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Quantum cryptography: how to beat the code breakers usin
quantum mechanics

SmmMoN J. D. PHOENEX and PAUL D. TOWNSEND

In a series of recent experiments a radical new technique has been demonstrated that could
have far-reaching consequences for the way in which the confidentiality and integrity of
our networks is protected. This technique, known as quantum cryptography, is the result
of a synthesis of ideas from fundamental quantum physics and classical encryption and has
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lead to a radical new approach to the business of secure communications. We review the P
origins of and developments in this rapidly growmg field and assess the current status of ‘

both the theory and the experiments.

1. Introduction
1.1.  Quantum cryptography: a practical reality

In 1989 a collaboration between IBM and the University of
Montreal performed an experiment that could have far-reach-
ing consequences for the way in which we protect our most
sensitive information on communications networks [1]. In
essence, this deceptively simple experiment used single
photons, and a clever protocol that exploited their quantum
properties, to establish an identical random sequence of bits
at two locations 30 cm apart. The transmission was per-
formed in such a way that only the transmitter and the
receiver could know this sequence. Because of the quantum
properties any attempt at interception could be detected and
rendered ineffective, thereby assuring the secrecy of the
random bit string. The experiment demonstrated, in prin-
ciple, how two people at remote locations can establish a
secret and guarantee its secrecy. The technique, known as
‘quantum cryptography’ had become a practical reality. Ideas
that had first arisen {2] early in the 1970s had now reached
fruition and resulted in the remarkable IBM-Montreal
experiment.

. In the last few years, progress has been rapid and several
experiments have now demonstrated the feasibility of
quantum cryptography over a range of distances and
wavelengths in optical fibre {3, 4] using readily available
telecommunications components. A working prototype has
been built at BT Laboratories to securely transmit infor-
mationt over distances of up to 30 km in optical fibre using

‘Authors address: BT Laboratories, Martlesham Heath, Ipswich IP5 7RE,
UK.

t5trictly speaking the information transmitted forms the key for vse in a
‘cryptographic application. This distinction will be discussed in the next
section.

quantum cryptography (5-7]. This prototype exploits the
properties of single photons at a wavelength of 1.3 pm using
a phase coding scheme. Prototype quantum cryptography
systems have also been developed to operate at shorter
wavelengths using polarization coding schemes [3,4,8].
Distances of up to 1 km have been achieved with these
systems. Although still very much a laboratory-based
demonstrator requiring further work before commercial
exploitation, quantum cryptography is a practical reality.
These crucial experiments have shown [1, 3-9] that the
processing of information at a quantum-mechanical level can
lead to new and surprising developments that can find
important applications in the business world of telecommu-
nications.

A guantum cryptography system works because the world
behaves in a quantum-mechanical way. Underpinning the
achievements of the experiments are some remarkable
theoretical features. Measurement in quantum mechanics
occupies a central role; the role of measurement in quantum
cryptography is central to the ability to provide guaranteed
security. Complementarity is at the heart of the unique
features of measurement in quantum mechanics and it is
precisely this feature of quantum systems that is exploited to
guaraniee the security. Quantum cryptography works be-
cause quantum mechanics works and the design of such
secure systems requires an appreciation of the subtleties
involved in describing a quantum measurement process.
Because information on quantum cryptography systems is
carried on single photons, recovery of that information
requires a quantum measurement process with all that this
implies. It is remarkable that a technigue so apparently
abstract has grown from concept to near-application in such
a short time.

This review paper will focus on some of the main issues
that we have faced here at BT in our implementation of &
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practical quantum cryptography scheme. In the accompany-
ing articie in this issue, Richard Hughes describes the
approach taken by his group at Los Alamos. We shall try to
outline the major theoretical and experimental considerations
that have arisen and give an overview of our current progress.
We hope that this approach will allow a comprehensive
account of our quest for a practical quantum cryptography
system to emerge in greater depth and consistency than
would otherwise have been the case. We shall see, however,
that in fact even the simplest practical implementation of
quantum cryptography addresses fundamental questions
across a range of disciplines. We shall attempt (o convey a
flavour of our work in these areas and to given an insight into
how we see the pieces of the jigsaw puzzle fitting together.

Our theoretical work has concentrated on developing
general approaches both to quantum cryptography and to the
examination of specific cases. The use of an information-
theoretical approach has altowed a greater degree of
generality and pointed to new concepts and tools. The aim
is, of course, to set the limits for any practical scenario.
Because the raison d'étre of quantum cryptography is found
in classical cryptography we shall have to take a step back
into the world of classical code making before examining
some of the more recent theoretical developments arising
from quantum coding. In the next section, therefore, we shall
briefly look at classical cryptography, our aim being to show
why quantum cryptography is potentially so important. The
invention of the first quantum cryptography protocol is, in our
opinion, one of the most important advances in quantum
processing and we shall, accordingly. spend a little time
describing this remarkable development. Having laid the
foundations, we shall explore the practical consequences of
these ideas and show how the new theoretical approaches
have helped us home in on the likely candidates for practical
implementation.

If quantum cryptography is to succeeed as a viable method
for protecting data on real communication systems, it must
be capable of implementation on optical networks. In other
words, the focus of its applicability, if it is to be widespread,
must shift from point-to-point links to distributed communi-
cations networks. We have developed several techniques for
achieving this aim. In the final section we shall take a brief
look at this and other future possibilities for processing data
at a quantum level. In particular, recent developments in
quantum computing have seriously brought into question the
long-term security of certain widely used encryption tech-
niques. If the inherent potentialities of quantum computing
are fully utilized, quantum cryptography may well be the only
defence against the quantum code breakers of the future!

1.2. What is the problem with classical codes?

In short, the answer to this question is ‘nothing’. It has been
known for many years [10] that it is possible to design an

unbreakable code.t [n facy, it is remarkably easy to do so. One
might be forgiven, therefore, for wondering why we need
professional cryptologists at ail. In order to answer this
question we need to understand a little more about the process
of cryptography and cryptanalysis. Cryptography is the art of
taking a message, kncwn as the plaintext, and rendering this
message unreadable to any unauthorized person. This is
usually done by the process of encryption. Encryption works
by taking an additional secret, known as the key, and using
this to ‘scramble’ the plaintext, thus converting it into the
ciphertext, or cryptogram. The idea is that without the key
to unlock the plaintext from the ciphertext the cipher system
should be unbreakable, that is it should be impossible to
recover the original message from the ciphertext without the
key. Cryptanalysis is the art of uncovering the plaintext, and
possibly the secret key, from the ciphertext. If we consider
the word LASER as our plaintext to be encrypted, then we
see that a simple substitution such that each letter of the
alphabet moves up one to its neighbour will produce the
ciphertext MBTFS. In this case we have used a specific
algorithm (move the letter up by a certain amount) together
with a key (the number of places to move, in this case one)
to produce the scrambied message. With knowledge of the
key it is immediately possible to recover the plaintext
LASER from the ciphertext MBTFS. Admittedly this is not
a very secure cipher system but it illustrates the fact that it

ALICE EVE BORB
message eavesdropper message
{m] fm]

s
ENCRYPTION erypLogram DECRYPTION
ALGORITHM ) N 1 ALGORITHM
ciphertext
[c}
encryption key decryption key
[k] [d = Kk)]

Figure 1. The basic elements of a cipher system. Alice feeds in
the message m together with the encryption key k, to the
encryption algerithm which produces a resultant ciphertext ¢.
Bob receives the ciphertext and feeds this, together with the
decryption key d, into the decryption algorithm to recover the
message. The deeryption key does not have to be the same as the
encryption key but, for symmetric cipher systems, it should be
easily derivable from it.

+We should not use the word code in this context. A more correct
terminology would be cipher system. A message can be coded without any
attempt at secrecy, an example being the coding of the roman alphabet into
binary, or indeed Morse code. When an attempt to communicate secretly
through the use of coding techniques is made, the system used to do this is
refersed 10 as a cipher system or crypiosystem and the resulting text is
referred to as ciphertext or the cryptogram.
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is important to keep knowledge of the key secret. In the above
example a cryptanalyst might have to check all possible 26

. keyst to recover the message, whereas the plaintext is

immedately recoverable with the key.

The elements of a cipher system are depicted in figure 1
where we have adopted the usual terminology of Alice to
describe the transmitter, Bob to describe the receiver and Eve
to describe the unauthorized eavesdropper who wishes 10
read the plaintext that Alice is trying to send securely to Bob.
Thus Alice encrypts the plaintext message m with a specified
algorithm and secret key k and transmits the resultant

~ . cryptogram ¢ to Bob who uses the inverse algorithm and

some easily computable d =f(k) as a decryption key to
decrypt the ciphertext back into the plaintext message. An
eavesdropper Eve has access to ¢ and probably the algorithm
used to encrypt, but she is assumed not to have access to k
or d. There are examples of cipher systems in current use
where the encryption and decryption algorithms are well
known and in the public domain. For these systems the
security resides entirely in the secrecy of the key. The key
and its secrecy are clearly of central importance to the
security of the entire cipher system. It is therefore important
to understand the precise role of the key.

We have used the term unbreakable in the above
discussion and its intuitive meaning is clear. There is,
however, a precise definition of this concept, introduced by
Shannon [10], which is more commonly called perfect
secrecy. A cryptosystem is said to exhibii perfect secrecy if
a cryptanalyst Eve gains no extra information about the
plaintext message m from obtaining the cipheriext ¢. In other
words for perfect secrecy we would require the message to
be statistically independent from the ciphertext. If P{mlc) is
the probability of obtaining the message m from the
ciphertext ¢, then Shannon’s definition of perfect secrecy
implies that

P(mlc) = F(m) (1.1)

for all m and ¢ so that Eve’s probability of obtaining the
message is the same with or without the cryptogram, i.e.
the best that Eve can do is simply to guess. Knowing the
ciphertext gives Eve no advantage in a perfect secrecy cipher
system. Another requirement we would expect from such a
system is that any message can give rise to any ciphertext
with equal probability. This is encapsulated in the equivalent
definition of perfect secrecy, which follows from equation
{1.1) by application of Bayes' theorem, and states that

P{cim) = P(c) {(1.2)

for all m and ¢ so that Eve’s probability of obtaining a
particular ciphertext is independent of which message was
sent {if this were not the case, Eve would be able to associate

+Of course, although there are 26 possible keys, one of them will shift the
ciphertext back on Lo the message, a possibility that one might wish to avoid!

a particular kind of ciphertext with a particular class of
message and the cipher system would no longer have perfect
secrecy). This latter statement of perfect secrecy implies that
the total probability of all the keys that transform a given
message into ¢ 1s the same as that of all the keys that transform
another message into the same ciphertext. If all keys are
equally likely, this means that there are a constant number of
keys which transform any given message into a given
ciphertext.

It is clear that different messages encrypied with the same
key must yield different ciphertexis; otherwise there would
be no way for Bob, given the ciphertext and key, to determine
the original message. In other words there must be at least
as many ciphertexts as there are messages. Perfect secrecy
now implies that the number of possible keys must also be
at least as great as the number of possible messages. If this
were not so, there would be some messages that would not
be encrypted to a particular ciphertext and obtaining that
ciphertext would allow a cryptanalyst to discard those
messages. Further discussion of theoretical perfect secrecy
can be found in [L1].

The simplest cipher system to guarantee perfect secrecy is
the one-time pad proposed by Vernam [12] in 1926 but not
proven to be theoretically secure until Shannon's [10] work.
We follow here the discussion given in [13] but we shall
concentrate on binary alphabets. Imagine that we wish to
send an N-letter plaintext message m in perfect secrecy. The
one-time pad achieves this by taking a random N-letter key
string k and adding this (modulo the alphabet size) letier by
letter to the message to obtain the ciphertext ¢. The four
possible additions (mod 2) in binary are

1010
G1L100
0110

(1.3)

Thus we have a ciphertext, produced according to the rule
(1.3) given by

c=mDk. (1.4)

To decipher this, Bob simply takes his copy of the key and
subtracts it (modulo the alphabet size) letter by letter from
the ciphertext, giving

m=c¢—k.

(1.5)

In the case of binary, of course, subtraction (mod 2) is
equivalent to addition (mod 2). Eve, we have assumed, knows
¢ but not k. Suppose that she tries to obtain m by guessing
the key. She tries some k' to obtain

(1.6)

m =c—k'.

Because k' is simply a random bit string of equal length to
the message, k' could alse have been chosen by Alice and
Bob as their key so that m’ could be any one of 2%~ |
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messages (assuming that k # k'). Eve's problem is not one
of finding a plaintext, it is simply that she can find too many
and cannot choose between them. Thus she is equally likely
to decipher the message ‘meet me at 5 o'clock’ as ‘meet me
at 6 o'clock’ and without further knowledge she cannot
choose between them.} Searching through all the possible
keys is of no help; amongst all the possible messages will be
the correct version, but how is Eve to distinguish this from
the others?

It can be shown from the conditions (1.1} and (1.2) that the
one-time pad does indeed yield perfect secrecy [11, 15]
provided that the key is a random bit string as long as the
message and is used only once. This latter condition is
intriguing, but it is disastrous to ignore this requirement.
Using the same key twice to encipher two different plaintexts
under a one-time pad is a cipher system that is easily broken
so that both plaintexts and the key can be obtained. This is
because, if we add two ciphertexts ¢; and c; that have been
produced from two different messages m; and m; from the
same key k, we find that

c;@cz=(m1€Bk)€B(m;€Bk)

(1.7
=(m|®mz)®(k®k)=m1@mz,

where we have used the fact that under addition {mod 2) each
element is its own inverse. Knowing the addition of two
messages gives the eavesdropper a significant advantage. In
fact using the key twice in a one-time pad is equivalent to
using one of the plaintexts as a key in a running-key cipher
[13] and this cipher system can be readily broken.

The above discussion has emphasized a particular kind of
cipher system giving perfect secrecy. It is surprisingly easy
to design such a system, the one-time pad being the classic
example. However, the major problem with systems of this
kind is that the key needs to be as long as the message, and
it needs to be kept secret, of course. Alice and Bob need to
find some way of exchanging the key k to keep it secret.} It
is a classic ‘Catch 22’ situation; we need to communicate in
secret and there exist perfectly good techniques to achieve
this provided that we can communicate in secret ... . For
some communications of considerable importance and where
expense is not an issue, keys for use in a one-time pad are
exchanged by courier-based methods. Such key exchanges
are slow, expensive and never fuily guaranteed. In classical
cryptography the largest practical issues of concern are the
very real problems of key management, distribution and

tIn skipping to an English text, by way of example, we have neglected some
subtleties associated with redundancy and coding. The interested reader is
referred to (11, 14].

+For non-interactive messages this, of course, begs the question of why they
do not just send their actual message secretly in this way as the key needs
to be as long as the message.

generation. Using quantum mechanics to provide absolute
secrecy is an intriguing prospect.

1.3.  Practical security and quantum cryptography

People want their messages to be secure. Few of us would
wish our private conversations overheard no matter how
innocuous. Few of us, however, are willing or able to go to
the expense and comglication of distributing long keys for
use in a one-time pad. Cryplographers, faced with the
problem of providing convenient inexpensive security, have
devised many sclutions. These solutions arise from a
realization that, for many purposes a cipher system does not
need to be unconditionally unbreakable. It may be, for
example, that after a few days it is no longer essential to
protect information (an example of this may be the protection
of share-sensitive information before company mergers). A
cipher system then may only be needed to provide ahigh level
of security for a certain length of time. This length of time
should be short compared with the ‘cover time’ of a cipher
system which is an estimate of how long it will take a
dedicated eavesdropper using sophisticated equipment to
obtain the message (and possibly the key) from the
ciphertext. For police vehicles, for example, in rapid-
response situations it may only be necessary to employ a
cipher system with a cover time of a few minutes ensuring
practical security with little cost. and/or complexity. The
simple substitution cipher, discussed above, which was used
to encipher the word LASER has an extremely short cover
time, the cryptanalyst only having to search through 25 keys
to recover the message, an easy task on a modem computer.
An attack which examines each possible key is known as an
exhaustive key search. Exhaustive key searches are not
effective with one-time pads because each key yields a
legitimate message. However, suppose a cipher system is
designed to use a key of 56 bits in length. An exhaustive key
search would have to sample all 2% possible keys; quite an
undertaking even on modern computers. Modern cipher
systems are thus geared towards providing a high level of
security with shorter keys. 9

Some level of secrecy, albeit less than the perfect secrecy
theoretically possible, is readily available through well
known cipher systems. Perhaps the most famous of these is
the Data Encryption Standard (DES) first published in 1975
by the US National Bureau of Standards [11]. In its ‘standard’
application, DES is seeded with a key of 56 bits in length and
uses this to encrypt the input plaintext with a publicly known
algorithm. For a computer able to check 1 million keys per
second an exhaustive key search on a DES-encrypted

9 In some applications a short key is used to seed a random number generator
(RNG) for use in a one-time pad. Knowing the shert key and the particular
RNG will enable the entire random sequence to be reproduced. Thus an
eavesdropper knowing these two features can reproduce the entire
keystream.



% ciphertext would take over 2000 years! A computer ablé'to
# check 1 million million keys per second would be able to
™ decrypt a DES ciphertext in just under a day! In its standard
., application DES is clearly not future proofed against the
9 phenomenal advances expected in computational power.
* Although DES is used in more sophisticated ways than its
» standard application and indeed cryptanalytic techniques are
" also a good deal more sophisticated than simply checking all
" possible keys, it is fair to say that DES has never been broken
in any meaningfu!l way (at least not in public!). This is quite
a remarkable achievemnent given its 20 year history and the
efforts that have been made to find weaknesses in DES, If for
practical security at this level it is sufficient to distribute keys
of around 100 bits the key management and distribution
problems are much less severe than those faced by the
ane-time pad. Nevertheless, because algorithms such as DES
are in the public domain, any DES encrypted ciphertext
remains unreadable to an eavesdropper only because the key
is kept secret, Once again we are faced with the problem of
getting a small random sequence, a key of length 56 bits, say,
from Alice to Bob in such a way that it is kept secret. [t would
be nice if there were an automated communication system
that could establish an identical random sequence of bits, for
use as a cryptographic key, in two physically separate
locations, in such a way that any attempt to listen in on the
channel can be detected and effectively dealt with.} This is
precisely what a quantum cryptography system does! How
this is achieved is arguably one of the most fascinating
episodes in quantum processing.

2. A brief history of quantum cryptography

2.1. The BB&4 Protocol: the fundamental quantum
properties

The first complete protocol for exchanging keys in secret
using quantum cryptography was published in 1984 [17].
This protoco! is now known amongst quantum cryptogra-
phers as the BB84 protocol. BB84 is a development of the
earlier ideas for using quantum mechanics to protect data [2,
I8]. Whilst there have been many important studies (for
example [19]) to discover the limits to information flow on
communication channels imposed by quantum mechanics,
the BB84 protocol and its antecedents {2, 18] represent the
first time, to our knowledge, that the quantum peculiarities
of nature have been directly exploited to give a fundamental

tIt will not have escaped some readers' attention that we have completely
neglected public-key or asymmetric cipher systems in the above discussion.
Public-key cryptography {16] was developed in response to the key
distribution problems faced by conventional cryptosysiems. It is our belief
that quantum key distribution and, in particular, recent results in quantum
computing, may force a re-examination of the assumptions upan which
public-key cryptography was developed. We shall return te this point in the
concluding sections.
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advantage in information processing.} It is difficult to
overemphasize the importance of guantum cryptography for
our understanding of quantum information processing (see
[21] which is a special issue containing a collection of papers
dealing with the whole area of quantum information
processing). Together with the recent advances in quantum
computing (22, 23], quantum cryptography has been instru-
mental in changing our approach from one of finding limits
imposed by quantum mechanics to that of asking ‘what extra
features does quantum mechanics give?’.

We have emphasized in the preceding discussion that
quantum mechanics brings extra functionality to communi-
cation channels, above that implied by a classical description.
The two most important differences between classical and
quantum descriptions of the world can be summarized by the
words complementarity and correlation. Both of these
properties can be exploited to give quantum-cryptographi-
cally protected communications, but we shall concentrate
initially on the former property of complementarity and the
essential features of quantum mechanics necessary to
understand the workings of the BB84 protocel. In simple
terms the essence of complementarity is that measurement of
a quantum system disturbs it. An experiment can be designed
to probe either the particle-like or the wave-like properties
of a quantum system, for example, but not both. The particle
and wave aspects are said to be complementary attributes of
a quantum system. The classic example of this is Young s
double-slit experiment for single ‘particles’. If we try to
determine through which slit a particle went, thus probing the
particle-like nature of the system, we lose any interference
pattemn. If we choose to view the interference pattern, thus
probing the wave-like nature of the system, we cannot
determine through which slit the particle went. Complemen-
tarity is one of the central mysteries of quantum mechanics.
Richard Feynman wrote in his celebrated Lectures on Physics
f24] that this phenomenon or property is one which *. .. is
impossible, absolutely impossible, to explain in any classical
way, and which has in it the heart of quantum mechanics’.
This complementarity finds its rigorous expression in the
incompatibility of quantum observables; by which we mean
that, if A and B are the quantum operators representing two
physical observables of a quantum system, then these
observables are said to be incompatible if

[A.B]=AB—-BA#0, (2.1}

that is they do not commute.

1Of course, squeezed states of light (see [20] which is a special issue
containing a cellection of papers on squeezing and in particular the review
article in that issue by Loudon and Knight) can be used to give improvements
in signal-to-noise ratio in communication systems beyond those possible
with classical sources, However, quantum cryptography has shown that
radically different functionality can be achieved with quantum communi-
cation channels.
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The properties associated with incompatible observables
will, to a greater or lesser extent, be complementary and
measurement of one will disturb the other. One of the
consequences of equation (2.1) is the Heisenberg uncertainty
relation which connects the variances of two operators to the
commutator (2.1) by the following inequality:

(AADUAB)Y) = LA, B, (2.2)

Precise measurement of one property will result in a
‘fuzziness' associated with any complementary property.
This is often phrased as an impossibility to know, with
arbitrary accuracy, both of the incompatible properties
represented by A and B. In Young’s two-slit experiment with
electrons, for example, we could try to determine which slit
the electron went through by using a photon to ‘see’ the
electron. However, interaction of the electron with the photon
imparts a momentum kick to the electron sufficient to destroy
the interference pattern. If we try to use photons of a longer
wavelength, thereby reducing the momentum kick imparted
to the electron, we find that the interference pattern is restored
when the wavelength is greater than the slit separation.
However, it is then no longer possible to resolve the slits and
itis therefore no longer possible to ascribe a unique trajectory
to the electron. It is possible 1o use the existence or otherwise
of the interference pattern to determine whether or not an
attempt has been made to measure the trajectory of the
electron. Turning the experiment on its head in this way and
asking whether or not there has been an attemmpt to tamper
with the electron (that is to measure its trajectory), we can
see the beginnings of an idea of how quantum mechanics may
be used to protect information. Let us pursue this line of
thought further.

We begin by foltowing Sakurai [25] rather closely and
consider a sequence of selective measurements or quantum
state filters. A quantum state filter is designed to allow the
passage of a particular quantum state and no other. Suppose
that the state lo;} from the eigenbasis Ale) = o) is incident
on a B filter designed to allow the state If) from the
eigenbasis Blﬁk) = B,IB) to pass. This situation is sketched
in figure 2. The probability that the state |3, is obtained from
the filter given an incident lo;) is determined from the usual
quantum expansion coefficients to be t(ogl/}k)lz. In other words
we have

bay) = Ekrlﬁk)(ﬁklaj) (2.3)

and when making a measurerment of the property represented
by B the quantum rules tell us that the probability of obtaining
the eigenvalue f, is the square modulus of the overlap (Bia;).
After the measurement the state is projected into the
corresponding eigenstate of B. However, we can equally well
envisage the alternative expansion of la;) in the eigenbasis of
another operator £ so that

8
1o2)
)

)

Figure 2. A schematic illustration of 2 quantum state filter
designed to allow only the state |3;) to pass. This is equivalent
to performing a selective measurement in which only a
particular result is acceptable and all others sre discarded.

;) = D lEm Emlary). (2.4)

The probability of oblaining I8¢ given an incident k) can
now be written as

KapBol = | 5 togtendenlf)]

m

. 25
= E:_, (ajlemxemlﬁk)(ﬂklam'>(8rn'Iaj)- ( )

m m

We can think of loy} as being ‘made up’ of the states le,,} and
the eventual probability [{e;18:}I* can be viewed as resulting
from an interference of all the possible paths of the kind
lo; = ey —>18x). The interference pattern in a two-slit
experiment is caused by the quantum interference between
the two possible paths distinguished by the two slits.

Now let us consider the arrangement in figure 3 where an
£ filter has actually been inserted before the B filter. If the
E filter is set to admit the state le,,), then the probability P
of obtaining 13;) given an input la;) is now given by

P = Kajlen )P Kem Bl {2.6)
E — filter B - filter
!Sl) - lBl}
e} [ 18.) .
|S;) I “31) |
o) —=. e R
éan) _,__’ “3:) -

Figure 3. A sequence of two quantum state filters designed to
allow only the state |3} to pass.



P =2 len) M enlfi)l
2.7)

= DA lem X Emlot) X Bilen X emiBe),

which is clearly, in general, not equal to equation (2.5). By
& examining the statistics from the B filter it is possible to

W interference terms have been suppressed inequation {2.7) and
we can write equation (2.5) as
¥

KelBe)l? = P+ 22 CaylemMem| BeX Brlem Nema),
(h:"?::'fl (28)

L i

E the second term containing the interference contribution from
the possible |{e. }) paths. In the two-slit experiment the £
“7' ﬁlter is equivalent to determmmg the premse trajectory of the
i the consequent destrucuon of interference.

#. Under what conditions will it nor be possible to tell
".' . whether a measurement has been made on the particle before
b it gets to the B filter? This occurs when equations (2.5) and
(2 7) are identical and the condition for this is given by

(ajismxsmlﬁk)(ﬁ“am )(Em ld}) mm (2 9)

; 'I'lus condition can only be satisfied if le,} is a simultaneous
- h elgenstate of both £ and A (and/or &). For this to be the case
' £and A (and/or B) must be compatible observables; in other
£, words we must have

{A, £} =0 and/or {8, £]=0. (2.10)
B The action of the £ filter can only be detected if £ represents
¥l a complementary property to both of the properties repre-
g sented by A and B. This is also true if A and B are themselves
. compatible observables, that is, they commute, in which case
they have a simultaneous eigenbasis. It is the ingenious
exploitation of the properties of compiementary observables
that enables the BB84 protocol, and indeed some of the other
protocols that have been invented, to offer guaranteed secure
key distribution. The security of the data is guaranteed by the
fundamental properties of quantum observables. It is
* impossible to know with arbitrary accuracy the properties of
i Iwo incompatible observables. This fundamental result is
ir encapsulated in the Heisenberg uncertainty relation between
. Iwo complementary observables. The BB84 protocol ex-
. ploits this by choosing a random coding scheme between a
ﬁ« pair of such observables. It could be said, therefore, that
; quantum key distribution can only be ‘broken’ by violation
* of the Heisenberg uncertainty principle! Such a possibility s
. disallowed by quantum mechanics; if complementarity were
' to fail, then so would quantum mechanics. This property of
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Table I. Notation and coding for the
circular and linear polarization states of
single photons

State Coding

Right circularly polarized IR )cir
Left circularly polarized IL )i
Vertically polarized inear
Horizontally polarized HU/2)incar

=3 S

complementarity is central to the security of a quantum key
distribution scheme and an appreciation of this allows some
rather general theorems about guantum key distribution
channels to be derived [26].

2.2, The BB&4 protocol: a brief introduction

The discussion above has highlighted some of the general
features of quantum mechanics that are exploited in quantum
cryptography. We shall concentrate here on the specific
implementation of guantum key distribution developed by
Bennett and Brassard now known as the BB84 protocol [17].
The quantum systems that can be used to implement the
BB84 protocol are two-state systems, that is they are spanned
by a Hilbert space of dimension 2. Examples of such quantum
systems are spin-1 particles, two-level atoms and the
polarization states of single photons. Each of these systems
can be described by the same mathematics, that of Pauli spin
algebra, even though they are quite distinct physical systems,
In the case of photon polarization, for example, a particular
photon prepared in a state of circular polarization can be right
circularty polarized or left circularly polarized, the left and
right circularly polarized states forming the basis spanning
the two-dimensional Hilbert space. Equally, the two linear
polarization states, ‘vertical” and ‘horizontal’, form a basis
spanning the space. All the photon’s polarization properties
can be understood in terms of either of these two polarization
bases, or linear combinations of the states therein. The
polarization state space 1s formally equivalent to the space
spanned by the two spin states of a spin-} particle. Thus, for
example, we can make a formal identification between the
‘up’ and ‘down’ spin states in the z direction, say, and the
vertical and horizontal polarization states of a linearly
polarized photon. In what follows we shall use a polarization
basis to describe the BB84 protocol, although the results are
true for any two-dimensional quantum system. The notation
for the polarization states is summarized in table 1.

Before we describe the protocol in some detail we shall
take a look at the various possible measurements of the
polarization states of a single photon and their interpretation.
Suppose that you were given a photon and told it was
prepared in one of the four polarization states L), 1R eirc,
[Binear and 17/2Minewr Ut not which one of those states and
asked to identify which particular state; which measurement
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would you choose? In fact there is no single measurement,
or sequence of measurements, that will enable you to
determine unambiguously the polarization state of the
photon. This occurs because the operators representing
measurements of linear polarization and circular polarization
in the given directions are incompatible. Suppose that in fact
you had been given a photen prepared in the state IR ). If
you decided to measure a circular polarization, all well and
good, you would identify the state with 100% accuracy
(assuming perfect measuring apparatus). However, if you
had chosen to measure a linear polarization along the given
direction, you would obtain the result 10)nr with 50%
probability and the result |71/2)ynear with 50% probability. This
is because the circularly polarized state IR )y, can be written
as an expansion in the linear polarization basis as

RYeke = 57 (O + 11 2. (21D
However, the situation is worse than it appears at first sight;
not only do you obtain a probabilistic result with the *wrong’
measurement but also you do not know that you have
obtained such a result! All that can be said after a particular
measurement is that the photon is now in the state measured.
You might be tempted then to copy the photon so that you
could measure different properties on the identical copies.
However, in order to copy the photon you would need to
know its state and copying a photon precisely would
necessarily entail making a measurement of its state. If you
could do that you would not need to copy it in the first place!
This ‘no cloning’ property of single quanta is a consequence
of the general structuret of quantum mechanics [27] and is
a rather important result for quantum cryptography.

You could be interested in a slightly different question;
what bit does the photon represent? In other words can we
determine whether it is a 1 or a 0 according to the coding
scheme given in table 1. In this case, measurement in the
correct basis yields the bit with 100% accuracy. Measure-
ment in the other basis will yield a random result; so overall
you are 75% likely to get the correct result on a single
measurement (provided that of course you do not choose one
measurement basis more often than the other). Of course
measurement of circular polarization and linear vertical or
horizontal polarization as we have described does not cover
all the possible measurements that you might want to make.
For example, you might want to make a measurement of
linear polarization aligned at some other angle  where the
result of the measurement would be one of the two linear
polarization states 10 Yjnear O 18 + 7/2)inear With probabilities
determined by the choice of angle. Measurements of this kind
are discussed in [28]. Another strategy might be for you to

tThe no-cloning theorem disallows the possibility of copying an arbitrary
quantum state. This result is a consequence of the linear superposition
principle of quantum mechanics.

N n l A= ] ] l e [ Y Alice transmits random
sequence of bits using

1jojcf{ojrj1jojoj1jLljoj1]0j1 random coding scheme
| | I !
X X X X
I I i |

s Fgl 1S ~ Bob receives photon and
i o + o + AL 0 ﬁ + o makes random cholce of
1|01 1i1{0i0][¢C 9|00l measurement bash
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Figure 4. An example of a quantum transmission between
Alice and Bob. There are 14 time slots in the transmission. In
four of these siots Bob measures the wrong basis and these are
indicated by X. In two of these slots, indicated by a &, Bob does
not register a count. In the other eight instances Bob measures
the correct basis so that Alice and Bob eventually establish an
8 bit random binary sequence as their key.

Alice and Bob compare bases and
discard events where no photon was
received and difTerent bases were used

interact the photon with another system and to make a
measurement on that system. Because of the wide variety of
possible measurement strategies we shall concentrate only on
those of most importance. It is important to recognize,
however, that whatever strategy is chosen it is impossible, in
principle, to determine accurately the state of the photon
when you are told only that it has been coded in one of two
incompatible bases, but not which one.

Having briefly examined some of the implications of
incompatible observables we shall now describe in some
detail the BB84 prolocol. The essence of the protocol is
contained in figures 4 and 5. Alice begins by generating a
random bit sequence. This is used to select a bit value, either
1 or 0, and the polarization basis of the photon in which that
bit is to be encoded. Having generated the random sequence,
and having thereby decided on the coding, Alice generates

1 I 3 4 %5 & 7 8 9 i 11 12 13 14

A0 O] =i
N all | J ALICE
1j{¢jo|0 rjofoj1jrje|15jo|1
HOO B RS O gy
tieft1jo,t{t|lnrjoj1{ofo 010
FHGT [HISIHGIS] (81 3] son
1(1]1 1140|810 ¢ [ ]
DEDTD E DD n E
Bit positions 1,3,4,5,10 and 12 are discarded R
Bit positions 2,8 and 14 lead to an error caused by Eve
Bit position 12 Is no extra ‘null’ event caused by Eve

Figure 5. The same quantum transmission shown in figure 4
but with the presence of an eavesdropper. The 8 bit random
binary key sequence of figure 4 has now been changed by the
intervention of the eavesdropper. :
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 the photons in the required state and sends them on to Bob
over an optical link that is not necessarily private, We
¥assume, for the purposes of the present discussion, that the
: photons are generated in a regular sequence so that only one
E photon is present in any given time slot. We shall return to
the question of timing when we describe the current
cxpenmemal implementations. Bob receives this regular
‘. quence of photons and for each time slot chooses, randomly
fand independently of Alice, a measurement basis in which to
delermme the photon’s polarization state. This procedure is
_shown in figure 4 where an example 14 bit sequence is shown
3 w1th the coding chosen by Alice. Bob's measurements are
f'shown directly below the bits chosen by Alice. We can see
 that one of three things can happen: Bob does not receive the
."photon, Bob makes an incorrect choice of measurement
f basis, or Bob measures in the correct basis. Alice and Bob
k'now engage in a public discussion and exchange basis
Finformation, that is they disclose the coding and measure-
[ ment bases chosen, but they do not disclose the actual bits.
F Those instances where Alice and Bob chose different bases
arc discarded as no correlation between sent and received

‘ : ywhere no photon was received by Bob. Alice and Bob keep
K the remaining time slots and should therefore now share an
'1dem1cal sequence of random bits. It is the fact that any
cventual key is only established from those bits actually

’recewed by Bob that makes a quantum key distribution
' scheme robust to loss. Loss does not compromise the security
,.of the sysiem but merely reduces the data rate of the key

4 exchange. Because Alice and Bob are making random and

B independent choices of coding and measurement basis

@ respectively, they would expect, as a result of this public

. discussion, to have thrown away around half of the time slots
P where Bob registered a result. The random choice of bases

§ is important for the security because it means that any

-3 eavesdropper, and indeed Bob himself, must guess the

correct basis in order to receive a key bit.

i What happens when Eve tries to listen in? Because both

% Alice and Bob are using a random coding and measurement

’i scheme respectively, Eve cannot know before the trans-

% mission which bits are going (o be useful. Her only option

¥ is to somehow measure the polarization state of the photons
¥ sent by Alice and to send them on to Bob. She cannot simply

4 be a passive intruder; the final key 1s only established from
it bl[S actually received by Bob. Furthermore, she can only

guess as to the coding basis for any particuiar photon. If she
¢ decides to read the bit encoded on any particular photon, she
gﬂ%‘; must choose a measurement basis 10 do so. It is possible, and

- indeed quite likely, that the basis she chooses will not be the

© correct basis. Unless Eve has specifically chosen a basis not

used by Alice or Bob (for reasons we shall come to), there

! isno way for her to know whether her measurement has been

“successful in reading the correct bit and sending on the

¢+ correct state to Bob. The random coding and measurement

scheme of Alice and Bob is designed to force Eve to make
errors. If we consider a specific instance where both Alice and
Bob have chosen the same basis and Eve has guessed
incorrectly and chosen the complementary basis, then there
1s 2 50% likelihood that Eve reads the wrong bit. Forexample,
if we suppose that Alice has transmitted a 1 encoded on the
photon polarization state 0o and that Eve has measured
in a circular polarization basis and obtained the result i)y,
then Eve will interpret this as a 0. Furthermore, only those
bits that reach Bob will form part of any eventual key so that
Eve must send something on to Bob if her measurement is
1o be useful to her. At this point Eve does not know which
basis was used by Alice and does not know which
measurement basis is to be chosen by Bob. What should Eve
do? Clearly, if Eve wants the information she must do
something. Let us suppose that she sends on the photon in the
state she measured (what reason has she, at this point, for
choosing any other option?). The photon that Bob receives
is therefore in a state of circular polarization and Bob's
measurement in a linear basis has only a 50% chance of
registering the state O}unear and reading the correct bit. We
shall suppose the worst case for Eve: Bab actually measures
the state I7/2)neer and thus obtains the bit 0. In the public
discussion phase, Alice and Bob will keep the resuit of this
time slot as they both used the same basis. However, if they
decide to disclose the actual transmitted and received bit for
this time slot, they will note the discrepancy where none was
expected. The presence of an intruder can then be inferred.

The protocol that Alice and Bob adopt is specifically
designed to force Eve into a situation whereby for a fraction
of the transmitted bits she cannot avoid introducing errors if
she tries to recover the data. If Eve is herself randomly
choosing between the two complementary polarizations and
retransmitting the photon in the state measured, then she has
a 25% chance, per photon, of inducing an error in Alice and
Bob’s potential key data. That is, if Alice and Bob have a
sequence of N bits where they used the same basis and
therefore expect to have N identical bits, the probability that
there will be no errors in the data if Eve has tried this
eavesdropping strategy is (3)". This attack by Eve is shown
schematically in figure 6. In order to test for the presence of
Eve, Alice and Bob have a further public discussion where
a subset of the remaining bits are randomly chosen and
publicly compared. If Alice and Bob select M test bits, say,
from their original transmission of N bits, the probability that
Eve escapes detection for M = 100 is about 3 X 10 7", Afier
public disclosure of these test bits they are, of course,
discarded. From this publicly compared sample, Alice and
Bob can reliably estimate an error rate for their data and infer
the presence of a malicious influence, Eve, on their
communication. This procedure is illustrated in figure 5
where the transmission example shown in figure 4 is repeated
with an example active interception by Eve. In this figure,
Eve is assumed to have tried to intercept all of the
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Figure 6. Probability tree for the polarization-encoded BB84
protocol with the effect of an eavesdropper measuring in the
transmission bases included. There are eight possible outcomes
for Bob. Of these, a quarter lead to reception of the correct bit
and these are labelled as such. About half of the possible
outcomes are discarded during the public discussion phase. We
see that on the remaining pathways, indicated by ©, Eve will
cause an error with a 50% probability. The probability that Eve
does not cause an error is therefore three quarters.

transmissions and to have randomly chosen between the
linear and circular measurement bases, retransmitting her
measured state faithfully. In time slot 1, Eve guessed
incorrectly, but so did Bob, and this bit is discarded at the
public discussion phase. Time slot 2, however, is an example
of a successful tranmission by Alice in that both she and Bob
chose the same basis, Eve guessed incorrectly in this instance
and has given rise to a discrepancy between Alice and Bob’s
bit strings. Time slot 7 is a similar instance to that of time
slot 2, except that Eve’s retransmission of the incorrect state
has not given rise to an error. Time slot 10 is another example
of how Eve can cause a discrepancy. Here, she tries Lo
measure the photon but receives a null result. If Eve is not
careful to compensate for these instances, Alice and Bob can
infer her presence from an increase in nuli results. At the end
of a public comparison of bases and rejection of incompatible
data, Alice is feft with a subset of her transmitted bit string
given by 01100001. Bob’s bit string, which in the ahsence
of Eve should be identical to this, is 11101000. If Alice and
Bob now randomly choose bit positions 1,3 and 8 to compare
publicly, they will note two discrepancies and can infer the
presence of Eve. Of course Alice and Bob will wish to test
many more bits than this to be certain, with negligibly small
probability, that their communication has not been inter-
cepted. If they find after public comparison of the randomly
chosen sample that there is no detectable presence of an
eavesdropper, they can discard these test bits and use their
remaining, undisclosed bits as a secret key.

2.3, Reconciliation and privacy amplification

In an ideal world the protocal we have described would detect
the presence of an eavesdropper if just a single error was
found in the test sample. However, we have to make do with
imperfect detectors and noisy systems which can give rise to
spurious results even in the absence of an eavesdropper. The
experimental systems we shall describe in section 3 have an
intrinsic bit-error rate of a few per cent. In order 1o give a
guaranteed Jevel of security, Alice and Bob must assume that
all the errors in their data are due to an cavesdropper. There
is, in principle, no way to distinguish between an error caused
by an active eavesdropper and a noise-induced error. Alice
and Bob, of course, need to share the same key. It is clear
therefore that in any practical system environmental
influences must be accommodated without compromising the
security. In other words, Alice and Bob’s bit strings must be
reconciled by a suitablz error correction procedure. Once this
public error correction procedure has been performed Alice
and Bob will share an identical sequence of bits. Even if Alice
and Bob believe their errors to have arisen purely from noise,
this cannot be proven absolutely and they must therefore
assume that their reconciled bit string is only partially secret.
Is it possible to distil a smaller shared secret key from a larger
key that is only partiaily secret? The answer to this question
is that it is indeed possible to distil a smaller key with a
provable level of secrecy by a procedure known as privacy
amplification {1, 29].

The full protocol, including reconciliation and privacy
amplification, is shown in figure 7. Alice and Bob perform
their raw transmission and establish a sequence of time slots
where a photon was received in the correct basis. In an ideal
world, and in the absence of eavesdropping, Alice and Bob
should now share an identical random sequence of bits. We
shall call these bit strings the ‘raw’ keys. With currently
available technology, Alice and Bob's versions of the raw
key will almost certainly differ. Alice and Bob select a
random sample from this sequence and publicly compare the
recorded bits. This gives them a good estimate of the error
rate on their remaining data. These test bits are then
discarded. 1f their measured error rate based on this sample
is above a certain level O, then privacy amplification and
reconciliation cannot be securely performed and the trans-
mission is terminated. This threshold determines the error
rate above which an eavesdropper could have enough
information about the bit string to render privacy am-
plification ineffective. Eve gathers this information by
making measurements on the single-photon transmission and
by listening in on any public discussion. These measurements
have to be consistent with the laws of quantum mechanics so
that O gives a limit based on theoretically possible
measurements. In practice it is technically infeasible, at
present, for Eve to perform the entire set of strategies
consistent with quantum mechanics. However, in order to
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Figure 7. Schematic diagram of the elements of a full
implementation of the BB84 protocol. After the quantum
transmission an authenticated public discussion is entered into
by Alice and Bob. After discarding null results and results
arising from different basis choices the level of error on their
remaining data is determined empirically by analysing a
randomly selected sample of these data and discarding the
sample after analysis. If the error is less than a certain amount,
the remalning errors in Bob's key data are corrected. Alice and
Bob now have identical copies of a random binary sequence that
Is only partially secret. The final procedure, privacy am-
plification, distils s smaller sequence, er key, from the
error-corrected sequence in such a way that the smaller key is
secret to an extremely high confidence level.

give a guaranteed level of security we must suppose that Eve
is able to make such measurements. A threshold value of
around 10% is our current best estimate of the error rate
below which we know our system can be made secure against
this powerful Eve [30}. If the measured error rate is below
this threshold, then reconciliation and privacy amplification
can proceed.

After establishing a raw key and an error rate, Alice and
Bob now enter the reconciliation phase of the protocol. After
this reconciliation protocol, Alice and Bob should be left with
an identical random bit sequence which we shall call the
‘reconcited’ key. We describe here an adequate but not
optimal procedure for locating and correcting the errors in the
versions of the raw key. The details are taken from [1]. [n this
procedure the raw key is shuffled by a publicly agreed
random permutation of the bit positions. The purpose of this
step is simply to randomize the location of any errors that may
have occurred in bursts. The string is then partitioned into
blocks of size m such that any block is unlikely to contain
more than one error. For each block Alice and Bob publicly
compare the parity? and, if this parity check fails, a bisective

$The parity of a bit siring is calculated by forming the sum (modulo 2} of
all the bits. If there are an even number of ones, the parity is 0. [f there are
an odd number, the parity is 1.

search is undertaken to locate the error. Each time that a
parity bit is disclosed, Alice and Bob discard the last bit of
each tested block. In a bisective search, Alice and Bob split
their offending block into two parts and publicly compare the
parities. The sub-block containing the error will be indicated
by this procedure and a further bisective search can be
performed to home in on the incorrect bit. Of course this
procedure will only locate an odd number of errors, and
biocks with matching parity are provisionally accepted as
correct. The entire procedure, beginning with random
permutation of the bit positions, is performed as many times
as is necessary with increasing block sizes until it is estimated
that at most only a few errors remain in the entire data set.
At this point it becomes very inefficient to continue with a
biseclive search and a different check procedure is followed
in which the parities of a randomly chosen subset of Alice
and Bob’s entire bit sirings are compared. If a disagreement
is found, Alice and Bob adopt the bisective search procedure
to locate and remove the error. At some point, repetition of
this procedure will remove all the errors. After sufficiently
many consecutive agreements, Alice and Bob can assume, to
a very high level of confidence, that their remaining bit
strings are error free. By discarding an extra bit each time that
a parity disclosure occurs, Alice and Bob do not leak any
extra information to Eve but merely reduce the size of their
bit string. The fraction of bits that Eve knows of the
reconciled key, because of her eavesdropping, is therefore
higher than the fraction that she knew of the raw key.

At this point, Alice and Bob have a reconciled key that is
only partially secret. However, from their estimate of the
error rate on the raw transmission they can now, in principle,
calculate the maximum amount of information that Eve could
have obtained consistent with that error rate and the laws of
quantum mechanics. Knowing this value, or at least an upper
bound, they can enter into the next phase of their public
discussion known as privacy amplification. Privacy am-
plification is a technique whereby a smaller secret bit string
can be distilled from a larger only partially secret bit string
[29]. It is important to note that, even were we {0 have access
to perfect detectors and communication channels, we would
still need privacy amplification to overcome a serious attack
by Eve. Of course, any attack by Eve that causes a greater
error rate than @ will result in the termination of the key
distribution.

Our task now is to find a procedure that will achieve
privacy amplification. Surprisingly, perhaps, this tums out to
be remarkably simple (proving that it achieves security is, of
course, non-trivial!). The procedure that we shall discuss here
is that of Bennett et al. [29] and was used in their original
experiments. It is not optimal but has the virtue of being
simple and efficient in implementation. Improvements in the
procedure have been invented [31]. Suppose that Alice and
Bob have a reconciled key of n bits in length and they
estimate that Eve can know no more than & bits of this string.
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In order to reduce Eve’s information, Alice and Bob continue
to compute n — k — s additional publicly chosen random
subset parities in very much the same way as in the final stage
of the reconciliation protocol. The parameter s is an arbitrary
security parameter that can be adjusted as required. However,
instead of revealing the parities of these subsets as was done
in the reconciliation stage, Alice and Bob keep these values
secret. These undisclosed bits form their final secret key. It
can be shown [29] that this procedure reduces Eve’s expected
information about the final secret key to less than 27%/1n 2
bits.

There is still one piece of the jigsaw missing. How does
Alice know that she is talking to Bob and vice versa? In
classical cryptography this problem is known as authenti-
cation. How do two parties authenticate their communi-
cation? By splitting the channel into two and by
impersonating Alice to Bob and Bob to Alice, Eve can
overcome the quantum key distribution if the public channel
is not authenticated. Fortunately for Alice and Bob there exist
provably secure authentication techniques for classical
channels, provided that the legitimate parties wishing to
communicate share some initial secret [32]. In order (o
overcome this attack by Eve, therefore, Alice and Bob need
to have a shared secret to seed the process, They use this
initial shared secret to authenticate their public discussion so
that Eve is prevented from any active tampering on the public
channel. Once a significant amount of secret data is distilled
from the quantum key distribution process a portion of these
data can be used for authenticating subsequent transmissions.

The last piece is now in place. Authentication is the final
tool allowing Alice and Bob to update their keys continually
using the full quantum key distribution protocol shown in
figure 7. The security of the transmission rests on the
Heisenberg uncertainty principle. The level of security of the
subsequent classical data-processing technigues has been
mathematically established. This beautiful and powerful
technique known as quantum cryptography exploits the laws
of quantum mechanics in a2 novel and unexpected way to
provide a functionality that cannot be reproduced by classical
methods. This technique, together with the emergence of
quantum computing, has radicatly shifted our perspective of
quantum data processing. Clever theory and ingenious
application are not, however, sufficient to convince every-
body! In 1989, quantum cryptography entered a new phase
when a coliaboration between IBM and the University of
Montreal announced that quantum key distribution had been
achieved in the laboratory [1]. The few bits per second key
rates achieved and the 30 cm distance of transmission in this
experiment certainly do not sound very impressive, but to
focus on these figures is to miss the point. Quantum key
distribution had become a reality and this astonishing concept
had grown from pure theoretical invention to practical
demonstrator in the space of a few short years. How was it
done?

2.4. The first experimental realization

The first experimental prototype [1], shown schematically in
figure 8, used very faint flashes of light from a green-light-
emitting diode to transmit the random sequence of key bits
over a free-space link of approximately 30 cm in length. A
computer containing software representations of Alice, Bob
and Eve was used to control the transmission. Alice’s light
source produced a beam of incoherent pulses of 5 pis duration
at a repetition rate of a few kilohertz. This beam was
collimated and passed through a spectral filter and a polarizer.
The mean intensity of the beam was very low with an average
of about 0-1 photons per pulse. That is, on average only 1 in
10 of the clocked pulses contained a photon. In this way
Alice’s source approximated a single-photen source and the
probability that there is more than one photon per pulse was
about 0-005 so that only about 1 in 20 of the pulses containing
any photons contained 2 or more. By randomly switching the
voltage drive to her Pockel’s cell for each pulse, ‘Alice’ could
randomly encode her chosen bit in either a circular or linear
polarization basis. Bob's receiving apparatus also consisted
of another randomly and independently switched Pockel's
celi followed by a calcite polarizer oriented so as to split the
beam into horizontally and vertically po'arized beams. These
beams were directed onto a pair of photomultipliers which
had sufficient sensitivity to detect single photons. Bob's
choice of basis, linear or circular, was therefore determined
by the selected Pockel's cell voltage and the actual bit (1 or
0) by the destination detector.

As anticipated, and as found in practice [1], experimental
factors in the real system significantly change the quantum
transmission protocol from the ideal case previously dis-
cussed. There are several reasons for this. Firstly, Alice does

Pockel’s

vells

ALICE
photo-
@_‘? maultipliers
1/
w| |9 (o)
BOB

RNG = random number generntor

Figure 8. Schematic illustration of the first quantum crypto-
graphy demonstrator. Alice’s Pockel’s cell, driven by a
randomly switched voltage, generated a sequence of photons
with random coding. Bob’s Pockel’s cell, driven by an
independent randomly switched voltage, selects a measurement
basis. Note that Alice and Bob share the same clock sequence
but do not share the same random number generator.
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not use a single photon source so that there is a chance for
Eve to tap off a photon from a multiphoton pulse and make
measurements on it whilst remaining undetected. It is for this
reason that Alice’s source must be operated to produce an
extremely low-intensity output that approximates, as closely
as can be made practicable, a single-photon source so that the
probability of finding more than one photon in any given
pulse is very small. Secondly, the detectors used had a
relatively low quantum efficiency of around 9%. This means
that Bob fails to register the arrival of most of Alice's
photons, Any additional loss in the transmission channel
itsetf will reduce further the number of photons measured by
Bob. This is, as we have discussed, not a problem in itself
because the key is only established from those bits actually
measured by Bob so that the security of the channel is not
compromised by loss. However, any single-photon measure-
ment system inevitably suffers from noise, i.e. a count is
occasionally registered even when no photon is incident on
the detectors. They will also occasionally measure the
polarization state of an incoming photon incorrectly, owing
to misalignment in the optics, for example. This noise occurs
randomly and leads 10 an error rate which, if sufficiently
large, can mask the errors caused by an eavesdropper. To
alleviate the first problemn of ‘dark counts’, Bob turns his
detectors on only in the short time interval during each clock
period when he knows a photon may arrive. This is a standard
technique for dark count reduction in photon-counting
experiments and leads to the requirement that Alice’s pulse
duration be significantly shorter than the clock period. In
order for such a dark count discrimination technigque to be
effective the number of dark counts still remaining must now
only be a fraction of the total received bit rate. This condition
places limits on the intensity of the source, the efficiency of
the photodetectors and the loss in the transmission channel.
The IBM-Montreal team were able to overcome these
difficulties and perform a key transmission experiment of
about 10 min duration that yielded a key of 105 bits in length
such that Eve’s expected information about the key was
estimated {1] to be about 6 X 107! bits!

This is a staggeringly small amount of information
indicating an extremely secure key transmission. Despite this
experiment’s success as a demonstrator, however, its
performance indicators (bit rate, distance, efc.) are not
impressive in themselves. Considerable effort and ingenuity
have gone on since this demonstration to enhance the
technique of quantum key distribution and to turn it into an
attractive practical proposition. This effort is the subject of
the next section.

3. Quantum key distribution over optical fibre
3.1. Phase Coding

Although we have so far concentrated exclusively on
polarization, it is not the only property of single photons that

beamaplitter
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Figure9. [lustration of the basic interferometer to implement
a phase coded BB84 protocol. Alice and Bob each have one half
of the interferometer under their control. Alice’s phase
modulator selects the random coding and Bob’s phase modula-
tor selects the measurement basis at random. Each photodetec-
tor registers a bit value so that if the photodetector labelted by
‘1’ in the figure registers a count, this is read as a logical 1 for
both of the possibie basis choices of Bob.

can be exploited in a quantumn cryptography system. A phase
coding scheme can also be adopted as we shall now describe.
This scheme is based on the properties of interferometers and
the coding is effected by changing the relative phase between
the internal arms of the interferometer. An interferometric
quantum key distribution system was first proposed by
Bennett for his two-state protocol [33]. We shall, however,
describe in this section the implementation of the BB84
four-state protocol on interferometric systems. Such quan-
tum interferometric systems have been used to securely
transmit keys over optical fibre up to distances of 30 km [6].
A simple communication scheme based on a Mach-Zehnder
interferometer is sketched in figure 9 where Alice and Bob
each control one half of the interferometer. For the moment
let us forget that we wish to implement a quantum key
distribution scheme and assume that Alice sends classical
pulses of light into the input of her interferometer. The output
properties of such a device depend on the interference caused
by splitting the beam at the first beam splitter and
recombination of the beams at the second. It is the phase
difference generated by the relative settings of Alice’s and
Bob’s phase modulators that will determine these output
properties. In the schematic version of the interferometer
shown in figure 10 we see that Alice’s input pulse is split into
two by the first beam splitter. The splitting fraction is
determined by the reflection coefficient R and transmission
coefficient 7. These pulses travel around the internal arms of
the beam splitter where both Alice and Bob can impose a
phase modulation, if desired. Depending on the relative
phases chosen and the beam splitter coefficients the pulse
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Figure 10. The output intensities from the interferometer of
figure 9 when a classical pulse is input by Alice. Note that, in
general, the intensity Is split between the two ouput arms of any
beam splitter. Adjustment of the relative phases of the internal
arms can lead to switching of the pulse from one of Bob’s output
ports to the other.

exits the device in either arm 3 or arm 4, or both. For balaiiced
interferometers, that is IRI> = |7 = }, where Bob keeps his
phase set at zero and Alice switches hers between zero and
n, then Bob will see the pulse emerge in arms 4 and 3
respectively. Thus by choosing the coding scheme phase shift
(0y=1, phase shift (x)=0,arm 3=1 and arm 4 =0, Alice
can communicate a binary message to Bob.

The pulse incident on the first beam splitter in figure 10
splits into two. If the incident pulse intensity is |Ein(r)?, then
two pulses emerge from the output ports of the beamsplitter
with intensities IR1? |E;.(r)? and IT1? 1E;,(+)I* as shown in the
fizure.t At the phase modulators, Alice and Bob impose a
phase shift on their respective portions of the incident pulse.
These pulses are recombined at the second beam splitter to
give the output intensities shown in the figure. In deriving this
result we have made use of the fact that the beam splitters are
considered lossless so that R + 171> = 1, which is just an
expression of the fact that the pulse splits between the two
possible output ports. We have also included a phase change
of n/2 in the transmitted arm for consistency} and have
assumed that the two beam splitters of the interferometer are
identical in every respect. We can see that the adjustment of
the relative phases can result in the output emerging from

$Of course, in the figure we have shown the effect of the beam splitter on
the incident fields. The intensity is proportional to the square modulus of the
field. The fields have been shown in the figure to emphasize the interference
properties when appropriate phase shifts are chosen in the internal arms.
$This is just the phase change on reflection observed at dielectric interfaces.
Exactly in which arm the phase change is placed is arbitrary, the requirement
being that there is a relative phase shift of m/2 between them. At a
fundamental level this phase change is required by the unitarity of quanium
mechanics.

Table2. Coding scheme
employed by Alice. The
setting of her phase mod-
ulator determines the bit

value and she has a choice
of two ways of coding the
same bit
Alice
Phase setting Bit
(degrees) value
0 0
180 1
90 0
270 |

either arm or both. Such a device can perform a variety of
functions from simple switching to logical operations.

Suppose now that Alice reduces her input intensity to just
one photon per pulse. In simple terms, a single photon
incident on a beam splitter cannot go both ways; in other
words it cannot be split in the sense that photodetectors
placed in both output ports of the first beam splitter will not
simultaneously register a count. This can be seen as a
consequence of the no-copying theorem for single quanta
[27]. If the beam-splitter reflection coefficient is R and the
transmission coefficient is T, as in figure 10, then the photon
wili be found in one arrn with probability IRI? and the other
with probability 1712, As we increase the pulse intensity, we
see that this probabilistic rule applied to a multiphoton pulse
will lead to a pulse splitting with precisely this intensity ratio.
Of course, as with the celebrated two-slit experiment if we
decide to interrogate the system to determine in which arm
a photon is to be found, we lose the interference, or phase,
information.

We shall now concentrate exclusively on balanced
interferometers for convenience. The details for the un-

Table 3. Bit measure-
ment scheme employed
by Bob. If the photon
emerges from arm 3, it is
read as a 1 and, if it
emerges from arm 4, it is
read as a 0. The choice of
phase sefting gives Bob
two different codings for
his bit value

Bob
Phase setting Bit
(degrees) value
{ 0 (arm 4)
{ (arm 3)
90 0 (arm 4)
1 (arm 3)
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balanced case are slightly more complex requiring a
consideration of both input ports but such interferometers can
also be used for quantum key distribution. In order to use this
balanced interferometer to transmit keys, Alice and Bob must
agree on a coding scheme. A suitable scheme is for Alice and
Bob to choose the bit values shown in tables 2 and 3. So, for
example, if Alice sets her modulator at 180°, she records this
as a |. Bob sets his modulator at either zero phase shift or
a shift of 90°. He then reads the bit according to which
photodetector fires; if the detector in arm 4 fires he reads the
bits as a 0. If Alice has chosen the 0°-180° coding to encode
her bit and Bob has set his modulator at 90°, then a single
photon from Alice will emerge with equal likelihood from
either of Bob's output arms and the bit value that Bob reads
is probabilistic. It is only when the phase difference between
Alice’s and Bob's modulator settings is zero or 180° that Bob
will achieve a deterministic, and therefore reproducible,
result. As before with the polarization coding scheme it is a
random choice of coding applied to single photons that
ensures the security of the key transfer. Alice and Bob
therefore choose randomly, and independently, a modulator
setting for each time slot. After the transmission all those time
slots where a probabilistic result is expected, that is where the
phase difference is 90° or 270° and those time slots where
no photon was received by Bob, are discarded. In the
remaining time slots, Alice and Bob should share the same
random bit sequence.

How does this work as a quantum key distribution scheme?
It is not immediately obvious that this kind of interferometric
phase coding is equivalent to the polarization coding scheme
discussed in the previous section. In the broadest quantum-
mechanical terms, quantum key distribution using the BB84
protocol can be achieved using any system spanned by a
two-dimensional Hilbert space. Because it is difficult to
generate a true single-photon source, a highly attenuated laser
diode is usually employed in the experiments [3-6}. This, of
course, is not a true single-photon source and the field state
is consequently not spanned by a two-dimensional Hilbert
space. Let us for the moment assume that Alice does indeed
possess a single-photon source. If a single photon is input to
the balanced device, what are the outputs at arms 3 and 47
To begin with let us consider the output state from Alice
{figure 11). This state is transmitted to Beb and is accessible
to Eve. This state can be described by

1
1 atice(4pa)} = ST HE 0) + iexplioal0, 1),  (3.h

where we have used the notation I1, 0) to represent the state
of the interferometer with the photon in arm 1 and no photon
in arm 2. This state is a quantum superposition of the two
possible paths that a single photon can take. The states |1, 0)
and 10, 1) form a basis for the one-photon interferometer, that

is the interferometer is spanned by a Hilbert space of

dimension 2. The states WWan(0°)) and W 4 180°)) also

Output state fram Alice | 4, (@) = 3%{“.0) + ieXP(f"h)m.l”

AN
Arm 2
Ps
Arm 4
ALICE
Arm 3
Bsalanced interferometer
|R|2 = iT|2 = i/2 BOB
Figure 11. Notation and output state from Alice for a

single-photon implementation of the interferometric quantum
transmission. Note that a balanced interferometer has been
assurmed. The photon can only be found in one of the internal
arms, and not both.

form an orthonormal basis spanning the space, as indeed do
the states IWaic{90°)) and Wai.(270°)). However, the
operator representing the basis choice 0°/180° is incompat-
ible with the operator representing the basis choice 90°/270°.
Technically the two bases are said to be conjugate which is,
in some sense, equivalent to saying that they are maximally
incompatible. This is precisely the situation obtained with
circular and linear polarization. The expansion of the 0° state
in the 90°/270° basis is given by

% atce(0°)) = (1 — i a1ce(50°N)
+ %(l + i)h}’/Alj:e(Z-’rOo))s

(3.2)

50 that measurement of the 0° state in the 90°/270° basis will
yield a probabilistic result with a 50% chance of reading the
bit incorrectly. By selecting a phase modulation of 0° or 40°,
Bob is in fact choosing between two measurement bases.

The BB84 protocol with phase coding works exactly as
before. Alice chooses the coding (°/180° or 90°/270° at
random and Bob, independently of Alice, selects a measure-
ment basis at random. In the public discussion stage, Alice
and Bob discard those time slots where a different phase basis
was chosen, Where the same basis was chosen by Alice and
Bob, a deterministic result is obtained and Alice and Bob will
share an identical sequence of bits after the public discussion
in exactly the same way as we have previously described for
the polarization coding scheme.

The single-photon interferometer scheme works because
the phase shifts of the modulators select between two
orthonormal bases. However, it is not strictly necessary that
the states used to encode the bits form an orthonormal basis.
For example, we could consider using the following coding:
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luy—0,
(3.3)
w)— 1,

where {ulw} # 0. If we consider the states (3.3) we see that
they are not eigenstates of a single operator so that a single
measurement, or any sequence of measurements, cannot
unambiguously distinguish between them in every case. Itis
however, possible to find a measurement that will unambigu-
ously distinguish between these states in some cases, but not
all. An example of such a measurement is given by the
projector 1 — lu){ul. If a non-zero result is obtained, then it
can only have come from the state lw). A null result could
come from either state. Depending on the outcome of the
measurement, therefore, it is possible to distinguish oc-
casionally with certainty between two non-orthogonal states.
This property is crucial to the success of the Bennett two-state
protocol, or B92, that we shall discuss later [33]). This
property is also used in the practical implementaticns [3, 6]
of the four-state phase encoded BB84 protocol as we shail
now describe.

Experimentally it is not trivial to produce a source of single
photons. In practice, therefore, the output from a laser diode
is heavily attenuated so that there is a very low probability
of finding more than one photon in any given pulse. An
imperfect single-photon source leads to the possibility that
Eve can tap off a single photon from a multiphoton puise and
remain undetected, although by keeping the average number
of photons per pulse very low this can be made an infrequent
occurrence. Such an attack is known as a beam-splitting
attack and we shall return to these strategies later. The output
from a laser operating well above threshold can be described
by a coherent state. The coherent states are important states
in quantum optics and the interested reader is referred to
Loudon’s [34] book for more details on these states and field
quantization. Attenuation of coherent states produces a
coherent state of reduced amplitude. A coherent state is a
minimum-uncertainty state with equal uncertainty in its real
and imaginary field components and so can be described by
an uncertainty circle on an appropriate phasor plot. The
boundary of the circle is calculated from the variances of the
operators representing the real and imaginary parts of the
field. A single measurement of the amplitude and phase of
a field prepared in a coherent state will generate a point on
this phasor plot. Many such measurements on an ensemble
of identically prepared fields will generate a circular
distribution of points centred on the classical amplitude and
phase for the field. This pictorial representation of a coherent
state and its attenuation are depicted in figure 12. The
coherent states form an overcomplete basis and are not an
eigenbasis for any Hermitian operator. Consequently they do
not form an orthonormal basis. If In} describes a field state
with exactly n photons (usuatly termed the photon number
states), then a coherent state of amplitude a is given by the
expansion

o) = exp( ~ ;Hanzyzonf—),,,m. (3.4)

The mean intensity is given by lai* so that equation (3.4) is
a Poisson distribution of states with exact numbers of
photons. Attenuation of equation (3.4) so that terms of O(laf)
are negligible gives the state

la} = (1 — Hal?)I0) + Ja) + 4a?12). (3.5

This state has a large vacuum component so that such a state
incident upon a photodetector would not cause a count most
of the time.t When a count is registered, it is much more
likely to have originated from the single-photon state than
from any state with two or more photons.

Coherent states and single-photon states incident upon
beam splitters do not behave in the same fashion. Coherent
states are the quantum analogues of classical field states and
split at beam splitters in very much the same way as a
classical pulse. The previous coding scheme where Alice and
Bob were able to select between orthonormal bases by
choosing an appropriate phase modulator setting does not
apply in the same way here. Let us see how it does work, After
the first beam splitter (which we assume to be 50:50 as
before) and the phase modulation, the output state of Alice,
i.e. the state which travels on to Bob is given by

1 . i
W atice) = lpa) = chexp(lw), Wa). (3.6)
The states represented by the choices 0°/180° or 90°/270° are
not orthonormal and we have

I(0°1180°)R = {90°1270°) = exp( — 2lal?),
I{0®190°31% = {0°1270°)* = 180°1270°)1% = [(180°190°)?
= exp( — laf?).

If Alice chooses the same coding scheme as before so that
the choice 0°/180° represents one way of coding 0/1 and the
choice 90°/270° represents the other, then the non-orthonor-
mality of these states means that the bit cannet, in principle,
be accurately read all the time. However, as we have hinted
at previously, it is possible to distinguish between these
states, without ambiguity, some of the time. The interfero-
meter that we have already described is a cevice that will
perform this function. When la 2 is small, the overlap between
the four states is very significant and close to unity. This is
due to the large vacuum component in the expansion {3.5).
Using the same pictorial representation of the coherent state
as before we see in figure 13 a schematic illustration of this
significant overlap. Because of this large overlap it is not

1A photodetector performs a measurement of the field’s photon number. For
the state (3.5), therefore, a measurement of photon number will give the
result 0 with probability(l — Hel?)? which is very close to unity, The
probability of finding a single photon when making such a measuremnent is
just given by 2,
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Figure 12. Diagram to represent the evolution of the noise
circle for a coherent state under attenuation. Note that the noise
circle itself is unchanged but its relative size to the amplitude
increases. The relative fluctuations in phase and amplitude
therefore increase upon attenuation.

possible to distinguish between the four states generated by
the phase settings 0°/90°/180°/270°, in every instance, and
it is this indistinguishability that gives the phase-encoded
version of BB84 its security when attenuated coherent states
are used as approximations to the single photon number state.

The input state to Bob’s half-interferometer is given by
equation (3.6). This state is also accessible to Eve. However,
Bob performs an additional phase modulation which is not
accessible to Eve and the state generated after Bob’s phase
modulation, but before his beam splitter is

M’Ahrc) =

| i
Mxexp(iqo,\),maexp(ifpg)) 3.7

~i7?

The state emerging from Bob’s beam splitter and entering the
photodetectors is given by

180° La e

Coherent states for 4°/180° Ceding \
170°
A
i&i;g

X,

e large overlap region because of vacuum
component ; slates are mot  always
distinguishable

Coherent states for 90°/270° Coding

Fipure 13. Schematic representation of the overlap between
the coherent states used in the phase coded implementation of
the BB84 protocol. This overlap leads to a relatively high error
rale as it is difficult to distinguish one symbol from another.
However, it is also this overlap that is exploited to guarantee the
security of the key distribution.

Table 4. Input states to Bob's photodetectors for
the various phase settings chosen. Those phase
settings which can never give rise to an un-
ambiguous result are discarded. Alice and Bob each
possess one half of a balanced interferometer

Alice Bob
Phase setting Phase setting Input
(degrees) (degrees) t photodetectors
0 0 10, iz}
-1 i-1
H) (discarded) | o, —— a:>
2 2
180 0 | —a, 0}
. P+ 1+i
9} (discarded) i,
2 2
‘ i—-1 i—1
90 0 (discarded) —,—
2 2
90 10, — a)
) P+i i—1
2H) {} (discarded) —_——,—
2 2
90 I~ dat, ()

Lafexp(iga) — expligp)l, ¢ [explipa) + exP(i(ps)]>.
(3.8)

The varicus output states and transmitted bit values are
shown in table 4 when Alice and Bob use the same coding
scheme as for the single-photon version of this system. Most
of the time, because the input intensity of Alice's state is
extremely low, Bob's detectors will not register a count, even
if Bob were to have perfectly efficient photodetectors. Again
this is because of the large vacuum component of these four
states. If one of Bob’s detectors fires, he records his phase
setting and the received bit. If, in the subsequent public
discussion, 1t ts found that Bob’s phase setting was incorrect,
this bit is discarded. If, however, Bob’s phase setting is
correct and a count is registered, that bit will, for noiseless
detectors, also be correct. For example, if we consider the first
entry in table 4 we see that there is a vacuum input to the
photodetector in arm 3 and a low-intensity coherent state
input to the detector in arm 4. The detector in arm 3 will not
register a count and the detector in arm 4 will register a count
with a probability of approximately l#l* (remember that
lz1* = 1. If a count is received and Bob is told that he has the
correct phase setting, this can therefore only have come from
Alice’s state [0°). This is an example of how two non-orthog-
onal states, the 0°/180° states, can occasionally be dis-
tinguished without ambiguity by a single measurement. This
does not violate any fundamental principle since, on average,
the bits retain thetr indistinguishability. The last possibility
is for both of Bob’s detectors to fire simultaneously. This
even is of course discarded as this can only arise from an
incorrect phase setting on Bob’s modulators.
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Although it is possible to generate single photons
experimentally, it is much easier to produce a close
approximation to a single-photon source by heavily attenuat-
ing the output from a laser. As we have mentioned, the use
of such a strongly attenuated coherent state in a quantum
cryptography system altows Eve a particular kind of attack
known as a beam-splitting attack. These kinds of attack can
at most only obtain a small fraction of the key bits for reasons
that we shall now discuss. From equations (3.4) and (3.5) we
see that the probability that any given pulse is found to
contain one and only one photon is lal and the probability
that any given pulse is found to contain two or more photons
is lal*/2. In the experiments lei? is about 0-1 so that about 1
in 10 pulses will be found to contain one photon and about
1 in 200 pulses will be found to have two or more photons.
In principle, therefore, Eve can try to exploit this by using
a beam splitter to tap off a fraction of the signal so that 1n
some instances both she and Bob will receive a photon. If Eve
stores this photon until Bob has publicly announced the bases
that he chose and then uses this information to perform a
measurement in the basis announced by Bob, she will be able
to obtain some of the key bits. However, the key will
eventually be made up of bits actually measured by Bob, and
not all these bits will have originated from pulses for which
both he and Eve received a photon. The events in which Bob
receives a photon and Eve receives no photon predominate
so that a beam-splitting attack can only ever obtain a small
fraction of the key.T This leakage of information to Eve can
be accommodated within the privacy amplification procedure

{1, 29, 311.

The interferometric quantum key distribution scheme
works because, in general, two non-orthogonal states are
eigenstates of different incompatible operators. The incom-
patibility of the operators leads to the non-orthogonality of
the states, as weil as to an uncertainty relation between the
operators, Thus, whilst not wholly analogous to the
polarization coding case, the security of this system depends
fundamentally on the quantum properties of low-intensity
coherent states. In the next sections we shall see how these
interferometric schemes are realised in the laboratory.

3.2. Experimental implementation

The increasing demand for rapid access to vast quantities of
information and the ability to transmit that information will
probably require the widespread utilization of the massive
capabilities of high-speed ali-optical networks. If quantum

{This fraction is found to be at most about j)? so that, in the experiments,
around 10% of the key bits can be obtained by a beam-splitting attack. It
should be noted, however, that the success of a beam-splitting attack depends
on Eve’s ability to store a photon until Bob's measurement basis is revealed.
Storage of photons on these time scales is difficult to achieve but we must,
nevertheless, allow Eve this capability if we are to give a guarantee of
security for the key distribution,

key distribution is ever to be considered an appropriate
solution to security concems, it must be capable of operating
over reasonable distances on such networks.y As we shall
show in this section, it is currently possible to transmit keys
securely over distances of up to 30 km of optical fibre using
quantum cryptography. With improved detector technology
this distance should increase to around 100 km or more. It is,
however, unlikely in the medium term that detectors and fibre
technology will improve sufficiently to allow consideration
of quantum key distribution over transatlantic distances
although there is no fundamental a priotri reason why this
should not one day be possible. At BT it has been our aim
to develop a usable quantum key distribution system that can
operate over significant distances in standard telecommuni-
cations fibre. Even given that specialized goal there are
several technology options that deserve serious consider-
ation. The choice of wavelength and detector, for example,
or the choice of phase or polarization coding schemes are
issues that need to be addressed. Indeed, as we shall see it is
not yet clear as to the optimal protocol to adopt. However,
despite these unanswered questions the first BT prototype [5.
6] implemented the BB84 protocol and operated at a
wavelength of 1.3 um utilizing an interferometric system that
is capable of securely transmitting keys over distances of up

Alice L Experimental
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Figure 14. Diagram of the BT prototype quantum key
distribution system. To overcome interferometric instabilities
that arise in devices of the form shown in figures 9-11 a
polarization and time division scheme is used to separate the
optical paths. This is achieved by separating the cutputs from
the first beam splitter—coupler in both time and polarization
using a delay stage and polarization controllers. The output
from Alice can then travel over a single length of fibre where
both output states effectively experience the same environment.
It is important to note that interferometric recombination of the
pulses occurs only at the final optical coupler.

1Of course we do not exclude specialised short-distance applications such
as the secure connection between computers in the same building, for
exampie.
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to 30 km at data rates of around 1 kbits. We shall discuss
this system in some detail. We have also developed, and are
in the process of developing, other prototype systems to
enable us to begin to answer some of these important
technology questions. Some of the issues that arise from these
other systems will also be discussed.

The experimental prototype system [5, 6} shown in figure
14 consists of a 30km long fibre-based Mach-Zehnder
interferometer which operates at a wavelength of 1-3 pm. The
laser source is a 1-3 pm wavelength standard semiconductor
laser that is gain switched at 1 MHz to produce pulses of
30 ps duration. The pulses from this device are heavily
attenuated to a level where the intensity at the input of the
transmission fibre, that is Alice’s output, is equivalent to 0-1
photons per pulse pair, on average. This attenuated pulse
enters an optical coupler (the optical fibre equivalent of a
beam splitter) where the pulse splits and one pulse travels
through a lithium niobate phase modulator and experiences
a phase shift chosen from one of the four possibilities, 0°, 90°,
180°, 270°, at random. The other travels through a
polarization controller} set to act as a half-wave plate and a
delay loop. The half-wave plate rotates the state of
polarization of the pulse to its orthogonal state. These two
pulses, now with orthogonal polarizations, enter another
optical coupler the output of which is fed directly into a length
of standard telecommunications fibre 30 km long which is
single moded at a wavelength of 1.3 um. Because of the delay
imposed on one pulse these pulses now travel a few
nanoseconds apart in this fibre. The time delay between the
two pulses must be set so that they both experience the same
environmental fuctuations, in other words, the typical
fluctuation time scale must be much longer than the time
delay between the pulses. In this way the device can be made
interferometrically stable over long distances. This kind of
interferometer is known as a time division interferometer and
it has been used in experiments to reduce the effect of
acoustic fluctuations in fibres, known as GAWBS (guided
acoustic wave Brillouin scattering), which are an unwanted
source of noise in sensitive quantum optical experiments
i3s].

These pulses form the input to Bob's half of the
interferometer where they are spatially separated by the
action of a polarization splitter which directs one polarization
along one output and the orthogonal polarization along the

+We have also investigated prototype systems that operate with source pulse
rates of about 100 MHz. Although fully secure key distribution is yet Lo be
demonstrated with this system, the resuits show that key transmission rates
of about 20 kBits should readily be attainable over distances of around
10 km.

$These all-fibre devices are made by forming three small consecutive lcops
in a fibre and allowing the planes of the resultant loops to be adjusted
independently. The stress birefringence thereby induced can be used to
control the state of polarization of light in a fibre. Such devices are, for
obscure reasons, colloquially known as “bat ears’.

other, The pulse which did not suffer any phase modulation
in Alice’s half-interferometer is now given a random phase
modulation of 0° or 90° by Bob, The other pulse suffers a time
delay of the same magnitude as its partner pulse did in Alice’s
system and its state of polarization is rotated to match that
of the other pulse. These pulses are now recombined at a
50/50 optical coupler where, because they are now tempo-
rally coincident with the same polarization, they interfere.
Depending on the relative phase settings of Alice and Bob's
modulators the resulting output pulse will either emerge in
one arm or both. One arm has a further delay loop which
allows the temporal separation of the bits so that a 0 value
causes the detector, a liquid-nitrogen-cooled germanium
avalanche photodiode (APD), to fire first. This aliows us to
use a single detector where the bits are temporally
distinguished. The detector system records each event as a
data pair which represents the time elapsed since the start of
the key transmission and the time interval value which
indicates where the detection occurred within the concurrent
laser pulse period. Because photons arriving at the detector
originate from the 30 ps optical pulses, they are synchronized
with the laser drive and hence give rise to well defined time
intervals between the detector event and the beginning of the
next taser drive pulse. These time interval values lie within
two windows centred at around 614 ns for the 1 output port
with the longer path and around 620 ns for the 0 output port.
These windows are around ! ns wide owing to detector
timing jitter [36]. In contrast, detector noise mechanisms
such as dark counts and after-pulses give rise to counts
randomly distributed in time and consequently give rise Lo
random time interval values. After the data transmission is
complete, the receiver can use the recorded time interval
values to classify each detection event as a 1, a 0 or a noise
count. This is shown in figure 15 where an actual data set after
discarding instances where different bases were chosen from
a typical key transmission is plotted. In this figure the
transmission has been separated into two parts for clarity. In
figure 15(a) we have plotted Bob’s results for the time slots
where a | was transmitted by Alice. Figure 15(b) gives the
result of those time slots where a 0 was transmitted. By
separating the data in this way we can see the extremely low
error rates achieved in the experiment.

Typical error rates achieved on this system are around 4%
for distances of 30 km and 1-5% for distances of 10 km.
These errors arise mainly from the relatively high detector
dark count and the less than unity fringe visibility which is
of the order of 0-99. However, errors of this magnitude are
perfectly acceptable and can be accommodated within the
error correction and privacy amplification procedures. As the
system length increases and more of the single photons are
removed by loss processes in the fibre, the relative proportion
of dark counts to data points increases, giving rise to a higher
received error rate. With improved deteclors and phase
modulators both the error rates and the distance of
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Figure 15. Data obtained from a typical run of the BT
prototype system. The transmission data are separated into two
plots; in (a) we have those time slots where a 1 was transmitted
and in (&) we have those time slots where a 0 was transmitted.
Note the small number of errors in each case.

transtnission can be greatly improved. For example, a
reduction in the detector dark count rate by a factor of ten

would enable a 60 km device to operate at around an error
rate of 4%. Apart from the photon-counting electronics
associated with the germanium APD and cooling system the
components of this system are standard telecommunications
components.

The majority of fibre installed worldwide is designed for
operation at wavelengths of 1.3 or 1-5 pm where the fibre
supports a single spatial mode. Within these two ‘windows'
the transmission loss of silica fibre reaches a limit set by
Rayleigh scattering which is 0-3dB km™" at 1-3 um and
0-2 dB km ! at 1.5 pm. With such low transmission losses,
signals can propogate for many tens of kilometres before
regeneration is required either by means of optoelectronic
repeaters or optical amplifiers. A third wavelength region
centred on 0-8 pm is also of some interest in telecommunica-
tions despite the higher losses of about 2dB km ™' at this
wavelength. This is largely due to the availability of cheap
oploelectronic components for this wavelength region.
However, as we shall discuss, an important consideration is
that standard telecommunications fibre supports multiple
spatial modes for wavilengths shorter than about 1-2 pm and
this can limit system performance. Another issue that
influences the transmission distance achievable at a given bit
rate is the group velocity dispersion in the fibre. The latter,
at0-8 pm, has a large negative value of — %0 psnm ™' km™',
goes through zero at around 1-3 um and is positive at 1-5 pum
having a value of + 15 ps nm ™' km ™. Trade-offs between
these factors (and others) that depend on the required system
performance determine the choice of ‘best’ operating
wavelength for a conventional telecommunications system.
This is likely to be true also for quantum cryptography
systems using the same fibre tranmission medium. Conse-
quently, if quantum cryptography is to achieve widespread
application, it is impertant to investigate prototype systems
atone or all of these wavelengths to ensure compatibility with
existing networks.

Possibly the most important component of a quantum key
distribution system is the single-photon detector. There are
a variety of commercially available detectors that can operate
in single-photon-counting mode, even if not specifically
designed for so doing, for various regions of the spectrum.
In general, silicon APDs, designed to operate at wavelengths
of around 0-8 um, are at an advanced stage of development
whereas germanium and indium gallium arsenide (InGaAs)
devices, designed for operation at wavelengths of 1-3 or
1-5 um are less advanced. Silicon APDs for single-photon
counting are commercially available and have a number of
attractive features. They have a quantum efficiency of around
30% or higher, they have a low dark count rate of less than
100 counts s ' and they can be thermoelectrically cooled.
However, fibre loss and dispersion are greater at 0-8 um so
that transmission distance and bit rates are limited at this
wavelength of operation. Germanium and InGaAs devices
are at an early stage of development. Photon counting
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at longer wavelengths has been demonstrated with commer- -

cial devices [36, 37] although these were designed for
conventional applications and are not yet optimized. In order
to operate at longer wavelengths these devices have a smaller
bandgap than their silicon-based counterparts and conse-
quently suffer from a relatively high dark count rate. For
example, in the case of germanium APD, the device has to
be cooled to 77 K to reduce the dark count to a high but
manageable level of about 1000 counts s~ !, Quantum
efficiencies in the region of 10-20% can be attained with
gated operation [6]. The operation of germanium-based
APDs is limited to upper wavelengths of 1.3 ym with current
device designs. Interestingly, single-photon counting has
recently been demonstrated at higher temperatures of around
150-200 K using InGaAs APDs, although quantum
efficiencies are quite low at the few per cent level. These
devices should also operate at 1-5 um {38] where advantage
can be taken of the low fibre loss.

Modulators can also be a source of error if the frequency
response of the device is not flat over a large range [5]. This
is because of the large-frequency bandwidth of the random
signal. Also in a conventional digital transmission system
this effect can be reduced by the appropriate choice of 0/1
thresholds in the detection system. However, this is not
possible with a single-photon-counting system. Availability
and performance of modulators can also affect the choice of
ceding scheme, For example, phase modulators for fibre
systems are standard components that were developed for use
in coherent systems. This is not the case for polarization
modulators which are more specialized and less commonly
available.

Another potential problem from which 850 nm systems
suffer is that of modal dispersion. Standard telecommunica-
tions fibre is designed to be single mode at 1-3 pm. An input
at 850 nm will therefore excite several modes which each
propagate down the fibre with a different velocity. However,
the 850 nm prototype built at BT Laboratories has success-
fully overcome this problem and demonstrated that a secure
quantum key distribution is possible over 8 km of standard
telecommunication fibre at this wavelength [7]. The intrinsic
error rates for this prototype are around the 1% level. It is
unlikely, however, that 850 nm systems will match the long
distances achieved by 1-3 um systems. At longer distances
loss becomes a problem for 850 nm systems and the
advantages of superior detectors at this wavelength are
quickly lost.

We have come a long way from the initial theoretical ideas.
The next two sections take a look at where we might be
heading. The first of these describes some other ways that
have been invented for the distribution of keys using quantum
mechanics. The second, and last, section takes a look farther
afield and briefly discusses some recent developments that
could have a big impact. Einstein’s famous quote, which
summed up his distaste for quantum mechanics was thai *God

does not play dice with the universe’; in practical quantum
cryptography we use God's dice to guarantee the secrecy of
our communication.

4. Other protocols
4.1. Rejected-data protocols

As we have seen in the implementations of the BB84
protocol, it is a fundamental quantum-mechanical principle
that guarantees the security of the quantum key distribution.
The principle of complementarity ensures that properties of
states represented by incompatible operalors cannot be
measured with arbitrary accuracy. The Heisenberg uncer-
tainty relation, and similar measurement inequalities [39],
place strict limits on our ability to determine these properties.
It is important to ask whether other fundamental properties
of quantum mechanics can also be used in a secure key
distribution system, or indeed whether there is a different way
of exploiting the complementarity of quantum mechanics.
Since the invention of quantum cryptography there have been
several other proposals for secure quantum key distribution.
In this section we shall review what seem to us to be the most
important of these from a practical viewpoint beginning with
the so-called rejected-data protocols (RDPs). Although not
termed as such at the time, the first RDP to be invented was
the correlated particle protocol, also known as the EPR
protocol for reasons that will shortly become clear, in which
the key is generated from measurements on pairs of
quantum-correlated particles [40]. We shall describe the EPR
protoco! in section 4.3. Single-particle RDPs [41] were
invented in response to a different question and rely on a
different quanium property for their security. However, there
is an interesting connection between the EPR protocol and
single-particle RDPs to which we shall later return.

If we consider a typical quantum key tranmission using a
BB84 protocol with polarization coding, then the trans-
mission can split into two groups of data. Those bits sent and
received in the correct basis forming one group and those bits
sent and received in different bases forming the other group.
In the BB84 protocol this latter group is discarded or rejected.
We can consider each of these two groups to represent a flow
of information. The information flow on a communication
channel is derived from consideration of the correlation
between the sent and received message. An entropic measure
of correlation is used which gives the information content of
that correlation, known as the mutual information [42] (see
also [43] for the use of information-based measures of
correlation in quantum optics). In the first group, consisting
of the raw key data, we would expect, in the absence of noise
sources, a perfect correlation between the sent and received
data. In other words we would expect a maximal information
transmission in this set. In the second group we expect no
correlation and therefore no information transmission be-
cause for each data pair a different conjugate basis was used
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1o transmit and receive respectively. In the BB84 protocol
Alice and Bob examine a randomly chosen sample from the
raw key data and check for deviations from the expected high
degree of correlation. This procedure allows them to estimate
an error rate and to determine whether a secret key can be
established. We shall call the BB84 protocol, and other such
protocols, ‘sacrificial’ in the sense that some potential key
data needs to be sacrificed to guarantee the security. The data
in the other group, the rejected data, are discarded in the
BB84 protocol. However, when they are using conjugate
bases, Alice and Bob expect this rejected-data set to be
uncorrelated. An eavesdropper can also cause a deviation
from this expected lack of correlation. Instead of discarding
this data, therefore, Alice and Bob should examine these
rejected data for evidence of unusual correlation. In
information theory terms an increased correlation between
sent and received data is equivalent to an increased
information flowt so that an eavesdropper can, in this sense,
cause an information flow on the quantum channel where
none was expected.

Under what circumstances can we expect an eavesdropper
to cause such an information flow on the rejected data? Let
us consider what happens when Alice and Bob use the
quantum channel. For each time slot Alice prepares a
quantum particle in a definite state and transmits this to Bob.
This state preparation can be thought of as being nothing
more than the operation of the quantum state filter that we
saw in section 2.1 where Alice simply selects between filters
atrandom. Bob’s measurement can also be thought of in these
terms whereby the result of any measurement can be thought
of as due to the application of the relevant quantum state
filler. We saw that an intermediate measurement, between
Alice and Bob, can be detected by them only if the
intermediate measurement can be generated from a filter that
represents an incompatible property to both of the properties
represented by Alice’s and Bob’s filters. The BB84 protocol
works because, when Alice and Bob use the same kind of
filter, in other words when they choose the same basis, any
intermediate measurement in an incompatible basis is
automatically incompatible with both Alice’s and Bob’s
basis. If we let J(A, B) be the information flow between Alice
and Bob when they use the bases represented by the operators
A and 8 respectively, and Je(A, B) be the information flow
in the presence of Eve we can define [41] a channel
disturbance parameter £ which gives the degree of disturb-
ance cased, by the eavesdropper, to the information flow on

Of course, it would be exwremely unlikely that an eavesdropper's
intervention would cause an intelligible message to flow. Information theory
provides a measurement of the degree of comelation between the input and
output ends of a communication channel: in other words it provides a
measure of how accurately a bit sequence can be transmitted and at what
rate. It does not specify that that bit sequence should have meaning. A perfect
channel, in information theory terms, would still obey the maxim 'garbage
in, garbage out’ but it would be faithfully transmitted garbage.

the channel in those instances where Alice and Bob have used
the bases represented by the operators A and B. We divide
by the maximal information flow possible, labelled by the
subscript max, o normalize the variation in this parameter to
= 1, The channel disturbance parameter is then given by

- s JHA B -JA B
CABETIAD

(4.1)

When Eve is absent, so that Jg = J, this parameter is zero, for
any choice of basis by Alice and Bob. Eve's strategy,
therefore, should be to adopt a measurement procedure that
fools Alice and Bob into thinking she is not there, i.e. one
which causes least disturbance to the channel. Alice and Bob
expect to obtain the maximal information transmission when
they are using the same basis, i.e. when A and 8 are in fact
the same operator. If Eve attempts to listen to these
transmissions in the wrong basis, she will inevitably cause
errors, thereby causing Jg, the information flow between
Alice and Bob in the presence of Eve, to decrease. The
channel disturbance parameter then becomes negative,
indicating that Eve’s intervention causes a loss of infor-
mation, i.e. a loss of correlation. Similarly, if Alice and Bob
are using conjugate bases so that they expect no correlation
between sent and received data and Eve’s intercepts in a
mutually incompatible basis, she will, in general cause there
to be fewer errors (she cannot, of course, increase the number
of errors!), which increases the correlation and therefore is
equivalent to the creation of an information flow between
Alice and Bob. In this case, £ is positive, indicating the
creation of information by Eve’s attack,

This information-theoretical treatment of the disturbance
caused by eavesdropping leads to a simple pictorial
representation of quantam key distribution systems that can
yield useful insights [26]. Let us call the channel between
Alice and Bob ‘reducitle’ if Eve chooses the same basis as
either Alice or Bob. On a reducible channel, Eve is
transparent to Alice and Bob and cannot be detected. 1f Eve

Alice Eve Bol Alice Bob
B :] is reducible to B
Alice Eve Bab Alice Bob
(B8] e 5]
Alice Eve Bob

ﬂ Bj is not reducible to a simpler channel

Figure 16. Diagram representing reducible and irreducible
channels. It is only on irreducible channels that the effect of Eve
can be detected.
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choases a basis incompatible with both Alice’s and Bob's, we

call the channel ‘irreducibie’ and the channel disturbance

parameter cannot be made equal to zero on such channels. A
reducible channel is exactly the same, as far as Alice and Bob
are concerned to a channel with Eve absent; hence the three
nodes can be reduced to two and the channel disturbance
parameter is zero. Exampies of reducible and irreducible
channels are depicted in figure 16. However, because & is a
statistical parameter, Eve only needs to adopt a strategy such
that, on average, (his parameter is zero, For example, suppose
that Eve's measurement in one basis causes a positive
correlation between Alice’s and Bob’s data where none was
expected and measurement in another basis yields an equal
amount of negative correlation.t In order to avoid detection
on this data set Eve should simply switch randomly between
these two measurernent bases, the negative and positive
correlation will, on average, cancel, leading tc an uncorre-
lated data set [44].

Let us denote the entire set of Eve’s measurements by

{E}E[El- Ez, E3,...,Ek,...’. (42)

Depending on her overall strategy, Eve will select a
measurement basis represented by an operator from this set
for each transmission time slot that she wishes 1o intercept.
There will be a certain probability distribution associated
with her choice. We can represent the effect of Eve’s strategy
on the information received by Bob as a single operator. The
condition for Alice and Bob to detect Eve on any particular
rejected-data channel can now be generalized from equation
(2.10) so that the operator representing Eve’s strategy must
he incompatible, on average, with both Alice’s and Bob's
observables. A channel where this is the case is said to be
irreducible. Of course, for sacrificial channels where perfect
correlation is expected, and for perfect channels and
detectors, even a single deviation is sufficient to alert Alice
and Bob. Thus, although Eve’s strategy will not change the
average number of agreements between Alice and Bob, more
sophisticated statistical tests reveal her presence. On a
channel, for example, where Alice and Bob expect a 10%
deviation from perfect agreement, Eve must choose an
appropriate strategy, to reproduce these statistics. With this
generalization we can now state a useful general theorem for
the detection of an eavesdropper on a quantum channel. This
theorem [26] states:

An eavesdropper can only be detected on an irreducible
channel.

An immediate consequence of this statement is that a
minimum of two incompatible operators, or bases, are needed
to guarantee the security of the channel. A second conse-

+Mutual information does not distinguish between positive and negative
correlation so that an increase in negative correlation, or anticormrelation, is
equivalent to a flow of information on the channel.

L [Rejecled-Dlta Channels ]

Alice Eve Bob
“ = ~ If Eve chooses sn operator
average, with these iwo
Alice Eve Bob chaonels, it canmot also
- N remain compatible on the
n remaining two chanoel
Alice Eve Bab
Alice Eve Bob

Figure 17. The rejected-data channels for a three-alphabet
RDP, Eve cannot recreate the statistics on all of these channels
with any possible measurement strategy.

quence is that a RDP can only be made secure if at least three
incompatible observables are chosen by either Alice or Bob.
It is always possible to avoid detection on the rejected data
if just two incompatible bases are chosen so that only
sacrificial protocols can be made secure with this choice.
These consequences of the above theorem are easy lo see
from simple diagrams as in figure 16 where Eve uses a single
measurement basis, and in figure 17 where we show
pictorially why a RDP with more than two bases can be made
secure against Eve's range of strategies. In figure 17, Alice
chooses three incompatible bases and Bob two. We see that,
alihough it is possible for Eve to remain undetected on
selected channels if she chooses her operator set carefully, it
is not possible for her to choose an operator set which will
achieve this for all the rejected-data channels simultaneously.
Of course, Alice and Bob must select the operators carefully
too! Various specific examples of RDPs and their security
have been discussed in [43, 44] and examples of eavesdrop-
ping strategies to equalise positive and negative correlation
are discussed in [44] and shown to be ineffective against a
suitably chosen three-basis rejected-data protocol.
Examination of the rejected data can substantially limit the
range of strategies that Eve could have employed. For
example, if the rejected data are examined in the BB&4
protocol and are found to exhibit no spurious extra
correlations, this would mean that Eve has attacked in a
particular way (or not at all, of course) so that certain
measurement strategies could then be discounted. A much
more accurate estimate of Eve’s expected information gain
from the eavesdropping can thereby be established. Obvi-
ously, as is evident from the above theorem, it would not be
a secure strategy to rely on the rejected data alone when using
only two bases as in the BB84 protocol. However, why throw
the extra data away without analysis? The entire rejected-data
set can be analysed without compromising any security as
this data will never be used to form part of the key, This is
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a nice feature of a RDP approach; it can be used in
conjunction with sacrificial protocols such as BB84. It is not
an either/or choice of protocol. The two types of collected
data, rejected and raw key data, are completely independent
and can be processed independently. BB84 can therefore be
enhanced by the simple expedient of analysis of the rejected
data. Of course, if you wanted to be sure that an eavesdropper
could be detected on the rejected data alone, you wouid need
to choose three incompatible bases. However, even with this
choice you are still free to perform a sacrificial protocol, i.e.
to examine some potential key data publicly, to assess the
security. This sacrificial test can be performed at any stage
after the data acquisition and is independent of any
rejected-data tests. The principal benefit of rejected-data type
protocols will probably turn out to be as an enhancement to
sacrificial protocols and as a technique for providing a more
accurate estimate of an eavesdropper’s likely information.
Given the bit rates achievable in the prototypes and the fact
that keys for cryptographic purposes do not, usually, need to
be more than a few hundred bits long, it does not seem to us
to be likely that RDPs will ever be used to guarantee security
on their own. When thousands of bits can be transmitted and
processed per second, the most sensible course of action for
Alice and Bob is to use every available technique to esimate
the possible information leakage to Eve.

4.2, Two-state protocols

We have seen that the BB84 protocol requires four states: two
to each conjugate basis. It is, however, possible to use just
two non-orthogonal quanturn states for secure quantum key
dlsmbutmn This technique was invented by Bennett [33] and
is sometimes known as the B92 protocol. We have touched
on the use of non-orthogonal states in section 3.1 where we
saw that such states can give security in an interferometric
"version' of BB84. The two-state protocel can also be
implemented interferometrically [33] and a prototype system
is under development {9, 45]. The two states in the B92
protocol can be viewed as being single members of two
incompatible bases, Let us consider two states 14, and 1£2;)
which are members of two incompatible bases with the

eigenvalue relationships
AlA;) = J0A4;) and Q12,) = w,l€). (4.3)

Now, if we consider the Hermitian projection operators given
by

P(Ag) =1 — 14oX Aol and P(€2) = 1 —1QNQol, (4.4)
these have the following eigenvalue relationships:
| Ay Gfj+0),

0 (ifj=0),
| Q) Gfk+0),
0 (ifk=0).

P(Ag)A) = {
(4.5)
B(20)102,) = {

Suppose that Alice transmits to Bob one of the states | Ag) and
1€25) without Bob knowing which one. Because these states
are non-orthogonal, there is no single experiment that will
unambiguously distinguish belween them in every instance.
Suppose Bob has chosen to make a measurement of the
observable representec by the projector £(§2p) and Alice has
transmitted the state 1£2.). The result of Bob’s measurement
will be zero, Suppose, however, that Alice had transmitted
the state [ Ag); the outcome of Bob’s measurement would then
be probabilistic. The state | 4g) can be expanded in the Q basis
as

[Ag) = 2 AN Ao), (4.6)
k=0

so that the probability of obtaining the value of zero when
this state is transmitted is the probability of obtaining the state
§20) which is just KS2olA40)°. All other instances will yield a
value of unity and the probability that this occurs is simply
given by 1 — [{€lA0)°. If Bob obtains a value of unity as a
resuit of his measurement of the projector f’(Qg), he knows
that this can only have come from the state | 4o} and not from
the state {$2p). A similar situation occurs when Bob chooses
to measure the other projector P(QD), where a value of unity,
obtained with the same probability of 1 — [{QlAo)}?, can only
have occurred from an incident state of 1§2g). If Alice and Bob
choose to label one of these states as a logical 1 and the other
as a logical 0, they can establish a random bit sequence by
randomly switching between bases, independently, as before,
If 2 null, or zero, result is obtained, this time slot is discarded.
Bob simply informs Alice publicly in which time slots he
received a non-zero result and the bits transmitted in those
time slots form the key. The error-eavesdropper test is
performed, as before, by publicly comparing a randomly
chosen subset of the bit values. The probabilities and
measurement outcomes are shown in table 5. We see from

Table 5., The probabilities for the various outcomes in the
two-state protocol

Bob
Alice sends Measures Reads
1£25} bit value 1 Py Null result with probability 1
(discarded)
B(Agy Null result with probability
(€21 Ap)? (discarded)
I read with probability
1 — 2ol A
1Ap} bit value O P(Au) Null result with probability t
(discarded}
P82) Null result with probability

€20l Ac)* (discarded)
0 read with probability
1 — Kol Ag)?
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Figure 18. Schematic illustration of the transmission of
correlated particles to Alice and Bob in the EPR protocol.

the table that any null result is discarded so that the overall
probability that a transmission from Alice is useful is just
(1 — K0l Ap)1?). If the two states are from conjugate bases
this fraction is just }. The key is established from those useful
bits received by Bob. Bob just informs Alice which time slots
to use. As this is a sacrificial protocol, a random sample of
the raw key data is checked for errors and reconciliation and
privacy amplification are performed as before.

4.3, The Einstein—Podolsky—Rosen protocol

In 1992 a radically different protocol based on the properties
of quantum-correlated particles was proposed [40]. The
security of the key transrmission relies on the peculiar nature
of guantum correlation. The statistical test that is performed
to assess the integrity of the transmission is exactly that
suggested by Bell {46} to distinguish between quantum
mechanics and altermative ‘classical’ theories known as local
hidden-variable (LHV) theories. The apparently paradoxical
nature of quantumn correlation was first highlighted in a
celebrated paper by Einstein, Podolsky and Rosen (EPR)
[47]. It was shown there that a pair of correlated particles,
spatially separated and in separate light cones, could produce
what seemed to be a ‘spooky action at a distance’. The
argument was advanced that quantum mechanics was
incomplete and that there must be some ‘hidden variables’,
inaccessible in experiments, that govern the quantum
evolution. This problem was, by and large, not a central
concern until Bell [48] showed in 1964 that there was in fact
an experimentally testable difference between quantum
mechanics and these hidden-variable theories.t This test,
originally designed to distinguish between competing theo-
ries, becomes the basis of the security in the EPR protocol
of Ekert [40]. In this protocol the eavesdropper plays the role
of a hidden variable and disturbs the quantum nature of the
cormrelation thereby revealing her presence. The statistical test
takes the form of an inequality known as the Bell inequality.
Classical LHV theories should always satisfy this inequality;
quantum mechanics, however, can violate it.

In the EPR protocol, for each time slot, one of a pair of
correlated particles is sent to Alice and its partner to Bob.
This is sketched in figure 18. Alice and Bob make random

Specifically, this distinction only exists between LHV theories and
quantum mechanics, If the hidden variables are allowed to influence the
behaviour of a quantum sysiem in a non-local way, then the predictions of
quantum mechanics can be reproduced by these non-local hidden-variable
theories.

rﬁeasurements. as we shall explain shortly and, after public o

discussion, separate their results into two groups; those where
the same basis was used to form one group and those where
different bases were used to form the other. The former group
is used to establish a secret key. The lLu.er group is publicly

compared, and Alice and Bob use these data to test publicly

for a violation of the Bell inequality. If a violation is found,
they can infer that there has been no eavesdropping. If, on the
other hand, the Bell inequality is satisfied this implies the
presence of hidden variables or the eavesdropper..A nice
feature of this system is that the key does not-actually exist
in any way until Alice or Bob make a measurement. In the
BB24 protocol the key exists embedded in the data that Alice
transmits even though which bits are to be used is decided
later and the security comes about because an eavesdropper
does not know which measurement 1o perform. In the EPR
protocol when a measurement is made on one of the particles
that it introduces, in effect, a definite bit value for that particle
and its partner. Until that measurement is made, however,
neither of the particles can be said to be individually in a
particular state.

Let us consider a pair of photons labelled with the
subscripts 1 and 2 having correlated linear polarizations.
Quantum-mechanically such a state can be represented by

Wiz} = 2%00“’)1 ®190%; — 1909, ® 109, (4.7)

so that, if one particle is measured and found to be in a state
of horizontal polarization, that is 190}, the other particle will
be found to be in the orthogonal state, namely [0°). Let us now
suppose that measurements are made on each particle
independently and that each measurement is chosen at
random from one of three possibilities, namely measurement
of linear polarization defined by the axes at angles 0°, 30° and

On) I 00) eigenbasls of the
| lmﬂ) Igou) } operator I0*)
|60°}
|300) cigenbasis of the
‘90"} l120°) } operator P(307)
}120‘“) |60a) cigeabasis of the
L ) ll 50“) } operator P(60%)
1507
polarisation states T
These operators
are mutually
Incompatible

Figure 19. Diagram to show the pessible polarization bases
used in the EPR protocol. The three bases are chosen so that the
eigenstates bisect the circle equally, A maximal violation of the
Bell inequality is observed with this choice of polarization bases.
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60°. The polarization states forming the eigenbases of the
operators representing measurements at these angles are
sketched in figure 19. Each choice of measurement angle
denotes a distinct choice of basis. Let us denote the operator
representing a measurement of one of these polarizations by
P(X®) where X can take one of the values 0, 30 or 60. After
many such measureiments on a sequence of particles prepared
in the state (4.7) we should now have two sets of data: those
instances where the same operator was chosen and those
instances where different operators were chosen. This second
data set is now analysed and the following quantity, B, is
formed:

B =1+ D(30° 60°) ~ |D(0°, 30°) — D(0°, 60°), (4.8)

where, for example, the quantity D(0°, 30°) is the difference
between the probability of obtaining a different state and the
probability of obtaining the same state in the measurements
on particles 1 and 2 when the operator P(0°) was used for one
measurement and P(30°) was used for the other. Bell showed
that any theory based on assumptions of locality and
so-called hidden variables had to satisfy, in general, the
inequality B = O for any choice of three measurement angles.
This is the form of Bell's original inequality although other
versions have been given. For the three angles given, the
quantum mechanical prediction is that B= — 4 which is a
clear violation of the inequality.

Suppose now that Alice and Bob both receive, for each
time slot, a photon from a correlated pair. For each time slot
they choose, independently and at random, one of the three

- measurements of linear polarization characterized by the
“angles 0°, 30° and 60°. The first state in any basis pair, that
is the 10°), 130°) and 160°), are labelled as O bit vatues, and
their partner states in the basis, 190°), 1120°) and 1150°),
 respectively, are labetled as 1 bit values. Because the state
' (4:7) is anticorrelated, Bob (or Alice, but only one of them)
i« must perform a bit flip on his bits to be consistent with this

- 148coding. The key bits are established whenever Alice and Bob

choose the same basis. In these instances the correlation
between the particles ensures that the same bit value, after
Bob’s bit flip, is recorded by both of them. This is quite a
remarkable property of particles correlated in a way
described by equation (4.7). It is this seeming ‘action at a
distance’ whereby the measurement of one of the particies,
thereby collapsing the wavefunction and projecting the
particle into a definite state, that determines the state of its
partner. Thus, suppose that Alice measured a linear
polarization represented by the operator P(30°) and obtained
the result {120°); she records the bit value 1. If Bob also chose
to measure polarization along this axis, he would obtain the
state 130°) which after his bit flip is read as a 1 also. This
projection of the correlated particle pair into a definite state
is important as we shall see in the next section. For time slots
where Alice and Bob used different operators the data set
obtained is subjected to the statistical test outlined above

which amounts to a test for hidden variables. A small
randomly chosen subset cf the key data should also be
publicly compared to assess any residual error rate for the
purposes of reconciliation and privacy amplification.

Interferometric versions based on Franson’s [49] interfer-
ometer, developed to display violations of the Bell inequality,
have been proposed [50]. These experiments, which have not
yet demonstrated key transmission [51] have not been as
successful as the single-particle implementations of BB84
and B92 [3-9, 45). This is partly due to the difficulty of
handling correlated particles and the difficulty of finding
detectors efficient enough to demonstrate true violations of
the Bell inequality. However, it should only be a matter of
time before a prototype quantum key distribution system
based on correlated particles is operational. We have seen
that, because the EPR protocol is a rejected-data protocol, the
raw key data can also be used to assess the integrity of the
channel. Thus an adapted BB84 using six states instead of the
usual four can be used in conjunction with this EPR protocol.
As a final twist, the correlated particies can be used to
implement the BB84 protccol in full by simply restricting the
measurement set to just two conjugate operators {52]. This,
in effect, makes use of the correlated particles as an elaborate
form of state preparation. We shall take this idea further in
the next section.

4.4. The Einstein-Podolsky-Rosen protocol with single
particles

We have seen how correlated particles can be exploited in 2
secure quantum key distribution scheme. We now show how
it is possible to use precisely the same EPR protocol, with the
same level of security, using only single particles [53]. This
leads to an inieresting speculation concerning rejected-data
protocols in general. . S

Before we describe why this works, it is essential to note
two things. Firstly, the Bell inequality is derived from rather
general assumptions and its violation, or otherwise, does not
depend on any notion of which measurement was performed
first. For example, if Alice performs her measurement well
before Bob's measurement, thus projecting the particle that
travels on to Bob into a definite state, and if Bob measures
randomly and independently of Alice, as before, they will
still see a violation of the inequality for quantum-correlated
particles. Thus, although the inequality has been used to
probe questions of non-locality, it is not strictly necessary for
the two particles to lie outside each other’s light cone in order
to see a violation of the inequality. Secondly, Alice’s
measurement can be seen as a kind of state preparation. This
is illustrated in table 6 where we see that Alice’s measure-
ment, performed before Bob's, determines the state of the
photon that Bob receives. Thus Alice could maintain the
correlated particle source in her laboratory and make random
chosen measurements on one particle, as described, and send
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Table 6. The state received by Bob when Alice performs a prior measurement on

her particle

Alice's randomly chosen

Result of Alice's

State that Bob receives ' ’ 'i A

measurement basis measurement after Alice’s measurement e
(each measurement can give {each result occurs with 50% (a definite state is received e
rise to one of two results) probability) after Alice's measurement)

P(0%) 10°), 190°},

190°), 10°);

P(30%) 130°) 120,

1120%), 130°)2

P(60°) 160°) 1150°});

i150°), 160°),;

the partner particle on to Bob. Alice would, of course, know
the result of her measurement and would therefore know the
precise state sent on to Bob. Bob would randomly and
independently of Alice choose a measurement basis and
would record the results of his measurements. If Alice and
Bob subseguently compare data, they would notice a
violation of the Bell inequality on their rejected-data set.

Let us now consider the sequence of events sketched in
figure 20. We start in figure 20(a) with a pair of correlated
photons, one of which is sent to Bob and the other to Alice.
Alice and Bob make simultaneous, independent and ran-
domly chosen measurements of the polarizations. They
record their results and discuss those in which they chose a
different polarization to measure. When they form the
gquantity B given by equation (4.8), they find it is negative in
agreement with the predictions of quantum mechanics. In
other words, they find that the Bell inequality is violated. In
figure 20(b), nothing changes except that the photons both
originate in Alice’s laboratory (which for the purposes of this
sequence of thought experiments we assume to be rather
long!). Alice and Bob will, of course, observe a violation of
Bell’s inequality in this situation. Let us now suppose that the
two-photon source is much closer to Alice as shown in figure
20(c). Alice makes her measurements on one of the photons
and allows its partner to travel out of her Jaboratory to Bob.
As we have seen, the violation of the mathematical
expression known as Bell’s inequality does not depend on the
sequence in which the measurements on the two particles are
made so that, when Alice and Bob compare data, they will
still observe a violation of the inequality. Let us now suppose
that Alice prevenis the partner photon from leaving her
laboratory and substitutes another photon, prepared in
exactly the same state as the partner photon, which then
leaves her laboratory and travels on to Bob as depicted in
figure 20(d). Comparison of the data between Alice and Bob
will still reveal a violation of the Bell inequality even though
the two photons are now correlated by a deliberate act of state
preparation. There is no experiment that Bob can perform that
will allow him to determine whether the photon that he has
received has originated from a correlated source or is simply

a single photon prepared in a known state. Afier Bob’s
measurement, Alice can tell Bob both the measurement basis
and the result received bat, if she chooses not to reveal the
exact nature of her photon source, Bob cannot uncover it from
the data. Now, because Alice is choosing a measurement
basis at random, this has the effect of preparing Bob’s photon
in a randomly chosen state from one of the six possible
polarization states shown in table 6. Alice could therefore
simply prepare a sequence of single photons each photon
being in one of these states chosen at random and send it on
to Bob, recording thé state of each individual photon, This
is shown in figure 20(f). Bob performs a randomly chosen
measurement for each photon and Alice and Bob subse-
quently compare data. They will still observe a violation of
the Bell inequality on their rejected-data set. Physically, of
course, Bob cannot distinguish between a photon prepared in
a random state and a photon from a correlated pair so that a
violation of the inequality is observed in the absence of an
eavesdropper and the inequality is restored in an eavesdrop-
per's presence. In this way we can achieve EPR security by
using single photons!

It is easy to see in the correlated photon version of the EPR
protocol that the security arises from an eavesdropper
behaving like a hidden variable. The same is still true, in a
sense, for the single-photon version of this protocol
However, in the single-particle version the security arises
from complementarity and the Bell inequality, which in this
physical situation has nothing to say about non-locality, can
be derived from the quantum rules for transition probabilities.
An excellent derivation of this has been given by D'Espagnat
[54]. In quantum mechanics, possible trajectories are
described by probability amplitudes and not classical
probabilities. These amplitudes can interfere as we saw in
section 2.1. An eavesdropper’s intervention causes these
possibilities to collapse onto an actuality so destroying the
interference. It is in this sense that an eavesdropper acts as
a hidden variable for single-particle versions of the EPR
protocol and restores classical behaviour. It is an interesting
speculation that a rejected-data protocol can only be made
secure, in general, if the bases chosen lead to a violation of
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Figure 20. Sequence of figures to illustrate the transition from
a correlated particle EPR protocol to a single particie EPR
protocol. In (a) we start with the standard correlated particle
EPR system. We gradually move the correlated particle source
closer to Alice in (&) and (c) whiist still operating the standard
EPR protocot for correlated particles. In (d), Alice sends on a
single particle that has not interacted with the correlated particle
source. This particle is prepared in the state that would have been
transmitted to Bob in the standard correlated particle version. In
() and {f) we see that Alice does not in fact need to prepare any
correlated particle to cause the data to show a violation of the Bell
inequality. By establishing a correlation between her state
preparation and Bob’s measurement in this way, Alice can
implement the EPR protocol with singie particles.

a suitably chosen Bell inequality [44]. In the next section we
shall continue in speculative vein and examine some future
technologies and their implications.

5. Future directions
5.1. Quantum key distribution on optical networks

Quantumn key distribution is an intriguing and exciting
possibility. However, its implementation on point-to-point
links, as we have so far discussed, is only of limited
applicability. If quantum key distribution can be made to
work on the next generation of optical networks its potential
impact could be considerable. At BT we have developed
several techniques that will allow the implementation of
these quantum techniques on optical networks [55, 56]. For
the purposes of brevity we shall consider here only one
network configuration, that of a branched or tree
configuration network [S5]. A schematic illustration of such
a network is shown in figure 21. Alice now plays the role of
broadcaster—gatherer and there are now N Bobs, labelled
Bob(1) to Bob(N), who can receive downstream signals from
Alice and send messages in the upstream direction. The
network configuration that we have sketched in figure 21 is
known as a ‘double star’ and it has two layers of optical
splitters. A classical multiphoton signal from Alice will be
split at these points and a copy of the signal will travel along
each emergent path. Eventually each Bob will receive a copy
of the original signal transmitted by Alice. Single photons,
as we have seen, behave in a very different way at optical
splitters.
A single photon sent by Alice cannot be split or copied 50
that at each splitting layer it will be found in one, and one
only, of the possible outputs. The consequence of this is that
any single photon input by Alice at the head end will be
received by one, and one only, of the Bobs. Which Bob
receives any given single photon is purely a matter of
probability. Thus, in order to establish secret and individual
keys with each of the Bobs, Alice sends a randomly coded
sequence of single photens as before for the point-to-point
quantum key distribution scheme. Each photon in this initial '
sequence percolates through the network and reaches one of
the Bobs. Which Bob receives a given photon is indetermin-
istic and the sequence of time slots for which a given Bob
receives a photon will differ for each separate key trans-
mission by Alice. Therefore, a random and unique subset of
Alice’s tranmission is received by each Bob. This procedure
is equivalent to setting up N distinct point-to-point quantum
cryptography links betwzen Alice and each of the Bobs. On
average, therefore, assuming equal splitting ratios at each
layer, each Bob receives a binary string of length D/ where
D is the length of Alice’s initial transmission. This procedure
is sketched in figure 22 for a simplified network consisting
of only one splitting layer and three Bobs. It is worth noting
that any of the quantum key distribution protocols, including
the correlated particle EPR protocol, can be implemented on
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2 Bob(3) machine, In order to see why this invention has caused such
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Figure21. Schematic illustration of a tree-connected network
in a ‘double star’ configuration. Each network node, repre-
sented by a square, is an optical splitter. Alice plays the role of
broadcaster—gatherer and there are N users on this network.

this optical network. Techniques for using quantum cryptog-
raphy on other network configurations have been discussed
elsewhere [55, 56].

3.2. Quantum computing and public key systems

It is an intriguing possibility that quantum mechanics, in the
shape of quantum cryptography, will have a significant
impact on the security of our future networks. However, if
recent ideas prove practicable, quantum mechanics could
have a far more serious impact on security provision. In an
(as yet), unpublished manuscript Shor [23] of AT&T
Laboratories has shown how quantum mechanics can be used
to attack some of the most popular cipher systems in use
today. In essence, he provided an algorithm to perform a
mathematical operation that will run on a quantum computer.
The interest lies not in the operation itself, which can be run

time slot
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Flgure 22. An example of a key transmission on a simplified
version of figure 21 with just three network users. We see that
each user receives a unigue set of single photons and hence a
unique bit string.

a stir we shall have to re-examine some of the ideas that we.
developed in section 1. Cer

The kinds of conventional cipher systems that we have s
far examined rely on Alice and Bob having either the same
secret key, or different secret keys that are easily-derived
from each other. For this reason such systems are known as
symmetric cipher systems. A principal difficulty with these
kinds of systems is, of course, that of key distribution. In
1976, Diffie and Heliman developed a new kind of
cryptography known as public-key cryptography, In cipher
systems of this kind, every user has two keys: a public key
and a private key known only to them. Suppose that Alice
wished to send a secret message to Bob using a public key
cipher system, She would obtain Bob’s public key, which
could be published in a directory, and use it, together with
a public key algorithm, to encrypt her message. The
algorithm is such that it is easy to recover the message from
the ciphertext with the private key but extremely difficult to
do so with only the public key. The public and private keys
are in fact related and the public key is generated from the
private key quite easily. The reverse process, deriving the
private key from the public, however, is extraordinarily
difficult. A simple example of mathematical functions which
possess this asymmetry is multiplication and division. It is
easy to see that the prime numbers 83 and 127 multiplied
together give 10 541. The converse is not true; given the
number 10 541 it is not an entirely trivial task to determine
its factors. As the prime factors become larger, this task
becomes almost impossible and even the best factoring
algorithms can take months, or even years, on a powerful
computer to determine the prime factors of a large number,
It is on this difficulty of factorization (and other similarly
asymmetric mathematical operations} that the security of a
public key system rests.

Although mathematicians have not been able to prove that
factorization is a difficult problem,t there is a strong
suspicion that it is. However, these assumptions of difficulty
have been based on the capabilities of a classical computing
machine, that is a computer obeying the laws of classical
physics. Classical physics is only a subset of guantum
mechanics and, if the definition of a computer is enlarged to
include machines that can exploit the extra features of
quantum mechanics, certain calculations can, in principle, be
performed much much faster on a quantum machine. Deutsch
[22]1aid the foundations for this in 1985 when he generalized

+'Difficult’ in this context relates to the amount of time, or number of logical
operations, that it would take a computer to solve the problem. Certain
preblems, for example, have been shown to require an exponential amount
of time to solve in the sense that the solution time goes as exp n, say, where
n is the size of the input.

o
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the concept of a Turing machine to include the physical
operations allowed by quantum mechanics. This was an
important step forward and showed that mathematical
models of computation, such as that of a Turing machine, do
depend on the specific physics under which such a device is
assumed to operate. It was not until very recently, however,
that Shor [23] explicitly derived an algorithm for a quantum
computer, consistent with the general quantum computa-
tional rules of Deutsch, that could perform the operation of
factorization many orders of magnitude more quickly than
the equivalent calculation on a classical machine. Problems
that mathematicians had previously thought to be very
difficult to solve could, in principle, be solved in seconds by
a quantumn computer.

The security of public key cipher systems depends on the
supposed difficulty of certain mathematical operations. Shor
has shown that at least some of these operations are no longer
difficult when performed on a quantum computer. Although
still many years away, quantum computers have sounded the
death knell for public key cipher systems. Surprisingly,
perhaps, quantum key distribution systems are invulnerable
to this threat from quantum computers. Even a quantum
computer cannot beat the uncertainty principle. It is our guess
that, as technology edges nearer the capability of building a
quantum computer, we shall see the re-emergence of
symmetric cipher systems supported by the invulnerability of
quantum key distribution.

5.3. The future?: final remarks

It is difficuit to overemphasize just how radical a departure
from classical techniques quantum cryptography is. With
quantum cryptography we see the potential of quantum
mechanics to lead to fundamentally new techniques in
information processing. A classical device simply cannot
achieve the functional capabilities of a quantum key
distribution system. In quantum computing the case is more
evident, the whole theoretical framework of classical
computing machines, as developed by Turing, is based upon
assumptions of classical mechanics. The laws of classical
mechanics have been superseded by the more complete
structure of quantum mechanics. In these terms it is not
altogether surprising that classical notions of information
processing have had to be revised.

From its beginnings in the visionary work of Wiesner,
quantum cryptography has progressed from concept to
laboratory demonstrator. We hope that we have conveyed in
this article some of the excilement of this journey. Quantum
cryptography is a multidisciplinary field and we have touched
on many aspects of communications technolegy, crypto-
graphy and basic physics. Bennett and Brassard’s extension
of Wiesner's work to key distribution and the developments
in quantum computing have triggered an explosion of effort
worldwide. The next few years will undoubtedly see major

advances in these areas. It has been our aim in this article to
give an account of the current state-of-the-art developments
in quantum cryptography from the broad theoretical canvas
to the detail of the experimental implementation. We hope we
have also given you a glimmer of what the future might have
in store for us.

The synthesis of quantum mechanics and information
processing has heralded a new era in secure communications.
The twin technologies of quantum computing and crypto-
graphy present us with both threat and oppottunity. In the
case of quantum computing those opportunities and threats
are almost certainly many years away; quantum cryptogra- .
phy, at least as a laboratory demonsirator, is already here. The -
successful demaonstration of this technique in the laboratory
has given fresh impetus 1o efforts in quantum processing. We
are only just beginning to be aware of the potential of
quantum systems for processing information in a radically
different way. The future is guantum and tomorrow'’s
information technologists will have to be conversant with
quantum mechanics to stay ahead of the field.

Acknowledgements

We would like to thank our colleagues Steve Barnett, Keith
Blow, Rodney Loudon, John Rarity and Paul Tapster without
whom much of this work would have been impossible. We
are also indebted to Gilles Brassard for many illuminating
and stimulating discussions over the past few years and to

Mark Stirland for his continued support.
i

A
References ot
[1] Bennett, C. H., Besseue, F., Brassard, G., Salvail, L., and Smelin, .!:.
1692, J. Cryptol., 5, 3-28.
Wiesner, S., 1983, Sigact News, 15, 78-88 (1983) (original manuscnpt
written about 1970).
Townsend, P. D., Rarity, J. G., and Tapster, P. R., 1993, Electron. Lelt.

i2

[3

29, 634-635. - dddy
Townsend, P. D, Rarity, J. G., and Tapster, P. R., 1993, Electron. Le:t..
29, 1292-1293.
Townsend, P. D., and Thompson, L, 1994, J. Mod. Optics, 41 ;
2425-2434, !

[4] Muller, A., Breguet, J., and Gisin, N., 1993, Europhys. Lett., 23,44
383-388. i

(5} Townsend, P. D., 1994, Electron. Lett., 30, 809-810.
{6} Marand, C., and Townsend, P. D., 1995, Optics Lett. (submlued).
{7] Marand, C., and Townsend, P. D., 1995, Electron. Leit. (submittbd). !
18] Franson, 3. D., and Ilves, H., 1994, Appl. Optics, 33, 2949-2954. ?{';;

Franson, J. D., and Ilves, H., 1994, J. Mod. Optics, 41, 2391-2396. i
[9} Hughes, R. I, 1995, Prwate commumcauon. 1995, Contemp. Phys' ‘:‘

36, 149-163. ’ 'm

£10] Shannon, C. E., 1949, Bell Syst. Tech. J., 28, 656-715.

{11] Beker, J., and Plper F., 1982, Cipher Systems: the Protection of
Communications (London: Northwood Publications). Wy, Y m
Brassard, G., 1988, Modern Cryptology, Lecture Notes in Compu: ¥ il
Science, edited by G. Cioos and . Hartmanis (Berlin: Springer).y

[12] Vernam, G. §., 1926, J. Amer. Inst. Electr. Engrs, 45, 1091135,

{13] Chambers, W. G., 1985, Basics of Communications and Codmg
(Oxford: Clarendon), chapter 9, pp. 207-210.




“

Quantum cryptography 195

{14] Denning, D. E. R., 1982, Cryptography and Daia Securiry (Reading,
Massachusetts: Addison-Wesiey).

15] Erdmann, E. D., 1992, M.Sc. Thesis, University of London.

16] Diffie, W., and Hellman, M. E., 1976, {EEE Trans. fnf. Theory, 1T-22,
644-654.

17} Bennett, C. H., and Brassard, G., 1984, Proceedings of the IEEE
International Conference on Computers, Systems and Signal Process-
ing, Bangalore, 1984 (New York: IEEE), pp. 175-179.

8] Bennett, C. H., Brassard, G., Breidbart, S., and Wiesner, S., 1982,
Advances in Cryptology: Proceedings of Crypto 82 (New York:
Plenum), pp. 267-275.

19} Drummond, P. D, and Caves, C. M., 1992, Quantum Measurements
in Optics, edited by P. Tombesi and D. F. Walls (New York: Plenum),
pp. 279-294.

20] 1987, J. Mod. Oprics, 34, Nos, 6-7.

21] 1994, I Mod. Oprics, 41, No. 12.

22) Deutsch, D., 1985, Proc. R. Soc. A, 400, 97-117.

23] Shor, P., 1994, in Proceedings 35th Annual Symposium on Founda-
tions of Computer Science (IEEE Computer Society Press),
pp. 124-134.

24] Feynman, R. P., Leighton, R. B., and Sands, M., 1964, The Feynman
Lecures on Physics, Vol. 3 (Reading, Massachusetts: Addison-
Wesley).

25) Sakurai,J. J., 1985, Modern Quantum Mechanics (Reading, Massachu-
setts: Addison-Wesley).

26] Blow, K. 1., and Phoenix, 8. 1. D., 1993, J. Mod. Optics, 40, 33-36.

27} Wootters, W. K., and Zurek, W. H., 1982, Nature. 299, 802-803.

28] Phoenix, S. J. D., 1993, Phys. Rev, A, 48, 96-102.

29] Bennett, C. H.,, Brassard, G., and Robert, J.-M., 988, S/IAM /.
Compur., 17, 210-229.

30] Liitkenhaus, N., 1995, Phys. Rev. A (submitted).

31] Bennew, C. H., Brassard, G., Crepean, C., and Maurer, U. M., 1995,
IEEE Trans. Inf Theory (10 be published).

32] Wegman, M. N, and Carter, J. L., 1981, J. Compur. Svsi. Sci., 22,
263-279.

i3] Bennett, C, H., 1992, Phys. Rev. Letr., 68, 31213124,

34} Louden, R., 1983, The Quantum Theory of Light, second edition
{Oxford University Press).

imonJ. D. Phoenix obtained his B.Sc. in Theoretical Physics from
the University of York in 1986 and joined the
quantum processing group at BT Laborato-
ries in September 1989 having completed his
Ph.D. in Theoretical Quantum Optics under
the supervision of Professor P. L. Knight at
Imperial College, London. His research
interests are focused on the application of
novel quantum phenomena to telecommuni-
cations.

[35] Townsend, P. D., and Poustie, A. J., 1995, Optics Letz., 20, 37-39.

{36] Owens, P. C. M., Rarity, J. G., Tapster, P. R., Knight, D., and
Townsend, P. D., 1994, Appl. Oprics, 33, 6895-6901.

[37] Lacaita, A., Cova, S., Zappa, F., and Francese, P. A., 1993, Optics Lett.,
18, 75-77.

[38] Zappa, F,, Lacaita, A., Cova, S., and Webb, P., 1994, Oprics Le., 19,
846-848.

£39] Stenholm, S., 1992, Ann. Phys. (N.Y.), 218, 233-254.

[40] Ekert, A. K., 1991, Phys. Rev. Lett., 67, 661-663.

[41] Bamnett, S. M., and Phoenix, S. J. D., 1993, Phys. Rev. A, 48, R5-R&.

[42] Cover, T.M., and Thomas, J. A, 1991, Elements of Information Theory
(New York: Wiley).

[43} Barnew, 5. M., and Phoenix, 5. I. D., 1991, Phys. Rev. A, 44, 535~
545.

[44] Barmett, $. M., Huttner, B., and Phoenix, $.J. D., 1993, J. Mod. Oprics,
40, 2501-2513.

[45] Marand, C., and Towsend, P. D., 1995, Unpublished.

[46] Bell, 1. S., 1987, Speakable and Unspeakable in Quantum Mechanics
(Cambridge: Cambridge University Press),

[47] Einstein, A, Podolsky, B., and Rosen, N., 1935, Phys. Rev., 47,
777-780.

{48] Bell, J. 8., 1964, Physics, 1, 195-200.

[49} Franson, I. D., 1989, Phys. Rev. Lett., 62, 2205-2208.

[50] Ekert, A.K., Rarity,J. G., Tapster, P.R., and Palma, G. M., 1992, Phys.
Rev. Letr, 69, 1293-1265,

[(51] Rarity, J. G., and Tapster, P. R., 1992, Phys. Rev. A, 45, 2052-2056.
Rarity, I. G., Bumett, J., Tapster, P. R, and Paschotta, R., 1993,
Europhys. Lett., 22, 95-100).

[52} Bennett, C. H., Brassard, G., and Mermin, N. D., 1992, Phys. Rev. Lets.,
68, 557-559.

[53] Bammett, S. M., and Phoenix, 5. I. D., 1993, /. Mod. COptics, 40,
1443-1448,

[54) D'Espagnat, B., November 1979, Sci. Amer., 128-140.

[33) Townsend, P. D., Phoenix, 5. J. D, Blow, K. 1., and Barnett, S. M.,
1994, Electron. Leg,, 30, 1875-1877.

[55] Phoenix, 8. I. D., Barneu, S. M., Townsend, P. D., and Blow, K. J,
1995, J. Muad. Optics (to be published).

Paul D. Towsend obtained the degrees of B.Se. in physics from the
University of East Anglia in 1983 and Ph.D. from
the University of Cambridge in 1987. He gained
post-doctoral experience at Cambridge and Bell-
core working on novet photoexcitation and
charge transport mechanisms in polymeric semi-
conductors. Since joining BT in 1990 he has
worked on the quantum properties of light and the
potential application of these properties to optical
communications.

LR . TR L)

Yiorrl me s







PHYSICAL REVIEW A

VOLUME 48, NUMBER 1

JULY 1

Quantum cryptography without conjugate coding

Simon J. D. Phoenix
BT Research Laboratories, Martiesham Heath, Ipswich IPS 7RE, United Kingdom
(Received 16 July 1992)

We extend the quantum key distribution method of Bennett and Brassard [IBM Tech. D'scl. Bull. 28,
3153 (1983)] by exploiting a nonconjugate coding scheme. Using this scheme we are able to show that
the original method of Bennett and Brassard gives optimal security.
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L INTRODUCTION

One of the most intriguing and exciting recent develop-
ments in quantum mechanics has been the prediction and
demonstration of a cryptographic key distribution
scheme, the security of which is guaranteed by the laws
of physics, or, rather, the laws of quantum mechanics
[1~3]. The security of these schemes is dependent on the
uncertainty principle at a single-particle level. In an in-
genious extension to these ideas, Ekert has shown how a
quantum-correlated communication channel can be ex-
ploited to provide both secure key distribution and secure
key storage [4]. The degree of security for the key distri-
bution has been shown to be equivalent for hoth the
Bennett-Brassard and Ekert schemes {5]. What has not,
to my knowledge, been demonstrated is that the use of
the conjugate coding technique of Wiesner [6} affords op-
timal security for the distribution of the key. One of the
aims of the present work is to show that this is indeed the
case.

We shall begin by defining the basic notions of quan-
tum alphabets and channels. We shall introduce a mea-
sure of conjugacy for alphabets based on the information
rate of a quantum channel [7] and relate this to the abili-
ty to distribute the key in a secure fashion. By consider-
ing an appropriate generalization of the Bennett-Brassard
scheme [1,3] to nonconjugate coding we shall show that
conjugate coding does indeed provide optimal security.
We shall consider only those schemes for which the al-
phabet symbols are orthogonal although the alphabets
are not mutually conjugate. A cryptography scheme can
be developed (8] for which the aiphabet symbols are not
orthogonal, but the aiphabets themselves are conjugate.
This latter scheme is related to the recent work of Ben-
nett [9]. We shall also discuss briefly ways in which the
effectiveness of the Breidbart hasis for eavesdropping [1]
can be reduced.

II. QUANTUM ALPHABETS

A quantum communication channel is one for which
the channel transition probabilities are, in the absence of
noise, solely governed by the rules of quantum mechan-
ics. The channel is represented by a set of Hermitian
operators which describe the physical properties of the
channel. Simple examples of quantum channels are the

1050-2947/93/48(1}/96(7)/506.00 48

free-space transmission of single particles such as ele
trons or photons. What makes these channels truly quar
tumn mechanical is the possibility that the transmissic
and reception may occur using different ajphabets an
that the transition probabilities for these alphabets ar
entirely determined by the laws of quantum mechanics. 1
ts the features that quantum mechanics introduces whic'
make such channels particularly interesting. We ca
think of the Hermitian operators which describe th
channel as being the generators of a set of eigenstate
which can be used as the symbols of an alphabet. The al
phabets need not necessarily contain afl the eigenstatas o
a particular operator as its symbols, nor, indeed, do the:
need to contain symbols generated by only one operator.
However, as we shall see, the effectiveness of the alphabe!
is reduced unless o/l the symbols asscciated with a unique
operator are employed.

In order to make some of these notions more precise
we shall concentrate on a communication channel be-
tween two legitimate users who we shall call “Alice” anc
“Bob.” Alice will transmit messages to Bob using a par-
ticular alphabet and Bob will attempt to read the message
in his own aiphabet. The mutual dependence of the
transmitted and received alphabets determines the infor-
mation transmission rate of the channel. Initially we
shall suppose that both Alice and Bob are using alphabets
generated from a complete set of eigenstates of the Her-
mitian operators A and 5, respectively. The eigenvalue
relations for these cperators are

Ala)=aia;), BB, )=88.) (2.1}
so that we adopt the terminology that Alice uses the al-
phabet {|a}] sourced by the operator A with a similar
terminology employed for Bob. We shall make the sim-
plifying, but not restrictive, assumption that the alpha'-:
bets used by Alice and Bob each have ¥ symbols. Thi§
situation is shown schematically in Fig. 1. In general, 4
and B are different operators so that Alice and Bob
transmit and receive in different alphabets. The charmCE
transition probabtlities, in the absence of noise, are deter;,
mined by the expansion coefficients of the symbols of ong,
alphabet in terms of the other. Thus for the channel thak
we have just described we find that the probability tha

Bob receives the symbol |5, ) given that Alice transmit’

ted the symbol |a; ) is just

%6 ©1993 The American Physical Socict)’é
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ALICE BOB sion and reception alphabets are employed. For the sim-
AN ~— Ple exampie we have discussed above, this average lost in-
(e > 16 > formation is given by
N
o > 2> 1nN—J(A.B)=—F _2 2 ;|8 *inl (a; 1B 7
channel transition probabilities ’ j=lk=
- 2.6)
Thus N bits of information {in suitable units} are lost if
; . the communication channel is sourced at input and out-
low > {8 > put by conjugate operators. We can define a dimension-
less quantity @ which gives the fraction of information

FIG. t. Schematic iilustration of a quantum communication
channel in which Alice transmits data using a quantum alphabet
i{a]) and Bob receives using the quantum alphabet |{8}). Al-
ice and Bob’s aiphabets need not necessarily be the same.

P(Bk|a_,-

where we have employed an obvious, albeit not strictly
rigorous, notation. If we now assume that Alice chooses
the symbois of her aiphabet with equal a priori probabli-
ties so that

={a;|B M, (2.2}

!
Plaj)=~, (2.3)

then the system mutual information, denoted by J( 4, 8),

is just given by {7]

L1
v

-~

. N N
J(4,B)= 3 3 K80 Pinl(alpo 1
=1 k=

-

2.4

This quantity is just the mutual information per transmit-
ted and received symbol averaged over both the input
and output alphabets. Maximizing J( 4,8} over the in-
put alphabet gives the channel capacity, which in this
case is just In¥. It should be noted that this is also the
f:hannel capacity for a perfect classical channel with finite
input and output alphabets of equal size.

We now introduce an information-theoretic definition
of operator conjugacy. Two operators A and B are said
t0 be conjugate if their system mutual information is pre-
cisely zero. From (2.4) this implies that each input sym-

:ol is equally likely to cause any output symbol and we
ave

1
|<a:jt,3,t)|2=-j\—r : (2.5)

We have arrived at Wiesner’s definition of conjugate vari-
ables [6] from the perspective of information theory.
This tefls us that Alice and Bob can exchange no infor-
mation on their channel if the alphabets they use are
$ourced by conjugate operators. In such cases we shall
simply describe the alphabets as being conjugate to one
another. The difference between the mutual information
when both Alice and Bob use the same alphabets and the
Mutual information when different aiphabets are used is
the amount of information losr when different transmis-

lost by measurement of different alphabets at the input
and output of the channel by writing

o=1— J(d.) =1-— “‘f‘f) . 2.7

J(A,A) J(B,B) .

Q varies between 0 and 1 and is zero only when the same
alphabets are measured at the input 2nd output, that is,
no information is lost. If the input and output alphabets
are conjugate, then Q=1 and ail of the information is
lost. We can express this in another way. Let us suppose
that Alice transmits the symbol !a ) and that Bob mea-
sures the conjugate operator 5. After the measurement,
Bob cannot reconstruct the information about A con-
tained in the original state. It is this irreversible loss of
information about the conjugate variable upon measure-
ment which enab'es the quantum key distribution scheme
to work.

Suppose now that Alice and Bob are to try and use
their conjugate alphabets to distribute a key for use in a
cryptographic appitcation. The protocol can be summa-
rized as follows. Alice and Bob decide to use alphabets
sourced by the operators A and B. Alice and Bob are
free to choose which of these aiphabets to use. They map
each of the conjugate alphabets onto a new alphabet of ¥
symbols 1,2, ..., so that if Alice transmits [a;) and
Bob measures A then Bob reads the symbol “/; if Alice
transmits |8, ), which is also equivalent to the symbol j,
then Bob has to measure B in order to be certain of read-
ing the symbol j from Alice’s transmission. Alice and
Bob transmit and receive, respectively, by randomly
choosing between the two alphabets. Alice and Bob will
now have a string of symbols such as

3,16,N—4,25,7,N—12,..., which will almost cer-
tainly disagree. Alice chooses a small subset of these data
and asks Bob to discard all of those symbels for which a
different choice of alphabet was made. Alice and Bob
should now have a set of symbols which are in perfect
agreement (in the absence of noise). Any attempt at
eavesdropping will disturb this perfect agreement. This
comes about because an eavesdropper, Eve, also needs to
make a choice between the alphabets. There will be some
symbols for which Alice and Eve have used conjugate-al-
phabets, but for which Alice and Bob have used the same
alphabet. Eve’s intervention will randomize the informa-
tion encoded in the correct alphabet and so lead to the
possibility that Alice and Bob will obtain a different re-
sult even though they have used the same alphabet. Alice
and Bob will be atle to determine whether or not an at-
tempt at interception has been made.
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Let us formalize the above discussion. Suppose that
Alice transmits the symbol j as the state l@; ). In the ab-
sence of any interception, Alice and Bob will only agree
to use this information if and only if both Alice and Bob
use the same alphabets. In this case, for example, Bob
will have chosen to orient his detection apparatus to mea-
sure the operator A and will, with unit probability, have
measured the symbol ;. The situation is different in the
presence of an cavesdropper. Suppose that the eaves-
dropper, Eve, chooses to measure A. In this case Eve
will read the symbol J with unit probability. Shen then
transmits the state lee; > to Bob who can decide to mea-
sure either of the conjugate alphabets. It is important to
keep in mind the fact that Alice and Bob will simply dis-
card those results for which different choices of input and
output alphabets were used. If Eve chooses 0 measure §
then she will read the symbol j with probability 1/x.
Eve has no sensibie option other than to retransmit faith-
fully to Bob the state she thinks she has observed. This is
because Eve has no way of knowing whether her choice
of measurement was, in fact, correct. Eve then, after
measurement of ﬁ, will retransmit some State JBk ).
Upon reception of this state, Bob, choosing to make a
measurement of 4, will read the symbol j with probabili-
ty 1/N. Alice and Bob upon subsequent communication
will find, with probability (¥ —1)/N, that they do not
agree about this result. Clearly, for a perfect channel in
the absence of eavesdropping Alice and Bob mus: agree
about every result for which they make the same choice
of alphabets. Overall then, per transmission, the proba-
bility that Eve will escape detection is given by

1
N

[
sza—

1+

(2.8)

If Alice and Bob compare M results then the probabiiity
that Eve will escape detection is just (P M, If N, the al-
phabet size, is quite large then Eve’s chances of escaping
detection are approximately 2 ™Y, which rapidly becomes
negligible as M is increased. Current experimental and
theoretical key distribution schemes use an alphabet size
of N=2 [1,4,10]. In the next sections we shall restrict
ourselves to this dimensionality, noting, however, that
the dimensionality of the alphabet space can be increased.

1. XEY DISTRIBUTION
WITHOUT CONJUGATE CODING

The essential ingredient of a conjugate coding scheme
is that measurement of the incorrect variable wiil give
precisely no information about its conjugate. However,
one can envisage situations in which a measurement of
the incorrect variable will give partial information about
the other, correct, variable, We show tn this section that
a secure key distribution scheme can still be implemented
in this case although a longer subset of data is needed to
achieve a given degree of security. We shall consider an
alphabet size of 2 and shall consider the standard spin
variables as the operators which generate our alphabets.
We shall consider a spin variable aligned along the z
direction and a spin variabje aligned at angles 8 and ¢ to

z
’ a8, o)

-

FIG. 2. Geometric representation of the spin variables whic
are characterized by the angles # and ¢. .

-
i

this, This is shown schematically in Fig. 2. We label the
spin operators in these directions by &, and #(6,¢). The
non-Hermitian spin-flip operators associated with the =
direction of spin are labeled by &.. The eigenstates of
the spin-z operator can be expanded in terms of the eigen
states of &(8,$) and vice versa so that we have the expan:
sions

|+ )g,6=cos(8/2)exp(—id/2)| + ).
+sin(8/2explid/2)|~ ),

= 2as=—sin(8/2)( —ig/2}| + ?s
Tcos(@/2)explid 2} — ), | (3.

Akl s Bl

—
b

and the complementary expansions
[+ ). =explid /2)[cos(8,/2)] + Yo.6
—sin(8/2)] = ),,1,

| =), =exp(—id/2)[sin(8/2)] + V6.6
+eos(8/2) =)y ,] .

Although it is not necessary to do so at this stage we ha\(&
retained the phase factors in these expressions as these}
are important when we consider an attack using theg
Breidbart basis {1].
Let us suppose that Alice and Bob wish to set up 4
secure key distribution scheme using the two alphabetsg
gencrated by these spin operators, The alphabets consiS_‘
of the z states {|+),] and the @-states {1£)54]. Alicg
sends to Bob a random sequence of the symbols “1”" and
“0” by randomly choosing between the states of these al¥.
phabets. Alice and Bob will have previously agreed tc
read a spin-up result as a logical | and a spin-down resul,
as a logical 0. In the absence of interception, the proba
bility that Bob will read the symbol that Alice actually
sent is just -

P{Bob correct: no interception)=1—3‘sin2(9/2) . #

uar
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After Alice and Bob have discarded those bits for which
they used different alphabets this probability rises to uni-
ty. Physically there can be no difference between an
eavesdropper and the legitimate receiver. Consequently
the above probability (3.3) is also the probability that Eve
will read the correct symbol. However, after interception
Eve and Bob are no longer indistinguishable as far as the
channet is concerned. This is because Eve has disturbed
the information encoded in some of the spins sent by Al-
ice. Eve must retransmit the spin in order to try and fool
Alice and Bob and, in this case, the probability per bit
that Bob and Alice agree, after discarding the appropri-
ate bits, is no longer unity but is given by

Pt{Bob correct: after Eve’s retransmission)

=1—4isin’6. (3.4)

This is also clearly equal to the probability, per bit, that
Eve escapes detection after an attempt at interception of
the key. The key distribution schemes currently in the
literature [1,3,4] all empioy conjugate coding which for
the spin operators discussed above are equivalent to the
choice §=1/2. In this case we have that the probability
that Eve escapes detection per bit is +. Suppose now that
Alice and Bob need to compare K bits of data for a conju-
gate coding scheme in order to achieve a given degree of
certainty that an interception has not taken place. Let M
be the number of bits that Alice and Bob have to com-
pare in a nonconjugare coding scheme, such as that dis-
cussed above, in order to achieve the same degree of cer-
tainty as for the conjugate scheme. The ratio of the num-
ber of bits M /K is then given by

M In($)
L= (3.5)
K In[1—1sin"6]

This ratio is plotted in Fig. 3. It should be noted that the
penalty for using a nonconjugate scheme does not become
prohibitively severe until the angle between the spin
operators is about w/3. The graph demonstrates that
secure key distribution is possible for a nonconjugate cod-
ing scheme, however the number of bits of data which
Alice and Bob need to compare to achieve a given degree
of security increases as the degree of conjugacy decreases.
The ratio M /K is also equal to the ratio of the informa-
ton gains per received bit about the cavesdropping at-
tempt for the conjugate and nonconjugate coding
schemres,

It is clear from the figure that conjugate alphabets
F9=1T/2} give the greatest degree of protection against
Interception for this particular key distribution and this
Particular eavesdropping attempt. However, there are ai-
‘ernative distribution schemes and different methods of
’fllerfteption. Alice could, for example, use biased statis-
ics in her choice of alphabets, as could Bob. Equally,
Eve could use the Breidbart basis which increases her
chances of reading the correct bit without compromising
her chances of escaping detection [3]. In the foilowing
S€ctions we examine these various options open to both
the legitimate and illegitimate users of the channel.
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Ratio of duta lengihs in bits for given security

6 (deg)

F1G. 3. The ratio of the lengths, in bits, of the data sets for
comjugate and nonconjugate coding needed to achieve the same
degree of channel security as a function of 6.

IV. THE BREIDBART BASIS
AND RANDOM STATISTICS

Eve is clearly not restricted from choosing any particu-
lar direction in which to orient her measuring apparatus.
It has been shown [3] for the case of unbiased transmis-
sion statistics and conjugate alphabets that Eve’s op-
timum strategy is to align her apparatus to measure spin
at 7/4 and to retransmit in this basis. Her chances of es-
caping detection remain at 75% per bit but her chances
of reading the bit correctly increase to nearly 85% {3].
This basis is known as the Breidbart basis. We shall con-
tinue to use this terminology for the basis which
“bisects” the alphabets, even though this may not prove
to be the optimum strategy for Eve. What should Eve do
to optimize her chaaces if nonconjugate coding is em-
ploved and one of the alphabets is, for example, only
chosen 40%% of the time, on average? Let us first examine
Eve’s measurement basis or alphabet. We shall assume
that Eve aligns her apparatus at the angles 8" and ¢’ with
respect to the z direction of spin (refer to Fig. 2). We
shall write ¢ =¢ —¢' to denote the phase difference be-
tween Eve's alphabet and the 6 alphabet used by Alice
and Bob. We should note that Eve merely orients her ap-
paratus {0 measure the Breidbart alphabet and does not
have to make a choice between alphabets. This is slightly
different to her strategy if she uses the legitimate alpha-
bets. The expansion equivalent to (3.1) and (3.2) are
achieved for Eve's basis by the simple expedient of re-
placing unprimed quantities with the respective primed
versions. The expansions of the & alphabet in terms of
Eve's alphabet, and vice versa, are easy to obtain by a
simple substitution procedure and we find, for example,
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that the spin-up state in the ¢ alphabet has an expansion in terms of Eve's alphabet given by : : ’
|+ )9_‘,—“-[cos(&/Z)cos(G'/Z)exp( —-irb/2)+sin(9/2)sin(B'/Z}exp(iaf;/2)}f + )z
+(sin(8/2)cos(g /2 lexpliw/2) - cos(8/2)sin(6" /2 Yexp(—iy/2)]|~),

[

with similar expressions for the other expansions. We It is an easy task now to determine which angle

have used the subscript £ to denote the eigenstates which  should measure 0 maximize her chances of reading

form Eve's alphabet. correct bit. we find that Eve should choose the a
We shall assume, for the moimnent, that Alice makes a given by

completely random choice between her available alpha-

bets so that each alphabet is chosen with a probability of ) 1| sin®
7. Let us further assume that Aljce transmits the state §’=tan T+cosg | 272- (
I+ 44 Eve reads the symbol 1 with a probability given

by This shows that, when Alice uses unbiased statistics

[cos(8/2)cos( 9 /2 Yexpl —i/2) choose between the alphabets, the Breidbart basis js
basis which gives the maximum chance for the ea

Tsin(8/2)sin( 6 /2)expliy/2)|2 dropper to determine the correct bit. However, this

tential advantage is of no use to an eavesdropper if
use of such a basis increases the chances for the leg
mate users of the channel to detect her presence. Guic
by previous work [1] which examines the situag
8=mw/2, we should expect that the use of this basis d.
not confer any disadvantage on the eavesdropper as far
her chances of escaping detection. The probabilitv. ¢}
Eve escapes detection is the same as the probability tt
Alice and Bob agree after having rejected those resu.
which were taken for different alphabets. This can al

and retransmits the state |+ ), to Bob. If Bob aligns his
tpparatus to measure in the 6 direction then he reads 1
with this probability also. There are two important prob-
abilities to determine. The first is the probability that
Eve reads the correct bit and the second is the probability
that Eve escapes detection. The probability that Eve
reads the correct bit is determined from the expansion
coeffictents such as those in (4.1) and, after some tri-
gonometric manipulation, we find that

P(Eve correct)=1+4 1 (1+cosd)coss” be determined from the eigenstate expansions such;;
= {4.1) and we find that, for unbiased choice of alphabql
+ Lsinf sinf’cosy (4.2) the probability that Eve escapes detection is 1
J
P(Eve escapes detection )= (1= 1sin*g" )2 — 1sin?g)+ +[2 cos’¥-+11sin8 sin29" + 36058 cosf’sind sind'cosy . (4.

&
5

f

This, of course, reduces to the expected value of  when  random choice between the alphabets. Let us supp};is-
¢=0"=m/2, but, more significantly, it reduces to the now that Alice chooses to send the 2 alphabet withy
-

value 1~ {sin’6 when 6=¢, which is our previous result.  probability P and the ¢ alphabet with probability ¥y
The question to be answered is whether Eve benefits from  such that P*+Ps# =1, Let ys also suppose that Evef

use of the Breidbart basis as far as her chances of escap- 1ot using the Breidbart basis, for the moment. Eve s alg
ing detection are concerned. For the Breidbart basis we  free to choose between alphabets and we use the Supeg
have Eve's choice 8 =6 /2 and (4.4) reduces to seript “E™ to denote the relative probabilities with which
) Eve chooses these alphabets. Let us suppose that Ali¢e

P(Eve escapes detection: Breidbart) =1 —3sin*(6/2) . sends the state |+ ), the probability that Eve reads the
correct bit | given that Alice transmitted this statc.j: $

(4.5)

given by
These results are plotted in Figs. 4(a) and 4(b) in which
we piot the graphs of the relevant probabilities for Eve in £
the cases when she does and does not use the Breidbart =PE+pPEcoslia ) . (45 }
basis. It is clear from these graphs that Eve's chances of z 9 g
escaping detection increase if she uses the Breidbart basis Working out these probabilities for all possible transmiig
when Alice and Bob employ a nonconjugate coding  ted states and combining them gives the probability thag
scheme. In fact, differentiation of (4.4) with respect to 9’ Eve reads the correct bit for any transmitted state as 2§
shows that this quantity is maximized at #=6/2. The
Bretdbart basis is clearly opttmal for Eve. For the special  P(Eve correct) ¥
case of conjugate codin , 8=m/2, Eve's chances of escap- —1.TDd £apAPE i 2 ,n g
ing dctecti;ngremain ungchanged. i I=iPspy PaPykin6/2) . {4
So far in this section we have considered only an equal A similar exercise in probability calculus gives the prob#

P(Eve correct| Alice sends|+ } )

Mar
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pility that Eve escapes detection as

PEve escapes detection}
=1—3[P§+P5—2PJP}]sin’0 . (4.8)

Both of these expressions reduce to 1 for conjugate al-
phabets and equal a priori choice of alphabets. It should
be noted that the term in square brackets is common to
both expressions and clearly Eve must minimize this
quantity to optimize her chances of successful intercep-
tion using these alphabets. However, the only parameter
which is under the direct control of Eve is the relative
probability P5 with which she chooses to measure the al-
phabets. From (4.7) and (4.8) we see that if Alice, in fact,
makes an equal e priori choice of alphabets so that
Py =1, then Eve’s choice of alphabet is irrelevant and
she could align her apparatus along a single direction. If,
on the other hand, Alice chooses P4 > 1, then Eve mini-
mizes the quantity in square brackets by choosing P5 =1.
Conversely, if Alice chooses to transmit more frequently

o
o )
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in the z alphabet, then Eve must orient her apparatus to
measure along this direction to optimize her chances. *
Eve’s strategy is based on an all or nothing choice, rather '
than a precise reflection of Alice’s transmission statistics
as we might have expected at the outset. Alice’s best ,
strategy is to remove any control Eve may have over the
channel and the only way she can do this is by resorting
to an equal a priori choice of alphabets so that P =1

As a final illustration of the kind of complexities that
can occur, let us now suppose that Alice uses biased
transmission statistics and that Eve chooses to measure in _
a single alphabet characterized, as before, by the angles 8’
and ¢'. We shall, for the moment, set the relative phase
w=0. The probability that Eve reads the correct bit is .
now given by '

P(Eve correct)= (1 +cosd')
P4 '
2

+ ——(sind sinf’ +-cosO'[cosd—1]) .

{4.9)
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FIG-_ 4. {a) The probability that Eve reads the correct bit upon interception is plotted o5 a function of 8. The solid line is for an in-
terception scheme based on the legitimate aiphabets, and the dashed line is for an interception using the Breidbart basis. The lower

87aph gives the difference between these curves as a function of 6.
ton of 8. The solid line is for an interception scheme based on the legitimate aiphabets, and the dashed line is for an interception us-
Mg the Breidbart basis. The lower graph gives the difference betwee

(b) The probability that Eve escapes detection, per bit, as a func-

n these curves as a function of 8.
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Maximizing this quantity with respect to 6 shows that
the angle Eve must choose is given by

P§siné

1—P§+Pjcosd

! . (4.10)

@ =tan"

Only if Alice makes an equal a priori choice of alphabet
does this angle exactly bisect the alphabets. The effect of
Alice's biased transmission statistics is to shift Eve’s op-
timal angle away from the Breidbart angle which bisects
the two alphabets. However, the angle given in {4.10)
merely maximizes Eve’s chances of reading the correct
bit if Eve uses some intermediate basis. We also need to
determine the probability that Eve remains undetected.
This can again be worked out quite simply by following
through all the relevant probabilities and for =0 we
find that the angle Eve must choose to minimize the

chance that she will be detected 1s given by
Plsin28
{—P4+PFcos2f

1

=ltan~ , (4.11)

which is clearly not equal to the angie (4,10} which op-
timizes Eve's chances of reading the correct bit. These
angles coincide, of course, when Alice chooses each al-
phabet with equal likelihood.

V. DISCUSSION AND CONCLUSIONS

It is easy to see from an information-theoretic
viewpoint exactly why a conjugate coding scheme has to
be optimal. It is not so easy 10 s&¢ whether a nonconju-
gate coding scheme can work when the ioss of informa-
tion on measuring the incorrect basis is only partial. We
have demonsirated in this articie that a nonconjugate
coding scheme can, in fact, give a secure key distribution.
In doing so we have established the limits of the tech-
nique and have explicitly shown that conjugate coding {1}
is indeed the optimal strategy for the legitimate users of
the channel. Our analysis has been based on the protocol
that Alice and Bob will reject any measurement for which
they used different alphabets. This is, n fact, unneces-
sarily restrictive and Alice and Bob can gain statistical
information about the eavesdropper if they are prepared
to consider some of their rejected data [11]. This reducss

the length of data that Alice and Bob will need to collect
in order to perform a reasonable statistical test on their
results to check for eavesdropping. The lower bound is
given by a conjugate coding scheme and the upper bound
is given by the protocol described in this paper.

We have examined the use of the Breidbart basis for
the eavesdropper and have shown that it is more effective
if used when a nonconjugate coding scheme is being em.
ployed. Thus not only are the legitimate users handi.
capped by having to collect more data they are also more
vulnerable to attack by an eavesdropper employing the
Breidbart basis. There is a way, however, to reduce the
effectiveness of the Breidbart basis which will reduce
Eve's chances of reading the correct bit at the expense o
having to collect more data. The essential thing to notic:
is that there are three mutually conjugate alphabets for .
rwo-dimensional Hilbert space [6]. Alice and Bob ca
reduce the effectiveness of the Breidbart basis if Alic
uses all three alphabets to transmit data. Eve is at
disadvantage in adopting the Breidbart basis as we ca
see from (4.2) and (4.4). The important thing to note
that the read and detection probabilities for Eve a:
influenced by the relative phase 1. Eve cannot but he
in disturbing the measurement statistics when using t!
Breidbart basis when ¥ =m/2. Unfortunately the use of
third alphabet which is essentially performing no usef
function other than to give statistical information abo
an eavesdropper requires the collection of more data
Alice and Bob and the use of a slightly different proto:
{12]. The benefit accrued is small compared to the ex’
complexity. It should also be noted that even though t
use of the Breidbart basis for a conjugate coding sche:
can give about 83% chance per bit for an eavesdropper
determine the correct key this statistical information <
be reduced by a privacy amplification technique [
Furthermore, with a 73% per bit of remaining undet:
ed Eve's chances of escaping detection for a reason.
data set are effectively negligible.
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We report a particular implementation of a quantum cryptographic device operating at | 540-nm wavelength
und invaiving interference between phase-modulated sidebands produced by a pair of phase modulators in the
transmitting and receiving mudules. The prnciple of operation is described in terms of both classical and
quantum optics. The method has been demonstrated expenmentally using a strongly attenuated semiconducior
laser diode. Single photon interterence has been obtained with a fnnge visibility greater than 90%. indicating
that the system can be used for quanum key disiribution, [51050-2947(99)06608-1 |

PACS number(s): 03.67.Hk, 03.67.Dd. 4279, ~¢

I. INTRODUCTION

The objective of guantum key distribution is to explott
{undamental properues of quantum optics in order to share in
seeret a random bit sequence—the key—between two users,
Alice and Bob. Once the sharing is carried out, the two par-
lies can exchange a message over a public channel by en-
cryptmg with the key a message of equal length. [f the key i
uscd only once, the message cannot be deciphered by an
cavesdropper, Eve, who does not possess the key [t). The
problem of this one-time-pad method is that the key must be
transmitted withouwt any possibility of interception. If the key
distribution is effected -by nonsecure transmission [ines, the
key can be detected by an eavesdropper without the knowi-
edge of the legitimate users. ’

One of the most unexpected developments in guantum
optics has been the demonstration of cryptographic key dis-
tribuuon schemes where security 1s guaranieed by fundamen-
tal laws of quantum mechanics [2.3] instead of by math-
emaucal algorithms as in classical cryptographic methods. In
quantum key distribution, the key is sent over a quuntum
channel. It Eve taps the line, transmission errors occur due to
the quantum-mechanical nature of photons. To detect these
crrors, the legitimate users verify statistically a set of shared
bits. [f oo many errors are detected in the verifcation pro-
cess, the users discard those bits,

Such a polarization encoding method has been demon-
strated (n a free-space transmission in anucipation of poten-
tial applications to satellite secure communications, and in a
transmission on standard optical fibers [4.3]. One of the most
spectacular results in terms of systems was the demonstra-
tion performed over a 22-km-long fiber submerged in Lake
Geneva [6]. Unfortunately, fiber transmission inevitably
leads to problems associated with polarization preservation it
standard single-mode fibers are used. Thus, in recent years,
another quantum-optic method has seen ncreased interest. In
this second method. photons with delay-coded states are
used. Encoding and decoding of the bit information are
'mplemented through optical delays introduced by a pair of
Niber interferometers characterized by tarye optical path-
length differences (typically ! m) set in the smitter (Alice)
and the receiver (Bob). The raceiver can then recognize ev-
ery bit sent by the sender if the pair of interferometers is

1050-2947/99/60(3)/1899{7)/515.00 PRA 60

closely matched in path length one 10 each other. However,
the existence of 4 noninterfering stunal, decreasiny the maxi-
mum visibility interference of 50%, requires the use of time-
gated detection and polanzation division to achieve high vis-
ibility (0.99) [7]. Moreover, the interterometers must remain
stable m the presence of environmental perturbations, i.e.,
the path-length differences in the interferometers must be
held constant, Feedback loops driving piezoelectric fiber
stretchers set in the interferometers have been used to_com-
pensate mechanical vibrations and thermal dnft. However,
despite active compensation, transmissions have been re-
ported o be limited to some few seconds (5 sec for a slow
thermal drift that cccurs at a rate of 0.6 rad/min), sufficient
only to demonstrate the possibility of key distribution over
30 km of standard fiber (7). An elegant method using Fara-
day mirrors has been proposed to overcome the effects of
polanization fluctuations in the transmission line [8]. Other
approaches, based on wavelength or frequency coding, have
also been proposed recently [9,10].

We describe here a system that uses single photons with
phase-encoded states and operating with a nonorthogonal
two-state scheme. Phase-encoded states are produced by an
integrated electro-optic phase modulator set in the transmit-
ter, which uses an attenuated semiconductor laser o produce
4 sequence of countable photons. Since to the best of our
knowledge the method is new in the area of optical cryptog-
raphy, we begin by explaining the principle of operation in a
combination of classical and quantum terms. We introduce
an approprate version of a two-state protocol [3] and relate
this to the ability to distrbute a key in a secure fashion. We
also report experimental results obtained at 1540-nm wave-
length that show some interesting features of the method,
especially its great simplicity.

L. PRINCIPLE OF OPERATION

[n the ransmission system shown in Fig. 1, the wansmit-
ter (Alice) consists of an mtegrated electro-optic phase
modutator PM, powered by a single-frequency semiconduc-
tor taser operating at angular frequency wy. referred to sub-
sequently as the reference frequency. The laser cutput is
strongly attenuated by a variable fiber attenuator {this point
is discussed in greater detail later, since the attenuation re-

1899 ©1999 The American Physical Society
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FIG. 1. Schematic diagram of the phase-modulation transmis-
slon system.

quired ditfers from that of previously reported methods). The
reference laser beam is phase-modulated by PM |, which is
driven by a voltage-controlled oscillator VCO, operating at a
fixed frequency Q but with a phase & that can be changed
candomly between two states, namely (0 and « for bit 0"
and 1" respectively. These two phase states determine the
basis used by Alice. A random bit generator G, is used by
Alice to drive the phase of VCO;. At the vutput of Alice's
modulator, light is phase-modulated, and sideband freguen-
ctes wy+ {2 and (3, — Q) are induced in the spectrum of light.
The phasc of those sideband frequencies 1s ®, . The receiver
(Bob) consists of a second phase modulator PM, driven by a
sine voltage provided by a voltage controlled oscillator
VCO, operating at the same frequency . A random bit gen-
crator G, switches the phase ®, of that sinusoidal signal
candomly between two values O and . These values will be
used by Bob to recognize the bits sent by Alice, as will be
explained in Sec. IIl. When phase modulating the light, Bob
also generates sidebands in the spectrum, including two with
frequencies w,+{) and wy—{) with phase ®,. Depending
on the value of ®, relative to @, , constructive or destructive
interference can occur between the sidebands generated by
Alice and Bob. To analyze such interference, Bob's receiver
contains a Fabry-Pérot interferometer FP and a photon
counter PC. The FP operates as a spectral filter with its trans-
mission peak adjusted at one side frequency, e.y.. w,+ (2.
Let us now assume that Alice has sent single photons in a
state P, 1n the sideband frequency w,+ () selected by the
FP. The probability that Bob detects the photon at the FP
output depends on the value he chooses for ®,. Assuming
the transmission and the detection are ideal, i.c.. lossless
and error-free, the probability is 0% as |y~ \j=7
(Alice’s and Bob's modulations out of phase), and 100% as
|, —® /=0 {(modulations in quadrature}. As Bob detects a
photon with his phase set on 0 and o, he reads bit 0" and
bit **1."" respectively. The working conditions yielding such
specific properties of the system, as exploited for quantum
key distribution, are now explained.

Initially we assume that the laser diode operates as a clas-
sical source, not strongly attenuated. Let £= £, exp(juy) be
the light field associated with angular frequency w, emitted
by the laser diode and mjected in Alice’s modulator. The
light obtained at the modulator output can be expressed as

E)=Egexpjlagt+m sint Q) +d )], (1)
where ¢ ((£)=m sin(QQz+®,) is the phase modulation intro-

duced by Alice’s modulator, and m,, (. and @, its ampli-
tude (also termed modulation depth in the following), angu-
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lar frequency, and phase, respectively. This light field is sent
to Bob’s phase modulator. yielding a light field expressed as

E ey =E(t)exp j[mysin( {0+ b)), (2)

where diyt o) =m, st{}; ¢ +®,) is the phase moduiation pro-
duced by Bob's modulator, with m,, ,, and &, its ampli-
tude, angular frequency, and phase, respectively. Setting
0Q,=0,=0 and m,=m,=m, we obtain

E-tt)=Eqyexp jlag+A sinf{Q+ (¢, +$,)72}], (3)

with A =2m cos{{®,— b2}, Finally, the light field at the
spectral filter output s the spectrum in amplitude of £,(¢). It
can be calculated by expressing Eq. (3) as a series of Bessel
functions. Recalling that

£

expljA sin g} = 2 J A exp(jnd) and

S l=Ay=(=1)"1,(A),

where /,, is the nth-order Bessel function, Eq. (3) can also be
writlen s

oo

Ex)= 2, J[2mcos{(d,—d,)/2}]E,

Xexpj[{wy+nfd)t+n(db +®,)/2. (4

Assuming the modulaton depth m is much smaller than 1
rad, the expression for £,(¢) can be approximated as

Eyfr)=t{2m cos[ (D, ~ D | V2THE exp j(wyt)
—J {2mcos{(d,— D )R2]}E, exp i wo— )t
—( B +)2)+ 5 {2mcos[ (P, — D)2} E,
Xexp jl{wyg+ e+ (D, +D,)/2]. (3)

The light feld E4{¢) at the output of Bob's modulator is
formed by a center spectral component at frequency w, and
two side components at wy+ () and wy—(}. The Fabry-
Pérot selects the wy+ () frequency. Assuming again that the
modulation depth is small (m<€ 1), the intensity in the center
band is £; while Bob detects at his Fabry-Pérot output an
intensity expressed as

i=Eg/H2m cos[ (b, - )/2]}
~4m?EL cost{ (b, — b )/2). (6)

This intensity is rnaximum if |[®,—® | =0 and minimum
if |[®,—®,|=a. Note that the intensity of the center fre-
quency component can be considered to be constant, since
the modulation depth is negligibly small (/o{2m cos[(®,
= }2]}~1 for m<1). This system is formally equivalent
to a system providing constructive or destructive interference
between the phase-rnodulated sidebands generated by Alice
and Bob. One of the advantages is that no optical interfero-
metric scheme is required,
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Let us now consider the system operalion when the laser

diode is strongly attenuated. The output from a laser operat-

mg well above threshold can be described by a coherent
state.  The probability of observing a1 photocount

with  a detector at ume ¢ s proporuonal 0 Py

=, 0W1E T (OE (W, with
z Ja,expt = jwil, {7
E-tty=—j2 &lwha, expljwl). (8)

b w i )
flw)=i5——=—7! . (9}
Jeg(lm)

where €, 18 dielectie permittiviey of vacuum, ¢, and a | are

the anmhilation and creation operators. and [ W), 15 the co-
herent state describing the field incident on the detector. [ni-
urally. the quantum feld emited by the source is W)
=|cr, 30} 0) where two zero excitations are related to the

"y
two sidebands. At Alice’s modulator output, the coherent
state describing the quantum field can be deduced from Eqg.
(2) and by considering that the modulation depth m is suffi-
ciently small tc obtain an average photca number in the side-
bands much smaller than [. The coherent state at Alice's
modulator output can then be written as o superposition of
coherent states:

W)y = Lt dexpl = ® ), -)exply @ )ty ).
(1)

~ Bob performs the same operatton as Alice but introduces
a phase @, . Similarly, the state describing the quantum ficld
at his modulator output is given by

Yy ="er,)

-7 )= expl —j‘b:)]ﬂm(rn)

X [expi by +exptyba) e, o) (e

After spectral filtering, the state detected by the single
photon detector is

Mo =1|0)ilexptj® ) —expljPy) ey, —a). (12)
and the probability of photocount is proportional o

Py=(a, —alle /21072

Kl gl )Y Hwa el
KX Gl g e, ) (13)
Recalling that @, e, ) = w0, we nally vbran

P =4&(w) cos’[((®y—®)i2)(n,, .q)

=pcos{(d,—b)/2], (i4)
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TABLE [. Protoco! for secret key transmission in the absence of
an cavesdropper.

Bit sent hy Alice ot i

Phase used by Alice 0 T

Phuse used by Bob T 0 T 0

Photon detected by no yes yes no
Bob

Bit received by Boh ? 0 | ?

Detection announced no yes yes no
by Bob

Common bits shared o e

Prcbability for pheton 0 pld pld 0
detection

where (nmﬂ_n)=(cr,uo,nla‘:n_nawfntawrﬂ) is the aver-
age photon number at the detector in the sideband frequency
wo+ (), and p represents the probability of photocount per
pulse, including the quantum efficiency of the detector.
Equation (14) is formally equivalent to Eq. (6). Physically,
Eq. (14) may be regarded as single photon interference that
occurs at the FP output between the quantum fields of the
side frequency w,+ () initiated by Alice and Bob. The prob-
ability of detecting a photon at the Fabry-Pérot output is 0
for |by—b |=m, 2 for |b,—b |=n/2, and p for
|<by - —0 We show now how this property can be used
to share a key.

OI. PROTOCOL USED FOR QUANTUM KEY
DISTRIBUTION

The protocol used is derived from the two-state scheme
proposed by Bennett [3]. We shall describe the protocol in
terms of the phase-encoded (these states should not be con-
fused with the phase operator states of quantum optics) dis-
cussed 1n the preceding section. The nonorthogonal states
used by Alice are formed by two states that differ by -, such
as ;=0 for bit “'0" and = for bit **1."" Bob makes a
measurement of each state he receives by using two phases
that differ by 1 relative to those used by Alice, such as &,
=77 (then the bit read by Bohis **17" as a photon is detected)
and 0 (bit “"0""). The protocol can be described as follows.

(i) For each transmitted photon, Alice randomiy chooses
the state of transmission to be one of the two-phase states,
namely 0 and  for bit ‘0" and bit *“[,"" respectively. Every
photon permits the transmission of a bit of information.

(ii) Bob randomly and independendy chooses his mea-
surement state (O or m) for each incoming photon.

(ii1) Bob then tells Alice, possibly over a public channel,
the results of his measurements (photon detected or not), but
not the phase that he used.

(iv) Alice and Bob agree to discard all the bits for which
no photon was detected. In the absence of an eavesdropper,
they now possess a shared random sequence of bits, which
they could use as a secret key. Those first four steps are
summarized in Table [. For instance., when Alice sends bit
“0."" the probability for Bob to detect a photocount is pi4,
meaning that the probability to have the right bit **0"" is also
pi4,

If Eve is tapping the channel, because Eve cannot know
which phases Alice and Bob will choose, there will, with
certainty approaching unity, be times when Eve’s choice re-
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large compared with the intensity variation, which is 0.2, at
the refcrence frequency component resultng from Alice’s
phase modulagon. Hence, this intensity vartation will be
masked by the photon noise of the reference frequency and
will not be detected by any intruder. [t is then recommended
1o use a non-single-photon source and a very low odulation
depth. instead of a single-photon source and a high modula-
tion depth. Note that a very low modulation depth will also
allow us to operate the modulators with very low driving
voltages, making transmission in telecommunications sys-
tems at high bit rates easier. ‘

Experiments in the quantum regime were performed by
replacing the standard photodetector by a passively quenched
germanium avalanche photodiode (APD} cooled to 77 K and
operating with a photon counter in the Geiger mode. (Details
of the APD charactenstic will be described in another article
devoted to photon counting at £540-nm wavelength.) The
DFB laser diode was modulated externally using an inte-
grated intensity modulator to produce 30-ns-duration pulses
at a repetition rate of 1 MHz. The pulses thus obtuined were
suitable for the photon counter we used. Note that the prin-
ciple of operation described in Sec. I for 4 menochromatic
source holds in the pulse regime, the phase difference &,
— & in Egs. (6) and (14) betng wavelength-independent.
The mirror spacing of the FP was adjusted to obtain a spec-
iral resolution of 36 MHz, a value thar insures a 94% theo-
retical visibility. The carrier frequency {1 was 300 MHz. The
DFB laser diode was attenuated to —80 dBm so that the
average photon number w of a side mode entering the trans-
mission fiber was 0.l/pulse. The time response of the APD
was 10 ns. The system was tested by measuring the visibility
of the single-photon interference that vceurs in the side {re-
guency at the FP output. The visibility was measured varying
Ad continuousty between 0 and 27 rad with steps of 0.25
rad. ant counting the photon number ot the FP output. The
photon counter was triggerad with the mitial light pulses and
the duration of counting was set o be 30 ns. For each value
of A®, measurement of the photon number was performed
for 107 tiggenng pulses. For instance, with the modulators
set :n phase (AP =0), we obtained an average number of
2300 counts, a value that corresponds approximately to 0.13
photon/pulse, Figure 5 shows the normalized average num-
ber of counts versus A® thus obtained. The visibility calcu-
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lated by subtracung dark counts is about 91%. Such a vis-
ibility corresponds to a quantum bit error rate (QBER) of
4%.

We note that the count cate, which was 250 counts/s, can
be increased by using a higher modulation frequency,
thereby allowing an increase in transmission rate. We did not
try o opumize this parameter in these preliminary experi-
ments.

V. CONCLUSION

In summary, we have reporied a quantum cryptographic
scheme ivolving single photon interference between phase-
modulated sidebands produced by a pair of phase modulators
in the transmitting and receiving modules. We conclude with
some comments conceminy the estimated performance and
potential advantages of the scheme as compared with
interferometer-based implementations.

(1) Polanzation-independent behavior can be expected if
the integrated LiNbO; phuase modulators arc replaced by
intensity-modulating  Mach-Zehnder inerferometers [15].
When the input polarization fluctuates, the phase difference
thus induced between the TE and TM modes in such modu-
lators 18 shown to be small (=~/30). The resulting variation
of the visibility of the single photon interference that decurs
in the side frequency at the Fabry-Pérot output is negligibly
small (<0.5%), meaning that QBER is expected to be con-
stant if the polarization fluctuates in the transmitting fiber.

(ii) Because the modulators ars quite compact, high sta-
bility against environmental thermal drifts can be obtained,
as compared with that provided by a fiber Mach-Zehnder.
The temperature of integrated modulators can be easily con-
trolled to within 107 * degrees. The comesponding variation
in fringe visibility is smaller than 0.5% and does not alter the
QBER significantly.

(i11) Since the physical principle of the scheme relies es-
sentially on interference in the frequency domain, the most
serious problems that may arise come from the possible in-
stability of the wavelength emitted by the source, and of the
frequency of the electrical signais produced by the VCO's,
either of which can degrade system performance. As an ex-
ample, if we use the same criterion as above (variation in
fringe visibility <0.5%), calculations predict that a system
operating with VCC’s with a 5 GHz modulation frequency,
and with a Fabry-Pérot with a finesse and a free spectral
range of 100 and 100 MHz, respectively, requires the laser
and the VCQ frequency to be stabilized to within 10 and 5
MHz, respectively. Finally, it appears that the needed highly
stabilized path-length differences in interferometer-based ar-
chitectures translate in the proposed scheme into require-
ments for highly stabilized electronics devices.

(iv) The sacret key is obtained by sacrificing some bits
from raw data shared by Alice and Bob to improve security.
The net secure throughput level of a two-state protocol is
known to be smaller than with a four-state protocol [14}. We

are investigating an umproved version of the system to over-
come this drawback.
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