it the

e e abdus salam
oo international centre for theoretical physics

SMR/1220-31

Workshop on

Nuclear Reaction Data and Nuclear Reactors:
Physics, Design and Safety

13 March - 14 April 2000

Miramare - Trieste, Italy

Genetic Algorithms:

Theory and Applications in the Safety Domain

M. Marseguerra
Polytechnic of Milan
Italy






‘GENETIC ALGORITHMS:
~ THEORY AND APPLICATIONS -
IN THE SAFETY DOMAIN

M. MARSEGUERRA AND E. ZIO |
Dept. of Nuclear Engineering, Polytechnic of Milan, Via Ponzio 34/3
20133 Milan ~ ITALY

E-mail: marzio.marseguerra@polimi.it



GENETIC ALGORITHMS (GA)

 What are they?

Numerical search tools inspired by the rules of the natural
selection. | | /

Purpose:

Find the mazimum (minimum) of a given real objective
function of n > 1 real variables and subject to various
linear or non linear constraints.




Chromosome ! Gene# 1!Gene #2 Gene#3 | Bit-string
! ! ! !

.

Bit-strings
Genotype io/1jooj1}1l0 1]0!1 ool o sssigmed lengths)
Phenotyping coding /
parameters decoding

h v v

Phenotype X, X, X, Factors

{one for each gene)

! l

Fitness fi(x,.x,.x,) objective function

' TERMINOLOGY (:boi-rdWéd' from biciogy) o

The GAs operate on a population of N chromosomes.

e chromosome: string of binary digits, partitioned in n sub-
strings called genes, one for each variable of

the objective function.

e gene: substring of a chromosome.
To the i—th substring (< = 1,2, ..., n) the user
assigns n; digits.

e control factor: real number resulting from decoding the dig-
its of a gene. Each chromosome has as many
genes (or control factors) as variables in the
objective function.

e fitness of a chromosome: value of the objective function in corre-
spondence of the control factors of the chro-

MOosoI1ne.

EACH CHROMOSOME GIVES RISE TO A TRIAL
SOLUTION TO THE PROBLEM
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(one for each gene)

1 |

Fitness f(x,.x, x,) objective function

Chromosome ! Gene# 1!Gene#2 Gene#3 | Bit-string
! ! ! !
i
Bit-strings
Genotype Oll q0|1 IIO 110!1 1 010 ]‘IO (of assigned lengths)
Phenotyping coding /
parameters - decoding
Phenotype X, 2 X, Factors

e Consider an objective function f(z1,zs2,...,Zn), of n > 1 vari-
ables and assume that the range of each variable is assigned,

viz. z; € (a;, b;).
e A population is a collection of N individuals (N is assigned by
the user).

e Each individual is a chromosome constituted by n genes, the -
th of them made up by n; bits. The relation between z € (ai, b;)
and its binary counterpart g is

b;

Q4

z=a;+0 2;.

- a;, b;,n; are called the phenotyping parameters of the gene.



Modus operandi of a GA search

1. Generate a population of NV chromosomes by random sampling
all the bits of the N individuals.

- 2. Manipulate the chromosomes (the strings) of the old population
~ (the parents) to get a new population (the children) hopefully
characterized by an increased mean fitness.

3. Repeat step 2 until some convergence criterion is reached.
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STEP #1. GENERATE THE INITIAL POPULATION

In our experience we have found very important to distinguish be-
tween the following cases:

¢ Random sampling.
If the various variables of the objective function have indepen-
dent ranges,*then the bits of each chromosomes may be gener-
ated at random. |

¢ Conditional sampling.
If the range of a variable is conditioned on the value of other
variables, a possible recipe is:

sample z; at random within its nominal range (a1,b1);
determine the reduced range of z,, i.e. the range of zs
conditioned on the value selected for z;;

sample z5 at random within its reduced range;

repeat sequentially the above two steps, so that z; is sam-
pled at random within its reduced range, as conditioned on
the values selected for =1, 22, ...,Z;—1.

Of course, this procedure heavily rests on the (arbitrary) ordering
of the variables. This ordering must be wisely selected on physical

grounds.



STEP #2. MANIPULATE THE CHROMOSOMES
(FROM PARENTS TO CHILDREN)

2.1 Generate a temporary new population by means of:
Standard Roulette Selection (cumulative sum of fitnesses)
Hybrid Roulette Selection
Random Selection
Fit — Fit
Fit — Weak

2.2 Mate two parents and generate two children

One—site crossover
Two—sites crossover

splice splice splice

.

Paren # 1[G |91[o’ IR

Parent #2  [1[1 1|1|0i0|01[1 AT

[ Crossover

Chitd # 1 {1}l joldhiiogoioidtio

Child#2 [0]1 1]1]0!'1]0 1iajgafafa

2.3 Replacement of two among the four individuals 2-parents
+ 2—children by means of:
- Children live, parents die
Fittest individuals
Weakest individuals

Random replacement

2.4 Mutation: among all the bits of the population a random num-
ber of them is switched with an assigned mutation probability

(~1072)
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T STEP #3. CONVERGENCE CRITERIA

They are usually based on the relative increase of a fitness feature

between two successive generation.
The fitness feature may be- ..

- mean fitness
- median fitness
- best fitness

The calculation is also stopped when the assigned number of popu-

- lation generations is reached.. . ...



Example : Search for the maxima of a multimodal function

Jx - sin(ZxJ;)\l%n(Z;r y) if sin(2zx)-sin(2xy) >0

0 otherwise '

z=f(x,y)=

Number of local maxima = 50

2™ higher maximum / global maximum = 0.889
g

Standard GA procedure

In correspondence of different sets of parameters

different maxima

(Even though the most frequent is the global maximum)

Possible explanation

Poor genetic diversity

V

Inducement of species and niches
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INDUCEMENT OF SPECIES AND NICHES

¢ Biology:
Species: class of individuals sharing common features.
Niche: a set of functions performed by the individuals of a
species.

Environment: the collection of the external conditions, including
the interactions with the other species.

In our species the individuals are partitioned in groups (places,
activities, ...). This partitioning turned out to be of utmost

. advantage for the survival and development of the species.

¢ GENETIC ALGORITHMS

The population is divided in sub—populations with scarce mutual
interactions.
i) Isolation by distance
Each subpopulation lives in an island
The various islands evolve almost separately
Emigrants: selection of emigrants
Replacement in the new island
ii) Spatial Mating
Definition of a deme
- individuals disposed on a planar grid: square demes
- individuals disposed on a circular wheel: linear demes

- some cases with stochastic deme boundaries



NICHES CREATION

-

Objective : to favour genetic diversity so as to
increase the probability of finding a ‘good’ maximum

Method 1:, GENETIC ALGORITHMS WITH ISLANDS

DISTANCE INDUCED ISOLATION :

the population is subdivided into islands whose interactions
are limited — each island can converge on a different
maximum of the objective function

“ISLAND 1 ISLAND 3

N,chromosomes N,chromosomes

ISLAND 2

N,chromosomes
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- Rule 1 : selection and substitution within each island

~ (no interaction)

- Rule 2 : migration from one island i to another j with

probability E; through clonation

The migrating individual is cloned so that the original
remains in island i where as the copy travels to island
j, where at the same time another individual is
eliminated so ast to keep constant the population N,




Application :

search for the maximum of a mul_timodal function

Y 1

Jx- sin(27x) {)T sin(2zy) se sin(2zx)-sin(2zy) >0
0 otherwise

z=f(xy)=

Method : GENETIC ALGORTTHM WITH ISLANDS

5 1slands with populations of 10, 20, 30, 50, 80 individuals
- - 0.05 0.05 0.05 0.1]

005 - 0.05 01 0.15
migration matrix E=|0.05 0.1 — 0.1 0.15
005 01 015 - 02

0 0 0 005 -

-

Result : the genetic algorithm has found the largest error with a
relative error < 2- 10~ on the coordinates x e y
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Method 3 : GENETIC ALGORITHM

WITH PARTINIONING
Double slot-machine :

1$ 1$
| |
v
v v

25% 15%

ss 718 TN

5 individuals 3 individuals

[ increasing with the total gain (fitness
pro capite gain: | value)
(= fitness)  decreasing with the number of

individuals which share it




~ Possible implementation of the sharing’s algorithm

=L
Z r(d,)
j=1

where

d, = Euclidean distance between individuals i and ;

J"(d)=1--é for d<a
a

=0 otherwise

~ Search for the maxima of a multimodal function -~

2

Jx- sin(sz)\(sin(br y) if sin(2zx)-sin(2zxy) >0
z=f(x,y)= , |
O otherwise
1@
I8 @
af @
ez 8 @
1]
i &®
1»- v
Result:

Population: 500 individuals
a=0.5 ‘
N. of detected peaks = 47 (over 50)

14



Method 2 : GENETIC ALGORITHM WITH
SPATIAL MATING

Standard genetic algorithm : selection of both parents from
the whole population

Genetic algorithm with spatial mating: selection of one
parent from the whole population and of the second from the
- ‘neighbourhood’ of the firstone. . .. - .

Example: monodimensional circular geometry

1
11 2

First parent

5

’ N

6 Second parent

Procedure :

1) selection of first parent within the whole population

2) selection of second parent shifting, say, k steps to the right
(or left) where k is sampled from e¥* (t = average distance |
between the two parents)




NATURAL GAS PIPELINE SYSTEM

i 2 | i+1 10
Qt PDi PSi+1
) S — Qi
;— -~ -
T o
Pipeline length

Input : (11 values)
PS, = suction pressure to compressor 1
Q=flowrates,1=1, ..., 10

Model : (70 known parameters)

PD2-PSu’=K;Q?,i=1,..., 10 [1]
—o. |, (PpY" .
HPi_Ql I:A:[EI'J "Bi:lal la e 10 [2]
Ki, A, B;, R;= given constants
Constraints : (Pi.1)min < PSi < (Pi-1)max [3)
(P1min < PD; < (P;)max [4]
1< 28 < (S)max \ (5]

(S)max > (P)min » (P)max = given constants
Target :
Estimate of 20 pressure values , PD;, (i=1, ..., 10) and PS;,

(1=2,...,11) which minimize the total horsepower HP = ;\L_):HR.

8
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" 1psi=0.069 bar

1) mmefd = 10° ff/day = 03277 m’/
’ - 500psi =34.5 bar

i K; 1 R A B; Pimin | Pimax | Simax
[psiZmmcfd?] | - [bp-mmcfd™] | [hp-mmefd’]{ [psi] | [psi]
1 0.800 0217 215.8 213.9 500 1000 | 1.6
2 0.922 0217 215.8. 2139 500 1000 | 15
3 1.870 0.217 215.8 2139 500 1000 [ 15
4 0.894 0217 215.8 2139 500 1006 | 1.3
5 0.917 0.217 215.8 2139 500 900 1.6
6 0.989 0217 323.7 320.8 500 1000 | 1.6
7 0.964 0.217 215.8 213.9 500 900 | 1.75
8 1.030 0217 215.8 213.9 500 1000 | 15
9 “ 1.950 0217 2158 2139 500 1000 1.6
10 1.040 0217 215.8 213.9 500 1000 | L6

Parameters of the gas pipeline

Qo 600.0 mmefd = 196.6 m’/s

P(psi) 4
Prax
1000 “fTTTTTTTTTTT -
| |
i |
_ a
500 Lo _C D emtm e ﬁ: _____________
E E >
i i+1

In the piece of pipeline between compressors i and i+, the gas pressure is constrained to remain
within (Pi,mme{,max)-
Pi,min SPD:' SPi,r.nax

£ <PS:’+1 SPz‘,max

[,min =
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olution # 1 [Wong and Larson, “Optimization of Natural-Gas
Pipeline Systems Via Dynamic Programming”,
IEEE Transactions on Automatic Control]

Dynamic programming by using an iterative functional equation in
terms of a minimization cost function

The resulting pressures will be shown in the last figure

| Solutlgn #2 [Goldberg, “Genetic Algorithms in Search, Optimization
- . “and Machine Learning” pagg.125-132, Addison-Wesley
Publishing Company]

e The control factors are U;= PD;{-PS;
e The constraints are replaced by a penalty function

Given PS, and U;, i=1, ..., 10:

i=0

i=1+1

PD;= (U+PS)"
|
PSi; = (PD; - K;Q)"?

ST

€s

9
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Solution # 3

I* attempt :

The repetition of the Goldberg’s approach was unsuccessful :
- pressures out of ranges

© .- complex pressures. o

Zf" attempt :

Throughout the population initialisation and the breeding
procedure, chromosomes are accepted omly if the confrol
factors (the 10 genes) satisfy the independent constraints :

- Case with 4 compressors : good results in ~1" CPU-time

- Case with 10 compressors : computation interrupted after
~5" CPU-time

11
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3 attempt .

e The control factors have been changed from the Goldberg’s
U;=PD{-PS; to U;=PS;+

o The initial population was created according to the
“conditional sampling” method here proposed. By so doing
the side of the 10-D hypercube has been reduced from
500 psi to 110 psi |

- Case with 10 compressors : results slightly better than
Goldberg’s in ~30” CPU-time |

12



reation of th ulation by “conditional ling” :

Consider the i-th pipe-section between compressors i and i+1.

The value PS; is knowp either from the calculation of the
preceding pipe-section or assigned as the initial condition for
i=1.

The conditioned range for PS;,, is evaluated as follows :

1) From constramt [3] it follows that
e | (Pl)mm2 <P SH—]2 < (Pr)max

ii) Moreover, from equation [1] it follows that
PS;.” = PD;’ - KiQ/

so that PS> mus't?also belong to the range :
(PD)min” - KiQi” < PSisy* < (PD))max - KiQ

where the range of PD;® is established by constraints [4]
and [5] :
max {(Pi)mn"> PSi’} < PD{< min {(Px)max , (S1)max” PSi%}

- 1i1) Finally, the range for PS;.; is
max {(Pmin> PDimin’ - KiQ} < PSjy’ <
min {(Pi)maxzs (PDi)nm2 - KiQiz}

Once the range for PS;y; is established, a value PSy; is
uniformly sampled.
Then it is possible to proceed to the next pipe-section .

I3
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Eight examples of chromosome initialisation by the
“conditional sampling” method
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1000 1000

Number of genes

Mean ranges of control factors during initialisation by the
“conditional sampling” method
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System Design Optimization By
Genetic Algorithms

INT RODUCTION

When de51gmng a system, several
choices must be made concerning the
type of components to be used and

their assembly configuration.

The choice is driven by the interaction
of reliability/availability obJectlves |
and economic needs. |

 Standard approaches to determine

optimal solutions of design problems
often encounter difficulties when

including realistic cost and reliability
issues.



PROBLEM STATEMENT
PLANT DESIGN
ECONOMICS:
- PROFIT
SAFE OPERATION: | |-PURCHASE COSTS
RELIABILITY | |- REPAIRCOSTS
N 1
| - AVAILABILITY ( Y - NO-SERVICE FINE
- ACCIDENT RISK - DAMAGE PAYBACK
~» CONSEQUENCES

N

ISSUES :

- AGING

- COMPONENTS CHOICE
- CONFIGURATION CHOICE

- REPAIR STRATEGIES




H PLANT = N nodes in series logic I

—+» — Node 1 Node 1 NodeN — —»

Node k = ensemble of ny components in series,
- parallel and/or standby -

PLANT CONFIGURATION = vector of the states
(functioning, failed, standby)
of the components

CUT SET = system configuration of fatlure

The plant is potentially risky: some cut sets are
‘accidents’ with damaging consequences (eg. to the
environment).




OBJECTIVE FUNCTION

In order to guide the selection, the
designer defines an objective function
which accounts for all the relevant
“aspects of plant operation.

Here we consider as objective function

" the net profit drawn from the plant

during the mission time Ty,.



G=P-(C, +CR +CD +CACC)

o T.i_,; A(t)dt
"o (1)

= plant profit

ZC = components cost
=

AFCR 'rMI (t)dt
C, =3C,
R ng‘ R) E[ (1+ )

C,=C,- I P -AOM L | on service penalty

b o (1+i)
Nacc C ACCKk — . ‘
C - — I(Z;Jl IACc'k . (1 + i)l ACC.k - l’ellnblll'semeﬂt

for damages from
an accident

;x%



THE GENETIC ALGORITHM
OPTIMIZATION APPROACH

— Population of chromosomes (bit-
strings) = possible solutions.

— Evolution: parents selection,
crossover, replacement, mutation.

. Inthiswork =
— Available alternative node
configurations are numbered.
— System configuration is identified by
a sequence of integers.
— Chromosome = system configuration
= single gene containing
all the indexes of the
node configurations.




— Parents selection = standard roulette
rule (selecting the parents in
proportion to their values of fitness)

— Crossover = inserting at random a
separator in the homologous genes
of the selected parents

© —Replacement = keeping the fittest

two, and eliminating the remaining
among the two parents and two

children

— Mutation is performed with
probability 10~




NUMERICAL APPLICATION

— System with 3 nodes.
— 4 alternatives for each node

I/J conﬁguratl;n i- out-of J G
- ij+ksb= configuranon 1-out-of- i G w1th k addltlonal standby
*" components

— 64 possible system configurations.
— Each node requires 2 bits
— System config. = one 6-bit gene

— Population = 30 chromosomes



Simplifying assumptions are made:

i) Node A: all components equal;
ii) All standby’s are cold;

ili) No repair is allowed;

iv) One damaging accident: node C.

= analytic evaluation of G

bl 5.3 0.3
b2 3.6 0.3
b3 4.7 ‘ 0.7
b4 2.6 ‘ 0.7
cl : 8.1 4.0
c2 5.3 6.0
c3 7.0 2.0
cd 4.2 8.0

10



0.94

3.00

420
30

Profit per unit firhe

" ...&n“._ ,-'.‘.:,",:'F' - he o Prugieeiitiy

Accident reimburser

.
Far

bl - cl

c2

[

T

b2

)

c3 -

Figure 1: Sketch of the optimal configuration

1t



-

— Analytic

— The system purchase

. Configuration number

cost

insensitive to the configuration
— Downtime costs are lower for the first best

alternatives

is

rather

— The last (worst) configurations are strongly
penalized by high accident costs as indeed
they correspond to having node C with only
one single component and no redundancy.

validation:
configuration

same

optimal

12
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REPAIRABLE COMPONENTS
bl 3.0 1.5
b2 1.0 0.5
b3 3.0 4.0
b4 1.0 2.5
cl 5.0 21.0
c2 3.0 29.0
c3 5.0 12.0
ca 3.0 48.5
a - bl ; ', cl |
= active i___ b2 E i c? P_—_}: .
______ = standby
Repairs reduce the number of

redundant components in the optimal

configuration.

13
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OPTIMIZATION OF A SHALE OIL PLANT

@

First crusher Collecting Transport  Tripper Second crusher +
conveyor conveyor conveyor Vvibrating screen

Figure 5: Sketch of the shale oil plant

Node Number of Type of Operational logic
alternative components
_configurations } e . o

3-out-of4 G

3-out-of-5 G

3-out-of-6 G

J-out-of-7 G

3-out-of-8 G

3-out-of-9 G

B 16 b1, b2, b3 2-out-of-2 G
| 2-out-of-3 G

C 14 cl, c2 1-out-of-1 G

1-out-of-1 G + 1 standby
1-out-of-1 G + 2 standby

D 14 dl, d2 1-out-of-1 G
| 1-out-of-1 G + 1 standby
1-out-of-1 G + 2 standby

E 7 e 3-out-of-3 G
3-out-0f-4 G
3-out-0of-5 G
3-out-of-6 G
3-out-of-7 G
3-out-of-8 G
3-out-0f-9 G

Table 5: Potential node configurations

Systou eowfipunelions {53,664



Component i | Failure | Repair | Purchase | Repair
rate A; rate cost C; cost Cyg;
v ' | [10°S] |[10°$y")
a 1.510° | 4.0-107 3.0 0.55
bl 2.0-10™ | 8.0-.10° 5.0 10.0
b2 2.0-10° | 8.0-10 3.0 6.2
b3 2.0-10° | 8.0-10 1.0 2.1
cl 1.0-10* | 8.010° | 100 | 410
2 1010 [ s010% | 3.0 200 |
d1 1.0-10* | 8.0-10° 7.0 28.0
d2 1.0-10° | 8.0-107 3.0 12.0
e 1.710° | 4.0-107 5.0 0.85
Table 6 : Component data
Profit per unit time P, [10°s-y'} | 26.0 |
Downtime penalty per unit time CU [10°$-y'] |200.0

Accident 1 (node A) reimbursement cost Cycc; |1 0°s] | 70.0
Accident 2 (node E) reimbursement cost C,ccz [10°$] | 50.0
Interest rate i 3%
Mission time T, ¥} 50

Table 7 : System data
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MONTECARLO METHOD
Objective : simulate the system evolution from the initial
time (t,=0) to the mission time (t;)
B L T S 5o tM e
| event 1 (eg | event 2 (eg. repan" event 3 (eg. failure of
{ component ;. of the failed || another component)
i failure) || component) A

_________________________________________________

Simpliﬁdgg assumption : failure and repair times are
distributed exponentially

A; = failure rate of the i-th component

1. = repair rate of the i-th component

Ae ™% Gt = probability of the next event in (t, t+dt) given that
the previous one has occurred in t, where A is the 2 rates out of the
configuration at time t,

15



THE SYSTEM MODEL

1) imperfect repair with probability P{ Aoz,
W—Wir,
2) different kinds of repair intervention
3) number of repair teams fixed for each kind
- 4) component repair priority:
- - higher priorities are repaired first -
5) an ‘accident’ cut set is an absorbing state (the system
cannot be repaired)

The Monte Carlo generates a large number of system life
histories and in the end it estimates the following mean

values:
- T = plant service time
- Tys = plant out-of-service time
- Trep(1), 1=1,.. N = total repair time of component i
- P,cc(1), 1=1,...,N,c = frequency of ‘accident’ cut set 1
- A(t) = plant instantaneous availability
(probability that the system is UP at time t)
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COUPLING GENETIC ALGORITHMS
AND MONTE CARLO:

‘A) General Scheme

Each chromosome of the population encodes a
proposed configuration design.

The Monte Carlo code estimates the objective function
G in correspondence of each chromosome.

The evolution of the genetic algorithm,
and embedded Monte Carlo, leads to the

configuration with Gy, x

QUESTION :
« how can we be sure that the solution found is optimal?

ANSWER : |
» No algorithm can guarantee that the maximum found, of a non
linear, multivariate, constrained function, is the global one.

« One can, however, demand that some criteria are satisfied. In our
case:

- validation of the procedure on simple cases of known solution

_ validation of the procedure on more complex cases for which the
solution can be ‘guessed’ a priori(on physical ground) _

- stability of the optimal configuration for different sequences of
pseudorandom numbers
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B) Detailed'procedure

During its evolution, the genetic algorithm considers
thousands of proposed system configurations: it is not
possible to run a full Monte Carlo simulation for each of
them, to obtain statistically significant estimates.

~ « During its evolution, the genetic algorithm re-examines the
same configuration several times

» Each time a configuration is proposed, a short Monte Carlo
(say 100 trials) is run: the estimate of G thereby obtained is

scarcely statistically significant

» The best conﬁgurations are re-proposed by the genetic
algorithm over and over (~10* times)

* For these ‘good’ configurations, the Monte Carlo estimates
are repeated over and over, thus building statistically

significance
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a bl

9

a rbl

:

g

a - Collecting
conveyor

First crusher

Figure 6: Sketch of the aptimal configuration for the shale oil plant

Configuration index in Total net profit at Ty
decreasing order of optimality [10° $]
1 471.57 £ 0.08
2 470.20 £ 0.05
3 469.39 1 0.07

. e L
- e |
c2 d2 e -
conveyor conveyor : '
- b € -
' Second crusher +
vibrating screen

Table 8: Monte Carlo results with 10° trials for the three best system configurations



