity. it is nor-
mally assumed m conventional radiometry that the radiance
B_(r,s), with s fixed, remains constant along the line through the
point P(r) in the direction of the fixed s vector. With the above
S:L‘Ilt.ldll!f.d netation, this requitement may be expressed as®

d

B (r.s) -0,
ds  “ 7~

()
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where d/ds denotes the directional derivative with respect to the
spatial variables {r and implicit 2) in the s direction. Equation (3} is
known as the equation of radiative transfer in free space. 1t ex-
presses the notion, tantamount to conventional radiometry, that in
free space energy is propagated along straight lines.

To conclude this briel review we wish to emphasize four aspects
of traditional radiometry which are evident from the above discus-
sion. First, the radiance, the radiant emittance, and the radiant in-
tensity are conventionally defined at a singie temporal frequency of
the optical field. Second, the three radiometric quantities are
regarded as measurable in principle. Third, a simple additive super-
position of energy from the various parts of the source is assumed
to hold. And fourth, any effects due to diffraction are neglected.
As we will see shortly, most of these presumptions of conventional
radiometry have to be relaxed when considering partially coherent
fields with diffraction and interference taking place.

2.2. Theory of partial coherence

A proper accounting for the diffraction and interference of light re-
quires the introduction of the notion of coherence of the light field.
This concept is closely related to the more or less irregular fluctua-
tions that every practical optical field undergoes. In general, the
fluctuations are much too rapid to be directly measurable by means
of the usual types of detectors. However, it is often the correlations
between the fluctuations rather than the fluctuations themselves
which are of principal physical importance.

Let us therefore briefly discuss how the correlations of the fluc-
tuations may be mathematically represented in a form suitable for
our present purposes. It will be sufficient to consider only correla-
tions up to the second order in the optical field variable. Let V{r,t)
be the complex analytic signal? that represents the optical field at a
point P specified by the vector r, at a time instant t. For simplicity
¥(r,1) is taken to be a scalar. We assume also that the field V(r,t) is
statistically stationary in time. For such fields the most common
quantity in the analysis of coherence effects is the so-called mutual
coherence function. It is normally defined in terms of a long time
average (Ref. 7, Sec. 10.3.1). In recent years it has become
customary, however, o define the mutual coherence function in a
more general manner by means of an average over a suitable ensem-
ble of realizations characterizing the statistical properties of the
field V{r,t). If the field is not only stationary but also ergodic, then
such an ensemble averaging vields the same result as the time
averaging. Since most optical fields of practical interest are sta-
tienary and ergodic, we will consider only such fields from now on,
We may then define the mutual coherence function by the formula

P{ryrar) = < VTt = Vir.0> {6)

where the brackets denote either the time average or the ensemble
average and the asierisk denotes the complex conjugate. Despite
the appearance of the variable t on the right-hand side of Eq. (6),
[(r,,r,;7} is independent of t because of the assumed stationarity.
The mutual coherence function I’(ry,r2;7) characterizes the second-
order field correlations at the points specified by the vectors r, and
ry, al instants of time separated by 7.

The transter of radiant energy from partially coherent sources is,
however, more naturally described in the space-freguency rather
than the space-time domain. This circumstance is a consequence of
the fact that the different temporal frequency components of a
statistically stationary field are uncorrelated. To obtain a measure
of the optical field correlations in the space-frequency domain, we
recall first that the cross-spectrai density function (also known as
the cross-power spectrum), denoled by W{r ,r»w), and the mutual
coherence function I'(r,,r+;7} are related by the formula

| = .
Wi Lw) = f P(r,rarpeidr. (7)

27

The Fourier transform relationship expressed by Eq. (7) is, of
course, an optical analog of the well-known Wiener-Khintchine
theorem for stationary random processes. The cross-spectral den-
sity function W(r,,r,;w) characterizes the correlations of the optical
field at frequency w, at the two points P(r,) and P(r,). Further
properties of W{r,,r.;w) are discussed in a paper by Mandel and
Wolf.!0

In terms of the cross-spectral density function W(r ,r;iw), one
may define the quantity'®

WL, Epw)
I Iyw) = ——oeoroo————, 8)
[L(ry ) I(rpe)]'’?
where
I(r,w) = W(r,rw) )]

represents the averaged optical intensity at frequency w, at the
point P{r}. It can be shown that u(f ,ryw) is normalized so that for
all values of ry, ry, and w

0; ‘.u(_':p_rg;w); é 1. (10

The quantity u(r,,r,;w), defined by Eq. {8), is called the complex
degree of spatial coherence of the light fluctuations at frequency w,
at the points P(r;) and P(r,). The limiting values | and 0 in Eq. (10)
indicate that the light fluctuations at frequency w at the points P(r|)
and P(r,) are completely correlated or uncorrelated, respectively. If
rpu(t, Te) | = 1 for all values of 1, and r,, then the optical field (at
frequency ) is said to be completely spatially coherent. On the
other hand if |p(r,,r5;w)i = Oforallt; # 1), then the optical field
(at frequency w) is said to be completely spatially incoherent. These
limiting cases should be regarded only as convenient mathematical
idealizations rather than real physical conditions actually observed
in nature. No practical optical field can be spatially incoherent in
the sense defined above. A more realistic model for spatial in-
coherence will be introduced later.

3. RADIOMETRY WITH PLANAR SOURCES OF ANY
STATE OF COHERENCE

In this section we will first obtain expressions for the basic
radiometric quantities [cf. Eqgs. (1)-(3)] associated with a planar
source of arbitrary state of coherence, located in the plane z = 0.
The source can be either a true primary source or a secondary one,
such as an optical image for example.!'"'2 In either case, there will
be some field distribution across the plane z = 0. This distribution,
occupying an area ¢ (which may be infinite), is what in the follow-
ing will be referred to as the source o (Fig. 1). It gives rise, by the
process of optical wave propagation, to the field distribution in the
haif space z > 0. The state of coherence of the source is specified in
terms of the cross-spectral density function W, r,;w), where £,
and . are the position vectors of two typical points in the plane z =
0 (indicated by the superscript 0), and w denotes the temporal fre-
quency under consideration. The resulting formulas for the
radiometric quantities are consequently expressed in terms of the
function W(r|,r,;w). Some features of these radiometric expres-
sions associated with a partially coherent source will be discussed
and contrasted with the corresponding properties postulated in
conventional radiometry,

3.1. Expressions for radiometric quantities

In order to determine the radiometric quantities associated with a
partiaily coherent planar source, we need to consider the energy
flow in the far zone of the source. This situation is a consequence
of the fact that only sufficiently far away from the source can the
behavior of the energy flow be unambiguously described. Let us
denote by E(r.w) the energy flow vector associated with the optical
field at the point P(r). Then it can be shown that in the far zone of
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‘ig. 3. Energy flow in the far zone of the source.

he source E(r,w) always points radially outwards from the source
ind that it is proportional 1o the optical intensity. 3 Hence, in a
iuitable system of units,

FNrs,w) = 10°)(rs,w)s (1

where s is a three-dimensional unit vector pointing to the point P(r)
ie., s = r/rwithr = 1ri), and the superscript o indicates that the
juantity has been evaluated in the far zone of the source (i.e., as
kr — oo with k = w/c, c being the speed of light in free space) (Fig.
3). The quantity s » F{®)(rs,w) represents the rate per unit area,
located in the direction specified by the unit vector s, at which
:nergy traverses a surface element dS on a large sphere of radius r
zentered at the origin, If we let 4 denote the solid angle that dS
subtends al the origin, then, in view of the relation

1S = rid@, {12)

the radiant intensity J _(s) and the far-field flux vector Fl®)rs,w)
are clearly related by the formula

I 5) = %5« s w) (13)
On substituting from Eq. (11), we obtain
10s) = 1), (14)

The right-hand side of Eq. {14} is 1o be considered in the limit kr —
oo, and hence it is independent of 1.

The next task is to cxpress the far-zonc optical intensity
10=)(rs,w) in terms of the cross-spectral density function
W“”(r 2.} actoss the source. This can be accomplished by first
on%ldenng the propagation of the cross-spectral density function
into the far zone and then using Eq. (9) to find the optical intensity.
The cross-speciral density function is known to obey a pair of
Helmholtz equations in free space. Using standard mathematical
techniques, such as Green’s functions or the angular spectrum
method, one can show that'?

rk)eos — WWks , ks ), (15)

T

=i rs,w) = (2

where W'Xf, f.iw) is the four-dimensional spatial Fourier
transform of W'™r| ry;e), defined by

W(Ulq‘l‘_j‘:;w) o I I WOy (1) Iaiee)

(21'r)4 _
» Cil[i' A "r:)dlr,d:rz . (16)

[n Eq. (15, 4 is the angle between the s direction and the normal to
the source (i.¢., the positive 7 axisy, and & is the two-dimensional
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vector obtained by projecting the unit vector s onto the source
plane z = 0.

On substituting from Eqg. (15) into Eq. (14), we find the follow-
ing important expression for the radiant intensity™!*;

J8) = (27rk)lcossztf\);””'{k§L ks ). (17

The formula (17), in its various forms, forms the basis for the
discussion of radiation from partially coherent sources. It also
represents the starting point in an effort to define the radiance and
the radiant emittance associated with a partially coherent planar
source. This can be seen more clearly if Eq. {17) is first rewritten,
with the help of Eq. (16), in the form

R o0 , o0
JG5) = — C()Slﬁf f WOr | raiw)
2 In ' J 22
. ehlkﬁ‘ " ;E]d’ d Ty . (18)

Then, introducing the difference and average coordinates

r =n-Inr-=

e (r) + 13 (19)
as new integration variables, the expression (18) for the radiant in-
tensity becomes

kK \° ® % 1 1
I = cos2g f f WO 4+ - S 1w)
- 2 o Ve T 2 2

kS et 4 s
ce ML (20)

The integration is to be taken twice independently over the entire
source plane, once with respect to r” and a second time with respect
tor.

Comparison of Egs. (3) and (20) suggests that the radiance
B (rs) assouated with a partially coherent planar source might be
ann by

! kK \* ) * it I, |-
B (rs) = - — ) vosf A e )
2r oo 2 2

ce T dr (21

This expression for the radiance was first introduced by Walther® in
1968. The radiant emittance E_(r}, obtained by substituting from
Fq. (213 into Eq. (2), can then bé written as?

& Hin [ I, VR
Eqn 4! W+ e — K (e 22)
L . 5 3 wil
where
: o ks er
K= [ f cosige T da . (23)
e Ir (27)

The integration in Eq. (23} may be carried out 1o vield*

Korye o R (24
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wherer’ = ' and Iy 5(x) is the Bessel function of the first kind
and order 3/2_ 1t can be represented in terms of trigonometric func-

tions as

Iy alx} = J%[ Sl:x -cosx | . {25)

We have thus established expressions for the basic radiometric
quantities associated with a planar source of any arbitrary state of
coherence. The radiance B 4.5} is given by Eq. (21), the radiant
emittance E_{r) by Eq. (22), and the radiant intensity J (8 by Eq.
(20). The Lohcrenu: properties of the source are embodled into the
cross-spectral density function Wr,.ryw) entering each of these
expressions.

3.2. Properties of radiometric quantities

Equations {20)-{22) appear at first sight as the complete solution to
the problem of specifying the basic radiometric quantities
associated with partially coherent planar sources. Closer examina-
tion reveals, however, that some problems still remain concerning
this radiometric description, It has been shown® that both the ra-
diance B_{r,s) and the radiant emittance E (I} occasionally assume
negative Values and that they do not necessanly always vanish out-
side the source area o in the source plane. Moreover, there is no
reason 10 expect that the radiance B (r,s} would, under all cir-
cumstances, obey the equation (5) of radlanve transfer in the half
space z > O [cf. Ref. 3, Sec. 1II}. For these reasons the radiance
B,(r,s) and the radiant emittance E D), given by Egs. (21) and (22)
respemvely. cannot strictly speakmg be regarded as true measures
of energy flow in the traditional sense. The radiant intensity J (8,
given by Eq. (20}, on the other hand always correctly represents tTle
power per unit solid angle as in conventional radiometry.

Another problem associated with the radiance B L{IL,5) is that the
procedure by which it was derived above does not spectfy it unique-
ly. It is easy to find other nonequivalent expressions for the ra-
diance such that, when substituted into Eq. (3) with the integration
extending over the whole source plane (rather than just over the
source area g}, they would lead to the correct expression (20) for the
radiant intensity J_(s}. One such expression was actually proposed
by Walther'® in 1973, Its derivation was originally based on a local
energy balance argument involving an energy flux vector E(r,w)
associated with the optical field. It was later rederived'® in an in-
teresting way by means of a sct of constraints posed on the radiance
B_(r,s). However, because of the inherent ambiguity of an energy
flux vector in the near field of a source, that expression cannot be
regarded as any more correct than the expression in Eq. (21). It
does not possess all the features of the radiance in conventional
radlomctr) In particular, it too can occasionally 1ake on negative
values.!

In view ot the fact that there are several possible definitions for
the radiance function associated with a partiaily coherent planar
source, one cannot avoid asking the following question: is it possi-
hle 1o tind amongst all these definitions one that would satisfy all
the requirements normally postulated for the radiance in conven-
tional radiometry? It has been shown by Friberg'™ "™ that ne such
definition, assumed to be linear in the source cross-spectral density
function, can be given with sources of all states of coherence. This
result has its root in the fact that the radiance B LATs) s
simultancously a function of both r and s, which are cssentzall\
Fourier conjugate variables of each other, In analogy with the prin-
viples of quantum mechanics, this result also suggests that the ra-
diance no longer can be regarded as 1 measurable quantity. '™ In
fact, the basic measurable quantity associated with radiation from
partially coherent scurces is the distribution of the radiant intensity
1.15).

“In spile of the above somewhat disconcerting comments made
about the radiance and the radiant emittance assoviated with a par-
Haily coherent source, they can nevertheless be used suceesstully in

calculating values of truly measurable quantities. As we shall see
later, in most practical cases they behave much in the same way as
the radiance and the radiant emittance in conventional radiometry
and provide a great deal of insight into the manner in which energy
is radiated by partially coherent sources,

4. LIMITING CASES OF COHERENCE

As special cases of the general formulas (20)-(22) for the
radiometric quantities, let us consider the two limiting cases when
the planar source is either completely spatially incoherent or com-
pletely spatially coherent. Even though these two limits must be
regarded as pure mathematical idealizations, they nonetheless pro-
vide useful information about the properties of several types of
sources. A more realistic model representing a.true natural source
will be discussed in the next section,

4.1, Incoherent sources

In an earlier section we already encountered a definition of spatial
incoherence in terms of the cross-spectral density function. For
most practical purposes it is, however, more convenient to repre-
sent the cross-spectral density function of a compietely spatially in-
coherent source in the form [Ref. 9, Sec. 4.4]

Wr | ryiw) = O 0)bir ) | (26)

where &(r') is the two-dimensional Dirac delta function, and
ir,w) 2 0 with i'%r,w) = 0 for points located outside the source
area o, The quantity i0(r,«) may be loosely identified with the op-
tical intensity distribution across the source.

Because of the delta function appearing in Eq. (26}, some of the
integrations in the expressions for the radiometric quantities can
now be readily carried out. On substituting from Eq. (26) into Egs.
(21), (22), and (20), we find for the radiance, the radiant emittance,
and the radiant intensity, respectively,*

B (r,5) = (k )-COSG 1% ) , (27
-= 2x -
k2 Hit!
Ew(f} = —1 (rlw) ’ (28)
L on I
and
S R 0]
3 (s) = cos’8 f i wydo . (29)
L8 7 S

In Eq. (29) we have used the fact that i"(r,w) is assumed to vanish
outside the source area a. It is observed from Eqs. {27) and (28) that
for a spatially completely incoherent planar source the radiance and
the radiant emittance are non-negative quantities and, moreover,
that they assume zero values in the source plane outside the source
area g, These results indicate that in the limit of spatial incoherence
there is no disagreement with conventional radiometry {except thal
the equation of radiative transfer may not be rigorously satisfied in
the field generated by an incoherent source).

Another interesting feature is scen from Eg. (29). Denoting the
radiant intensity in the forward direction (i.e., in the direction with
= 0)by I, . Eq. (29) may be rewritten as

1.6) = .I_J_,‘OL‘OSEE. (30)

This shows that the radiant intensity from a completely spatially in-
coherent  source decreases, regardless of ity optical intensity
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distrihution, in proportion 1o cos and not 1o ¢cos# as is typical of a
Lambertian source.! In view of this result, a blackbody radiation
source, whose radiant intensity distribution is well known 1o follow
1 cosé law, must possess some degree of spatial coherence. Recent
-esearches have shown, indeed, that a blackbody source exhibits
field correlations over distances of the order of the mean
~avelength of the radiation.

1.2. Coherenl sources

In the idealized case when the source is completely spatially
:oherent, its cross-spectral density function may be factored in the
- 22
form-=

WOHT | riw) = v v (r,0) . 31)

Here vir,w) may be identified as the optical field distribution
awcross the source. Naturally, v'%(r,w) vanishes whenever T
‘epresents a point outside the source area o.

With the cross-spectral density function of the source being
‘epresented by Eq. (31), the radiance, the radiant emittance, and
he radiant intensity, given by Eqgs. {21), (22), and (20) respectively,
may be written as?

. v“”‘(r—%_r’.w)e' =T dhe, (32)
- kz () + 0y* ’
E,n) = L U ) | S A
2NV2r -
3y a(kr?) \
. — dr, (33)
(kr)3?
ind
(s) = (2rk)cos ViOks | ) 7, (34)

vhere VI({,w) is the two-dimensional spatial Fourier transform of
A, w), defined by

1 oo .
- f \""’(_r,u)e"'-°-rd3r. (35)

?((l)( ) =
(2'11')3 —-oa

“he best way 1o illustrate the predictions of Egs. (32)-(34) is to con-
ider a simple exampie.

Example. Let us consider a cophasal ptanar source with Gaussian
iptical intensity distribution

> »
14/ 204

(().(I'w) — [De I’ (36)

¢here I, and o, are positive parameters (Fig. 4). The optical field
istribution across the source can then be written as

‘
‘L: '-hllz

e ey = N e (37)
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Fig. 4. Gaussian distribution of optical intensity.
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Fig. 5. Angular distribution of the normalized radiance associated
with a tully coherent and cophasal planar source with Gaussian op-
tical intensity distribution.

The waist of a tully coherent laser beam, for example, is a practical
realization of the type of source represented by Eq. (37).

On substituting from Eq. (37} into Eg. (32), we find for the ry-
diance

S2(ka)sintd

B.(r.s) = B, (Dcoste , (38)
where

2 bl
B, o0 = ; (I\'Ul)']“”(_r_wj_ (39

In deriving Eq. (38) we made use of the identity -‘i:J_ = sin*, The
radiance at any given source point is seen to be proportional to the
optical intensity at that point. The graphs in Fig. 3, caleulated from
Eq. (38), illustrate the dependence of the radiance B (r,s) on the
angle @ for several values of the parameter ko,. T

On substituting from Eq. (37)into Egs. (35) and (34), the radiant
intensity is readily found 10 be

S2tkog)Asint

1.s) = .fx‘(,co.s:ffe , (40)
where
Do - 2kepl, . (41)
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Fig. 6. Polar diagram of the normalized radiant intensity from a
fully coherent and cophasal planar source with Gaussian optical
intensity distribution.

Figure 6 illustrates, in the form of polar diagrams, the dependence
of the radiant intensity J (s} on the angle § for several values of ko,.
These graphs, computed according to Eq. (40), differ from the
graphs in Fig. 5 by a muliiplicative factor of cosf. With a suitable
value for ko, Eq. (40) represents the radiant intensity generated by
a fully coherent laser operating in its lowest transverse mode. For
typical lasers ke, » 1, and thus the radiant intepsily distribution
is highly directional, centered in the forward direction. One may
then approximate cosé = 1and sinf = §. For instance, for a He-Ne
laser with A = 6328A and ¢, = 1 mm, the parameter ko; =
0.99+10%, and the radiant intensity J (s} drops to -2 times its value
in the forward direction when # = 1.01+10* radians.

The radiant emittance E_(r) associated with the fully coherent
and cophasal planar source with Gaussian intensity distribution can
be obtained by substituting Eq. {37) into Eg. (33). After some
algebra, the result is found to be

F
E 0 = [1 S ]1“’>(r.¢). (42)
_ a _
where
a =2 (ka)), {43)
and
a
F(a) = e® f e du. (44)
0

The quantity F{a), defined by Eg. (44), is the so-called Dawson in-
. v 1 ‘!]
iegral whose values can be found tabulated in the literature.-* The
radiant emittance is seen to be proportionat to the distribution of
the optical intensity across the source.
In an effort to describe the radiation characteristics of a source,
it will be convenient to let

o -
N = f 10r w)dr (45)
~on -

denote the integrated optical intensity across the source. Then the
ratio

C,=d /N (46)

t Cw
1ob-———————— e —
075
Q.50
0.25—
0 | | { L.
0 1 2 3 4 ko,

Fig. 7. Radiation efficiency of a fully coherent and cophasal planar
source with Gaussian optical intensity distribution.

where ¢ is the total radiated power given by Eq. {4), may be called
the radiation efficiency of the source at frequency w. It can be
shown that regardless of the state of coherence of the source, the
radiation efficiency satisfies the inequality

0SC <. 7

The radiation efficiency Cw may be smaller than unity for two
reasons: first, a substantial amount of the radiation may be con-
verted into evanescent waves which do not carry energy into the far
zone. And second, the source may be only partially spatially
coherent.

The radiation efficiency C, of the fully coherent and cophasal
planar source with Gaussian optical intensity distribution (Eq. (36))
is seen from Eqs. (46), (45), and (42) to be

!

FiV2 (ko)) )
V2 (ko)) ’

where F(a) is the Dawson integral defined by Eq. (44). Figure 7 il-
lustrates the dependence of C on the parameter ko,. Since the
source under consideration is completely spatially coherent, the less
than perfect radiation efficiency is entirely due to the evanescent
waves, However, for a typical laser source C, = 1, as is evident
from Fig. 7. Later we shall encounter sources where the loss of
radiation efficiency is due to the imperfect coherence properties.
One such example will be the class of the so-calted quasihomo-
geneous sources discussed in the next section. In fact, in that case
the loss due to the evanescent waves is entirely negligible when com-
pared to the loss caused by partial spatial coherence,

Let us finally briefly examine the limiting case as ko, —~ o2, In
this limit Eqgs. (38), (40), (42), and (48) reduce to

B (r.5) I I, # =40,
— = - (49)
Bw.o‘i) ‘!u:‘(l 0, 8 +£0
E () — 1), (50)
and
C.— 1. (51)

It is apparent that in this limit the source approaches a
homogeneous plane wave, giving rise to a perfect unidirectional
light beam undergoing no diffraction at all.
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Fig. 8. Schematic illustration of the intensity and coherence varia-
Hons across a quasihomogeneous source.

5. RADIOMETRY WITH QUASIHOMOGENEOQUS
PLANAR SOURCES

A quasihomogeneous planar source is characterized by a cross-
spectral density function of the form®

WO ryw) = 19 [é (ry + _rz)-w] pOr | - ryiw) (52)

where 19%(r,w) represents the optical intensity distribution across
the source, and x®(r";w) is the complex degree of spatial coherence
fcf. Eq. (8)], assumed to depend only on the differencer’ = I -1,
It is assumed that the intensity distribution 10%r,w) varies with r
much more slowly than the complex degree of spatial coherence
uOr* ) varies with r* (Fig. 8). Furthermore, it is assumed that the
lingar dimensions of the source are large compared with the
wavelength of the light and that [u®r’ )| is substantially dif-
ferent from zero only within an r’ domain that is small compared
to the size of the source. The quasihomogeneous model, unlike the
strictly homogeneous one, can be used to represent radiation
sources of finite size frequently encountered in practice.

The radiometric quantities associated with a quasihomogeneous
planar source can be readily found by substituting from Eq. (52} in-
to the general expressions {20)-{22). The results are®

k 2 = ks, -1
B, (rs) = (— cosﬂl“”(_r,w)f A I S
— a0

27T
(53)
[o.7]
20 = 1) a0 K e (54)
B —oo
ind
- P e d ks er 4
L (s) = k-cos—mf”?(o,m)f Wy e T e (55)
-

where K_(r') is given by Eq. (24), and 1(0,w) is the vatue, at the
wigin f = 0, of the two-dimensional spatial Fourier transform of
he source intensity distribution, defined by

¢ <] .
Tm(f‘w) - _1_, f I‘“’(r,w)e'”"-rdzr. £56)
- (271')2 ~oc -

It is seen from Eq. (53) that the radiance Bw(r,s) is proportional
o the optival intensity 1r.w) and to the two-dimensional spatial
‘ourier transform of the complex degree of spattal coherence
{0(r,w) of the light across the source. Because ¢™(r,w) is a non-
legative detinite guanrity,'” its Fourier transtorm is alwavs non-
1iegative by the classic theorem of Bochner.™ Hence, the radiance
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B, (r.5) associated with a quasihomogeneous planar source is a non-
negative quantity that vanishes outside the source area. Moreover,
it can be shown?S that the radiance B_(r,s), given by Eq. (53), re-
mains essentially constant along any given s direction over a
distance ¢ that satisfies the condition

2 46 3
ce [ 250 LS (57)
siné H pax

Here ¢ is the angle that the s direction makes with the positive z
axts, k = 2x/x, and if| ... is, roughly speaking, the magnitude of
the fargest spatial frequencies of the source intensity distribution
[cf. Eq. (56)]. Since the optical intensity across a
quasihomogeneous source varies very little over distances of the
order of wavelength, the ratio k/|f| max 15 large compared to unity.
Consequently, the radiance associated with a quasihomogeneous
source satisfies the equation (5) of radiative transfer to a good ap-
proximation. In the limits as the source approaches a strictly
homogeneous source or the angle # — 0, the upper bound for f set
by Eq. (57) approaches infinity, indicating that in these cases the
equation of radiative transfer is rigorously obeyed.?*

Comparing the expression (54) for the radiant emittance Ew(%) to
the definition (46) of the radiation efficiency C,,» one sees that 26

E [0 = C 10 w), (58)
where
o
C, = f w0 @)K (ryd? 59
-0

Hence, the radiant emittance E _(r} associated with a
quasihomogeneous planar source is proportional to the source in-
tensity distribution, with the proportionality factor being deter-
mined by the complex degree of spatial coherence p®r’ w). In
view of Eq. (47), the radiant emittance E_(r} never exceeds the
value of the optical intensity 10(r ). -

An interesting result® is readily seen from Eq. (55): the angular
distribution of the radiant intensity J_(s) is proportional to the two-
dimensional spatial Fourier transform of the complex degree of
spatial coherence of the light across the source and to the square of
the cosine of the angle that the s direction makes with the positive 2
axis. Thus, the coherence properties of a quasihomogeneous source
completely determine the angular distribution of the radiant inten-
sity generated by the source. This important result is one part of a
remarkable reciprocity theorem,® the other part of which asserts
that the complex degree of spatial coherence of the light in the far
zone of a quasihomogeneous source is, apart from a simple
geometrical factor, equal to the normalized spatial Fourier
transform of the optical intensity across the source. This second
part of the theorem can be regarded as a generalization of the
famous van Cittert-Zernike theorem to quasihomogeneous planar
sources,

5.1, Examples of quasihomogeneous planar sources

We will illustrate the general expressions ($3)-(55) of the
radiometric quantities pertaining 1o guasihomogeneous planar
sources by several examples.

S N1 Gaussian correlated source

Let us assume that the complex degree of spatial coherence of the
light in the source plane is given by

S T I S (60)
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Fig. 9. Angular distribution of the normalized radiance from a
Gaussian correlated quasihomoegeneous planar source.

where o, is a positive parameter. The exact form of the optical in-
tensity distribution 1t ) across the source is of no consequence
as long as it meets the requirements stated at the beginning of this
section. On substituting from Eq. (60) into Eq. (53), we find for the
radiance

1
ey (ko,)%sinld

B, (r,5) = B, 4(r)cosfe , (61)
where
(ko,)?
B, oD = —— 190, (62)
m™

The graphs in Fig. 9, computed from Eq. (61), illustrate the
dependence of B_(r,s) on the angle & for several values of the
parameter ka, . It 15 observed that the larger the effective coherence
area of the source is, the more directional the radiance B (r,s)
becomes. The broken line corresponds to a Lambertian source.
SubﬁstziTtution from Eq. (60) into Eq. (55) vields for the radiant inten-
sity®

- % {ko,)2sin2g

J (s} = Ju’ocoszse . 63)
where
Jyo = 2mtka Y 1TO0,u) . (64)

Here,?ﬂ)(o,w) is given by Eq. (56) with f = 0. Figure 10 illustrates,
in the form of polar diagrams calculated according 1o Eq. (63), the
distribution of the radiant intensity J (s) as a function of the angle
@ for several values of ko . It is evident from these graphs that there
is a profound modification in the directionality of the radiant in-
tensity when the correlation distance o is increased from zero to a
value of about a wavelength.?” The broken line corresponding to
the radiant intensity from a Lambertian source is included for com-
parison.

The radiation efficiency of a Gaussian correlated quasihomo-
geneous planar source is found by substituting from Eq. (60) into
Eq. (59). The result is®

F[koy/\_Z ]
Co=lrmm—\ (65)

ka,/~2

fambertian ~, .~ —— — _ 30

Fig. 10. Polar diagram of the normalized radiant intensity trom a
Gaussian correlated quasihomogeneous planar source [after
Carter and Wolif].

where F(a) is the Dawson integral defined by Eq. (44). The radia-
tion efficiency C, calculated from Eq. (65), is presented in Fig. 11
as a function of ko . It is seen to increase monotonically from a
value zero, when ko, = 0 (incoherent source), to its maximum
value unity, when kg, = oo (coherent source). Hence, the loss in
radiation efficiency is due to imperfect spatial coherence properties
of the light across the source.

5.1.2, Biackbody source

Consider an opening of area A made into one of the walls of a cav-
ity inside which optical radiation is at thermal equilibrium. We
assume that the linear dimensions of the opening are large com-
pared to the mean wavelength of the radiation field, The opening
can be regarded as a planar source within which the optical inten-
sity (at frequency w) is a constant, denoted by [ ,, and the com-
plex degree of spatial coherence is® ’

-
w0 @) = 5‘: S (66)
T

where r’ = |1’ |. For such a source, which is a special case of the
so-called Bessel correlated sources,® Egs. (53) and (55) yield for the
radiance and the radiant intensity

1
B(rs) = — l o, (67)
- 2r
and
J8) = — I, jcos86, (68)
2 FYSTS

respectively. The radiation efficiency is found® to be C, = 1/2.
Equations (67) and (68) show that the radiance is a constant within
the source area and that the radiant intensity follows a cosf law.
Both these features are characteristic of a Lambertian source. This
result then indicates that a Lambertian source is not completely
spatially incoherent but exhibits, according to Eq. (66), field cot-
relations over distances of the order of the wavelength of the light.

6. SUMMARY AND DISCUSSION
In this article we have reviewed some of the more important
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Fig. 11. Radiation efficiency of a Gaussian correlated
quasihomogeneous planar source [after Carter and WolfS].

features of radiation emanating from planar sources of any
prescribed state of coherence. It is evident from the discussion that
the coherence properties of a source play an essential role in deter-
mining its radiation characteristics. When comparing radiometry of
partially coherent light with conventional radiometry, it is observed
that in both cases energy transfer is naturally treated frequency by
frequency, However, many other aspects of conventional
radiometry cannot directly be taken over into the generalized
radiometry. In particular, the radiance and the radiant emittance
can no longer be considered as measurable quantities with their in-
witive physical interpretations postulated in conventional
radiometry. The primary measurable quantity associated with
radiation from partially coherent sources is the angular distribution
of the radiant intensity.

We have discussed the radiometric description of planar sources
of any state of coherence and analyzed in some detail the limiting
cases of spatially completely incoherent and spatially completely
coherent sources. We have also presented, with illustrative ex-
amples, the radiometric characteristics of a source model, the so-
called guasihomogeneous model, that can be used in many in-
stances to represent {rue natural sources. Still more refined source
models, which we have not been able to touch upon in this article,
have been proposed in the literature. One example is the so-called
Schell model source,* ! which represents a broader class of radia-
tion sources than does the guasihomogeneous model. When the
area occupied by the source is sufficiently large and the intensity
variation across the source sufficiently stow, the predictions based
on the Schell model are essentially the same as those obtained from
the quasihomogeneous model. Further details and relevant
references can be found in some recent related review
articles,20:32.33

All throughout this article we have been concerned with the
determination of the radiometric characteristics of a source assum-
ing that its coherence properties are known. The inverse problem,
i.e., determining the distributions of the optical intensity and the
complex degree of spatial coherence across the source from the
measured radiation data and especially from the angular distribu-
tion of the radiant intensity, has recently acquired increased atten-

tion.>#3-3 The solution of the inverse probiem is important both
from a practical point of view and from a mathematical point of
view, but it does not fall into the category of topics to be covered
under the present title. In Ref. 36 some aspects of the uniqueness of
the relationship between the cross-spectral density function across a
planar source and the angular distribution of the radiant intensity
will be considered.

7. ACKNOWLEDGMENTS

The author wishes to thank E. Wolf for several helpful discussions
concerning this manuscript. Financial support frum the U.S. Army
Research Office and from the Academy of Finland is gratefully
acknowledged.

8. REFERENCES

I, Geist, J., Opt. Eng. 15(6), 537 (1976).

2. Planck, M., The Theory of Heat Radiation, Dover, New York (1959).

3. Walther, A., ]. Opt. Soc. Am, 58, 1256 (1968).

4. Marchand, E. W. and Wolf, E., J. Opt. Soc. Am. 64, 1219 (1974).

5. Carter, W. H. and Wolf, E., J. Opt. Sec. Am. 65, 1067 (1975).

6. Carter, W, H. and Wolf, E_, J. Opt. Scc. Am. 67, 785 (1977).

7. Born, M. and Wolf, E., Principles of Optics, fifth edition, Sec. 4.8.1.,
Pergamon, Oxford and New York (1975).

8. Chandrasekhar, S., Radiafive Transfer, Chap. I, Eq. (47), Dover,

New York (1960).

9. Beran, M. ]. and Parrent, G. B., Ir., Theory of Partial Coherence,
Sec. 2.1., Society of Phote-Optical Instrumentation Engineers, Bell-
ingham, WA (1974),

10. Mandel, L. and Wolf, E., 1. Opt. Soc. Am. 66, 529 (1976).

11, Wolf, E. and Carter, W. H., }. Opt. Soc. Am. 68, 953 (1978).

12, Carter, W. H. and Wolf, E., Opt. Commun. 25, 288 (1978).

13. Wolf, E., J. Opt. Soc. Am. 68, 1397 (1978).

i4. Marchand, E. W. and Wolf, E., I. Opt. Soc. Am. 62, 379 (1972).

15. Walther, A, J. Opt. Soc. Am. 63, 1622 (1973).

16. Walther, A., Opt. Lett. 3, 127 (1978).

17. Marchand, E. W, and Wolf, E., J. Opt. Soc. Am. 64, 1273 (1974).

18. Friberg, A, T., in Cokerence and Quantim Optics [V, ed. Mandel, 1.
and Wolf, E., Plenum, New York (1978).

19. Friberg, A. T., J. Opt. Soc. Am. 69, 192 {1979).

20, Wolf, E., J. Opt. Soc. Am. 68, 6 (1978).

21. Marchand, E. W. and Wolf, E., Opt. Commun. 6, 305 (1972).

22. Perina, 1., Coherenve of Light, Sec. 4.2., Van Nostrand, London
(1971).

23, Abramowitz, M, and Stegun, [.A,, Handbook of Mathematical Fune-
riods, p. 319, Dover, New York (1965).

24, Goldberg, R. R., Fourier Transforms, Chap. 5, Cambridge University
Press, Cambridge, England (1965).

25. Friberg, A. T., OpL. Acta 28, 261 (1981}

26. Waolf, E. and Carter, W. H., in Coherence and Quanturi Optics TV,
ed. Mandel, I.. and Wolf, E., Plenum, New York (1978).

27. Wolf, E. and Carter, W. H,, Opt. Commun. 13, 205 (1975).

28. Baltes, H. P.. Steinle, B., and Antes, G., Opt. Commun. 18, 242
{1976}.

29, Schell, A, C., “*The Multiple Plate Antenna,”” Doctoral Dissertation,
Sec. 7.5, Massachusetts Institute of Technology (1971).

0. Baltes, H. PP, Steinle, B, and Antes, G., in Coherence and Quatiiwm
Optics 1, ed. Mandel, L. and Wolf, E., Plenum, New York (1978).

31. Baltes, H, P. and Steinle, B., Nuove Cimento B 41, 428 (1977).

32, Baltes, H. P., Appl. Phys. 12, 221 {1977).

33, Baltes, H. P, Geist, |., and Walther, A., in fnverse Source Prohicns
in Opries, ed, Baltes, H. ., Springer, New York and Berlin (1978},

34, Baltes, H. P. and Steinle, B., Lett. Nuovo Cimento 18, 313 (1977).

35, McGuire, D, Opt. Commun. 29, 17 (1979).

36, Friberg, A. T., Proc. SPIE 194, 71 (1979). A revised version of this
paper appears in Opt. Eng. 21(2), 362 (1982). z

936 / OPTICAL ENGINEERING / September/October 1982 / Vol 21 No 5



~-4

A reprint from

.

21(2), 362-369 (March/ April 1982)

ngineerin

ISSN 0091-3286

RADIATION FROM PARTIALLY COHERENT SOURCES

Ari T. Friberg*

Pellila
SF-31600
Jakioinen, Fintand

*Present address: Department of Physics and Astronomy.,
University of Rochester, Rochester, New York 14627

\




Radiation from partially coherent sources

Ari T. Friberg*®
Pellila

SF-31600
Jakioinen, Finland

Abstract. Although the theory of partial coherence was formulated in area-
sonably general form about a quarter of a century ago, it was not until a few
years ago that this theory began to be applied to problems of radiation from
partially coherent sources. In this review article, the properties of the radiant
intensity generated by a planar source of any state of coherence will be
discussed. it will be first recalled that the radiant intensity can be expressed as
a two-dimensional spatial Fourier transform of a correlation function of the
field in the source plane, averaged over the source area. The characteristics of
the radiation from several model sources will then be analyzed. With the help of
these results, certain equivalence theorems relating to the radiant intensity
from planar sources of entirely differant degrees of spatial caherence will be
reviewed and the underlying physical principles will be elucidated A number of
illustrative examples will also be given. Finally some very racent work, which
has led to the construction of planar sources with controflable degrees of
spatial coherence. will be described. Experiments carried out with these sour-
ces will be discussed; they verify the main relationships between the coher-
ence properties of the source and the directionality of the light it generates.
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effects that have been discovered during the lust ten VEUTS OF SO N
connection with the studies of radiometry with partially coherent
light. In that article we presented expressions tor the basic radio-
metric quantitics associated with a planar source of arbitrary state of
coherence and discussed . with iflustrative examples, the limiting cases
of completely coherent and incoherent sources as well as some par-
tially coherent model sources thut have been proposed in the litera-
ture. We noted that the angular distribution ol the radiant intensity is
the primary measurable quanuny pertaining to radianon (rom par-
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tiaily coherent sources. In the present article, we will pursue further
the considerations of the radiation characteristics of steady-state
planar sources: in particular, we will analyze more deeply the proper-
ties of the radiant intensity generated by a planar source of any state
coherence. Some very recent experiments aimed at testing the theoret-
ical predictions will also be briefly discussed.

To get some insight as to the type of phenomena we will be talking
about in this paper. et us consider a simple example.? Suppose one
compares the radiation generated, on one hand, by a thermal light
source and. on the other hand. by a typical gas laser (Fig. 1). The
angular distribution of the radiant intensaty from a thermal source is
well known to follow Lambert's law, whereas the distribution of the
radiant intensity from a typical taser is quite different. being sharply
peaked in the forward direction. Now. a thermal source is spatially
almost completely incoherent, and a laser is. of course, spatially
highly coherent. Hence. this example seems to indicate that there is 4
close relationship between the state of coherence of the source and the
directionality of the hght it generates. This. indeed. is the case. as recent
rescarches on radiation from partially coherent sources have shown.

Hlustrative as the abose example may be. it does not fully ¢lurify the
matter, One might be tempted to conclude from it that complete
spatiul coherency s a sultivient condition for the generation of highly
directional fight heams. This is obviously incorrect, as can be eusily
seen by considering the ditfraction of an expanded laser beam
froma circular opemng. 1 the radius of the opening is of the order of
the waselength, the resulting radiant intensity distribution  the
classic Airy pattern-- shows a substantial divergency angle. More
surprising, however, is the fact that not only is complete spatial
coherence not a sutficient condition, but it is not even 4 necessary
condition for the attainment of high directionality. This result was
recently demonstrated by Collett and Wolf.* 5 who describe several
planar sources which are rather incoherent in the global sense and vet
generate precisely the same angular distribution of the radiant inten-
sity as a fully coherent laser. This rescarch has also led 10 the novel
concept ol partially coherent light beams
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ig. 1. Schematic illustration of the angular distribution of the radiant
itensity from a thermal light source and from a typical laser.

In the present article, we continue to use the same notation as in
he previous article.! We consider a planar source, either a primary or
-secondary one, occupying an area o (which may be infinite) in the
vane z = 0 and radiating into the half-space 2>>0 (Fig. 2). The light
enerated by the source is represented by a fluctuating complex
-nalyticsignal, taken to be a scalar function of position and time and
ssumed to be stationary and ergodic. Because the different temporal
requency components of a stationary random function are uncorre-
ated.” it is sufficient to consider the transfer of energy at a single
:mporal frequency. esay, of the optical field. The state of coherence
£ the radiation source is therefore conveniently specified by the
ross-spectral density function’ W (r _r,; w) of the light across the
lanez =0. The vectors 1| and 1, represent a typical pair of points in
he source plane z = 0 (indicated by the superscript 0). Equivalently,
he coherence properties of the source may be expressed in terms of
ne complex degree of spatial coherence 1 (1.1 ,: w) and the optica!
wensity 19 I.w)of thelight across the planez =0. They are related
» the cross-spectral density function W (r | .1, w) by the following
srmulas:’

U riw) = WO(r i), (1

Wm)(ﬁp{glw}

(19 (1, ) 1O, w] *

O rsie) = (2)

«everal properties of these functions as well as their relationship to
ome of the more commonly known guantities in the theorv of
artial coherence, such as the mutual coherence function and the
omplex degree of coherence, are discussed in Ref, 7,

The primary object of interest in this paper is the angular distri-
ution of the radiant intensity generated by the planar source g. The
adiant intensity, denoted by J_(s). is defined as the power (at
equency w) radiated by the source per unit solid angle around a
irection specified by the unit vector s (Fig. 2}. The total power {at
‘equency w) radiated by the planar source o into the half-space 2 >0
ay thus be obtained from

= / J ()d &)

{2l

here the integration extends over the 2 solid angle formed by all the
directions pointing into the half-space 7 >>{. Denoting, moreover. by

o

" = / I widr (4

Fig. 2. lllustration of the notation relating to radiation from partially
coherent planar sources.

the integrated optical intensity (at frequency w) across the source,
one may define the ratio

Cf.u = (‘)Lu' N(u (5]

as the radiation efficiency of the source at frequency w. [rrespective
of the state of coherence of the source, it can be shown to satisfy the
inequality 0 = C,_ = 1.

2. RADIANT INTENSITY FROM PLANAR SOURCES
OF ANY STATE OF COHERENCE

In this section we will first present several different fo-mulas expres-
sing the radiant intensity generated by the planar source o described
in the introduction (Fig. 2). The state of coherence of the source,
which may be quite arbitrary, is specified by the cross-spectral
density function W"O’{nr_I .I's:w) of the light across the source plane
z = 1. The different formulas for the radiant intensity. each having
their own distinct advantages, will then be used to elucidate various
aspects of radiation from partially coherent planar sources.

2.1. Expressions for the radiant intensity

The radiant intensity J (s) generated by a planar source in the
direction specified by a umt vector s {(Fig. 2) has been shown to be
given by!-#9

W=

J (51 = (2mk)? cos’B WO (ks . —ks Lw) . (6}
where k = w c. with ¢ being the speed of light in free space, and
WO 1wl is the four-dimensional spatial Fourier transform of
W, raiw). defined by

4 ks

— |
W(U.(il'ij:w) = o )4/ / W(D}(L]-_Ez:‘”)
w ~ac
. e*i(l'l'E]"’.f:'Ll)dlrldlrz . (7

Moreover. in Eq. (6). #is the angle that the unit vector s makes with
the positive z-axis, and s denotes the two-dimensional vector
obtained by projecting s onio the source plane z = 0.

On substituting from Eq. {7) into Eq. (6). we obtain

. o o
k - o 219
J sy = — ) cosd WO T )
W= v -2
L p -

e ka0 T IgTr d7r, (8)
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et us next introduce the difference and average coordinates

|

£’:£|7£zi£:§(£|+£2} 9
and define

o I ] )
Cir.w = w! ’(£+-2-£',£*§£';w) d-=r . (1Q)

where the integration extends throughout the source plane z = .
With this notation. Eq. (8) may be rewritten as* 19

Jo(5) = k2cos20C, (ks o) . (n

where E\ {{. &) is the two-dimensiona! spatial Fourier transform of
C, (r'. w), namely,

- I ' .
Collw) = — / Colrewe 10 g2 (12)
(2my J_

T'he quantity C, (', w), detined by Eq. (10). is called the source-
averaged cross-spectral density function of the light in the source
plane. In view of the physical significance of Wt ry:w), the
function C, (1’, w) is clearly proportional to the average value of the
correlations of the light fluctuatons at frequency w for all pairs of
points 1, and 1, in the source plane whose relative “separation™is 1’ =
I — Ia, the average being taken over the whole source.

It will be convenient to introduce sull a third expression for the
radiant intensity. For that purpose, let us define the quantity

Colr w) Co(r' )

{00 — = . 13
T = ) N, (3

where the second equality follows the Eqs. (10), (1}, 2and (4). It can be
shown that ¥ (', w} satisfies the conditions!!

0w = I g e =1, (14)

regardless of the state of coherence of the source. Substitution from
Eq. (13) into Eq. (1) vields for the radiant intensity

Ju(s) = kKleos?ON 7V (ks @) . (13

where 5" (1. w) is, of course. the two-dimensional spatiat Fourier
transform of ¢9( " w) [cf. Eq. (12}]. With Egs. (14) and (15) in
mind. it is natural to call the quantity 5" (', @) the coefficient of
directionality!! of the planar source at frequency w.

We have thus three formally different expressions for the radiant
intensity from a planar source, namely those given by Eqs. (6). (11},
and (15). The formuias in Egs. {6} and (15) are usefu! when describ-
ing certain recent equivalence theorems* 1! which imply that sources
of entirely different states of coherence may nonetheless produce
exactly the same distributions of the radiant intensity. A conse-
quence of such an equivalence is, forexample, that sources which are
far from being spatially completely coherent generate light beams
that are just as directional as a Gaussian laser beam.® The expression
in Ey. (11), on the other hand. turns out te be very convenient when
discussing the implications of the analvtic properties of the radiant
intensity.

2.2. Implications of the expressions for the radiant intensity

Let us consider. first, Eq. (6). According to that formula. only those
spatial frequencies of W{r | r,.w). which obey the constraints f,
=—f.=Xks .contribute to the radiant intensity. Such a pair (f. —f}is
commonlycalled anantidiagonal pair of spatial frequencies, and the
corresponding spatial Fourier component W™ ({.—f w) is referred
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to as an antidiagonal element of Wi {f,.f,:w). Moreover, since
[ks.| = ks| =k, only spatia! frequencies for which [f| < k, the
so-called low spatial frequencies, appear in the expression (6) for the
radiant intensity. With this terminology we may thus say that the
radiant intensity from a planar source is uniguely determined by the
lew-frequency antidiagonal elements of the four-dimensional spatial
Fourier transform of the cross-spectral density function W"O’(_[I JIhiw)
of the light across the source plane.*

An interesting conclusion may be immediately drawn from the
abave result: any two planar sources, whose cross-spectrai density
functions are such that their four-dimensional spatial Fourier trans-
forms have identical low-frequency antidiagonal elements, will gen-
erate identical distributions of the radiant intensity. This is the
original form of the equivalence theorem, formulated by Collett and
Wolf . pertaining to planar sources of arbitrary states of coherence.
Such equivalent sources will, of course, in general generate fields
with entirely different far-zone coherence properties, because the
far-field coherence is determined by all the low-frequency elements
of W, f5;w), not just by the antidiagonal ones.'?

Let us now turn our attention to Eq. (15) and reformulate the
above equivalence theorem in a manner that affords a simple and
intuitive explanation of the underlying physical reasons for the
equivalence. The following result is seen at once from Eq. {15); any
two planar sources, which have the same coefficients of directional-
ity #9(r" @) and whose integrated optical intensities N, are the
same, will generate identical distributions of the radiant intensity.
This new version of the equivalence theorem, with some additional
mathematical refinements, was formulated by Collett and Wolf.!!
To fully appreciate the physical insight provided by this new formu-
lation, let us express the coefficient of directionality 79 (r', w) in
terms of the complex degree of spatial coherence (% (r,,r,;w) and
the optical intensity I'/(r, w) By substituting from Eq. (2) into Eq.
(10} and using the result in Eq. (13}, the following expressior is
obtained:

>0

1 ’ 1 1
0y o - . (u)( o r, )
A w) N / WHrtsrr-sroe

W S

| | 12
[[m)(i n Ef"“) 110} (I‘Efsw)] a’r . (16)

This formula shows that the coefficient of directionality depends not
only on the distribution of the complex degree of spatial coherence,
but also on the optical intensity distribution of the light across the
source. The coefficient of directionality may be thought of as being
obtained by means of an integral of the complex degree of spatial
coherence, appropriately weighting each contribution to the integral
by an intensity-dependent factor. For instance, two planar sources
with the same integrated opticat intensities N may have quite
different distributions of the complex degree of‘uspatial coherence
15, ra:w) and of the optical intensity I%(r, ), and yet they
generate the same distributions of the radiant intensity, provided
only that tor each 1" the integral in Eq. (16) is the same for both of
them. Insuch a case, the differences in the complex degrees of spatial
coherence are compensated by the differences in the optical intensi-
ties. Concrete illustrations of these remarks will be provided shortly.

Finally, let us briefly consider the implications of Eq. (11). It shows
that the radiant intensity (at frequency «) produced by a planar
source of any state of coherence is proportional to the product of
cos”@ and the two-dimensional spatial Fourier transform of the
source-averaged cross-spectral density function C (1", w) of the field
inthe source plane. Sincek = w ¢ =27 A, where A s the wavelength
corresponding to the frequency w. the radiant intensity is also
inversely proportional to the square of the wavelength of the light. If
the planar source o under consideration is of finite extent, the
source-averaged cross-spectral density function C, (', w}, in view of
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Eq. (10}, obviously vanishes identically outside some finite r’ domain.
According to some theorems on Fourier transforms, the function
C,(f.w) in such a case possesses certain unigue analytic properties,
Without going into the details of the mathematics, we will mentiona
few conclusions that can be drawn by such analytic considerations.
In the first place, it can be shown thats

J (8) ™0 as 9§ —~ /2, (n

to at least the second order in cos#. Hence a finite planar source does
not radiate in any direction parallel to the source plane. This result
also implies that, strictly speaking, no finite planar source radiating
in accordance with Lambert’s law can exist. However, many light
sources encountered in practice are Lambertian to a good
approximation.

Another important conclusion that follows immediately from the
analytic properties of the radiant intensity produced by a finite
planar source is related to the inverse problem of determining the
source coherence properties from the measurements of the radiant
intensity. The following very strong theorem has been proven by
Wolf? the exact knowledge of the radiant intensity for all s direc-
tions filling any finite solid angle, however small, uniquely deter-
mines the complete source-averaged cross-spectral density function
C, (', w) of the light in the source plane. According to Eq. (13), the
coefficient of directionality n/®(r’,w) and the integrated optical
intensity N_ of the planar source are readily obtained once C, (', w)
is known. In particular, one can take the finite solid angle appearing
in the above theorem to be the whole 2 solid angle formed by all the
possible s directions, These results then imply that the quantities
Co(1', @), #9(r', w), and N_, associated with a planar source giving

rise to any prescribed distribution of the radiant intensity J.(5) .

(assumed to have been produced by some finite planar source) can be
uniquely specified.

It shouid be noted that even though the radiant intensity T (s)
uniquely determines the source-averaged cross-spectral density
function C, (', w). the cross-spectral density function W9(r | .1, w)
itself is not necessarily unique across the source. This remark is in
keeping with the earlier observations that planar sources of entirely
different states of coherence may generate identical distributions of
the radiant intensity. However, it can be shown that in the special
case of a nonradiating finite planar source (i.e., a source for which
J,(5) has a zero value for all the possible s directions), the cross-
spectral density function W (r, r,:w) must vanish whenever
I, # 1, Hence every finite planar source, other than a strictly spa-
tially incoherent one, necessarily radiates. This result also implies
that a finite planar source cannot generate a field that consists of a
pure surface wave. Analogous considerations pertaining to true
primary planar sources were presented by Friberg.!*

3. QUASTHOMOGENEOUS SOQURCE THAT
GENERATES A KNOWN DISTRIBUTION OF
RADIANT INTENSITY

Asanapplication of the general discussion presented in the previous
section, we will consider here the following two related problems:!!
first, how to specify a quasihomogeneous planar source that will
produce the same radiant intensity as any given planar source,'¥ and,
second, how to specify a quasihomogeneous planar source that will
generate any prescribed distribution of the radiant intensity, assum-
ing that the radiant intensity was produced by some finite planar
source.

For that purpose, we first recall that a quasihomogeneous planar
source is characterized by a cross-spectral density function of the
form®. 18

1
W(Q)(EI'LZ;[‘U) = I(U} [E(Ll +£2).0‘J] nuﬁn(ll *_l"g:w). (18)

where ™ (1 w) is the optical intensity distribution, and ¥ (r", w).
assumed to depend only on the difference t” = r| — 15, is the com-

plex degree of spatial coherence of the light in the source plane. ltis
assumed, moreover, that I'"{r w) varies with r much more slowly
than 49 (1’ w) varies with ', and that the linear dimensions of the
source are large compared to both the wavelength of the light and the
effective coherence interval of the light across the source. On substi-
tuting from Eq. (18} into Eq. (16), the coefficient of directionality of
a quasihomogeneous planar source (denoted by subscript Q) is
readily found to be

T tre) = kJ(r'w) (19)

where use was made of the result

o0

N,o = / 1M whd?r (20)

—Q0

with lé’o](g,w) being the optical intensity distribution of the guasi-
homogeneous source. Eq. (19) shows that the coefficient of direc-
tionality of a quasihomogeneous planar source is precisely equal to
its complex degree of spatial coherence.

Consider now some given planar source o of any state of coher-
ence whatever, Its coefficient of directionality, denoted by n " (', w),
may be computed from Eq. (16), and its integrated optical intensity,
denoted by N ., is readily obtained from Eq. (4). The radiant
intensity distribution produced by this source is therefore known, it
being given by Eq. (13). Now, according to the equivalence theorem
discussed earlier, a quasihomogeneous planar source whose coeffi-
cient of directionality n (”(r',w) and integrated optical intensity
No.0 satisfy the conditions
g (w) = (e N, g = N, . (1)
will generate precisely the same distribution of the radiant intensity

as the given planar source g. With the help of Egs. (19) and (20),
these conditions take the form!

.uém(f,w) = 7 o) [ (L wdi = N, . (22)

w

These results show that there 1s, in fact, an infinite number of
quasihomogeneous sources that produce the same radiant intensity
asany given source. They all have the same complex degree of spatial
coherence, uniquely specified by the first condition in Eq. (22), but
their optical intensity distributions may differ, provided that they
are sufficiently smooth and satisfy the second condition in Eq. {22).

To illustrate the above comments, let us determine a quasihomo-
geneous source that will produce the same radiant intensity as a
completely coherent and cophasal square source of uniform intensity
I,. Taking the sides to be of length 2/, one easily finds for such a source

o (F—=|x] 20)(1 =|y1:28), if x| = 2¢and |y| £ 2¢.
nf) (' ) =

0, otherwise (23)

where r"=(x’,y"). The integrated optical intensity N, _is, of course,
equal to 4(2[0. The radiant intensity distribution generated by the
source under consideration is known to be

k\T o [sinks, 0\ 2/ sinks ¢\
I, 5y = T (485)" 1 cos°8 ks, ¢ eyt * o (24)

where s = (5,,5,.5,) with s, = cosfl. Now, according to Eq. (22), a
quasihomogendous planar source, whose complex degree of spatial
coherence is given by the right-hand side of Eq. (23), will also give
rise to the radiant intensity of Eq. (24). The complex degree of spatial
coherence ,uQ((”(f.w) of the quasihomogeneous source, withy’ =0,
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9. 3. The complex degree of spatial coherence, with y’ = 0, of a quasi-
ymogensous planar source that produces the same distribution of the
diant intensity as a uniform. completely coherent, and cophasal square
wirce of sides 2/,

iltustrated in Fig. 3. The actual shape of the optical intensity
istribution acress this equivalent source is irrelevant, as long as it
ieets the requirements of quasihomogeneity and integrates to 442 I,
quivalent quasihomogeneous sources corresponding to more
ymplicated examples, possibly illuminated with partially coherent
zht, can be specified in a similar manner.

Let us now turn our attention to the second problem stated at the
:ginning of this section. As we have already explained, a prescribed
stribution of the radiant intensity (assumed to have been generated
¢ some fimte source o) uniquely determines the source-averaged
oss-spectral density function, denoted here by C, _(1'.w) for
nvenience. According to Eq. ( 133. this in turn uniguely determines
e coefficient of directionality 7% (1. w) and the integrated optical
tensity N of the source. Now, by substituting these on the
ght-hand side of the conditions in Eq.(22). we obtain a quasihoma-
:neous source that also wall produce the prescribed distribution of
« radiant intensity. As before. the complex degree of spatial coher-
e of such a quasihomogeneous source is unique. but its optical
tensity distribution may vary.

As an example. we will take the prescribed distribution of the
diant intensity to be the famous Airy patiern

k oy 2J, (kasin®) |
As) = (

7—) (rat P 1 cost 8| ———1 - (25

2 kasin®

here ), (x)is the Bessel function of the first kind and first order. The
1antities a and [, are positive parameters, A quasihomogencous
anarsource producing the radiant intensity. given by Eq. (25). can
:shown!! to have a complex degree of spatial coherence

{26}

0. otherwise |

here r'={r’|. Its optical intensity distribution must have an integral
er the entire source equal to (rraz)ln. The complex degree of
atial coherence, given by Eq. (26). is illustrated in Fig, 4.

MODEL SOURCES
» become more famihar with the various concepts introduced
rlier in this article, we will now discuss several partially coherent
odel sources. In addition to the quasthomogeneous sources,'* we
il also consider the so-called Schell model sources.'* 17 A Schell
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Fig. 4. The complex degree of spatial coherence of a quasihomogeneous
planar source that produces the classic Airy pattern of the radiant inten-
sity (after Collett and Wolf''}.

model source is characterized by a cross-spectral density function of
the form

W i) = 19,0 19C.w)]' 7 @0, — i) - (27)

Here ['")(r, w) is the optical intensity distribution, and u(©(r’, w).
assumed to depend only on the difference ' =1, — I3, is the com-
plex degree of spatial coherence of the light in the source plane. The
Schell model sources, like the quasihomogeneous ones, are a gener-
alization of the statistically hemogeneous sources. If the optical
intensity distribution across the source varies sufficiently slowly
from point to point. as is the case with many natural radiation sources,
the Schell model sources become essentially quasihomogeneous.

We will consider three types of quasihomogeneous sources and one
type of Schell model source. The quasihomogeneous sources are taken
to have a distribution of the complex degree of spatial coherence,
which is either of Gaussian or of exponential form, or it is specified in
terms of Bessel functions. These distributions are, respectively.

dOr W) = e 1 205 ] (28)
.U[m(f.w) _ cﬁfj D (29)
2 s 3y k)
Dr ) = —o 4 ‘.) EECAN
W) = =Tt 5 5 v (30)
(5 klfl)

Here ¢, and D are positive parameters, ['(x) denotes the gamma
function, and j,(x} is the spherical Bessel function of the first kind
and of order v. with v 2 —1:2. The exact forms of the optical
intensity distributions 'Y r, w) across these sources are of no impor-
tance inthe present context, as long as they meet the requirements of
quasihomogeneity. The Schell model source, on the other hand, is
taken to have both its complex degree of spatial coherence and its
optical intensity of Gaussian form; i.e., (', w)is the same as Eq.
(28), and 1'V'( r, ) is given by

[“”(ﬁiw) — lﬁe A£3 20? . (31}

where |, and g, are positive parameters.

We will determine the coefficient of directionality 7%( r* w), the
distribution of the radiant intensity J_(s), and the radiation effi-
ciency C_ associated with these four model sources. The results,
some of whichcan be found in Refs. 1,5, {1, 15, 1% 22, and some of
which are new. are given in tabulated form (Table 1).

A few comments are perhaps in order regarding the entries in
Table I. In the first place, if 6, 3> 5 then A—¢_ and the Gaussian
Schell modet source reduces to a Cfau.s.sian correlated yuasihomo-
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TABLE |. Radiation from Partially Coherent Model Sources.

MODEL QUAS IHOMOGENEOUS SCHELL
INTENSITY NOT  RELEVANT GAUSSIAN
COHERENCE GAUSSIAN EXPONENTIAL BESSEL GAUSSIAN

2,02
COEFFICIENT s 2 e e
- /2 . j r*
e s -lzt /0 2 oy e v =
OF e = [ ZJW
DIRECTIONALITY 2.1, 1
2?2 (2002
W I
- Lika 1%ain? -2 - tixar %sin?e
J coszee 2“( “J e J cosze[u(kn)zsmzb] 2 J t’coszwl‘e Jm Dcoszoe z "
RADIANT w0 wo w ,
2
INTENSITY L lii;._’f I:‘“’ PIMEC IR _“5:_'2 II‘O) zewd’c [, = %[\M%J[I(mtg,mdzr Jya " tkao ) 21
) F(xa /7 y - Etka//3)
RADIATION xou/ 72 1 a s x8/ V2
= s=— 5iN —_—
EFFICIENCY s a2 tkD) (—kaz 2v ¥ 2 e
Fla) = e ° J e du Fla) = e ° J e du
(=] (=]

geneous source. On the other hand, if o, —=%c, then it represents a
completely coherent and cophasal planar source with Gaussian opti-
cal intensity distribution. In that case, A—2g;, and the results are
found to be identical to those given in Refs. {, 4, and 11. If,
moreover, ko, >5> 1, then such a source represents a Gaussian laser,
and one may, of course, approximate cos§== l and sinfi = §. Several
special cases of the Bessel correlated quasihomogeneous sources are
also of interest. For v = —1: 2, the complex degree of spatial coher-
ence is found from Eq. (30)to be J ,(kr"), where r’ ={r’| and J(x)is
the Bessel function of the first kind and order zero. Hence the source
exhibits a finite {(non-zero) correlation distance, and yet its radiation
efficiency is seen to be zero. At first sight this appears to contradict
our earlier remark that every finite planar source (other than a
strictly spatially incoherent one) necessarily radiates.!’ The resolu-
tion of this dilemma is, of course, that the Bessel correlated quasi-
homogeneous source with v = --1; 2 is of infinite extent. For » =0,
the right-hand side of Eq. {30) reduces to sinkr’ kr’. leading to a
Lambertian planar source.!:?* For » = |2, Eq. (30) gives, on the
other hand, a complex degree of spatial coherence of the form
2T (kr')/ ko', where J; (x) is the Bessel function of the first kind and
order one. The radiant intensity from such a source is seen to follow
a cos?f-law, identical to that from a spatially incoherent source
(when spatial incoherence is defined in terms of the non-normaliza-
ble Dirac delta function).!-# 3}

5. PARTIALLY COHERENT SOURCES THAT PRODUCE
THE SAME RADIANT INTENSITY AS A LASER

We have already described a procedure by which one can specify the
characteristics of a quasihomogeneous planar source that will gen-
erate the same distribution of the radiant intensity as any given
planar source. We illustrated this procedure by determining 4 quasi-
homogeneous source which produces the same radiant intensity as a
uniform, fully coherent, and cophasal square source. In this section,
we will discuss a broader class of partially coherent sources, each
with a different coherence area and a different optical intensity
distribution, giving rise to a radiant intensity distribution identical
to that of a fully coherent Gaussian laser beam.*

Let us first compute the radiant intensity distribution generated

by a laser source with a flat output mirror, operating in its lowest-
order transverse mode. Neglecting the diffraction effects caused by
the edges of the output mirror, the radiant intensity may be found
from Table I by setting g, = = for the Gaussian Schell model source.
Writing o; and I, in place of o, and 1, to indicate that these
guantities pertain to the laser. the optical intensity distribution
across the output mirror is
2 2

li{UJ(g.w) = s Jo; (32)
and the resulting radiant intensity distribution is readily found to
hel. 4.5

2 2.2
3, 14s) = (2ko])21, cos?fe Hkop)win™d 33
By comparing the formula of Eq. (33) to the expression of the
radiant intensity given in Table | for the Gaussian Schell model
source, the following important theorem follows at once:* any Schell
mode! source, whose optical intensity distribution and complex
degree of spatial coherence are both Gaussian and whose parameters
a,. T and |, satisfy the conditions

1 1 ! o v
2 + o 3 s ln = (—_) Il. *
a, (2o (20, ¥ o

(34)

will generate precisely the same distribution of the radiant intensity.
namely that of Eq. (33), as a fully coherent and cophasal planar laser
source with the Gaussian optical intensity distnibution of Eq. (32).
Even though all sources satisfying the conditions (34) will generate
the same radiant intensity distributions, their far-field coherence
properties will, as we have discussed earlier, in general be different.

It 1s evident from the first condition of Eq. (34) that the parameters
o, and ¢ of any Gaussian Schell maodel source producing the radiant
intensity of Eq. (33 mustsatisfy the inequalities 5) = ¢ and o, =20 .
Hence the width of the optical intensity distribution across any such
Schell model source can be no smaller than the width of the laser
intensity distribution. and the width of the complex degree of spatial
coherence must be at least twice the width of the laser intensity.
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The radiant intensity is given by £q. {33) with o_. =1 mm and I_arbitrary
|after Wolf and Colletts}.

I Y.,

Fig. 6. Schematic illustration of the Gori system {after De Santis, Gori,

Juattari, and Palma?’).

Choosing o, = 2o, and g, =20 . the resulting Schell model source
s essentiallv quasithomogeneous.* This source is precisely the one
which would have been obtained by using the procedure, deseribed
:arlier, of specifyving equivalent quasthomogeneous planar sources.

In Fig. 5. we present the distributions of the optical intensity and
the complex degree of spatial coherence of the light across several
different Gaussian Schell model sources, cach source generating the
same radiant intensity as a fully coherent Gaussian laser source. The
graphs clearly illustrate the trade-off taking place between the source
coherence und the source intensity. so as to produce identical distri-
butions of the radiant intensity,

6. SOURCESWITH CONTROLLABLE DISTRIBUTIONS
OF INTENSITY AND COHERENCE

Even though the properties of radiation from partially coherent
sources have been the subject of active research for more than ten
years. experimental investigations as 1o the practical realization of
such sources and the testing of the theoretical predictions have only
very recently begun. Among the suggested ways of producing a
controllable partiallv coherent source are. for example. a suitable
superposition of independent laser beams=* and the scattering of
light bv & liquid ¢ryvstal under the application of a de electric
field 212520 Most of the experimental effort so far has concentrated
on direct veritication of the predicted relationship hetween the
coherence properties of a source and the dircctuonality of the light it
generates. [he firstexperimental results. supporting the equivalence
theorem which implies that certain partially coherent planar sources
may produce light fields just as directional as a laser beam, were
obtained by DeSantis. Gorr Guattari. and Paima” using an optical
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Fig. 7. Recording of the optical intensity distribution in the far field of a
fully coherent Gaussian laser source (after De Santis, Gori, Guattari, and
Palma??).

system resembling an ordinary collimator. Because of the impor-
tance of the results and the ingenuity of the device, we will briefly
describe the experiment carried out by Gori and his coworkers.

The Gori system 1s illustrated in Fig. 6. G is a rotating ground
glass. F is a Gaussian amplitude filter, and L, -1, are simple lenses.
Consider {irst the ground glass G and the amplitude filter F removed.
The field, originating in the laser, can be made to emerge from the
lens L, with no phase curvature and with a Gaussian optical intensity
distribution. if the focal lengths f, and f, of the lenses L, and [, as
well as their separation are chosen properly, Hence, in this case, the
fens L, realizes a fully coherent Gaussian planar source. Its optical
intensity distribution may thus be represented by Eq. (32), with the
constants || and | beingdetermined by the system parameters. The
lens L, produces in its back focal plane the far-field distribution of
the coherent field emerging from the lens 1.,, and the lens [, forms
an enlarged image of that distribution on the photodetector PH. The
intensity profile scanned along a line perpendicular to the optical
axis in the far-field distribution of the coherent Gaussian source (i.e.,
the plane of the lens L,) is presented in Fig. 7.

After examining the coherent case, the rotating ground glass G
and the Gaussian amplitude filter F are reinserted. A Gaussian spot
of laser light 1s produced on the ground glass by the lens L. If the
spot diameter is large compared to the inhomogeneity scale of the
glass, it can be considered as a spatially incoherent planar source
with a Gaussian intensity distribution.?® Let us denote the value of
the intensity on the optical axis by I, and the rms width of the
intensity distribution by o. The lens L, 1s placed a distance [, i.e.,
the focal length of L., from the ground glass G.and the filter F, with
a field transmission function of rms width gy, is adjacent to the lens
[, Using the van Cittert-Zernike theorem and the usual optical
propagation laws. the cross-spectral density function of the field
emerging from the filter F can be shown to be?

I (ko)

~(koy 262P (1) —I:F
— e
4rrf£

W:(H(LE -LZ:wJ =

2 2 2
o LTI 20y

(35}

This formula implies that the plane of the filter F acts as a Gaussian
Schell model source. Its complex degree of spatial coherence is given
by Eq. (28), and its optical intensity is given by Eq. (31}, with the
constants | ,. o), and g, being related to the system parameters L, og,
f,. and oy by the formulas

Ig(kUs): ~ (Y3 _ \/jtq
— o = \/_2_ a, = : (36)

L, = -
v 43
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Fig. 8. Recording of the optical intensity distribution in the far field of a
Guassian Schell model source realized by means of the Gori system (atter
De Santis, Gori, Guattari, and Palma?’}.

Now, according to the discussion in the previous section, if the
parameters 1, o), and g _associated with the light emerging from the
filter F satisfy the conditions (34), then such a source produces
exactly the same far-field intensity distribution as the fully coherent
Gaussian source characterized by the parameters 1} and op. The
intensity profile scanned along a line perpendicular to the optical
axis in the far field produced by a source of this type (i.c., the field
emerging from the filter F) with suitably chosen system parameters is
shown in Fig. 8. The arbitrary units used for the intensity and for the
distance from the optical axis are the same in both Figs. 7and 8. Itis
observed that the measured far-field intensity distributions pre-
sented in these figures show a remarkable similarity, thus providing
evidence in support of the theoretical predictions.

It is of interest to note that the Gori system described above can
be used to produce a whole class of partially coherent sources with
controllable distributions of intensity and spatial coherence. By
varying the system parameters lg, og, [,, and g, the constants 1, oy,
and g, may be altered thus changing the spatial coherence and
intensity profiles of the Gaussian Schell mode! source, located in the
plane of the filter F. An additional degree of freedom could be
provided by using, in place of the laser illuminated rotating ground
glass G, some partially coherent light source with known spatial
coherence and intensity properties.

Further experimental studies with regard to the highly direc-
tional character of the radiation patterns produced by certain types
of quasihomogeneous sources have been carried out by Farina,
Narducci, and Collett.?* Their interest has been 1o investigate the
problem with a minimum number of optical elements, so as to
reduce extranecous effects and the possibility of experimental error,
Using phase screens illuminated by a collimated laser light as quasi-
homogeneous sources, they have observed that the radiated fields
are very directional, as predicted by the theory, in spite of the
globally incoherent character of the light in the source plane. They
have also observed that changing the intensity distribution across
the source plane does not essentiatly alter the radiation pattern, as
long as the intensity distribution meets the requirements of quasi-
homogeneity. Some preliminary measurements concerning the re-
ciprocity theorem!- '3 pertaining to quasihomogeneous planar sources
were also made.

7. SUMMARY AND DISCUSSION

In this review article we have discussed various aspects of the radiant
intensity generated by a planar source of any state of coherence,
Among the more important results mentioned is an equivalence

theerem which implies that sources with entirely different coherence
properties may, nevertheless, produce identical distributions of the
radiant intensity. This theorem was illustrated by means of several
examples, including a class of partially coherent sources which give
rise Lo a radiation field that is just as directional as a fully coherent
laser beam. Several model sources were analyzed in terms of con-
venient new concepts, such as the coefficient of directionality and the
radiation efficiency. Finally, some experimental work, aimed at the

practicat realization of partially coherent sources with controllable

coherence and intensity properties and at the testing of the theoreti-
cal predictions regarding their radiation characteristics, was briefly
described.

Even though the number of experimental results regarding radia-
tion from partially coherent sources is still rather limited, it appears
safe to say that such measurements have verified the main relation-
ships between the coherence properties of a source and the direction-

ality of the light it generates. In particular, the fact that complete

spatial coherence is not a necessary requirement for the generation
of highly directional light beams has been experimentally confirmed.
However, to obtain convincing experimental evidence about many
other phenomena predicted by the theory, a subtantial amount of
further effort is required.

As is well known, fully coherent laser beams give rise to pro-
nounced speckle effects that are often very disturbing. in many

applications, a very directional light beam with low spatial coher-
ence would have several advantages over the fully coherent laser

beam. For these reasons, especially after it was shown that a globally
rather incoherent source may produce a light beam which is just as

directional as a laser beam, highly directional partiaily coherent light

beams appear to be likely subjects of future research,
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Abstract

A radiometric model for the computer simulation of the light intensity distribution formed by a holographic axicon
is presented. This model leads to a considerable simplification (in comparison with rigorous wave theory) in the
assessment of the axicon performance for producing a desired space energy distribution. It is shown, moreover, that
the radiometric model can be successfully used also for the computation of the spatial coherence propertics of the
light in the axicon image region. The comparison of the radiometric simulation results with those obtained by

diffractive wave theory demonstrates the applicability and excellent accuracy of the present radiometric approach
under conditions of partially coherent radiation.

Introduction

Axicons producing axially prolonged light intensity distributions were introduced into optics by McLeod' for the
first time in 1954. Because of their unique properties, generalized axicons have found several novel and potential
uses both in research and commercial applications.”> Recent fast developments in diffractive and .micro-optical
technologies have provided a basis for the penctration of generalized axicons into the field of holographic and
computer simulated image processing devices. Holographic axicons have a number of attractive featurcs, €.g.
compact size, simplicity of fabrication, high efficiency of energy transformation (up to 90% for well designed
muitistep phase relief), that make these optical components promising for a variety of applications.

As a computer simulated diffractive optical element, a generalized -axicon involves the calculation of
‘multidimensional Fresnel integrals. In most cases the coraplexity of the integrand functions makes it impossible to
perform the integrations analytically. Basically, one of the main properties of generalized axicons is their rotational
symmetry, and this simplifies the numerical computation techniques to some extent. However, even so most
currently applied simulation methods are fairly time consuming on computer and sometimes the calculation of the
axicon image profiles becomes simply a formidable task. The difficulties grow especially with the decrease of the
light coherence level. A classical radiometric approach using quite simple notions and expressions cnables to
overcome most of these difficultics, providing an efficient solution. The accuracy of the method increases when
approaching natural (nearly incoherent) light. With partially coherent sources the radiometric model can-be used to
calculate both the intensity and spatial coherence distributions of the axicon images. The method is an asymptotic
technique that relies on diffractive ray tracing and on rectilinear propagation of the generalized radiance.

Axicon design and radiometric model with partially coherent light

Traditionally the concept of a radiance function is formulated and applied for dealing with essentially noncoherent
radiative transfer phenomena. Recently, however, it was demonstrated that the radiometric approach can be utilized
also in the calculation of coherence propagation.® We use this method for the simulation of both the light intensity
and the coherence degree distribution.

The generalized hotographic axicon to be discussed is a rotationally symmetric synthetic hologram with a blogk;d
central part. We consider a holographic axicon, designed o produce an axially uniform intensity distribution within



the region d, < z < d, (Fig. 1). The amplitude transmission function, providing the necessary phase shift of the
incoming field, is described as

h(p) = dp)exp [iko(p)] , (1)
where & is the wave number and the phase function (p) is expressed in the form of the logarithmic dependence®
o(p) = —-log[d: +a(p? —-R})] ; ' (2)
here a = (d, - d)/(R}? - R?), and R, and R, are the radii of the aperture annulus. Actually, owing to the ripples
originating from the axicon edges, the intensity distribution would not be uniform. To prevent these undesirable
axial intensity perturbations we use an appropriate apodization function, given as follows:

{(p) = {0.5 +arctan{A(R, — p)}/x}{0.5 +arctan [A(p — R )]/}, (3)

with A being a suitablc {dimensional) constant.

Fig.t lllustration of the geometry and notations associated with axial line-image
formation by an annular-apertured axicon.

Using the concept of generalized radiance’ B(r,s), the cross-spectral density of a fluctuating, statlstlcally stationary,
wavefield in the half-space z > 0 can be expressed as’

W(l’] , rz) IB(H”Z )exp [iks(l'z - rl)]dQ , (4)

where §=(s),5,) denotes a directional unit vector and the integration is over the 27 solid angle formed by all the
dircctions such that s, > 0. The optical intensity distribution at a point r can be calculated as the diagonal element
of the cross-spectral dens1ty evaluated at r. It has been shown that in the asymptotic short-wavelength limit as
k = 2m/A — oo, the generalized radiance B(T,s) obeys in free space the conventlonal equation of radiative transfer.®



Making use of this result the generalized radiance in Eq. (4) may then be replaced, within the asymptotic
approximation, by

B(242.s ) = Bl (5.12)5-,5] ©

where the superscript (0) indicates the plane z = 0 and, physically, the spatial argument on the right-hand side is
the projection onto this planc of the point r = (r; + r,)/2 =(p, z) along the dircction s.

To calculate the cross-spectral density #(r,, r,), we need to take into account the illumination and the operation

of the holographic axicon. The general ray-tracing equations for a planar diffractive element characterized by a
phase function @(p) are’

dip(x,
5x(5, ) = Sox(x,) - 2
| » .
5,(5,3) = S0y(5, ) - 22 | ®)

where s, = (5g,, Seys Soz) and s = (s,, 5, 5,) arc unit direction vectors of the incident and diffracted rays at p =(x, ¥), -
respectively. This procedure corresponds simply to the physical statement that at each point the ray direction is
along the wavefront normal. The asymptotic form of the generalized radiance B(r,s) is known to remain invariant
along geometrical rays in arbitrary (lossless) paraxial systems, which means, that this relation holds true for the
present diffractive axicon. Hence, if B?(p,s) denotes the asymptotic generalized radiance of the field emerging at

z = 0 from the axicon, then B@(p,s) = B,(p,sy), where By(p,sy) is the generalized radiance of the irradiation.
Finally, the generalized radiance B,(p,s,) associated with the illumination, taken to be a homogeneous Gaussian .
correlated wave, is given by the expression®

Bo(p,so0) =S gﬁ;i—rSOzCXD [*%(kﬁg)zséij ’ M

where S, is the {constant) intensity of the incident beam, sg; = COS By and |so. | =sinBq, and o is the angle
that ray direction s, makes with the positive z axis. The parameter o, is the rms transverse coherence width of
the Tlumination. The apodization function, mentioned above, can be taken into account simply by multiplying
expression (7) by the function ‘t‘(p)l2 from Eq. (3).

Now, combining al! the considered components, we can write down the expression for the calculation of the light
intensity (or spectral density) distribution in the form

S(r) =[ B(p, 2 9)dQ2 , | (8)
Q ' .

where dQ) is the solid angle from the point of observation toward the axicon clementary area of integration. To
calculate the spatial coherence distribution we use the same cross-spectral concept [see Eq. (4)], and the general
expression for the degree of coherence is as follows:

w(ry, r2) = Wrn, e)/(Se Sy )

with S(r) being the optical intensity (spectral density).



Results of the simulation of intensity and spatial coherence distributions

The space distribution of energy, as transformed by the axicon, can be calculated directly by using Eqgs. (5)(8).
The integration is carried out over the aperture of the axicon. Results of the on-axis distributions of the spectral
density based on the radiometric and the wave-theoretic models are illustrated in Fig. 2. We consider a sample
uniform-intensity holographic axicon with the design parameters of o, = 100 mm, 4, = 200 mm, R, = 2.5 mm, and
R, =5.0 mm. The wavelength corresponds to He-Ne laser radiation at A = 0.633 um. In fully coherent illurnination

the spectral density along the centraf axis of the axicon image is constant in average, but ringing occurs especiaily
near the focal-line ends.
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Fig. 2 On-axis spectral density distributions predicted by the radiometric model (solid line)
and the wave-theoretic model (dashed line) for an apodized annular axicon.

This ringing may be suppressed by using an appropriate apodization function on the surface of the axicon, as has
been done. For the apodization in Eq. (3), the parameter value A = 20 mm™ was chosen. The ringing is also
suppressed with the decreasing of the coherence of the illumination, but at the expense of a decrcase in intensity.
These effects are seen from Fig. 2, where both the wave-theoretic and radiometric results are shown for o, = 1.0 mm
and o, = 0.25 mm, respectively. Comparison of the wave theory data with radiometrically obtained spectral density
reveals the excellent accuracy of the latter method.
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Fig. 3 On-axis distributions of the magnitude of the complex degree of spatial colicrence both
for the radiometric (solid ling) and the wave-theoretic (dashed line) results,

when one of the ficld points is located at z = 150 mm.



Spectral density

In Fig. 3 the magnitude of the on-axis complex degree of spatial coherence ]p(m ;.2)| is shown forz, = 150 mm,
corresponding to the center of the focal line, while z, is varied throughout the i image section from 100 mm to 200
mm (Fig. 1). Again, both the radiometric and the wave-theoretic results are plotted, but now for g, = 0.5 mm.
Minor differences between the curves are observed at the far ends, but these disappear for smaller values of o,

Hence the present results confirm the remarkable accuracy of the radiometric method for axial correlations analy51s
in the small-coherence limit.
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Fig. 4 Transverse distributions of the spectral density in the cenler of the image line, at z = 150 mm,
based on the radiometric (solid line) and the wave-theoretic (dashed line)} model.

Some typical resuits of the spectral density in a transverse plane across the line image produced by the sample
logarithmic axicon are displayed in Fig. 4. Both the radiometric distribution and the corresponding wave-theoretic
distribution of the spectral density S(p,z) in the plane z = 150 mm are shown as a function of the transverse
distance p. Again, it is seen that the radiometric and diffractive results agree substantially.
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Fig. 5 Transverse distributions of the magnitude of the complex degree of spatial coherence at

z =150 mm, with one point is on the axis and the other varying along a radial direction.

Both radiometric (solid line) and wave-theoretic (open circles) resulis are shown,



The absolute valuc of the complex degree of spatial coherence  Ju(pi. p2.z)| in a transverse planc, defined in
accordance with Eq. (9), is plotted in Fig. 5 again for o, = 0.5 mm, when z = 150 mm, p, =0 (on axis), and p, is
the transverse distance from the axis, that is allowed to v:-u-y. It is seen from the graphs that in transverse planes the
axicon image is globally fairly incoherent, but as a consequence of the annular aperturc the form of the spatial
coherence differs markedly from that of the illumination. The degree of transverse coherence contains scveral sizable
oscillations within the image width (shown in dotted line). In any case the radiometrically and wave-theoretically
obtained results are found to match almost perfectly.

Conclusions

A simple and physically intuitive radiometric model that includes also the effects of partial coherence was applied
to the line-image formation by generalized holographic axicons. The results demonstrate that compared with the
usual partially coherent diffraction calculations, the present method provides in normal circumstances considerable
simplifications without any sacrifice on the accuracy. The radiometric technique is derived from asymptotic
considerations and it involves only a single straightforward integration over the axicon aperture, as opposed to a
double_integration of strongly oscillating functions in the stochastic wave theory. One of the most important
advantages of the suggested radiometric method is the saving of computing time, which is a significant aspect in
conditions when the spatial coherence level of the illumination, and of the image, are relatively low. This may
correspond to controlled-coherence radiation from thermal sources, high-power laser diodes, or other multi-mode
lasers. The graphs presented in the work attest to the nearly immaculate accuracy with which the modified
radiometric theory yields the optical intensity and, in particular, the complex degree of spatial coherence
characterizing the practical axicon line images at optical wavelengths.
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Asymptotic radiometry for spectral density and coherence in

gaussian quasihomogeneous beams

An T. Friberg*
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‘The asymptotic radiometric theories (ormulated recently
by Foley and Woll for the spectral density and (spatial)
coherence are applied to the Gaussian Schell-model and
guasithomogeneous sources. Since the properties of the
beam-like wavetields produced by these sources in free
space are known explicitly, this allows for an assessment
of the accuracy of the radiometric models. Profiles both
along the propagation axis and in planes transverse to the
beam are examined in detail. The graphs indicate that al-
ready with relatively small sources (beam waists), corre-
sponding to substantial bearn divergence, the radiometric

models yield highly accurate results. The advantage of

the radiometric theory is the (computational) simplicity
by which the spectral density and coherence are obtained
for ficlds radiated by arbitrary sources.

1. INTRODUCTION

The so-called Gaussian Schell-model (GSM) beams pos-
sess several featurcs that make them appealing 10 both
theoreticians and experimentalists alike f1]. Mathemat-
ical analyses associated with these beams can often be
carried out explicitly in a closed form and the GSM beam
fields arc readily generated in the laboratory by a num-
ber of techniques. As the degree of spatial coherence
is varied, the GSM beams bridge in a continueus man-
ner the gap between the fuily coherent Gaussian beams
and fully incoherent light described by geometrical op-
tics. Those GSM beams that are spatially relatively in-
coherent €in relation to the beam width) form the class of

*Permanenl address: Helsinky Uriversity of Technology, Deparinent of Technical
Physies, FINAI2136 Espoc, Finland

Gaussian quasihomogeneous (GQII) beams [2]. Owing
to the many convenient propertics, the GSM and GQH
beam-like wavefields have been used as test cases and
reference yardsticks in a great variety of theoretical and
practical situations. The applications of these wavefields
includc:

¢ Foundations of radiometry. The GSM sources and
beams have served as principal physical models
in the elucidations of generalized radiometry with
partially coherent wavefields {3,4]. Specific topics
have dealt e.g. with radiation directionality [5-7],
beam characterization [8, 9], radiation efficiency
[10,11}, and second-order radiometry [12].

¢ Focusing. The effects of partiai coherence on the
spot size, focal depth, and [ocus shift have been
studied theoretically [13] and experimentally [14]
in GSM beam imaging.

s Coherent modes. The GSM beams are one of the
few fields for which the so-catled coherent-mode
decomposition is known explicitly [ 15, i6].

e Twists. Recently a new phenomenor, viz., a twist
induced by partial coherence, was discovered on
the GSM beams [17-19)

Mukltimode lasers. The GSM beam fields have been
applied as characteristic models for (high power)
multimode laser radiation §20,21].

Nonlincar optics and aclive media. These beams
are utilized in studies of the effects of correlations
in materials interactions {22,234,

We recall in passing also that an efficient inethod, based
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on clecironically synthesized acouste-optic holograms,
was developed not long ago for a controlled generation
of arbitrary GSM beams [24).

In this paper we make use of the spatiaily partially
coherent GSM and GQH beams in yet another applica-
tion, namely the illustration and assessment of certain
radiometric theories that were put forward quite recently
by Foley and Wolf [25,26]. Unlike in the conventional
radiation transport, these radiometric models account for
the source coherence properties and deal, in the asymp-
totic short-wavelength limit, not only with the propaga-
tion of the spectral density and the energy flux but also
with the propagation of the spectral coherence in scalar
wavefields produced by (secondary) quasihomogeneous
sources. We apply these radiometric descriptions to the
GSM beams in the quasihomogeneous regime and show
that in a majority of cases they produce with an impec-
cable accuracy the spectral density and spatial coherence
distributions of the wavefields. From these resuits we
may infer that the asymptotic radiometric theories can
be usefully applied in practical siluations of radiation,
scaltering, and propagation of optical radiation.

2. RADIOMETRIC MODELS FOR SPECTRAL
DENSITY AND COHERENCE

We begin by recalling the main features of the recently
proposed asymptotic radiometric models for the propa-
gation of the spectral density and the spatial coherence
{25,26]. For simplicity, we testrict the analysis here to
situations in which the evanescent waves involved in the
angular-specirum representations play a negligible role,
i.c., effectively to free fields. This assumpticn is consis-
tent with the beam-like nature of the fields to which the
radiometric models are then later applicd.

A generalized radiance (at frequency w) associated
with a statisticaily stationary scalar waveficld can be de-
fined as [26,27]

B(r.s} = J"z/-‘\(sl -8 s+,
x  exp(iks', - r)dzs’L. ()

where & = /¢ is the {free-space) wave number and s =
{s,.s,} is a directional unit vector with s, > (. The yuan-
tity A(8;, .87, ) is the angular correlation function that
is related to the cross-spectral density Wir,.ra) of the
wavefield through the formula

W(r,r) = f/A(SU.»SM.)
explik(sy -r2 -8 -11)]
x dlsudtsy, ¢

X

where §; and s, arc (real) unit vectors. Since the evane: .
cent waves are neglected, integration is performed onl ™
over the domains [s); | < 1 and |s;;§ < }. Interms of ¢}
generalized radiance function B(r,s), the cross-spectr

density then becomes [26] »
W(ri.o) = [B (5%25)
®  expliks-{r; —ry)jdq, (.«

where dQ = d2s | /s, is a differential element of the sol
angle. From Eq, (3), the spectral density S(r} = W{r,t
is obtained as [25]

S(r) = [ B(r.s)dQ, (

which is recognized as the usual cxpression [or the spa
density of radiation in the conventional theory of radi
tive energy transfer. In Ref. {25] an analogous formula '
derived also for the average flux vector (using a sligh:
differcnt generalized radiance function), but in this paf
we are not concerned with it.

Fquaticn (3} is the starting point of the present an
ysis. Lel us assume that the field in z > 0 is genera
by a quasihomogeneous source o located in the pla
z = 0. In the asymptotic {short-wavelength) limit as &
21/ k — oo, the radiance functinn B(r,s} obeys the t
ditional equation of free-space radiative transfer [2
i, (s-V)B(r,s) = 0. Using this result the funet' =
B(r,s) at an arbitrary point r, in a direction § such t
s; > 0 can readily be projected, as if along a gcome
cal ray, onto the source plane, More specifically, if
let T = (F| +T2}/2 = (p,z), define pg = p — (8.2)°
(see Fig. 1), and denote by B®(pq,s) the source re
ance function, one can readily show that, in the asyr
totic Yimit, the cross-spectral density given by Hq. (3) «
comes [20]

B9 (pq.8} 7z
wir.rn} = _[G rEa (ﬁ)
« expliks-(rp — rl)]dzp():

where R = F-py, R = |R[. and now 5 = R/R.
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Figure 1. lllustralion of the general geometry and notations
for a radiometric calculation of the spectral density and the
spatial coherence.

asymptotic expression for the spectral density then is {25)

ste) = [ P000) (2) 2, ©

We recall that the radiance function B(®(p,,s) associ-
ated with a quasibomogeneous planar source is known
to salisfy all the requirements of conventional radiome-
try [29]. This property is shared, as is evident from the
explicit expression [29], also by the generalized radiance
of an arbitrary GSM source. Using Egs. (5) and (6) the
spectral degree of coherence at a pair of field points then
is obtained as [30,31]

(P2 ) = Wiy, ra)/\/S(r ) Sir2), (7)

and this quantity is bounded in magnitude between 0 and
Lin the usual way. The limiting values 0 and | represent
completely incoherent and completely coherent fields (at
frequency w), respectively.

3. GAUSSIAN SCIIELL-MODEL AND
QUASIHOMOGENEOUS BEAMS

The beam-like wavefields generated by Gaussian quasi-
homogeneous sources in accordance with the paraxial
wave equation (Fresnel diffraction) constitute the GQIH
beams. The planar GSM source at z = 0 is character-
ized by Guussian functions of the spectral density and of
the degree of transverse coherence with the rms-widths
of gy and &, respectively, and in the quasihomogencous
limit &5 3> o,. Explicit formulas are available in the lit-
erature both for the transverse and the tongitudinal distri-
butions of the cross-spectral density associated with the
GSM beams [2,32].

The cross-spectral density, at points P and p, ina
transverse plane z = constant > 0, across a GSM beam
is expressible in the form {32]

) A _(pi+pp)?
Wilpy,paiz) —u[A(z)]Z exP{ HSU,%[A(?-)]:! }
,ﬂﬁﬂ}
"""{ 207180}

% explip(p;,py;2)], (8}

where

12
_ F4
Alz) = [1 + (kcscr) J R ()]
R Z 22
“’(p“"?‘z)*2mka§c,2[a(z)]2(pz P}, (m
and

L1 + -lz (an

of 40} ol

Clearly, A is a constant that denotes the spectral density
at the origin. When ag > O, we find from Eg. (11)
that @, = @, and the expression for W;(p,,p,:z) above
then reduces to the result given also in Ref. [2] for GQH
beams.

Equations (8)-(11) imply that the beam and its trans-
verse coherence expand on propagation, while the on-
axis spectral density decays so that cnergy is conserved.
One can show that in any transverse plane the distri-
butions of the spectral density S(p,z) and the magni-
fude of the complex degree of coherence i (p,, ps:2)| =
&Py — P, 2) are Gaussian functions, and that the ratio of
their rms-widths is independent of the propagation dis-
tance [32]. Hence in each plane the ratio of the coher-
ence width to the beam width is given by the source-
planc value & = 0, /a5, known as the global degree of
coherence |2, 32].

The cross-spectral density of a GSM beam at cqual
transverse points p but in different planes z = z; and 7 —
22 with 2; > 0 (/== 1.2) can he expressed as [32]
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where

. e 12
5(21.22}=[1+ih—+i(h‘ Zl)] , (3

(kos50,)? ko?

1 1 1

—+ =, 14
ol 20} of (1o

and o; is given by Eq. (11). The longitudinal coherence
properties along the positive z-axis are obtained from

Eqgs. (12)—{14) by sctting p = 0. We recall that the degree
of spatial coherence |¢4(0:0,2)|, defined in accordance
with Eg. (7), between the field Auctuations at the origin
and al a posilive on-axis point approaches 67 /650, as the
distance z — ==, The behavior of the longitudinal coher-

ence generally is analyzed in detail in Ref. [32].

We note that an interesting formula was recently de-
rived for the axial dependence of the spectral degree of
spatial coherence in the case when the planar source is
substantially incoberent {33]. Sufficiently far away from
the source (so that the paraxial approximation holds), the
on-axis cross-spectral density lakes on the form

W (Oizr 2 Ay
mc( "-]s‘-?) 81,:22[326
x /0 5(/F:0)
k1 i
B3 cxp[ii(:;—g)p] dp, (15)
where
_ x
Stvm0) = [ S(/p.8:0)de, (16)

and 5{,/P.6,0) is the source spectral density expressed
in polar coordinates p = (p, 0}, as a function of ,/p. For
a (35M source we obtain from Eg. (8) simply that

$(/P:0) = 2rAexp [-p/20%) . )

It is seen from Egs. (7) and (15) that the complex degree
of spatial coherence tin (012,22} along the beam propa-
gation axis now is effectively a Fourier transform of the
source intensity function §( P th, with the transform
viriable being propertional 1 {5 ~ 221/ 22, The longi-
tudinal coherence can be measured using interferemetric
systems and 1t has applications c.g. in spectroscopy and
holography [33].

4, RADIOMETRY OF GAUSSIAN .
QUASIHOMOGENEQUS SOURCES "

Now we have an opportunity to make use of results i
plied by the general wave-theoretical expressions (8)a |
(12) to test explicitly the validity of the asymptotic |
diometric model outlined in Sec. 2. For a GSM pla
source located at z = 0 the generalized radiance functi
B (p,.s) is given by [4]

A 2
ﬁkzc!,2 exp [— &]

B(U)(po,s) ch

X

cos@exp [— %kzc:t,zsin2 9] .

where 8 is the angle that vector s makes with the posit
z-axis and the parameter o; is obtained from Eq. (]
hence the generalized radiance B®(p,,s) carries inf
mation about the state of coherence of the source.
GQH planar sources o, assumes the value G, repres '
ing directly the source’s transverse correlation width.

We substitute Eq. {18} into Egs. (5)-(7), and consi
both the spectral density and spatial coherence separat ..
along the beam axis and in planes perpendicular to it

4.1, On-Axis Profiles of Intensity and Coherence

When the observation points ry and ry are on the B
axis, say at z; and zp, respectively, the geometry a:
ciated with the asymptotic radiometric calculations -
comes rotationally symmetric (Fig. 2). In this case ¢
ply R = (% 4 p3)!/2, and on substituting from Eq. 1
to Eq. (5) we find that *

exp( —p3/20%
W (0;21.7) = Akzﬂf/-—-p%%ﬂ
(z +po)
% cos?Bexp[-k*arsin®8/2
x  explikcos9(z; — z))]podpa.
where

cos® = z/(ZF +p§)/° = 5.

sin® = po/ (2 +p3) = 54, iy

and the azimuthal part has been integrated away. .
tlarly, for the on-axis spectral densily we obtain f
Exs. (18) and (6} [or directly from Eq. (19) by set
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Figure 2. Notation for the calculation of the on-axis spectral
density and coherence.

71 = 2 = z] the expression

-3/ 20}
S(0:2) = Akzaf/c——-—~xiiz 10;2) s)
ju

x cos’Bexp| k0l sin28/2}ppdpe.  (20)

The complex degree of spatial coherence p(0;2,22) is
then computed on the basis of Eq. (7). The radial inte-
grations in Eqs. (19) and (20) are performed numerically
from ( to some maximum value determined by o;.

Some typical results are shown in Figs. 3 and 4, Since
the characteristic behavior of GSM and GQH beams is
well documented, we foeus here on the accuracy of the
radiometric method. Thus, the curves in Fig. 3 illustrate
the percentage error in the on-axis spectral density, i.e.,
the quantity
Sp—Sw )

d{g(z) = 100- (—Sw—k

2h

where Sg(z) and Sw{z) are obtained from Eqgs. (20) and
(8), respectively. The size of the beamn at the waist is
Os = LO0A, and the correlation widths are o, = 1.0os,
0.505, 0.205, and 0.1 G5, running from top 1o bottosm in
the figure. The maximum propagation distance shown is
the Rayleigh range z5 = 2kc§ of a corresponding fully
coherent beam. Hence with quasihomogeneous beams
the axial intensily decays several orders of magnitude,
but the radiometric method nonetheless yields the result
with a precision better than a tiny fraction of a percent.
The accuracy improves with larger source sizes Gy.
Similarly, the curves in Fig. 4 illustrate the accuracy

of the generalized radiometric technique in the calcula-
tion of the degree of spatial coherence along the beam

61
AY axis. Plotted are the values of the percentage error
(a2 = 100- (LeL=bl) )
|

where |ug(0;z1,22)] and [pw {021, 22)| are found numer-
ically on the basis of Eqs. {(19) and (8), respectively. The
parameters are the same as in Fig. 3 {from top to bottom,
as before), except that z; = 205 and 73 now varies from
0.505 to 63/A. Again, with quasihomogeneous beams
the longitudinal coherence varies considerably over the
plotting distance (while increases in O or z| naturally
reduce the scale of this variation). The accuracy of the
radiometric technique is seen to remain excellent.

In Fig. 5 we illustrate the degree of on-axis spatial co-
herence in a wavefield generaied by an effectively inco-
herent Gaussian source; the botlom curve is [(0; 21, 23)]
as computed from Eqs. (15) and (7) for 65 = 100}, z, =
6%/A, and z; ranging from 0.75z 10 1.25z5. The gener-
alized radiometric results for 0, = 0.105 (lop curve) and
0, = 0.0505 (middle curve) are shown for comparison.
It is obvious that the radiometrically obtained results ap-
proach the incoherent-source curve as 6, — 0.

4.2, Transverse Profiles of Intensity and Coherence

For the evaluations of the transverse distributions we con-
sider, for simplicity, the geometry illustrated in Fig. 6.
One of the observation points is at distance z on the beam
axis, while the other is taken {owing (o the symmetry) at
& separalion p along the y-axis. Consequently, in this
case R = [2+pd +(p/2 - poy)zllf'z, and we find from

OFg
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—

ERROR [%]
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(=]
=2
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C 40000 80000 120000
AXIAL DISTANCE [lambda)

Figure 3. Accuracy of the radiometnically obtained spectral
density on the beam axis for a GSM source of waist size 6y =
100 A and global degree of coherence o« = G /s = 1.0, 0.5,
0.2, and 0.1, from top to bottom, respectively,
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Figure 4. Accuracy of the radiometrically obtained degree of
spatial coherence along the beam axis when one point is close
to the waist at 2, = 205. The beam paramneters corresponding
to the curves are, from top (o bottom, the same as in Fig. 3.
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Figure 5. Comparison of the degree of spatial coherence in
GQH beams of 65 = 100X and ¢ = 0.1 (top curve), &0 = 0.05
(middle eurve)} wilh the result in the wavefield produced by a
spatially incoherent source (hottom curve, z, = R/4E).

A

Figure 6. Notation for the calcutation of the spectral density
and coherence in planes perpendicular (o the beam,

Egs. (5) and (18) that

A 22 exp(—pg/Zcr%}

21tk o /f R

cos Bexp[— k22 sin? 6/2]
explikp(p/2 - poy) /R1dpe,dpoy, (23)

Wi(0,piz)

il

where po = (pj, + p3,)'/? and now

cos0 = z/R,

sin® = [pd, + (p/2 - p,)?]"* /R.

The spectral density is likewise given by

A 2 CXP(* 2/20_2)
ﬁkz"?/f o) )

§p,z) R

x  cos’ Bexp{—k o7 sin? 8/2]dpacdpoy, (24)

in which R, sin8, and cos8 are evaluated for point (p, z).
The complex degree of spatial coherence 14(0,p:z) is
then again compuled in accordance with g, (7).

Characteristic results on the transverse distributions
are displayed in Figs. 7 and 8. Within the paraxial the-
ory the GSM (and GQH) beam possesses at cach plane

z = constant a Gaussian intensity variation and the global *

degree of coherence, o = o,/ay, remains invariant on '

propagation. In Fig, 7 we illustrate the percentage error
d,s(p), defined in complete analogy of Eq. (21) where

now Se(p,z) and Sw{p,z) are obtained from Eqs. (24) °

and (8), respectively. The beam parameters o and Gy
{labeling curves from top (o bottom) are as in Fig. 3,
the propagation distance 7 == 2kcr§ is the corresponding
fully coherent Rayleigh range. Al the maximum trans-
verse distance shown the intensity of the GQIH beam with
@ = 0.1 has decreased to 0.61 times of its on-axis value.
Since the beams of higher degree of coherence have by
that point decayed considerable more, the slight increase
in the relative error of the spectral density seen in the
graphs is of no practical significance.

In Fig. 8 the analogous percentage error dr(Q,p) of
the transverse distribution of the absolute magnitude of
the complex degree of spatiat coherence is shown. The
quantity di,(0.p) is defined as in Eq. (22), but ug(0, p:2)
and pw{0.p;z) are computed on the basis of Egs. (23)
and (8), respectively, using also the definition (7) of the
complex degrec of coherence. The propagation distance
z ag well as the beam parameters o and G, arc the same
as in Fig. 7, but this time the curves are tabeled from hot-
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Figure 7. Accuracy of the radiometrically obtained spectral
densily in a lransverse plane, al distance 7 = 75 = 2k0§, of a
(GSM beam of waist size o5 = 100X For the curves the global
degree of coherence, &t = G,/ Gy, assumes from top to battom
the values & = 1.0, 0.5, 0.2, and 0.1, respectively.
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Figure 8. Accuracy of the radiometnically obtained degree of
spatial coherence in a transverse plane of a GSM beam when
one potat 1s on axis. The peometry and beam parameters are
as in Fig. 7, but the plobal degree of coberence o in curves
now deereases from 1.0 1o (.1 going frum kotlom o op.

1o o top, Le., the largest error occurs with the smallest
degree of global coherence, In cach case the degree of
spatial coherence al the maximum separation shown in
Fig. 8 has fallen o a tny {raction of its on-axis value
(cqual to unity). Figures 7 and ¥ demonstrate once again
that the asymptotic radiometric models are remarkahly
decurale even in circumstances in which the intensity or
coherence attain anly very small vatues,

5. DISCUSSION AND CONCLUSIONS

In this paper we have reviewed a generalized radiometric
theory proposed by Foley and Wolf [25, 26] for the cal-
culation of the spectrai density and the spatial coherence
in wavefields generated by quasithomogeneous sources
(or, more generally, by sources whose generalized ra-
diance is nonnegative). This radiometric theory, which
is not restricted to paraxial waves but holds only in the
asymplotic sense as the wavelength A — 0, makes use of
simple ray-tracing equations. Hence the calculation of
the intensity and coherence distributions in most cases is
quick and efficient. The accuracy of these radiometric
models has been assessed against earlier analytic results
pertaining to paraxial Gaussian Schell-model (GSM) or
quasihomogeneous (GQH) beams.

The computations shown in this paper were carried
out using a 486 personal computer and Mathematica soft-
ware with the default precision (16 digits). The results
demonstrate that already with relatively small sources
(rms beam waist o5 = 100A) the asymptotic radiomet
ric theories yield the spectral density and, especially, the
spatial coherence with amazing precision for beam fields
with varying degrees of global coherence. Furthermore,
the calculations indicate that the accuracy generally im-
proves when the source size is increased. The main ad-
vantage of these radiometric models, however, is the su-
perior computational speed as compared with the usual
diffractive calculations of field intensity and coherence.
Similar conclusions were obtained in recent related stud-
ies, in which these radiometric theories were applied 10
the extended line images generated in partially coherent
light by generalized holographic axicons [34,35),
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