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1. Reactor lattice

1.1. A unit cell concept

In thermal reactors fuel is arranged in lumps of rods or plates separated by a material
such as graphite, water or heavy water, in which neutrons are slowed to thermal energy
with a minimum of capture. The fuel has a cladding separating the fission products from
the cooling water. Thus, every thermal reactor, of research as well as of power type, is
heterogeneous. The fuel elements are arranged in a regular manner. The cylindrical fuel
elements with circular horizontal intersection are arranged in squares (cfFig. 1),
hexagons or rings. The fuel plates are arranged in parallel bundles. In any case the fuel
elements surrounded by moderator (coolant) form a reactor lattice which in the first
step of reactor calculations is assurned infinite. We speak about the square lattice if fuel
elements are arranged in squares, hexagonal if fuel elements are situated in corners of
hexagons etc. In any type of reactor lattice we are able to identify a repetitive fragment
composed of a single fuel element surrounded by a portion of adjacent moderator. Thus
a fictitious boundary is introduced in the middle of moderator dividing the nearest fuel
elements. The fuel rod (or plate) with its cladding and adjacert moderator portion form

a unit cell, as shown in Fig,. 1.
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Figure |: Fragment of a horizontal intersection of a square and plane lattice with a unit cell.

The form of the unit cell depends on the reactor type. For instance a typical unit cell
of a PWR type reactor is square with a cylindrical fuel rod in its centre (cf. Fig. 1). The
unit cell for TRIGA is most often hexagonal with a cylindrical rod, the MTR unit cell is
a fuel plate, cladded on both sides and surrounded by water. Typical shapes of unit cells
are shown in Fig. 2.

In the concept of the unit cell it is assumed that such a cell is a repetitive fragment of
the large reactor lattice and under this assumption a zero current boundary condition can
be imposed on its boundary. The outer boundary of the unit cell, in case of a cylindrical

fuel rod, is transformed from the rectangle, hexagon etc. into a cylinder as shown in
Fig.2.
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Figure 2: Typical shapes of unit cells,

The transformation of the outer boundary is carried out on the basis of preservation
of the volumes of all materials. For a rectangle the outer radius of the equivalent unit
cell is R = aN7z with a denoting the lattice pitch (distance between centres of direct
neighbours of fuel rods). The white boundary condition, introduced in section 2.3 of
“Introduction to the Neutron Transport Phenomena”, at the cylindrical unit cell
boundary is applicd.

In the plate unit cell concept it is usually assumed that the plates are infinite in both
y and z directions (cf. Fig.2), which reduces the problem of solution of the transport
equation to a one-dimensional one with constant flux (or zero current) boundary
condition. With this assumption the plane unit cell does not need to be transformed.
Similarly, it is assumed that for a cylindrical unit cell, the cell is infinite in the vertical
direction. This again reduces thc transport equation to a one-dimensional case in
cylindrical geometry.

1.2.  Definition of a macrocet!

Unfortunately, the fuel elements are not the only heterogeneily in the reactor core. In
power reactors the fuel elements aic combined into fuel assemblies. This is not a serious
problem, as the number of {uel elements in the assembly is large enough to assume an
infinite lattice of unit cells. The real difficulty is connected with the presence of strongly
absorbing control elements. in research reactors besides control elements (plates or
rods) there exist other {ypes of hoterogeneity as, e.g., vartous non-multiplying media
inserted for irradiation.

To account for various tvpes of strong heterogeneity a concept of a macrocell has
been created. A macrocell is again a repetitive fragment of the reactor lattice but
composed of several unit cetls. By "repetitive’ it is understood that a constant flux (zero
current) boundary condition is justified at the outer boundary of the macrocell. It is just
left to the reactor physicist to decide which region of a given reactor core can be chosen
as a macrocell. Typical shapes of macrocells are shown in Fig. 3.

The typical approach applied in reactor macrocell calculations is to solve first the
neutron transport equation for @ anit cell and then use the obtained results in the second
solution of the transport equation nver the macrocell. This two-step procedure can be
carried out by one code or by two codes with automatic transfer of information. The two



steps can use the same method of solution or different methods and/or different
approximations of the neutron transport equation. For instance, in case of a PWR
assembly the second step can be carried out for the whole, or a quarter of, the fuel
assembly using an improved diffusion theory approximation.

Sometimes for the macrocell the transport equation is solved in a rectangular
geometry with the fuel cross section area transformed into a square with volume
preservation. In that case there arise doubts if such a change of interface and outer
boundary shapes does not introduce an additional error. The effect can be more
pronounced for reactors with a large lattice pitch.

In order to clarify this point there have been considered four model cells composed
of a homogeneous fuel element region and beryllium moderator with the lattice pitch
equal 13 cm. The number densities for the homogenised fuel region are given in
Table 1.
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Figure 3: Possible macroce!ls with fuel rods and fuel plates with an absorber.

Table 1
Number densities of the homogenised fuel region.
Isotope Number density x 1.0E-24
hydrogen 4.1271E-02
oxygen 2.0638E-02
uranium-235 1.5254E-04
uranium-238 3.7649E-05
aluminium 2.2310E-02




The MCNP-4A [1] calculations have been performed for all the four combinations
of square and circular boundary as shown in Fig4. The first case corresponds to the real
geometry of the cell. The second is equivalent to the unit cell geometry, the third to
macrocell or whole reactor geometry and the fourth has been added for completeness.

The results are given in Table 2. It may be concluded that the change of geometry
from unit cell to square macrocell gives discrepancies of less than 2mk. However, the
unit cell geometry introduces approximately 6mk discrepancy as compared to the actual
one. Thus, calculations in rectangular geometry are closer to reality due to the error
cancellation.

The transport equation over the unit cell should be solved to get the neutron flux
distribution and eigenvalue. The diffusion approximation is not recommended here as it
can be used only in case of low neutron flux gradients. At the fuel-moderator interface
this is never the case, nor it is in the presence of strongly absorbing control elements.

1. gircubar-square {reaktty 2. circular-circular (lattice calc.)
—_ ‘
i
3. square-square (macrocei!) 4, square-circular ¢ fictitious)

Figure 4: Possible schemes of fuel element and outer ceil boundaries.

Table 2
MCNP k-inf values for a cell with homogenised fuel region
with different shapes of interfaces.

No Type of boundaries k-inf
1 cylindrical-square, reality 1.7090
2 cylindrical-cylindrical, (unit cell} 1.7031
3 square- square, (macrocell or whole reactor) 1.7094
4 square-cylindrical, fictitious 1.7054




1.3, Energy dependence

The energy dependence in lattice calculations is treated through the multigroup
approach. The number of groups dipends strongly on the actual computer code but with
current computers it usually approaches hundred and, very often, even several
thousands of groups are used to treat, eg., the resonance phenomena. However, in the
analysis of the physics for a particular type of the reactor lattice it is convenient to
distinguish several energy intervals characterised by special physical phenomena:

1. Fast energy region in which the fission neutrons emerge and the neutron energy

dependence (spectrum) follows approximately the fission spectrum.

2. The slowing-down region with the energy dependence of 1/E.

3. Resonance region in which the heavy nuclei exhibit a resonance character.

4. Thermal region where the thermalization of neutrons takes place and both up-

and down-scattering of ncutrons are possible.

The neutrons are born with energies corresponding to fast energy region. They
interact with the medium nuclei and reduce their energy in collisions. Some of these
neutrons produce fission as they are slowed down, but in a thermal reactor it happens
(by definition) with a rather low probability. The total number of neutrons generated in
fission, divided by the number of neutrons produced by the thermal fission is denoted
by & In a thermal reactor ¢ slightly exceeds unity.

In the upper energy region where the slowing-down is the main process and no
significant number of neutrons emerge from fission, it is convenient to introduce a
variable called lethargy, related to energy:

u=In(Ep/E) — Quwdu=-NE)dE, (2.1)

A maximum energy loss of a nzutron suffering a collision is:

(1-E; ,itisEf2Er2 a k;

where E; is the initial and £, final neutron energy, and a = (4-1)° /(A+1)?, with A being
the nucleus mass.

An average energy loss, or lethargy gain, per collision, ¢, is then defined and using
the just introduced quantities can be expressed as:

=1~ tnaz 22_ 2.2)
¢ A+—3;

As neutrons slow down through the resonance region, the resonance cross sections
change their magnitude dramatically in a small energy interval of few eV. In this energy
region special methods are employed in lattice calculations to take into account the
rapid changes of the coefficients in the neutron transport equation. The basic quantity
for the resonance region is the escape probability which has the meaning of the
probability for a neutron to escape the resonance absorption and in the simplified form
is equal to:

P exp («(Z)/(62) (2.3)



with (). the effective resonance integral, £ defined by Eq. (2.2) and 2, the macroscopic
scattering cross section. )

There are several effects that should be taken into account in the resonance region,
non-existent or negligible for other energies.

The most important effect is due to the fuel lumping. The neutron born in the fuel
rod or plate has to get out of the fuel area to reach the moderator and to get a possibility
of collision with its nuclei. On its way to the fuel-moderator interface it can enter into
collision with a fuel nucleus and get absorbed. Thus the fuel lumping decreases the
probability of neutrons of being slowed down. The probability of absorption in the fuel
increases with the fuel dimensions and fuel number density. The effect is called self-
shielding. The Bell factor is introduced, to relate a resonance integral of a lumped fuel
to that for fuel and moderator forming a homogeneous mixture.

If a neutron leaves a fuel rod/plate of his birth it can still enter another rod/plate of
the lattice without a collision (cf. Fig.1). The Dancoff factor is introduced to take into
account the fact that the fuel element in the reactor lattice is not isolated. Namely, the
resonance integral for the lattice of fuel rods of radius R is the same as that of an
isolated fuel pin of radius y R, where yis the Dancoff factor. It can be also defined [2} as
the reduction factor of the fuel escape probability compared to that of an isolated fuel
pin when all fuel pins are black. The correction to the resonance escape probability,
responsible for this effect, is called the Dancoff correction.

Then still there exists a flux depression caused by a resonance and the interference
of resonances of different resonance isotopes. The algorithms applied for all these
corrections vary for various authors.

The thermal region is the one where the majority of fission reactions take place. It is
characterised by existence of upscattering of neutrons as a slow neutron entering into a
collision with a nucleus can not only loose but also gain the energy. The thermal
neutron flux is a quantity of prime importance in the thermal reactor physics and several
quantities are introduced useful for the description of physical properties of various
lattices. Some of them are introduced below.

1.4.  Thermal flux distribution in a unit cell

The neutron thermal flux in the fuel region is always lower than in the moderator
because of a high absorption of neutrons by the fuel nuclei. Typical shape of the thermal
flux is shown in Fig. 5, where the dotted lines represent the average flux levels in the
fuel and in the moderator

thermal flux

7
fuel / """" - S~ moderator
1
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Figure: 5: Thermal flux distribution in a unit cell.



The quantity called flux disddvantage Jactor is used to compare the flux level in the
fuel element to the average flux in the fuel cell and is calculated as a ratio of average
flux values in the fuel and in the cell:

_ ¢ Suel

£ = (2.4)
i ¢cell

1.5. A four-factor formula’ for the infinite multiplication factor

In a thermal reactor it is convenient to divide the whole energy region into two parts:
the slowing-down energy region, where only down-scattering takes place, and the
energy region with up-scattering — the thermal region. The cross sections of any type, x,
for each of those energy regions, G, are then understood as averages over respective

energy groups, g €G-
X
Z Zg ¢g

_ geG

PP e —
Y

geG

where x is the number of neutrons per fission. We introduce the number of neutrons per
absorption in fuel (denoted by index )

n= K. (2.5)

Here the index a denotes the thermal absorption and f— thermal fission

We introduce also a quantity called the thermal utilisation factor that is equal to the
fraction of all thermal neutrons absorbed that are absorbed in uranium. With the
assumption of a negligible absorption in the moderator the thermal utilisation factor is
given by a formula:

-k 2.6
b

Otherwise Eq.(2.6) has to be muitiplied by the fuel disadvantage factor defined in
section 1.4. Thus, the number of fast neutrons produced by one thermal neutron
absorbed in the lattice can be written as 7 /. This quantity has to be corrected by the
quantity & to account for a possibility of fission caused by fast neutrons. In thermal
reactors ¢ is very close to unity and is often neglected in rough estimations. The
probability that neutrons are not captured during the slowing-down process is labelled p,
and called the resonance escape probability defined in section 1.3.

Then the number of fission neutrons obtained from one thermal neutron absorbed in

the lattice is ¢ 77:/ and the number of neutrons becoming thermal and ending the neutron
generation is



k=epfn 2.7

This is by definition the infinite multiplication factor, ., as no leakage has been
taken into account.
1.6, Neutron leakage and huckling concept

The neutron cycle in the thermal reactor starts with fission, which proceeds at a rate
S=¢x"x, (2.8)
Combining Egs. (2.5, 2.6, 2.8) the fast source is

S=¢X%fn.

Of the fast neutrons a fraction F*, which can be called the fast neutron non-leakage
probability, will slow down in the reactor, without escaping from the core and of those
the fraction g will escape the fast and resonance absorption. Thus, of the S fast
neutrons only SFep get to thermal, and the resulting thermal source is equal

S, =¢Z° pefnF = pXkF (2.9)
The diffusion equation derived in Chapter 1 is:
DVlp-3%+0=0, (2.10)
where for the thermal reactor the source term can be substituted by Eq. (2.9) leading to:
DV2p = Z9G(kF ~1). (2.11)

The constants depending on reactor materials are usually grouped into a single one,
called the buckling:

a
B2 = %(kF—l) _, (2.12)

so that Eq. (2.11) simplifies to a form of the so-called wave equation,
v2g-B%p=0 (2.13)

The flux distribution with position is given by its solution. But to solve this equation
it is necessary to select the reactor core shape. In spherical coordinates the general
solution is a linear combination
sin Br ., cos Br

+C
r r

¢ = A (2.14)
where 4 and C are arbitrary constants to be determined by information on the flux
condition at the boundary and the ccutre of the core. Since an infinite flux is not allowed
on physical grounds, C' must be equal to zero, leaving



sin Br

=4

(2.15)
r

A reasonable condition is the flux going to zero at some distance d beyond the core
boundary, i.e., at R’ = R+d. Applying this boundary condition, Eq. (2.15) gives

Since R’ is finite, 4 cannot be zero without incurring a meaningful solution, so that

sin(BR’)=0, BR’=nr, or
&0
R (2.16)

R=R-d=2%_4a
B

Thus the reactor size is determined by the constant B%. The buckling from
Eq.(2.12) is sometimes referred to as ‘material buckling’, (BY)m, as it is defined by the
material properties of the medium. The expression for B? in Eq.(2.16) is usually called
the geometric buckling (Bz)g dependent only on the size and shape of the core. The
critical condition can be written as (B, = (Bz)g.

1.7.  The boundary with vacuum

It has been mentioned in the previous section that the typical boundary condition,
introduced together with the diffusion approximation, is the neutron flux going to zero
at some distance from the outer boundary of the system considered. Let us consider an
idealised case of an infinite plane reactor core surrounded by vacuum. The distance at
which the flux drops off to zero is called then the extrapolation distance, and it is shown
in Fig. 6.

slope
reactor void

flux

H—“

Extrapoiation distance

Figure 6: Extrapolation distance.

By diffusion theory, using Eqgs. (1.55), the extrapolation distance, d, is found to be
equal to:

dzg@p 2.17)



A calculation based on the transport theory gives approximately:

d—-.__._.._..._._.....— ? . 2.

where A, is the transport mean free path.

1.8.  Fuel burn-up

The lattice calculations are made for a steady-state reactor and do not involve the time
variable explicitly. Also the coefficients of the transport equation, i.e., the macroscopic
cross sections are considered constant in time. But in practice, the slow time evolution
has to be included to account for the fuel burn-up.

Library Lattice Input
Power Number
Burnup level (£) densities
constants
¥g =C ¢g
Integration

of burn-up eqs.

New number
densities

Figure 7: General flow of depletion calculations.

The burn-up changes the number densities, and hence the macroscopic cross
sections of the nuclides undergoing the depletion or the build-up process. Thus, the
neutron transport equation loses its linearity. To cope with the problem in an efficient
way a repetition of the sequence shown schematically in Fig. 7 is applied:

1. Full solution of the transport equation with starting neutron densities or those

from 3,

2. Normalisation of the ncutron flux to a given power level ({ — normalisation
factor in Fig.7).

3. Solution of the equation for isotopic transformation, establishing new number
densities.

4. Calculation of new macroscopic cross sections.
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5. Goto 1.

Usually several burn-up steps can be carried out without accounting for the neutron
spectrum modification, as shown in Fig. 7. However, after a sufficiently long time the
change in macroscopic cross sections gets significant and the repetition of lattice
spectrum calculations is necessary. Thus, the flow chart from Fig. 7 has to be repeated
many times until the desired burn-up level is reached

In practice, the procedure gets much more complicated to make it more accurate,
more efficient or take into account additional phenomena, as e.g., burnable poisons.

2. Discrete ordinates method

2.1. Discretisation of independent variables

The discrete ordinate method, referenced as Sy [3] or DSN [4], belongs to the most
often used numerical methods for solving the steady state neutron transport equation. In
this method the finite difference approach is applied in all three independent variables:
The multigroup approach is used for the energy dependence.

Angular integrals are replaced by sums over discrete directions.

Angular derivatives are transformed into finite differences.

Discrete space mesh is imposed on the spatial region.

Spatial derivatives are transformed into finite diffrences finite differences.

bl ol adi S e

A number of discrete directions is introduced denoted by £2, to each of which a
weight w,, is associated. Each weight represents a segment A2, on the unit directional
sphere, in stereradians, with the normalisation condition:

w =AQ, /4r = D w =1 (2.19)
m

The subscript m on angular flux (source) means 4 7 times its value at £2,.
The neutron flux and neutron current are approximated by the basic equations of the
method:

By (1) =D WpBpmg (r)

(2.20)
Jg (r)= Z WQO¢mg (r)

for g=1,2,.....,G and m=1,2,... .M.

The effective realisation of the method has encountered a set of problems, which had
to be solved. The most important of them are:

1. the choice of a particular discrete directions,

2. the approximation of the integrals over the direction variable,

3. the approximation of the derivatives of the neutron angular flux with respect to

the components of £2appearing in the transport equation in curved geometries.

Applying the approximation defined by Egs. (2.20), to the multigroup neutron

transport equations with linearly anisotropic scattering we get:



Ot 1)+ Zog (Vg (1) = S 1)+ 2 (VF ) @21)
where

F(r)=3 kL (rpg(r),
g
Smg(r) = Zzg,g'ag(r)¢g(r) + 3Qm 'Zzig"“’g(r)']g'(r)
g g
¢mg = _L¢de»' ¢g = LME; Jg = LJdE" Zg = .deE’

szf (E' )$(E' )dE'
2

E

f_
KLy =

L, L ZS(E'— E)§(E' )dE' de
ZS ' =
Gg'—>g ¢g,

b

L, Lz;‘ (E'— E)J(E' )dE'dE

5
):].g’—)g - J >
gf

There are several possibilities of defining the directional total cross section [3]. The
simplest, often chosen definition is:

o =L2¢dE

mg b4 ¢,
g

2.2, The discrete ordinate form of the neutron transport equation

The streaming term has to be defined, separately for each geometry. In rectangular
geometry it is:

QV ¢ :-y%+qa—¢+ga—¢ (2.22)

ox ay oz

The spatial mesh is imposed which for a 2-dimensional case, (x,y), is shown in Fig.8.
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Figure 8. Spatial mesh in (x,y) geometry.
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The finite difference equations based on that mesh become:
”mdy(¢i+l,m - ¢i,m)+ UmAx(¢j+l,m _¢j,m) = V(Qm - 2¢m ) H (2-23)

where V=A4x-Ay, is the mesh area.

The Gauss quadrature set of directions and weights has been found an adequate
choice, but various computer codes use different approaches to particular problems.
More information on the method can be found, e.g., in Ref. 4.

3. Method of collision probabilities

3.1. Probability of a neutron to travel of a distance s without collision

The method of collision probabilities, or more adequately the method of the first flight
collision probability, is applied for the solution of the neutron transport equation at least
as frequently as the Sy one. Before defining the basic equation solved in this method,
two basic quantities are introduced.

Let 2[E) be the total cross section, i.e., the probability of neutron interaction with a
nucleus per unit distance, s the distance measured in the direction of the neutron travel,
£2, and p(s) the probability of a neutron to travel of a distance s without collision. Then
the decrease of p(s) is:

d p(s) = - p(s) 2(E)ds.

and hence:

p(s) = exp{-HE)s] (2.24)

3.2, Escape probability

Let us consider a square unit cell composed of a fuel rod surrounded by moderator..
Neutrons, which escape from the fuel, will be slowed down in the moderator. Let us
consider a neutron produced at position r with direction £2, and let R(r, £2) be the
distance from the point of the ncutron birth to the boundary of the region in the
direction 2. The probability that a neutron will escape from the region without making
a collision by Eq. (2.24) is exp[-ZYE}R(r, £D)].

Probability that a neutron will be generated in the direction d€2 about 2 and position
in the volume element d¥ about r is (d€2/47))-( dV/V). Hence, the escape probability,
P, , for neutrons born in the whole region Vis:

1
esc =57 jexp(LZ(E JR(r,D)dXV . (2.25)
If dimensions of the body are large compared to the mean free path, 1/%, then Eq.(2.25)
can be approximated by P.,=1/(42V). For small bodies P,;, must approach unity. A

rational approximation proposed by Wigner for bodies of all sizes is Pe,e = 1/(1+42V),
or with a mean chord, R=(4V)/A , where A is a surface of the fuel intersection:



Pose =1/(1+ ZRA) (2.26)

3.3 Transfer probabilities

Let us consider now a region divided into a finite number of subregions, as shown in Fig. 9.
It is assumed that neutrons are produced uniformly and isotropically in each of these
subregions. The problem is then to determine the probability that neutrons born in one
of the regions make their next collision in the source region or in one of the other
regions.

All the probabilities from Fig. 9 can be calculated as functions of the macroscopic
total cross sections and the P, probability, which is a nonescape probability from an
infinite cylinder and has been determined by Case, de Hoffman, Placzek [5]. Thus,
under the assumption of constant material properties in each in the subregions, it is
possible to calculate the transfer probabilities for all the subregions.

Pe'=Pn

Figure 9: A circular region divided into a set of subregions.

3.4. Equations solved in the collision probability method

We recall the steady state transport equation in its integral form and with the
assumption of isotropic scattering and a constant cross section in the region:

o~ Z(ER
Hr )= |——1 - j E(r'E' - E)yr' EVdE'+ Q(r' E) dr'
4zR~
with R= i r-r’| )
To this equation the multigroup approach is applied, which allows for substitution of
the integral over energy by a sum over groups. Integrating over each subregion volume
gives a set of equations, with /,f the region indices and g a group index:

V.
boi= 2 M (55180, + 00 ) @27)
YR

where:



-

1
Bos = [#e()dr,
iy

)

r,i
Qg,[ =Z zgr'g,i¢g',i + Xg k ¢g',i »
g'

and Mg is a square matrix with the dimension equal to the number of subregions, Q. and
@, are vectors for each energy group g. Q is here an energy transfer matrix including
also any transfer of neutron energy due to fission.

Hence, with P the group collision probability matrix averaged over the emission
spectrum we get a set of two equations for the emission rate of neutrons produced from
all sources in group g:

G
W, = Z]Qgg..‘.cbg,'i +S, ;> (2.282)
g':
and for the total collision rate in group g, defined as D, =ViZy b
@yi =2 P (2.28b)

1=

These equations are effectively solved on the computer.
More details on both, DSN and Collision Probability methods, can be found in
Ref.2.
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