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PHOTONIC BLOCH WAVES AND PHOTONIC BAND GAPS

Philip St.J. Russell, Timothy A. Birks and F. Dominic Lloyd-Lucas

Optoelectronics Research Centre,
University of Southampton,
Hants SO9 SNH, United Kingdom

1. INTRODUCTION

Photonic band gap materials are dielectrics with a synthetic, three dimensional,
multiply periodic microstructure (lattice constant of order the optical wavelength) whose
distinguishing feature is a very large modulation depth of refractive index. When
appropriately designed, these "photonic crystals" exhibit ranges of optical frequency where
light cannot exist - the photonic band gaps’. The current interest in these materials' 22 has
led us to re-appraise propagation in structures that, while not exhibiting a complete
photonic band gap (PBG), nevertheless display anomalous and intriguing propagation
effects in the vicinity of their Bragg conditions**. In most cases, around each Bragg
condition appear incomplete momentum and energy gaps (i.e., ranges of, respectively,
wavevector and frequency where propagation is forbidden) with widths that are given
approximately by the product of the index difference with, respectively, the vacuum
wavevector and /£ times the optical frequency. With the exception of the multi-layer
dielectric stack, most conventional electromagnetic gratings, such as those encountered in
holography®’, waveguides*, distributed feedback lasers®*37-3 | acousto-optic*” and x-ray®!
diffraction, consist of weak periodic perturbations about a mean refractive index. In these
gratings, while strong spatial and temporal dispersion are present around each Bragg
condition, the ranges of angles and frequencies over which this occurs are very narrow;
and although PBG’s do appear, they are incomplete and mostly very weak.

It was in this context that Yablonovitch posed the question: By analogy with
electronic band gaps, would a full photonic band gap appear in a multiply periodic three-
dimensional structure if the refractive index were very strongly modulated? As we now
know’, state-of-the-art optics was unable to answer the question immediately, because
although large modulation depths were well known and accepted in the solid state physics
of electrons, where the lattice potential is often both very deeply modulated and highly
non-sinusoidal®, they were encountered in optics only in the form of singly periodic multi-
layer stacks. Commonly-used and well-understood perturbation approaches?’, in which the
field in a singly periodic structure is Fourier decomposed into a finite set of plane waves
coupled together by the lattice, were not immediately applicable to the full vector case of
multiply periodic three-dimensional structures. The high modulation depth of index in PBG
structures also means that even the concept of average index is of limited usefulness; as
we shall see, this is because the expectation value of the refractive index can deviate
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hugely from its mean value via re-distribution of the photon probability function (or optical
intensity) into regions of higher or lower dielectric constant®. Indeed, this redistribution,
which depends on «, lies behind all the complex and curious types of behaviour
encountered in photonic band gap materials.

The field of photonic band structure is a hybrid, drawing on the resources of two
major disciplines: optics and electronic band theory. Electronic band theory is rich in
concepts?>2 (such as density of states and effective mass) not widely used in optics, where
the emphasis is more on wave propagation*>>*. On the other hand, conventional optics
provides a range of ideas (such as rays, diffraction, refraction and interference) that are
essential if photonic band gap materials are to be used in real systems, where propagation
in the vicinity of the band gap must be well understood. For example, the effective mass
method23-25 turns out to be useful for treating the propagation of Bloch rays in photonic
band gap structures with slowly-varying non-uniformities, whereas generalised versions of
refraction and dispersion®’ are needed to treat wave behaviour at sharp interfaces between
different periodic media.

The theme of this chapter is thus the development of an approach to propagation
in periodic optical media that uses Bloch waves instead of plane waves; and the goal is to
provide the basis for a full "quantum photo-dynamical" (QPD) description of light in PBG
structures, where the density of photonic states is controlled by the presence of a dielectric
"crystal" lattice.

The simplicity of the multi-layer dielectric stack, and the availability of exact
analytical solutions for the Bloch waves it supports?®2®, make it an ideal vehicle for
illustrating the physics of photonic band gaps. A major aim of this chapter is to reinterpret
the behaviour of the multi-layer stack within the framework of photonic band structure,
making use of versatile intuitive graphical tools such as wavevector (k—#), Brillouin (w—4%)
and band-edge diagrams. The physical origins of energy and momentum band gaps are
discussed, together with concepts like effective mass, group and phase velocity, and density
of states of "valence” and "conduction" photons. The link between photonic Bloch waves
and traditional plane wave optics is also explored, the effects of optical nonlinearities and
gain briefly touched upon, and a number of unusual structures and devices described.

Note that there is a list of mathematical symbols in Appendix Al

1.1  List of Chapter Headings
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1.1 List of chapter headings
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1.2.1  Three regimes of behaviour

1.2.2  Hard and soft reflections

1.2.3  Brewster’s angle

1.2.4  Two parallel interfaces
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7.2 Illustrations from experiments on planar waveguides
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9.2 Effects of optical gain: Lasers
9.3 Effects of optical nonlinearity: Gap solitons
9.4 Applications of photonic band gap materials
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12. References and Reading Guide
Appendices
Al. Main Mathematical Symbols and Their Meanings
A2, Translation Matrix Elements
A3, Bessel Function Solutions

A3.1  Nearly-free photons: Green’s function solution
A3.2  Tight binding

1.2 Essential Background Material

A range of elementary results can be derived by considering the reflection and
refraction of a plane wave incident on the interface between two isotropic dielectric
media*?**, Since a good intuitive understanding of the physics of this phenomenon is vital
in the ensuing treatment of photonic band structure, it will now be briefly discussed; for
a more detailed account, the reader is referred to any standard optics textbook such as Born
and Wolf**. The electric field of a linearly polarised electromagnetic wave in medium J
may be written in the form:

E = Ejoexp[—j(ﬁzip}.y)ﬂwt] (1
where
p = Kl F Q)

is the wavevector component - normal to the interface - of the field within each medium,
k=w/c is the vacuum wavevector at optical frequency w/2, n; the refractive index and 3
the wavevector along the interface, whose normal points in the y direction. Convention
defines a transverse electric (TE, or s-polarised) wave as ome whose electric field is
parallel to the interface, and a transverse magnetic (TM, or p-polarised) wave as one
whose electric field points in the (y,z) plane. Equation (2) is a consequernce of the
requirement that the wavevector must have a magnitude equal to kn;; this gives rise to the
very useful wavevector diagram, which is the locus of allowed wavevectors at fixed optical
frequency. For isotropic media, it is a circle of radius kn;, and for two different media,
two concentric circles appear (see Figure 1; n; > n, is assumed throughout this chapter).
In any collision of a plane wave with a plane parallel interface, the momentum along the
interface is conserved; this is another way of saying that the effective wavelength along the
interface of all the participating waves must be identical, i.e., that they must be phase-
matched. A line drawn normal to the interface, displaced from the origin by 3, intersects
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Figure 1. Interface between two media of refractive indices r; > n,, together with the related
wavevector diagram. Three regions (I, 11 and Il exist, corresponding to reflection/refraction, total
internal reflection, and cut-off. A simple construction yields all the real-valued wavevectors that may
exist at fixed wavevector § along the interface (illustrated for region I). The ray directions of the
plane waves in real space are sketched on the right hand side.

the circles at a number of points, giving the complete set of wavevectors satisfying this
interface condition.

1.2.1 Three regimes of behaviour. Note that three distinct regions of behaviour
exist. In the first (region I: 0<f<kn,) both refraction and reflection occur: light
propagates in both media. In the second (region IT: kn, <3 <kn;), total internal reflection
occurs: light propagates only in the high index medium. In the third (region HI: kn; <{3)
the light is evanescent in both media: it is cut-off from propagation. On the boundary
between regions I and II the angle between the wavevector on the high index circle and the
vertical axis is the critical angle.

1.2.2 Hard and soft reflections. A very important physical quantity is the phase
change upon reflection. For incidence from the low index side (medium 2), a phase
retardation of 1 occurs throughout region I (in regions II and III the light is cut-off); the
associated reflection is sometimes described as hard. For incidence from the high index
side (medium 1), the phase change is zero in region I, and varies smoothly from zero to
a retardation of 7 across region 1I; in region I the reflection is sometimes described as soft.

1.2.3 Brewster’s angle. The magnitude of the reflection can go to zero in the case
of TM polarisation; this occurs in region 1 at Brewster’s angle, when the refracted and
reflected wavevectors are at right angles. Under these circumstances, the electric dipoles
of the refracted and reflected waves are orthogonal, resulting in zero reflected power. It
is easy to show (see Figure 2) that the Brewster condition is satisfied when:
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Figure 2. In region I, when the reflected and refracted rays are orthogonal, the dipoles excited

by the refracted wave are unable to radiate into a reflected wave, resulting in zero reflection. This
occurs at Brewster’s angle.

k
g - 3)

7.2
n+n,

this condition applies irrespective of whether the light is incident from the low or the high
index medium. No Brewster phenomenon occurs in regions II and HI. Note that as the
index difference tends to zero, the Brewster angle occurs at close to 45° as should be
expected.

1.2.4 Two parallel interfaces. When a second parallel interface is introduced, a
number of new phenomena occur, the most important for our purposes being a) guided
modes, b) anti-reflections and c) tunnelling across low index layers. Guided modes can
form in region II for a high index layer bounded by low index media (Figure 3a). They
occur when the round-trip phase change across the layer, including the phase retardation
upon total internal reflection at the interfaces, equals a multiple of 2x. They may be
viewed as isolated micro-resonances of the layer, and in this respect bear some
resemblance to electrons trapped in atomic orbitals. Their dispersion relation takes the
form (an excellent derivation is available in Kogelnik’s chapter in reference 45):

ph, - 2arctan —i—& = mm )

£, p

where Ay is the layer thickness, m the mode order and the ¢; contain the polarization
dependence:

£ =1 (TE) or 1/nj2 (TM). (5)

J

Retaining these factors allows both the TE and TM cases to be covered in a single analysis.
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Note that, unlike in the electron case, light cannot be trapped at =0 in a high index layer
since total internal reflection is impossible in dielectrics at normal incidence. Tunnelling
through a thin low index layer sandwiched between two high index media can occur in
region II (Figure 3b); this is important if two or more identical high index layers are
brought in close proximity. Resonant tunnelling of light between waveguide micro-
resonances can then occur, as will be discussed in more detail in section 6.

1.2.5 Anti-reflection condition. A single layer will exhibit zero reflection when
the round-trip phase change in region I is an odd multiple of =, i.e., when the waves
reflected from each interface interfere destructively; since the optical round-trip across any

construction
| line

21 -~
£ N

(b} Tunnelling

(a) Resonant guided mode

Figure 3. In region II: (a) a single layer of high index, sandwiched between two media of
lower index, will support guided modes in its "potential well” for discrete values of 8, (b) on the
other hand, if the indices are the opposite way around, tunnelling of photons through the low index
"potential barrier" is possible.

layer (of high or low index) always contains one hard and one soft reflection, the anti-
reflection condition is**:

2ph-n = 2m-I)n = ph, = mn (6)
wl}ich shows that, at normal incidence, the layer must be a multiple of half a wavelength
thick. In the same way it may be shown that layers whose round-trip phase change is an

even multiple of 7 reflect strongly.

o 1.2.6 Micro-cavity resonators in two and three dimensions. A single island of
high index material imbedded in a low index background (Figure 4a) will support a large
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Figure 4. Cubic arrays of square unit cells {GaAs/air, critical angle 16.6°), together with their
wavevector diagram for horizontal and vertical rays. High index islands (a): Certain closed ray paths
(of which one is illustrated) can be found for which the round-trip phase change is a multiple of 2m;
these represent leaky isolated resonances (see text). An array of identical micro-resonators will be able
to "talk" to one another through their evanescent external fields, creating the conditions for resonant
tunnelling. Low index isiands (b)&(c): If the high and low index regions are reversed, bound ray paths
are much more difficult to find (particularly for rays at arbitrary angles to the horizontal), and any
resulting micro-resonances will have very low Q factors.

number of bound rays, i.e., rays which are trapped by total internal reflection (TIR). If
closed paths can be found for which (at a given frequency) the round-trip phase change is
a muitiple of 2=, then localised resonances will appear. The Q-factor of these resonances
will depend on the rate of leakage of energy into the low index surrounding medium. This
in turn is governed by the width of the angular plane wave spectrum of the beamlet
surrounding the trapped ray. For a very small resonator, this is farge, and a significant
number of plane waves will approach the boundaries outside the range of TIR. A square
resonator of GaAs surrounded by air is depicted in Figure 4a, together with its wavevector
diagram. The larger the index contrast, the smaller the inner circle, and the larger the
number of rays within the high index material that are confined (in other words, the wider
the range of total internal reflection). A perfectly confining resonator would be one for
which there is no inner circle, resulting in a TIR range of 360°. This occurs when the
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resonator is surrounded by a perfect metal (dielectric constant negative).

The impossibility of realising perfect resonators using dielectrics means that the
conditions for resonant tunnelling, across a periodic array of identical high index islands,
are only ever approximately attained. Even so, under the correct excitation conditions
{frequency and wavevector), the light will tend to be pulled into the high index regions,
resulting in a local narrowing of the band gap and a radical shifting of its mean position
(caused by a sudden change in perceived refractive index). The higher the index contrast,
the more dramatic is this effect. It is therefore desirable, for attainment of a good band
gap, to avoid the appearance of micro-resonances as far as possible - one does not wish
to prevent the natura! tendency of the light to redistribute itself into high and low index
regions on (respectively) the low and high frequency sides of the band gap (see section
4.4), As Yablonovitch has demonstrated, micro-resonances may be avoided by building
structures in which low index islands are imbedded in a high index medium (Figure 4bé&c).
This results in a high degree of interconnection between the high index regions, effectively
reducing the probability of finding strong micro-resonances - and even if they do exist,
they will have very low Q factors owing to the high probability of finding unbound rays.

2. PHOTONS AND ELECTRONS

In this section, comparisons between electrons and photons are drawn in a number
of contexts relevant to the chapter’s aims, with special reference to the wave equation and
the concept of effective mass in uniform isotropic media.

2.1 Wave Equation for Electrons and Photons

Schrodinger’s equation, in time-independent form, for electrons of total energy H,
in an arbitrary potential U is:
2
[-;_vz + U(r)} v = H ¢ 0

€
4

where m, is the electron rest mass. In the absence of free charges in non-magnetic
materials, Maxwell’s equations (SI units) take the form®:

¢H
V<E = -p —
Ho ot

VxH = eoer—aE (8)
ot

Vi(eeE)y = 0, V(pH) = 0

where the electric and magnetic fields are E and H, the free space magnetic permeability
and dielectric susceptibility g, and €, and the relative dielectric constant is ¢,. Noting from
(1) that 8/9f = jw, the following time-independent wave equation for the electric field E
is obtained after some straightforward manipulation:

V2 - kYem)-11]E - V[(Ving @} E| = K’E. 9

The terms in (9) may be regrouped in a number of equivalent ways; we have chosen to
separate out the dielectric susceptibility (¢,—1) and interpret it as being related to potential
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energy. A dimensionally accurate comparison may be obtained by using the arbitrarily
defined mass:

m, = hwfc? (10)
which yields:
{-2’:0\72 + Uo(r)}E ~ %::V[{Vlne,(r)}-li] = HE (11)
where
U = -wolem-1, H - o (12)

are the potential and total energy terms respectively; the subscript "o" means optical. The
definition of "potential energy” yields U,=0in vacuum, which seems reasonable; note also
that U, is negative in a dielectric material. This implies that, unlike electrons which are
free only if H, exceeds U, photons are free in a dielectric at all energies since both U, and
H, scale with optical frequency. Photons can of course be trapped (also at all energies) in
a cavity filled with dielectric and surrounded by a perfect metal for which e, <-—1;
however, this type of cavity has little practical utility since metals exhibit high dissipative
losses at optical frequencies. The other obvious difference between electrons and photons
lies in the vector nature of the optical fields, which produces an extra non-zero term if the
susceptibility has a non-zero gradient in the direction of the electric field - something
which will normally happen in photonic band gap materials. Its effect is to couple together
the cartesian field components, making the calculation of band structure for photons
significantly more difficult than for electrons. If it did not exist, each field component
would satisfy a scalar Helmholtz equation independently, greatly reducing the complexity
of the problem; the electron and photon wave equations would then be formally identical
at constant optical frequency.

2.2 Effective Mass of Electrons and Photons in Uniform Isotropic Media

It is known that the electronic effective mass is profoundly affected by the presence
of a periodic potential?’; in order to understand the implications of this for photons in PBG
materials it is essential first to explore and understand the comparison in the simpler non-
periodic case of a uniform isotropic medium. The matrix elements of the reciprocal
effective mass tensor are given by:

1 1 3&*H

_ 1 P
m| W ok,ok, h okok

ij i

(13)

Evaluation of the effective mass tensor thus requires an exact knowledge of the dispersion
relations, which take the simple forms:

Wk k2 k>
ey kD)

2m£

H = (14)

4

for electrons and
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Table 1.

Electrons and Photons in Isotropic Uniform Media

compared item

electrons

photons

particle type

occupancy per state

fields

potential energy

total energy
dispersion relation
effective mass
evanescence at normal
incidence (i.e., 3=0)?
polarisation effects

critical angle &,

in potential well at §=0

in potential well at §>0

fermion

two {opposite spins)

scalar

U/ ~ constant {effective
one-electron potential)

H, variable
K2 = 2m(H,— /K

rest mass m, (scalar)
yes (if H, small enough)

none

arcsin [(H,— U))/(H,—U,)]
depends on H,

tight binding to free
electrons as £, rises

tight binding to free
electrons as H, rises

boson

limited only by material
breakdown or nonlinearity

vector

U, = —hole,—1)
{our chosen definition)

H, = fuw
k2 = (wnic)?

oo (direction of travel)
2mn {for deflection)

impossible in dielectrics

Brewster’s angle

arcsin (n,/my}
independent of H,

no binding possible in
dielectrics

discrete tightly bound
modes beyond 8,

a

he 12 .2 .2
H = —M--chﬂfc),ﬁkZ

(15)

for photons, where # is the refractive index. Deriving the reciprocal effective mass tensor
is straightforward, and after diagonalisation leads to the principal forms:

[ym] = (Um)1 (16)
for electrons (where I is the identity matrix) and
100
[m] = = lo 10 an
2mn
000

for photons travelling in the z-direction (the quantity m, was defined in (10)). The electron
effective mass is, as expected, a scalar quantity equal to the rest mass; electrons can be
accelerated equally easily in any direction, including the direction in which they are
moving. For photons, however, the situation is considerably more complicated. It turns out
that the effective mass is infinite in the direction of propagation, and equal to 2m,n in the
two directions orthogonal to this; the implication is that photons can be deflected but not
accelerated. The profound differences between photons and electrons are all the more
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extraordinary when one considers that the only difference is a square root in the dispersion

relation! The comparison between electrons and photons in uniform isotropic media is
summarised in Table I.

3. ANALYSIS OF SINGLY PERIODIC STRUCTURES

We present now a full two-dimensional treatment (using the translation matrix
method®®) of singly periodic multi-layer structures, with an emphasis on re-interpretation
(using the concepts of photonic band structure) and building up intuition. Periodic
structuring of a medium can affect the density of states profoundly, either reducing it to
zero within the photonic band gaps, or increasing it and creating new states with unusual
properties in the vicinity of the photonic band gaps. A full two-dimensional treatment
permits the building up of a canon of basic concepts useful for understanding these effects
(and others) in more complicated multiply-periodic two and three dimensional structures.
It provides an excellent introduction to the subject, illustrating simply and precisely a
number of key physical concepts such as the tightly bound and nearly-free photon
approximations, the Brillouin diagram, the constant energy (wavevector) diagram, the
factors governing the appearance and disappearance of the band gaps, and the role of
effective mass. In the alternative language of optics, photonic Bloch waves are the normal
optical modes of a periodic structure, in the same sense that plane waves are the normal
modes of free space.

3.1 Translation Matrix Formalism

This section contains a detailed mathematical account of the translation matrix method, and
may be omitted al a first reading; it provides a source of the mathematical tools needed
If the reader wishes at some later date to treat a specific case.

We consider a periodic medium composed of alternating planar layers with constant
refractive indices | and n, (n, > n,) and widths A, and #,. The stack period A is the sum
of #; and h,. The same geometry as in section 1.2 is used: cartesian axes are oriented with
y normal to the layer boundaries and z along the layers (Figure 5); there is no field
variation with x. As already pointed out, one key feature of the planar geometry is the
separation of the electric field into TM and TE polarization states, with E.=H =H =
Oand H, = E = E_ = 0 respectively. In each case, all field components can be expressed
m terms of the surviving x component (denoted here by f), which itself satisfies a
Helmbhoitz equation in each layer (; = 1,2):

2
L/ (Kn2-p)f - 0 (18)
dy:" J 7

{(where § is the propagation constant in the 7 direction) with scalar boundary conditions at
the interfaces:

ho= ks A (19)

the TE and TM polarisation parameters £ , are defined in (5). The general solution for the
field distribution f;*(v) in the j-th layer of the N-th period s a superposition of the two
field expressions in {1}, and can be written in the form:
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Figure 5. Geometry of muiti-layer stack (7, > n,), and the related wavevector diagram. The

directions of the rays in each layer are easily predicted using the wavevector diagram at constant 8.
Under the first Born approximation, the reflections at each interface are very weak, the incident ray
can be assumed undepleted, and single scattening dominates. The primary ray is illustrated with a
somewhat thicker line.

. N
ff(y) = ajN cos[pj(y—yjN)l + bY w (20)

! gpA

where a; ¥ and b; N are arbitrary constants, y is the value of y at the centre of the j-th layer
of the N-th perlod and p; was defined in (2) In departure from previous treatments (e.g.

reference 29), the functions in (20) have been carefully chosen for algebraic convenience.

They are entirely real for all real values of 8% even if p; 1s imaginary, are well-behaved as
pj changes sign, and retain two degrees of freedom in the special case p;=0. Also waves
within a stop-band are specified by entirely real values of the two constants aj and b,
which have the same units. A two-component state vector made up of these constants
completely specifies the field in the stack. The state vector in one layer can be expressed
in terms of the state vector in the corresponding layer in the previous period by operation

with a 2 X2 translation matrix:
2! o
[bjmz] = M {ij] ' @D
i il

By expressing the fields in (20) with respect to a local origin in the centre of a layer
(instead of, for example, at the edge), the symmetry of the structure is maximally
exploited, leading to a matrix M with eigenvalues and eigenvectors in a particularly simple
form:

_ (A B] @2)
C A}’

where the elements are given in Appendix Al. The eigenvalues and eigenvectors are:
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A, = A+ {BC; (23)

VB
- ()

where BC = 4%--] and detfM] = 1, i.e., M is unimodular. This implies that the product

of the eigenvalues A, and A_ is unity, so that they can without loss of generality ve written
as

A= exp (+/k,4) , (25)

where ky 1s to be determined. Thus the state vector of each component field satisfies
a -N*l a.N
[ijfrlJ = (bJN] exp(ijkyA) . (26)
i i

The general field in the structure (for given w, 8 and polarization) is expressible as a
superposition of two Bloch waves with field distributions;

LOe7™ = B.(3) exp| -z + k)], 7

where the function B, (y) is periodic with period A and the Bloch wavevector k, is given
by:

k _ cos’ IA ] (28)

If k, is real, the Bloch waves in (27) are progressive and may transport energy normal to
the layers as well as along them. If, however, values of o and 8 exist for which the
magnitude of 4 exceeds 1 (or BC < 0), &, has an imaginary part. The Bloch waves are
then evanescent, growing or decaying exponentially from period to period normal to the
layers, while progressing along them. If the structure is infinite (in the y-direction), these
waves cannot be supported and no real states exist: the ranges of w and 8 where this occurs
are the photonic band gaps. In a truncated structure, however, they play the role of
tunneliing fields; for example, for incidence of a travelling piane wave, the stack behaves
as a familiar multi-layer reflector. If the external field is itself evanescent, and matches to
a Bloch wave decaying into the stack, a photonic surface wave can form (see section 9.1).
The band edges between real and virtual states (i.c., travelling and evanescent Bloch
waves) occur when 4 = + 1: an equivalent condition is BC = 0,

Fach Bloch wave can alternatively be expanded in terms of an infinite number of
plane waves whose wavevectors are related by Floquet’s theorem:

k, = P2+ (k+nK)§ (29)

where K = 27/A is the reciprocal lattice wavevector (or grating vector). This permits us
o express B, (y) in the general form:

B.(») = ) Slexp(-jnky) (30)
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where the S,* are the complex plane wave amplitudes. Equations (28) and (29) may be
used directly to plot the Brillouin and wavevector diagrams for the structure, as is done
in later sections.

3.2 Normalised Parameters

An appropriate set of normalised parameters for the multi-layer stack treated above
includes just three normalised parameters: a normalised frequency v, an index ratio ng and
an relative thickness 7:

v o= kmyA,  my o= (min), ot o= (B4}, (31

ay

where n,, is the weighted average index, defined by:

n, = (nh, + nh)lA (32)
and the indices of the layers are n, >n,. For convenience, a normalised version of 8 will
occasionally be used, in the form

b = BA (33)

As we shall sometimes discuss electrons in a stack of alternating high and low potentials
U, and U,, the following definition of average potential will be useful:
U, = (Uh + Uh)lA . (34)
In the next three sections, we use the above analytical expressions for k, to explore
the behaviour of Bloch waves in singly periodic structure as a function of frequency and
3. In section 4, Brillouin diagrams for electrons and photons at §=0 are discussed,
together with the physical origins of the band gaps and some other issues. In section 5, the

wavevector diagram at constant w and variable 8 is introduced, and in section 6 the
behaviour at obligue incidence treated.

4. SINGLY PERIODIC STRUCTURES AT NORMAL INCIDENCE (8 = 0)
4.1  Brillouin Diagrams

The Brillouin diagram?>2* for electrons is a plot of all the permitted real
wavevectors as a function of electron energy. The photonic equivalent is a plot of
wavevector k, as a function of optical frequency. These diagrams are plotted in Figure 6
for normal incidence in a particular case (oblique incidence is treated in section 6). For
very weak modulation (n; = n, = n,, and U} = U, = U,), the diagram reduces 10 a
series of parabolae for electrons:

2m, A
., = H = u_+k+2nn)
}'12 € av Y
(35)
2meA2
173 =
av })2 av

where A, is the normalised total electron energy, and to a series of straight Tines of slope
+1 for photons:
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Figure 6. Brillouin zone diagrams for @ = 0 (normal incidence) on a multi-layer stack for
electrons (upper) and photons (lower). The dotted lines are asymptotes, corresponding te a structure
with the same average properties but a very weak modulation. In the electron case, 7 = (.5, 1, = 25
and &, = —25. In the photon case, = 0.741 and r, = 0.286 and the integers on the v/m axis
correspond to the Bragg conditions; the band gaps are all of comparable width (because "potential"
and "total” energies both scale with frequency), and the asymptotes straight lines as expected. In the
electron case, the band gaps narrow with increasing h,, and the asymptotes are parabolic; note the

appearance of a band window - a regjon where propagation is unexpectedly allowed - below the base
of the parabolae.
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v = i(kyA+2nn). (36)

The integer n in each case refers to the n-th plane wave in the expansion in (30). When
the single-pass optical path length across a unit cell, calculated using the components of
wavevector p, and p, normal to each layer, is equal to an integral number m times , the
m-th order Bragg condition is satisfied:

p,(1-DA + p,7tA = mn . (37

This condition originally arose in x-ray diffraction®%3, where the modulation depth of the
periodic scattering potential is very weak, and in fact it assumes that the first Born
approximation holds, i.e., that each interface contributes only a very weak reflection and
that secondary and higher order reflections are negligible (see Figure 5 for an iltustration
of this). This is clearly not the case in a photonic band gap structure with very high
modulation depths, when the Bragg condition becomes uncertain, spreading out over a
range of frequencies (as discussed in section 4.4 below). Thus band gaps form at the
intersections of the parabolae and straight lines, and a band window appears (for the

parameters chosen) in the normally forbidden energy range H, < U,, for electrons (Figure
6).

4.2  Group Velocity and Density of States

Just as for electrons in a finite crystal, the photonic states in a finite periodic
structure are quantized (although they may be smeared out by strong coupling to the
outside world). The density of states becomes large at the band edges since the wavevector
k, there changes rapidly with frequency; states that would appear within the band gap if
no periodicity were present are pushed to higher and lower frequencies, where they cluster
in large numbers at the band edges. By reducing the density of states to zero within the
band gap, the formation of photons is blocked, which can be used to suppress an unwanted
radiative electronic transition’. The zero slope at the band edges implies that the group
veloc1ty vanishes, which makes sense since within the band gap photons cannot travel
There is of course a reciprocal relationship between density of states and group velocity??
however, unlike in the electron case when two electrons are permitted per state, each state
can accommodate as many photons as desired (before the material becomes nonlinear or
breaks down).

4.3  Expectation Values of Potential; Electrons and Photons

It will be useful, as preparation for the discussion of the origin of band gaps in
section 4.4, to have supplemented the Brillouin diagram with plots of the expectation value
of potential for both electrons and photons in a simple stack of alternating layers of high
and low potential; this quantity varies according to how strongly the photons/electrons are
redistributed within the unit cell. It also provides graphic illustration of some of the
essential similarities and differences between electrons and photons in a periodic potential.
For simplicity, normal incidence (8 = 0) is assumed in each case, rendering the photonic
solutions for TE and TM polarization identical. To facilitate the comparison, the wave
equation is recast in a one-dimensional form common to electrons and photons:

—-A?

d2
~u() Y = ey (38)
dy?



where the normalised potential energy u(y) is given by:

2
u(y) = 2—':2-"—0(» or -vi{e(y-1ynl (39

and the normalised energy eigenvalue e by:

e = h, or vz/jrz2 (40)

e av

for electrons and photons respectively. The expectation value of u( y) in each case is:

<p> = M (41)
<¢|¢>

where the averaging is carried out over a unit cell. Inside the stop-bands, where the fields

200

150
= 100
50 -
0 ¢
8 -2 -1 0 1t 2 3 -10
KA/ <u>
Figure 7. Wavevectors k,A/r and expectation values of potential energy <> for electrons,

plotied against energy eigenvalue /s, (r = 0.5, 4, = 0 and u, = 50). The upper and tower bounds of
<u> are constant (oc lattice potentials). Note that <u> is consistently low on the low ¢ side of the
band gaps, that the effect of the periodic potential diminishes with increasing total energy, leading to
<u>-»u, at high energies.

are evanescent, expectation values cannot be calculated (the field grows/decays from cell
to cell) because there are no real states; however, in the interests of following the
redistribution of photons, the fields ¥ in (41) are multiplied by exp(+«y), where o =
Im(k,) is the evanescent decay rate of the Bloch wave. This compensates for the
exponential growth/decay of the field from cell to cell.

First, for electrons, the Brillouin diagram is plotted in the form &, versus k A/xw
(Figure 7). When the total energy %, is less than <u >, the waves are evanescent. The
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lower and upper bounds on <u> are given by the minimum and maximum potential
energies present in the lattice: u; and u, respectively. For total energies h, < u,, the tight
binding approximation holds, and substantial variations in <u#> occur as the electrons
shift between regions of high and low potential energies. As A, increases, the number of
cycles of field within the layers increases, and <> tends towards the mean value u,,.
The expectation potential is consistently lower on the low energy band gap edges, and
higher on the high energy band gap edges. At higher electron energies, the presence of the
periodic potential becomes less and less important, and the fluctuations in <u> smaller
and smaller; this reflects the fact that u( y) is independent of e for electrons.

Second, for photons, the upper and lower bounds of the potential scale with the

Figure 8. Wavevectors k. A/m and expectation values of the dielectric susceptibility
<e,—1>/n,’, plotied against ¥/x (r = 0.7878, n, = 3.5 and n, = 1). The upper and lower bounds
of <¢,—1> are (nlz—l) and (nzz— 1) respectively. Note that, unlike in the electron case, <e, —1>
is not consistently low on the low e side of the band gaps. The microscopic field intensity profiles for
the five marked points {a to e from low to high frequencies) are available in Figure 9, together with
the profiles for five similar points ( ftoj - not marked in owing to lack of space) around the second-
order band gap at »/m = 2.

optical frequency (eck), so it is more convenient to plot <¢,—1>, which we normalise
to n, % for consistency with Figure 6 the quantity e is replaced with v/x. The diagram
(Figure 8) is very different; unlike in the electronic case, tight binding and nearly free
energy regions cannot co-exist on the same diagram, since the ratio between potential and
total energy does not alter with increasing ». Note that for photons the expectation value
of dielectric constant does not change consistently from high to low across the band gaps.
Illustrative field intensity profiles across the unit cells for different points on the diagram
are given in Figure 9.

We note in conclusion that a completely different comparison may be made at
constant optical frequency (i.e., & = constant). Under these circumstances, a diagram
formally identical with the electron case in Figure 7 may be obtained for photons when



8> 0, in which case for TE polarization (38) can be rearranged as:

2
—Azd su' My = ey (42)

dy?
where u' = —k%, and e’ = —f°. Under these circumstances the "potential energy" is

independent of the "total energy”. We emphasise that this makes use of a completely
different analogy to that in section 2 and the rest of this section.

Figure 9. Field intensity distributions at points in Figure 8, as the first and second order Bragg
conditions are traversed (a to j). The redistribution of photons into high and low index regions gives
rise to frequency-dependent expectation values of dielectric constant (also Figure 8), and can be used
to explain to appearance of a photonic band gap.

4.4  Origins of Band Gaps

The accepted characteristic of a band gap is that it appears in regions where
propagation is normally allowed (although see section 6.2). This statement is equally true
of electrons in a semiconductor and photons in a PBG material. It is interesting at this
point to ask why electrons in the valence band have restricted mobility (proportional to the
reciprocal of the effective mass), while photons in a photonic "valence" band are free to
move. The essential reason is that for photons the potential and total energy both scale with
frequency; thus for 3 = 0 it is not possible to move from nearly free (conduction) to
tightly bound (valence) photons by changing the total energy. If, however, the optical
frequency is fixed and @ is varied instead, a perfect analogy with electronic band theory
is obtained as pointed out above (in equation (42)).

Perhaps the simplest qualitative explanation of band gap formation starts with field
microstructure. As the Bragg condition is approached, the periodic structure becomes
resonantly imaged by the light®. This occurs as the wavelets reflected at successive grating
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planes become more and more in phase, allowing them to build up into a strong reflected
wave which interferes with the incident wave to produce a periodic image. If this image
is invariant as the light progresses through the grating, it is a picture of a Bloch wave. The
band gap then arises through the interplay of two sometimes conflicting requirements: 1)
the light must produce an image with the same period as the structure; and 2) it must
achieve this despite being redistributed by interference into regions of high or low
dielectric constant.

As the band edge is approached for normal incidence (3 = 0) and the image
becomes resonant with the periodic structure, the expectation value of dielectric constant
<e¢,> increases or reduces according to the position of the fringes relative to the grating
planes (section 4.3; Figure 8). At exact Bragg incidence, N2n,, = A, suggesting that a
perfect image can form; however, if this were so, interference would push <e, > away

g
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Figure 10. Diagram illustrating how wavelength-dependent changes in effective refractive index

permit the Bragg condition to smear out over a band gap - a range of wavelengths limited by the
degree to which photons are redistributed into high and low index regions.

to higher or lower values, thus altering the fringe period and ruining the image. What
happens in practice is that the fringe pattern forms neither in nor out-of-phase with the
grating, allowing <e, > to reduce or increase until the correct period is found, i.e., until
the real part of ky/<e, > exactly equals K/2. The penalty for this trickery is that the
associated Bloch wave becomes evanescent - a consequence of the fact that a true image
cannot form at an arbitrary phase to an object. Exactly on the band edges, it may be shown
that ky/<e,> = mK/2 where m is the order of the Bragg condition; outside the band gap,
moving away from the Bragg condition, fringes of the correct period are produced, but the
image becomes increasingly less visible (this trend is apparent in Figure 9). Note that
within the band gap, because the image is highly visible, the fields are zero at one or more
points within each unit cell; this forbids energy flow across the layers, which is another
way of stating that the group velocity normal to the planes goes to zero>®37. The position
of the band edges can be crudely explained by generalising the first order Bragg condition



to allow for wavelength-dependent changes in effective index Aot

A = 2n,(1)A (43)

which is based on the notion that V' <¢,> is related in some monotonic (but not
straightforward) manner to n . This generalised Bragg condition is satisfied over a range
of wavelengths given by the maximum and minimum values of 2AV/ <€, >, yielding the
positions of the band edges; the concept is illustrated in Figure 10. The fringes are out-of-
phase with the grating at the high frequency band edge (photons concentrated in low index
regions), and in-phase at the low frequency band edge (concentrated in high index regions).
Note that these simple arguments are less useful at higher order Bragg conditions, when
the field microstructure becomes much more complicated; indeed. the band gap can shrink
to zero (see section 6.3) for a number of reasons.

2 I[ . [ T
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& / ,
~ f |
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b/x
Figure 11. Example of wavevector diagram. The upper and lower shaded regions are higher

order Brillouin zones, which are exact replicas of the first zone. A single point on a curve within the
first zone brings with it all corresponding points within all the other zones; the wavevectors
associated with these points are those of the complete set of plane waves needed to form a Bloch

wave - see (30). The group velocity of the Bloch wave points in the direction of the normal (equation
(44)).

5. THE WAVEVECTOR DIAGRAM

Most of the important features of two-dimensional propagation of photonic Bloch
waves in periodic structures are usefully summarised on a wavevector diagram®®, which
is a plot of the locii of allowed real values of k, against § for a given w and polarization;
it may be calculated using (28) and (29). A simple example is given in Figure 11. The
resulting curves are known in x-ray diffraction as dispersion surfaces®!, and are related to
constant energy surfaces in electronic band theory?’. The diagrams are symmetric in g,
periodic in &, because of the Floquet/Bloch theorem, and symmetric in k., since for every
value of &, there is a value —k, corresponding to a Bloch wave progressing in the opposite
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direction. The diagram reveals the location of the stop-bands for a particular stack. A
particularly useful feature of the diagram is its ability to predict the direction of the group
velocity, via the relationship:

v, = Yo (44)

which shows that v, is oriented normal to the curves in wavevector space, pointing in the
direction of increasing frequency (note that it ceases to have an obvious meaning for
evanescent waves, when the wavevector is complex).

L T DB
0.0 N -" ' ) L s ! L J
0.0 0.5 1.0 1.5 2.0
b/m
Figure 12. Portion of the wavevector diagram at » = 1.2} for n, = 1, 0.8, 0.6 and 0.4,

keeping n,, constant by adjusting 7 appropriately. At np, = 0.4 the left hand branch of the stop band
has vanished and the right hand pass band has considerably narrowed. The imaginary parts of KAfm
for pure real 3 are also plotted.

In Figure 12 the diagram is plotted for a variety of values of ng. Notice how it is
possible to suppress the inner (left hand) stop-band branch at high modulation depths (¢.g.,
n, = 0.4), when the right hand stop-band branches become squashed-up and steep, lying
well outside the circle corresponding to the average index in the stack (this is linked to the
appearance of photonic band windows, and is discussed in more detail in section 6.2). For
@3 values within a stop-band, it is also instructive to plot the imaginary part of k,, which
gives the decay rate of the Bloch mode field in the y direction.

It is of critical importance in optics to be able to predict what waves will be excited
inside a periodic structure for an arbitrary incident wave. The wavevector diagram is ideal
for this purpose; by superimposing the diagrams for each medium, and requiring the
wavevector components tangential to the local boundary to be conserved, the complete set
of travelling waves on each side of the boundary can be found®’. The direction in which



the light proceeds within the grating is then given by the normal to the dispersion surfaces.
The method is described in more detail in section 7.2, where it is used extensively in the
discussion of devices and two-dimensional propagation.

6. SINGLY PERIODIC STRUCTURES AT OBLIQUE INCIDENCE (8 > 0)

In this section, the effect of oblique incidence (8>0) on the band gap widths and
positions is explored. This is an important issue if singly periodic stacks are to be used
in the control of spontaneous emission in lasers’’*° (see also other chapters in this
volume). In the ensuing sub-sections, band-edge diagrams are discussed, the idea of a
photonic band window introduced, the conditions causing the PBG to shrink to zero
identified, and finally the Brillouin diagram at § = constant is used to illustrate how under
these conditions photons can resemble electrons.

6.1 Band-Edge Diagrams

It is useful to know in detail how light will behave in frequency regions outside the
main photonic band gap. For example, although the creation of a photonic band gap may
successfully suppress an intermediate radiative transition in an up-conversion laser, higher
order band gaps could, if not properly understood and controlled, interfere with the laser’s
performance. For this and many other reasons, it is useful to plot the band edge positions
on a diagram of normalised frequency versus 3. The band edges are located at points
where the product of off-diagonal matrix elements is zero, i.e., BC = 0 in (23). The
resulting diagram (Figure 13) divides up into three main regions: a photonic band gap
region where free propagation is normally expected but gaps appear; a photonic band
window region where the norm is evanescence but windows appear (the light being tightly
bound inside each high index layer); and a cut-off region where propagation never occurs.
The first two of these regions have analogies in the nearly free electron and tight binding
models of electronic band theory?*24,

6.2  Photonic Band Gaps and Windows

Two complementary views of photonic band structure are possible: It is either a
sequence of band gaps in a frequency range where light is otherwise free to propagate; or
a sequence of band windows in a frequency range where light is otherwise localised, i.e.,
evanescent. Which of these views is most appropriate depends on our understanding of the
words "otherwise free to propagate” and "otherwise localised.” One interpretation makes
use of the average index; however, as already mentioned, it is difficult to assign this a
useful value owing to redistribution of photons into regions of high and low dielectric
constant {for example, the multi-layer stack whose oneg-branch wavevector diagram is given
in Figure 12 with ny; = 0.4 can be viewed as a material with a refractive index that
depends strongiy on angle). Even so, some qualitative observations based on refractive
index may be made. It is clear that tight binding cannot exist in the range 0 < 8 < &n,,
where the light is free to propagate in both layers; this is definitely a photonic band gap
region. If, however, 8 exceeds kn,, the light in the low index layers is evanescent, and
each high index layer will support a micro-resonance (a waveguide mode). The light is
then able to progress across the layers by a process of resonant tunnelling®?. As the value
of 8 increases. the light is more and more tightly bound inside each high index layer, and
this tunnelling process becomes more difficult and slower; its efficacy depends on the
width of the low index layers, i.e., the geometry of the stack. At infinite interlayer
(atomic) spacing, the bound states correspond exactly to guided modes, with infinitely
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Figure 13. Upper: Band-edge diagram (TM polarization) in a multi-layer stack with 7 = 0.65

and n, = 0.286; Lower. guided modes of a single high index layer; note free, bound {only points
lying on the curves are permitted) and cut-off regions. Regions where propagation is forbidden are
shaded. The higher order bound modes turn on at different values of »/7. In the stack, photonic band
gaps (Bragg conditions) form in the free region and photonic band windows (resonant tunnelling
between bound modes) form in the bound region, The transition occurs at § = km,. The band gaps
shrink to zero at the Brewster condition (dotted line ¢), and at anti-resonances (two illustrative
sequences indicated by the dotted lines a and b); see section 6.3 for details.

sharp micro-resonant frequencies. As the interlayer spacing falls, the bound states begin
to interact, their resonances smearing out over a range of frequencies to form a photonic
band window. If the interlayer spacing is small so that considerable overlap exists between
the photonic "orbitals,” photons are relatively free to travel across the layers: the nearly-



! . 1.0
> [ detail
1 L
& [
™. I
< ¢]
- [
e i
,1 -
2
_3 L PN SR PR N “10
3.510 3.515
b/
_ o = ——

Figure 14. Upper (a): Wavevector diagram for r = .35, ng = 0.4, v = 0.977; resonant
tunnelling between the high index layers is very slow in the tightly squashed-up pass band near b/r =
3.5, and less so in the band near b/r = 2. Lower (b}: A schematic diagram of the tunnelling process
for excitation of a single "waveguide"; note that two pulses emerge above and below the initial guide
in the vicinity of which some light remains {group velocity is horizontal at kAIm = +1 & 0).

free photon approximation then becomes valid again.

In the tight-binding PBW regime, the group velocity direction (but not its
magnitude) changes very little over each half of the Brillouin zone (Figure 14a). This
creates, in optical terms, a highly anomalous situation where the phase velocity changes
rapidly (thereby permitting good spatial resolution of small objects) while the group
velocity is constant in direction (thereby avoiding Fresnel diffraction). This provides a
physical basis from which to interpret an experiment on an array of parallel channel
waveguides reported by Garmire et al’?. In that experiment, light was coupled into a single
central waveguide, and tunnelled sideways into the neighbouring guides; the waveguide
array is thus "imaged" by the light, while the group velocity slowly carries the power
sideways across the waveguides via resonant tunnelling (Figure 14b). An alternative
nterpretation of this experiment in terms of spatial Wannier functions is briefly introduced
in section 7.2.

Finally, we should like to mention the possibility of creating a PBW in a metal
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containing a periodic array of dielectric micro-cavities®. If these micro-cavities can "talk
to each other," light will be able to tunnel through the metal in narrow frequency ranges
around the resonant frequencies of the cavities. Alternatively described, a PBW will open
up in regions of the spectrum where certain photonic states, their periodic field intensities
peaking in the interstices between the metal walls of the cavities, are able to sneak through
the structure without attenuation. In a real metai at optical frequencies, dissipation is likely
to be a problem, but the concept is nonetheless valid.

6.3  Points of Zero Band Gap Width

It is important to understand the physical circumstances under which an otherwise
wide photonic band gap can close up. Two different things can cause this to happen. The
first is co-incidence of a Bragg condition (37) and the Brewster condition (3), which occurs
when the rays in each layer are incident on the interfaces at Brewster's angle, reducing the
reflection at each interface to zero, this happens only when the light is p-polarized (TM
case). The second effect is more subtle, but just as simple; and it is even more important,
since it occurs for both TE and TM polarized light. It happens when the anti-reflection
condition discussed in section 1.2.5 applies concurrently to both layers; this occurs when
the optical path lengths across each layer are separately a multiple of « (m;7 and m,7 in
layers 1 and 2, m, and m, being integers). At the same time, as stated mathematically in
(37), the m-th order Bragg condition occurs when the single-pass optical path length across
a unit cell is equal to mw. The points of zero stop-band width (Figure 13) therefore occur
when both these conditions are simultaneously satisfied, i.e., when:

h h
Pho PR o mem, = om 45)
m m,
Solving these equations yields:
p = M ., | & (46)
1-1 2’-1
where
a = m(l-timt (47)

is used for convenience of notation. This corresponds to a situation where the total
reflection from each unit cell is zero, i.e., when an anti-reflection resonance appears
simultaneously in each layer. These points of zero stop-band width are much more
common at higher frequencies, which explains why complete photonic band gaps are much
more difficult (if not impossible) to find in higher order energy bands. In both cases,

M_Mfzi(;(l’], 48)

and the multi-layer structure behaves as a uniform medium with an average index different
from n,, but no Bragg reflection. It may be possible to defeat (or at least mitigate) this
effect by constructing more complicated unit cells with more than two different materials,
such that the ratios of optical thicknesses are never simultaneously rational numbers.
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6.4  Brillouin Diagrams for finite 8

We now turn our attention to the Brillouin diagram for photons under the slightly
artificial circumstance when the momentum § along the layers is constant but not zero
(Figure 15). This form of oblique incidence turns out to be useful for iHlustrating how
photons can become increasingly free as their total energy increases; the photonic states
track along a vertical line in the band edge diagram (Figure 13). As the energy H,
increases, the real photonic states move from being first cut off, to being concentrated in
narrow band windows within an otherwise cut off region, to being permitted everywhere
except within the photonic band gaps; the photons become increasingly less tightly bound.
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Figure 15. Brillouin diagram for photons at » = 3A = 1.988x, with r = 0.741 and np =

0.286 (TE polarisation); the dotted lines are asymptotes, corresponding to a structure with the same
average index but a very weak modulation (n; —= 1). The diagram is reminiscent of the electron case
at normal incidence (Figure 6), although the asymptotes are this time Ayperbolic with frequency; the

pass bands widen with increasing frequency, and a band window opens up below the base of the
hyperbolae (section 6.2).

As before, it is useful to plot the Brillouin diagram for the case when the scattering from
each interface is vanishingly small; under these circumstances, the relationship between v,
8 and &, for the n-th plane wave in the expansion (30) is given simply by:

v o= ‘/bz + (kyA+2mt)2. (49)

Note that for #° > 2, the photons cannot normally (see section 6.2) propagate into the
stack, although they will still progress along it with wavevector 3. The appearance of real
wavevectors within the cut-off region is intriguing, as it is reminiscent of the behaviour of
electrons discussed in Figure 6. These wavevectors are caused, as discussed in section 6.2,
by the excitation of sharp micro-resonances where the light is concentrated almost entirely
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within the high index layers. This permits a real wave to exist for combinations of energy
and wavevector where, based on a mean index n,,, evanescence would normally be
expected.

7. TWO-DIMENSIONAL PROPAGATION

The aim in this section is to discuss the main features of two-dimensional
propagation in singly periodic media, and to present some illustrative experimental results
taken from work on periodic planar waveguides. First of all a Newtonian effective mass
method is developed to handle the propagation of light in structures with a slowly varying
average dielectric constant. Experimental results are then presented on this phenomenon,
together with examples of refraction, diffraction and interference. Extensive use is made
of the wavevector diagram introduced in section 5. All the tools used can be extended
without difficulty to multiply periodic structures whose wavevector diagrams are known.

7.1 Effective Mass Method For Non-Uniform Periodic Structures

Near a band edge, the effect of the lattice potential on the motion of an electron can
be represented by replacing the electron rest mass with an effective mass me*. If the
electron is subjected to an external force, its motion can then be modeiled by Newton’s
laws for a particle with mass me*. This effective mass method is also known to be very
useful in analysing the behaviour of electrons in non-uniform crystals containing slow
variations in mean potential, such as can happen around dislocations, inclusions and other
structural defects?325. Under these circumstances, in the absence of an external electric
field, the total electron energy is constant. We now develop an equivalent method for
photonic Bloch waves in a periodic structure with a slowly varying average dielectric
constant (the photonic equivalent of potential - see (12)), and illustrate it in the next section
with experimental results on periodic planar waveguides. In both cases it is the curvatures
of the H—K Brillouin diagram that determine the elements of the reciprocal effective mass
tensor, via the formula stated in (13).

We have already seen in section 2.2 that there is a profound difference between the
effective masses of electrons and photons in uniform isotropic media; for photons, a
straightforward adaptation of (13) to the one-dimensional isotropic case leads to an
effective mass of infinity, since the curvature of the w—k diagram for free photons is then
zero. Although this reflects the fact that photons cannot be accelerated or decelerated in
a one-dimensional isotropic system, it is of little practical significance since to test it would
require the creation of a force field for photons - something which is trivial for electrons
(simply apply a voltage) but which is unknown for photons. As already pointed out (section
2.2), however, photons may be deflected, when they exhibit a finite effective mass of
2mn.

In periodic media, however, it turns out that electrons can acquire some of the
properties of photons (e.g., very large effective mass in the direction of motion), and vice-
versa (e.g., finite effective mass in the direction of motion}. In a PBG dielectric a slowly
varying average dielectric constant at fixed optical frequency plays the same role for
photons as an electric field does for electrons, permitting an effective mass to be defined
and a Newtonian model of their motion to be constructed. Note that other forms of non-
uniformity (pitch, refractive index difference) result in a variable effective mass and cannot
be treated using this approach. At constant optical frequency, the "mass" m, and the total
energy H, in (11) are constant, while the mean value of the potential U, is allowed to vary
slowly. For formal simplicity, we restrict the analysis to the TE case when the wave
equation is scalar. The Hamiltonian may then be written:
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H, - 2" {im]] (o} + W@ (49)

where {p} is the momentum and W, is the slowly varying potential left behind after taking
account of the periodic potential U, by using m,* rather than m, (i.e., the total potential
is W, + U, where U, is the mean value of U,). Deriving Hamilton's equations of
motion is now straightforward:

{p} -VH, = -VW,,

(50)

i

(6} = V,H, = [m.)](p]
where {p} is the position vector and V, represents the gradient in momentum space. After
differentiating the second equation and rearranging we obtain Newton’s equations of
motion with a force —V W,

15l = m[llm;] W, (51)

Notice that, owing to the tensor nature of the reciprocal effective mass, the acceleration
is not necessarily in the direction of the changing potential.

Figure 16. Sketch of the experimental set-up for exciting two-dimensional guided Bloch waves
in a periodic planar waveguide (140 nm thick film of Ta,0,, on a glass substrate, with an etched
corrugation of period 300 nm). A guided mode is launched by prism coupling.

7.2 Ilustrations From Experiments On Planar Waveguides

Periodic planar waveguides are ideal for studying Bloch wave propagation in two
dimensions>*>8, A sketch of the experimental set-up for excitation (by prism coupling) of
a typical corrugated planar waveguide is given in Figure 16; a narrow beam is launched
in the non-periodic guide region, travelling towards the periodic region, where it excites
guided two-dimensional Bloch waves that can be observed (via the scattered light from the
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Figure 17. Upper: Double (I,,) and single (fg) negative refraction at a parallel slab containing
a singly periodic structure; note the use of the wavevector diagram to match the boundary conditions.
Because the conversion is TE/TM, the asymptotic circles that cross at the stop-band centre have
different radii; this causes an asymmetric stop-band. Lower: Photographs of the effect in a corrugated
planar waveguide (slab width | mm). The grating lines are slanted upwards to the right as shown
schematically.

inevitably imperfect guide) by eye. In the experiments described in this section, the
waveguide is formed from a layer ~ 140 nm thick of Ta,O5 (index 2.12), deposited by rf
sputtering onto a glass substrate (index 1.472). For these parameters, solutions of (4) yield
guided mode refractive indices of 1.775 (TE) and 1.569 (TM) at 632.8 nm. The
waveguides were etched with a periodic pattern to form a corrugated upper surface with
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Figure 18, Point influence function for the fields in a singly-periodic medium (grating lines
horizontal). Note how the power spreads out over a region bounded by the upper and lower Bragg
angles (upper and lower edges of triangular region containing the fringes), and how interference
occurs owing to spatial superposition of Bloch waves from opposite sides of the stop-band.

a pitch of 300 nm.

Two things are needed to understand completely the propagation of a wave: its
phase velocity (for boundary condition matching); and its group velocity (for predicting
where it’s going). Both are available simultaneously on the wavevector diagram for the
periodic waveguide. As explained in section 5, the phase velocity is given by (w/|k|*k,
where k is the vector between the origin of wavevector space and a point on the
wavevector diagram; and the group velocity points normal to the curves, in the direction
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of increasing frequency (denoted by double-headed arrows in the figures in this section).
Since the waveguide supports both TE and TM modes, Bragg conditions exist for TE/TE,
TE/TM, TM/TE and TM/TM modal coupling. In Figure 17 the collision of a narrow TE-
polarized guided-beam with a parallel-sided periodic region is illustrated; the coupling is
between TE and TM polarized guided modes. The beams incident from the uniform region
have wavevectors that sit on the arc of the TE circle (points [,, off-Bragg and /gy on-
Bragg in the figure). The Bloch waves excited within the grating are found by matching

Figure 19a. Propagation of Bloch waves in grating with non-uniform average refractive index. In
the experiment, n_, peaked in the centre of the parallel-sided periodic region 1.5 mm thick (see case
F for orientation of grating lines). The conversion is TE-TM. The cases D-G are for different mean
angles of incidence of a bundle of convergent rays. Notice the curved paths taken by the rays; the
average index "hill" is viewed as a potential barrier by the light. See Figure 19b for the results of an
effective mass analysis.

wavevector components along the boundary. A simple graphical construction (similar to
the one used in section 1.2) achieves this; construction lines AA and BB are drawn normal
to the boundary, passing through points 1, , and Iz5. These intersect with the stop-band
branches in reciprocal space at the points associated with the Bloch waves excited inside
the periodic structure. The normals to the stop-band branches at these points lie parallel
to the group velocities of the Bloch waves, i.e., their rays. Notice that single negative
refraction occurs on-Bragg (both Bloch waves sharing the same ray paths), and that double
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Figure 19b. The photographed behaviour in Figure 19a is qualitatively well predicted by a simple
ray tracing procedure, based on the effective mass method described in the text. The sketches A-H are
for different mean angles of incidence of a bundle of convergent rays. Cases D-G correspond most
closely to the four experimental cases.

negative refraction occurs off-Bragg (each Bloch wave having a different ray path). Note
that the behaviour is a sensitive function of the incident angle. At the output surface, the
same boundary matching procedure yields the directions of the exit beams.
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When the incident beam is tightly focused, its angular plane wave spectrum can
spread over the entire stop-band’”-8. By analogy with electronic band theory?>?3, this type
of excitation is approximately described by a kind of incomplete “"spatial Wannier
function", i.e., the integral of all the photonic Bloch states present in the stop-band portion
of a Brillouin zone. In a weak singly periodic structure, these functions take the form of
Bessel functions, and may be interpreted as point influence (Green’s) functions (Appendix
A3.1)°. They describe the diffractive spreading that occurs after point excitation of a
grating. An example of one of these functions in operation is given in Figure 18, where
a grating with a slanted input boundary is excited with a narrow focused beam; the
spreading out over a triangular region bounded by the upper and lower Bragg angles is
plain. Notice the fine periodic pattern in the photograph; this is caused by the interference
of Bloch waves®’. Since both branches of the stop-band are excited simultaneously in
Figure 18, sharp interference fringes form between Bloch waves on opposite sides. These
fringes have a spatial period A, = 2x/|8|, where & is the wavevector drawn between two
points in reciprocal space associated with spatially coincident Bloch waves. The fringe
orientation is normal to 8. For a weak grating, the position of these fringes in space is
accurately described by the zeros in the Bessel functions in Appendix A3.1. An intriguing
situation arises when the group velocities of both Bloch waves point across the fringes; this
appears to violate power conservation. In fact, no visible fringes (in the form of spatial
variations in power density) form in the total field under these circumstances; instead, a
kind of virtual interference somewhat akin to the "interference" of orthogonally polarized
waves takes place’”. In the photographs, the fringe visibility was enhanced by using a
polarizer to block out the scattering from the upward or downward constituent plane waves
of the fields.

In strongly modulated structures, interference may be suppressed owing to the
disappearance of the left hand stop-band branch; as we have already seen, the wavevector
diagram then becomes quite distorted (Figure 14), with "photonic band window" regions
(where the group velocity hardly changes direction over an entire half Brillouin zone,
pointing only very slightly normal to the planes). This is the wavevector diagram’s view
of resonant tunnelling across a waveguide array. Under the tight-binding approximation,
the Wannier function is a spot the size of a unit cell, i.e., approximately a waveguide
mode. Once excited, this waveguide mode spreads out sideways into the adjacent guides
(see Figure 14 and Appendix A3.2}.

A simple example of propagation in a spatially non-uniform structure, illustrating
use of the effective mass method, is given in Figures 19a&b. A region of periodic
waveguide, with straight parallel boundaries and a slowly changing average index that
peaks in the centre, is excited by a narrow focused beam (see figure caption for more
details).

Note in conclusion that it is not possible to set up a simple Newtonian model for
cases where the grating period and strength vary with position, because under these
circumstances the curvature of the H,—k diagram (and hence the effective mass tensor)
depends both on position and the previous history of the ray path. In this case, a split-step
propagation method can be used, finite steps through real and reciprocal space being made
alternately, matching ray direction and phase velocity in each cycle.

8. EXTENSION TO MULTIPLY PERIODIC STRUCTURES

There has already been a focused and successful effort in Europe and North
America on calculating the photonic band structure of multiply periodic PBG structures in
two and three dimensions!7-?22_ This work is covered in other chapters within this volume.
But how useful is the intuitive picture developed in this chapter for understanding the
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behaviour of these more complicated media? The various tools we bhave introduced
(Brillouin diagrams, wavevector diagrams, band edge diagrams) remain indispensable if
all aspects of propagation are to be well understood. The tight-binding and nearly free
approximations are also still valid, although the nature of the micro-resonances is

:’ch/ﬂ

Figure 20. Wavevector diagram (left) for cubic lattice depicted on the right. The diagram was
calculated using the method in references 16 & 22 for ng = 0.47, r = ayla; = 0.56, » = 1,197, o,

= V{{an>+an,’)/A} = 1.8 where a, and a, are the areas of the high and low index regions within
a unit cell, whose area is A. For example, 400 nm wide square pillars of Ta,Os, separated by 200 nm
air gaps would give this wavevector diagram at a wavelength of 1515 nm in vacuo.

considerably more complicated in three dimensions. Also, the second term in (11) can no
longer be ignored - coupling between orthogonal field components occurs at the interfaces
in the unit cells, resulting in polarization mixing. The tight-binding approximation can be
usefuily generalized to three dimensions, whether the picture is of coupled arrays of tubular
waveguides, dielectric boxes, ellipsoids, spheres or more complicated entities. All these
will support micro-resonances if excited appropriately (i.e., correct wavevector and
frequency), in which case an analysis based on nearest-neighbour coupling can be used (see
section 1.2.6).

Compared to the electronic case (with its simpler scalar wave equation), the
calculation of photonic band structure is actually easier in one respect: the potential in each
unit cell is precisely known, and does not change as the photons are redistributed (in the
absence of optical nonlinearities). This means that band structure calculations for photons
are actually more accurate.

The success of structures in which low index islands are surrounded by narrow seas
of high index material (as in Yablonovitch’s crystals’) may be due to the flattening of the
Brillouin zone boundary owing to the absence of high-Q micro-resonances that would tend
to pull (when resonant) the band gap edges together, at the same time forcing the band gap
to lower or higher values.

Finally, the wavevector diagram generalises very nicely to multiply periodic
structures in two dimensions, and an example of how it looks for a cubic lattice (calculated
using the method reported by Pendry and MacKinnon'®??) is given in Figure 20. Some
more examples are available, together with two-dimensional field intensity profiles, in
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reference 5. A useful paper containing experimental results on propagation in doubly
periodic planar waveguides has been written by Zengerie®,

9. MISCELLANEOUS TOPICS

In this section we briefly discuss the relevance of our results on singly-periodic
structures to a variety of different circumstances, including the properties and control of
surface states and defect modes, the effects on photonic band structure of optical
nonlinearity and optical gain, the extension to multiply periodic structures, and applications
of photonic band gap materials.

Figure 21. Different types of defect modes that can exist on or between multi-layer stacks: a)
single surface guided mode (SGM); b) travelling waves bounded by Bragg reflection (high index
intervening layer); c) two SGM’s coupled by evanescent fields (low index intervening layer); d) two
coupled SGM’s on opposite sides of same stack; e) bound mode of finite stack formed from two
travelling Bloch waves; ) SGM at the interface between two different multi-layer stacks.

9.1 Localised Modes, Defects and Surface-Guided States

As with any wave, Bloch waves can be quantized by truncating the medium in
which they exist. This has the effect of reducing the spectral density of states (i.e., the
number of states per unit frequency in a given volume of material) by localising them
between the boundaries. Several other different sorts of localised modes can exist in multi-
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layer stacks, however, as illustrated in Figure 21; most (not all) of these have been
previously reported in the literature’>®7. The range of possibilities is much richer than in
isotropic media, mainly due to one thing: total reflection can be produced in ranges of 8
(the band gaps) where, based on n,,, the stack would be expected to be transparent. This
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Figure 22, Wavevector diagram illustrating condition for formation of a particular surface
guided mode (r = 0.59, np = 0.84, » = 1.157; last TE polarised; amplitude distribution depicted on
the right), The parameters are for an AlAs/GaAlAs stack at 830 nm, and the thickness of the final

high index layer, normalised to A, is 0.036. As the thickness of this layer is reduced, the & value of
the mode moves from the right-hand side of the stop-band to the left.

means that a single interface mode in each polarisation state can exist between the surface
of a stack and a medium of low refractive index. The general approach to finding the
bound modes is straightforward provided the expressions for the field distributions are
chosen carefully, with the field distribution in the defect layer between two stacks referred
to the centre as in (20). For a single surface mode the analysis is particularly simple,
leading to the following dispersion equation:

Aa + b,
p,(y,-y;) - arctan SePedAa; 1 b, = mn (52)
é:,.ijaj _(Eepelijpj)bj

where the parameters with subscripts j are those belonging to the last partial layer of the
stack, the position of the edge is y = y, and the amplitude decay rate into the external

1sotropic medium is:

P, = B - (kn,)? (53)

where n, is the external index and £, = 1 for TE and 1/n, for TM polarisation. The
conditions for formation of a surface mode are best understood by reference to the
wavevector diagram (Figure 22), because this reveals clearly the location of the band gaps
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for a particular stack, and hence the ranges of 8 within which a surface wave can exist.
They may form for values of 3 > kn, that at the same time lie within a band gap of the
stack, and they only exist if the final layer has an appropriate thickness. This means that
they may easily be suppressed if desired (although perhaps not in both polarization states)
by appropriately designing the stack. We plan to discuss these modes at length eisewhere.
It is interesting to point out in addition that TE and TM surface plasmon modes with
hugely different propagation constants can also exist at the interface between a metal and
a stack; they may of course exist (since a metal forbids any propagation whatsoever) at
normal incidence § = 0, creating a resonator with just one mode. Similar stationary
localised modes can also exist at the interface between two different multi-layer stacks.
Surface photonic states are directly analogous to the electronic surface states in the solid-
state, and can appear on multiple quantum well structures®.

9.2  Effects of Optical Gain: Lasers

Since one of the major applications of photonic band gap materials is in lasers, it
is worthwhile considering the effect that optical gain may have on the passive dispersion.
It has been known for a long time that the w-k relationship is strongly affected if the gain
g (per unit length) and the grating strength « (the well-known coupling constant defined in
Appendix A3.1) are comparable, i.e., if:

xfg ~ 1 4

or smaller; this is commonly the case in a distributed feed-back (DFB) semiconductor
laser*-¥7. Alterations in k, for a given frequency w (Figure 23) will of course alter the
frequencies at which a cavity will resonate, which might be of importance in some contexts
such as dense wavelength-division-muitiplexing appiications. In contrast to DFB lasers, this
is unlikely to be a matter of much concern in PBG materials where the grating strength
(perhaps 67 per um in Yablonovitch’s proposed PBG AlGaAs structures’) is certain to be
much greater than the gain. Of more concern is unwanted lasing outside the band gap.
DFB lasers in their purest form consist of a defect-free length of grating - a kind of one-
dimensional PBG structure. Laser oscillation occurs at two frequencies
symmetrically placed on either side of the band gap, where the photonic states are real
while the reflection is still strong enough to provide substantial feedback. In materials with
broad unwanted bands of high gain it may be difficult to produce a band gap wide enough
to suppress lasing completely. The etching process used to produce a PBG in a
semiconductor laser material will inevitably concentrate the gain in the high index regions.
This will tend to favour Bloch modes whose photonic probability distribution peaks in the
high gain regions, and may often result in suppression of laser oscillation on one side of
the band gap. In the language of quantum photodynamics, the expectation value of the gain
will be higher on one side of the band gap compared to the other. An early example of a
related phenomenon is the Borrmann effect (1941), where x-rays experience anomalously
low absorption at the Bragg condition in an e-quartz crystal. This is caused by the x-ray
Bloch waves on the inner stop-band branch (see Figure 11) experiencing less absorption
than those on the outer branch, since their probability distributions peak in berween the
atoms where the absorption is concentrated*!.

9.3  Effects of Optical Nonlinearity: Gap Solitons
The ability to pack as many photons as desired into each photonic state means that

optical Kerr nonlinearities can become important at high optical intensities. If the nonlinear
index change is comparable to the index modulation depth in the PBG material, the stop-
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Figure 23. Stop band distortion in the presence of optical gain; the ratio of g/« is 0, 0.25 and
0.75 respectively in the three cases i, if and iii. The vertical axis is frequency deviation from the
Bragg condition, normalised to half the band gap width, and the horizontal axis is k,—K/2,
normalised to the coupling constant x. The full and dotted lines are based on the real and imaginary
parts of k.

band branches become significantly distorted’; the dispersion and the nonlinearity are then
closely entangled. As recently studied by John and Akozbek®’, this can result in the
appearance, within a linear three-dimensional photonic band gap, of real states induced by
the nonlinearity. These censely occupied photonic states trapped by their own nonlinearity
are in fact related to gap solitons®®7*. The presence of optical nonlinearity outside the band
gap in a region of strong spatial dispersion can also result in strong nonlinear beam-
steering, since the group velocity of the Bloch waves is then a function of power.

We have seen that the effective mass of photons becomes small close to a band
edge; this means that scattering centres that would have a negligible effect on free photons
can strongly scatter a photon in a Bloch state. The interaction (collision cross-section) is
greatly increased by the small group velocity (momentum) of the Bloch wave (photon).
This has important implications in stimulated Brillouin scattering. Two travelling counter-
propagating Bloch waves with frequencies close to the band edge on the same side of a
band gap will be coupled together very strongly by a low frequency, low momentum
acoustic wave’>3?, This is because the expectation value of the momentum difference
between backward and forward Bloch waves can itself be very small, and the coupling
strength depends on the reciprocal of the group velocity, which also goes to zero at the
band edge. Raman scattering may similarly be enhanced if the band gap is sufficiently
large to allow both the Stokes and anti-Stokes Bloch waves to possess small group
velocities close to the same band edge. Nonlinear interactions across a band gap are
unlikely to be significant since the Bloch functions do not overlap strongly spatially.

9.4  Applications of Photonic Band Gap Materials

Since PBG materials are essentially synthetic (although natural biology or bio-
engineering may be able to contribute some useful structures), there has to be a good
reason for going to the trouble (and expense) of making them. Hence the importance of the
question: What use are they? Interpreted in the widest sense, they may be viewed as
synthetic effective index media with highly unusual anisotropic refractive indices,
diffractive properties and substantial ranges of angle and frequency where propagation is
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forbidden. Independent contro! of phase and group velocity is possible, which is like saying
that conventional optics (with only a restricted range of anisotropic molecular
polarizabilities at its disposal - those naturally occurring in crystals) can be augmented or
even superseded, with many new features.

A common problem in waveguide optics is creating phase-matched single modes
in low and high index materials. In conventional guided wave optics, the mode indices

submicron
lattice parameter

T oplical
\“ fibre
T
two—dimensional photonic crystal —~
with struclural defect
0.1 mm

high index

Figure 24. Two examples of structures that will exhibit unusual photonic band gap effects: (a)
A holey fibre, whose core is a two-dimensional photonic crystal with structural defects where the
fight is trapped; strong anisottopy can be built in; and (b) A resonator made from a single
periodically etched-through layer of dielectric material (Ta,0s, index 2.12) that completely confines
light in a localised state. lts wavevector diagram is also shown; the group velocity at the Brillouin
zone edge points normal to the layer, and the related Bloch wave cannot escape because its lowest
order plane waves are totally internally reflected at the left and right boundaries.

must lie in between the substrate and the film index. Surface guided Bloch waves neatly
side-step this restriction®’, permitting for example a single surface mode on a high index
multi-layer stack to be phase-matched to the light guided in a single-mode silica fibre, or
enhancing the penetration of light into a low index external medium such as an agueous
solution containing some chemical to be sensed. This may have important potential
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applications in biological and chemical sensing. Multi-layer stacks in AlGaAs, for example,
can be designed to support surface Bloch modes with indices lying between air and the
maximum index of the stack (around 3.5).

There are many potential uses of localised single states in PBG materials”’. These
can be created by introducing a structural defect at one point in a grating; this could be a
slight local variation in average index or grating modulation depth. When appropriately
designed, a single-mode photonic defect state appears that occupies a volume of space
substantially larger than is possible in a conventional single-mode two-mirror lasing cavity.
Single-frequency laser oscillation then becomes feasible in materials whose optical gain is
normally too low.

The creation of a structural defect, by the addition of less/more high index material
in a unit cell, results in localised modes whose frequency lies within the band gap close
to the upper/lower band edge; these may be regarded as donor/acceptor states by analogy
with semiconductors’®. The process of donation and acceptance involves shifting a photon
between a localised and an almost-localised state (just outside the band gap) at a different
frequency. How this might be achieved is an interesting question - perhaps by the photonic
crystal equivalent of an optical phonon?

Many interesting applications of PBG materials have already been
reported*?-:17:3940 Two examples from our own work of exotic structures with potentially
useful properties are illustrated in Figure 24. The "holey" fibre (Figure 24a) is a glass
optical fibre with a two-dimensional crystalline core region and a central defect that traps
photons while permitting them to travel along the fibre axis. Many useful properties can
be built into the crystal structure, such as various types of optical anisotropy, and very
strong lateral confinement can be achieved in the photonic band window range of the band
edge diagram (Figure 13). An unusual resonator forms if a high index film is etched with
a periodic pattern as illustrated in Figure 24b. At the correct wavelength and film
thickness, a tightly confined stationary optical mode exists, with zero group velocity along
the film. This cavity, made entirely from a small volume of material, could have a very
high Q and be phase-matched to an optical fibre mode.

In one important respect, band gap engineering - the optimisation of the
performance of a PBG crystal by changing the geometry of the unit cell - may be
somewhat easier for photons, at least at the design stage. This is because the "grainy-ness”
of dielectric material is much less for photons than for electrons (atoms are not easily
divisible!). Hence it is likely that new effects can be "engineered in” based on features
fractions of a period in thickness; for example, anti-surface wave layers could be coated
on to a multi-layer stack or a PBG crystal to prevent lasing in unwanted surface modes.

10. IN CONCLUSION

In moving away from a traditional plane wave approach towards one based on
Bloch waves, photonic band theory provides an alternative conceptual framework for
thinking about light in periodic structures, and provides the starting point for a full
"quantum photo-dynamical" description of photons in PBG media. This is well illustrated
by the discussion of electromagnetic wave propagation in singly-periodic structures
presented here. For many years, the response of jaser designers to a problem of lifetimes
and unwanted transitions has been to try to alter the electronic properties of the material
iself. This has paid off handsomely in the quaternary 1II-V system, and seems set to do
so again in the II-VI system for blue lasers*>. Photonic band gap materials offer an
additional powerful means of altering the fluorescence properties of a material without
having to tamper directly with its electronic structure. The implications of a Bloch wave
approach. brought into the limelight by Yablonovitch's proposal that photonic band gaps
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could exist by analogy with clectronic band gaps, have still to be fully worked out. One
immediate benefit, however, is a sea-change in approach within optics that seems certain

to lead to new applications based on a re-interpretation of the physics of light in periodic
structures.
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APPENDIX Al. MAINMATHEMATICAL SYMBOLS AND THEIRMEANINGS

Roman characters

! afN amplitude of co-sinusoidal part of j;N {equation (20))
b normalised version of 3 (= BA)

bY  amplitude of sinusoidal part of £ (equation (20))
A.B,C matrix elements in M

velocity of light in vacuo

energy eigenvalue in effective mass discussion
electric field vector

electric field in medium i

electric (TE) or magnetic (TM) field in medium ;
Planck’s constant

h/2w

normalised total electron energy

thickness of layer /

total electron energy

toral photon energy Aw

magnetic field vector

e

x> TSN mmE e oo

L)

=~

™~

TR T T

vacuum wavevector { = w/c)
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.

ik

1.

1 1E

= 22333 ERE R aika

cartesian component of wavevector k (f = x, y or 2}

base wavevector of Bloch wave

reciprocal lattice wavevector (= 2w/A)

integer representing mode order

electron rest mass

arbitrarily defined photon mass (= #w/2c?)

effective mass tensor element

translation matrix (over one period) between layers of medium 1
translation matrix (over one period) between layers of medium 2
refractive index; integer for n-th plane wave in expansion
weighted mean index (= (mhy + nhp)A)

refractive index in medium

high index medium

low index medium (n; > ny)

index ratio nyfn; < 1

integer representing N-th period in multi-layer stack
wavevector component within layer j, normal to interfaces
time

potential energy in effective mass discussion

normalised mean potential

electronic potential, in general spatially varying

weighted mean potential (= (Uh; + Ushp)/A)

high potential medium

low potential medium (U; < Uy)

photon potential energy (= —fiw(e,— 1))

group velocity

coordinate along which nothing varies in two dimensions
coordinate perpendicular to layers

value of y at centre of layer of index n; in N-th period
coordinate along layers

Greek characters

wavevector component along the layers (z direction)
dielectric permittivity of free space

relative dielectric constant

critical angle for total internal reflection (between ray and normal to interface)
period in multi-layer stack (= hy+#;)

magnetic permeability of free space

normalised frequency (= kn,A)

= 1 for TE polarised light

= 1/n}? for TM polarised light

relative thickness of layer 2 (= hy/A)

general field amplitude

optical frequency

APPENDIX A2. TRANSLATION MATRIX ELEMENTS

The matrix M,, relating the field in the 2nd layer to the field in the 1st layer is
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azN M alN i (An leJ alN (A1)
b,Y . b Cyr Dy, blN ,
where
Ay = ¢y - (flplAlfzpzA)Slsz ,
By = 516/(E,p,4) + €5,/ (E,0,4) ,
Cy = ~§p\Asic, - LapyAcs, (A2)
D, = ep, - (E,PA(E P, Nss, |
det M, = 1,
where the terms §; and ¢; are shorthand for;
¢; = cos(phf2) s, = sin(phf2) . (A3)

The matrix M,, relating the field in the 1st layer of the (N+1)th period to the field in the
2nd layer of the Nth period is then

“” M, |% (D“ B“] “ (A4)
. = 12 = -
blN : sz Cyr 4y sz

The analysis can either be based on the translation matrix M = M;,M,, (with a state
vector representing the field in layers with index ) or equivalently on the matrix M’ =
M, M;, (state vector representing the field in layers with index ). M is

al! a” a”
1 - M 1 _ A B 1 ’ (AS)
bJN+] b cCD blN
where
A =D = Ay Dy, * By G,y (A6)
B = 2D,B, , C = 24,C, . (A7)
A can be re-arranged as
£ 3
A = cos(p h,)cos(p,h,) - 2o Pad sin( p, k) sin(p, h, ) (A8)
2176 pi¢

but B and C are most conveniently expressed as the product of two factors as above. The
elements of the alternative matrix M’ are:

A" = D' - 4, (A9)
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Figure Al. Geometry of Green’s function for singly periodic structure in nearly free photon
case; the position of the intensity peaks for the Bragg reflected and transmitted fields are given by the

zeros and peaks in the Bessel functions (All).

APPENDIX A3. BESSEL FUNCTION SOLUTIONS

A3.1 Nearly-Free Photons: Green’s Function Solution””'

When (1) the index modulation is very weak, i.e. €, = n? — nyt < ey, (2) the
Bragg angle 6 = arcsin(K/2kn,,) lies in the mid-range between 0 and 7, (3) a beam B is
focused to a small point on the boundary at P (see Figure Al) and (4) its plane wave
spectrum is centred at the Bragg angle, then the transmitted and Bragg reflected field
intensities at an arbitrary point Q are given by:

2{ 2k
TOP = Jo(sine‘/qofo]
8 (A1)
_ no 2 2K
Ror = ?QI‘{sineBV”QEQ]

where the coordinates ¢ and » are defined by:
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( 5] siné), -cosf), @ (A12)

n -sing; -cosd,

where x = e k/dn,, is known as the coupling constant. This solution arises when the
incident beam B has an angular spectrum large enough to excite Bloch waves over each
entire stop-band branch, while the stop-band itself is small, i.e., the beam B has an angular
spectrum small enough for it not to diffract appreciably in the absence of a grating («x —
0). The minimum feature size needed to excite this function is of order Ay = 27/ksinfy.
Note that the form of the solution does not depend on the boundary slant angle, provided
it does not cut into the triangular region bounded by the Bragg angles. Because they are
obtained by integration over the entire stop-band, these functions are akin (though not
identical) to Wannier functions in electronic band theory®25. They are also Green’s
functions, and can be used to build up more complicated solutions by linear superposition;

€.8., non-planar boundary shapes and non-uniform incident beams can be treated. The
solution they represent is in the "nearly free photon" approximation.

A3.2 Tight Binding

Excitation of a single waveguide in an array of parallel coupled channel waveguides
(or a single tightly bound high index layer in a multi-layer stack - see section 6.2) results
in lateral spreading out of power by resonant tunnelling. After propagating a distance z,
the power in the nth channel (the entrant channel being n = 0, see Figure A2) is given by:

P = Il@2x2) (A13)

where the inter-guide coupling constant %, is a function of the waveguide parameters>?. The
tight-binding approximation upon which this solution is based is common in waveguide
optics, where it is formuiated in terms of coupled mode theory. Again, because the
structure is excited at one lattice point, the field at entry to the structure is akin to an
electronic Wannier function.

n — Pz}
n=2 E—
input n=1 —
=-1 E—
n=-2 —_—
n=-3 E—
=4 —_

Z
Figure A2. Geometry of the coupled waveguide array for the tight-binding Bessel function

selution in (A13),
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We report the fabrication of a new type of optical waveguide: the photonic crystal fiber.

It consists of a

pure silica core surrounded by a silica—air photonic crystal material with a hexagonal symmetry. The fiber
supports a single robust low-loss guided mode over a very broad spectral range of at least 4581550 nm.

© 1996 Optical Society of America

Substantial effort has been invested over the past few
years in fabricating photonic crystals—materials that
have a periodic modulation of the refractive index on
the scale of the optical wavelength. The interest in
such materials lies in their ability to interact unusu-
ally strongly with light of certain wavelengths: For
example, appropriately designed structures can ex-
hibit band gaps at optical frequencies (photonic band
gaps).! Light that is incident upon a band-gap mate-
rial from the outside would be totally reflected. Simi-
larly, light that existed at a structural-defect site in
such a material would be permanently trapped, be-
ing unable to propagate through the lattice. These
properties make photonic crystals of both fundamental
and technological interest. The observation of these
effects requires a large variation in the refractive in-
dex, such that the photonic crystal must be formed
of at least two bulk materials of different optical
properties. Because of the difficulty of fabricating
structures on the scale of an optical wavelength that
are periodic in three dimensions, much recent experi-
mental research has been aimed at producing ma-
terials with a two-dimensional variation by use of
etching techniques in semiconductors® and glasses®
to form structures that are periodic in a plane but
are of limited extent in the third dimension. How-
ever, some of the most interesting effects in two-
dimensional photonic crystals occur for waves that
have a nonzero wave-vector component 8 normai to
the periodic plane.*® It is difficult if not impossible to
study some of these effects by use of the previous struc-
tures, which are at most a few millimeters in depth
{and usually much less). Here we describe the fabri-
cation of a two-dimensional hexagonal silica—air pho-
tonic erystal that is extended into the third dimension.
The structure is in the form of a fine silica fiber. Air
holes arranged in a regular hexagonal pattern run the
entire length of the fiber, which is many meters long.
We investigate the properties of guided modes that are
predicted to occur at purposely introduced lattice-defect
sites (a lattice-defect site is any structural feature that
breaks the regularity of the crystal lattice). By in-
troducing a high-index defect site inte the middle of
the fiber during fabrication we have created a novel
monomode optical fiber with a hexagonal symmetry.

0146-9592/96/191547-03$10.00/0

We form the hexagonal unit cell on a macroscopic
scale by drilling a hole of 16-mm diameter down the
length of a 30-mm-diameter silica rod. Six flats are
milled on the outside of the rod, forming a regular
hexagon. This preform is then drawn on a fiber
drawing tower at ~-2000°C to produce hexagonal cane
of a diameter of 0.8 mm, which is cut to length and
stacked to give the required crystal structure. This
stack is again drawn on the tower, fusing the stacked
canes together and reducing the pitch (center-to-center
spacing} to ~50 um. Finally, a ptece of this fused
stack is drawn down again to yield the final fiber.
During the three-stage drawing process the size of
the unit cell is reduced by a factor of more than 104,
yielding a final pitch of ~2 pm.

It has been predicted® that a hexagonal silica—air
photonic crystal with a pitch of ~2 um will exhibit
a band gap at a wavelength of 1.5 um for certain
values of 8 and for certain values of the air-filling
fraction. In this case guidance could be achieved by
introduction of any sort of defect into the periodic
structure, which would have the effect of pulling a
spatially localized mode from the band edge into the
band-gap region. The fiber presented here does not
rely on the existence of a complete band gap. We have
demonstrated low-loss guidance by the photonic crystal
in a different regime by purposely introducing a high-
index defect into the center of the fiber. We do this
at the stacking stage by replacing one of the hollow
hexagonal canes with a similar cane that does not have
a hole in the middle. In this case we expect any light
with A greater than a certain value Lo be confined
to the core, as the surrounding silica-air matrix has
a reduced effective refractive index compared with
the solid core. The fiber bears some resemblance to
previously fabricated single-material fibers® but differs
from them in having a periodic index modulation in the
cladding region and a unique hexagonal symmetry.

A scanning electron micrograph of the fiber is shown
in Fig. 1. The structure shown in the figure is vir-
tually invariant over a length of several meters. The
flat-to-flat width of the fiber shown is 38 um, the
pitch is 2.3 um, and the solid core region is nominally
4.6 zm wide. The relative diameter of the air holes
shown in the figure is smaller than in the original

© 1996 Optical Society of America
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Fig. 1. Scanning electron micrograph of the photonic
crystal fiber.

unit cell—this is caused by the effect of surface ten-
sion during the final stages of the drawing process.
By varying the furnace temperature during the pulling
process, we were able to exert some control over the
relative size of the air holes in the final fiber and have
drawn fiber with a pitch similar to that shown in Fig. 1
and with air holes of 0.2— 1.2 um diameter. The fiber
is quite robust and easy to handle despite its small size.

To investigate the guidance properties of the fiber,
we coupled light from argon-ion (wavelength A =
457.9 nm), He-Ne (632.8 nm), Ti:sapphire (850 nm),
and diode (1550 nm) lasers into one end of a 1I-m
length of fiber with an objective lens, using index-
matching fluid to strip off light in cladding modes.
It was relatively easy to achieve a coupling of more
than 50% into the guided mode, comparable with that
for standard monomode optical fiber. We then used
a vidicon camera and photographic film to record
the near- and far-field patters of the guided mode
at the output end of the fiber. Figure 2(a) shows a
contour map of the near-field pattern at 632.8 nm
that we recorded by imaging the output end of the
fiber onto the vidicon camera, using a 60X objective
lens. The contour map is shown superimposed upon
a portion of an approximately scaled scanning electron
microscope picture of the fiber output surface to show
the relative orientation of the modal field with respect
to the fiber. The light is strongly confined to the core
region, and the field pattern is dominated by minima
occurring at the six nearest air holes. Figure 2(b)
shows the Fourier transform of the recorded near-field
pattern, which is strongly peaked in the center. The
hexagonal nature of the guided mode is manifest as
six symmetrically placed spots occurring around the
central peak, with much weaker spots further from the
center (not visible in Fig. 2).

Next we photographed the spatial far-field pattern
falling upon a sheet of paper several centimeters from
the far end of the fiber {Fig. 3(a)l. The observed pat-
tern shows qualitative similarity to the Fourier trans-
form of the observed near-field pattern shown in Fig. 2,
as expected. The central part of the pattern has been
overexposed in Fig. 3(b) to show the higher-order terms
present on the fringes of the pattern, which demon-
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strate the integrity of the periodic structure. This far-
field pattern is independent of the way in which light is
launched into the fiber and is unaffected by any bends
imposed upon the fiber, implying that there is only a
single low-loss guided mode. This is the case from at
least 457.9 to beyond 1550 nm—over this whole range
the far-field pattern looks remarkably similar to that
shown in Fig. 3, although the numerical aperture of
the output increases approximately linearly with wave-
length (from ~0.13 at 457.9 nm to 0.36 at 1550 nm)
and the outer spots become somewhat weaker at longer
wavelengths.

In the visible region of the spectrum the modal
field pattern in the cladding is redistributed into the
higher-index silica regions, decreasing the effective in-
dex difference between the core and the cladding. On
the other hand, at the longer-wavelength end of the
range studied the mode was found to be still tightly
confined to the vicinity of the core but unable to
accommodate the air holes as directly as in Fig_ 2. In-
stead, the photonic crystal cladding behaves increas-
ingly as a uniform medium with the average refractive
index. Consequently, the effective refractive index of

(b) Q O

Fig. 2. (a) Contour plot of the recorded near-field pattern
of the guided mode (4 = 632.8 nm) superimposed upon
an approximately scaled portion of a scanning electron
micrograph to show the relative grientation of the modal
field pattern and the fiber microstructure, The field is
strongly peaked in the center, and there is a factor-
of-25 difference between the innermost (strongest) and
the outermost intensity contours. (b) Calculated Fourier
transform of the pattern, again strongly peaked in the
center.




(b)

Fig. 3. Photographed far-field pattern at 632.8 nm. (b)
Same as in (a) but with the central part of the field
overexposed to show the higher-order spots on the fringes of
the pattern, which demonstrate the integrity of the periodic
structure.

the cladding decreases sharply at longer wavelengths.
The wide single-mode wavelength range can now be
understood qualitatively with reference to the normal-
ized frequency, or V value,” V = 2 /A)p(ne? — nyg?)os,
that characterizes guidance in a step-index fiber of
core radius g and core and cladding refractive indices
e and ng, respectively. The effective decrease of the
cladding index at longer wavelengths counteracts the
increase in wavelength, keeping the V value nearly
constant and making possible a single robust guided
mode over an extended spectral range.

Despite the hexagonal symmetry of the cladding
material, the fiber exhibits two perpendicular pre-
ferred polarization axes in its transmission properties.

-
\x
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When linearly polarized light is coupled into the fiber
with its polarization axis parallel to one of these two
axes the output is linearly polarized and parallel to the
same fiber axis, even if the fiber is bent or twisted.
If the input light is polarized at some other angle the
output is in general elliptically polarized. Any cou-
pling owing to defects in the hexagonal structure of the
cladding will serve to lift the degeneracy of modes that
are rotated apart from each other by 60°. Some evi-
dence of such breaking of hexagonal symmetry is ob-
servable in Figs. 1-3.

The fiber presented here could provide a means to
enhance the interaction of light with a gas that is in
the air holes, for example, for use in a gas sensor or to
study nonlinear-optical processes. The support of only
a single mode over a broad spectral range s a feature
that makes this design of interest in situations in
which several different wavelengths are required in the
same fiber, such as in frequency-doubling applications
At present we are studying the Bragg scattering from a
length of photonic erystal fiber, We intend to fabricate
fiber with the correct pitch and air-filling fraction to
exhibit a complete band gap for certain values of g
and to use this fiber to investigate the possibility of
waveguiding by Bragg refiection (the photonic band-
gap fiber®) at a low-index defect site.

This research was supported by the Defence Re-
search Agency, Malvern, UK. T. A, Birks is a Royal
Society University Research Fellow.

*Present address, School of Physics, University of
Bath, Claverton Down, Bath, BA2 TAY, UK.
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Figure 3 SEM of photonic crystal fibre

Figure 2 Contour plot of recorded near field
pattern of guided mode at 633 nm superimposed
on SEM of fibre end face. Lower plot is

calculated Fourier transform of near field.

Figure 1 Photograph of far-field pattern at 633
nm. Note good agreement with calculated
Founer transform of near field
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Endlessly single-mode photonic crystal fiber
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We made an ali-silica optical fiber by embedding a central core in a two-dimensional photonic crystal with

a micromeler-spaced hexagonal array of air holes.

An effective-index model confirms that such a fiber

can be single mode for any wavelength.  Its useful single-mode range within the transparency window of
silica, although wide, is ultimately bounded by a bend-loss edge at short wavelengths as well as at long

wavelengths. © 1997 Optical Society of America

In a previous Letter' we reported the fabrication
of a photonic crystal fiber. This optical fiber was
made entirely from undoped fused silica. The cladding
was a two-dimensional photonic crystal made of silica
with air holes running along the length of the fiber.
The holes were arranged in a hexagonal honeycomh
pattern across the cross section. The central hole was
absent, leaving a silica defect that acted as the core
(Fig. 1). The fiber was single mode over a remarkably
wide wavelength range, from 458 to 1550 nm at least.
Subsequent measurements have extended this range to
337 nm,

In a standard step-index fiber with core radius p and
core and cladding ‘ndices n., and n, the number of
guided modes is determined by the V value®:

V= (27p/A)(ne® ~ ng®)'"?, (1)

which must be less than 2.405 for the fiber to be single
mode. Thus single-mode fibers are in fact mul-
timode for light of sufficiently short wavelength.
We explained the wide single-mode range of the
photonic crystal fiber by considering the effective
refractive index of the cladding, loosely understood
as the average index in the cladding weighted by
the intensity distribution of the light. At shorter
wavelengths the field becomes more concentrated
in the silica regions and avoids the holes (as we
observed by examination of the near-field pat-
terns'), thus raising the effective cladding index.
This dispersion counteracts the explicit depen-
dence of V on wavelength A and so extends the
single-mode range. We now quantify this model and
demonstrate that photonic crystal fibers can be single
mode for all wavelengths. The model’s validity is
confirmed by bend-loss measurements, which show
that the useful spectral range of the fiber is bounded
by bend-loss edges at both short and long wavelengths.

Although most interest in photonic crystals has
focused on their photonic bandgap properties, we do
not consider guidance by photonic bandgap effects?
here. Instead, because the core index is greater than
the average index of the cladding, the fiber can guide
by total internal reflection as a standard fiber does,
despite the unconventional structure. That 1s, there
are propagation constants /3 available to hight in the
core but not to light propagating in the cladding:

0146-9592/97/130961-03$10.00/0
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krno > B > Brsm, (2)

where & = 27 /A, ny is the index of silica {the core
material), and Bgy is the propagation constant of the
fundamental space-filling mode (FSM). The FSM is
the fundamental mode of the infinite photonic crystal
cladding if the core is absent, so Bgy is the maximum
B allowed in the cladding. Inasmuch as the lower
limit of 8 in a step-index fiber is kng, we identify the
effective cladding index n.y with

Rere = Brsm/k. 3)

The FSM is the generalization of a z-directed plane
wave in an infinite uniform medium, whose B equals
£ X the medium’s index. Thus Eq. (3} gives the cor-
rect value in this special case. More generally, Eq. (3)
is justified because inequality (2) implies that the
transverse wave-vector component k¢ in the core lies
between zero and Zrmax = (k%no2 ~ Brsnd)Y? for a
guided mode. k7 is quantized by the boundary con-
ditions between core and cladding, so the number of
guided modes is determined by Pkrmax. For a step-
index fiber this is simply the V value of Eq. (1). Thus

3&«-1" (sEEN T

RW1,200 ZSmnn

Fig. 1. Scanning electron microscope 1mage of the end of
a photonic crystal fiber, showing the central core where a
hole has been omitted. The pitch A is 2.3 um, and the
fiber is ~40 um across.

© 1997 Optical Society of America

rrmy



ik

962 OPTICS LETTERS / Vol 22, No. 13/ July 1, 1997

Brsm/k plays the role of an effective cladding index
when one is counting modes, and so an ef{ective V value
such as Eq. (1) can be delined for the photonic crystal
Mber:

Ver = (20 A/ A)(n? = near®)'2, (4)

which determines whether the fiber is single mode.
As usual, when defining V values® one may choose any
transverse dimension for p. Here we use the pitch
(center—center spacing} of the holes A, which 1s also
roughly the radius of the defect core formed by omitting
one of them.

Having found n.y, we consider the limit A — 0. The
scalar wave equation, valid here,* gives

A2V 2 + Ver®y = 0 (5)

for the field distribution ¢ of the FSM in silica regions,
where V,2 is the transverse part of the Laplacian
operator. When A — 0, ¢ is excluded from the low-
index air holes' and is confined to the silica region
bounded by the edges of the holes. For a given
ratio of hole size to A, ¢ is therefore an invariant
function of normalized transverse coordinates x/A and
¥/ A in the short-wavelength limit. Equation (5) then
implies that Vi is finite and independent of A and
A under these conditions. This situation contrasts
with that for the step-index fiber, for which V — =
as A — 0. The limiting value of V.t depends on the
relative size of the holes, but a sufficiently small value
guarantees single-mode operation for all wavelengths A
and scales A,

By averaging the square of the refractive index in the
photonic crystal cladding it is simple to show that the
long-wavelength limit of Vi in a scalar approximation
18

Vnrf = fE;\FUZ(RUQ - naz)“z, (6}

where n, is the index of air (or whatever is in the holes)
and F is the air filling fraction.

Ve can be calculated in the general case in a scalar
approximation. Because the FSM is a fundamental
mode with the same symmetries as the photonic crystal
itself, one finds it by solving the scalar wave equation
within a unit cell centered on one of the holes of diame-
ter d (Fig. 2). By reflection symmetry, the boundary
condition at the edge is that a¢:/ds = 0, where s is a
coordinate normal to the edge. We approximate this
with a circqular outer boundary at radius r = b, where
di/dr = 0. This is reasonable if the holes are not too
large, because the field variation on a circle intersect-
ing the hexagonal boundary will be small  Equating
the model’s filling fraction to the actual value gives
6. The analysis is little more complicated than that of
the step-index fiber’. The field in both regions is ex-
pressed in terms of Bessel functions of order 0, and the
application of boundary conditions yields gy The
resulting curves of V., agamst A/A for i, 145 and
te = 1.00 are shown in Fig. 3 for varieus relative hele
stzes /N The 4 — 0 Llumt of Vo, approaches zero
slowly as o 7 A approachoes zero

The fiber deseribed in our earlicr Letter' has A
23 umoand o/ U 15, and the available wavelength

range corresponds to A/A between 1.5 and 6.8. V,
is therefore less than 2.405 at all wavelengths., Al
though single-mode operation will not be defined by
Vur < 2.405 specifically (perhaps our fiber becomes
multimede at shorter wavelengths), some similar cutoff
value V, should apply. It is always possible to adjust
d/A so that Vyr < Vi, thus proving that the photonic
crystal fiber can indeed be endlessly single mode.
Larger holes make the fiber likely to be multimoded.
The gaps between the holes become narrower, isolating
the core more strongly from the silica in the cladding.
Smaller holes make single-mode guidance more likely,
but the decrease in effective index difference (or in ef-
fective N.A.) makes the {iber more susceptible to bend
loss. A well-known simple expression gives the criti-
cal bend radius R, at which bend loss in a waveguide
becomes large.® Although it is not quantitatively ac-
curate, it does give the correct parametric dependence
of R, on wavelength, core size, and refractive indices.
The condition on bend radius R for low loss can be
written as
8ming2p®
TaEws N
where W is the dimensionless modal parameter of
optical fiber theory® and is a function of V only. For
long wavelengths, the photonic erystal fiber behaves
as a standard fiber, as anticipated in Eq. (6). W3
decreases more rapidly’ than A~% with increasing A’
so there is a long-wavelength bend-loss edge beyond
which the fiber suffers massive bend loss.

b
(a) S (b) r

R>R.=

A2

Fig. 2. (a) Actual unit cell in the photonic erystal with (b)
its circular appreximation

5 T T
i il = 0.45

4
8
>
A4
Frg 3 Vartation of V. with v/4 for various relative hole
diameters o v The dashed hne marks Vg - 2405, Lthe

cutolT V ovalue for a step-indoex fiber,
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Fig. 4. Measured short-wavelength loss edge (for 3-dB
loss) versus bend radius for a photonic crystal fiber
with a single-turn bend {points), together with a fit to

= constant/VR. Inset: Typical transmission spectrum
of the bent fiber, relative to the transmission of the
straight fiber. The short-wavelength loss edge lies near
600 nm. The long-wavelength loss edge is beyond the
range of the measurement for thisg sample.

For short wavelengths the fibers are quite differ-
ent. In standard fiber,? W « p/A, giving R, ~ A in-
dependently of the core diameter. However, V.; and
hence W are constant in the photonic crystal fiber, so
R. varies as

R. = A3/A2, (8)
The reciprocal dependence on A implies that there is a
short-wavelength bend-loss edge also. Measurements
of the transmission spectrum of a photonic crystal
fiber were taken for a range of single-turn bend radii.
A low-foss wavelength range was observed that was
bounded by loss edges at short and long wavelengths.
The inset in Fig. 4 is an example of such a spectrum
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for the very tight bend radius of 4 mm, The variation
of the short-wavelength loss edge with bend radiys
R is plotted in Fig. 4, together with a fit to A =
constant/VR. The fit is excellent, confirming the
validity of relation (8) and hence of the effective index
model.

The loss edge for a 5-mm bend radius was at
~530 nm. The cubic dependence on A in relation (8)
indicates that a fiber with a pitch of 10 um and the
same relative hole size would suffer bend loss at a
bend radius of approximately half a meter at this
wavelength. Thus bend loss limits not only the useful
wavelength range of our endlessly single-mode fiber
but also the otherwise appealing prospect of a single-
mode fiber with a INacroscopic core.

We have used an effective-index model to show
that the photonic crystal fiber can, as suspected, be
single mode at all wavelengths. The useful wave.
length range of the fiber within the transparency win-
dow of silica, although wide, is ultimately limited by
bend loss.

T. A. Birks is a Royal Society University Research
Fellow. This research is supported by the UK Defence
Research Agency at Maivern and the Engineering and
Physical Sciences Research Council. The fiber was
made by J. C, Knight at the University of Southampton,
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Large mode area photonic crystal fibre

J.C. Knight, T.A. Birks, R.F. Cregan, P.St.J. Russell
and J.-P. de Sandro

The authors report the realisation of @ new design for a large
mode ared monomode optical fibre, This photome crysial fibre
will guide onbv o single mode. no matter how large the tibre
dmeter,  provided  (he shape 15 kept constant. This s
demanstrated with o fibre which has a core diameter equal to
approximately 30 free-space wavelengths

A photonic crystal Nibre (PCFY is 4 glass fibre with a regular array
of holes running down ity length. A single missing hole in the
array forms a region which eflectively has a higher relractive index
than the surrounding photenic crvstal. This acts us o waveguide
care in which light can become trapped. forming a guided mode
[1]. We have previoush reported that the PCF remains monomode
even for very short wavelengihs, and have explained this using an
effective index model [2] We now demonstrate that it remains
monomode even for very Yarpe-scale fibres Such large mode area
fibres are useful for wenerating and propagating high optical pow-
ers without limitations due to the onset of intensity-dependent
nonlinear eflects. Monomode photonic crystal fibre can readily be
made as large as desired because. unlike conventional oplicil
fibres, the number of guided modes in 4 PCF i independent of the
ratio of care radius 2 1o optical wavelength A (provided that the
wavelength is sutficiently short). Instead. the number of modes
depends only on the rato of the air hole dumeter o to the spacing
between holes A [2] One consequence of this s that no change
the refractive wndex profile is required 1o fabricate libres with dif-
ferent core diameters, and 2 single preform can be wied (o Gabr-
cate menomaode fibres with cores of any size.

ACSEM micrograph of a4 portion of the clen ed face ol the
libre reported here o shown i B I b o core of pure silic
which 1s surrounded by array of i holes 10 a0 <ihca matrix
The fibre shown s XU dameter and Inoseveral metres long,
Fhe wr holes run wong (he entire length The core duuneter
(defined as the diamcter of (he rmg formed by the mnermost r
holes) s 2p = 22.5um. and the air holes (with diameters « =
[.2pm) are spaced by A = 9.7pm i1 the penodic region. The fibre
was made by stacking a4 number ol gitiey capillares into the
required hexagonal array. replacing o single one of them with a

ELECTRONICS LETTERS  25th June 1998 Vol. 34

U3)
solid silica cane o torm the libee core, und drawing the stack
down on a fibre drawing tower. The core diameter 2p is greater
thin twice the pich A because the air holes in the original capil-
larics were relatively larger than n the final fibre: the holes are
allowed 10 collupse in a controlled lashion during the fabrication
process. It is worth emphasising that apart from being a very dhf-
ferent size, the fibre shown in Fig. 1 is virtually identical to those
fibres described previously [1] which were approximately five times
smaller in diameter and which also guided only a single mode over
the wavelength range to be described here.

Fig. | Scamuing electron micragraph of cleaved end Sace of large mode
area photonic erysial fibre

Fibre shown has 22.3um core diameter, relative air hole dumeter i A
= 012 and is monomode at all wavelengths & > 458 nm at least

’ 10pm |

% =0.458um

[ET%

Vi, 2 Contenir nap of newr fedd mstensiny destriboation for cwrded ninle
w fehee v o Fre f wenvclenedh A 38y

Contews are plotted a0 1 irtervals e modal fekd intensity st
bution

The fibie shown m big | oeades only asmgle mode at o wive-
length of 4 438nny Gand o all fonger wavelengths within the
tansparency window o sihci). We know this becawse we hinve
coupled light into one end of the fibre and have used mdes-match-
ing ¢t o strip ol hight e cladding modes. We then find that the
near and far field patterns of the light guided in the fibre core are
independent of the mput coupling conditions or of any bends or
twists introduced into the fibre. This is strong cvidence of mono-
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mode wuveguiding, A contour map ol the nearlicld pattern ol the
guided mode is shown in Fig. 2. Both the near and far ficld pat-
terns arc very similar to those previously observed in PCF with a
conventional core size [1, 2), dillering only in scalc. The angular
divergence of the guided mode in the largecore libre is 6, =
0.0065, and scales approximately linearly with wavelength and
with inverse core size.

The performance of a large-core PCF is limited by bend loss,
which unavoidably becomes large for large cores and tight bends
[3]. Using the effective index model, [2] the parametric dependence
of the critical bend radius for catastrophic loss of power from the
fibre core can be shown to be R, = A*A-2 The, at first surpnsing,
inverse square dependence of the critical bend radius on wave-
length is a direct consequence of the fact that for large photonic
crystal fibres the effective V-value is independent of wavelength
[2]. We have verified this behaviour in several fibres of different
sizes. For the fibre described above we find that R, = 50cm at A =
458nm and R, = 4em at A = 1.55um. It is worth noting that mak-
ing such a fibre using conventional technology becomes increas-
ingly difficult for such large cores because of the ever-higher
requirements for the uniformity of the doping level as the refrac-
tive index difference between the core and the cladding decreases.

We have described the design and fabrication of an ultra-large
mode area fibre which guides only a singlemode. This was demon-
strated for fibre with 2p/A = 50. There is no theoretical or techno-
logical limit on the mode size for a monomode fibre which can be
fabricated in this way, except for bend loss. Qur results suggest
that far larger core size fibres could be made to guide a single low-
loss mode over relatively straight lengths of fibres. We expect the
design to be useful in the design of novel high power waveguide
lasers and amplifiers.
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Model showing effect of impurity sub-lattice
topology on upconversion in Er¥*-doped
glasses

P.-M. Binder, L.F. Perondi and T.R. Gosnell

Monte Carlo methods dare used o simulate 2 spatial model. of
uniform upconversion and commensurate excited-state depletion
in high-concentration Er''-doped solids. 1t is found that the
opology of the impunty sublattice aflects the value of the
upconversion  coelfficient, @ result i accord  with  recent
megsurements  on  samples  prepared  with dentcal host
compositions and 1on concentralions.

Erbium-doped optical amplifiers operating on the 4l,,, — 4l
transition at 1.55um suffer an upconversion pump depletion proc-
ess involving pairs of ions in the excited 41,,, state. The net effect
of upconversion is the rapid annihilation of one of the two 4L,

excitations in fuvour of the 41, ground state 1, 2]. At low con-
centrations of the dopant ions, this process is most likely to occur
in isolated pairs and clusters (3, 4], while at high concentrations
{2~0.05mole% ErQy), rapid resonant spalial migration of the 4[,,
, excitation over the impurity sublattice combined with occasional
near-neighbour encounters of excitation pairs gives rise to so-
called uniform upconversion [3. 6].

In this Letter, we investigate the latter regime and show through
Monte Carlo simulations of resonant migration and subsequent
annihilation of the 4I,,, excitation, that the rate of uniform
upconversion depends not cnly on the concentration of erbium
ions but also on their spatial distribution. The latter effect is pos-
ited to account for recent experimental findings that sample prep-
aration methods affect the measured value of the upconversion
coeflicient {7].

We use fully spatial models [8] rather than the more common
bulk models. The latter give, for the loss of excitations o radiative
decay and upconversion:

dn

dt
where n denotes the 41, population density, y is the radiative
decay term, and C is the upconversion coefficient. This equation
agrees reasonably well with experiments. However, bulk models
fail to explain effects beyond dopant concentration. For this we
need spatial models, which are defined by a lattice upon which the
erbium ions are located and by a dynamic for the excitations. For
the lattice, we have chosen a regular square array whose nearest-
neighbour sites are either connected by a ‘bond’ or disconnected.
The former condition permits migration or upconversion between
the two sites while the latter condition forbids these processes.
With different bond arrangements we atiempt to mode! different
topologics of the impurity sublattice.

The dynamic is defined by three transition rates, W, R and T,
for migration, radiative decay, and upconversion, respectively, so
that W+ R + I = 1. A trial move selects one of these processes,
and the direction in which i occurs, the latter two, subject to the
conditions of the previous paragraph. We have eliminated long-
range exchangs provesses. This considerably speeds up the simula-
tions, but leas > “He question of the eflects of thir approximation
to future work.

= —yn — Cn? (1)

o I

i o

wmn
Fig. 1 Lattices B-D used in simulations

All have equal fractions of open and closed bonds

To study the effects of sample preparation, we have simulated
the dynamics in square lattices in which all sites are occupied with
Er ions. and therefore the dopant concentration is the same, but
the connecting bonds occur only with probability p = 0.625. We
concentrate on four lattices with different bond arrangements. In
lattice A, the connecting bonds are chosen randomly with proba-
bility p, which produces an mfinite cluster, with islands of uncon-
nected sites. Lattices B-D are regular tilings of the square lattice,
shown in Fig. 1. We have also performed some simulations on the
fully connected square lattice for model validation purposes,
which are described here.

We have studied systems of size 100 x 100, with alt sites initially
occupied with an excitation. We have simulated several combina-
tions of migration, radiative decay and annihilation rates, typically
for 400 MC steps and sometimes much longer, with averages in
the range of 20 1o 800 configurations per lattice. An MC step is
defined as an average of one trial move per particle. We were able
lo measure surviving excitations (n, initially with n, = 10000),
average distance travelled tefore annihilation, and rates of extinc-
tion {dw/dt) for all time steps.

First, with [" = 0, theory predicts an expected exponential decay
of excitations with time, n{f) = nee®, independent of migration
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Silica/ Air Photonic Crystal Fibres
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We describe the fabrication, characterisation and applications of silica/air photonic crystal fibres with
microscopic arrays of air capillaries running along their length.

1. Introduction

We have developed a new kind of all-silica optical
fibre which has a hexagonal micron-spaced array of
sub-micron diameter air capillaries running along its
axis'™®. The resulting “2%” dimensional photonic
crystal can be many metres (potentially km) in length.
Structural defects can easily be introduced during the
fabrication stage, either by replacing a capillary with
a solid hexagonal rod (high index defect), or by
leaving out a capillary entirely (low index defect).
Under the correct conditions, light can be guided at
both types of defect. If, for example, a full two-
dimensional photonic band gap exists over some
range of axial wavevector, then confinement can be
by Bragg reflection. In the case of the high index
defect, however, light can also be confined in the
pure silica core by total internal reflection at the
core/cladding interface. Excitation of photonic
crystals in this manner by evanescent fields, i.e.,
beyond their critical angle, produces unusual and
beneficial effects. For example, the fibre supports a
robust single mode over a spectral range very much
larger than standard single-mode telecom fibres®.

1. Background

Yablonovitch’s proposal” that a photonic band
gap could be created, in direct analogy with the
electronic band gap, in dielectric materials
periodically patterned in 3D, has created wide
interest. The subsequent theoretical and experimental
demonstration, by several groups, of a PBG at GHz
frequencies confirmed the essential soundness of his
idea. His pioneering efforts have resulted in a

rekindling of interest in “2'%” dimensional photonic
crystals, i.e., those in which the normals to the crystal
planes all lie in the same plane. An example of such a
structure is a planar dielectric waveguide with
multiple corrugations etched into its top surface, as
discussed in the early 1980s*”. In addition to needing
a smaller index contrast to achieve a full two-
dimensional PBG, the relative ease with which
“2'%"dimensional crystals can be made, even at visible
and near infra-red wavelengths, and the belief that
new physics remains to be discovered, renders them
an attractive topic of research in their own right.

With only a few exceptions, published theoretical

Fig. 1. SEM of photonic crystal fibre with small air filling
fraction and a central high index defect: inter-hole
spacing 10 um. We have produced fibres with inter-
hole spacings below 2 um?.
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studies of 24D photonic crystals have been
effectively 2D, i.e., they omit the possibility of
propagation along the third axial dimension. As
pointed out previously'®'", propagation along this
dimension must be admitted if waveguide modes are
to be treated in thin layers of photonic crystal. This is
because the transverse resonance condition required
for formation of such modes needs a component of
wave velocity normal to the film. When properly
designed, photonic crystal waveguides can support
both perfect waveguiding and strong photonic band-
gap effects'”. Furthermore, since the transverse
component of wavevector falls as its axial component
rises, the required “inter-atomic” lattice spacing rises
while the index contrast needed to create a full 2D
band gap reduces. These make it progressively easier
to create a 214D structure supporting a full 2D band
gap as the axial component of wavevector rises.

In the realisation of these matters, and with
funding from the Defence Research Agency in
Malvern, we embarked in 1991 on the fabrication of
photonic crystal fibres, in what became known as the
“holey fibre project.” Essentially, the idea was to
adapt the technology of glass fibre fabrication to the
production of a 2%2D photonic crystal consisting of a
thin thread of fused silica riddled with a hexagonal
array of air capillaries running along its length.
Calculations show that full 2D band gaps can be
achieved with an air filling fraction of 34% — see
Figure 3 for the case when it is 45%'?. The original
aim was to incorporate a low index defect state in the
centre of this structure, and achieve a novel form of
waveguiding in which the light is confined by the full
2D photonic band gap.

3. Fabrication

Pure silica fibres supporting guided modes were
first investigated in the 1970's'®, the aim being to
achieve low transmission losses. The huge success of
chemical vapour deposition in producing extremely
low loss fibre has largely eclipsed this early
technology. Our original photonic crystal fibre was
formed by creating a hexagonal silica/air preform on
a macroscopic scale and then reducing its size by
several orders of magnitude by pulling it into an
optical fibre. The unit cell of the photonic crystal is
formed by drilling a hole down the centre of a silica
rod and milling six flats on the outside, to give a

P. St. J. RUSSELL ef al,

hexagonal cross-section. This is pulled down into
cane with a diameter of approximately 1 mm and then
stacked to give the hexagonal crystal structure.
Defect sites are introduced at this stage, and the
stacked preform is then drawn twice more to produce
the final fibre. SEMs of typical fibres are given in
Figures 1 & 2.

Fig.2. Photonic crystal fibre with central high index defect;
inter-hole spacing 7 pm, Made using cylindrical
capillarics,

4, High index defect

Having succeeded in producing a regular
photonic crystal fibre, we realised that it might be
possible to produce a waveguide by replacing one of
the air capillaries with a solid cane. Viewing the
cladding as a material with an “effective index” lower
than the core, this structure appears to be a
conventional step-index waveguide. On the other
hand, allowing that light could escape from the core
along the silica bridges, it looks like a leaky
waveguide. (In the limit of large air holes, the central
core becomes more and more isolated from the
cladding and will clearly guide light.) Given that our
intuition was sending out conflicting signals, and that
we were in the lucky position of being able to make
the structure, we tested the fibre experimentally. The
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Fig. 3. Band-gap diagram for 2D silica/air crystal with 45% air (after '”). At fixed optical frequency (horizontal line), full 2D
photonic band gaps exist {slanted “fingers™). A cut-off region also exists beiween the maximum silica wavevector and the
wavevector at the critical angle in the PCF cladding. Guided modes can be created in both the photonic band gaps and this

cut-off region by introducing structural defects.

results were quite novel and of wide-reaching
technological and scientific interest.

The fibre turned out to be a zero-leakage
unconditionally single-mode waveguide, 1.e., only one
mode was present whatever the wavelength of the
launched light. The conclusion was that we had
produced a fibre structure whose single-mode nature
was controlled purely by the geometry of the 22D
crystal and not the wavelength of light. In order to
understand the importance of this result it 1s useful to
consider the behaviour of standard single mode
fibre'?. The normalised frequency parameter

2np [z 2
= T

V
determines the number of guided modes supported by
a step-index fibre (p is the core radius, n,, and n,, the
core and cladding indices and A the vacuum
wavelength). When |7 < 2.403, the fibre is single
mode. V increases rapidly as the wavelength falls, and
more and more higher order modes appear. For a
silica/air photonic crystal fibre, the effective cladding
index is a strong function of wavelength', and } may
be written in the approximate form:

1 2
V- (ZEA]Z(Hf‘l)‘f()L) +[AJU]
A r.

where f(A) is the filling fraction of air, weighted by
the field distribution in the cladding, r_ is the radius
of each of the regular array of high index resonators
that form the cladding, and J(j,) = 0 where Iy 1s
a Bessel function of the first kind. The pitch of the
crystal is A and n, is the index of silica. At long
enough wavelengths, / is simply the fractional
proportion of air by area. As the wavelength
decreases, however, light tends to redistribute more
and more into the silica parts of the photonic crystal
cladding, following f(A) ~ A* . In the limit as A - 0,
the first term under the square root tends to zero and
the V' parameter tends to Aj, /., which is
independent of wavelength and directly proportional
to one over the square root of the geometrical filling
fraction of silica, i.e., = 1/{yI- f(=). Provided the
long-wavelength filling fraction is itself small enough,
the fibre will remain single mode at all wavelengths.
In the language of solid-state physics, the trapped
state in the high index defect is akin to a state in the
forbidden zero-order photonic band gap, i.e., the one
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below the first order Bragg condition. This band gap
occurs even in an isotropic medium - for example, in
the core of a standard optical fibre. What is, however,
novel about modes created in the zero-order band
gap of a 2D photonic crystal is the extremely strong
dispersion of the effective index in the periodic
cladding.

In conclusion, the photonic crystal fibre offers
new guiding properties, including guaranteed single
mode operation at all wavelengths, subject to certain
bend loss considerations'®. The wider implications of
the technology are the subject of active exploration in
our groups.
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Abstract

We describe the fabrication, characterisation and possible applications of a new type of optical material — a 2-di-
mensional photonic crystal made of silica and air. This macroporous silica, which is made using the technology of
optical fibre fabrication, has properties which differ remarkably from those of conventional materials. We describe how
such a material can be used to form waveguides with new and unusual properties, and present some results to illustrate
this. Such photonic crystal waveguides could be significart in the design of new lasers and amplifiers. © 1999 Elsevier

Science B.V. All rights reserved.

PACS: 42.81.Q; 42.70.Q

Keywords: Photonic crystals; Optical fibre waveguides; Photonic band gaps

1. Introduction

The continuing development of optical com-
ponents requires that they be developed on an
ever-smaller scale. Ideally, these components
would be engineered on the scale of the optical
wavelength, Proceeding to this new generation of
active and passive optical components will mean
using available materials in novel ways and de-
veloping new material systems with the required
properties. It is thus important to recognise that
one can substantially alter the properties of optical
materials by structuring them on the scale of the
optical wavelength, fabricating new materials with
previously unattainable optical characteristics.
This possibility has led to research into so-called
photonic crystal materials - materials which have
been purposely microstructured so that they have
a 2- or 3-dimensional crystal structure, with a

" Corresponding author, E-mail: J).c.knight@bath ac.uk.

lattice scale of the order of the optical wavelength
[I]. The resulting periodic variation in the refrac-
tive index results in a strong interaction between
the material microstructure and the light field, and
can significantly alter the optical properties of the
composite material [1,2].

One example of the type of effect which can be
observed in such materials is our observation of
low-loss waveguiding in an optical fibre which
only guides a single mode — independent of the
wavelength or fibre size [3,4]. The useful range of
monomode operation of this fibre is limited only
by the optical absorption of silica and by the bend
losses which unavoidably become significant for
very short wavelengths and large scale fibres. An-
other example is the appearance of optical band
structure in photonic crystals [1,5). The appear-
ance of such band structure — which places con-
straints upon the allowed photon states within the
crystalline material - offers the possibility of con-
trolling the spontaneous emission process by en-
gineering the material microstructure, which is
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significant for the design of novel lasers and am-
plifiers. In general, the most useful effects in pho-
tonic crystal materials are observed when the
variation in the refractive index is quite large.
Consequently one needs to introduce a morpho-
logical microstructure into the material. This pa-
per describes the fabrication of a 2-dimensionally
periodic photonic crystal material by a novel
technique. We report on its unusual optica!l prop-
erties and how it can be used to form new classes
of optical waveguides.

2. Fabrication

The photonic crystal material being discussed
here is in the form of a fine silica fibre with a 2-
dimensional array of air holes running down its
length [3,6]. The crystal structure is formed on a
macroscopic scale as a preform, by stacking half-
meter lengths of capillary into a hexagonal shape
by hand. Typically we use around 300 capillaries
of diameter approximately 0.8 mm to form a
preform with an external diameter of perhaps 20
mm. This preform is then drawn at an elevated
temperature into a fibre using an optical-fibre

drawing tower, reducing the overall scale of the
structure by a factor approaching 10° while
maintaining the crystal structure introduced at the
preform stage. Drawing proceeds in two stages: in
the first the stack of capillaries is fused together
while being drawn into 1 m lengths of cane with a
diameter of about I mm. Single pieces of this cane
are subsequently drawn down a second time, the
final fibre having a diameter of between 20 and 200
pm. The pitch is between 1 and 10 pm, and the
fraction of air present in the samples is in a range
up to around 50%. The maximum attainable air
filling fraction is limited by the effects of surface
tension which cause the air holes to collapse, so
that it is increasingly difficult to fabricate large air-
fraction samples for the smaller pitches.

An example of a 2-dimensional photonic crystal
material produced in this way is shown in Fig. 1.
This scanning electren micrograph shows a port-
ion of the cross-section of a length of fibre which is
approximately 80 pm in diameter. The pitch A of
the crystal structure is 4.2 pm and the large air
hole diameter d= 2.9 um. The large hexagonal air
holes correspond to the originally circular capil-
lary cores, pulled into a hexagonal shape. The
smaller triangular air holes are the air gaps which

Fig. 1. SEM micrograph of a portion of the cleaved endface of a photonic crystal fibre. The fibre shown here has an external diameter
of around 80 pm, a pitch of A=75.5 ym. The apparent distortions on the right hand side of the picture resuit from a poor cleave in that

4rea,
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were formed at the interstitial sites at the ‘“‘cor-
ners” of the stacked capillaries. A crucial param-
eter during the fabrication process is the
temperature at which the preform and the fibre are
drawn: higher temperatures lead to the air holes
disappearing due to the surface tension forces. The
survival of the interstitial holes indicates that the
sample in Fig. | was drawn at a relatively low
temperature (perhaps 1800°C). By increasing the
furnace temperature the air hole size can be re-
duced — we have drawn fibres where the air holes
are as small as 50 nm in diameter, but still persist
over long lengths of several metres. At such a
temperature the interstitial holes no longer exist.
Similarly, we can easily vary the final diameter of
the fibre — and hence the pitch — by changing the
rate at which the fibre is drawn. Because a single
stacked preform can — in principle at least — supply
kilometre lengths of such fibre, we are in a posi-
tion to investigate the optical properties of this
material for widely varying drawing conditions.
Furthermore, it is possible to introduce localised
defects into the crystal structure at the stacking
stage — for example by leaving out one air hole or
by increasing or decreasing the size of a single
hole, or by replacing a single capillary with a
similar doped capillary. This provides further
scope for optical studies, making it possible to
observe waveguiding and microcavity effects
within the structures.

3. Optical properties of 2-D photonic crystals

In a periodically varying medium the allowed
{(propagating) photon modes are directly linked to
the material structure. This means that appropri-
ately microstructured dielectric materials provide
an exciting and potentially important way in which
to control the propagation of light. We can use an
embedded defect in a photonic crystal as a wave-
guiding core to form an optical waveguide which
guides light [3,4,7,8]. To do this, we need to un-
derstand the optical properties of the materials for
incidence along particular directions of the crystal
lattice. 1t is especially interesting to determine
those parameters which will cause light to be to-
tally reflected from the structure, as this can then

be used to confine light in a waveguiding core. It is
not sufficient for our purposes to study only the
optical properties in the periodic plane, although
this has been done previously vy many authors.
Rather, it is the case where there is a component of
wavevector out of the periodic plane (i.e. along the
fibre axis) which is of interest for our applications
{2]. The band structure in these directions can be
studied using now-standard numerical techniques
[9,10]. Band structure calculations give the longi-
tudinal propagation constants § of the electro-
magnetic modes which can propagate in the
periodic medium for different directions with re-
spect to the crystal lattice. Specific examples of
these calculations for a hexagonal silica-air crystal
structure similar to that being discussed here may
be found in Ref. [7].

These calculations show that for a given fre-
quency there is 2 maximum allowed value of the
propagation constant, Su... This mirrors the be-
haviour of conventional bulk materials, where the
maximum value of f is given by ., = nk, where n
1s the refractive index of the material being dis-
cussed and & is the free-space propagation con-
stant. Light which is incident on the material with
B > Prmax (and this is only possible from a higher-
index material) cannot propagate in the second
material - it is totally reflected. In this case the
only field within the second material is the eva-
nescent field associated with total internal reflec-
tion. The difference between the familiar bulk case
and the corresponding situation in a photonic
crystal material is that in the present case the value
of the effective refractive index B.,../k is not a
constant, but depends strongly on the properties of
the crystal material and on the optical wavelength.
As we shall demonstrate in the next section this
allows for considerable freedom to engineer the
material properties to exhibit specific desired op-
tical properties.

For B < fBrax there can be propagating modes
within the periodic material. These occur for fixed
values of the direction with respect to the crystal
structure and for certain values of the propagation
constants. For any particular value of § there may
be propagating modes which occur for certain di-
rections of incidence, while in other directions
there may be no propagating modes. This is dif-
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ferent to the behaviour of light in free space, where
there are propagating modes in any direction, be-
cause the propagating modes in a periodic medium
must of necessity satisfy Bloch’s theorem. For
certain periodic structures it is possible to find 8-
values for which there are no propagating modes
in any direction. These values correspond to the
stop bands of the 2-dimensionally periodic mate-
rial. This type of effect is currently a subject of
great interest world-wide. This arises from the fact
that within such a band the density of electro-
magnetic modes can differ very substantially from
that of free space or of a continuous material. This
will affect the coupling between an excited atom or
molecule within the material and the radiation
field, and will thus affect the emission probability
of the atoms or molecules into particular direc-
tions. In the strongest case the integrated density
of photon states and thus the overall transition
rate of the ions can be substantially affected. The
ability to vary the transition rates of active species
virtually at will would have profound technologi-
cal impact, as well as being of enormous scientific
interest. One of our goals in the present work is to
demonstrate this type of effect within the photonic
crystal fibre. We describe our progress towards
this goal in Section 5.

4. Waveguide modes with g > .. — the photonic
crystal as a fibre cladding

In this section we describe how we have used
the photonic crystal fibre material in the regime
where f§ > B to form a low-loss fibre waveguide.
An SEM picture of the structure being described
here is shown in Fig. 2. A single pure silica defect
site is embedded within the periodic “holey” fibre,
by replacing a single hollow capillary with a solid
pure silica cane during the stacking stage. When
the preform is drawn down into fibre this high-
index defect site (pure silica surrounded by silica/
air) acts as a low-loss waveguide. The waveguide
can be made so as to support a single or several
modes: what is remarkable is that a fibre which is
designed to support only a single guided mode will
be monomode for all wavelengths, no matter how
short. This is surprising, because any conventional
optical waveguide which is monomode at some
wavelength will become multimode at rather
shorter wavelengths [11]. A conventional cylindri-
cal optical fibre is monomode if the normalised
frequency, ¥V = 2mp(nl, —n2)?/4, is less than
2.405 [11). (p is the fibre core radius and A the
wavelength of the light, while ne, and n, are the
core and cladding refractive indices, respectively.)

Fig. 2. A monomode waveguiding photonic crystal fibre with a pure silica defect. The pitch of the crystal is A = 2.3 um and the air hole

diameter 4 = 500 nm. The single missing air hole in the centre i

s sufficient to form a low-loss waveguide core.
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Generally, the useful range of monomode opera-
tion in conventional fibres is restricted to a varia-
tion of the wavelength by a factor of about two
{11]. This limitation is imposed by the appearance
of higher-order modes for V > 2.405 and by the
unacceptable growth of bend losses for increas-
ingly large bend radii as V' decreases below about
1.2. On the other hand, we have verified experi-
mentally that a fibre such as that shown in Fig. 2 is
monomode for ali wavelengths from 337 nm to
beyond 1.55 pm without unacceptable bend losses
{the measurement range is limited by laser sources
available to us). This was done by coupling dif-

ferent laser sources into one end of the length of

fibre, and studying the near- and far-field patterns
of the guided mode at the output end. A contour
plot showing an example of the near field pattern
of the fundamental guided mode in the structure is
shown in Fig. 3(a). This pattern was found to be
independent of the way in which light was coupled
into the fibre, or of any bends or twists in the fibre,
and was the only pattern observable over the

(b)

Fig. 3. {a) Near-field pattern of the guided mode in a fibre
similar to that in Fig. 2; (b} near-field pattern observed in a
similar fibre to that used in (a). but with larger air holes. The
input coupling condition has been adjusted so as to optimise the
excitation of the second mode. A pattern like this cannot be
observed in a fibre such as that in Fig. 2. for any wavelength.

broad range of wavelengths investigated. The fibre
used to record this pattern was very similar to that
shown in Fig. 2. The mode is well confined to the
pure silica core region — the nearest air holes sur-
rounding the core are apparent as deep minima
which appear on the modal field distribution. A
very different modal field pattern is shown in
Fig. 3(b), which was recorded from a different fi-
bre with larger air holes. This plot shows a second
guided mode (selectively excited by adjusting the
input conditions) with a familiar two-lobe pattern.
A mode such as that in Fig. 3(b) could not be
excited in the fibre shown in Fig. 2, for any
wavelength investigated.

The near-field patterns shown in Fig. 3 provide
an important clue to the origin of the observed
ultra-broad range of monomode transmission in
these fibres. The air holes which form the deep
minima in the modal field patterns have diameters
d which are of the same order of magnitude as the
wavelength of optical radiation. In the fibre shown
in Fig. 2 the air hole diameter is & =~ 500 nm.
Clearly, light in the visible part of the spectrum
can image features of this size. However, for
longer wavelengths the holes are too small to be
properly imaged. In the limit of long wavelengths
one expects to find that the light sees but an av-
erage index in the holey material — in this limit the
fibre is quite like a conventional optical fibre with
a core index equal to that of silica, and a cladding
index given by the average index n,,, of the peri-
odic holey region (the root-mean-square volume-
weighted average of the indices of the air and the
silica). At shorter wavelengths one can again think
of the fibre as being similar to a conventional fibre,
but now with an effective index for the cladding
region, where n. > n,,,. The effective index must
always be greater than or equal to the average
index, because in the regime under consideration
{where the microstructured material is being used
as a cladding layer for an optical waveguide) the
field distribution will always tend to peak in the
higher-index silica regions, giving a higher effective
index. This tends to extend the range of mono-
mode operation of the fibre, the decrease in the
refractive index contrast with decreasing wave-
length counteracting the shorter wavelength in
calculating the normalised frequency of the fibre.
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It is worth quantifying this effect to investigate
its extent. We can do this if we take as our defi-
nition of the effective index of the cladding mate-
rial as Mg = fraslk, where k is the free-space
propagation constant of the light, and fn., 1s the
propagation constant of the lowest possible mode
(the “fundamental space-filling mode”) which
could exist in the continuous periodic cladding
region. This definition is appropriate because any
mode with f§ > Brmax Would be evanescent in the
cladding material. Furthermore, such a definition
allows us to quantify the effective index of the
cladding without reference to the core size or in-
dex. To calculate the numerical value of n.y one
thus needs to calculate the propagation constant
Bmax. This can be done because we know the ap-
proximate form of the field corresponding to this
mode: some details of the calculation have been
published in [4]. The curves in Fig. 4 show the
predicted variation of Ver with A/A for different
relative values of the air hole size 4 — evidently the
normalised frequencies V. of the fibre tend to a
constant for short wavelengths and for large
structures. The effect of the decreasing refractive
index difference between the core and cladding
exactly counteracts the effect of decreasing wave-
length, giving a waveguide which can be mono-
mode for all wavelengths, no matter how short,
providing only that the refractive index constant
remains approximately constant.

d/A=0.45

d/A=0.30

Veff

d/A=0.15

d/A=0.05
d/A=0.01

AX

Fig. 4. Calculated values of the effective normalised frequency
{curves) plotted as a function of the relative scale of the struc-
ture (the pitch divided by the wavelength of the light), Points
show observed single mode (circles) or two-moded (squares)
operation of various fibres investigated at different wavelengths,

We have shown that in the limit of short
wavelengths the normalised frequency of the fibre
is independent of the scale of the structure relative
to the wavelength. Instead, the crucial parameter is
the fraction of air in the holey cladding region,
larger air holes giving a lower effective index for
the cladding and hence a higher normalised fre-
quency. We expect that as in a conventional fibre a
higher normalised frequency will result in more
modes being guided in the fibre core. The is borne
out experimentally — the points plotted on Fig. 4
correspond to different fibres which support only
one mode (circles) or two modes (squares). This
was determined for each fibre by studying the
near-field patterns in the fibre core. It is apparent
that the fibres which support more than a single
mode have larger V-values than those which are
monomode: the critical value for the effective V-
value appears to be around V' = 2.4, close to the
exact value for a cylindrically-symmetric wave-
guide. Another useful point to be made concerning
Fig 4 is that the number of guided modes is in-
deed independent of the relative scale of the
structure for large structures — data in the figure
show that otherwise identical structures with rel-
ative scales differing by an order of magnitude can
both guide a single robust mode. Such structures
are potentially important for the design of high-
power fibre lasers and amplifiers.

5. From Bragg scattering to stop bands

We now describe Bragg scattering effects in the
photonic crystal fibre material. The strongest ef-
fects from periodically microstructured materials
are found when the refractive index contrast be-
tween the high and low index phases is large and
when the material is composed of roughly com-
parable volumes of the high and low index mate-
rials. Where these conditions are not met, one still
observes photonic band structure [12], but the ef-
fects are relatively weak and do not extend over a
very broad range of k-space. We can fabricate
samples with widely varying morphological pa-
rameters, and we expect our samples to display a
full range of behaviour from very weak 2-dimen-
sional Bragg scattering to rather strong photonic
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band gap effects. We have investigated this range
of possible effects by coupling light from a laser
beam into the material and studying the 2-di-
mensional scattering patterns which result. We
should emphasise that in these experiments the fi-
bre is not being used as an optical waveguide.
The experimental arrangement is shown sche-
matically in Fig. 5(a). The sample fibre to be
probed is placed in the core of a silica capillary
with polished end faces. The bore of the capillary
is then filled with an oil to match the index of the
silica capillary. By introducing a focussed laser
beam through one polished end face of the capil-
lary we can illuminate the sample obliquely at

Qil-fitled
Silica Capillary

Photonic crystal
fibre

Vidicon
camera

incident
beam

Rotating Optical Table

(a)

r-X
r-J

(b)

Fig. 5. {a) Schematic diagram of the scattering experiment; the
output of the vidicon camera is digitised using a frame-grabber.
{b) Reciprocal space construction showing the first few Brili-
ouin zone boundaries. which is used to predict the Bragg
scattering points in the weak scattering approximation.

different angles, while the sample can be rotated
about its own axis in situ to probe different di-
rections of propagation within the crystal struc-
ture. The scattered light leaves the far end face of
the capillary in the form of a cone (the wavevector
component parallel to the fibre axis is preserved)
and is allowed to fall on a screen, which is imaged
onto a vidicon camera and digitised. In this way
we are able to record the entire scattering pattern
for a wide range of excitation angles.

For very small air hole structures, we expect
that simple Bragg scattering in the first Born ap-
proximation should hold good. We thus expect to
see well-defined scattering peaks at particular in-
cident angles and into directions which can be
simply predicted. The predictions are easily visu-
alised using the k-space construction in Fig. 5(b).
In our experiment increasing the angle between the
incident beam and the fibre corresponds to moving
out away from the origin in Fig. 5(b). When the
incident k-vector crosses a Brillouin zone boun-
dary one expects a Bragg peak. An example of an
observed scattering pattern for a particular angle
of incidence along the X direction (corre-
sponding to crossing the second Brillouin zone
boundary at a reciprocal lattice point — the “triple
point”) is shown in Fig. 6(a). This sample had very
small air holes (d/A < 0.05) and no remaining in-
terstitial holes. Because the air holes are very
small, most of the light passes through the sample
without being scattered (bright spot on the bottom
of the plot). Light is scattered into five other
symmetrically positioned directions, as shown in
the plot and predicted by simple Bragg scattering
theory.

When the sample has much larger air holes the
scattering signature becomes much stronger. This
is a sign of the enhanced interaction between the
light and the microstructured material, and is ex-
pected ultimately to result in the appearance of
complete 2-dimensional photonic band gaps. The
results from such a sample are demonstrated in
Fig. 6(b) showing the scattering signature from a
fibre with a similar pitch to that in Fig. 6(a), but
with considerably larger air holes (31% of air). The
presence of interstitial air holes in this sample is
expected to broaden the optical stop bands of the
material [13]. Two significant differences between
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Fig. 6. Scattering patterns observed using a laser with A=1.55
um from samples with a pitch of around 4 pm. The incident
angle has been chosen in both cases to coincide with the triple
point (coincident with the second Brillouin zone crossing in
Fig. 5(b). The two fibres have filling fractions of (a) <1% and
(b) 32%, respectively. The unscatteredfforward scattered light
appears at the bottom of each plot, reflections from the sample
appearing on the top half.

Figs. 6(a) and (b} are apparent. First, the radiation
in the forward direction at the bottom of the plot
{(which is the sum of the forward-scattered and the
unscattered light) is very substantially reduced.
(That light which does appear in the forward di-
rection is due to leakage around the edges of the
rather small sample, which is about the same size
as the focussed laser beam.) Secondly, those Bragg
points which are at £60° to the forward direction
are also very weak. These features cannot be ex-
plained using Fig. 5(b). They are due largely to the
substantial attenuation of the beam as it traverses
the sample. (A fraction of the incident light is re-
flected from the surface of the sample despite our

index-matching oil, but we are at a larger angle
than would be required for total internal reflec-
tion.) Almost all the light which is incident on the
sample is scattered into the backward Bragg
points, reflecting the rather strong nature of the
photonic stop band in this case. Similar effects are
seen when illuminating the sample along other
directions with respect to the crystal axis.
Although this does not prove that we have a 2-
dimensional photonic stop band, it certainly does
show that we are in a strong-scattering regime.
Theory suggests that for similar sample parame-
ters to those used here we can indeed expect to
observe a complete 12.dimensional stop band, as-
suming only that the samples are sufficiently reg-
ular. However, due to the problems of mode-
matching at the interfaces and losses due to inco-
herent scattering it is difficult to prove the exis-
tence of such a stop band using angular or spectral
scattering and transmission experiments. We in-
tend to proceed to investigate the effects of the
periodic microstructure on the photon modes by
studying the fluorescence from Erbium ions em-

J

bedded within the waveguiding core, and by fab-

ricating a fibre with an air defect, in which it might
be possible to form a 2-dimensional Bragg wave-
guide where the guided mode was confined to the
air defect by a full 2D photonic band gap.

6. Conclusions

Photonic crystal materials can display remark- |

able optical properties. Our work with silica/air
photonic crystal fibres has shown how they can be
used to form low-loss waveguide structures in
which the number of guided modes is determined
by the geometry of the fibre and not by the relative
scale of the structure with respect to the wave-
length of interest. Thus one can design and fabri-
cate single-mode waveguides in which the guided
mode has a much larger effective mode area than
in conventional fibres. We expect such a single-

mode large-mode-area structure to be useful in the

design of novel high-power lasers and amplifiers.
Furthermore, we have demonstrated strong Bragg
scattering effects in photonic crystal fibre by scat-
tering experiments, and we expect this to alter the
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fluorescence properties of rare earth ions embed-
ded in the fibres. Taken together, these features
make photonic crystal fibre of substantial interest
for the development of the next pgeneration of
optical light sources.
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e OPTICAL FIBRES

Optical fibres, which form the individual strands
of the world wide communications network, have
become a vital — if hidden — part of modern life.
Technological maturity does not however
preclude innovation, as we have recently shown
by developing a revolutionary new kind of optical
fibre — the photonic crystal fibre. Conventional
fibre consists of a core of Ge-doped glass
surrounded by a cladding of pure silica glass and
traps light by total internal reflection. Photonic
crystal fibre, on the other hand, consists of an
elongated honeycomb of hundreds of tiny holes
regularly spaced within a thin thread of pure
silica. It traps light by imprisoning it behind a
“picket fence” of sub-microscopic air holes.

¢  MAKING PHOTONIC CRYSTAL FIBRE

Photonic crystal fibre is made by stacking
together glass capillaries and rods, which are
then heated to well above the temperature of
molten lava and drawn down in size 10,000
times. The process is akin to the spinning of

Figure 1: Photonic crystal fibre with small and
large holes; large hole spacing 7 microns

Figure Z: Photonic crystal fibre with 22 micron
core for guiding high power blue light

candy-floss, except that the threads are of course
inedible - and riddled with holes too small to be
seen with the naked eye. The fibres can be pulled
to lengths of 10s of km with holes as small as 50
nm across (1000 times narrower than a human
hair}. The length to width ratio of these holes can
be an astonishing 200,000,000,000:1 ~ making
them contenders for the world’s longest. To place
this number in perspective, if the Channel Tunnel
stretched from London fo Jupiter it would have a
similar aspect ratio.

¢ PHOTONIC LATTICES

The interaction of photon waves with this regular
array of capillaries is closely similar to that of
electron waves with an atomic lattice. For
example, interesting and useful properties arise if
the crystal is made “defective” by incorporating
dopants (these control the behaviour of electrons
in silicon microchips). In the case of the fibre,
dopants are introduced by leaving out, widening
or distorting holes. Light can be trapped at these
defective sites, and guided along the entire fibre
length. It turns out that, unlike in conventional
fibres where light can travel at many velocitics,
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the light trapped at a defect in a suitably designed
photonic crystal fibre travels at only one velocity
(the phrase used for this is “single-mode™) across
the entire electromagnetic  spectrum  of
frequencies. The fibre can thus guide multi-
colour laser light with unprecedented precision
over long distances.

¢ HIGH POWER FIBRES

The amount of laser power a conventional fibre
can support without suffering damage is limited
by the presence of core dopants and by the
maximum core area that can be made while
preserving single-mode operation. The photonic

Figure 3: Fibre with three cores (3 missing
air-holes), interhole spacing ~3 microns

crystal fibre performs much better in this respect,
because it is made from pure silica and is
guaranteed single-mode no matter how large the
core. The fibre in Figure 2 guides single-mode
blue light in a core of diameter 22 microns — an
area some 20 times larger than is feasible in
conventional fibre fabrication.

e  VERSATILE NEW TECHNOLOGY

The ability of the fibre to support much higher
laser powers without damage makes it of great
potential importance in applications requiring
high laser power such as surgery, laser
machining and long-haul fibre telecommun-
ications systems. In addition, the stacking and
drawing procedure makes it straightforward to
incorporate several cores in one fibre (Figure 3).

These can be used to multiply the transmission
capacity of a single fibre, or allow the realisation
of elegant fibre-based systems for “smart-
sensing” the flexing of, for example, aircraft
wings, bridges, undersea cables and oil welil
drills.
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Group-velocity dispersion in photonic crystal fibers
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The dispersion properties of photonic crystal fibers are calculated by expression of the modal field as a sum of

localized orthogonal functions.

Even simple designs of these fibers can yield zero dispersion at wavelengths

shorter than 1.27 xm when the fibers are single mode, or a large normal dispersion that is suitable for
dispersion compensation at 1.55 um. © 1998 Optical Society of America

OCIS codes:  260.2030, 060.2400.

Photonic crystal fiber {PCF) is made from undoped
fused silica with a hexagonal array of air holes running
along its length. The central hole is missing, leaving a
solid silica core to guide light. We have described this
fiber’s fabrication, struecture, and wide single-mode
wavelength range,' demonstrated that it can be single
mode at all wavelengths®® and scales,’ and constructed
versions with as many as six cores.® The wide single-
mode range is due to the unusual dispersion properties
of the cladding’s effective index. We therefore decided
to investigate the group-velocity dispersion (GVD) of
the guided mode itself, and this Letter summarizes our
first results. GVD in conventional step-index fibers
(8IF’s) has received much attention in connection with
pulse spread and its compensation, soliton propaga-
tion, and the control and harnessing of nonlinear
effects.®’

One can describe some of the properties of the
fiber by regarding the cladding as an effective-index
medium.**  However, with this approach one cannot
rigorously determine the propagation constant (and
hence the GVD) of a guided mode, and we have found
that naive substifution of the effective V value® into
known formulas for SIF gives incorrect values for the
propagation constant in most cases. General numeri-
cal techniques exist for analyzing periodic structures
with strong index modulations and have been used
to determine photonic band properties.* However,
we are interested only in guided modes, which are
localized near the fiber’s core. We take advantage
of this localization by meodeling the field as a sum
of functions localized near the core. These functions
are chosen to be close to the experimentally observed
fields. This method is less universal than others, but,
since a relatively small number of such functions is
needed to represent the field accurately, it uses far less
computer time and memory.

Maxwell’s equations are reformulated as an eigen-
value problem for the propagation constant 3, with the
refractive index n depending on the transverse coordi-
nates x and y only”:

[V_% + ke*n? + (¥ Inn?i x (V_x)Jh. = 8%h , (1)

where ¥ denotes the gradient operator in the xy plane,
ky Is the free-space wave constant, and the vector

0146-9592/98/211662-03%15.00/0

h. = (h., &,)7 gives the transverse magnetic field H -
H, =h, expli(Bz — ckot)]. {2)

The modal field is expanded by use of the Hermite—
Gaussian functions as the set of basis functions:

Bmalx, ¥) = exp{—(x* + y*)/2A% H » (x/ AV H,{ y/A)
(3}

where H,, is the Hermite polynomial of order m and A
is the period of the lattice (i.e., the pitch of the air holes
in the cladding). The functions ¢,,, are a complete
orthogonal basis set in the transverse plane. They are
localized around the origin, which coincides with the
core of the fiber. In this basis, Eq. (1)} becomes the
algebraic eigenvalue problem

S Ly h Bl = g2y mn (4)

k!
for the vector of ceefficients h, ™™ representing the
transverse magnetic field in the Hermite—Gaussian
basis. L:‘? are the matrix elements of the operator
on the left-hand side of Eq. {1) in this basis. These
elements are real and can be found analytically for a
wide range of lattices.

The infinite set of Eqgs. (4) is truncated (at a maxi-
mum value for the order m of the H,,), and we solve it
to obtain the propagation constants and fields. The
method becomes inaccurate for both low and high
frequencies. However, in the intermediate frequency
range 1 = A/A =< 10 that is of greatest interest ** a few
hundred basis functions is enough for good convergernice
of both eigenvalues and eigenvectors.

For speed and simplicity we restricted our ini-
tial study to a scalar approximation. This is exact
in the high-frequency limit, when coupling between
orthogonal field components is negligible and the
third term in Eq. (1) can be ignored. The scalar ap-
proximation correspends to paraxial propagation and
resembles the weak guidance approximation.? The
field-coupling term can be shown to scale with the air-
filling fraction, so for small air holes the high-frequency
limit is reached very guickly. A PCF with less than
10% air is in the high-frequency regime when the wave-
length is less than the period of the lattice (A/4 > 1).

£ 1998 Optical Society of America
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The overall GVD has two contributions,®’ the mate-
rial dispersion (which is a given function of wavelength
A for all silica fibers and is zero at A = 1.27 pm) and the
waveguide dispersion (which in a standard SIF shifts
the zero of net GVD to 1.31 xgm). However, for a given
wavelength and material, the design of a simple SIF
has two degrees of freedom, the core radius and the
core~cladding index step. The constraint that the V
value must be close to but not greater than 2.405 (to
minimize bend loss while staying single mode) leaves
one remaining degree of freedom for optimizing the
GVD. For example, one can shift the zero of GVD
from 1.31 to 1.55 um by increasing the index step and
reducing the core size.”

We compare the PCF with this simplest SIF because
the simplest PCF also has two degrees of freedom
that correspond roughly to those of the SIF, the scale
(and effective core radius) A and the ratio d/A, where
d is the diameter of the air holes. In practice, one
usually controls GVD in SIF's by adding degrees of
freedom, such as extra layers in the cladding. This
procedure, which could equally well be adopted for the
PCF, is beyond the scope of this Letter. Calculated
and experimentally measured field distributions for a
typical PCF are drawn in Fig. 1 and are clearly similar.

Propagation constants and hence waveguide GVD's
were calculated for different frequency parameters A/A
for a silica—air PCF and for a range of hole sizes
d/A. We chose a SIF corresponding to each PCF by
matching their effective cladding indices in the limit
of low frequency’ and taking the core radius to be A.
The GVD of each SIF was also calculated. Graphs of
GVD against A/A are plotted in Fig. 2, in which GVD
is expressed in the normalized form

_HBA)
d(k.v\)z
which relates te the conventional dispersion parame-

ter® D (usually expressed in units of ps nm~! km™!)
through

(5)

2771'\
ez £

(8)

Positive g corresponds to negative D and normal dis-
persion. Also indicated in Fig. 2 are the A/A ranges
in which the fibers are multimode.

The two sets of curves are similar in value and
shape. However, there are two key distinctions.
First, if the air holes are sufficiently small the PCF
is always single mode.* Hence PCF's can be simul-
taneously single mode with anomalous waveguide
GVD, whereas SIF’s are always multimode when the
waveguide GVD is anomalous. One can therefore use
PCF’s to shift the wavelength of zero net GVD to less
than 1.27 um, where material GVD is normal. This
could be significant for soliton transmission (requiring
anomalous GVD) in the 1.3-um window, dispersionless
transmission at shorter wavelengths where fiber
amplifiers may be more readily available, and phase
matching in nonlinear optics.

Second, the air holes can be large, giving a large
effective-index contrast and a large normal waveguide

GVD. This can cancel the anomalous material GVD
at 1.55 um or even overcome it, yielding normal net
GVD there. For example, dispersion-compensating
fibers have a large normal GVD at 1.55 um, which
cancels the smaller anomalous GVD of installed con-
ventional fibers. In a simple SIF the core must be
heavily doped for there to be a large index contrast,
making the fiber lossy, apparently because of the ther-
mal mismatch between core and cladding.” The PCF,
being a single-material structure, will not suffer from
this effect. Indeed, if the holes are so large that the
thin silica bridges supporting the core scarcely affect
the fundamental mode, the large waveguide GVD of a
silica core in air can be approached while mechanical

(a) ¢ e (
&

Fig. 1. (a) Calculated and (b) experimentally measured
contour plots of the guided mode field at A = 458 nm for
a PCF with A = 2.3 um and d/A = 0.23.

b)
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Fig. 2. Normalized waveguide dispersion g against A/A
for (a) PCF’s with different hole sizes d/.\ and (b) the cor-
responding SIF’s. The values of d/\ are 0.15, 0.25, 0.35,
and 0.45 in order of increasing peak g. The curves are
plotted only where the accuracy is high; the dotted curves
indicate regions in which the fibers are multimode. For
A = 1.55 um, one can convert g to units of ps nm’! km™?
by multiplying by —13,500 = A/A.
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Fig. 3. Calculated net GVD of a real PCF with A = 2.3 um
and d/A = 0.15. Inset, scanning electron microscope
image of the fiber’s cross section.

D (ps nm? kmr'?)

support and protection for the core are retained. A
rough calculation based on a silica core in air indicates
that the magnitude of the GVD at 1.55 pum for such a
PCF could exceed 1000 ps nm™! km™!, over 50 times
that of a standard SIF.

Finally, Fig. 3 is the calculated net GVD versus
wavelength for our first reported PCF.!? The fiber
had A = 2.3 um and d/A = 0.15 and was not designed
to have special dispersion properties.

In summary, we have expressed the modes in a
photonic crystal fiber as sums of localized orthogonal
functions, which cuts down the computer time and
memory needed. The dispersion of the fiber was
calculated and compared with that of a standard
step-index fiber, and the curves were very similar.
However, the PCF can have anomalous waveguide
GVD while being single mode, permitting the design

OPTICS LETTERS / Vol. 23, No. 21 / November 1, 1998

of a fiber with the zero of dispersion at wavelengths
shorter than 1.27 um. Also, the PCF design permits
the fabrication of fibers with large normal GVD at
1.55 pm for dispersion compensation, without the extra
losses associated with the heavy doping of silica.

This work was supported by the UK Engineering and
Physical Sciences Research Council. T. A. Birks is a
Royal Society University Research Fellow.
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Localized Function Method for Modeling
Defect Modes in 2-D Photonic Crystals

D. Mogilevtsev, T. A. Birks, Member, OSA, and P. St. J. Russell, Member, OSA

Abstract— We present a novel, general, and numerically effi-
cient treatment of electromagnetic modes localized at defects in
two-dimensional (2-D) photonic crystals. The method represents
the fields in terms of orthogonal functions localized at the defect
and is a fully vector treatment.

Index Terms— Holey fibers, optical fiber dispersion, optical
fibers, orthogonal functions, waveguide modeling.

[. INTRCDUCTION

OGETHER with recent spectacular technological ad-

vances in the fabrication of photonic crystals, powerful
theoretical tools have been developed for modeling their
electromagnetic fields. Universal methods such as the plane-
wave [1], [2], transfer-matrix [3], and finite difference time-
domain [4] methods are examples. However, because of their
generality, all demand a lot of computational effort when
modeling photonic crystals with localized defects where elec-
tromagnetic fields can be confined.

The aim of this work was to develop a fast and numerically
efficient method to model optical modes guided by localized
defects in two-dimensional (2-D)} photonic crystals. The work
was initiated and inspired by the need to model the guided
modes of the photonic crystal fiber (5], {6]. This novel
structure has many potential applications (for example, it
has unusual dispersive properties [7]) and typically consists
of a hexagonal lattice of microscopic air holes in fused
silica. Electromagnetic waves propagating along the fiber are
transversely confined by a localized defect in the otherwise
periodic structure, due, for example, to a missing (i.c., filled-
in} air hole [53] or an additional air hole [6}. Our method
15, however, also applicable to a wide range of 2-D periodic
structures with localized defects.

The idea behind the method is simple. Since the guided
mode is localized in the vicinity of the defect, it is natural
lo represent the modal feld as a superposition of orthogonal
[unctions Jocalized at the defect. As a consequence, only
a modest number of such functions is required to achieve
an accurate representation. This cuts down the amount of
computer time and memory necessary for simulation. This
approach was first proposed by Leung [8]. who used a set
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of basis funclions (vector Wannier functions) built from the
Bloch solutions for the perfect photonic crystal. Qur method
is much more simple and straightforward. It uses a predefined
set of orthogonal basis functions, which are independent of the
geormetry of the structure. Earlier we reported the results of a
scalar calculation 7], and another scalar impiementation of our
method has since been described in more detail by others [9],
but here we describe a fully vector version of this treatment,

The 2-D photonic crystal is a medium with a dielectric
constant € that is translationally invariant along the z axis. To
implement the method, we reformulate Maxwell's equations as
an eigenvalue problem for the propagation constant /4, which
is the z-component of the wavevector [10]

Lh; =(V] +kje)hy + (V. ln(e)) A(V; Ahy)
=/4’h, (1

where V| denotes the gradient in the z—y plane and kg is
the free-space wave constant. The components of the vector
hy = (:‘) correspond to the components of the magnetic
field H in the plane of periodicity

Hy, = h, expli(Jz — ckot}]; p=ux .

For the systemn of basis functions, we used the set of
Hermite—Gaussian functions [7]

$me.n = Coy,n exp[=(2? + 4*) /20 Mo (2 /A Ha(y/A) (2)

where H,, is a Hermite polynomial of order m, A denotes the
period of the lattice, and the normalization coeffictents Con
are

Con = [NA22”’+nm!n!]_l/2.

The functions ¢, . are well known in the theory of waveg-
uides. They describe modal solutions for a waveguide with
a parabolic profile of the dielectric constant [11], they are
mutually orthogonal, they form a complete system in the z—y
plane, and they arc localized in the vicinity of the point
r=0y =0

Expressed tn the basis of functions ¢y, .. (1) becomes the
algebraic eigenvalue problem

Do Ly = 3)

kit

. . i,
where the vector of coefficients h''" represents the compo-
nents of the magnetic field, in the plane of periodicity, in the

o

Hermite—Gaussian basis. L'k ;' are the malrix coeflficients of
the operator L in the Hermite~Gaussian basis.

0733-8724/99810.00 © 1999 IEEE
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An important part of the method is the calculation of these
m, n

matrix elements L.}". Generally, using (1}, they can be
expressed as

[Lkl poa = (a

where p, s = x, y. The coefficients a;;" correspond to the
first term in the expression for the operator L in (1) and can
be easily calculated analytically using recurrence relations for
the Hermite polynomials

B 1S T ST (/s PR )

Vim+1)(m+2)

apy™ =—(m+n+ 1)ém, kbnt +

2
m(m—1
' 6n;+?,k6n,l + % 6m—'2,k6n,l
1}{n+2 n(n — 1
+ mﬁ# S k6mra i + _<?§,._)
: 6m,k6n—2,t- (S)

The coefficients that correspond to the second term in the
expression for the operator L in (1)

"'“=/fda:dy¢m webi 1 ®)

and to the third term

. dlne atﬁ.r,g

L, n

[B ]Pﬂ_{1_26ﬂ 3)/—/‘d‘rdy¢ﬂln 3 ap
P, 5=r.y o)

are not so simple to calculate. Of course, it is possible to
evaluate the integrals numerically. However, it is hard to
achieve sufficient accuracy this way, and the computational
effort required negates the advantages of the method.

One way to overcome this difficulty is to represent the
distribution of & as the sum of the perfectly periodic part and
the part corresponding to the localized defect. The periodic part
is then represented as a discrete Fourier series, and the integrals
over this part in (6) and (7) can be found analytically. The
integrals over the localized defect can be found without much
effort, either numerically or analytically (9]. We implemented
this procedure for our previous scalar version of the method
{7]. despite a claim to the contrary in [9) (which cannot be
substantiated by the references cited therein).

Instead, here we perform these integrals analytically in a
straightforward way. To do this we impose periodic boundary
conditions on the system by putting it into a finite 2-D box;
that is, a supercell. Then we analyze the artificial periodic
structure obtained by replicating supercells in the = and y
directions. Now it is possible 1o expand the functions e and
In £ in discrete Fourier serics

gla,y)= Z En, ; exp(iGliy + iGL‘"y)
h, j

Z Vi cxp(iGif‘f:c + iG:”y) (8)
Ly J

lne(r, y) =

where GQ;; are the components of reciprocal lattice vectors of
the periodic supercell structure. Substitution of the expansion

2079

(8) into (6) and (7} gives, after some algebra, the following

results:
6";, k6n,l) Z Eh,j

h,j
-p(h, jv m, n, ks i) (9)

grn ! .
kl 33_‘ZG’JV"J W(p(h,_],m,ﬂ,k,!‘f"l)

b::}“ =€U,06ru, kén,f + (1 -

“'p(hl j: m, n, kr - 1))

m,n (" ,‘ k :
[6 ]:y—lch JV’I.J m (p(h: J: m! ﬂ,k—l, l)

—p(h hmyon, k41, D)

[g:l! ]!h =1 Z Gg'j”'*,j 2A2 (p(h J’ m, n, k i_l)

Ny
«-p(h SHmyon k L+1))
B gy =i ; Gl vy, 2A2 (p(hy J, m, m, k+1,10)

‘“P(h, j) m, n, k- 1) t))
(10)

where

k— !mn

P (th,JA)L—ﬂt
LGN LG AR 2)

LGy AP /2) exp(—[Gh I A/2)7)
cexp(— (G A/2) (1
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and the functions L]{z) are the associated Laguerre polyno-
mials. Equation (11) is written for the case when m < k and
n < [

Equations (9)-(1!) show two interesting properties of the
coefficients b and 8. The first is that, as expected, these
coefficients are real. Because of the symmetry properties of the
structure, they are nonzero only if the differences & — m and
{ —n are both even. In addition, the coefficients 8 are nonzero
only if these differences are also nonzero. The second property
1s that, due to the presence of exponentially decreasing terms
in the expression for the coefficients p, the sums in (9) and
{10} converge quickly. This allows us to model the structure
with very good accuracy using large supercells and a large
number of plane waves in the representations (8).

To illustrate the method we use iwo cases as examples.
We consider photonic crystal fibers [5] formed by arrays of
circular air holes in a bulk dielectric. The defect where the
guided modes are localized is formed by one missing hole
(Fig. 1). In the first case, the lattice of air holes is square.
In the second case, the latlice is primitive hexagonal. We
catculated the spatial distribution of the transverse field for
the lowest order modes localized within the defect (Fig. 2). It
can be scen thal the field guided by the defect in this type of
structure is well confined within the first row of air holes. In
the case of the hexagonal lattice, this result is supported by
the experimental data [5]. In Fig. 2(b), it can also be seen that,
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Fig. I. The outlines of photonic crystal structures with (a) square and
(b} hexagenal lattices. The white circles represent air holes in a dielectric
background. The absence of an air hole in the central site forms the guiding
defect.
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Fig. 2. Calculated transverse field diswributions for the r-polarized funda-
mental modes of the structures in Fig. |. In both cases, the diameter of the

hotes is taken tw be 30% of the lattice penod. and the wavelength is 31.4%
of the latlice peried. Four hundred basts functions were used for the plots

even for the comparatively small number of basis functions
used., apparently perfect hexagonal symmetry of the mode is
achieved.
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Fig. 3. The core parameter {7 of (12) for the fundamental mode of Fig, 2(a)
versus the number of basis functions used,

The propagation constant 3 can be expressed in terms of
the dimensionless core parameter I/ [10]

U=Akle, - 32 (12)

where ¢, is the dielectric constant of the “background” di-
electric material in the photonic crystal. To illustrate the
efficiency of the method, Fig. 3 shows the convergence of
U for the fundamental mode of Fig. 2(a), as the number of
basis functions used in the calculation is increased. A few
hundred basis functions are sufficient. Since these are products
of individual Hermite—-Gaussian functions of z and v [(2)],
each summation in the double sum of (3) can be restricted to
Just a few tens of terms.

The scalar version of the method is of course also illustrated
by the results of [7], for the group velocity dispersion of
photonic crystal fibers.

In conclusion, we have presented a detailed account of our
localized function method for maodeling the full vector modes
of defects in 2-D photonic crystals such as photonic crystal
fibers. The modal field is represented as a superposition of
Hermite—Gaussian funclions. A relatively small number of
these functions is needed to represent the field accurately,
making the method fast and computationally efficient. We have
iflustrated the method by calculating the fundamental mode
fields of two photonic crystal fibers with different lattices.
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Don’'t Make waves, control ‘Em

SOME 12 YEARS AFTER THE IDEA WAS BORN, RESEARCHERS
CONTINUE TO DEMONSTRATE THE VIAEILITY AND IMPROVE THE

PROCESS OF CONTROLLING LICHT WITH PHOTONIC CRYSTALS.

by Charles T. Whipple
Contributing Editor/Japan

nce upon a time, Eli Ya-
blonovitch of the Uni-
versity of California at Los

Angeles had an idea for a new kind
of crystal — one that would cut
down on the spontaneous emission
that causes threshold current in
semiconductor lasers. More than a
decade later, we're just beginning
to see how big an idea it was.

Yablonovitch's erystals promised
interesting possibilities. He figured
they could act as optical wave-
guides, improve optical filters and
set the stage for completely optical
switches — in other words, enable
the production of better, smaller
optical components. In 1991, he
proved that what we now call pho-
tonic crystals actually work.

The researcher drew an analogy
between electromagnetic wave
propagation in multidimensional
periodic structures and electron
waves in real crystals. “The analo-
gy proved to be a very fruitful one,”
Yablonovitch said. Initially,
he was looking for a “photon-
lc bandgap.” a frequency
band in three-dimensional
dielectric structures that is
completely free of electromag-
netic waves.

Photonic crystals are like
diamonds or graphite in that
they have repeating patterns
of reflective elements. In nat-
ural crystals, the repeating
elements are atoms or mole-
cules; in photonic crystals,
they're metal or dielectric
structures. In the artificially
made structures. light of a
given wavelength becomes
evanescent in all directlions.
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An experiment by Shawn-Yu
Lin's research team at Sandia
National Laboratories in Albuquer-
que, N.M., may offer a better expla-
nation of the photonic crystal phe-
nomenon,

The logging trail

Lin's group fashioned one pho-
tonic crystal of 0.5-mm-diameter
columns of alumina set in a grid at
a pitch of 1 mm. It looked some-
what like a stack of logs for a bon-
fire. The pitch of the alumina logs
allowed the crystal to manipulate
electromagnetic millimeter waves.

When a millimeter wave hit the
logs, part of it was reflected and
part was allowed to pass through.
The pile of logs caused multiple
reflections, creating a range of fre-
quencies for which electromagnetic
waves cannot exist. The repeating
pattern of the logs caused the
reflected waves to superimpose out

[V

Researchers at Sandia National Laboratories
have developed a photonic crystal based on
alumina columns set in a grid. The pitch of the
alumina logs allows the crystal to manipulate
electromagnetic millimeter waves. Courtesy of
Sandia National Laboratories.

of step, so peaks met troughs, can-
celing each other out. The diameter
of the logs and the pitch between
them determine the frequencies
that cancel out. The range of fre-
quencies not allowed to propagate is
called a photonic bandgap.

Lin’s team confirmed Yablon-
ovitch’'s seminal work, proving that
photonic bandgaps for electromag-
netic waves could be created with
photonic crystals. “This property
enables one to control light with
amazing facility, and produce
effects that are impossible with con-
ventional optics,” said John D.
Joannopoulos, who heads photonic
crystal research at the Massa-
chusetts Institute of Technology in
Cambridge.

Yablonovitch and others say
photonic crystals handle photons
in much the same way as semicon-
ductors handle electrons. The crys-
talline structure of a semiconduc-
tor controls the flow of electricity,
forbidding passage of elec-
trons in a defined energy
range. However, the semicon-
ductor material can be doped
so it conducts electricity in a
precisely defined manner.
That's how engineers can
make solid-slate transistors
and computers on a chip.

Like semiconductors, pho-
tonic crystals take on their
most useful properties with
the addition of impurities or
defects. One kind of photonic
crystal can be created by
drilling a diamondlike pattern
of holes in a block of silicon.
The periodicity (spacing) and
size ol the holes (columns of
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air) determine the crystal's
bandgap. Light in that bandgap
sees a perfect crystal In all direc-
tions, but if that perlodicity is bro-
ken by removing one of the
columns of air, the forbidden fre-
quency of light can suddenly exist
near that defect. And if the defect
is a line, photons will be forced to
follow that line through the crystal,
even if it turns at right angles. This
s encouraging news to research-
ers, Indicating that optical inte-
grated circuits are just a matter of
time.

Good news and bad news
According to Joannopoulos, the-
oretical description of light in pho-

tools for the lab

since Yablonovitch's demonstration
In 19917

Following up on their work with
crystals to control millimeter
waves, Lin's Sandia team finally
buiit a light trap of interlocking sil-
icon bars, each 1.3 pm wide and
1.5 pm high, set at a pitch of 4.8
pm. The device traps infrared light
with 10-pm wavelengths.

But Lin and his fellow re-
searchers did not settle for just
trapping the infrared light. By
carefully introducing defects into
the lattice, they were able to make
the light move up and down and
turn corners while traveling
through the crystal. The experi-
ments also proved that light can

Light passes through an early prototype
of the Sandia team’s photonic crystal.
Courtesy of Sandia National Laboratories,

be turned 90° in a one-wave-
length radius. MIT's Joannop-

tonic crystals involves the solution
of Maxwell's equations In a period-

i%

ic dielectric medium. (The four
equations, written by Scottish
physicist James Clerk Maxwell,
summarize the relationship be-
tween electriclty and magnetism.
They show that like charges repel
and unlike charges attract, no sin-
gle isolated poles exist, electrical
currents can cause magnetic
fields, and changing magnetic
fields can cause electrical cur-
rents.)

The good news is that, unlike
problems involving electrons in a
solid, Maxwell's equations can be
solved exactly. In other words, theo-
retical computations concerning
photons are very accurate, and very
useful pre-experiment exercises.

The bad news is that, unlike the
natural periedic arrangement of
atoms In semiconductors, photonic
crystals must be created artificial-
ly. For millimeter waves, this poses
no problem. But for the frequency
of light most often used in opto-
electronics (1.5 pm), fabricators
must create periodic structures
with a lattice constant of about 0.5
pm. That's a thousand times big-
ger than the atomic lattice con-
stant of a natural erystalline semi-
conductor, but it's also only a hun-
dredth the width of a human hair.
Right now. the only methods that
come close to this magnitude entail
x-ray or electron-beam lithogra-
phy. Joannopoulos said that the
ultimate goal for optoelectronic
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applications is to design and fabri-
cate 3-D photonic crystals at an
operating wavelength of 1.5 pm.
Researchers worldwide are working
toward that goal.

What good is it?

The ability to create photonic
bandgaps that forbid propagation of
electromagnetic or light waves of
certain frequencies in one, two or
three directions offers interesting
possibilities for manipulating those
waves. Potential applications in-
clude thresholdless lasers, resonant
cavities, antenna substrates, optical
waveguides, and many kinds of fil-
ters and polarizers.

In the years since Yablonovitch
postulated and proved the theory
behind photonic crystals, research
has burgeoned. Yurii A. Viasov,
of the NEC Research Institute in
Princeton, N.J., lists groups in 21
countries on his Web-based
photenic bandgap research page
(www.neci.nj.nec.com/home-
pages/vlasov/photonic.html). His
list of US research groups includes
eight government organizations, 42
universities and five corporations.
Lists for other countries are similar
in makeup, with universities lead-
ing the way.

Theoretical work and laboratory
experiments are all well and good,
but what progress has been made

jz

oulos clarified the possibilities.
Waveguides in photonic crystals
can guide optical light in air, along
narrow channels and around very
tight bends — with no losses.

Still, the Sandia researchers
must reduce the scale of their
crystals even further to manipulate
the 1.5-pm infrared light now used
for optical communications. To
achieve that, they'll have to cut the
lattice pitch to one-tenth its cur-
rent size while reducing the size of
the silicon bars by similar num-
bers. MIT's photonic crystal
research group predicts Lin and
his colleagues will have crystals for
1.5-um light by the end of this
year.

MIT researchers have come very
close to a practical waveguide for
infrared light, using a hybrid
approach. They took a traditional
silicon waveguide and drilled a
series of holes in it to form a one-
dimensional photonic crystal.
Specifically, researcher Jim Foresi
drilled four air holes into the wave-
guide, spacing them 0.22 um
apart. He then left a 0.42-pm gap
before drilling another series of
four holes.

Here's what happened. A pulse
of light with lots of frequencies was
sent down the waveguide. When
the light hit the four-plus-deflect-
plus-four configuration, only rays
with the frequency of the deflect
could get through. In this case, the

PHOTONICS SPECTRA
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frequencywas"1.5 pm. This kind of
one-dimensional photonic crystal
can be used to peel off a certain
wavelength of light and send it in a
different direction.

Superprisms

NEC Corp., which has its head-
quarters in Tokyo and is one of the
few companies actively developing
photonic crystal devices, recently
announced a crystal with a
“superprism” effect (see Photonics
Spectra, December 1998, pp. 31-
32) developed in collaboration with
NTT Optoelectronics Laboratories,
also in Tokye, and Tohoku
University in Sendai, Japan. Where
MIT’s one-dimensional crystal
peels off one frequency, NEC's
crystal effectively separates light by
wavelength.

“Our intention,” explained Hideo
Kosaka of NEC's superprism
research team, "is to construct
photonic crystals with equipment
and materials used to make ordi-
nary semiconductors.” In Kosaka's
experiments, two frequencies of
light -— 0.99 and 1.0 um — entered
the crystal less than 1° apart and
exited 50° apart. By the same
token, a full spectrum of light exits
the crystal widely separated by
color frequency.

“It is very difficult to create per-
fect photonic bandgaps,” Kosaka
said. “But we thought there might
be something usable even with
imperfect ones.”

The team laid down a silicon
substrate, and topped it with a sili-
con-oxide buffer layer and a
patterned layer of silicon with a
hexagonal array of holes. Once the
pattern was set, 20 pairs of alter-
nating layers of silicon and silicon
oxide were laid down. These layers
replicated the holes of the pat-
terned layer, resulting in self-orga-
nized triangular lattices in a 3-D
structure.

“Our method automatically puts
the photonic atoms of silicon and
silicon oxide directly above each
other in consecutive layers,”
Kosaka said. "It's much simpler
than fabrication processes that use
artificial opals, etching or micro-
manipulation. Qur method is also

more eco-friendly. Silicon and sili-
con oxide leave no toxic waste.”

Kosaka agreed that light can be
made to turn very sharp corners
without loss in waveguides made of
perfect photonic bandgap crystals,
“But the superprism phenomenon
does not need a perfect photonic
bandgap.” he said. “And they hold
the potential of multiple branching
and wavelength sensitivity that
should inspire novel designs for
such functional devices as wave-
length division multiplexers/de-
multiplexers.”

NEC is a major supplier of com-
munications equipment to NTT,
Japan’s national telecommunica-
tions utility, Naturally, NEC's
research and development program
focuses on finding practical appli-
cations, in this case, for the pho-
tonic crystal phenomenon.

Kosaka and his colleagues envi-
sion several applications for their
superprism crystals but are con-
centrating on two: bonding photon-
ic integrated circuits to electronic
large-scale integrated circuits and
developing a fully photonic add/
drop multiplexing device.

Crystal cavity lasers

The add/drop multiplexer hinges
on access to photenic crystal laser
diodes. A research team under
Hideki Hirayama at the Institute of
Physical and Chemical Research
(Riken) in Wako, Japan, experi-
ments with photonic crystal cavity
lasers. They use Swiss cheeselike
photonic crystals, a dielectric
material with a lattice of air holes
drilled through it. The holes are
arranged to form a pair of 3-D pho-
tonic erystal mirrors, sandwiching
a phase-controlling defect region.
The team demonstrated unidirec-
tional radiation patterns and dras-
tic enhancement of spontaneous
recombination lifetime with these
experimental photonic crystal cavi-
ty lasers. And, taken down to the
rminuscule sizes necessary 1o han-
dle visible light. they could become
important components in integrat-
ed optical circuits,

Contlinuing with developments
concerning optical communica-
tions, researchers at the University
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of Bath in the UK have created
photonic crystal optical fibers. In
his report on photonic crystal liber,
Jonathan Knight said his team
concentrated on 2-0 photonic
crystals in its research, which
brought it around to photonic crys-
tal fibers. The principle is quite
simple: The fiber is merely a 40-
um thread of silica glass with a
periodic array of air holes running
its entire length.

Ordinary optical fibers consist of
a core and cladding. Light waves
reflect off the mirror at the inter-
section ol core and cladding
toward the center of the fiber. The
team's fiber has a “defect” — an
extra air hole in the center — that
serves as the core. Light waves
running down the fiber are con-
fined to the core by the photonic
bandgap created by the surround-
ing array of holes. Tests show the
photonic crystal fiber transmits
much higher optical power than

LY '; e R
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conventional optical fibers, Knight
said.

Now that the principle has been
proved, it's probably up to some
manufacturer to develop efficient.
precise methods for manufacturing
these photonic crystal fibers.

Meanwhile, back at UCLA where
the whole photonic erystal melee
began, Yablonovitch continues to
wrestle with the problem that led
him to try to find a way to halt

A scanning electron microscope
image (opposite page) details a 40-
Hm photonic bandgap fiber
created at the University of Bath.
The center region with the extra
air hole acts as the core, through

which light is guided by a
photonic bandgap. An optical
microscope image (near left)
shows the fiber, as the other end
is illuminated by white light. :
Courtesy of the University of Bath. i
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propagation of
electromagnetic
waves of cer-
tain frequen-
cles. If photonic
crystals can
manipulate
light waves,
surely they can
also manipu-
late their longer
relatives —
radio and mi-
crowaves.

In theory,
crystals to con-
trol radio waves
would be about
the size of an
18-wheeler.
But Yablono-
vitch found that photonic crystals
with metal elements can be tuned
so that small crystals can manipu-
late long wavelengths. He predicts
that cellular telephones with pho-
tonic crystal aerials will be in shops
before the end of the century. If that
happens, people will be able to use
their cell phones without subjecting
their brains to microwaves.,

Hopeful prospects

Daily, research teams around
the world announce developments
that use photonic crystal attri-
butes. Armand Rosenberg of the
Naval Research Lab in Washington
made interesting predictions: “In
my opinion, the first applications
will involve specialized use of PBG
[photonic bandgap] materials as
passive optical filters. Clearly,
such devices can benefit optical
data transmission applications.”

Rosenberg also pointed to
demonstrations of optical limiters
incorporating a nonlinear medium
in a photonic bandgap material
achieved by the Naval Research
Lab. “Ultimately, I think the great-
est promise is in integrated optical
and optoelectronic circuits, which
would incorporate waveguide
structures like those discussed by
the theory group at MIT.”

David J. Norris, a colleague of
Vlasov's at the NEC Research
Institute. may represent the view of
industry. “[t is clear that photonte

P

In experiments with
NEC's "superprism”
photoni¢ ¢rystal, two
frequencies of light

-~ 09%and 1.0 pm —
enter the crystal
less than 1° apart
and exit 50" apart.
Courtesy of NEC.

crystals can have
very special proper-
ties,” he said. *With
these materials,
one can inhibit
spontanecus emis-
sion, a parasitic
process in many
optoelectronic devices. Defects
introduced into photonic crystals
act as extremely efficient optical
microcavities that could be used to
make thresholdless lasers and
extremely low-noise LEDs [light-
emitting diodes].”

Then Norris focused on the crux
of the matter. “The crystals are
very difficult to make, and this dif-
ficulty is a big bottleneck for com-
mercialization. This is why we are
working to use natural chemical
processes such as self-assembly to
make photonic crystals, instead of
nonlithography.”

Nevertheless, Norris added a
word of caution: "Some simple, ele-
gant applications have arisen from
the field. More exotic applications
require more basic materials
research to find simple ways to
make these crystals.”

The time has come for industry
to get more involved. As MIT's
Shanhui Fan said, "“The challenge
is to fabricate these micro- and
nanostructures reltably, with accu-
rate contreol over dimensions.”
Ways to manufacture optical
switches, frequency modulators,
channel drop filters, low-threshold
lasers and integrated LEDs must
be devised. This new integrated
optics technology needs to be made
compatible with integrated circuit
techneology. The possibilities for
lelccommunications alone are
mind-boggling. O
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surfaces dictate the confinement or
departure of the nuclei, and thus the
outcome of the chemical process. For
his development of computational tech-
niques that greatly facilitate the cajcu-
lation of molecular potential-energy
surfaces, Northwestern University the-
orist John Pople shared last year’s
chemistry Nobel Prize. (See PHYsICS
ToDAY, December 1998, page 20.)

When the potential energy of a
diatomic molecule, at a given elec-
tronic excitation level, depends only
on the distance between the two
nuclei, the potential-energy surfaces
are simply curves, as we see in the
figure at right. For Nal, a prototypi-
cal alkali halide molecule, the figure
shows the theoretically calculated
ground-state potential curve, with a
deep ionic-bending well at an equilib-
rium nuclear separation of 2.8 A, and
a nearby excited-state potential
curve with a broad, shallow well.

In a 1988 experiment,? Zewail and
coworkers gave a striking demonstra-
tion of how femtochemistry can eluci-
date the dynarics of such a funda-
mental molecular system. The .two
Nal potential energy curves come very
close to each other when the nuclei are
6.9 A apart. At this point there's a
bonding role reversal, as is often the
case at such “avoided crossings™ The
strong ground-state bond, which is
ionic at small separations, becomes
covalent, and thus weaker, at separa-
tions beyond 6.9 A. Conversely, the
short-distance covalent bond of the
excited state becomes ionic, and thus
stronger, beyond 6.9 A. This long-dis-
tance creation of an ionic bond in the
exited state has been described as har-
pooning the iodine atom from afar with
the sodium atom’s valence electron.

The Caltech group’s experiment
began with a pump pulse that raised
Nal molecules in the beam to the
excited state. That was followed, at
50 fs intervals for the next 10 ps, by
probe pulses at wavelengths chosen
to reveal the creation of free Na
atoms and of a putative short-lived
transition complex of bonding and
antibonding states, denoted [Na--IJ.
The experimental results, shown in
part b of the figure, exhibit a remark-
ably clear and persistent oscillation,
with a period of 1.25 ps. The upper
data curve signals the liberation of
Na atoms, while the lower curve sig-
nals the fleeting appearance of the
elusive transition complex.

The 1.25 ps periodicity manifests
the escillation period of the Nal mol-
ecule in the excited state's broad
potential well. Every time the sepa-
ration approached the 6.9 A avoided-
crossing point, the {Na--I}" transition
state would form, and there was a
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MOLECULAR DYNAMICS of Nal at fem-
tosecond resolution.’ (a) Potential energy
curves for the ground state (green curve)
and the experiment’s excited state (red)
come very close to each other at 6.9 A and
trade bonding characteristics. (b) Probe
laser pulses at 50 fs intervals detect 1.25 ps
oscillations in the population of liberated
Na atoms (orange data points) and a short-
lived transition complex (biue).

roughly 10% chance that the mole-
cule would jump down to the covalent
branch of the ground-state curve and
thus finally dissociate.

But—if the experimental signal is
a sum over millions of independent
molecules —why don’t the oscillations
wash out? The answer is that, in such

a femtochemistry experiment, the
pump pulse catches all the ground-
state molecules at once, all of them
very close to the equilibrium 2.8 A
separation at the bottom of the deep
potential well. Thus they all start to
oscillate in the excited well almost in
lockstep, giving us an unprecedented
“movie,” with angstrom resolution, of
a prototypical molecular disintegra-
tion in progress.

Femtosecond diffraction

“Now we're looking at biological Sys-
tems and other very complex process-
es,” Zewail told us, “and we're hoping
to apply electron diffraction tech-
niques on a femtosecond scale. Kent
Wilson’s [University of California,
San Diego] group has recently man-
aged to do lattice-dynamics diffrac-
tion experiments with picosecond x-ray
pulses.™ As these diffraction tech-
niques evolve, they should make pos-
sible the structural study of crystals
and complex molecules on the
timescale of their formation.

“Again and again, Zewail’s group
has shown us how much one can
learn by resolving the dynamics of
chemical systems on femtosecond
scales,” says Herschbach. “This inspi-
rational impact is an important
aspect of Zewail's contribution.”

BERTRAM SCHWARZSCHILD
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A New Way to Guide Light in

Optical Fibers

Many of our phone conversations
and e-mail communications race
to their destinations over optical com-
munication links that rely on total
internal reflection to guide pulses of
light down hair-width fibers of glass.
Despite their prodigious bandwidth,
these glass fibers will be hard pressed
to meet the heavy traffic demands
being placed on them by the explod-
ing use of the Internet. Recently,
researchers from the US and UK
have demonstrated another way to
transmit light waves though narrow
channels: By surrounding a hollow
core with photonic bandgap strue-
ture’ Their achievement opens the
way for guiding light with little or no
loss through an evacuated channel.

}A novel form of fiber optics, fea-
turing a hollow core rather than
one made of glass, holds promise for
communications systems or other
applications,

That's important because the interac-
tion of light with glass now limits the
maximum power that one can trans-
mit with today’s glass-core fibers. It's
not possible to have hollow cores with
fibers that rely on total internal
reflection because the core must have
a larger index of refraction than the
cladding, and there’s no solid materi-
al that has an index of refraction less
than one.

The recent demonstration is thus
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an important step, although so far
propagation has been shown only for
fibers a few tens of centimeters long.
If the technique can be scaled up to
long distances, it may help communi-
cations companies better keep up
with the growing demand on their
fiber networks {(which is currently
met by lightguides, microwaves, and
satellite-based systems). Higher power
is needed to carry more information
in fibers, but the power levels in con-
ventional fiber-optic systems are lim-
ited by the nonlinearities of the
medium.

Shert of replacing conventional
fibers, however, photonic bandgap
fibers may find niche markets
because they have different proper-
ties from fibers based on total inter-
nal reflection. They allow greater
flexibility in the nature of the core,
for example, because the index of
refraction for the core does not have
to be lower than that of the cladding.
But they are more restricted in the
range of wavelengths they can carry
without loss. Aside from lightwave
applications, they might be used to
guide atoms or small particles down
capillary tubes.

The guiding principle

What serves as the cladding in the
new photonic bandgap fibers? As
shown in cross section in the figure
above, it is a lattice of silica penetrat-
ed by a hexagonal close-pack array of
holes that surrounds a large central
hole (the core). Such arrays of con-
trasting dielectric materials (in this
case, silica and air or vacuum) strong-
ly scatter light rays passing through
them. Thanks to their regularity, the
structures can have a photonic ener-
EY spectrum analogous to that of elec-
trons in a crystal. For certain geome-
tries, the spectrum can even feature a
bandgap—that is, a band of wave-
lengths that cannot propagate within
the material. Photonic bandgap mate-
rials are attracting increasing inter-
est for applications such as lasers,
optical cavities, and couplers (see the
news story in PHYSICS ToDAY, Janu-
ary 1999, page 17, and the article by
Sajeev John in PHYSICS TODAY, May
1991, page 32),

If a fiber has a photonic bandgap
structure as its cladding, light whose
wavelength falls within the bandgap
cannot leak into the cladding, but
must remain within the core. That
idea has motivated the team that did
the recent demonstration: Philip Rus-
sell, Timothy Birks, Jonathan Knight,
and their postdocs and students at the
University of Bath in the UK, along
with John Roberts of the Defence
Evaluation and Research Agency in
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PHOTONIC BANDGAP FIBER. This scan-
ning electron micrograph of the cleaved
end face of a light-guiding fiber shows
the overall shape (top) and a closeup
(botrom) of the honeycomb array of
holes in silica. Light is guided down the
large central core, which is 14.8 em in
diameter. (Adapted from ref. 1.)

Malvern, England, and Douglas Allan
of Corning Inc in Corning, New York.
Russell told us that, when he started
out toward this goal in 1992, many in
the field felt that success would
require a bigger contrast in the two
indexes of refraction than that
between silica and air (1.46 to 1) to
get a full bandgap. Nevertheless,
Russell’s group has shown that it’s
possible to get a two-dimensional
bandgap using these structures.?
Finding the right geometric pat-
tern of holes in silica was not
straightforward, however, largely
because it’s not easy to calculate what
kinds of structures will give a suffi-
ciently large bandgap in the desired
wavelength region. Possible struc-
tures differ in the geometrical
arrangement of the holes, the size of
the holes, and the distances between
them. Last year, Knight, Birks, and
Russell, together with J. Broeng from
the Technical University of Denmark,
reported another structure that guid-
ed light by a photonic bandgap mech-
anism, but most of the light traveled
through the silica surrounding the
central hole, rather than within the
hollow core, thus defeating the hoped-
for transmission in air that the
researchers have now achieved with
the new design. One key to their
recent success was fabricating a
structure with a larger volume frac-
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tion of air (around 30%).

To make the fibers, the re-
searchers bundle several hundred
hollow capiliary rods of silica in a
hexagonal close-pack array, each
about a millimeter in diameter. They
then remove enocugh rods from the
center to leave a hole the size of seven
unit cells. The Bath-Corning team
then heats this sheaf of rods and
draws it out to form long fibers tens of
micrometers in diameter. The process
introduces additional, amall intersti-
tial holes into the gaps between the
rods, which have a small effect on the
bandgap wavelengths.

Transmission bands

When Russell and his coworkers
shone white light through short
lengths of these fibers, they found
that the core transmitted colored
light —presumably those wavelengths
in the bandgap of the cladding—while
the cladding transported white light,
presumably a mix of all allowed
wavelengths. The transmission spec-
trum showed low-loss peaks in sever-
al wavelength bands in the visible
and infrared bands of the spectrum.
Laser light whose frequencies lay
within those bands could be guided
through sections of fiber up to 40 em
in length, while maintaining a high
degree of spatial coherence. The
biggest limitation on the length of
transmission is the fluctuation of the
fiber parameters down the length of
the fiber. That problem should be sur-
mountable with efforts to attain a
very evenly drawn fiber, so that the
bardgap spectrum remains stable
down the fiber’s full length.

The Bath-Corning researchers
would like to compare the observed
transmission bands to the bandgaps
predicted theoretically for their strue-
ture, but so far the calculations have
not been done; the computations are
just too difficult, especially for the
high frequencies involved.

Photonic crystal fibers

Several other groups are working
with fibers that have solid cores sur-
rounded with periodic dielectric
structures (generally called photonic
crystals) that do not have bandgaps
(typically the volume fraction of air is
smaller than in bandgap fibers).
Without the bandgap, a photonic
crystal cladding must confine light by
the conventional method of tota]
internal reflection; the effective index
of refraction of the cladding is a vol-
ume average of the silica and air.
The earliest photonic crystal fibers
studied by Russell and his colleagues
had solid cores and they guided light
by total internal reflection (TIR).¢




These photonic crystal TIR fibers
exhibit some behavior that’s quite
distinct from conventional TIR fibers,
For instance, the photonic crysta)
fibers ean Support single-mede trans-
mission over a wide range of wave-
lengths, whereas fow conventional
fibers can transmit at a single trans-
verse mode over a frequency range
greater than one octave. Further-
more, Russell commented to us, the
photonic crystal cladding allows one
to maxe the core area about ten times
larger than that of & conventional
fiber, thereby allowing higher power
transmission.® Thesge differences sug-
gest that the photonic crystal fibers
may find some niche markets,
Several other research teams are
exploring the properties of photonic
erystal fibers. For example, a group
from Bell Laboratories, Lucent Tech-
nologies, recently made z structure
that has a fiber grating in the core
and a photonic crystal as its
cladding.® (A fiber grating is a period-
ic variation in index of refraction over
the length of the fiber.) The grating,
which reflects certain wavelengths
back on themselves, helps to couple
the single modes in the core of the
fiber (doped germanium, in this cage)
with the higher-order leaky modes—
those modes that propagate in the
cladding. The Bell Labs group is
interested in the application of pho-
tonic crystal fibers to optical devices
as well as to transmissjon lines. By
studying the transmission of various
wavelengths through such fibers, the
researchers can deduce which modes
of the core couple to the cladding.
This technique has enabled them to
characterize the cladding modes as a
first step toward understanding their
Potential for lightguide devices,
Innovations in fibers are not limit-
ed to those with periodic arrays of
holes in the cladding: Benjamin
Eggleston of Bell Labs told us that he
and his colleagues, and similarly a
group at the University of Southamp-
ton in the UK, are studying yet other
types of fibers, BARBARA Goss LEvI
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jaser or a hosepipe for atoms?

John Miliar

PHILIP RUSSELL’s professional life is riddled with holes, but
that’s the way he likes it. Ask him the secret of his remarkable
light-conducting fibres and he’ll tell you it is not the material
from which they are made, but the lack of it. Where there should
be solid silica glass—as in a conventional optical fibre-——Russell
and his team at the University of Bath have left dozens of tiny
holes. Strangely, the holes are there to keep the light in.

Russell’s fibres are an impressive piece of engineering—the
holes are just tens of nanometres wide and run perfectly for hun-
dreds of metres. This unique design lets them carry far more
light than conventional fibres, so in theory they could boost the
capacity of fibre-optic networks and even help to create power-
ful “pocket lasers” for use by surgeons to cauterise tissue or by
astronauts to repair orbiting spacecraft. The fibres also let you
play some remarkable tricks, such as making light leap from one
fibre to another, or squirting atoms through a “hosepipe” of
light—tricks that are vital for building high-speed optical com-
puters or super-sensitive gravity detectors.

Conventional optical fibres carry light through a glass core
surrounded by a cladding layer—a bit like the insulation on an
electrical cable. In most optical fibres both the core and cladding
are made from silica glass, but the core has slightly different
optical properties, thanks to a sprinkling of atoms known as
dopants, usually germanium or phosphorus. These atoms raise
the refractive index of the glass so that as light travels through
the core, it is reflected from the interface with the cladding by a
process called total internal reflection, and is trapped,

Russell’s fibres are very different. Core and cladding are still
made of silica glass, but there’s no need for dopants: instead the
fibre has tiny holes running through it. These make the per-
forated glass impermeable to light.

Why should holes prevent light from passing through an
otherwise transparent material? If the holes are arranged in a reg-
ular array with a size and separation of roughly the same mag-
nitude as the light's wavelength, they act as a picket fence that
stops light from passing through. An orderly array of particles
or gaps that excludes light in this way is called a photonic crys-
tal (“Tricks of the light”, Netw Scientist, 26 August 1995, p 26).

Photonic crystals were predicted in 1987 by two physicists
working independently: Eli Yablonovitch of Bell Communica-
tions Research in Red Bank, New Jersey, and Sajeev John of the
University of Toronto in Canada. Light passing through a fieid
of obstacles, such as a suspension of particles in water, is scat-
tered if the size of the particles is similar to the wavelength of
the light. The researchers realised that if the particles were
arranged in a regular lattice, they would scatter incident light of
the right wavelength back the way it came, like a mirror. Such
crystals have a photonic “band gap”—a band of forbidden wave-
lengths which they will not allow to pass.

Instead of filling empty space with a regular array of objects,
you could make a photonic crystal by peppering a solid block of
material with a regular array of holes.
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Photonic crystals offer more than just
fancy mirrors: they can confine and guide
light too. Disrupt the regularity of pho-
tonic materials and you open up a “crack”
through which light can squeeze. Missing
out a row of holes in a perforated sheet,
for example, provides a channel through
which light can travel.

This is the principle that Russell and his
colleagues, Jonathan Knight and Tim
Birks, use to make their photonic crystal
fibres. Their strands, each thinner than a
human hair, are laced with holes running
their length (see Photograph). But through
the centre of the fibres runs a solid, light-
conducting channel confined by the sur-
rounding photonic crystal. They have
made fibres hundreds of metres long, with
tiny channels running their entire length.
If the smallest of these channels were
scaled up to the width of the Channel Tun-
nel, it would stretch from here to Jupiter.

Whisker thin

To create this perfect array, the researchers
used a neat trick: they packed together nar-
row glass tubes to make a bundle about
two centimetres across. Like logs stacked in
a woodpile, the tubes arrange themselves
in a hexagonal fashion. To convert this
hefty bundle of tubes into a perforated
thread three hundredths of a millimetre
across, the researchers simply heated the
bundle to 2000 °C to make the glass soft
and viscous, and then stretched it until it
was as thin as a whisker. This preserved
the holey cross-section, but shrunk it in
scale by a factor of about a thousand. At
this temperature, the glass becomes soft
enough to ooze into and fill up the very
narrow spaces between adjacent tubes
whereas their hollow interiors remain. The
result: a flexible fibre riddled with chan-
nels too small to see.

However, these fibres, first fabricated
three years ago, don't operate by setting
up a full photonic band gap in the cladding
layer. Rather, Russell and his colleagues be-
lieve that the picket fence of holes acts like
a material with a different refractive index
from that of the solid glass core, 5o the light
is confined by total internal reflection.

But they've done far more than create a
conventional fibre using unconventional
means. They've discovered that no matter
how big they make their photonic crystal
fibre, it behaves like a conventional fibre
with a core just a few micrometres across.
This gives their fibre some huge advantages.

Make the core of a conventional fibre
too wide and light travelling along it can
follow several paths. This sets up patterns
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or “modes” in the light—like the patterns
of vibration on a drumhead. A fibre with
a core more than about 20 micrometres
across can support several of these modes
and is called a multimode fibre. Send a
narrow signal pulse along a multimode
fibre and it smears out as it travels, blur-
ring the information content and limiting
the amount of data that it can carry.

One solution is to use fibres with cores
just a few micrometres across, as light can
only follow a single pathway through them.
But these “single mode” fibres are so nar-
row that you can't fit much light into them,

On the other hand, you can make a pho-
tonic crystal fibre as wide as you like and
it will still behave like a single-mode fibre.
The “fundamental” mode remains trap-
ped, but all the light following other path-
ways leaks out of the core by “squeezing”
between the holes, so light pulses don't
smear out as they travel along the photonic
crystal fibre.

These fibres are also made of pure silica,
without the dopants which can absorb light,
particularly at blue and ultraviolet wave-
lengths, and reduce the intensity of the sig-
nal bouncing through the fibre. In principle
the photonic crystal fibre should behave as
a single mode fibre for light from the ultra-
violet to the infrared parts of the spectrum-—
a feat unmatched by any other fibre.

And because the fibre core can be made
wider than conventional single-mode
fibres, you can squeeze far more light down
it—up to 20 times more—opening up new

All of this represents a radical departure
from the way light is normally guided
around in optical fibres. “Russell’s photonic
crystal fibres have breathed new life into a
well-established field,” says Douglas Allan
of Corning, a leading glass technology com-
pany based in New York. “Their work is an
extremely valuable source of new ideas for
controlling light in fibres,” he adds.

Totally new

Late last year, the Bath group went one
step further. It reported a photonic crystal
fibre in which the core was not solid silica
but an extra hole (Science, vol 282, p 1476).
The researchers believe that, whereas in
their solid-core fibres the light was still
confined by total internal reflection, the
hollow-centred fibres trap the light
because there is a true photonic band gap
in the cladding—a totally new principle of
operation for an optical fibre,
Nevertheless, in their new fibre the light
is confined inside the glass that surrounds
the central hole, rather than in the hole
itself. Russell would dearly love to create
a fibre in which the light passes down the
hollow core—through air instead of silica.
There would be almost no absorption or
scattering and the power capacity would
be vastly increased. This, says Russell, is
his team’s uitimate aim, the target that he
originally envisaged back in 1992. "We're
not there yet,” he says, “but we're close.”
Ultimately, he sees such fibres being
used as the amplifying cavity of a laser.

‘With laser light, the hollow channels in the fibre will
confine and guide atoms—a sort of atom hosepipe. As the
light bounces along the core, it pushes the atoms along’

possibilities for delivering high-power
laser light to cauterise tissue in micro-
surgery, for instance, or to slice up materi-
als with great precision for engineering.
Higher power also makes the fibres
ideal for telecommunications, since it
means that fewer amplifiers will be
needed along the cable to boost the signal
for long-distance transmission. Optical
signals must be amplified at regular

intervals along the transmission line to

compensate for losses through absorption
and scattering. This creates technical prob-
lems when cables are laid on the seabed,
for example. But greater power means the
signals can survive for longer between
boosts, and because amplifiers are prone
to breakdown, fewer of them means fewer
costly repairs of undersea cables.

12 June 1999
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Fibre lasers are already in use, but if they
pumped out more power they would be
far more useful. The power produced by a
hollow-core fibre that carries light through
the hole could be at least ten times as great
as that from a silica-core fibre, upgrading
50-watt laser beams into the kilowatt re-
gion. “There are many applications waiting
in the wings for the world’s first 1-kilowatt
single-mode fibre laser,” suggests Russell.
They might be used, for example, in cutting
and welding tools for repairs to orbiting
spacecraft—a kind of pocket light sabre.
Holey fibres can also be used to process
light. Simply fill the hollow channels with
a gas or liquid, and laser light would inter-
act with it continuously as the light bounces
down the fibre. A potential product of
“filled"” fibres is an all-optical switch. Such

New Scientist ® www.newscientist.com
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Caughtin a trap: arranging the holes i concentric nngs (nght) or in more elabarate
patterns {lef) allows you to trap and guide anything from a sinqie laser beam to a massive
numher ot separate heams i a single fibre

switches exist already, but the new fibres
could overcome several of their Limitations.
All-optical switching allows light signals to
be rerouted without the need for electronic
control, which increases speed and reduces
signal loss. It exploits the “optical Kerr
effect”—when an intense burst of light trig-
gers an increase in a material’s refractive
index. This can cause a pulse of light to
jump tracks: above some threshold inten-
sity, it leaps from one glass fibre to another
when the two run side by side. In other
words, a burst of light can be used to flick
this switch in an optoelectronic circuit.
But the optical Kerr elfect is very weak
in glass—its “Kerr coefficient" is small—so
the light pulse has to travei over a long
distance through the fibre before the
cumulative effect is big enough to induce

New Scientist ® www.newscientist.com

switching. In the holey fibres the effect
could be made much stronger by filling the
channels with a liquid such as methanol
that has a higher Kerr coefficient. Then,
says Russell, it might be possible to achieve
switching over one metre of fibre rather
than, as is typical at present, over half a
kilometre of coiled glass fibre,

Perhaps most intriguing of all is the pos-
sibility of using the channels in a photonic
crystal fibre as a pipe of light along which
cold atoms could be sent. Researchers can
use the momentum of photons in a laser
beam to pick up small objects such as cells
and move them about (“Spin doctors”,
New Scientisf, 14 February 1998, p 34).
Atoms can be moved about in a similar
way. Tuning the energy of the light to one
side of an element’s atomic absorption line
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forces these atoms to move into the bright
areas of the beam; tuning it to the other
side pushes them out of the light beam.

So Russell’s team is collaborating with
Kishan Dholakia and cowarkers at the Uni-
versity of St Andrews in Scotland to use
laser light and the hollow channels in the
fibre to confine and guide atoms—a sort of
atom hosepipe. The idea is simpie: create
a vapour of cold atoms and use light to
guide the atoms one by one into the chan-
nels. Then as the laser beam bounces along
the core, it pushes the atoms down the
fibre. The atoms are attracted towards the
charged glass walis of the channel, but the
laser beam nudges them back to the centre
of the hole. “They sort of rattle along the
channels,” says Dholakia,

Potential applications range from the
separation of elements or isotopes—tun-
ing the laser light to the right frequency
will selectively transport specific atoms or
isotopes down the pipe—to ultra-sensitive
gravity meters, which would spot changes
in gravity using interference. If you cool
atoms to a whisker above absolute zero,
they display their wavelike nature. When
these “atom waves” meet, they generate
interference fringes in much the same way
that light beams can, but since atoms have
more mass than photons, the spacing of
these atom fringes is acutely sensitive to
the gravitational field in which the atoms
sit. Use atom hosepipes to bring beams of
cold atoms together—as is done with light
in an optical interferometer—and you can
make measurements of minute changes in
gravity. This could be useful for investi-
gating the structure of the deep Earth, sug-
gests Dholakia, or for detecting tiny
changes in sea level.

Although all sorts of photonic materials
are under development, most remain a
long way from the market. Russell’s fibres,
on the other hand, could be put to use
much sooner. And they should be easy to
manufacture in bulk, says physicist Shawn
Lin at Sandia National Laboratories in
Albuquerque, New Mexico: “This means
they should be cheap to produce.” Several
multinational companies involved in
laser design, communications and laser
machining have already beaten a path to
Russell’s door. “Given the level of inter-
est,” says Russell, “there is a good chance
that the photonic crystal fibre will be com-
mercialised within the next few years.”
Light sabres, optical computers and grav-
ity detectors may follow in due course. Not
bad for a material that's full of holes... =

Philip Baif is Consultant Editor af Nature
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pected (that is, © out of phase). This dif-
ference becomes even more apparent when
we compare the top insets in Fig. 3, A and
B, which represent the calculated interfero-
gram amplitudes in the absence of dephas-
ing for the parameters obtained from fitting
the data points (26).

The excited state coherence of the artifi-
cial “atom™ studied here has a decoherence
time of 40 ps, which is short compared with
atomic coherence times, thus limiting the use
of these particular QDs for quantum logic.
However, very long electronic spin coher-
ence in semiconductors has recently been
measured (27). Furthermore, QD structures
with stronger confinement are expected to
have reduced coupling to phonons (28) and
reduced spontaneous radiative emission (29),
and may well have much longer intrinsic
coherence times. In addition, doping of dots
may result in isolated impurity states with
long coherence times associated with more
complex states of excitation such as demon-
strated in atomic systems (30). Such progress
should allow the use of more complicated
sequences of control pulses during the coher-
ence time, such as those necessary for per-
forming quantum togic (5) or other coherent-
ly controlled processes.

The measurements show that we have
successfully demonstrated coherent optical
centrol of the quantum state of a single dot
and thus have taken this technique to the
ultimate quantum limit. We show that we can
extend such an expertment to include more
than one excited state and monitor the wave
function as it oscillates between rwo orthog-
onal states by measuring the autocorrelation
function. Finally, we show the feasibility of
generating a target wave function by demon-
strating control over the quantum mechanical
phase of the superposition of states. This
work establishes the basic tools for develop-
ing more sophisticated control and for creat-
tng a more complex wave function such as
achieved in atomic systems.
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Photonic Band Gap Guidance in
Optical Fibers

J. C. Knight, J. Broeng,* T. A. Birks, P. St. J. Russell

A fundamentaily different type of optical waveguide structure is demonstrated,
in which light is confined to the vicinity of a low-index region by a two-
dimensional photonic band gap crystal. The waveguide consists of an extra air
hole in an otherwise regular honeycomb pattern of holes running down the
length of a fine silica glass fiber, Optical fibers based on this waveguide mech-
anism support guided modes with extraordinary properties.

Photonic band gap (PBG) structures offer the
opportunity to design new optical properties
into existing materials by wavelength-scale pe-
riedic microstructuring of the material mor-
phology (/). In three-dimensionally periodic
PBG materials, waves of certain frequencies
cannot enter inte or propagate through the ma-
tenial (/}. In two-dimensionally periodic mate-
rals, there can be ranges of the propagation
constant normal to the periodic plane (B) where
propagation is forbidden (2, 3). One potential
application of such materials is a type of optical
waveguide where light is confined by surround-
ing it with a band gap matenal (4). Two-dimen-
sionally periodic structures in the form of long,
fine silica fibers that have a regular ammay of tiny
air holes running down their length (3, 5-8&)
constitute artificial two-dimensional “crystals”
with lattice constants on the order of microme-
ters. We previously demonstrated an optical
fiber waveguide based on total internai reflec-
tion from this periodic material-—a wavegwid-
ing mechanism very simular to that in conven-
tional optical fibers (albeit with some remark-

Optoelectronics Group, Department of Physics, Uni-
versity of Bath, Claverton Down, Bath BA2 7AY. UK

*Visiting from the Department of Electromagnetic
Systems, Technical University of Denmark, 2800
Lyngby, Denmark.

able features) (5-8). We now report the real-
ization and demonstration of a far more radical
optical fiber design, based on light confinement
by the PBG effect,

Our fabrication process is related to that
reported by Tonucci er al. (9) and involves
stacking a few hundred solid silica rods and
silica capillary tubes by hand in a hexagonal
arrangement to form a fiber preform, which is
then drawn down at a temperature of around
2000°C to a fiber with a diameter of about 40

0.76+ Higher order band gaps

Primary band gap

05 1.0 15 20 25
Wavelength (um)

Fig. 1. Computed band gaps in the air-silica
honeycomb lattice being discussed here. The
parameters used in the computation were a
nearest hole spacing of 1.9 um and an air hole
diameter of 0.55 um.
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pm. The subnucrometer-sized air holes m the
finat fiber are spaced by 2 lew micrometers.
Previous fibers were based on a simple hexag-
onal armay of air holes, made by stacking tubes
only. However, we did not obsenve band gup
guidance in a hexagonal structure. Our attention
switched to a honeycomb array of holes. which
15 known to show broader band gaps for in-
plane (/0} as well as for out-of-planc (/7 prop-
agation. Calculations with the plane-wave
method show that for realizable scales of struc-
tures and air-filling fracuons, we expect 1o ob-
serve band gaps at visible light frequencics i
ideal structures {//}). This 15 true for out-ol-
plane propagation, even though the air-filling
fraction and refractive index contrast are 100
small to observe band gaps in the periodic plane
{3). Calculations for the parameter range inves-
tigated experimentally (Fig. 1) show that band
gaps appear for a wide range of wavelengths for
values of &/ above the “radiation line.” below
which one expects to find total reflection from
the structure (k is the vacuum wavenumber). To
create a waveguiding “core.” one needs to in-
roduce a “defect” into the crystal structure-—a
localized region with optical properties differ-
ent from those of the fully periodic structure.
This core is surrounded by a “cladding”—the
fully periodic region—the purpose of which is
to confine the light within the core. Within a
properly designed defect, light can propagate
with a value of (3 thal falts within the band gap
of the surrounding cladding material. Further
numencal modeling shows that by introducing
an “exira” air hole into a single lamce site
within the structure. locahzed guded modes
can appear within the band gaps (/7). m cenamn
wavelength ranges.

Experimentaliv. the honeyeomb structure 1s
created by individual positioning of rods as well
as capillaries 1n the stacking stage. An extra arr
hole 1s intreduced 1o the center of the honey-
comb pattern by replacing a single sohd rod
with a hollow capilfary This “low-index de-
fect” ensures that there s no possibility of

Fig. 2, Scanning elec-
tron micrograph of the
surface of a cleaved
PBG fiber waveguide 5
cm long. The parame-
ters of the fiber shown
are a diameter of 36
wm, a nearest air hole
spacing of 1.9 um, and
an air-filling fraction in
the periodic region of
53%. The central air
hole is ¢.8 ym in diam-
eter and is surrounded
by six interstitial holes
of diameter of about
75 nm. This fiber

guides light at between
at least 458 and 528
nm, but not at 633 nm

www sciencemagorg  SCIENCE VOL 282
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wineptiding by total miernal retlection (6)
Because the capnllanes and rods are cireular in
cross section but are stacked into o hexagonal
there are
holes  that are formed within the structure
These mterstitial holes collapse during the {ab-
recation process under surface tension torees,
sunviving near to the center ot the fiber after
they have disappeared elsewhere because ot the
extra forces that result from the presence of the
extra aur hole (Fwe 23 They appear 1o play an
wportant role i the optieal properties of the
samples

We obsernve i punded mode i the core of the
structure (Fsgs, 3 and 43 The observed cffects
are highly sensimve o the precise structure and
scale of the core and cladding and are nom
obsened for a range of fibers with shightly
differemt parameters. Smail varations n the
structure of the fiber over lengths on the order
of 10 cm {which are due 1o variations in con-
dinions within the fumace during fiber drawing)
cause the waveguding properties 10 change
substantially or even to disappear completely.
Nonetheless, we can reproducibly fabrscate
samples that ook like that in Fig. 2 and that
demonstrate the same optical eftects. We are as
yet unable 10 quantiatively model the fabricat-
ed structures (Fig. 2). The air holes in our
samples are not round (as in our calculanions)
but are distorted by the effects of surface ten-
sion. More problemanc are the interstitial air
holes within the “core™ of the fiber, which have
not been modeled accurately because they are
so small. However, the band gap plot for the
correspondmg deal structure (kg 1) does
show several band gaps at the visible wave-
fengths at which we observe wiaveginding, The
exact frequencies at which theory predicts con-
fined wavegwide modes depend on the design
of the defect as well as that of the pernodic
structure. and therr detemynation requires pre-
cise muodeling of the structure under study

To demonstrate that these features (Fig, 3)
are due to a single guided mode, we focused

RE AT small r gaps -anterstitial

vistie laser lightonto one end of lengths {about
S0 munt of the fiber using a high-power obyec-
nve lens, Near-field and far-tield patierns at the
output end were obsernved (Fig. 4). The relative
intensiies ot the six lobes i the near-icld
pattern (Fig. 4A) remained fixed as the input
couplimg. was varied and are nearly equal. No
other mode field patierns are observed contined
ta the defect region, The guided mode 1s nghtly
confired to a smail stlica region that 1s directly
connected 1o a4 much targer one (Figs. 2 and
4A) demonstrating the unusual nature of the
wavepuiding process.

The six-lobed far-ticld patem (Fig. 4B) re-
mains fixed and unchanging with input cou-
pling. except that the overall intensity of the
patiern 1s extrenely sensitive o the precise
mput coupling. The far-field pattern diverges at
an angle of about 25° with respect to the fiber
axis, and a simular angle was used for the inpw
couphing. [t is worth remarking that the ob-
served far-field intensity panem (Fig 4B) can
only anse from the near-field intensity pattem
(Fig. 4A) by postulating that the fields in oppo-
site lobes of the field pattern have opposite
signs. The computed guided-mode profile pre-
sented 11 (/) showed no such phase reversals.
However, we found that modal field patterns
with a similar ssmmetry to that abserved ex-
perimentally can be computed in higher oeder
band gops. This is consistent with the observa-
tion that the mode presented in (/1) was com-
puted for & wavelength of 1.5 wm, whereas the
miede observed here 1s gurded @t aboul ope-
third of that wavelength m & structure with a
stmilar scale. The fiber shown (Figs. 2 and 3)
puided light for wavelengths between at least
45¥ and 528 nm {argon-ion laser lines) No
confined mode could be observed at a wave-
length of 633 nm thelium-ncon laser), despite
exhaustive attempts, Modal field patterns sim-
lar 1o that m Fig. 4A could be observed by

Fig. 3. Optical micrograph of a PBG fiber. The
fiber is iHluminated from below with a white
light source, and index-matching fluid on the
sides of the fiber 15 used to strip off some of the
light in cladding modes. The fiber shown guides
blue and green light in the low-index core.
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focusing the light onto the core region, but they
were always accompanied by substantiat light
that filled the whole fiber No indication of a
far-field pattem like that in Fig. 4B was ob-
served. A relatively sharp transition-—with
wavelength—from a confined to a nonconfined
made 15 expected to be a feature of this type of
waveguiding

Some qualitative insight into the namure of
the guided modes being described here can be
ganed by considering the honeycomb structure
shown i Fig. 2 as a large number of indepen-
demt sihca strands that are strongly coupled
logether. Each isolated strand would suppon
many distinct waveguide modes, each with a
different value of B. When a large number of
strands are placed in close proximity, they cou-
ple together, and each mode of the single strand
Opens up into a passband of modes of the

>

=Y
D@'

nterstitial
Holes

e

B

Fig. 4. Near- and far-field patterns observed
with laser light (wavelength = 458 nm} to
excite the guided mode in a 50-mm length of
fiber. (A) A contour map of the observed near-
tield pattem {color) superimposed on a scan-
ning electron micrograph showing the fiber
morphology (black). The interstitial holes in the
structure {which appear between the lobes of
the guided mode} are clearly visible. The guid-
ed-mode field intensity outside the first ring of
air holes is at least two orders of magnitude
less than the peak intensity shown. (B) A pho-
tograph of the observed far-field pattern. The
pattern was recorded by allowing the diffract-
ing light emerging from the end of the fiber to
fall onto a paper screen, which was then im-
aged onto photographic film fram the back. The
orientation of the six main tobes in the far-tield
pattern is the same as those in the near field

20 NOVEMBER 1998 VOL 282 5Ci

REPORTS

composite structure, each passband now cover-
ing a range of B values. The passbands are
separated by band gaps. The central silica
strand (the “core”’), which has a large hole in the
middle and six smaller mterstital holes dis-
posed symmetrically around . would, if isolat-
ed, support a different set of waveguide modes
because of its differemt morphology. If the B
value of one of these modes falls within one of
the bands of mades of the periodic cladding,
this mode of the core will be coupled to the
extended medes of the periodic cladding. How-
ever, 1f one of the modes of the core region falls
in between the passbands of the fully periodic
cladding region, then this mode is localized
within the core and forms a PBG guided
mode. Thus, at some wavelengths, there is
a mode trapped within the core (the “guided
mode™}, whereas at ather wavelengths the
modes are extended and fill the fiber. A
possible reason for the importance of the
hard-to-modet interstitial holes within the
core Is that they wili affect the B values of
the core modes, drawing one of these into
the band gap of the continuous material.
Band gap guided modes are expected to
have quite different properties to the modes of
conventional optical waveguides. For example,
we observe that the fiber being described here is
strongly birefringent. with a beat length on the
oider of mitlimeters (that is, the different polar-
ization modes have rather different propagation
constants). We conclude that small imperfee-
ttons in the structure can have a bares eriec on
the praopagation constant of the trapped nmodes
The dispersion of these fibers is likely to be far

larger than that observed in any previous optical
fiber waveguide for the correct choice of fiber
destign parameters. Other properties of these
fibers (for example, their susceptibility to bend
loss) remain to be investigated, and even maore
counterintuitive designs (a silica-air wavegurde
where the light s trapped within an air hole, for
example) are possible. This is only the first of o
very broad class of fiber guided modes. which
show great technologicai promise and are of
substaniial scientific interest.
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Direct Demonstration of Milk as
an Element of Archaeological
Economies

Stephanie N. Dudd and Richard P. Evershed*

The stable carbon isotope (8°C) compositions of individual fatty acid com-
ponents of remnant fats preserved in archaeological pottery vessels show that
dairying was a component of archaeological economies. Characteristic 513C
values arise from biases in the biosynthetic origins af the C,g o fatty acids in
mitk and adipose fat. Miltk and adipose fat from animals raised on similar
pastures and fodders have distinct isotopic signatures.

Although sheep are thought 1o have been
domesticated in the Near East at --9000 B.C
and cattle and goats were domesticated at
=000 B.C | there is no direct evidence that
they were milked  Pictonal and  written

Orgaric Ceochernistry Unit, School of Chemistry,
University of Bristoi, Cantock's Clase, Bristol, BS8 175,
UK

*To whom correspondence should be addressed E-rnail:
" p evershed@bristol.ac uk

o

records from the Sahara. Leypl, and Meso-
potamia show that dairying had begun there
by 4000 to 2900 B.C (/). Lvidence of dair-
ying during the prehistoric period in Britain
has been limited selely 1o secondury evidence
associated with the procurement and use of
dairy products, such a, putative  ceramic
“cheese” strainers, datng lrom 4500 13 ¢ (2
1). Faunal studies have suggested that o fgh
reonatal cull and a bias i the adult cull 1n
domestic ruminant animaly may indicate danr-
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Single-Mode Photonic Band Gap
Guidance of Light in Air

R. F. Cregan,’ B. ). Mangan,” ]. C. Knight," T. A. Birks,’
P. St. J. Russell,” P. ). Roberts,? D. C. Allan?

The confinement of light within a holiow core (a large air hole) in a silica-air
photonic crystal fiber is demonstrated. Only certain wavelength bands are
confined and guided down the fiber, each band corresponding to the presence
of a full two-dimensional band gap in the photonic crystal cladding. Single-
mode vacuum waveguides have a multitude of potential applications from
ultrahigh-power transmission to the guiding of cold atoms.

To be guided along an optical fiber, light
must be confined to a central core by reflec-
tion from the cladding that surrounds it. All
conventional optical fibers guide light by to-
tal intemnal reflection (TIR), which requires
that the core have a higher refractive index
than the cladding (/). TIR is perfect in that it
causes no loss other than the intrinsic absorp-
tive and scattering losses of the materials
themselves. Even these losses (and other ma-
terial deficiencies) could be largely avoided if
the light filled a hollow core. However, this is
not possible with TIR, because no solid clad-
ding material exists with a refractive index
lower than that of air. Existing holtow fibers
(2) use external reflection and are thus inher-
ently leaky: furthermore, they invariably sup-
port many different transverse modes; that is,
they are highly muitimode.

We have developed a fiber in which light
can be strictly guided. without leakage. in a
hollow core. Light in certain well-defined
wavelength bands is trapped in the air by a
full two-dimensional photonic band gap
(PBG) of the cladding instead of by TIR (3,
4}, and it can be guided in a single mode.
Here we describe the fabrication and charac-
terization of the fiber and the spatial and
spectral properties of the guided modes and
compare the results to theoretical models.

The requisite numerical computations for
designing a hollow PBG fber are slow and
laborious, and no inverse computational meth-
ods exist. The intrinsic need for a two-dimen-
sional (2D) PBG requires that the fiber cladding
contain a near-perfect periodic armay of air holes
(the photonic crystal) with a high air-filling
fraction and a small pitch (the distance between
adjacent holes in the lattice). Our early photonic
crystal fibers (PCFs) had solid cores and guided
light by TIR (5, 6}. More recently we demon-
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strated PBG guidance in a silica PCF with a
honeycomb array of air holes (7); however, the
light was evanescent i the air, so the cbserved
guided mode was concentrated in the silica
surrounding the extra air hole at the core. This
appears to be a fundamental limitation of the
honeycomb design.

The wave vector component along the
waveguide, known as the propagation constant
B, determines whether light propagates or is
evanescent in rny part of the guide. If B << kn,
the light propagates at an angle 8 to the axis in
a material of index », where B = kn cos 8 and
k 1s the vacuum wave constant. I[f B = #n, 8 is
imaginary and the light is evanescent. A D
planar waveguide geometry (Fig, 1) illustrates
the different ways in which light can be strictly
confined in dielectric waveguides. Convention-
al TiR, in which the index n, of the core is

A Conventional TIR guidance

n,
= T
n,>n,

Fig. 1. The different guiding mechanisms. {A) Conven-
tional total internal reflection (TIR); this occurs when
the wave vector component [ in the direction of
propagation lies in the range kn, < B < kn,. (B) PBC
guidance when the light is evanescent in the air
regions; this can only occur when B lies in the same
range as in (A); the process is one of frustrated
tunneling, that is, the cladding resonators are out of
resonance with the core waveguide and hence tun-
neling is prevented, {C} PBG guidance when the light
is propagating in all subregions of the fiber; this can
only occur when {3 lies in the range B < &, the

underlying mechanism being a Bragg PBC.

greater than index #, of the cladding, ensures
the existence of a range of B where light is
propagating in the core while being evanescent
in the cladding (Fig. 1A}

In contrast, light can be confined between
two multilayer dielectric stacks in a core of
arbitrary refractive index (4), if the stacks
have a PBG for a range of 8 at a given optical
frequency., We identified two regimes of
PBG guidance. in the first (Fig. {B), light
propagates (B << kn|) in the layers of high
index n, but is evanescent (B > kn,) in the
tayers of low index n,. The high-index layers
act as individual TIR waveguides, supporting
bound modes at specific values of B = (3.
Resonant tunneling between adjacent high-
index layers permits the leakage of light
through them, provided B lies within the pass
bands that open up around each B, The
widths of the pass bands depend on the
strength of coupling between the layers. Be-
tween the pass bands lic band gaps; if a
high-index core layer with a different (maybe
smaller) width supports a mode with 8 inside
a band gap, it is not resonant with the other
layers and light feakage by tunneling is frus-
trated. The mode is thus strictly guided by the
frustrated tunneling form of PBG. In the sec-
ond regime of PBG guidance (Fig, 1C), light
can propagate in all layers (B < kn,). Band
gaps occur at the Bragg condition as a result
of multiple scattering and interference, lead-
ing to the Bragg form of PBG guidance.

in both forms of PBG guidance the refrac-
tive index of the core can be chosen much more

B Frustrated tunnelling PBG guidance

C Bragg PBG guidance
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freely than in TIR guidance, because the PBG
conditions depend only on the properties of the
cladding stacks. Guided modes can exist with
mode indices B/4 that are lower than the mean
index of the stacks (the frustrated mnneling
PBG case) or even lower than the lowest index
of the stacks (the Bragg PBG case), conferring
extra design freedom on PBG compared with
TIR guidance and allowing confinement within
a hollow core. To the best of our knowledge,
every type of conventional low-loss 2D
waveguide so far reported uses TIR as the
guidance mechanism [including our own “end-
lessly single-mode” PCFs (4)].

PBG guidance in a fiber requires the exis-
tence of a 2D PBG over a range of 3 values in
whichever materials system is used. Although
we achieved this with frustrated tunneling PBG
guidance in our sitica-air honeycomb PCF (7),
it is clear (#) that an even preater breakthrough
would be achieved if the fiber guided by means
of a Bragg PBG, for this would permit the
concentration of optical power in air. Such a
“vacuum guide” would have many of the de-
sirable features of an empty metal-clad micro-

Fig. 2. {A) Scanning electron micrograph of the
cleaved end-face of a typical vacuum-guiding
fiber. The external diameter of the fiber is 105
pm (measured across the flat faces). The salid
canes around the outside of the fiber are an aid
to the fabrication. This fiber guided light (over
lengths of at least several tens of centimeters},
as ilustrated in Figs. 3 and 4. (B) Detail of the
fiber illustrated in (A). The air-filling fraction in
the cladding (including the interstitial holes) is
~-39% and the pitch is 49 pm. The core has a
diameter of 148 um (measured across the
largest dimension).

wave channel guide, including the ability to
support extremely high power densities without
breakdown, and it would have the potential to
push the threshold intensities for stimulated
Raman and Brillouin scattering (among other
nonlinear effects) up 1o extremely high levels.

We have shown that simple triangular lat-
tices of air holes in silica (index contrast
1:1.46} can have full 2D PBGs in the Bragg
regime of B values (that is, B < k) if the
air-filling fraction is relatively high (3). The-
ory fails to predict full PBGs in silica-air
honeycomb PCFs in the Bragg PBG regime,
but this fs perhaps not surprising because the
honeycomb fiber has a higher proportion of
silica and so is less likely to have PBGs at
low values of B/k.

The method of fabricating an air-guiding
PBG fiber follows our previousty reported pro-
cedure for PCFs (3, 9). Tubes of silica glass are
pulled down to capillary canes on a fiber-draw-
ing tower. These canes typically have external
diameters of the order of | mm. The PCF
preform is constructed by stacking together by
hand several hundred capillary canes to form
the required crystal structure on a MACFOSCOPIC
scale. The entire stack is then held together
while being fused and drawn down into fiber by
an optical fiber-drawing tower. A typical fiber
diameter is 40 to 100 m, the total collapse
ratio being of the order of 10*. The final fiber
cladding consists of 1 wmangular arry o yir
holes w silica, woh aterstinal hoies i rosant
trom stackiag cucular capilaries. The 1raction
of air in this part of the fiber needs to be
relatively large for the fiber to exhibit a suffi-
ciently broad band gap—typically more than
about 30% by volume.

The fiber core was formed by including a
larger air hole in the center of the preform. We
have studied fibers where this larger hole had
an area of onc or seven unit cells of the cladding
material, In each case. the hole was created by
leaving out the appropriate number of canes
from the center of the preform stack. The whole

structure was then fused and pulled into fiber.
Of the resulting fibers, those formed by omis-
sion of just a single cane did not guide modes in
the air (at least not at visible wavelengths).
From this point on we restrict our discussion to
fibers with a seven-unit-cell air core (Fig. 2).
We carried out initial characterization by
helding ~3-em-long samples vertically, illu-
minating them from below with white light
(using a tungsten halogen lamp), and obsery-
ing the light trangmitted through them in an
optical microscope (Fig. 3). The central air
core is filled with a single lobe of colored
light, its transverse profile being smooth,
peaked in the center, and falling off to very
low intensities at the glass-air boundary. A
significant amount of white light is present in
the periodic cladding, and it appears colorless
in comparison with the mode trapped in the
core. Different colors of the vacuum-guided
mode were secn, depending on the overall
fiber size and the drawing conditions used.
The precise color was sometimes hard to
assign by eye, and in some cases appeared to
be a mixture of different colors, for example
red and blue. For appropriate excitation with
the white light source, a few samples support-
ed a similarly colored two-lobed mode,
which we attribute to a second guided mode
falling in the same band gap as the first.
The transmission spectra through the air
core of lengths of fiber were measured by link-
ing the microscope by means of a conventional
multimode fiber to an optical spectrum anatyz-
er. The spectral dependence of the waveguiding
in the air hote (Fig. 4) demonstrated that several
well-defined bands of transmission are present,
covering the whole visible spectrum and ex-
tending into the infrared. Within each transmis-
sion band, the losses are small (over fiber
tengths of several centimeters) or zero, whereas
between these bands the losses are much larger,
as expected in the absence of PBG effects (/0).
We attribute each of these bands to a full 2D
PBG. Because the pitch of the crystal is large in

Fig. 3. Optical micrograph of the fietd
intensity pattern at the exit face of a
~-3-cm-long piece of fiber for white light
excitation at the entrance face. White
light is in the cladding regions, and the
isolated and brightly colored vacuum-
guided mode is in the center. Complete
removal of cladding modes is difficult
because of the incoherent ilumination
and the relatively large air holes in the
structure, but they have been much re-
duced in the picture {without affecting
the guided mode) by the application of
index-matching liquid to the sides of
the fiber. The effects of chromatic dis-
persion of the objective lens, structural
features on the flat fiber surface, and
the color response of the photographic
film account for other minor colored
features on the fiber end-face.

3 SEPTEMBER 1999 VOL 285 SCIENCE wWww.sciencemag.arg



comparison with the wavelength, the PBGs re-
sponsible for the guidance are of high order. By
selecting lengths of fiber that had been found to
guide light at appropriate wavelengths, we ex-
cited this mode using laser sources. The laser
light guided in the air core formed a stable,
smoothly varying, single-lobed pattern in the
far field. Fibers that have maxima in their trans-
mission spectra at a particular laser wavelength
guide such laser light in the core over lengths of
several tens of centimeters (comresponding to
hundreds of thousands of optical wavelengths).
The length is presently limited by fluctuations
in the fiber parameters, which cause the wave-
lengths of the guided modes to vary along the
length of fiber. Although the short lengths of
fiber that we have available preclude systematic
study of losses, we transmitted 35% of a laser
beam in the guided mode over a 40-mm length
of fiber. The biggest contribution to the overall
losses in that experiment was the input coupling
efficiency. In other fibers that do not support
guided modes at the laser wavelength, laser
light coupled into the fiber in exactly the same
way leaked entirely into the cladding after prop-
agating only a few millimeters, as expected in
the absence of PBG effects (/0). By incorpo-
rating a guiding length of fiber into one arm of
a Mach-Zehnder imterferometer, we confirmed
that the laser light transmitted through the guid-
ing core has a high degree of spatial coherence,
giving high-visibility fringes at the interferom-
eter output. This would not be the case if there
were many waveguide modes excited in the
fiber core.

We observed such confined modes in a
variety of samples with similar pitches to

Wavelength {(nm)
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Fig. 4. Intensity spectrum of the light transmitted
through the air core, plotted against normalized
frequency kA and wavelength A, through a fiber
excited with white light. Low-loss transmission
bands, widths of ~3 frequency units, are separat-
ed by regions of much higher loss. The measure-
ment is limited by the low spectral intensity of
the white light source in the ultraviolet wave-
length region (au, arbitrary units). The spectrum
was recorded with a resolution of 10 nm. The
relative normatized scales of the different trans-
mission bands reflect the different coupling effi-
ciencies to and from the guided mode at the
widely varying wavelengths, and possibly the ex-
istence of a second made in some band gaps.

those in Figs. 2 and 3 and with air-filling
fractions in a range from just more than 30%
to almost 50%. Theoretical modeling of these
structures is difficult and slow because of the
very large values for the normalized frequen-
cies (see Fig. 4). Our initial computations of
the band structure revealed the presence of
narrow band gaps above the light line in this
range of frequencies and for the sample pa-
rameters studied. Futther comparison with
the experimental results will require that the
presence of the large air hole be modeled,
which will take some time and might require
the development of new theoretical tools,

It is useful to consider why it is that PCFs
with similar cladding parameters but with a
defect formed by omitting just a single capillary
have not been found to support guided modes.
The number of guided modes that a conven-
tional fiber can support is determined by the
core-cladding refractive index difference and
the size of the core. This follows fundamentally
from state-space arguments closely analogous
to well-known density-of-states calculations in
solid state physics and feads to the result that
the approximate number of spatial modes in a
conventional fiber is as follows (f):

K{n? — nip2,

Nconv - _"'—:i-__ (1)

where r_, is the core radius and », and n, are
the core and cladding indices. {There are of
course two polarization states per spatial
mode.) In a hollow-core PCF, a similar ex-
pression may be derived for the approximate
number of spatial modes present in the hol-
low core:

2 _n2y,2
v - BB
4
= QIMS (2}
4

where f3,, and B, are the upper and lower edges
of the PBG at fixed optical wavelength, and the
second expression applies if the upper PBG
edge extends beyond the maximum core wave
vector, that is, if k2n% << B}, Theory shows that,
for a typical thangular array of air holes in
silica, the photonic band gap width AR = B, —
B, is a small fraction of its average position
B,, =By + B2 For exampie, with the data
published in (3), at B, A = 9, ABA = 0.2, and
taking ., = A/2 for a single missing cane (A is
the interhole spacing), the expected number of
spatial modes is 0.23, making it unlikely that
any air-guided mode will be seen. On the other
hand, if seven canes are removed, the hollow
core area is increased by a factor of 7, the core
radius by \/:f, and the expected number of
spatial modes becomes 1.61, suggesting that a
seven-cane hollow core will support at least a
single transverse mode (two pelarization states)
and perhaps a second transverse mode. These
predictions are consistent with our observations

that fibers made with a single-cane air hole do
not support air-guided modes, whereas those
with a seven-cane hole guide light in one or two
modes.

The potential practical advantages of a sin-
gle-mode vacuum guide are myriad. It is easy to
couple light into the core, because (uniike the
honeycomb PBG fiber, which has a complex
six-fobed modal pattern) the phase is constant
across the air core (giving a Gaussian-like in-
tensity profile). Fresnel reflections, which are a
problem in fiber devices where light is extract-
ed from a fiber and then reinjected after mod-
ulation or amplification, will be extremely
small in the vacuum-guided fiber, because the
refractive index discontinuity between the out-
side world and the fiber mode can be tiny.
Another obvious advantage over other optical
fibers is that the performance is much less
limited by the interaction (absotptive or nonlin-
ear) between the guided light and the normally
solid material forming the fiber core. This will
allow transmission of wavelengths and power
levels not possible in conventional fibers, and
will lead to greatly increased threshold powers
for stimulated Raman, Brillouin, and color-cen-
ter effects. On the other hand, if the hollow core
is deliberately filled with a gas, vapor, or low-
index liquid, very strong interactions are possi-
ble with the light in the guided mode. This may
prove useful for gas sensing and monitoring, for
the generation of multiple optical wavelengths
by nonlinear processes, and more generally in
enhanced nonlinear optics. The narrow-band
performance of the fiber suggests that it might
be useful as a spectral filtering device. The
ability to form a single transverse mode in a
tube of vacuum offers possibilities in the fields
of atom guiding and laser delivery of small
particles.
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BLOCH WAVE OPTICS IN PHOTONIC CRYSTALS:
PHYSICS AND APPLICATIONS
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1. Introduction

We aim in this chapter to provide an introduction to the rich tapestry of physical phenomena
involving wave propagation in wavelength-scale peniodic structures, and to explore briefly
their significance in present day research and technology.

The first clue to the presence of a periodic structure is often the reflection of waves at
certain specific wavelengths and angles of incidence. The natural world is full of visually
attractive examples of this - moth and butterfly wings [1,2], snake and fish scales [3], bird
feathers, and some gem stones [4-6] show bright flashes or "rainbows" of colour upon rotation
in sunlight. More and more examples of synthetic self-organised periodic structures are also
emerging: certain co-polymer mixtures can form with regular arrays of cavities [7];
suspensions of mono-dispersed particles in liquids can crystallise into three-dimensional
lattices [8]; indovindae self-organise mto crystalline- lattices [9]; and multiply periodic
intensity patterns produced by interfering laser beams can be used to force atoms into regular
arrays [10].

Periodic structures have of course been studied in many different areas of physics and
technology, examples being phonons in atomic lattices, acousto-optical diffraction in solids
and hiquids [11], X-ray, electron and neutron diffraction in crystals [12], distributed feedback
lasers [13,14], wavelength filtering in optical communications, spectrometry, transmission
electron microscopy, multilayer coatings, phased-array microwave antennae, holograms [15]
and — last but not least — electronic band structure [16]. Common to the physics underlying
all these devices and phenomena are stop-bands: ranges of angle and frequency where waves
are blocked from travelling through the periodic structure. The practical consequence is that
light incident from an isotropic external medium is either reflected, or tunnels through to the
other side; it cannot exist freely in the periodic medium itself. On the -k and w-k dispersion
diagrams the stop-barxis appear as anti-crossing points, and are also known variously as band
gaps, momentum-gaps and regions of evanescence. In only a few cases, however, do they
become so strong and numerous that they coalesce to cover all of wavevector space, forbidding

g
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propagation in all directions within limited bands of frequency — the photonic band gaps
(17

Prior to the present interest in photonic band gaps, research had been carried out on
photonic band structure and propagation in strongly modulated singly and multiply periodic
planar waveguides [18-22]. Although the aim of that work was not to achieve a full photonic
band gap, it generated a number of fabrication, characterisation and conceptual techniques
helpful in working out the wider implications of photonic band structure in optoelectronics.
The central theme was the use of Bloch waves (the normal modes of electromagnetic
propagation in periodic media) and the development of an optics based on them [20]. Group
velocity (which could be derived directly from the wavevector diagram) played a central role,
leading to an understanding of phenomena such as negative and multiple refraction and Bloch
wave interference [21]. The concepts of Bloch wave optics led to the development of some
unique devices [19], and the approach also permitted accurate and detailed explanations for
the complex and often beautiful phenomena that were seen in the periodic waveguides [21,
22,24].

In section 2, a brief illustrative introduction to wavevector diagrams and their uses is given.
Simple approximate solutions for the scalar dispersion relation in the two-dimensional square
and hexagonal cases are derived in section 3. These are used to illustrate a Hamiltonian optics
description of the behaviour of Bloch waves in inhomogeneous photonic crystals (section 4),
results which are relevant to the modelling of the fields at defects. Bloch wave interference and
scattering are treated in sections 5 and 6, and nonlinear effects discussed in section 7. A brief
foray into applications occupies section 8, and conclusions drawn in section 9.

2. Wavevector Diagrams and Their Uses

We shall be making extensive use of plots of allowed wavevectors in two dimensions at fixed
optical frequency - the wavevector diagram. This is very valuable in discussions of the
propagation of light in photonic crystals. For an isotropic medium, the diagram is a circle of
constant radius. For an anisotropic birefringent medium it is an ellipse with semi-axes of
length 2wn_/c and 2wn, /c where n_, and n,, are the ordinary and extraordinary
refractive indices. The group velocity corresponding with a point on the curves in wavevector
space is given by:

Jw dw of c 00
= V 6 = m— = = — —
Yo T Va@® 2n, M

8 ER e
and points normal to the curves on the wavevector diagram, in the direction of increasing
frequency. An illustrative example of how the wavevector diagram assists in working out ray
directions and boundary conditions is given in Figure 1. A ray incident from air on a parallel
slab of birefringent crystal is refracted in two different ways depending on the state of electric
field polarisation. In both cases the component of wavevector parallel to the slab boundaries
(the minimum distance joining the origin of wavevector space to the construction line) is
conserved. For polarisation in the isotropic plane, Snell’s law is obeyed as usual. For
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isotropic

0
-1 ,/ail'
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-3 iso.
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Figure 1. Example of the use of the wavevector diagram to predict the ray paths (group velocities) of multiple
reﬂuﬁanwi&inaparallelslabofbireﬁ'hmﬂu'yml _The wavevector component along the boundaries is conserved,
yielding the construction line that intersects with the circles and ellipse in wavevector space. The normals at these
points of intersection give the ray directions and hence the zig-zag paths for isotropic and anisotropic states of
polarization.

polarisation in the anisotropic plane, the refracted and reflected ray paths in the crystal, while
musual and difficult to predict, are readily obtained using the wavevector diagram. Another
beautiful example of the non-coincidence of group and phase velocity is in ultrasonic pulse
propagation in elastically anisotropic materials such as crystalline silicon, as discussed in 8

recent article {23].

3. “Toy models” for dispersion relation in two cases

To illustrate the discussion throughout this chapter, we first derive two approximate solutions
for the Bloch wave dispersion relation, one for a two-dimensional (2-D) square crystal, and
the other for a 2-D hexagonal crystal. Analytical expressions are accessible through reducing
drastically the number of “partial” plane waves in the Bloch wave expansion to three for the
hexagonal and four for the square case. Despite the inaccuracies introduced, little of the
underlying physics is lost n this approximation, and aithough we do not have space to show
this, it is not difficult to include the case where the electric field is polarised in the plane of the
lattice wavevectors.
In each case the structure is described by a relative dielectric constant €

N

ele, = 1+ MJ_X‘I: cos (K, ) (2)
where K, is the lattice vector of the j-th set of planes with spacing 21t/|KJ.|, M is the
amplitude of the dielectnc constant modulation around its average value €,, and N = 3 for the
hexagonal and 2 for the square cases. The average wavevector in the structure is k, = wnlc,
where n_ is the average index. In the two-dimensional case, 1, s given by the square root of
the optical path area of a unit cell, divided by the square root of its real area.
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Figure 2. First tileable Brillouin zone (hexagonal lightly shaded region on the left) in wavevector space of the
structure on the right. For the calculation it is sufficient to use a triangular sub-zone (darkly shaded region). The
average index circle is drawn for the special case when it intersects the three numbered symmetry (S ) points. The
locus of points traced out by & (identical for each S-point) yields the dispersion surfaces (see section 3.1).

As already mentioned, the wavevector diagram for an isotropic medium is a circle of
constant radius wn _/c: the average index circle. In a photonic crystal with a hexagonal or
square microstructure, important symmetry points occur at the vertices of the regular polygon
formed by concatenated lattice vectors (the Brillouin zone). At one particular optical frequency
the vertices of this polygon lie on the average index circle; at the points of intersection, the
Bragg condition is satisfied simultaneously at all sets of lattice planes. We shall call the
vertices S-points; in the hexagonal case (Figure 2) there are six, and in the square case (Figure
3) four. As M increases, the loci of allowed wavevectors (the “dispersion curves™) in the
vicinity of the S-points becomes complicated, stop-bands and other features appearing.

Each point on the dispersion curves within the first Brillouin zone (i.e., the zone straddling
the average index circle) is associated with a unique travelling Bloch wave; the featureless
regions in between are populated with evanescent waves, which are excited only if boundaries
or structural defects occur in the otherwise regular photomic crystal. The full wavevector
diagram is obtained by tiling the first Brillouin zone to cover all of wavevector space. Each

Figure 3, First Brillouin zone (square shaded region on the left) in wavevector space of the square crystal on the right.

The average index circle is drawn for the special case when it intersects the four numbered symmetry (S) points. The
locus of points traced out by & (identical for each S-point) yields the dispersion surfaces (see section 3.2).
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wavevector in the first Brillouin zone thus has an infinite number of associated wavevectors,
one in each higher order Brillouin zone, linked by Bloch’s theorem.

Thus, cne approach to obtaining the Bloch wave function is to expand the fields in terms
of an infinite sum of partial plane waves, one for each Brillouin zone. This sum is then
truncated appropriately, and the resulting eigenvalue problem solved using standard
techniques. We now make a drastic reduction in the number of partial waves (to four for the

square and three for the hexagonal cases) in order to obtain illustrative analytical expressions
for the dispersion relations.

3.1 HEXAGONAL CASE

The mirimum number of partial waves required in this case 1s three, their wavevectors being
expanded around the three S-points:

k, =8+ t,KA3, K=[K| 3)

where K y 1s the lattice vector from (2), & is the deviation of the Bloch wavevectors from their
values when the muitiple Bragg condition is satisfied, and

t, =% & =(C8+83)02, & = (-2-3/3)n2 (4)

are unit vectors in the three S-directions. Substituting an Ansatz consisting of three plane
waves with amplitudes ¥}, ¥, and ¥ and wavevectors (3) into Maxwell’s equations, and

neglecting higher order terms in 8, leads to a 3x3 matrix whose determinant must equal zero
for solutions:

912 - 81, K K I
ko 0n-8t, o« v,[ = 0 (5
x x o 0n2-8t)|y,

where the coupling constant x and the dephasing constant & are defined by:
x = kM4, 0 = 2k -Ki3). (6)
The dispersion relation turns out to have the form:
2x(4x+38)
36 = (8+0)y s 2 27
;T @r?) 26 0 )

3.2 SQUARE CASE

The wavevectors of the four Bloch partial waves in this case are expanded around the four
S-points:

k, -8 + &, KN2, (8)

where & is the deviation of the Bloch wavevectors from their values when the multiple Bragg
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condition is satisfied and

ié = @&t + PAVZ, t3=(G2- D2 C)

F A"

are unit vectors in the four S-directions; the upper subscript indices are taken with the upper
signs. Putting an ansatz consisting of four plane waves with amplitudes V', V5, ,V/; and ¥, and
wavevectors (8) into Maxwell’s equations, and neglecting higher order terms in 8, leads to a
4x4 matrix whose determinant must equal zero for solutions. Its form 1s identical to (5}, with
one extra row for the fourth amplitude. The dephasing constant £ and coupling constant x are
defined for the square case by:

x = kM4, @ = 2k -Ky2. (10)
The resulting dispersion relation is:

82 = 82 + (DN £2(0ND) 82 +2x7. (11)

3.3 SOLUTIONS FOR THE WAVEVECTOR DIAGRAMS

Some illustrative plots of the resulting dispersion curves (i.e., the locii of 8 at fixed frequency
plotted in 2-D wavevector space) around each S-point are given in Figures 4 and 5.

Figure 4. Wavevector diagram about the S, poimt for a square crystal with o=/, ¢#=2. 5 (long-dashed curves), 5 (full
curves) and 7.5 (short-dashed curves). The vertical and horizontal axes are J, and 4, respectively. For i =5, the
direction and relative magnitude of the group velocity is indicated in one quacﬁ’am using arrows of variable length.
The shaded region is part of the first Brillouin zone (see Figure 3).

In the square case (Figure 4) for k=1 and &= 7.5, the central region approximates to a
circle with equation:

52 4 §y2 = 2Y4 - 4x°. (12)

X
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This is valid so long as terms of third order and higher in 8 can be neglected. Note that (12)
predicts that the circle vanishes for (£/x)? < 16. The implications of (12) are intriguing; it
states that the Bloch waves behave in many respects like plane waves in an isotropic medium,
except that the velocity of light is reduced to a smaller value, and the dispersion with frequency
isnonlinear. All the usual classical processes such as diffraction, interference and scattering
will be present, except that Bloch waves on the outer stop-band branches not described by
(12) will be excited at abrupt interfaces or aperiodicities. The direction of the group velocity
at different points on the curves is marked by means of arrows whose length scales with the
magnitude. For & < 0 they point in the opposite direction, the curves themselves having
precisely the same shape (within the approximations of the model) as for &> 0.

(a) (b)

- Figure 5. Wavevector diagrams about the S, point for a hexagonal crystal with (a) k= 1, &= - 1.6 (full curves), -0.5
(short dashed) and 0.6; and (b) = 4.5 {full curves), 2.5 (short dashed) and 0.5. The vertical and horizontal axes are
6), and &, respectively. The shaded region is part of the first hexagonal Brillouin zone (see Figure 2).

Figure 6. Magnified central rounded triangie from Figure 4 for x =1, &= - 1.6, with the group velocity arrows
drawn in. Notice the smaller velocities at the points of maximum curvature.
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For the hexagonal case, the chosen parameters are k= 1, #= 0.6, -0.5 and - 1.6 (Figure
Sa)and k=1, #=0.5,2.5 and 4.5 (Figure 5b). The central “rounded triangle” is redrawn for
& = - 1.6 in Figure 6, along with the group velocity arrows. Note the inverse correlation
between curvature and group velocity. As the triangle becomes smaller, eventually
disappearing, the curvature becomes tighter and the group velocity tends to zero.

An important consequence of this slowing down of light is that it has more time to interact
with matter - dipoles, nonlinearities, scattering centres. Apparently weak perturbations in
refractive index can result in strong scattering, and non-linear effects such as Brillouin and
Raman scattering, the Pockels effect, and the optical Kerr effect, are enhanced. We shall
explore some of these points in sections 6 and 7.

4. Geometrical Optics of Bloch Waves in Inhomogeneous Media

It is well-known that light can spiral around in a waveguide consisting of a cylindrically
symmetric bell-shaped refractive index distribution. Because the transverse photon momentum
is reduced by the presence of a large axial component of momentum, a weak potential well of
higher refractive index is all that is needed to trap the light, as for example in the Ge-doped
core of a silica optical fibre [25]. Trapping of light is much ¢asier in photonic crystals, since
in the vicinity of the band edge the photon momentum can be very small. Indeed, many
important potential applications of photonic band gap materials rely on the use of spatial
inhomogeneities to provide intra-band trapped states [26,27]. In addition the effects of
inhomogeneities, in the band-windows where propagation is allowed, are not yet well
understood. In this section we address the propagation in mnhomogeneous periodic media,
developing a Hamiltonian optics approach and using it to treat in particular the motion of the
Bloch wave rays (given by the group velocity) around circularly symmetrical defects in which
the properties vary slowly over many lattice periods.

Hamiltonian optics has been elegantly summmarised by a number of authors, including
Amaud in his 1976 book Beam and Fiber Optics {28]. It can be applied where the dispersion
relation in the homogeneous structure is known, and where, in the inhomogeneous real
structure, parameters like average index vary slowly in space. It is essentially an analytical
method for stepping through a non-uniform structure, matching phase velocities normal to the
gradient of the inhomogeneity at each step, and propagating along the local group velocity to
the next point. This process is described by solutions of Hamilton’s equations, which take the
general form:

dk

dx - VH, dk
da

£x - -VH
= - % (13)

where x = {x,y,2,-t} is the four-vector for space-time, k = {k,, k., k, w} the generalised
wavevector, ¢ an arbitrary parameter (see below), and H(x, k) the Hamiltonian, which may
be expressed directly from the dispersion relation for the waves. Note that in general k
depends on position. Equation (13) can be re-cast in a Newtonian way [24,28]:
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d*x ) _ *1.
=— = [VV,Hl:(-VH) = [Um"]:F (14)
do*

in which the reciprocal effective mass tensor depends, in general, on position in real and
reciprocal space. The Hamiltonian itself may be written in a number of equivalent ways,
subject to the requirement that a phase front is given by the equation / = 0. In chtaining
solutions to (13), it is important to distinguish total from partial differentiation. For the
dispersion relation in (12), A can be chosen in the form:

H = (wnfe - KN2] - 67 - 62 - 4> = 0, (15)

For a central force field // depends only on distance » from an origin, and recognising that 8
n (15) acts as the wavevector, (14) may be re-expressed in the form:

d’r oH

_— = 2

da’ or (16)
where r is the position vector in two dimensions; if necessary the parameter o can be related
to real time ¢ by the time component of the four-vector equations (13):

g

ct-t) = - [ Rwnic - Kf2)n do an

g=g,

where n_ and K depend in general on posttion (and hence on ') as given by solutions of (16).
The exact meaning of is not important if only the ray paths are sought; if, however, position
as a finction of time is required - such as when calculating the free spectral range of a cavity
- (17) must be used. Working in cylindrical polar coordinates, we now follow the standard
approach to motion in a central force field. Since the 8 component of the left-hand-side of
(16) must be zero, angular momentum 4 1s conserved:

h = r?@ = constant (18)
where the dot denotes differentiation with respect to 0. Making the standard substitution
u=1/r, (16) may be reduced to the form:

du . 2 oH

—_—tu = =

da? h? ou
To illustrate a particular case, we choose a square structure in which the modulation amplitude
M, and hence the coupling constant x', are radially dependent, K and #_ being kept constant:

(19)

ko= (kPP - KPulu,. (20)

This leads to solutions which imitate the elhiptical and hyperbolic orbits of a particle in a
gravitational field:

u(8) = u(g + mcos(6+y)) 21)
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where

g = 8x2/(h?uu), h = -26 lu,
(22)

m = {(1-gF*+(8,/6, ), ¥ = arccos|(1-q)/m]

are the definitions of the various parameters. The initial values of u, & and & are u,
8, =(d,, 6oy) and Om respectively. Equation (21) yields the ray paths r(&), which may be
translated into r(o) via d6/do = hu?, and then into r(f) via (17). A series of typical ray
trajectories are plotted in Figure 7, for attractive (1, > 0) and repulsive (u, <0) central force
fields. In each plot, several paths are given for different directions of the initial ray at the point
(1,0) and the centre of the force field is at (0,0).
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Figure 7. Trajectories of rays around a force field centred at x=0, y=0 in a square crystal in three cases; (a) attractive
force (x increasing with radius) at a frequency such that the light cannot escape; (b) attractive force at frequency where
light can escape;, (c) repulsive force. The parameter values are #/dx, = -0.5, u, = x, and & = 0.2k, with (a)
u, = 0.004x,,(b) 4, = 0.00x, and(c) u, = -0.01x,. Ineach case, the orbits for several different initial directions
are given.

We now look in more detail at the case of a circular ray path, which occurs for initial
conditions &,, =0 and ¢ = 1. We shall derive the radius and the time taken for one cycle of
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revolution. From (21) for ¢ = 1, recognising that Joy = & may be expressed using (15), the
inverse radius is:

u, = u((0Y4-4x2)/2x?) (23)
and the time taken for one revolution, obtained from (17) using d8/do = -2 du,,is:
T ndn, ) 27r, ) 2nr,

24
cu [B74 -4 2 2d.¢/0n, Ve 24)

where 7 = 1/u_. Asindicated in (24), T can be expressed as the circumference of the circular
path divided by the group velocity, exactly as intuition would suggest. The classical nature of
the Hamiltonian approach does not predict quantization of these closed orbits; it merely gives
us the particle trajectories (governed by the group velocity). In order to establish the optical
frequencies at which discrete resonances appear, one must return to considering the underlying
field amplitudes (governed by phase velocity). It is, however, possible to predict the frequency
spacing between adjacent resonant modes - the free spectral range; this is stmply 1/T.

To put some “flesh” on these formulae, we consider a square structure fabricated along the
lines of the techniques reported in {21], where coupling constants of 120/mm at an optical
wavelength of 633 nm were achieved in etched Ta,0, waveguides on borosilicate glass. For
such a waveguide supporting TM polarised (the fields are then quasi-scalar) modes of
effective index 1.7, a structure with A =260 nm will have a Bragg wavelength of 624 nm. For

/%, = 4.01,1e., operating at 633 nm, the rays will describe a circular trajectory of radius 100
um with a period of 50 psec if the perturbation strength is /7, = 3.8 /mm'?. The frec
spectral range of the associated resonances will be 20 GHz. In a uniform medium of refractive
index 1.7, light would take 3.6 psec to travel around a loop of the same dimensions, with a free
spectral range of 0.28 THz. This illustrates both the substantial reductions in optical velocity
that occur near a band edge, and the associated increase in the optical density of states.

5. Interference of Bloch Waves

Given their complicated dispersion, it is perhaps not surprising that Bloch waves interfere in
a unique and complex manner, and that the characteristics of this interference provide clues
to their behaviour when coupled together or scattered. In previous experimental work, singly
and doubly periodic planar waveguides were studied [21,22]. Here we treat the two
dimensional multiply periodic case. To start our discussion we take first a superposition of two
different Bloch waves:

E(r,t) = a(nexp[-j (8, r-wi)] + afryexp[-j(d,r-wi)] (25)

where a; and a, are time-independent complex periodic functions of position whose structure
mirnics the lattice. For travelling Bloch waves the wavevectors d are real-valued. If observing
scattering from this pattern, coarse fringes would be seen with the form:
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Figure 8. Calculated interference fringes (relative intensities scaled with gray-level) for the two orthogonal Bloch

wave beams associated with the points on the wavevector diagram in (), plotted for £ =1 and &= - 1.6. In (b), (c)

and (d) the fringes created by the groups of partial waves at the 1st, 2nd and 3rd S-points are illustrated, [n (e), the .
complete intensity pattern of the superimposed Bloch beams is given: note the complete absence of interference.



I(r) = <laOf + layfP> + <a\(f)a; () +a(Dar) > cos[(8,-8,)'r]  (26)
where the averaging is over a unit cell and the variation in the argument of the cosine is
assumed to be slow. Each of the two terms added together in the amplitude of the cosine tumn
out to be real, which is why no phase term appears in the argument of the cosine. The
orientation of the fringes is given by 3, - 3,, which bears no obvious relation to the directions
of propagation as given by the group velocities. This has a number of bizarre consequences
when a comparison with conventional plane wave interference is made. For example (defining e,
and a, as the angles between the group velocities and &, - 8,), inte-ference fringes can
appear even when &, >0, &, <0; for two plane waves this fringe orientation would be
impossible.
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Figure 9. Complete fringe pattern (b} for the two non-orthogonal Bloch wave beams associated with the points on
the wavevector diagram in (a). Note the presence, as expected, of visible interference fringes.

The fields forming the fringe patterns may be decomposed into groups of partial plane
waves sharing approximately the same wavevector, gathered around each of the S-points (see
e.g. Figures | and 2). Each group produces its own set of sub-fringes. If all these fringe sets
are spatially in phase, a strong visible fringe pattern will be produced; if however the dips in
Intensity from one group are filled in by peaks in mtensity from the other groups, the result will
be a more uniform intensity distribution (orthogonal Bloch waves, with zero overlap integral
in (26), produce a perfectly umform intensity pattern, with no evidence of interference). This
means that if a boundary with an isotropic medium is introduced at a point where the intensity
from one group is high, a plane wave may appear in the isotropic medium, travelling in the
general direction of the partial plane waves of that group. If a boundary cuts across regions
where the intensity oscillates between different groups, then beamlets are produced, their
directions corresponding to the groups that have the maximum local intensity; the result can
often be striking. This process gives rise to the Pendellosung fringes in x-ray diffraction [29],
and lies behind the operation of volume transmission gratings [15]; we have previously
classified 1t as exchange interference [21], since each sub-group of plane waves interferes
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Figure 10. Interference fringes (relative intensities scaled with gray-level) for the three Bloch wave beams associated
with the points on the wavevector diagram in (). In (b), (¢} and (d} the fringes created by the groups of partial waves
at the 1st, 2nd and 3rd S-points are illustrated. In {e), the complete imensity pattemn of the three superimposed Bloch
beams is given.
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constructively in different regions of space.

To illustrate these arguments, we now look at some specific examples in which the fringe
intensity patterns of superimposed Bloch beams, and of their partial wave groups, are plotted
for a two-dimensional hexagonal crystal. The points on the wavevector diagram, and the group
velocity arrows, are also illustrated. First of all, an orthogonal pair of equal amplitude Bloch
wavesisselected (Figure8). The interference patterns from the groups of partial waves at the S, S,
and S, points are plotted successively in Figure 8b, 8¢ and 8d. Note the strong visible fringes.
When, however, all three patterns are combined, the fringes vanish, leaving a uniform intensity
that s higher in the middle simply because the Gaussian beam profiles overlap there. In a
second example (Figure 9), a non-orthogonal Bloch wave pair is chosen, and this time the
combined intensity field contains fringes. In the third example, three non-orthogonal Bloch
waves are taken. The interference patterns here are more complex (Figure 10). Once again,
the patterns from each sub-group, and from the combined field, are given. The S, subgroup
produces a much weaker intensity pattern, as expected since the group velocities of the Bloch
waves point predominantly in the -x direction.

6. Coupling and Scattering of Bloch Waves

In this section we derive the coupled mode equations describing the interaction of two different
Bloch waves in a two-dimensional periodic structure with a periodic distortion in properties -
a superiattice. This analysis will provide a useful basis from which to discuss more generally
the coupling and scattering of Bloch waves. The analysis is an extension of one presented
previously for singly periodic structures [30,31]. The relative dielectric constant of the
structure is taken in the form:

€m) = €+ €r) + {e‘s = €,C08 Ks-r} @n

where the subscript p denotes the undistorted “primary crystal,” and s the weak “secondary
grating,” which together form the superlattice. The time-independent field ansatz is taken in
the form of a superposition of two Bloch waves:

E(x, 2)

2
§ Y V(x,2)B,(x2)
r;l (28)
y Z Vix,z)a(x,z}exp(-j8,r), &8:9 =0

i=1
where the ¥, are slowly-varying amplitudes and the B; describe Bloch waves of the undistorted
crystal, when the V, are constant, no coupling is present and (28) is a solution of Maxwell’s
equations for the primary crystal. Substituting (28) into Maxwell’s equations for the structure
(27), neglecting second order derivatives of V/;, multiplying by (B, +B, ) and averaging over
a unit cell of the primary crystal, we obtain the coupled Bloch wave equations:

av,

"éj + jx, Viexp(-jd,m = 0, (29)

I

i
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where the coupling constant and dephasing vector are given by:

we_l.
K, - ——my_p - (3-8,)K,, 30
’ 4€,(P;vy) /i ’ g o
the sign is chosen to minimise the magnitude of the dephasing vector 0, ,;» and
Iy = [[a'aaa. 31

cell
The spatial coordinate p, has a unit vector fi; that can be chosen to point in any convenient
direction not perpendicular to the group velocity v ,. Commonly, both p, and p, are chosen
to lie parallel to one cartesian coordinate; this is useful if the secondary grating region has a
straight flat boundary. If, however, two-dimensional coupling is to be treated, a good choice
of P, points parallel to v, ie., parallel to the group velocity of the other wave. It is
straightforward to show that power is conserved by solutions of (29):

Brvg, O R Prvg, IV,
1y 9p In 9p,

- 0. (32)

The first striking thing is that the coupling constant in (30) is inversely proportional to the
group velocity. This means that, close to a band edge, the coupling constant becomes very
large. Otherwise expressed: the Bloch waves become highly susceptible to scattering at
perturbations which would not significantly affect a plane wave in an isotropic medium. A
good example of this is the circle enclosing the Bragg point in the wavevector diagram of the
square photonic crystal discussed in section 3.2. In the same waveguide, operating at
D/x, = 4.01 with an average index of 1.7, the secondary grating period needed for phase-
matched coupling of two Bloch waves travelling at right angles to one another is

2n

Y
o2 22k, [(B1aK )Y -1 @3

which works out at 0.26 mm for a primary grating coupling constant of 120/mm. The group
velocity is 0.07 c¢/n, and the coupling constant, for i, = f, bisecting the angle between the
two group velocities, is

T,

Keaj = Kgii = — 34
T aAn i@k 1oy GV

which works out at 9.3x10° €, /mm at 633 nm (note that the overlap integral /,,= 1 for these
two waves). A secondary grating with an amplitude € = 0.0001wll couple the Bloch waves
together at a rate of 0.93/mm, i.e., 100% coupling will be achieved in 1.7 mm. The effective
modulation depth of the primary grating is M ~ 0.028, which implies that the amplitude of the
dielectric constant modulation 1s 0.08 - some 800 times stronger than for the secondary
grating.
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The second striking thing is that the coupling constant depends on the overlap integral of
the field microstructure of the Bloch waves. As we have seen already, the absence of real
interference fnnges between two different but co-propagating Bloch waves may be taken as
evidence that they are orthogonal, i.c., that their overlap integral is zero. This means, for
example, that a superlattice designed to couple together the two Bloch waves whose
interference patterns are depicted in Figure 8 will not function. There is thus an intimate
relationship between the presence of real interference fringes and the feasibility of coupling.

This analysis may be generalised to the case of superlattices whose secondary grating has
multiple periodicitics. For example, if the secondary “lattice” matches the hexagonal
interference pattern created by interference of three Bloch waves (see, e.g, Figure 10), then
coupling between these three waves can be achieved. The ramifications of this extension to
the possibilities of optical superlattices (for obvious reasons not feasible in electronic
superiattices made by MBE) remain to be explored in detail.

7. Nonlinear Scattering

The strong scattening that is possible between Bloch waves because of their very low
momentum near a band-edge also means that nonlinear effects such as Brillouin and Raman
scattering can be enhanced. There are several different but complementary ways of viewmng
this. In the first, one argues that the group velocity is low hence the light hangs about much
longer; in the second, that the density of states is increased, so that by Fermi’s Golden Rule
the transition rate is higher; and in the third, that the low momentum of the Bloch photons
means that they are easily scattered by weak (possibly nonlinear) perturbations. The first view
leads naturally to the i1dea of an effective optical path length governed by the group velocity:

clno cin

L, = L = 2.
eff no v Lw Vv (35)
4 g

Since near a band edge L _g can be substantially larger than the “physical” path length based
on the average index, the effectiveness of a whole range of nonlinear, electro-optic and
acousto-optic effects will be enhanced. For example, an electro-optic modulator that needs to
be 5 mm long for a desired performance could be reduced in length to 0.5 mm if the group
velocity could be reduced by the same factor.

By way of a more detailed example we consider stimulated Bnllouin scattering (SBS). In
a photonic crystal consisting of holes drlled in high index matenals such as Si or GaAs, the
presence of significant Brillouin (and Raman) scattering will depend on the optical fields
“seeing” the matenial, not the air. This means that only Bloch waves on the low frequency side
of the stop-bands (when the field intensity peaks in the high index regions [32]) will produce
a strong SBS signal. We also assume that acoustic waves whose wavelength covers many
lattice periods in the photonic crystal see an “average” Young’s modulus and density, and
hence have a “sensible” dispersion relation. Following the formalism in [33], the Brillouin
gain for interaction between two optical waves and an acoustic wave takes the form:
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wll (6€rfas)2
Gy = —F 75— (36)

2a,n,v v E

in units of m/W. The acoustic frequency and power attenuation rate are £2,/2n and @, £ is
Young’s modulus, Ved and % the acoustic and optical group velocity magnitudes, and the
partial derivative of €, with respect to strain s describes electrostriction. Comparing this
expression with the gain in an isotropic medium of average index n, , and assuming that all
the parameters except E, the optical group velocities and the acoustic frequency remain
unchanged (since both density and stiffness are reduced, the acoustic velocity might not change
much), the enhancement in Bnllouin gain is:

G 2v:E
- = A G7)
GBCV Dmst

If we imagine two counter-propagating Bloch waves that interfere to produce fringes of
spacing 10A4/n,, with a reduction in group velocity of 10 and a reduction in £ of 2x, an
enhancement of around 20x in Brillouin gain is expected. This is not dramatic, mainly because
in the photonic crystal the Stokes frequency shift is reduced and hence the proportion of each
pump photon that is converted into an acoustic phonon is smaller, resulting in less power in
the acoustic wave and smaller SBS gain.

8. Various Applications and Related Issues

One benefit of comparing the behaviour of charge waves in electronic crystals and light waves
in photonic crystals is that both the similarities and the differences can lead to interesting
possibilities in both fields. For example, in semiconductor crystals the atoms or molecules
forming the repeating unit are identical, whereas in a photonic crystal the unit cell can take
almost any shape, since it contains a very large number of atoms (in a Si/air structure at a
wavelength of 1 pm each unit cell has ~10” atoms). In addition, because the period in a
photonic crystal is itself nothing special (unrelated to the size of an atom), it can be varied at
will, along with all the other parameters typical of a periodic structure (average index, index
contrast, crystal orientation and so on). Thus, two-dimensional photonic crystals can be
imagined in which the crystal planes bend. An example is a crystal in which the “atoms™ have
sizes, shapes and positions given by the interference pattern generated by four cylindrical
waves - see Figure 11. Electron beam lithography makes the creation of such complex patterns
feasible, indeed no more difficult to produce than a perfectly regular periodic structure. Such
patterns could be used for complex wavefront conversion within wavelength division
muitiplexing components, and for the design of microcavities in which spontaneous emission
is controlled.

In solid state physics, the traditional emphasis has been on fully trapped states. In optics,
because of the need to get light in and out of a device and use it, the emphasis has been on
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Figure 11, The fringe pattem generated by four cylindrical waves emanating from the origin and three points at 120°
apart, equidistant from the origin (the white dots). If combined with very high modulation depths of refractive index,
such holographically conceived patterns may exhibit rich and unusual behaviour.

semi-trapped states - ones that are coupled strongly to the outside world. The recent
development of the quantum cascade semiconductor laser is the result of thinking about semi-
trapped states for electrons [34).

The successful manipulation of light is a key ingredient in nearly all optoelectronic
components. Photonic crystals, through the strong spatial and temporal dispersion exhibited
by the Bloch waves near the band edges, are prime candidates for enhancing the interaction
between light and matter and thus improving the performance of a whole range of
optoelectronic components (lasers, modulators, wavefront convertors). The traditional
reservation often expressed about the use of periodic structures for controlling light is that the
bandwidth is narrow. While this is true of structures where the step 1n refractive index is small,
it is much less a problem in photonic band gap materials, because the number of lattice periods
needed for complete reflection is often in single figures, widening the bandwidth of reflection.

It is clear that the fabrication of extended photonic crystals at optical wavelengths stretches
the capability of current nanotechnology, and indeed has not yet been successful. Fabrication
of periodically etched high index films is less challenging, and moreover fits more naturally
with many current devices produced in waveguide form, including lasers, amplifiers,
modulators, couplers, filters and nonlinear elements. It may turn out that the first Major uses
of photonic crystals will be in thin films; however, before this can be achieved, the problems
of maintaining waveguiding in deeply etched layers must be solved. Some recent work
addresses this issue [35], demonstrating that solutions already exist.
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Miajor future problems inchide getting light into a photonic crystal from the external world,
and avoiding strong unwanted scattering near the band edges where the photon momentum 18
very low. An obvious solution to the first is to interpose an adiabatic transition region within
which Hamiltonian optics is valid. The second may prove more difficult to manage, since it
is likely to place tight tolerances on the fabrication accuracy of each and every unit cell.

9. Conclusions

The novelty, timeliness and promise of photonic crystals lies not just in the production of a full
photonic band gap, or in the control of the photonic density of states and hence the
spontaneous emission rate in active structures, but also in the exploitation of the strong
spectral and spatial dispersion that exist near a band edge, and the very rapid spatial
transformations in the optical fields this makes possible, to develop new active and passive
devices. For example, there are good reasons for thinking it possible to reduce the length of
waveguide components such as electro-optic modulators and directional couplers by orders
of magnitude. This would allow much greater packing densities on optical chips, leading to
large scale integration of optical functions. The Bloch wave optics outlined in this chapter may
be a useful basis upon which to design and build this next generation of components in
quantum optoelectronics and optical communications.
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Abstract. By adapting the well-known ‘zigzag’ ray model for use with a
periodic waveguide (i.e. replacing the plane wave rays with Bloch wave rays),
we show that thin films of high refractive index, supported by a low index
substrate and fully etched through with a periodic pattern, can support guided
modes. From the dispersion relation of these guided Block modes, it is shown
that the in-plane modal group velocity can be zero, suggesting applications in
enhanced dipole-field interactions and control of spontaneous emission in
waveguide lasers.

1. Introduction

It is now accepted that, within a band of frequencies known as a photonic band
gap {PBG), all the electromagnetic modes in a volume of dielectric material can
be suppressed by appropriate periodic patterning, i.e. by the creation of a photonic
crystal [1-3]. This permits a single intra-PBG electromagnetic mode (or resonance)
with high quality factor () to be introduced by means of a structural point defect.
At the resonant frequency of this mode there can appear a substantial (depending
on the O-factor) enhancement in vacuum field intensity. If an electronic dipole
whose transition coincides with this frequency is introduced, spontaneous emission
will be enhanced and low threshold highly efficient lasing achieved [4].

The first such microlaser awaits the realization of a full PBG at optical
frequencies, a task which pushes at the limits of what is possible in state-of ~the-art
nanofabrication. In the face of this considerable technological challenge, a number
of groups worldwide are investigating the use of simpler structures supporting
PBGs in two dimensions [5-10]. For example, arrays of closely spaced vertical
cavity emitting lasers are being constructed in which it is hoped to suppress lateral
emission by creating an in-plane PBG [11]. The performance of structures of this
sort will, however, only be attractive if waveguiding is built into the designs, i.e.
if fully trapped transverse resonances are created where the light bounces to and
fro between the upper and lower interfaces of the periodic layer. Onlv a few of the
published numerical studies of photonic band structure in two dimensions treat
this case [6, 8, 12]. Most do not allow for propagation along the third dimension—
essential if guided modes are sought.

(930--0340/96 31200 ¢ 1996 Taylor & Francis Ltd.



e

1036 D. M. Atkin et al.

SO ROV NN NN e R P Emma]

OGRS OO ttrrrtt

WNINN €over (NN cover

\\\\\\\ N, o a0 et

RN U loch H T
Bloc . P
wave

rays
PR SEE AN RN

“ N YN

NN e OO
substrate ; NN subsfcra\tg\ AN
HHHH H NN NN NN NN

Figure 1.  Comparison of (left) the conventional approach to tackling propagation in a
weakly periodic guide and (right) the approach adopted in this paper in which the
Bloch waves of the periodic layer are used to construct the guided Bloch modes.

Prior analyses on Bragg diffraction in periodic waveguides (e.g. fibre gratings
or DFB lasers) start with the assumption that the refractive index modulation is
weaker than the index step that forms the waveguide [13]. This allows one to
construct a theory based on the coupling of power between a pair of guided modes
satisfying a Bragg condition, the essential approximation being that the ‘strongly’
guided modes are resistant to the weaker periodic perturbation. In this paper,
driven by the PBG requirement for large index modulation, we tackle the case (see
figure 1) where this is no longer a good approximation. Rather than building coupled
mode equations from the guided modes of a film of the same average index, we
construct the guided modes of the fully etched layer from the Bloch waves of the
periodic medium out of which the layer is constructed. The resulting guided Bloch
modes contain all the salient features of propagation in the periodic layer, including
the photonic band structure, dispersion and group velocity. As we shall show,
stationary modes can be found (at particular frequencies) that have zero group
velocity in the guiding plane. These modes will interact very strongly with a dipole
of the correct frequency if it is incorporated into the waveguide.

The generic structure (figure 2) consists of strips of high index dielectric
sandwiched between media of lower refractive index, the cover and the gaps
between the strips being air. This provides an extremely high modulation depth
of the refractive index in-plane. Although there are physical gaps in the wave-
guiding layer, these turn out—under the correct conditions——to be below the
resolution limit of light both in the cover and the substrate, permitting strongly
guided modes to be supported. We shall now obtain the field structure and

Figure 2.  The structure analysed consists of lines of high refractive index placed on a
substrate of low refractive index, the other regions being filled with air. Propagation
in the (y, ) plane only is considered.
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dispersion of the Bloch modes in an infinite periodic stack, and then use a ‘zigzag’
ray picture [14] (in which the ray direction is given by the group velocity of the
Bloch waves) to derive the dispersion relation of the guided Bloch modes in a shice
of this stack placed between two media of lower refractive index.

2. Bloch waves of infinite periodic stack

Our starting point is the standard translation matrix technique for a dielectric
stack formed from alternating layers of high and low refractive index [9, 15]. We
use this to obtain the dispersion relation for the Bloch waves. For completeness
we present the main steps in this analysis, relegating most of the details to the
Appendix.

The dielectric stack consists of alternating layers of refractive index »n; and #,
and widths A, and 4, the stack period being A = (& + h;). Cartesian axes are
oriented with y normal to the layer boundaries and z along the layers (figure 2}.
No field variation with x is allowed, which allows separation of the fields into
transverse magnetic (TM) and transverse electric (TE) states, with respectively
E,=H,=H,=0and H =E = E,=0. In each case, all field components can
be written in terms of the surviving x-component, f, which may be expressed in
the jth layer (f = 1, 2) of the Nth period as:

N)] + bN sin [pj(y _ij)]
7

730) = @ cos [py = ¥] b4 :

}V and b}'v are constants to be determined, yJN is the value of y at the centre

of the jth layer of the Nth period and p; 1s the wavevector component of the field
normal to the interface within each medium:

where a

pj=(kK'n} — A2 (2)

where f§ is the propagation constant in the z direction and k is the vacuum
wavevector. The TE and TM cases are selected via the parameter ¢;:

=1 (TE) or ¢ = 1/1'1]2 (TM). (3)
The field throughout the stack is completely specified by a two-component state
vector consisting of the constants a;—\' and b}\'. The state vector in one layer is related
to the state vector in the corresponding layer in the previous period by operation
with a 2 x 2 translation matrix, M:

(o) =) - (& )G ®
bt by C A/\b
See the appendix for the elements of M, and for the elements of the matrix M,

relating the state vector in laver j = 1 to the state vector in the neighbouring layer
j=2. The eigenvalues and eigenvectors of M are given simply by:

1,2
s =+ (BO?, f, = B ‘ (3)
= . +Che
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where BC = 4% —1 and |M| =1, i.e. M is unimodular. This implies that the
product of the eigenvalues is unity and thus, without loss of generality, that:

\ i arccos A
Ay =exp(Ljk,A), k, = 1 (6)

where k&, is the Bloch wavevector. For a given polarization state at fixed optical
frequency and §, the complete field in the structure is expressible as a superposition
of two Bloch waves with field distributions:

fi(y) exp [—jpz] = B.(¥) exp [—)(Bz 1 k,y)] (7)

where the function B,.(y) is periodic with period A.

3. The wavevector diagram

The wavevector diagram is a plot of the loci of real wavevectors at fixed optical
frequency in the multilayer stack. It is extremely useful for establishing a clear
graphical understanding of the boundary conditions on either side of the periodic
layer [9]. First the following set of normalized parameters is adopted:

e = (nlkl + ﬂ’ZhZ)//1 (8)

v=kn, A, ng=mny/ny, T=hy/A

where n,, is the weighted average index, v is the normalized frequency, ng the index
ratio and 1 the relative layer thickness. A series of wavevector diagrams, plotted for
a multilayer structure consisting of alternating layers of air and silicon (ng = 3-45)
with t = 0-8, is given in figure 3. For a normalized frequency v=2 and TE
propagation, the mode index of the Bloch waves is approximately 1sotropic and
equal to the average index, n,.. The circles repeat in the y direction at intervals
of 21/ as a consequence of Bloch’s theorem. The TM wavevector diagram on the
other hand is elliptical, expressing the birefringence of the periodic structure. At
a normalized frequency of v = 3 a momentum gap appears within a certain range
of § values. In this gap the Bloch waves are evanescent, iL.e. if the stack is infinite
in extent they cannot exist. The group velocity of the travelling Bloch waves is
given by:

v, = Vew(k) (9)

which indicates that v, is oriented normal to the curves in wavevector space,
pointing in the direction of increasing frequency. The points where the momentum
gap is narrowest occur at &, A/m = 1, and will be referred 1o as the symmetric points;
at these points the group velocity points exactly along the layers. When the
normalized frequency is increased to 4, ellipse-like shapes appear in the momentum
gaps. These give rise to an additional pair of symmetric points. We shall refer to
the Bloch waves on the ‘ellipse’ as the fast Bloch waves and those on the outer

branches as slow Bloch waves, a naming convention which relates to the phase
velocity along the lavers.
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4. Boundary conditions

At fixed optical frequency, boundary conditions specify that the components
of wave momentum along a planar interface must be conserved as the interface is
crossed. By superimposing the wavevector diagrams for the two adjoining materials,
fulfilment of this condition is easy to visualize graphically. In our case the diagram
for the substrate is simply a circle:

2
B2+ B = kP, = (—"D (10)

av

which is shown (with dotted curves) on figure 3. To treat phase matching at, for
example, an interface in the (x, ¥) plane, a horizontal construction line 1s drawn
on the (#, k,) diagram. For k,A/n close to 1 this line does not intersect the substrate
circle, so that total internal reflection occurs and the Bloch waves are trapped in
the periodic layer. As &, A/m decreases, the line eventually intersects the substrate
circle, and the Bloch waves radiate from the periodic layer into the substrate.

5. Symmetrical points on the frequency versus B diagram

On this diagram (figure 4), the positions of the momentum gap edges are plotted
as a function of frequency for the same structure as treated in figure 3. In the
regions of the diagram that are not shaded %, is real and the corresponding Bloch
waves propagate freely in the structure. Below the &k, A/r = 0 line the Bloch waves
are cut-off. In the shaded regions between the &, A/n =1 lines, k, is complex and
the Bloch waves are evanescent. In the TM case the gap width shrinks to zero at
BA/m =~ (-3, which occurs when the rays in each layer are incident on the interfaces
at Brewster’s angle.

(a) TE (b) TM

A
pass

v
02 04 06 08 1 12 14 02 04 06 08 1 12 14
BA BA
ES m
Figure 4.  Frequency versus f§ diagram for the multilaver stack of figure 3 (n, =1,

n, = 345, n, =137, n,=12and 1 =08).
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6. Two-wave approximation for the Bloch waves

To reduce the complexity of the problem, we now take the Fourier transform
of the periodic part B, (y) of the Bloch wave fields, and extract the amplitudes of
the two dominant partial waves in the plane-wave expansion. These are then
matched to the fields with upward (+y) and downward (—y) progressing phase
velocities (evanescent in the z-direction) in the substrate and cover regions. All
the higher order partial plane waves are ignored; as we shall show, the accuracy
of this approximation 1s such that the solutions compare favourably with the results
of a numerical finite-difference analysis.

Each Bloch wave can be expanded in terms of an infinite set of partial plane
waves whose wavevectors are related by Floguet’s theorem:

k, = & + (k, + nK)y (11)

where K = 2m/A is the grating vector. This permits us to express the exact solutions
from the translation matrix analysis, B.(y) in (7), in the general form:

B.(y) =) S; exp (—jnKy) (12)

where the ST are the complex plane wave amplitudes, whose values are easily
found by performing Fourier analysis, vielding:

1 Af2 '
St = - J B.(y)exp (jnKy) dy. (13}
—-A/2

Retaining the two dominant partial waves, the Bloch wave fields & .(y, =z} are given
approximately by:

bi(y, z) = exp [—j(Bz £ k,y)](SF + S exp (1K) (14)

where as before the choice of + or — determines the group of Bloch waves that
progresses {or evanesces) 1n the +y or —y directions.

The percentage errors in amplitude and phase introduced by this approximation
are plotted in figure 5 for normalized frequencies of 3 and 4. For slow Bloch waves
the amplitude error is less than 3% and the phase error less than 0-5% over the
parameter range of interest. For fast Bloch waves the worst case is at the top of
the frequency range and gives an amplitude error between 6 and 7% and a phase
error less than 0-8%.

7. Guided Bloch modes

We are now in a posttion to obtain the dispersion relation of the guided Bloch
modes. 'The interfaces are considered to be parallel and separated by a distance A.
The boundary conditions require that all wavevector components in the y-direction
be continuous across the interfaces. The most general case (or four participating
Bloch waves) is illustrated in figure 6, the arrows indicating the directions of the
group velocities in the laver. The upward (U} and downward (D) partial waves in
each of the four Bloch waves (labelled by t (fast) and s (slow) for § > 0, and f (fast)
and § (slow) for § < 0) are now matched to the upward and downward evanescent
waves 1n the cover (co) and substrate (ss). The surviving x components by, b, b
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Figure 5. Percentage root mean square errors in (a) phase and (6) field amplitude
introduced by truncation of the plane wave spectrum to two partial waves. The mean
is averaged over one grating period (#; = 1, ny = 345, n =157, n, =1 and r = (-8),
At a normalized frequency of 3 only slow waves exist and the errors are less severe.
The size of the errors increase with increasing frequency. The errors for fast and slow
waves are shown for the highest frequency of interest, v = 4,

and by of the Bloch wave fields (from (14), taking without loss of generality the +
sign and replacing the subscripts + with f or s) are:

bg _ b;
Viexp (—j3fz)  Viexp (jf¢2)

where f and F are simply replaced by s and S for the slow Bloch waves. The F;
and I, are the renamed upward and downward partial wave amplitudes (identical
for f = +|f]) from (14), B; is the value of § on the inner (fast) stop-band branch,

= exp (—Jk, ) (Fy ~ Fpexp (JKy))  (15)
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TE Wavevector Diagram

=

Slow Bloch Mode Fast Bloch Mode

Figure 6. The waveguide modes are found by matching k& at the substrate and air

. . .- y .
interfaces and then satisfying a resonance condition. At each interface four Bloch

waves are matched to two evanescent plane waves, i.e. an incident wave of one type
scatters partially into a wave of the other type at the interface. However only the
waves that satisfy the resonance condition will propagate along the waveguide.

B, is the value of  on the outer (slow) stop-band branch and V, are the Bloch
wave amplitudes (to be determined). If the ‘ellipse’ is not present, then f;
1s pure imaginary. The Evanescent fields in the cover (£, = = %/2) and substrate
(E., 2 € —h/2) regions are given bv:

E,, exp (jk,y) = U, exp [—(k] — &*nl)' (= — h/2)]
+ D, exp [—[(k, — K)* — k*nl,]'(z — h{2)] exp (jKy)
E, exp (jh,y) = U, exp [(E2 — k2 )\ 2(z + hy2)]
+ Dy exp [[(k, — K) — &*nZ ]z + h/2)] exp (jK¥) (16)

co?

where h 1s the layer width, U, U, D.,, and D, being the upward (+y) and
downward (—y) progressing wave amplitudes in the cover and substrate, Requiring
continuity of the x-components and derivativest of the upward and downward fields

1 For the TM case the boundary condition, at the interface between the periodic
structure and the cover or substrate, requies continuity of (1/#%(3))(dH, /dz). In the present
analysis 1t 13 assumed that, for this boundaryv condition, n(3y) is constant and equal to the
average index, #,.. A more accurate approach would involve finding Fourier components
of 1/n*(y) and incorporating these into the analysis. However, when the results from both
methods are compared, the error is very small, validating the initial approximation.



1044 D. M. Atkin et al.

at the substrate and cover interfaces yields eight boundary conditions, which are
most conveniently written in the form of a matrix equation:

F,e*? F,e™® Sye ” Syet? -1 0 0 0
Fye*? Fnhe™® Spe Spet 0 -1 0 0
F e ? F,e™® Syet’ Sye™® 0 0 -1 0
Fye™® Fe*? Spe*? Spe™? 0 0 0 —1
BiFue™® —BFye™® —BSye™ BSye' —ipu 0 0 0
BiFpe™® —BiFpe ® —BSpe™ BSpe’ 0 —Jpwp 0 0
BFye™® —BFye™® —B.Sye’ BSye™ 0 0 jpou O
BiFye™® —pFpe™® —BSpe™ BSpe™ 0 0 0 jPeon

W

Vi

4

x ; =0 17)
ss
D,

where

¢ = }Beh/2, o =jph/2,
biu= Cj(kf» - anJZ)UZ, Pip = éj[(ky - K)Z o kzn}]”z’ (18)
&=1 (TE) or & =ni/n (TM)

are the definttions of the various parameters and j = co or ss. Real values of &, for
which the determinant of this matrix is zero vield the guided Bloch modes of the
periodic layer. At the symmetric points (k, A/x = 1), the upward and downward
partial waves have equal and opposite wavevectors, which means that the con-
ditions for the upward and downward waves are identical. Since the fast and slow
guided Bloch modes are orthogonal at this point and can be considered separately,
the problem reduces to a much simpler 4 x 4 matrix vielding the following
dispersion equation for the guided modes:

ﬁq(pssU + PCOU) — )Bq(pssD + pcoD)

2 2
q PssUuPoots ﬁq — PusnlPeod

where q =1 or s {for the fast or slow Bloch waves) and m is an integer. This is
very similar to the standard dispersion relation for an asvmmetric slab waveguide

[14].

tan (B h + mm) = (19
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8. Results

8.1. Guided Bloch modes at symmetric points

Figure 7 shows plots of normalized frequency v versus #/A for a Si structure
on a glass substrate (n, =1, n, =345, n, =157, n, =1, t=08, yielding
n,. = 2:96). Since they reside at the symmetrical points on the wavevector diagram,
these guided Bloch modes have zero group velocity in the direction parallel to the
substrate and are fully confined within the layer. For small values of % the modes
are widely spaced in frequency. The upper set of curves (dashed line style) is for

{2} TE Guided Modes at Symmeiric Point

stop band closes

fast mede_cutoff

3.2
3 L
28}
2 PR & 8 10
Figure 7. Normalised frequency v versus #4/A for the guided Bloch modes at the
symmetrical points in a Si structure on a glass substrate (n, = 1, ny = 345, n,, = 1:57,
n., =1 and 1 =08). The solid lines represent slow modes and the dashed lines

represent fast modes. The fast mode cutoff at v = 3-2996. In the TM ecase (b) the
modes switch from fast to slow at v = 3435, This is a result of the definition of fast
and slow modes and the crossing of the k, = m/A lines in figure 4 where the stop band
closes.
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(a) TE (b) TM
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Figure 8.  Plots of &, A/%t versus normalized layer thickness /A for (@) TE and () TM
modes in a structure with n; =1, n, =345, n,, =157, n, =1 and 1 =08 at a
normalized frequency v = 3. The fast modes are evanescent, and the slow modes cut
off when the k,A/® intersects with the substrate circle.

the fast modes. These disappear at normalized frequencies below v = 3-2996, which
corresponds to the disappearance of the ‘ellipse’ on the wavevector diagram. The
lower set of curves (full line style) is for the slow modes. The fast and slow modes
occur in pairs, each pair straddling the corresponding mode that would occur in
a homogeneous slab waveguide of the same average index.

8.2, Behaviour away from symmetric points

Away from the symmetric points, the guided Bloch modes are described by
full solutions of (17). Plots of k, A/m versus normalized layer thickness #/A are
presented in figure 8 for TE and TM modes at a normalized frequency v = 3. At
this frequency only slow modes exist, there being no ‘ellipse’ on the wavevector
diagram, rendering the fast modes evanescent. Note that for small enough layer
thickness only one mode is available over the whole range of k,. The guided modes
cut off when & A/% intersects with the substrate circle; this condition is indicated
by the horizontal line near the base of the figures.

Figure 9 is a repeat of figure 8 for a normalized frequency v = 4. The set of
near-vertical curves corresponds to slow modes, and the second set of curves
corresponds to fast modes. As the modes move away from the symmetrical point,
increasingly strong anti-crossing occurs at the intersection points of the curves.
This 1s due to coupling between fast and slow Bloch waves at the interfaces. When,
for example, a fast Bloch wave collides with the cover or substrate interface, it is

split by total internal reflection into a mixture of a strong fast and a weaker slow
Bloch wave.

8.3. Brillouin diagram

Figure 10 shows plots of v versus k. A/m for TE modes for a structure of
thickness 1':54 (n; =1, n, = 343, n, =157, n, =1 and 1 = 0-8). The shaded
regions to the upper left and right occur when k,Aft =vyn,  i.e. when the substrate
circle 1s touched and there is radiation into the substrate. The lowest curve with
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. (a) TE : {(b) TM
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Figure 9.  Plots of k&, A/% versus normalized layer thickness #/A for () TE and () TM
modes in the same structure as in figure 8, at a normalized frequency v = 4. Both fast
and slow modes are present, and once again they cut off when the k A/% intersects
the substrate circle.

TE Brillouin Dhagram

L4

38

3.6

34

32

2.8

Figure 10. TE Briilouin diagram (v versus k},/l/T[) for a structure of thickness 1:54

(ny =1, n, =345 n, =157, n,=1and r = 0-8). The shaded regions correspond to
modes that radiate into the substrate. The solid curves are the Bloch wave modes and
the dashed curves represent the zero and first order modes in a homogeneous
waveguide with index n,, = 2:96. The reference points are marked for table 1 and the
field microstructure plots in figure 11.

the point ¢ marked on it corresponds to the zero order slow Bloch wave mode. At
points a, b, ¢, d and e the group velocity of the Bloch wave is zero in the y direction,
The vanishingly small group velocity at the symmetric points will result in an
enhancement in the interaction between the electromagnetic guided mode and an
incorporated dipole of the same frequencv. An excitation of finite length will
contain a range of frequencies, with a decay time dependent on the bandwidth;
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energy will leak away via guided Bloch modes that do not lie precisely on
the symmetrical points (see section 9.2). The other two curves on the diagram
represent the first order slow mode and the zero order fast mode. Between
the points d and e the modes display an anticrossing behaviour. At points
a, g and h the mode consists solely of the first order slow mode; at point
b there is the zero order fast mode; finally at points d and e there is a mixture
of the two modes. This is confirmed by the field microstructure in the next
section. An intriguing feature of these plots is the reduction in the number of guided
modes as the frequency rises. This is the reverse of the behaviour in normal
waveguides, where higher frequencies imply a larger number of modes, and 1s
caused by the encroachment of the momentum gap within the permitted range of
B values. The modes in a homogeneous waveguide with the same average index
are shown as dashed lines on the diagram. In the periodic structure the zero
order mode is suppressed between points b and ¢, and the first order mode 1s
suppressed above a. In thicker layers this mode-suppression effect is even more
dramatic [16].

(a) Field Intensity at point a (b) Field Intensity at point b

(c) Field Intensity at point d (d) Field Intensity at point e

h
H
.
»
A
vily
N
a
Y
i
'
L
H
H
1
+
+
1
i
i
1
1
)
a

Figure 11.  Field intensity distributions of selected TE guided Bloch modes at points a,
b, d and e in figure 10. The substrate is below the horizontal dashed line and three
periods of the high index waveguide laver are shown. (a) a first order slow mode, ()
a2 zero order fast mode, (¢) a zero-group velocity slow ‘mixed’ mode and {d) a
zero-group velocity fast ‘mixed’ mode.
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8.4.  Microstructure of the fields

Figure 11 shows the electric field intensity distribution of the TE guided Bloch
modes at points a, b, d and e on figure 10. Figure 11 (a) shows the first order slow
mode at point a. This is characteristically concentrated in the high index regions
and has a double lobed structure in the z direction. The zero order fast mode
(point b on figure 10) is shown in figure 11 (b); it is guided predominantly in the
air gaps. This very unusual behaviour arises because the field pattern s below the
resolution limit of free waves in the cover and substrate regions. The modes at
points a and b have zero group velocity along the waveguide, as confirmed by the
100% visibility of the modal fringe pattern-—no power can flow through regions
where the fields are zero.

It is intriguing that four other points of zero group velocity occur, at
anticrossing points on either side of the symmetrical point {e.g. d and e). The
field intensity patterns of the modes at these points are given in figures 11 (c)
and (d). It turns out the anticrossing is caused by the simultaneous resonance
of the zero order fast and the first order slow modes, which are then coupled
strongly together at the upper and lower boundaries (see figure 6), creating a
stopband in f. Since they travel in opposite directions along the guide, a
kind of ‘tug-of-war’ results between the fast and slow modes, giving rise to
zero group velocity at the anticrossing point. The overall modal field distribu-
tions of these ‘mixed’ modes are superpositions of fast and slow modes, whose
relative phase is such that constructive interference occurs near the substrate in

both cases (d and e).

8.5. Comparison with numerical analysis

In order to confirm the accuracy of our simple analytical model, a numerical
calculation was performed based on the method of Pendry and MacKinnon [17].
Our analytical model could be extended by generalization of (17) to include the
contributions of higher order Fourier components and evanescent (imaginary f)
solutions in the expansion of the field within the grating layer. In practice 1t 1s
more efficient to recast the equations to relate the Fourier components in the cover
to those in the substrate by means of a transfer matrix. The elements of this transter
matrix could be calculated by use of the dispersion relation (A9), the Fourier
decomposition (12) and the matching conditions at the substrate and cover
boundaries. In practice, due to its availability and flexibility, a finite difference
algorithm, initiated by Pendry and MacKinnon, was used to calculate the transfer
matrix. This works by discretizing the fields on a real space mesh and has the
added advantage of being able to describe more complex grating geometries, such
as V-grooves and two-dimensional periodicity. These structures will be considered
in future papers.

The condition for appearance of a guided mode is that there be no unphysical
exponentially diverging modes in the substrate and cover. This results in a
determinantal equation, based on the transfer matrix, which is numerically solved.
Table 1 shows a comparison of the resonant frequencies calculated at a number of
points indicated on figure 10. The results for both methods correspond very well,
close to the symmetric point the error is less than 0-3% and it increases to 3:16%
when k, A/x is reduced to 0-3.
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10. Conclusions

Deeply etched high index films support two different types of fully guided
Bloch modes with zero group velocities in the waveguide plane. Viewed as
resonances, these stationary modes have a uniquely high effective Q-factor (com-
pared to any of the other modes guided in the film) and hence are suitable as
micro-resonators for ehancing dipole—field coupling. Although the analysis applies
only to singly periodic layers, its general conclusions are relevant to the more
general case of two-dimensional multiply periodic thin films, in which resonances
that are stationary in all three space dimensions are feasible. The approach used
may be helpful in future studies of the behaviour of arrays of vertical cavity surface
emitting lasers.
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Appendix: Translation matrix elements
The matrix M,, relating the field in the second layer to the field in the first

layer is:
az aq Az By \{ai
(5= (5 2 A
(b;) by Cyy Dy /\bY

A,y = 1, — (&1 p1 A/ G202 4)5152,
By, = 5y63/(&1p1A) + ¢152/(Eap2A1),

where

(A2)
Cy = —=&1pyAs e — aprAessy,
Dy = 163 — ($2024/&1P14)5 152,
det(M,,) = 1,
where the terms s; and ¢; are shorthand for:
¢ = cos (ph/2), s, = sin (p;;/2). (A3)

The matrix M,, relating the field in the first layer of the (N + 1)th period to the
field in the second layer of the Nth period is then

N+1 D B !
(a;ﬂl) = Mtz(ag) = ( o 21)( ai’) : (A4)
b1 ) Cyy Ay / \b3
The analysis can either be based on the translation matrix M = M;,M,, (with a

state vector representing the field in layers with index ny) or equivalently on the
matrix M’ = M,,M,, (state vector representing the field in layers with index ny).

M is
N+1 N N
a; aiy A B (a{)
L) =M . ]= 1 A'5)
(b‘?”> (ba‘) <c D) by (
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where
A=D=A4y,D; + By, Cy, (A 6)

B=12DyB;, C=24,Cy. (A7)

A can be re-arranged as

1
A = CO0S§ (plhl) COs (pzhz) —_ — ('il_él + ‘p2—£2> Sin (plhl) Sin (pth) (A 8)
2\psl,  m&y

but B and C are most conveniently expressed as the product of two factors as
above. The elements of the alternative matrix M’ are:

A'=D =4, (A 9)

B' =248, (' =2D,Cy. (A 10)
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1. Introduction

It is now widely recognised that a volume of dielectric material with an
appropriately designed periodic microstructure — a photonic crystal — will
support a full three-dimensional photonic band gap (PBG) [1]. Over the
frequency range spanned by the PBG, all electromagnetic modes are
suppressed within the volume, allowing a single resonance (or photonic state)
to be introduced by means of a structural point defect [2]. This unique ability
to tamper strongly with the electromagnetic mode density enables the
channelling of spontancous emission into one or a few electromagnetic modes,
and is attractive for enhancing the emission rate from light emitting diodes,
and in achieving low threshold highly efficient operation in micro-cavity lasers
[3].

Although photonic crystals with full PBG’s at optical frequencies seem
set to have a revolutionary impact in optoelectronics, they are not yet
available, largely because the technological demands on nanofabrication
challenge the current limits of the state-of-the-art. As several groups have
realised, however, it is less demanding to produce two-dimensional periodic
patterns in thin film form (see Figure 1), and thus — perhaps - to achieve a
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full PBG in two dimensions [4,5,6,7]. One important potential application of
such photonic crystal waveguides is in the suppression of lateral emission in
arrays of closely spaced vertical cavity emitting lasers [8].

The advantages of waveguiding are well known. Tight confinement of
optical power over substantial distances, with precisely controlled parameters
of propagation, allows the design and routine production of devices such as
modulators, couplers, filters, resonators, mirrors, lasers and amplifiers. Using
electron-beam lithography, complex waveguide patterns can be directly written
on to a substrate, resulting in multi-functional optical chips. The ready
accessibility of every point on the chip means that tapping light in and out,
perhaps to interconnect with a neighbouring chip, is straightforward.

There is, however, a fundamental conflict between the requirements for

z alr

Figure 1 Examples of the photonic crystal waveguides discussed in this chapter. They consist
of high index films on a low index substrate, etched vertically through with various periodic
patterns.

waveguiding and those for a full PBG in two dimensions. A waveguide
operates by trapping light in a ‘potential well’ of high dielectric constant,
strength A€y . A photonic band gap appears through strongly modulating the
dielectric constant so as to create a periodic array of deep wells and high
barriers, with dielectric step A(:'pc (pc = photonic crystat). If AEPC « Mgy,
the waveguiding dominates, being perturbed only weakly by the photonic
crystal. Given the high values of A€ e needed for a full PBG, this regime is
not attainable in practice except in metal-clad waveguides, where owing to
ohmic losses the optical absorption is unacceptably high. If A, » Aeg, the
waveguide is a weak perturbation to the photonic crystal, with the result that
waveguiding will be lost; although a full two-dimensional PBG may be
attained, it will be of very limited usefulness because of strong diffractive
spreading out of the plane of the thin film. In the regime where A€, ~ Aégi »
it is unclear whether the waveguide or the photonic crystal will dominate.
There is at least a chance that some beneficial trade-off can be found where
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useful mode suppression is achieved while retaining wave guidance. This is
the regime we explore in this chapter.

The approach we use is as follows. Rather than building coupled mode
equations from the guided modes of a uniform film of the same average index
as the periodic film (the “conventional” approach as described in many
textbooks [9]), we construct the guided modes of the periodic film from the
Bloch waves of the photonic crystal out of which the layer is constructed
(Figure 2). This is done by adapting the well-known “zig-zag” ray model [10]
for use with the Bloch wave rays of the periodic film. The resulting guided
Bloch modes encompass all the salient features of propagation in the periodic
waveguide, including the photonic band structure, dispersion, phase and group
velocity [11). They have many unique and useful features, including
momentum gaps (at fixed optical frequency) that cause substantial guided
mode suppression in thick layers, and in-plane modal group velocities that can
be zero.

In order for guided Bloch modes to form, the light must be able to

| substrate

Figure 2 Conventional (left) and Bloch-wave (right) zig-zag ray pictures of a mode guided in a
thin film. Unlike the rays in the isotropic film, the Bloch wave rays (which follow the group
velocity) of the photonic crystal film can be normally incident upon the boundary while still
undergoing total internal reflection.

bounce to and fro between the upper and lower interfaces of the periodic
layer; this requires a non-zero component of wavevector [ normal to the film,
i ., along the translationally invariant axis (the z-axis — see Figure 1) of the
two-dimensional photonic crystal. Since very few published numerical studies
of two dimensional photonic band structure allow for | 8| > 0, we shall devote
some space to discussing the wavevector diagrams in that case.

The chapter is organised as follows. First we describe how to obtain the
dispersion relations for unbounded two-dimensional photonic crystals (section
2). These are necessary for studying the conditions under which bound modes
exist in thin waveguiding layers formed from slices of these crystals (section
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3). We develop a new kind of “band diagram” which shows clearly the regions
where bound modes may be expected. In the discussion (section 4), we pay
particular attention to localised resonances which occur when the in-plane
group velocity is zero, and find that the total number of guided modes in a
photonic crystal waveguide can be significantly less than in an equivalent
layer of the same average index. Conclusions are drawn in section 5.

2.  Dispersion Relations in Unbounded Photenic Crystals

iy

high index strips IL

X
Figure 3 Singly periodic layer consisting of high index strips on a low index substrate. The y-

axis points normal to the high index planes, and the z-axis normal to the film.

2.1 SINGLY PERIODIC

In this case, the dispersion relation is readily obtained for a multilayer stack
using the standard transfer matrix technique, as described (in our own
notation) in {12]; see also [13]. It takes the functional form:

L = arccos A
v A (1)

where ky is the Bloch wavevector (pointing normal to the layers), A the
period and:
L P&, P25

A = cos(p h;)cos(pyhy) _E(ngg FE] sin{p h))sin(p,hy) . ()

with 4, and h, the thickness of the layers in each repeating  unit
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(A = h +h,), whose refractive indices are n, and n,. The local wavevector
components inside and normal to the layers are p, and p,, given by:

p = Knt-(BPkD),  j 12 3

where f is the component normal to the waveguiding layer of photonic crystal
(the z-direction in Figure 3), &£ the remaining in-plane wavevector component
and k, = w/c the vacuum wave constant. The parameters ¢, and ¢, are
defined by:

£ = 1 (TR,  n? (TM) (4)

where TE (TM) polarisation occurs when the electric (magnetic) field points
in the plane of the layers. For convenience we define the following
parameters:

v=kn,A n,=(n+nn) 1 =h/A (5)

where vis the normalised optical frequency, n,, the average index and z the
normalised thickness of strip j = 1 or 2.

2.2 MULTIPLY PERIODIC

The multiply periodic geometry considered here comprises a hexagonal
arrangement of parallel circularcylindrical "rods" of low index surrounded by
a medium of high index. For generality, a normalised propagation constant 84
is defined, where A is the centre-to-centre spacing of adjacent rods. A useful
further parameter is the normalised frequency v.

2 )
v=kn, A n,=yonran,, o =ald (6)

where A = a;+a,, g being the unit cell sub area for which the index is ge

The numerical method employed is the real-space method [14], tn which
the field and index distributions within the unit cell are discretised on a grid
of points. These are grouped into sub-cells, within which the fields are related
by transfer matrices. The sub-cells are small enough to preclude numerical
instabilities caused by exponentially growing modes. The fields of adjacent
subcells are then related using a numerically-stable scattering matnx. For
hexagonal symmetry, the field and index distributions are discretised along
non-orthogonal axes, corresponding to the primitive lattice vectors of the
underlying hexagonal Bravais lattice.
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All possible transverse wavevectors k in the (x, y) plane at given v and
B are sought. The calculation thus implicitly considers at once all possible
polarisations and transverse directions of propagation, and the resuits are
equally applicable for any orientation of the structure.

3. Conditions for Bound Modes in Photonic Crystal Waveguides

We now develop a geometrical tool suitable for establishing the conditions
under which a photonic crystal waveguide will support guided modes. It
involves adapting the usual band diagram by replacing optical frequency
(which we keep constant) with 3, the component of wavevector along the axis
of invariance of the structure (the z-axis in our notation).

In reciprocal space at fixed optical frequency, the aillowed wavevectors
(of the photonic crystal layer) map out a series of one or more curved
dispersion or constant photon energy surfaces B(k_, ky), where the maximum
possible value of S is bounded by the product of the vacuum wavevector &,
and the highest refractive index in the photonic crystal. In a uniform isotropic
medium of index », the surface is a sphere of radius kpn, since
Brekl+ ky2 = k’n?. At each value of §, the curved intersections of these
dispersion surfaces with the constant § plane yield a unique wavevector
diagram. The boundaries of the first Brillouin zone, being set by the crystal
lattice, are (of course) invariant with §. Each point k on the curves in the first
Brillouin zone is associated with a single Bloch wave, and is accompanied by
equivalent points in all the higher order Brillouin zones, which tile all of
reciprocal space. Each of these points represents the wavevector of one of the
partial plane waves in the Fourier expansion of the Bloch wave field. Bound
modes can appear only if the transverse components of all of these
wavevectors have a magnitude greater than & a_, the maximum value in the
substrate. It is therefore sufficient to consider only the first Brillouin zone,
since the smallest Bloch wavevector will always lie within it. The group
velocity component (and hence ray direction) of a Bloch wave in the
transverse (x, y) plane is given by:

v, = ka(k) (7

and points normal to the dispersion surfaces.

Throughout what follows we adopt the normal practice of labelling the
points of high symmetry with the letters J and X, the origin of the g =
constant wavevector plane (where k, = k= 0} being labelled T'. The group
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velocity of the Bloch waves in the (x, y) plane can be vanishingly small at
these high symmetry points, owing to the action of one or more sets of
primary Bragg planes. Since low group velocities mean enhanced interactions
between matter and light, the high symmetry points are of particular interest
in, for example, microcavity lasers.

6

SA

0
r

| X
kA < . > kA

Figure 4 Plot of §A along a specific path in the (k_, k) plane for a singly periodic layer at fixed
optical frequency v = 4; at a vacuum wavelength of 1550 nm this corresponds to a structure with
A =493 nm ~ for the other parameters see the text. The trajectory follows the k, axis, tuming
through a right angle at the origin I', and progressing along the k, axis through X (the edge of
the Brillouin zone). The upper (lower) TE and TM branches at the X-point give the A value for
slow (fast) Bloch waves, the slow waves having a larger A value. Waveguiding is only possibie
within the unshaded regions where 4 in the substrate is not real-valued. The honizontal lines
approximately represent successive transverse resonances in a layer of thickness 1. = 74, for
which the intermodal spacing AZ A = /7. Note that the total number of y-propagating modes
supported is reduced by the presence of the momentum gap in £

3.1 SINGLY PERIODIC CRYSTAL WAVEGUIDE

As a first example, we consider a singly periodic waveguiding film, consisting
of paraliel strips of high index material on a low index substrate (see Figure
3
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Figure 5 Plot of AA along a specific path in the (k,, k) plane for a singly periodic layer at fixed
optical frequency v= 2.5 ; this corresponds to A = 308 nm at a vacuum wavelength of 1550 nm.
The full black curve is for TE polarisation, the full grey curve for TM and the black dotted curve
for the substrate. See the caption of Figure 4 for more details.

In this case the Brillouin zone is an ‘mﬁnitely long rectangle of half-width (the
distance from I' to X) k A = n. In reciprocal space, imagine now an
arbitrarily oriented plane contammg the k, axis. The wavevector diagram in
this plane has two forms, depending on the state of polarisation. The s or TE
state occurs when the electric ficld is normal to the plane of the diagram, and
the p or TM state occurs when it is in the plane. The full three-dimensional
TE and TM dispersion surfaces at fixed optical frequency are the surfaces of
revolution formed by rotating these in-plane wavevector diagrams about the
k,-axis. The main features of the full three-dimensional dispersion surfaces
can be summarised on a two-dimensional plot by showing their intersections
with the {k , ) and (k B) planes (left and right hand sides of Figures 4
and 5). This is carried out by plotting the position of the intersections of the
dispersion surfaces with a trajectory including the &, axis, and the line joining
the T to the X point, i.e, § versus £, for k, = 0. As already pointed out,
bound modes are possible only n reglons where the wavevector in the (k, & )
plane has a magnitude greater than k n_ . These regions are casily ldentlﬁed
if A, the value of [ in the substrate, is plotted on the same diagram:

B = Kl -k -k (8)

[1] 38 y

Note that this describes the surface of a hemisphere as expected. For &, and k&
values where f, is real, bound modes in the film are impossible since the light
will always leak into the substrate (which is taken as usual to have a higher
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refractive index than the cover). Provided a transverse resonance condition can
be found, bound modes will occur in regions where £ in the substrate is
imaginary.

The structure treated in Figures 4 and 5 consists of strips of silicon
separated by air, with parameters:

n, =04, n =1, n-= 35, n, =2, (9)
the substrate and cover being chosen for illustrative purposes to be silica
(index 1.46) and air. At a vacuum wavelength of 1550 nm, these parameters
correspond to A = 308 nm, A, = 185 nm for v = 2.5 and A = 493 nm,
h, =29 nm for v=4.1In these units, the locus of B is a sphere of radius
146vin,,.

At fixed f, any Bloch wave whose transverse wavevector lies within the
range spanned by the substrate sphere will be leaky. Since every wavevector
in the first Brillouin zone is accompanied by partners in every other Brillouin
zone, this means that guided modes can occur only within the unshaded
regions in Figures 4 and 5. As indicated in (7), the ray directions of the Bloch
waves are given by the normals to the dispersion surfaces. One particular
mode of the periodic layer thus consists of upward and downward propagating
Bloch waves, confined by total internal reflection at the interfaces. One of the
most striking things about the loci is the large momentum gap that appears in
SA . Within this gap there are no real values of 5 and hence no guided modes
can exist.

The transverse resonance condition for bound modes may be formally
written:

BL-® = mn (10)

where @ is the sum of the phase changes upon total internal reflection at the
two interfaces and L is the layer thickness. The spacing 48 between
successive modes is thus (ignoring changes in @) roughly m/L . This allows
us to count up the number of possible bound modes in each case (see section
4).

3.2 HEXAGONAL CRYSTAL WAVEGUIDE

We now extend the results of the last section to layers formed from a
hexagonal photonic crystal. On the Brillouin diagram we trace out the usual
[-1-X-T wavevector path (Figure 6). As before, waveguiding will exist where
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Figure 6 Brillouin zone of hexagonal crystal with trajectory marked in. The intersections of the
dispersion surfaces with the I-J-X-T" path, which change as the wavevector component S normal
to the layer increases, are used to plot the “band” diagrams in Figure 8.

the value of B, in the substrate is imaginary. To identify these regions, we use
{8) to

convert the in-plane wavevector k (joining points along the I'-J-X path to the
T point) into 8, which is then plotted on the Brillouin diagram along with
in the photonic crystal. Defining the normalised parameters:

=pA, p=kA (1)

where &, is the scalar distance along the path I'-J-X-I" and A is the distance
between adjacent cylinder centres, one obtains:

b+ p?=(vn i ), T-J, 0<p=< =

/3

2 A /3

b2 + (n(1+yDp) = (van )t X-T, /3 < p < n(1+/3).

Plotting b versus p yields the “band diagram” for the substrate, which
indicates regions where there are no real-valued wavevectors in the substrate,
and hence where guided modes might be expected assuming that SA is real-
valued in the photonic crystai layer. An example of a typical transverse
wavevector diagram is given in Figure 7. The complete “band” diagram is
plotted in Figure 8 for three different optical frequencies
(vin, =14, 1.8 and 2.2) at n, = I, n, =364 and g = 0.8
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......................

Figure 7 Numerically calculated transverse wavevector diagram for a hexagonal crystal with
vin, =22 at 4 = 176, o, = 08, n, =364and n, - L.

4. Discussion

To illustrate the quantizing cffects of the thin layer, we adopt a simplified
version of the transverse resonance condition {(10) that ignores phase changes
upon reflection (a more rigorous treatment of the singly periodic guide is
available in [11]). As already pointed out, under these circumstances the step
in transverse wavevector between successive guided modes is AS = w®/L,
where L is the layer thickness. We draw in a sequence of horizontal lines
spaced by 7 A /L for a layer thickness L =3.7 um, apitch A=525pmand v/n, = 2.2
(Figure 8). Within the rectangular unshaded regions, the intersections of these
lines with the loci yield the approximate kpA values of the guided modes.

4.1 MOMENTUM GAPS AND GUIDED MODE SUPPRESSION

Significant suppression of guided modes can occur in a photonic crystal
waveguide compared to a layer of the same average index and thickness. By
way of illustration, refer to Figures 4 and 5 for a singly periodic layer. The
precise number of y-propagating modes that would be supported by a non-
periodic layer of the same average index 2 and thickness 2.1 um, with air
cover and silica substrate, is eight (4 TE and 4 TM) at a wavelength of 1550
nm. The singly periodic waveguide supports one (fast) TM mode at v = 4,
and both a slow T™M
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Figure 8 Sequence of “band” diagrams for a hexagonal crystal layer. The horizental axis is k A
The unshaded regions represent the parameter ranges where guided modes are possible. The
dashed circles are the substrate §A values. The horizontal lines are spaced by an amount
appropriate to the mode spacing of a layer 74 thick. Note the anti-crossing points where the
slope and hence the in-plane group velocity is zero, photons in the vicinity of these regions will
be trapped at resonances. The dashed line AA comresponds to A4 = 1.76, the value used in
Figure 7. The total number of guided modes is reduced compared to a layer of the same average
index, the lower order modes (small f) being the first to disappear.

and a slow TE at v = 2.5. A thick guide supporting only one mode might be
useful for increasing the output of an LED by allowing multiple gain regions
while preserving single mode operation.

For the hexagonal crystal waveguide, at v/n,, = 2.2 all the guided
modes which would be present in a layer of the same thickness and average
index are suppressed — in all directions — below about 84 = 1.7 (Figure 8).

4,2 LOCALISED RESONANCES
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The group velocity of the guided Bloch modes along the layer can be
very small, equalling zero if the frequency of the light is chosen so that one
of the horizontal lines intersects with the momentum gap edges. In the vicinity
of these points the light will travel very slowly along the guide, and enhanced
interactions with matter (e.g., optical gain, nonlinearity and electrooptic
modulation) will result. In the singly periodic case, in addition to stationary
modes consisting of one upward and one downward Bloch wave, other modes
appear — unexpectedly — consisting of two upward and two downward Bloch
waves [11]. They occur because the guided Bloch modes associated with the
fast and slow branches on either side of the momentum gaps (Figure 4) can,
under the correct circumstances, be simultancously resonant (the fast mode
having a smaller number of lobes across the layer than the slow branch) at a
certain optical frequency. Away from the Brillouin zone edge (the X point in
Figure 4), two such simultancously resonant modes are coupled together by

>

photonic crystal layer

<

" ) . T » R * 3 9.0 1 S H 2.5 i

y——> y —»

Figure 9 Example of the field intensity distribution of a fast (left) and a sfow (night) guided
Bloch mode in a singly periodic layer at the momentum gap edges. For the fast mode, the light 15
anomalously concentrated in the air gaps [11].

reflection at the boundaries, and have group velocities that point in opposite
directions along the layer. This means that the net group velocity can be zero,
allowing a stationary guided mode to form.

In the hexagonal case for v/n, = 2.2, therc is a whole series of band
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edges, which indicate the positions of stationary resonances and the directions
in which momentum gaps appear.

Many of the curious characteristics associated with guided Bloch modes
are discussed in [11}. One of their most intriguing features is that the modes
associated with the fast Bloch waves (i.e., those on the small ellipsoidal
dispersion surface around the X-point in Figure 4) appear to be guided by the
air gaps in the waveguiding layer. This anomalous behaviour turns out to
occur because the period of the field is below the resolution limit of light both
in the cover and the substrate, permitting strongly guided modes to be
supported. Examples of the ficld intensity patterns of one of these rather
bizarre modes, together with one of the more usual modes (i.e., those
concentrated in the high index regions) are available in Figure 9.

In addition to these intrinsically resonant (i.¢., zero group velocity in the
waveguide plane) guided modes, it is possible to create a resonance by
introducing a structural defect in an otherwise perfectly uniform photonic
crystal waveguide. This causes a state to form within the momentum gap, in
a manner closely analogous with published reports of intra-band defect states
that form at a particular frequency within a conventional photonic band gap
(2]. The structural defect that gives rise to these intra-momentum-gap
resonances can be either a sharply localised point defect, or a smoothly
distributed defect. Distributed defects, where a slowly changing aperiodicity
with a “bell” distribution is envisaged, may be analysed using a Hamiltonian
optics approach [17]. Stationary resonances will allow strong coupling of
electromagnetic fields to a dipole of the correct frequency if it is incorporated
into the waveguide.

4.3 LEAKAGE MECHANISMS

In order to produce any sort of trapped state (length Ay} in the waveguide
plane, a Fourier spectrum of k, wavevectors is needed. And, because of the
need for a guided mode, the only way a spread of k, can be produced is by
allowing a finite frequency bandwidth. Of course, a finite bandwidth implies
a finite lifetime. Thus, the leakage rate for an excitation of length Ay depends
on the curvature at the energy band edges {11]. This illustrates the need for
a general clarification of the questions being asked about spontaneous
emission control in waveguides. The presence of Fourier plane wave
components that radiate either laterally along the waveguide (as just
described), or into free space (as would be the case for an intra-momentum-
gap resonance), precludes the existence of a perfectly confined state within a
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waveguide supporting a two-dimensional photonic band-gap. As a resuit, the
key issuc to address may be that of minimising the effect of the radiating field
components so as to maximise the Q-factor of the guided resonances.

5. Conclusions

The overall conclusion of this chapter is that, despite initial indications to the
contrary, strong photonic crystal effects can co-exist together with
waveguiding in appropriately designed photonic crystal layers. Furthermore,
calculations of the pitch and index contrast needed for a full two-dimensional
photonic bandgap, based purely on in-plane propagation (f = 0), are
misleading if a thin layer of photonic crystal is sandwiched between two low
index media. The actual pitch required in a waveguide is actually larger and
the index contrast smaller than for the in-plane case, owing to there being a
substantial component of photon momentum normal to the guide plane. This
reduces the photon momentum in the guide plane, making it easier to attain
a full two-dimensional band gap. It also lessens the technological difficulty of
making practically useful photonic crystal waveguides. It is even possible to
attain a full two-dimensional band gap in the silica/air system, where the
index contrast is 1.46:1 [15]. Indeed, in the case of the silicon/arr system,
two-dimensional hexagonal photonic crystals turn out to exhibit many of the
properties normally associated only with a full three-dimensional photonic
crystal [16].

The analysis presented in this chapter is also relevant, for example, to
the use of photonic band gaps in the suppression of lateral spontaneous
emission in arrays of closely spaced vertical cavity emitting lasers, which
resemble the structures depicted in Figure . The ability to maintain
waveguiding in the presence of strong photonic crystal effects may be useful
in many applications where miniaturisation of standard optoelectronic
components, such as couplers, filters and mirrors, i1s sought.

Finally — and this may be the most significant point of all given the
difficulties associated with producing three-dimensional photonic crystals with
full band gaps — a technique already exists (anisotropic photo-electro-chemical
etching [18]) which allows extraordinarily precise micron-sized patterns to be
etched mm deep into silicon. Some of the effects described in this chapter may
thus be within reach technologically in the near future.
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Abstract

It is shown that a layer of low refractive index, sandwiched between two multilayer stacks made from commonly used
dielectric materials, can be designed to be completely free of all modes within a band of frequencies, i.e., to support a
species of full photonic bandgap. In a slightly thicker layer, only one mode is supported. For in-plane electric field
polarisation and a radiating dipole placed in the centre of the layer, the spontaneous emission coupling ratio is B, = 0.96,
very high for such a simple structure. © 1999 Published by Elsevier Science B.V. All rights reserved.

PACS: 42,70.Q; 73.66; 85.60.]
Kevwords: Photonic bandgap: Polansation: Dielectric material

1. Introduction

A result which captured the imagination of the scien-
tific comrmunity in the early 1990s was the demonstration
at microwave frequencies of wavelength-scale periodically
microstructured dielectrics which support full photonic
bandgaps, i.e.. bands of frequency where there are no
photonic states [1-4]. Full photonic bandgaps are closely
analogous with electronic bandgaps in semiconductors. and
only appear in crystals with certain properties, e.g., a
face-centre-cubic lattice structure and a strong enough
index contrast between ‘atoms’ and ‘interatomic spaces’.
A great deal of effort has gone into the microstructuring of
materials with high refractive indices, and significant
progress has been made [5-7].

Three-dimensicnal photonic bandgap crystals, being ex-
tended media with highly unusual electromagnetic proper-
ties. are clearly of the greatest interest and importance.
They are however extremely difficult to make in large

* Cotresponding author. E-mail: p.s j.russelt@bath.ac.uk

volumes at optical frequencies. There is therefore consider-
able interest in one- and two-dimensional photonic crystals
which exhibit some of the same properties. For exampie, it
is possible to design a two-dimensional ‘quasi-metallic’
{(QM) photonic crystal which rejects light incident from air
no matter what its polarisation state or direction of propa-
gation [8]. It is perhaps less well known that simple,
appropriately designed multilayer stacks can also behave
like quasi-metals for incidence from, for example, aqueous
media [9,10].

The absorption displayed by metals at optical frequen-
cies precludes their use as mirrors for high finesse mi-
croresonators. The posstbility of replacing them with QM
photonic crystals made from low-loss dielectrics 1s there-
fore very attractive.

In this paper. we show that all the modes (both free
and bound) of a low refractive index layer can be sup-
pressed within a limited range of frequencies by sandwich-
ing it between two QM dielectric stacks. Since there are no
photanic states tn the layer within this range of frequen-
cies. it may be regarded as having a full photonic bandgap.
We first briefly develop the transfer matrix approach for a
OM stack, and use it to establish the ranges of frequency

0030-4018 /99 /% - see front matter & 1999 Published by Elsevier Science B.V. All rights reserved.
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where the stack supports no modes — of either polarisation
state — over all in-plane refractive indices n; in the range
—n, <n. < +ny where ny is the index of the layer. We
then show that no real mode (free or trapped) with an
effective index less than ny can exist within the layer
provided the thicknesses of the last layer of the stack and
the defect layer are appropriately chosen, We briefly com-
pare the performance of this simple iD structure with that
of a three-dimensionally periodic crystal displaying a full
photonic bandgap. Finally, we calculate the spontaneous
emission (SE) coupling ratio for a structure with a water
layer containing a centrally placed dipole.

2. Design of quasi-metallic multilayer stacks

The transfer matrix formalism we use is fully described
in Ref. [11]; only the relevant expressions are used in this
paper. Consider an infinite stack composed of alternating
layers with refractive indices n, and n, and widths A and
h,. The y coordinate points normal to the layers and the x
and z coordinates are in the plane. The Bloch wavevector
k, (parallel to y) for such a stack may be obtained from
the expression:

kA= arccos(cos( piheos( pyhy)

Lip g paés )
- = + —— Isin( p, &y )sin( pahy) | (1)
2 ( ré & o
where A=#h, +h, is the pitch of the stack. In this
equation, p, = sznf — B° is the wavevector component

normal to the interfaces in layer j, £ is the polarisation
parameter ( £, = 1 for TE and &, = 1/n} for TM), k is the
vacuum wavevector and 3 is the wavevector component
parallel to the interface. Eq. (1) is derived by considering
the continuity of the field at an interface in the stack [11].

I A |

~ 6
‘A -’
2 o .. -
3 2 10 1 2 3
neﬂ
Fig. 1. Plots of v against n,, for a stack where » =33,

hy =126 nm, n. =22 and A, = 190 nm. In the shaded regions,
k_ is imaginary and the waves in the stack will be evanescent, i.e.,
no photonic states exist. The diagram on the left is for TE
polarisation, and the one on the right for TM. Note that, for TM,
the stop-band vanishes at v = 4.5 because of the Brewster angle.
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Fig. 2. If waves are incident from a medium with index 1.3, the
maximum possible magnitude of A, is 1.3, which limits the
effective in-plane indices that can be excited within the stack to
the region between the vertical dashed lines. Horizontal dashed
lines can then be added to indicate the range of frequencies over
which the waves will be evanescent in the stack (the area within
the lines must be completely shaded). Owing to Brewster angle
effects, the TM case provides a much more limited range of
frequencies than TE. In this case, the stack parameters were the
same as in Fig. 1.

For real-valued k_ the stack is able to support propa-
gating modes: however over certain ranges of B8 and k
there exist regions where k. is imaginary, and the field in
the stack is evanescent (Fig. 1). For convenience the
normalised parameaters n. = B/k and v = kn, A are used,
where n,, ={(nk, +n,h,}/A. Suppose that the waves
were incident on a semi-infinite stack from some low
index medium such as water or air. By drawing the
appropriate construction lines on Fig. 1, it is possible to
determine a range of frequency, Aw, over which all inci-
dent waves will be completely reflected (Fig. 2). The
lower the index of the layer, the wider the Av.

3. Design of low index layer with no photonic states
within Av

Having determined the properties of the QM multilayer
stack, a defect layer of index ny and width A, is now
introduced. In addition to this, the width A, of the first
high index layer on both sides of the defect layer is treated
as a design parameter (Fig. 3). In order to eliminate all
modes, we must demonstrate that neither bound nor un-
bound modes exist in the layer. It is straightforward to
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layer 2

x,z plane

Fig. 3. The symmetrical geometry of the defect layer and the
stacks. A low index layer of thickness A is sandwiched between
two QM multilayer stacks, in each of which the final layer has a
nonstandard thickness ..

eliminate all unbound modes by ensuring that there is QM
behaviour over —n, < n,, < +n,. Eliminating the bound
modes is more complex, and requires checking that no
real-valued solutions for 8 exist over —ny <n.; < +n,.
Teo do this, we need to derive the dispersion relation for
guided modes of the low index layer. This is done by
matching fields at the interfaces between the low index
layer and the stacks. After straightrorward manipulation,
using symmetry to simplify the dispersion relation, the
following form results:

Pahy can-"! piAE, aip Aér — by nir
— tan =
paAés ajp AE + bt

=2 o

n

The values a| and b| are elements of the state vector
{a|, b}} of the evanescent Bloch mode in the stack, which
is chosen so as to decay expenentially into each stack from
the low index layer (see Appendix A). The integer n
indicates the order of the mode, and whether it has odd or
even symmetry. The question arises whether there are any
values of the stack parameters for which (3) remains
unsatisfied for all —n k< 8 < +n k.

The two parameters we chose to vary are h; and k..
The other parameters were fixed with the following values;
hy =126 nm, h,=190 om, n, =35 (Si), n,=22
(Ta,05) and n, = 1.33 (H,0). From Fig. 2, it can be seen
that a range of v from v = 3.35 to v, = 3.50 ensures
that no propagating waves in the low index layer can
propagawe in the stack.

In order to test a particular configuration for guided
modes, the LHS of (3) is plotted against 8 over the range

0 < B < B, If this curve at no point equals nw/2, then
no modes exist in the defect layer. Repeating this proce-
dure for a range of A, and k, allows modeless regions to
be identified (Fig. 4). Tt can be seen that the higher

frequencies cause the modes to switch on first, whereas the

lower limit is governed by the lower frequencies. In the
case presented here, there is a region where no modes exist
over the entire range of frequencies 3.35 < v < 3.50.

4. Comparison with 3D photonic bandgap structures
In a 3D photonic crystal supporting a full photonic

bandgap (such as demonstrated by, e.g., Yablonovitch in
Ref. [1] and Ozbay in Ref. [3]), there are no photonic states

within the range of frequencies spanned by the bandgap. .

This means that (a) it is impossible for light incident from
an external medium to propagate into the crystal; and (b}
light cannot be generated within the crystal. In a quasi-

metallic multilayer stack, on the other hand, it is impossi-
ble for light incident from a low index external medium to

propagate into the crystal, and light can be generated
within the crystal provided its index along the planes is
high enough (see Fig. 1). The evanescent field intensity in
these high index states will have a maximum penetration
into the low index defect layer that follows the relation:

dary
I(y)= l”exp( -

where n_, . is the in-plane refractive index at the stop-band
edge and J, the intensity at the defect surface y = 0. The
degree of field rejection will depend on the intensity [
{likely to be low since there are no resonant states in the
defect layer) and how far {(measured in terms of in-plane
refractive index) the stop-band edge is from the maximum
index in the defect layer. Substantial suppression of emis-
sion is feasible provided a quasi-metallic stack is designed

2

in which yn.,. —ny is optimised.

5, SE enhancement factor

In order to test the degree of suppression — and en-
hancement when only one mode switches on — we have
calculated the total emission from a dipole placed at the
centre of the water layer and aligned parallel to the planes.
The stack design is otherwise identical to those analysed in
Section 4. The emission rate is plotted (Fig. 5), for various
values of final layer thickness h;/ A, against defect layer
thickness h,;/A at a frequency of »=340. Ar fixed
hy/ A, the emission rate drops as h,/A increases, i.e., the
dipole moves away from the layer /stack interfaces. Mov-
ing the dipole away from the layer /stack interface results
m a falling overlap with the evanescent field of the high
index (n > n,,..) in-plane stack modes, leading to substan-
tial suppression of SE. At h./A = 0.4, approximately 10
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A modulator is reported in which an extensional acoustic wave is launched along a fiber Bragg grating. The
acousto-optic superlattice effect causes an enhancement in reflectivity within a narrow spectral region on both
sides of the Bragg wavelength. For a fixed acoustic propagation direction, the Doppler shift can be either
positive or negative, depending on whether the wavelength of the incident light lies above or below the Bragg

condition.

All-fiber acousto-optic devices have potential uses as
frequency shifters, multiplexers, modulators, and tun-
able filters. The ease with which these devices can be
spliced into systems, and the consequent low insertion
logs, make them an attractive alternative to pigtailed
bulk Bragg cells. Previous designs of intermodal cou-
pler include dual-mode fibers supporting an acoustic
flexural wave,'? coupling between the polarization nor-
mal modes of a high-birefringence fiber by means of a
torsional acoustic wave,® and a high-performance de-
vice based on a four-port fused-taper null coupler.* All
these devices share the requirement that the acous-
tic wavelength must match the intermodal beat length,
Lp =27 /AB, where AB = |82 — B1| and 8, and 8, are
the propagation constants of the modes.

In this Letter we describe a modulator (briefly re-
ported for the first time in Ref. 5) in which a fiber
Bragg grating is excited by an axially propagating ex-
tensional acoustic wave. The underlying principle is
acousto-optic superlattice modulation (AOSLM), first
proposed in 1986.” In AQSLM the counterpropa-
gating optical modes {the Bloch waves®) of the fine-
pitch Bragg grating are coupled by a course-pitch
acoustic wave, the superposition of the two form-
ing a superlattice. Coupling is maximum when the
inter-Bloch-wave beat period matches the acoustic
wavelength.

The forward-traveling (group velocity in the +z
direction} Bloch wave in a fiber Bragg grating can be
closely approximated as a constant superposition of two
coupled counterpropagating guided modes with wave
vectors & in the form?®

E={xK + #1 — 2«/3)21*?}/2, (1)

where K = 27 /A is the Bragg grating vector and A
is its physical pitch. Coupling constant « and de-
phasing parameter ¢ are defined as « = Mk,/4 and
3 = 2k, — K, where k, = wn,/c is the average wave

0146-9592/97/191515-03$10.00/0

The device can function as & Bragg cell and a tunable filter.
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vector in the Bragg grating, n, is the modal phase
index, and M is the modulation depth of the dielec-
tric constant, ie., € = n,2(1 + M cos Kz). Revers-
ing the sign of 4 in Eq. (1) yields the wave vectors
of the complementary backward-traveling Bloch wave.
The presence of two wave vectors in each Bloch wave,
combined with their strong dispersion with frequency
{forming a stop band in the range —2x < & < 2x),
vields three different acousto-optic resonance condi-
tions as opposed to one in normal fiber. Two of these
conditions are at approximately the usual Briilouin
frequencies (~10 GHz at 1530 nm). The third, which
concerns us in this Letter, is indicated on the & — & dia-
gramin Fig. 1. This condition occurs between the two
forward (and the two backward) wave vectors of the two

w /ey

-1 0 +1

2k/K
Frequeney wave-vector diagram for a Bragg grat-
ing. The group veloecity is proportional to the slope of

Fig. 1.

the curves. In case A, a forward-traveling acoustic wave
[{e,, k,) vector shown by the arrow from by to f1] couples a
forward-traveling Bloch wave (f;) into a downshifted back-
ward one (b;). In case B, forward Bloch wave f; is cou-
pled into ancmalously downshifted backward Bloch wave
by by backward-traveling acoustic wave. The thick hori-
zontal dashed lines join the (w, k) points of the forward and
backward fiber modes of each Bloch wave.

@ 1997 Optical Society of America
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Bloch waves and has an associated frequency shift that
can lie between 0 and several hundred megahertz (for
clarity, acoustic frequency shift w, is exaggerated in
Fig. 1). Note that in one-dimensional photon—photon
scattering the two-vector {w, k) must be conserved, i.e.,
(@out, Bous) — {win, kin) = (w,, k;), where the frequency
components must all be pesitive (acoustic parameters
have the subscript s); we ensure this by choosing the
input and output two-vectors so as to make wou —
win = wg > 0. The group velocity of each Bloch mode is
givenby dw /dk = £(c/n,)[1 — (2x/ 3?12, which tends
to zero at each stop-band edge and changes sign on
opposite sides of the lines £ = *K /2. An intriguing
feature of superlattice coupling is that the direction of
the Doppler shift can be reversed. On the upper stop-
band branch, an acoustic wave traveling into the in-
cident Bloch mode will produce a frequency-upshifted
reflected Bloch mode. On the lower stop-band branch,
however, the reflected mode will be anomalously fre-
quency downshifted. As we show below, these predic-
tions are confirmed by experiment.

An acoustic wave of average power P, will produce
a peak strain of s, = [2P,/(EAvg)]Y2, where E is
Young’s modulus, A is the fiber area, and v, is
the acoustic group velocity. This strain field will
sinusoidally modulate both the average index and the
pitch of the grating. Close to the stop-band edges,
where the group velocity is very small, both of these
effects are significant. Further from the stop-band
edges, however, pitch modulation dominates., Sinze
the acoustic wave travels some 10°X more slowly than
the light, we ignore its temporal dependence (while
remembering the Doppler shift). For a strain field
in the form s(z)} = s, cos (k;2), the resulting relative
dielectric constant e(z) is given by

e(z) — ny®

Mz - cos[Kz + a sin(ksz)]

= Jola)cos Kz + > Jula)[cos(Kz + nk,z)
+ (~1)" cos(Kz — nk,z)], (2)

where ¢ = Ks,/k;. It is clear that a sequence of
ghosts of the original fiber grating forms at spatial
frequencies given by successive spatial sidebands of
K. The amplitudes of these sidebands are given, for
small argument |a| << 1, by J.{a) = a*/(2"n!). The
AOSLM resonance occurs when the acoustic wave
vector matches the wave-vector difference between two
Bloch waves. This leads to the condition

1/2
cAA c fs )2 (K )2 efs
—_— = A e = + | — ] »
A2 g 2n, [( vy T 2n,v, 3

where f; and »; are the acoustic frequency and the
phase velocity and Ay and AA are the optical fre-
quency and wavelength shifts from the Bragg condition
of the fiber grating. The approximate expression on
the right-hand side of Eq. (3) is valid when the AOSLM
condition occurs far from the Bragg condition. For
bulk silica v, is 5760 m/s, and given our experimental
value of x = 1.3/mm, Eq. {(3) shows that AOSLM reso-
nance will occur, e.g., at 2 nm from the Bragg wave-

length if the acoustic frequency is 15 MHz (NB: v,
falls when the acoustic wavelength is comparable with
the fiber radius®). It can be shown that the coupling
constant between the counterpropagating Bloch waves
at the first sideband in Eq. (2) is given approximately
by w1 = kJ1(Ks,/ks) =~ kKs,/(2k;). Figure 2 shows
the experimental setup. The fiber grating was writ-
ten with a phase mask in a boron-codoped germanosili-
cate fiber (N.A., 0.115; cutoff, 1300 nm). The UV
gource was an ArF excimer laser at 193 nm. The grat-
ing was 3 mm long, with a bandwidth of 0.7 nm, a
Bragg wavelength of 1526.5 nm, and a coupling con-
stant « = 1.3/mm. A piezoelectric transducer, honded
to a silica horn and driven by a rf signal generator, was
used as the source of acoustic waves. The diameter of
the silica horn was tapered from 3 mim to 125 um over
a distance of ~7 em. One end of the fiber grating was
spliced directly to the horn. To test whether the light
reflected from the grating is upshifted or downshifted,
the light was mixed at a square-law detector with light
frequency shifted in a conventional Bragg cell. We
found that the interface loss between the transducer
and the silica horn is a very important factor in obtain-
ing efficient coupling of the longitudinal acoustic wave
to the fiber grating. The light was detected at one of
the sutput ports of 3-dB coupler FC2, with the remain-
ing port being immersed in index-matching oil.

The reflectivity spectrum of the undisturbed Bragg
grating and the spectrum of the enhancement in re-
flectivity due to the acoustic wave are plotted in Fig. 3.
AOSLM is observed on both sides of the stop band.
The acoustic frequency was 8.02 MHz, and the electri-
cal drive power to the transducer was 350 mW. The
wavelengths of AOSLM reflection were at 1525.3 nm
on the short-wavelength side and 1527.6 nm on the
long-wavelength side. The magnitude of the wave-

PZT

FBG ﬂ

0[%0

Fig. 2. Experimental setup for monitoring the response
of AOSLM. Light from a tunable single-frequency diode
laser (TL} is divided at a fused taper coupler (FC1), one half
going to the fiber Bragg grating (FBG) and the other to a
bulk Bragg cell (BC). The light reflected from the AOSLM
is combined with the frequency-shifted light from the Bragg
cell at a second coupler (FC2), and the mixed signal is
detected at a square-law detector (D); the redundant light
in the second arm of FC2 is eliminated in an index-
matching cell (IMC). A piezoelectric transducer (PZT) and
a fused-silica horn (SH) are used to excite the AOSLM.

FC1

»Fo

IMC
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Fig. 4. RF spectra at the detector for sidelobes at A > Ap
(top) and A < Ay (bottom). The peak at 8 MHz is caused
by beating between the unshifted and the shifted Bragg
grating reflections. The presence of a band on the low-
frequency side of the 80-MHz reference signal indicates
that the AOSLM signal is frequency upshifted.

length shift AA from Bragg wavelength is in each
case approximately 1.15 nm, and the bandwidth of the
AOSLM effect is ~0.2nm. In a series of measure-
ments of wavelength shift Ai as a function of acous-
tic frequency (4 to 15.2 MHz in steps of 1 MHz) the
agreement between theory [Eq. (3)] and experiment
was better than a few percent. The results showed
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that AOSLM could be used to form a tunable filter with
a tuning rate of 0.15 nm/MHz.

The results of the heterodyne experiment are shown
in Fig. 4. A tunable single-frequency laser was used,
and the acoustic drive frequency was 8 MHz. On the
short-wavelength side of the Bragg condition the re-
flected light was frequency upshifted (conventional
Doppler effect), whereas on the long-wavelength side
it was downshifted (anomalous Doppler shift) as pre-
dicted by theory.

Since the spatial sidebands produced by the acous-
tic wave [Eq. (2)] can be regarded as weak ghosts of
the strong permanent Bragg grating, the FWHM band-
width of the AOSLM effect is expected to be that of
a weak Bragg grating of the same length, namely,
AAope = 1.39A%/(wLn,), where L is the fiber length
and the numerical factor relates to sinc?(1.39) = 1/2.
For L. = 3 mm at A = 1530 nm this equation predicts
Adgpe = 0.23 nm, which is in reasonable agreement
with the experimental results.

For small acoustic powers, it can be shown that
the efficiency of conversion 7 can be approximated by
7 =~ (k1 L)* = [kLJ1(Ks,/k:)]?. For the parameters in
our experiment n ~ 15%, and using the relationship
given in the paragraph above Eq. (2) to relate acoustic
power to s,, it can be shown that of the 350-mW elec-
trical drive power, only 57 mW is actually reaching the
Bragg grating as acoustic power. Since the efficiency
scales linearly with the power and as the square of
length, there is clearly scope for improving the AOSLM
efficiency by better acoustic transducer design, increas-
ing the grating length, or using thinner fibers. Some
advantages would result if the core was offset from
the center of the fiber and flexural waves were used.
Substantial improvements are expected with better
acoustic transducer design, a longer fiber grating, and
thinner fiber.
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Hamiltonian Optics of Nonuniform Photonic Crystals

P. St. J. Russell, Member, OSA, and T. A. Birks, Member, OSA

Abstract—The passage of light through slowly varying nonuni-
form photonic crystal structures is treated using Hamiltonian
optics. The approach allows the inverse design of complex and
highly compact optical elements as well as providing insight and
an appealing physical picture. It can also be used to treat the
trapping and deflection of light at distributed defects in one-
and two-dimensional (2-D) crystals, and to study the frequency-
dependent time delay in chirped one.dimensional (1-D) fiber
Bragg gratings (FBG's).

Index Terms— Gratings, photonic crystals.

[. INTRODUCTION

EVICES that rely on the adiabatic evolution of modes

through slowly varying media are widespread in op-
tics. Examples include fused tapered fiber couplers (including
“null” couplers [1]) and graded index fibers and lenses. In
this paper, we treat the propagation of light in photonic
crystals with slowly varying properties. The simplest example
of a photonic crystal with properties that can be graded is
the one-dimensional (1-D) fiber Bragg grating (FBG) [2],
{3]. Nonuniform fiber gratings can be used to form disper-
sion compensators (with wavelength-dependent time delay) in
telecommunications [4} and distributed feedback resonators for
fiber lasers [5]. Experimental propagation in two-dimensional
{2-D) planar waveguides with graded periodic properties has
already been discussed qualitatively in the literature [6].

We develop a Hamiltonian optics approach, in which the
group velocity (i.e., the ray path) of the light is tracked as a
function of time through a nonuniform photonic crystal [3],
[7]. For a given launch position, angle, and frequency, the
rays travel along a path that adiabatically follows the group
velocily of the local Bloch waves—the normal modes of the
perfectly periodic photonic crystal medium. Provided that the
changes do not occur too rapidly, there is continuous evolution
of an individual Bloch wave without any coupling to other
Bloch waves. The ray paths are determined by the requirement
that the components of Bloch wavevector normal to the local
gradient of the slowly varying dielectric function are locally
conserved.

Why is it interesting to analyze this type of ray prop-
agation? One reason is the drive toward highly compact
components that can be integrated in large numbers onto one
substrate, so as 10 be compatible with, for example, VLSI
microelectronic chips and optical fibers. Photonic crystals
offer opportunities for reducing (by orders of magnitude)
the size of, e.g., couplers, beam splitters, filters, and lenses.
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The strong spatial and temporal dispersion of Bloch wave
rays makes 2-D photonic crystals of potential importance in
components such as beam expanders and add—drop filters for
wavelength division multiplexing (WDM) [8], [9]. The Fresnel
diffraction rate can also be greatly increased, allowing free-
space diffraction to take place over much shorter distances
than in normal planar waveguides and therefore allowing
compaction of beam-shaping processes. Refraction at inter-
faces can be controlled in sign and magnitude, and multiple
refraction is possible when several Bloch waves are excited at
an interface [6]. The optics of Bloch waves is complex and
often counterintuitive, offering opportunities for the design
of unigque optical components. A major problem, however,
is managing unwanted scattering at the interfaces between
photonic crystal components and nonperiodic regions. One
way 10 do this is to grade the strength of the photonic crystal
in the transition regions so as to minimize unwanted effects.
Grading the photonic crystal properties also provides, more
generally, a means of managing—and making practical use
of—the very strong dispersion they offer.

Optical resonators can be designed by grading the photonic
crystal properties in a centrosymmetric manner so as to permit
closed ray paths [7]. Although the classical nature of the
Hamiltonian approach does not predict quantization of these
paths, it does allow prediction of the frequency spacing
between adjacent resonant modes—the free spectral range.

This paper is structured as follows. First we develop the gen-
eral Hamiltonian approach (Section II}, then we treat nonuni-
form FBG’s (Section II1) and nonuniforrn multiply periodic
2-D photonic crystals for WDM appiications (Section [V).
Last, we show how the inverse design problem can be solved
in a particular case (Section V),

II. HAMILTOMIAN OPTICS

Hamiltonian optics is summarized by Amaud in [10]. The
approach can be applied where the dispersion relation in the
homogeneous structure is known and where, in the inhomoge-
neous real structure, parameters like average index vary slowly
in space. It is essentially an analytical method for stepping
through a nonuniform structure, matching phase velocities
normal to the gradient of the inhomogeneity at each step and
propagating along the local group velocity to the next point.
This process is described by solutions of Hamilton's equations,
which take the general form

dx dk

— = Vi H,

— =-VH
do do ()

where x = {x, ¥, z. —t} is the four-vector for space-time,
k = {ko. k,. k., w/c} is the generalized wavevector, o is an

0733-8724/9931000 © 1999 IEEF
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arbitrary parameter, and H(x, k) is the Hamiltonian, which
may be derived directly from the dispersion relation for the
waves. Note that in general, k depends on position. Equation
(1) can be recast in a Newtonian way [6)

g = [VkViH]|: (~VH) = 1/m*): F (2)
in which the reciprocal effective mass tensor [1/m*] depends,
in general, on position in real and reciprocal space. This
equation shows that the gradient of the Hamiltonian is equiv-
alent to a force F acting on the rays. The Hamiltonian itself
may be written in a number of equivalent ways, subject to
the requirement that a phase front is given by the equation
H{x, k) = 0. In obtaining solutions to {1}, it is important to
distinguish total from partial differentiation.

1II. ONE-DIMENSIONAL PROPAGATION
IN FIBER BRAGG GRATINGS

For a uniform weakiy modulated 1-D grating, H takes the
special form [11]

H=uwnJe—K/2—(k-K/2)*+xk2=0 (3)

where x = k,M/4 is the grating coupling constant (the
coupling rate per unit length between forward and backward
waves), M is the modulation depth of the average dielectric
constant, K = 2w /A is the grating vector (A being the grating
pitch), k is the Bloch wavevector, and k, = wn,/fc is the
average wavevector in the grating. This Hamiltonian applies
to any weak 1-D perodic structure whose effective index
distribution is given by

n?(z) = n2(2)(1 + M{z) cos [K{z)z]) (&)

where all the parameters are assumed to vary very slowly
over many periods. Note that the Bloch waves are the normal
modes of electromagnetic propagation in periodic media [12],
just as plane waves are the modes of isotropic space. Their
group velocities describe the ray paths taken by the light, and
permit accurate and detailed explanations for the complex and
often beautiful phenomena that can be secen in, for example,
periodic planar waveguides [13], [14].

The dispersion relation (3) can be written in a form that
clearly illustrates the Newtonian nature of Bloch wave prop-
agation. From (3), the group velocity may be found in the

form
Ow ¢ 26\ ?

where # = 2k, — K is the parameter describing dephasing
from the Bragg condition. Substituting this into (3), it is
straightforward to show that

21\ ¢ UgTto \ 2
(5) + (=) -
PE + KE =TE (6)

where the lerms can be interpreted successively as potential en-
ergy, kinetic energy. and total energy. As the light propagates
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through the nonuniform grating, it speeds up or slows down as
the standing-wave component (stored or potential energy) falls
or rises. At the stopband edges, 9/2x = +1 and v, = 0, which
implies that all the energy in the Bloch wave is stored in a
standing wave, whose fringes turn out to have 100% visibility.
Far away from the Bragg condition, |[¥/2x| < 1, and the
group velocity tends to the average value in the grating, i.e.,
vy — ¢/n,, as expected. This general trend is illustrated in
Fig. 1, where the field microstructure of the Bloch waves is
shown for different frequencies in the vicinity of the Bragg
condition and as a function of depth into a uniform Bragg
grating. The standing-wave component of the Bloch wave field
stores energy, i.e., represents potential energy. It increases as
the stopband edges are approached, i.e., as the group velocity
tends to zero.
The solution of (1) for the Hamiltonian (3) is particularly
simple. Without loss of generality, it is given by
_pelad: 0
Zz=Z, 1 ot 1/62(2')
where § = ¥(z)/2x(z) and z = 2, at £ = 0. This expression
relates time and position in the grating, allowing for example
direct calculation of the time taken for light of a given
wavelength to be reflected out again from a chirped grating,
or the time taken for a complete cycle of oscillation in
an inhomogeneous distributed Bragg reflector resonator. The
integral in (7) may be cvaluated analytically in a number of
special cases. Let us now look at three examples.

A. Linearly Chirped Grating

The first is a linearly chirped grating. In this case, taking
¥ = 1%, + az, the solution is

(9, +az)? = (26)? + (—cta/na + V- R). @)

Time/space plots of this solution for different incident condi-
tions are given in Fig. 2. The diagrams illustrate one of the
limitations of the Hamiltonian approach as developed here;,
since it is classical, tunneling effects are not included. Photons
of course do tunnel through the potential barrier created by
the grating stopband; this process can be incorporated in the
analysis by including an ad hoc tunneling probability near
the stopband edge. The case treated in Fig. 2 corresponds to a
pulse of bandwidth 10 GHz at 1.55 jum broadened by 350 ps in
a fiber link. Notice that as the wavelength varies, the position
where the Bloch waves are turned around shifis as expected.
The time taken for light at a given frequency to be reflected is

. no4/02 — (2K)?

ca

9

For a weak grating [x = 0.05mm and 9, = 0.15/mm
for the frst-reflected ray, Fig. 2(a)] at @ = 0.018/mm?, the
compensation is very linear, although the reflection efficiency
will be low (strong tunneling); the time-of-fight in the grating
corresponds closely to a velocity of ¢/n,, i.c.. (9,/2x)2 3 1.
For a strong grating [« = 10/mm and 9, = 20.05/mm
for the first-reflected ray, Fig. 2(6)) at @ = 0.1/mm?, on
the other hand, the compensation is significantly nonlinear
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(c)

Vi

wavevector

Fig. 1. (a) This figure illustrates the role of “kinetic” and “potential” energy in the propagation of Bloch waves in a uniform. semi-infinite, £-D Bragg grating.
() On the left is a density plot of the intensity microstructure of the light, plotted versus distance [honizontal, on a scale to malch (a)] and frequency [vertical,
on a scale to match (c) and (d)). In (¢} is the frequency-wavevector diagram for the grating, and in (d) is a plot of the kinetic and potential energies following
(6). As the stopband edges are approached, the fringe visibility nises, increasing the stored potential energy in the Bloch waves. For a semi-infinite graung,
the reflectivity is 100% across the entire stopband. Note that the relative phase between the fringes and the grating changes as the stopband is traversed.
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Fig. 2. Space-lime plots of ray paths tn {a) weak and (b) strong grating—see
the text for parameter values. Each ray is spaced by 0.1 GHz from its
neighbors. For the weaker grating, the velocity at input and exit 13 close
lo the average value ¢fn,, and ihere will be only weak reflections at the
sharp incidemt boundary, eliminating Fabry-Perot effects caused by Bloch
wave reflections. For the stronger grating, the velocity is significantly less
than /7. and there will be strong reflections at the boundary and stronger
Fabry-Perot effects

(owing 1o the proximity of the strong stopband), although
the efficiency will be much higher. This nonlinearity may be
climinated 1o a large degree by operating so that none of the

frequencies w the pulse sees Bragg reflection until it is already
well into the grating; this of course implies the need for a
longer grating, Notice however that, due to the reduced group
velocities near the stopband edge, the grating length required
is seven times shorter than in the weak-grating case. The
Hamiltonian solution as presented does not treat the refiection
at the input boundary to the grating. This causes Fabry—Perot-
like interference fringes in the cavity formed between itself
and the tuming point of the rays in the grating. If, however,
the Bragg condition is not satisfied for any of the frequencies
in the pulse in the initial few millimeters of the grating, the
visibility of these fringes will be insignificant.

B. Distributed Resonator

In the second example, we consider a grating in which the
coupling conslant varies with position as

K= KV L+ D22, (1o
The solution in this case takes the form
z = (v, /) sin {¥t + aresin (vz,/v.))
v = 2ero VD] (no1)
o = (6/No) /1 — (2K, /)2 (11

where z, 1s the initial position and v, is the initial group
velocity if 2z, = 0. These solutions are plotled in Fig. 3
against ¢ and w,n,/c for z, = 0 and b = 0.15/mm?. As
the Taunch velocily decreases (moving closer to the stopband
edge), the amplitude (in millimeters) of the oscillation and the
cavily round-trip time both decrease as expected. The absolute
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Fig. 3. Space-time surface for different values of iniual Bloch wave velocity
in a resonator formed by quadratically chirping the grating strength. For a
given initial velocity, the graph gives the position of the light as a function of
time. The faster waves—with higher initial kinetic energy—travel further up
the “potential hill” than the siower waves, which therefore oscillate at higher
frequencies, although with lower amplitudes.

quantized frequencies of osciilation will be determined by the
usual requirement that the round-trip phase be a multiple of
2w, a matter we do not address here. The free spectral range
of the resonances, however, is determined by the group time
delay around the cavity and is given by 2 /7.

C. Coupled Resonators

In the third example, we consider (wo resonators side by
side and sufficiently close 1o couple to each other. The grating
coupling constant is assumed to vary as follows:

Ko=rgv ] — 2022 + 224 (12)

where b and d are constants with dimensions of m™2. This
yields two adjacent potential wells and leads to the solution

ot — to) -7 ol . dzey . 2023

_ = 7] Arcsin 2 - - =

Tl dzey \ V-1 §2-1
(13)

where F{¢|m) is an incomplete elliptic integral of the first
kind

, _bEVEFEE -

Fox &
,02
T
1 2 4
® 4kl (14)

and ¢, is chosen so that z = 2, at £ = {,. The stopband edges
occur at positions z = 2.4, i.e, when 6% = (/2x)% = 1.
The Bloch waves are propagating at z = 0 if §2 > |, and
are evanescent if §2 < I. Thus, when 2 > 1, there are
two tuming points for the rays, al z = =*z.4, and the rays
cross from one resonator to the other. When 82 < 1, there
are {wo outer turning points at z = tz.y and two inner
ones at z = =4z, . This means that the rays are trapped
within cne or the other of the resonators but cannot cross
the inlervening potential barrier. This behavior is illustrated in

1985

position

time *

Fig. 4. Space-time paths in a pair of coupled cavities for (a)}-(f): 8, = 1.2,
1.1, 1.02, 0.98, 0.9, and 0.6. Darker regions are al lower potential energy.
As the frequency of the light changes, the ray paths oscillate more and more
siowly to and fro between the potential wells, eventually being permanently
trapped within the initial well, where they oscillate more and more quickly
as 4o falls further.

Fig. 4 for z, = 1, b = 1, d = 0.48, and a range of values
for &,.

Note that turneling can cause power to transfer between the
two resonators even when §2 < 1. This nonclassical behavior
is not accounted for in the Hamiltonian approach.

[V. MINIATURE WDM DEVICE USING SQUARE CRYSTAL

It is well known that light can spiral around in a waveguide
consisting of a cylindrically symmetric bell-shaped refractive
index distribution [15). Because the transverse photon momen-
tum is reduced by the presence of a large axial component of
momentum, a weak potential well of higher refractive index
is all that is needed to deflect the rays, as, for example, in
the Ge-doped core of a silica optical fiber. Deflection of light
is much easier in photonic crystals, since in the vicinity of
the band edge, the photcn momentum can be very small.
Indeed, many important potential applications of photonic
bandgap materials rely on the use of spatial inhomogeneities
to provide intraband trapped states. We showed in [7] that
centrosymmetric force fields, created by varying the crystal
propetties in a cylindrically symmetric manner, can be used
to create resonators. In this section, we give results on the
wavelength-dependent properties of such photonic crystals
with square lattices.

Close to the band edge of a square photonic crystal lattice,
i.e., in the vicinity of the high-symmetry comers of the
Brillouin zone at fixed optical frequency, H can be chosen
in the approximate form |7]

H? =9%/4 -8 —ak? =0 (15)
where x is related to the strength of index modulation, The

parameter describing dephasing from the 2-D Bragg condition
18

9 = (?‘w"" —K\/i) (16)

[

and the wavevector § = (8;. é,} is measured from the corners
of the square Brillouin zones; it describes circles centered at



1986

direction of
external wave
at incident poinl

JOURNAL OF LIGHTWAVE TECHNOLOGY.

VOL. 17, NO. 1], NOVEMEBER 1999

group velocity . . . . - . .
of Bloch ray
at input point

circular wavevecior
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(a)

loci at high symmetry

L] a L] - [] - L]

? incident ray

{(b)

Fig. 5. (a) Reciprocal space diagrams for a square photonic crystal near a band edge. The loci of allowed wavevectors lie on circles centered at the
high-symmetry poinis. The diameter of these circles varies as the ray point moves away from the center of symmetry. An exiermal wave, incident from an
isowopic medium, has a wavevector that lies on a circle centered at the origin of reciprocal space. The initial Bloch wave rays in the crystal point normal 1o
the small circles. (b) The orientation of the squarc lattice relative to the input boundary, the incident ray direction being marked in.

the high-symmetry points (see Fig. 5). The reciprocal lattice
vector is K = 2n/A, where A is the lattice spacing. For a
central force field, A depends only on distance » from an
origin and (2) may be re-expressed in the form

d?r OH .
Ay wal an

where r is the position vector in two dimensions. If necessary,
the parameter ¢ can be related to real time ¢ by the time
component of the four-vector equations (1)

elt —t,) = 7/‘ (2wnﬂ/c—K\/§)nndo (18)

where 7, and K depend in general on position (and hence
on o) as given by solutions of (17). If only the ray paths are
sought, the exact scaling of ¢ is nol important; however, (18)
must be used if position as a function of time is required—such
as when calculating the free spectral range of a cavity. The
full analysis is given in [7).

To illustrate the wavelength-dependent properties of this
crystal in a particular case, we choose a structure in which
the coupling constant « is radially dependent, K and o being
kept constant

w2 = (K3 + rif) - fcfrg/r (19
where w, is the value of the coupling constant at » = 7,
and n; is a constant describing the strength of the variation
in crystal properties with position. For incidence from an
1sotropic external medium, the crystal being oriented as shown
in Fig. 5. the initial Bloch wave rays point normal to the input
surface. As itlustrated in Fig. 6, the incident point is at » = 7,
directly 1o the right of the center of the force field, ie., at

mm
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08 . = e
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Fig. 6. Calculated ray paths for different wavelengths, each incident normal
lo the boundary. Notice the large change in output position for only 50-nm
changes in wavelength. See text for more details. The center of symmetry of
the vanation in crystal strength is at the onigin. Note that the shading saturates
to a uniform shade in the center where the potential increases very rapidly
toward oo as r — (; darker regions are at a lower potential energy.

¢ = 0. It may be shown thal the ray paths within the crystal
take the form

r(f) = ro /{4 + (1 — g) cos §) (20)
where
_ (si/mo)?/2 _ 21
(9/dKkg)? - 1
For v, = 242 pm, a grating pitch A = 628 nmn, an average

index n, = 1.697, a grating constanl K, = 49.6 mn~!,
Ky/r, = 0.18 and operating at a wavelength in the vicinity
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-2 -
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Fig. 7. Lissajous ray paths in nonuniform photonic crystal specifically designed, using inverse Hamilionian techniques, to support them. Darker regions are
at higher potential energy. The parameter a is (a) 3, (b) 2.5, and (¢} 2. In case (a), the ray paths tum around abruptly because the band edge is encountered
in a region where the group velocity has no transverse component to the gradient of the Hamiltenian. See text for more details. Note that chaotic ray paths
will occur 1f the ratio of horizontal and vertical Lissajous frequencies is noncommensurate.

of 1530 om, the ray paths in Fig. 6 are obtained. Notice the
high sensitivity of output ray position to wavelength—a 0.05-
nm change in wavelength shifts the output rays by a large
fraction of a millimeter. The behavior is reminiscent of that
seen in [9]. The parameter values used are adapted from those
already achieved experimentally [13], [14] in etched Ta;Os
waveguides on borosilicate glass, taking account of a change
in wavelength from 633 to 1530 nm.

V. INVERSE PROBLEMS

Fhe Hamiltonian approach is convenient for solving inverse
problems, i.c., design problems where one seeks the correct
distribution of photonic crystal properties that will yield spec-
ified ray path dispersion. This would allow precise design of,

for example, time delay as a function of frequency in a FBG.
As an example of this, we choose Lissajous curves in the form

z{t) = z, sin[§¥f], y(t) = y, sin[aflt] 22)
where a is a number and £2 is an angular frequency. The curves
described by these formulas are chaotic if a is irrational. The
question is: How do we design a photonic crystal that supports
ray paths described by (22)? Taking the Hamiltonian for a
square lattice near a band edge (at the high-symmetry point)
in the form of {15), and applying Hamilton's equations (1), it
is straightforward to show that the ray path (22) is obtained for

2 LAIAW 2,2 2
&z, y) = > (a®y” +2z°) + constant ~ (23)

where 7, is the vatue of dephasing specified in the design.
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Pictures illustrating the ray paths for different values of a,
superimposed on contour plots of the function (23), are given
in Fig. 7.

VI. CONCLUSION

In conclusion, the Hamiltonian approach outlined in this
paper provides an elegant viewpoint from which to analyze
and understand the behavior of light in spatially inhomoge-
neous photonic crystals. Its limitations are that the properties
must vary stowly over many lattice periods, that tunneling
(not a classical concept) cannot be treated easily, and that
quantization of closed orbits in resonators is not predicted. The
free spectral range between adjacent resonances can, however,
be obtained straightforwardly from the path integral of the
reciprocal group velocity

-1
Jr—— (f dl/vg) .
path

More complicated spatial inhomogeneities can be (reated by
numerical integration of (1), and three-dimensional (3-D)
photonic crystals can be straightforwardly analyzed. Solutions
to the inverse problem allow complex WDM, resonator or
lens-like functions to be designed into a photonic crystal.
Time-varying photonic crystal properties can also be treated,
which could lead to novel electro-optic modulator designs.
Last, it is perhaps worth emphasizing that the ray paths in
inhomogeneous photonic crystals are much more sensitive to
wavelength than equivalent ray paths in traditional graded in-
dex media. This permits increased functionality, applicability,
and design freedom.

(24)

REFERENCES

[1] T. A. Birks, D. 0. Culverhouse, and P. St. J. Russell, “The acousto-oplic
effect in single mode fiber 1apers and couplers,” J, Lightwave Technol,
vol. 14, pp. 2519-2529, 1996.

{2] P.St [ Russeil and J.-L. Archambauit, “Fiber gratings.” book chapter in
Optical Fiber Sensors Vol. HI: Components & Sub-Systems, B. Culshaw
and J. Dakin, Eds. Norwood, MA: Artech House, 1996, pp. 9-67.

JOURNAL OF LIGHYWAVE TECHNOLOGY, VOL. 17, NO. |1, NOVEMBER 199¢

[3] P. 5t ). Russell and T. A. Birks, "A Hamiltonian approach o propa-
gation in chirped and nonuniform Bragg gratings structures,” in Proc.
Topical Meeting Photosensitiviry and Quadratic Nonlinearity in Glass
Waveguides (POQNGW'95), Portland, OR, 1995, paper PMD2-1,

[41 J. Lauzon, 5. Thibault, ). Martin, and F. Quellette, “lmplementation and
characterization of fiber Bragg gratings linearly chirped by a temperature
gradient,” Opt. Lewt., vol. 19, pp. 2027-2029, 1994.

[51 ] T. Kn'nglebom, J.-L. Archambault, L. Reekie, and D. N. Payne,
“Er**: Yb?* co-doped fiber distributed feedback laser,” Opt. Letr., vol.
24, pp. 2101-2103, 1994,

{6! P. St J. Russell, T. A. Birks, and ¥, D. Lloyd-Lucas, "Photonic Bloch
waves and photonic band gaps,” in Confined Electrons and Photons-
New Physics and Applications, E. Burstein and C. Weisbuch, Eds. New
York: Plenum, 1995.

{7] P. St . Russell and T. A, Birks, “Bloch wave optics in photonic
crystals: Physics and applications,” in Photonic Band Gap Materials,
C. M. Soukoulis, Ed. Norwell, MA: Kluwer, 1996, pp. 71-91.

[8) P. St L. Russell, “Novel thick-grating beam-squeezing device in TagOs
corrugated planar waveguide,” Electron. Lett., vol. 20, pp. 72-73, 1984.

[9] H. Kosaka, T. Kawashima, A, Tomila, M. Notomi, T. Tamamura, T.
Sato, and §. Kawakami, “Superprism phenomena in photonic crystals,”
Phys. Rev. B, vol. 58, pp. 10096-10099, 1998,

[10) I. A. Amaud, Beam and Fiber Optics.
cisco/London: Academic, 1976.

P. St 1. Russelt, “Bloch wave analysis of dispersion and pulse propaga-
tion in pure distributed feedback structures,” J. Mod. Opr., vol. 38, pp.

15991619, 1991; Erratum, J, Capmany and P. St. J. Russell, /. Mod.

Opr., vol. 41, pp. 163-164, 1994,

New York/San Fran-

[

{12] , “Optics of Floquet-Bloch waves in diclectric gratings,” Appl.
Fhys., vol. B39, pp. 213-246, 1986.

[13) . “Interference of integrated Floquet-Bloch waves,” Fhys. Rev..
vol. A33, pp. 3232-3242, 1986.

{14] R. Zengerle, “Light propagation in singie and doubly periodic planar
waveguides,” J. Mod. Opt., vol, 34, pp. 1589-15617, 1987,

[I5} A. W. Snyder and I. D. Love, Oprical Waveguide Theory. Londoen,

U.K.: Chapman and Hall, 1983, p, 37.

P. St. J. Russell, photograph and biography not available at the time of
publication.

T. A. Birks, photograph and btography not available at the time of publication.



e {

.

A

i |



