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GEOMETRICAL OPTICS

Approximation according to which electromagnetic
propagation takes place along paths, rays, which are
straight lines in free space.

In case of incoherent radiation, such as light from
thermal sources, rays describe energy propagation;

In the case of coherent radiation, such as light from a
laser source, rays are the normals to the wavefronts or
conversely wavefronts can be obtained from rays.

The ray approximation, although originally used in
Optics, is valid at all frequencies, provided suitable
conditions are satisfied.

Examples:
-Free propagation at all frequencies,

-Reflection of radio waves, in the Ionosphere,
-Reflection of microwaves from metal surfaces.



COHERENT RADIATION
Let us start from waves:
Light: electromagnetic waves

Scalar approximation: one Cartesian component of
the e. m. field V(P,t) is representative of entire field

Energy: proportional to the square of this component
(power flux a Poynting vector)

Complex form (coherent monochromatic)

1.1) V(P,t)=u(P)e 1

time dependence:
oscillation with frequency v =w /2x

w — source

u(P) complex amplitude
1.2) u(P) = A(P) e'?
A amplitude @ phase

wavefronts: surfaces ¢ = constant



Wave equation u=u(P)

1.3) V2u+n2k%u=0
Ko=2mn/A, Ao Wwavelength, empty space
n = n(P) =c/v(P) v(P) velocity in the medium
2 2 ) 2
and V2 = J J —— Laplacian

+ +
c?x2 ayz 2z°

Eq 3 valid also for inhomogeneous media, if n(P) varies
slowly over distances of order of wavelength.

Introduction of Eq 2 into Eq.3, on account that

2

VZu =V-gradu

and

grad e iy - ie ip gradg

gives:
2igrad A-grad ¢ -Algrad qp‘z +AiV2q0+V2A+n2k%A= 0

Separation of real and imaginary parts gives:



1.4) V2A+n2k%A-Algrad qo[2 =0

and

1.5) 2gradA-gradq9+AV2cp=0
ASSUMPTION:

1.6) V2A << nzkgA

In Eq. 1.4) first term negligible

Eq. 1.6 becomes

1.7) n Zk% - |grad cp|2 =0
that is
1.8) grad ¢ =nk, s

S unit vector in the direction of grad ¢.

Phase independent of amplitude; Eq 1.8 basic Equation
of Geometrical Optics.

From this Equation:
-Fermat Principle can be found

-Many applications to inhomogeneous media



Meaning of condition Eq.1.6:

v3a  d2a

1.9) _ _ps [
A A dP

2

am
r

where dP is a small displacement. If one chooses
dP = A/2x

condition reads

d2a

A

<< 1

1.10)

Therefore the first term of Eq 1.4 is negligible if the
second variation of the amplitude on a space of the
order of the wavelength is negligible. In other words
the amplitude has no abrupt changes.

In conclusion:

-Geometrical Optics (G.O) is valid when there are no
abrupt changes of amplitude.

-In G.O. phase is independent of amplitude.

The unit vector s is the normal to the wavefront and is,
at each point, the tangent to the ray. Therefore a ray
(in the physics meaning, not just mathematical) in
geometrical optics is a tube of flux of the phase. Energy
propagates along these tubes of flux.



Integration of Eq 1.8 along a ray gives a simple formula
to obtain the phase difference “from geometrical
optics”

1.11) @(P)- o(P") = k,, fray nds

Usetul to understand formation of images with lenses.
Point P’ is an Image of point P if along rays from P to
P’ the phase difference is the same.

Quantity
1.12) S = n/ko

is called eikonal (from Greek sixwv ,image) and Eq. 1.8
becomes

1.13) grad § = ns Eikonal Equation

where in general n=n(P).

As rot grad S=0, (rot=curl) one has

1.14) rotns = 0

It can be also shown (Born and Wolf) that in an
inhomogeneous medium a ray “bends” toward the

region of higher refractive index.

Important cases for application: propagation in
graded index materials (optical fibers).



IMAGES
Geometrical Optics allows evaluation of images formed
by:
Mirrors

traditional
Lenses

others such as aspherical or graded index

Systems, more or less sophisticated

Advantages:

1 - Geometrical optics:

-simple

-rays

-allows accounting for aberrations

-neglects diffraction, but final test of images also
requires knowledge of the limits set by diffraction

2 - Wave optics:

-more general

-allows accounting for:
aberrations
diffraction

1



LAW OF GEOMETRICAL OPTICS

a) - Free space :

rectilinear propagation (straight rays), velocity c.

b) - Homogeneous transparent medium
rectilinear propagation, velocity v<c

The ratio between ¢ and the velocity in the medium is
the refractive index of the medium

2.1) n=c/v

Important: n=1

DISPERSION:

refractive index of materials n depends on
wavelength A

n = n(A)



An important quantity in dispersion is the so called

Abbe’s Number, generally denoted as v, defined as:

2.2) v = D

where C, D, F, denote the three standard reference
lines in optics, known as Fraunhofer lines:
C, red A=656.28 nm (hydrogen)

D, yellow A=58756nm (sodium)

F, blue A=486.13nm (hydrogen)
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Plane surface between two media:

ray from medium 1 impinges on the surface between
medium 1 and 2.

Energy splits into two parts one reflected and one
transmitted.

REFLECTION LAWS:

Ray impinges on the reflecting surface at point P

1 - The phenomenon takes place in a plane set by
the ray and the normal to the surface at P

2 - Incidence, i, and reflection, i’, angles are equal

2.3) [ =1
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REFRACTION LAWS \</
\.\
l At

Ray from medium 1 impinges on the refracting surface
at point P

1 - The phenomenon takes place in the plane, set by
the ray and the normal to the surface at P

2 - The ratio of the sines of the incidence, i, and
refraction, r, angles is constant. The constant, denoted
by n,;, is called the refractive index of the second
medium with respect to the first one: it is the ratio of
the refractive index n, of the second medium to that n,

of the first medium. In formulas

sin i n, vy

2.4) .
sin 7 ’ ng vj

In other words each sine is proportional to the
corresponding velocity.

Note that “constant” in a law, means constant with
respect to the other quantities appearing in the law. On
its turn the “constant” may depend on some other
quantity. In our case the refractive index depends on
the wavelength.

A ray passing from a medium to another having higher
refractive index approaches the normal.

1t
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Consequence:
- The higher the velocity, the larger the corresponding
angle

Quantity n,, can be larger or lower than 1. The
phenomenon of total internal reflection takes place

when light passes from a medium to another with
lower refractive index.
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This effect finds important application in guided
optical propagation (plane, or integrated optics) and
optical fibers and prisms. In guided propagation it is
utilized both for guiding of radiation and for coupling
between fibers and other devices.
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CURVED SURFACES

Reflection and refraction laws can be applied to curved
surfaces, provided that the curvature is weeck, or in
other words the radii of curvature are very large (with
respect to wavelength). Application to curved surfaces
constitutes the basis of all treatment of images by
lenses and systems. After a curved surfaces parallel
rays change their behaviour, eg converge or diverge.
The simplest case is that of spherical surfaces, but
also aspherical surfaces are important.

Simple formulas in the case of “paraxial” or “gaussian”
approximartion.
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EXAMPLE. In order to have an idea of methods and
approximations involved let us start with a simple
case: the evaluation of the conjugate points formula for
a spherical concave mirror in paraxial approximation.

Spherical mirror: center C, radius R.

Point source, O, on axis at a distance o from the surface
vertex V. A meridional ray (in a plane though the axis,
meridional plane) from the source impinges on the
mirror surface at P, and after reflection crosses the
axis at I, distant i from V.

e

Let a f and y the three angles, with respect to the
axis, under which P is seen from O, C and I respectively.
Note that f measured in radiants is given by y = (arch

PV)/R.
Relationships between external and internal angles in
the two triangles and reflection laws give:

2.5} Yy =1+ a
2.6) B=2i+a

This is the basic couple of equations which tells the
path of any ray leaving source O.
Eliminating i from these two equations gives

14



2.7) p+a=2y

This is an exact relation between the three angles.
Now the paraxial approximation is made:

“o is a small angle”.
From now on it can be replaced by some approximate
expression such as a = (arch PV)/o, This corresponds
to consider the (arch PV) as belonging to a sphere with
radius o. The same position is also made for § which is
replaced by (arch PV}/i. However, in making this
approximation, one must observe that smallness of o
does not automatically guarantee the smallness of (3.
The approximation on f requires also that point P
must be sufficiently near to the axis, and this also
depends on the position of the source. The need of an
entrance pupil appears.
Within these approximations one gets the well known
formula relating object and image positions

25 112
o 1 R

This simple result helps us in remembering some
basic concepts, notations and nomenclature.

When the source goes very far from the mirror to
infinity, o -> %, the image position becomes the focus i
-> f =R/2). In other words, the focus is the point where
the mirror makes a beam of parallel rays converge.
From this case also the concept of real and virtual
images (when i becomes negative) is apparent.

In addition the result can be extended to the case of
convex mirror provided that R is made negative.

15



SPERICAL REFRACTING SURFACES

As an exercise it is not difficult to evaluate the
analogous expression in the case of refraction at a
spherical surface separating two media: medium 1,
with refractive index n, and medium 2, refractive index
nz.
Point source, O, is on the axis at a distance o from the
surface vertex, V. A meridional ray from the source is
refracted at the surface in P, then crosses the axis at I,
at distance i from the surface.
Sign conventions:

0>0 if the source is on left hand side with respect

to the surface
i>0 if I on the right hand side
Surface radius R>0 if center on right side

In addition to the approximations made in the
previous case, here there is also the need to
approximate the refraction formula by replacing the
sines with the corresponding angles, S0 that

VA

2.9)

Substitution of sines with angles is not the most
stringent one and can be a good approximation for
angles up to 10° and more, depending on the required
accuracy. The final result is

n n Hy — n
2.10) e + 2 -2 !

0 1 R

16



from which one immediately sees that the position of
point I does not depend on the particular ray chosen
from the source. All rays from the object which reach
the refracting surface (and fit the paraxial
approximation) are refracted in such a way that they
all cross 1. Point I is called the image of the point
source O.

The previous result is the first step to evaluate a final
result after a number of refractions at different
subsequent surfaces.

If, there is another spherical surface, separating
medium 2 from another medium, point I can be utilized
as source for this second surface and the equation
applied to obtain the image after this second
refraction. A general formula can be obtained for a
thick lens, whose limit gives the thin lens law.

THIN LENSES

A thin lens is a lens whose thickness is negligible with
respect to the other dimensions involved. It is consists
of material of refractive index n, limited by two
spherical surfaces not necessarily of the same radii.
The relationship between object and image positions
is called the equation of the conjugate points. In the
paraxial approximation, gaussian optics, and in air
(nyir = 1) one gets

N\

1 . | -
— O\ ' ' "

f

, 1 1
3.1) -+ - =
0 1

where the focal length, f, is given by
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R; Ry
This equation is known as “lens maker’'s formula”.

3.2) %= (n-1)[—}———£—]

Sign conventions
0>0 if object on left lens side (object space)
i>0 if image on right side (image space)
Lens radius >0 if center on right side
in fig R;>0, R,<0
f>0 converging lens
f<0 diverging lens

When o—o, i=Focus. Perfect lens makes parallel rays
converge to (or diverge from ) focus.

Ex: 1>0: the lens makes rays converge. It transforms
plane wave into spherical converging wave.

In a system one defines two focal points: front focus,
before the lens, and back focus, after it. If the positions
of object and image are counted from the two foci, o=f+x
and i=f+x’, respectively, from 2.1 one immediately gets
Newton’s formula :

3.3) XX =12

Images: Real or Imaginary.

In general, for lenses or systems of elements:

From source to image optical path along each ray the

same (Fermat principle). Phase along each ray the
same; at image point positive interference.



CHROMATIC ABERRATION

In the paraxial approximation one image point
corresponds to a source point, only in the case of
monochromatic (or quasi monochromatic) radiation.
Due to dispersion, the focus is different for the different
colors, and the rays from a source do not have one
common cross point if they are of different “color”
(wavelength). This effect is known as chromatic
aberration and is the only aberration present also in
the paraxial approximation. To avoid it double lenses
“doublets” were first invented, where two different
glasses (flint and crown) were used.

j A f,LcL\w\mﬂJ'llﬁ‘_ .(),owo%u
l)(aw‘}@{/& UM -

oW N s ﬂ g e
(j fvf)-/_\_\ - [ 1§ Ol‘ \/—( L"—'} 1 ,/\,L"’-F .
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EXTENDED OBJECT

For extended objects one can use a method based on
rays; the object is divided in “small elements” and each
element is considered a point-like source.

Consider : a point source at height h above the axis.

There are particular rays from this point (figure):

1) The ray reaching the lens parallel to the axis, which
passes through the back focal point,

2) The ray reaching the lens after passing through the
front focus, which emerges parallel to the axis,

3) The ray crossing the lens through the optical center
(central point of the lens on the axis), which
propagates straight, without deviation.

Position of the image is obtained where all these rays
cross, and is described by i (along axis) and h’ normal
to axis:

3.4) h' =hi/o

o )
. h [\ e
Inverted image PR
. £ . iy A
Transversal magnification. :

3.95) M= -h'/h

The sign means an inverted image.
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LENSES IN SEQUENCE

Two lenses in sequence at distance d are equivalent to
a new lens of which one can evaluate the focus: one
obtains (obvious symbols)

3.6) front focal length =
d-~(f1 + f2 )
f2 (d —fl )
3.7) back focal length =

from which the role of d is clear.

If d=0, lenses in contact. Multiplets of N lenses in

contact are equivalent to a lens with focus

3.8)

Inverse of focus: power. Summation of powers.

21



MATRIX METHOD for RAY TRACING

One ray impinges at a given height on the surface of a
lens. Finding the position and angle after a given path
can be done by the matrix method (called ABCD).

For instance, in the paraxial approximation, refraction
at a surface betwee two media can be described by a
matrix of refraction

1 0]

(nl-nz)/R 1

This matrix, applied to a one column matrix with
elements height h and “angle” n; 8, (note angle

multiplied by the refractive index of the medium) of the
ray impinging on the surface gives as a result height h

and "angle” ny 6, of the output ray. This can be easily
verified by the student.

From this matrix, the application to two surfaces
allows one to obtain a matrix fonthix; a lens, a matrix a
for a thick lens and so on.

This simple procedure allows one to trace rays in more
complicated systems, in the paraxial approximation.

Going further here is beyond the scope of the present
lectures.

22



THICK LENSES
Thick lenses: Thickness non negligible.

The focus positions of the lens (front and back) are
measured from the two Vertices on the axis.

One defines two “principal planes” (primary and
secondary) and two “principal points”. The primary
principal plane is a plane, internal or even external to
the lens, such that a ray which impinges at a point of it
from the focus goes out of the lens parallel to the axis.
For secondary ray it “converges” to the focus if it arives
parallel to the axis.

The two principal points are the crossing points of the
planes with the axis and are such that a ray reaching
the primary principal plane at a given angle goes out
from the lens as it were coming with the same angle
from the secondary principal point (generalization of
what happens in thin lenses).

If one measures the distances from these planes one
can write an equation formally equal to that of the thin
lens

v
. MBS
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QUALITY OF IMAGES

In general rays do not all cross at the same point;
aberrations.

In addition there are diffraction effects. Images by
perfect systems, that is systems without aberrations,
are

diffraction limited.
The best one can obtain is a “diffraction limited image”

As is well known due to diffraction, the image of a point
given by, say, a lens is not a point, but is a “spot” called
diffraction pattern. It originates by the fact that the
lens has a border (it is not infinitely extended), at the
border there is an abrupt change of the amplitude (see
condition 1.6) and diffraction takes place.

Consider a lens of radius “a” illuminated by a plane
wave, originating from a monochromatic source of
wavenumber k=2x/A infinitely distant on axis (parallel
incident rays). The theory of diffraction allows us to
know the energy (intensity) in direction 6. Apart from
unessential constant

B WY,
J%(ka sin 6) #0’/ - |7 f

(ka sin 8)°
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Now we take into account that there is the lens; in
the lens focus, one has the diffraction pattern. The

energy diffracted in direction 6 is seen at point

r=0 f of the focal plane: a spot “Airy function” taht
is a central circle with surroundings wings.

Analyze the behaviour of I as function of 0,
maxima and minima

when sin 0= O central maximum, main direction
first four zeros of J (x)
x= 383; 7.02; 10.17;: 13.23

FIRST ZERO
when kasin8=3.83

28 sing = 5:83 _1 99
) 314
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[ R x

Values of subsequent maxima, with respect to the
central one

central 1

first 0.0175

second 0.0042

third 0.0016

It can be shown (Rayleigh 1899) that the energy
flux the i-th ring is
@, = Ji(x,)- Ji(x

1+1 )

Through the central disc and subsequent rings
Energy flux (total flux = 1)

central disc 0.8378

first ring 0.0722
second " 0.0276
third " 0.0147
and so on

The energy in the central disc of the pattern is ~
84% of the total.
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Energy is mostly concentrated in the central ring,
whose total angular with is  (ka sin 6 = 3.83)

2a/A\ sin 9-@=1 22
3.14

2a=D diameter

sinf =1.22 2
D
effect on Resolving power of instruments. v

Two lM\cU#{jN) pam be olishia aw;%wﬂ
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- RESOLVING POWER

1- Strehl ratio
2- Rayleigh criterion (v diffraction)

2- OTF or MTF half width



