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1. What is a reactor lattice code?

1.1. The basic goal of a reactor latlice code in reactor physics computations

A reactor lattice code is used to calculate neutron flux distribution and an infinite
medium multiplication factor. It takes as input the multigroup library of isotopic nuclear
data and a description of the reactor lattice, and solves the neutron transport equation
over a specified region of the reactor lattice. This region may be a unit cell or a
macrocell. Therefore, the lattice codes include methods for solving an appropriate set of
equations for neutron flux and infinite multiplication factor (k-inf) in a discrete energy
and spatial mesh (energy groups and discrete spatial points). The calculated neutron flux
may be used to get sets of macroscopic cross sections homogenised over chosen
subregions and in a chosen broad energy group structure as can be seen in Fig. 1.
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Figure 1: General diagram of the input and output of a reactor lattice code.

Those sets of macroscopic cross sections are then used as material data in the input
for various codes solving the neutron transport equation or diffusion equation, over the
whole reactor or its fragment. The calculated neutron flux can be also used for reaction
rates calculation or in fuel depletion calculations.

1.2. Areas of application

Almost any physical arrangement of fissile and neutron absorbing materials can be
modelled using Monte Carlo methods and the cost of calculating the effective
multiplication constant (k-eff) is more or less independent of the detail of representation.
Still there are three principle areas of application of a code based on deterministic

grounds [1,2], as shown in Fig. 2:



1. The analysis of experiments, usually critical lattices and usually with measurements
of bucklings and reaction rates in specific nuclides.

2. Criticality determination.

3. Power reactor design, assessment and operation.
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Figure 2: Areas of application of the lattice code results.

The first activity is usually associated with the validation of the data and methods,
and is undertaken by the library and code developers. The second one is usually
associated with Monte Carlo methods. The lattice code is used here as a rapid tool for
determination of the worst set of conditions (e.g., water density, geometrical
configuration, moderator to fissile material ratio, temperature effects, enrichment) in
safety related analyses. It can be also used as a corroboration of a Monte Carlo
calculation to give reassurance that no errors had been made in setting up geometry data.
A criticality clearance should not be based on a single calculation.

The third activity is the onc where the deterministic methods are the most
appropriate. The lattice code is used in calculating fuel depletion and evaluating
reactivity feedback effects from burn-up, fuel temperature and density. In this context a
lattice code is used in setting up libraries of homogenised cross sections for use by
whole reactor codes in fuel management/simulation studies.
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2. The WIMSD lattice codes

2.1. Outline of the algorithm

The WIMSD codes belong to the family of lattice codes called WIMS. The original
WIMS code developed by AEE Winfrith [3] has been modified and adjusted to special
types of problems through years. There exist a set of commercial versions or versions
with restricted distribution. The versions of the code available through the NEA Data
Bank belong to the WIMSD class and we limit our description to these versions, namely
to WIMSD-4 [4] and WIMSD-5 [2]. Nevertheless the general approach to the solution
of the transport equation over a reactor lattice is common for all the WIMS versions.
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Figure 3: Simplified flowchart of WIMSD calculations.



The final solution of the transport equation in the WIMSD code is obtained in steps
in which the energy treatment gets simplified and spatial effects are treated in more
detail [2,5]. The general scheme of the WIMS code is presented in Fig. 3 where, on the
left hand side the input data needed at each step are shown and on the right hand side the
data transferred between the parts of the code are given.

At each step, called ‘level” to avoid confusion with burn-up time steps, the transport
equation is solved in one of its well-known approximations. However, regions over
which the equation is solved differ for different levels.

2.2. A unit cell definition in WIMSD

In the first part of calculations (called 'level 1' in Fig. 3) a representative elementary cell
with 3 or 4 regions is treated in cylindrical, slab or spherical symmetry. The concept of
three- or four- region cell follows the general idea of a ‘unit cell’ described in section
1.1 of “Reactor Lattice Transport Calculatiios™, but in detail it is characteristic for the
WIMSD approach. It is referred sometimes as a ‘basic’, ‘representative’ or ‘pin cell’ of
the calculated system.

The composition and radii of the representative cell are defined by the data
prescribed to materials with corresponding spectral indices through input cards. The
user has to define in the input the materials that are treated by the code as fuel (index 1),
cladding (index 2), coolant (index 3), and possibly moderator (index 4), respectively (cf.
Fig. 4).

All the materials with a given index are mixed together by the code and placed in the
appropriate layer of the cylinder (plate or sphere). If the code user wants to exclude a
material from calculations of the unit cell a negative spectrum index should be
prescribed to this material. This possibility is recommended for a heavy absorber.

Figure 4: Spatial model of representative elementary cells:
fuel - index 1, can - index 2, coolant - index 3, moderator - index 4.

This definition implies that a tubular fuel element is not treated properly at the unit
cell level and special tricks arc needed to calculate that type of fuel by the WIMSD
code.

For the unit cell the integral neutron transport equation is solved by a collision
probability method defined in section 3 of “Reactor Lattice Transport Calculations™
[6,7]. The flat flux assumption is made for each of the basic 4 regions. The latter has a
meaning of treating each of these regions as a separate annulus of Fig. 9 of “Reactor
Lattice Transport Calculations™. The integral transport equation 1s solved only up to the
coolant region. The bulk moderaicr region is treated by an approximate technique based
on the diffusion theory [6,8]. For ii:at purpose a separate balance equation is built for the
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moderator region and coupled by the neutron current at the outer boundary of the
coolant region: A negligible absorption in the moderator region is assumed and then the
following relations for the currents hold at the coolant - moderator boundary:

QM =Jne! =Jin"']out

S out =J:‘n(1—pN)+Z(E;Vj +Qj)PjN (3.1)
J
leading to
1 s
i ZQPM—JF_"_{Z(EJ Vid;Pin )} G-2)
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where p;y are the transfer probabilities introduced in Fig. 9 of section 3 of “Reactor
Lattice Transport Calculations”, py denotes a total collision probability on entry to the
moderator region, {; is the total source in region j, the index j denoting respectively fuel,
canning and coolant and M the moderator.

After the fluxes in regions j = 1,.., 3 have been found from the solution of the
integral transport equation’, the net current J,.; obtained from Egs. (3.1, 3.2) is used to
find the average flux in the moderator. This is done using the diffusion boundary
condition at the coolant — moderator boundary, » = ry:

0
Jne.: = 2mN DM a_f(rN ’E) (33)

where the flux derivative is taken at » = ry, and Dy is the diffusion coefficient of the
moderator.

In the next step an equation is used formulated independently by G. W. Schaefer, by
M. O. Tretiakoff and by D. C. Leslie [3,8]. As shown by Tretiakoff the formula is the
first term in an expansion of the flux in the moderator in a series of so called ‘buckling
eigenfunctions’

ap er r r? —rN2
¢(?',E)=¢(?‘N,E)+rN-—é;(r,\;,E -——2-‘—2—11’1 —_ _—_— (34)

N 2
VA Y Fy 2(rM2 —-ry)

where ry is the inner and r,, the outer boundary of the diffusion region. It should be
noted that equation (3.4) may represent a rather poor approximation for thin moderator
regions [8].

Integrating Eq. (3.4) across the moderator, dividing by the moderator volume and
using Eq. (3.3) we get the mean flux in the moderator region:

E = {'2{’1\/’ + hg’j:-) + 32”.-]”8: }, (3'5)

where ¢y = @ry),

| The full integral transport equation is solved only for the fuel and coolant regions while for the canning
an approximate approach is applied.
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The current is eliminated using Egs. (3.1, 3.2) combined with the solution in the fuel
region. That way a formula is obtained yielding the mean flux in the moderator as a
function of the solution for internal regions.

The multigroup flux of 3 or 4 regions of a pin cell is then used to obtain average
macroscopic cross-sections for all materials in the few-group structure. The materials
with negative indices are averaged over the spectrum calculated for the absolute value of
their indices.

Thus, the results of the first level' of calculations, referred usually as multigroup
calculations consist of

e multigroup fluxes for 3 or 4 regions of a representative cell,
® k-infestimate for the unit cell,
® few-group macroscopic cross sections of all materials,

2.3.  Approach to resonances

To carry out the effective solution of the integral transport equation for a unit cell the
coefficients of equations have to be known. Those are expressed through macroscopic
cross sections for respective 3 or 4 media present in the unit cell. The MAacroscopic cross
sections are linear combinations of library microscopic cross sections and number
densities of respective isotopes unless the isotope is 2 resonance one. In that case a
special approach is applied to take into account all the effects substantial for the
magnitude of the resonance.

The WIMSD library contains resonance integrals for a mixture of a resonance
absorber with hydrogen [9]. Thess resonance integrals are tabulated as functions of
potential scattering per absorber atom, o, but in the form:

oy =Ac, 4 (Ny/NJo,, (3.6)
corresponding to various values of number densities, N, of the resonance isotope per
hydrogen atom. To get a resonance integral for the material with an arbitrary isotopic
composition an equivalent potential scattering per absorber atom is obtained:

oy ZZ(NE /N)Ao
-
with i denoting each isotope preseni in the material.

The values of a,, are given in the library for all isotopes in each resonance group.

The library includes the resonance tabulation for few chosen temperatures and
interpolation is performed by the code to take into account the Doppler effect. In the
WIMSD-5 version of the code an aliernative method for resonance integral interpolation
developed by Segev [10] has been ucluded as a separate option.

The actual reactor system is heterogencous and to define properly resonance
integrals for such a system WIMSD uses the approach based on the equivalence
principle. It consists in replacement of a heterogeneous problem by an equivalent

pi» (3 . 7)
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homogeneous one. In WIMSD, for the purpose of calculating resonance integrals, the
heterogeneous case is considered as equivalent to a linear combination of homogeneous
cases. To do that a set of parameters has to be determined based on Bell and Dancoff

factors (cf. Section 1.3 of of “Reactor Lattice Transport Calculations”). These can be

either calculated in the code or supplied by the user through the input cards.
In the case of macrocell calculations the WIMSD algorithm for Dancoff factor

calculations assumes a full isolation of the system defined in input as a macrocell. It
means that the Dancoff factor of a macrocell is calculated with an assumption of the
lack of outer neighbours for the outermost ring of fuel rods. A similar assumption holds
for a system of fuel plates calculated with more than one plate. If, for physical reasons,
such an approach is wrong a special option available in the WIMSD-5 version should be
applied which ensures Dancoff factors for inner and outer fuel pins to be the same.

The resonance integral of a heterogeneous system I, is calculated as a linear
combination of integrals for homogeneous system, Lhom, with modified arguments
through Bell and Dancoff factors combined with geometrical characteristics of the fuel:

Lot Lo B) = (1= Bl iom (5 + @/ D)+ Bliom (T +(aa)/1) (3.8)

where
o, - potential scattering cross section in the fuel region,

a - Bell factor,
I - mean chord length of the fuei region,

“ap+(1-7) 39)

I
where D, is the Dancoff factor given in WIMSD input or calculated by the code. Index
n=1 corresponds to the Dancoft factor for fuel pins internal in the fuel cluster, #=2 to

that for fuel pins from the outermest cluster ring.

NREG NRICG

p=t []0-G)/ e T10-G,.) (3.10)

=2

where Gjj is a probability that a ncutron escaping from region i will suffer a collision in

region j.
If slab geometry has been chosen B is taken equal to unity and Eq. (3.8) contains
only one term. The Dancoff factor is then expressed through the E3 Placzek function:

~ where x;j is the optical path of & neutron going through coolant and cladding layers
between the fuel plates, and the Placzek function is defined as:

Ey(x)= [91‘9—(—':‘”1@, (3.11)
1 u



and taken with an argument corresponding to a sum of macroscopic total cross sections
multiplied by can and coolant widths. For other geometries G are calculated by a more
complicated algorithm [5].

The general expression for the resonance integral of a cluster composed of N rods
(plates) with M rods (plates) in the outer ring (layer) is

T = 1+ 20 (T 1) (.12)

het het

where:

M - number of fuel pins or plates in the outer ring,

N - total number of fuel pins or plates in the cluster,

pin and cl- pin cell and cluster indices,

hom and het refer to resonance integrals for homogeneous and heterogeneous
systems.

The Dancoff factor, if calculated, may be obtained by a default routine [5] or by a
subroutine due to Carlvik [11] with an extension for the cladding.

The Bell factor is calculated in the code (if required by the input option) following
the formula obtained from Beardwood fit [12]:

4o 10+2.715
1.0+2345°

0.5D
(3_.2]\’238 +2, )rf

(3.13)

b=

E

where a is the Bell factor, D - the Dancoff factor, N**% - the U-238 number density, Z,-
the macroscopic potential cross section, ry - the fuel radius.

2.4. Macroacell concept in WIMS!)

In the second part of the calculaticns (‘level 2”7 in Fig. 3) the neutron transport equation
is solved once more but in the (il geometry described by the user on input cards. The
number of groups may be reduced to few groups specified in the input. The coefficients
of the transport equation are taken from the results of the previous step. At this level a
macrocell can be calculated. The physical model applied as well as the method of
solution can be this time chosen by the user. Five geometry models and two numerical
methods: DSN [13] or collision probability called PERSEUS [14), are possible here.

The simplest and the most frequently used is the ‘cluster’ model shown in Fig. 5,
where a set of fuel pins (plates) is situated in consecutive rings (layers) with a possibility
of an absorber rod (plate), or another type of heterogeneity, in the middle of the
macrocell.

The ring(s) of fuel pins may be surrounded by a ring of moderating material. The
Dancoff factor for a cluster mode! is calculated separately for the outermost layer of fuel
pins, following Egs. (3.9-3.10). if ihe calculated macrocell is used to model a situation
without a bulk moderator surrcunding the cluster of pins, the code user is responsible
for a choice of an option calculating the Dancoff correction for an infinite lattice of fuel
pins.
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Figure 5: Model of a ‘cluster’ in cylindrical and plane geometry.

In the cluster model the few-group transport equations are solved by DSN or
collision probability method with the application of so called smearing - unsmearing
procedure. First the homogenisation of materials inside each ring, specified as annulus
in input data, is done. The transport equation is solved over the macrocell composed of a
system of homogeneous rings (layers) what allows for a 1D calculation. Then the
unsmearing procedure 1s carried on, on the basis of macrocell few-group fluxes, @G. and
multigroup fluxes, @y It consists of the following steps:

1 Condensation of the multigroup flux calculated for each spectrum type Lof

the unit cell at ‘level 17 to the few-group structure:

D= 2. Pgr > (3.14a)
gel

(i)  Calculation of the average group flux for cach annulus M from the few-group
flux distribution calculated at ‘Jevel 2° in mesh points .

Z(?G,me )
=M (3.14b)

PoM = ,
2Vn
meM

(i)  Calculation of the few-group flux for materials with spectrum indices L and

_-I. contained in volumes Vi of the annulus M.

@ 1

CGLM =T, . ) (3.14c)
S (VkP:.i)
K

PG .M >

Dividing both sides of Eq. (3.14¢) by the mean flux in the annulus, @g pr » W get the

disadvantage factor of the materials K with spectrum indices L and —L in the annulus M:

eoim Dol (3.15)

—_ —

fopm==——7=
o O;.M Z(VKGDG,L)
X



It is easy to see that the RHS of Eq. (3.15) is independent of the annulus M. Thus,
the disadvantage factors are the same for all materials to whom the same spectrum index
(negative or positive) has been prescribed.

A special option gives a possibility to calculate different multigroup flux and hence
different disadvantage factors for pin cells belonging to different annuli. However, there
is no possibility of introducing different fuel pins into the same annulus. The smearing -
unsmearing process makes impossible a treatment of a strong heterogeneity as one of
rods placed in an annulus of fuel pins. In the cluster option an absorber may be put only
in the middle of a macrocell. The absorbers placed as one of rods of an annulus require
the PLJ option where a two dimensional integral transport equation is solved [15].

Choosing the cluster option the user should remember that the neutron flux
calculated at ‘level 1’ enters the final solution through Egs. (3.14, 3.15). This flux is
calculated from the pin cell, defined in section 2.2, and therefore, the proper definition
of cross sectional areas of fuel, cladding and coolant materials per one rod is necessary.
This requires a careful choice of spectrum type indexes and width of the annuli
containing fuel rods.

The geometry models available in WIMSD-4 and WIMSD-5 versions are:

- pin cell representing an infinite lattice of identical cells,

- acluster given in Fig. 5 with annular regions smeared during transport equation
solution, and 'unsmeared' through application of disadvantage factors obtained
from multigroup fluxes calculated for a representative cell,

- PI1J - a cluster shown in Fig. 6, with explicit two-dimensional transport solution
in (r,0) geometry, with a possibility of a square macrocell outer boundary,

- PRIZE - the (r-z) calculations introducing a possibility of taking into account an
axial nonuniformity of the fuel rod in pin cell calculations, shown in Fig. 7,

- multicell calculations witi: cells or clusters coupled through input collision
probabilities as shown in Fig. 8.

Figure 6. Exanp!:s of clusters treated by P1J- PERSEUS.
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Figure 7. Example of a cell calculated in (r-z) geometry.

Figure 8. Example of a system calculated as ‘multicell’.

ed that the WIMSD code can be used as well for unit cell
ed single cell macroscopic cross sections 0 be used in
by another code. The choice of the approach depends
d as always, should be done by the

It should be stress
calculations giving the homogenis
macrocell calculations carried out
on the actual reactor and purpose of calculations, an

reactor physicist.

2.5. Leakage calculation

Up to now all the results have been obtained in an asymptotic spectrum. The third

step of WIMS calculations (‘level 3° in Fig.3) introduces a correction for the buckling in

both r, and z directions. The bucklings may be given in input. They can be also

calculated as critical for a slab system. The slab introduced here is a uniform mixture of

all materials present in the system with effective macroscopic Cross sections obtained

for the infinite medium. Criticality calculations are carried out with the bucklings in the

diffusion approximation or in B, approximation with the first order correction for

anisotropy. The calculation is done in the few-group and two-group structure, In case of

the diffusion approximation equations solved for the groups g = 1,2,...G have the form:

i1
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\, —Zy + D, B+ D, B} 4, =

= Zza.g'gfﬁg’ + Sx{
g'rg

(3.16)

The quantity X, - 2§ . describes the absorption and removal in the group g, since it

is the total cross sections minus self-catering. The streaming term in Eq. (3.16) has been
replaced by buckling multiplied by diffusion coefficients in r and z directions. Thus, the
streaming out of the system has been expressed by additional absorption. The group
diffusion coefficients, Dy, and D can account for the additional streaming in the z
direction if a special option is chosen in the input. The term ng includes the fission
source and the multiplication factor of the system:

U ; (3.17)
S3 =g§vEggf(r)¢g,(r)

It is, therefore, a k-eff calculated with leakage treated in an approximate way through
buckling correction. Therefore, the value of k-¢ff is meaningful only if the reactor core is
regular enough to be approximated by macrocells defined in the calculations.

In the B, approximation Eq. (1.51) from section 6.3 of “Introduction to the Neutron

Transport Phenomena” is solved in the multigroup approach: The 2 ee ‘matrices in the
standard WIMSD libraries are available only for hydrogen, deuterium, oxygen and
graphite. In the special library for TRIGA reactors there exists the 27 g matrix for

hydrogen in zirconium hydride.

2.6. Burn-up calculations

In the next step (‘level” 4 in Fig.4) the time dependence is introduced, i.e., the fuel burn-
up calculations are performed whose flowchart is given in Fig. 9. The main steps of
calculations, namely, the lattice calculations, flux normalisation to the required power
level (pt. (iv) in Fig. 9), solution of burn-up equations (pt. (v) in Fig. 9), can be easily
distinguished. These points repeu! the general diagram of burn-up calculations given in
Fig. 7 of section 1.8 of of “Reactor Lattice Transport Calculations”. However, several
additional calculations are here inciuded.

The most important feature of the WIMSD burn-up calculations is an internal loop
inside which the diffusion equation for a homogeneous mixture of materials is solved
(pt. (iii} in Fig 9). It is introduced to save the repetitions of full lattice calculations,
which constitute the most time censuming part of burn-up calculations. The change of
number densities caused by fuel burn-up affects mainly the absorption macroscopic
cross sections of the fuel materials. while the transport cross sections are disturbed very
slowly. Using this physical property the inner loop has been constructed inside which
only absorption cross sections arc changed and instead of full lattice calculations the
diffusion equation for a homogenised mixture is solved to correct the neutron flux
spectrum. Usually several short steps may be done before the full lattice calculation has
to be repeated. This leads to a substantial reduction of the computing time.
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Figure 9: Diagram of WIMSD burn-up calculations.
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where @7 is the flux calculated in the main transport routine.
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Under the cluster option the maximum power densities in cluster are calculated.
Inside the loop over burnable matcrials a search is done for each material m, to be equal
to the material of the innermost zone defined in all types of rods in the input data. As a
result of this search the number of rods with each material m is calculated. If no rods
with material m are found, an error message is printed.

Then the bum-up calculations are entered denoted by (i) through (v) in Fig. 9.

(1) Preparation of macroscopic cross sections.

The macroscopic absorption and production cross sections are recalculated in each
short step using the isotopic densities, N, obtained in the previous burn-up step (n-1).
For the first step these are number densities used in the last full lattice calculation.

¥ {ro [ St v 52|
i

x(n) .z X
b S o)

(3.19)

where x denotes the type of cross section: absorption or production, i the isotope index,
n — the current number of the short step, G the group index in the few-group scheme and
the summation over volumes, V,, times group flux, is carried out for all zones, z. The
first term represents the zones countaining the burnable materials and the second the
zones z’ without the burnable materials for which the constant absorption cross section
is added. The second term is not added in caiculation of production cross section.

ety _| 96 n-1
PG - {9&_” asl’ (3.20)
with @' coming from Eq. (3.18) aud &”" from the previous step solution expressed by
Eq. (3.29).
The total flux is calculated as:

ot =S V.ol v, ' (3.21)

where V= Z V, with z —a zone index, is the total volume.

(i) POISON option.

If the burnable poisons are present in the reactor the time steps have to be much
shorter than for the fuel because of strong flux variation at the burnable poison
boundary. A special possibility has been introduced (pt. (ii) in Fig. 9) that allows for a
solution of the transport equation in the short time steps for the burnable poison cell
surrounded by a homogeneous mixture of fucl ‘paste’ [4]. It is assumed that the flux in
the paste region is invariant from one homogeneous flux solution to the next. This is a
simplifying assumption allowing for treating the term with the paste flux as a constant
source in the transport equation solved for the pin with the burnable absorber. This
feature of the WIMSD algorithm allows again for less frequent repetition of full lattice
calculations.
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(iii)  Solution over the homogenised system:

MOZENEOUS medium with cross sections,

The few-group diffusion equations for a ho
d taken from the main transport routine

calculated in (i) (absorption and production) an
(scattering), is solved in each short burn-up siep.

{zg( "y Zng,}.ﬁg‘) + DB+ 24B2 W4 =
G'#G : (3.22)
= ZZ%'G‘FT}E;”) +{p+ 026 Zxarfér(")eﬁé’f’
&

G'#G
dc in the infinite medium and for the

Equation is solved for the neutron group flux
The additional

parameter 4. The previous notation has been kept for cross sections.

parameters depend on the input option:

e If AB? = 0 in input then p=0, p’ =1, and the equation is solved for A = l/k-eff and
neutron group flux ¢G(") in the n-th short step and all groups G. Leakage is then
described by the input B times the diffusion coefficient in group G. In particular, if
B2 = 0 there is no leakage and the calculated k-eff is really k-inf.

o IfABR>0thenp=1,p=90 and a search for 4 is carried out leading to the new
value of the buckling equal B*+ AAB* which ensures k-eff=1.

Thus, in the first case a flux spectrum corresponding to @ given leakage, expressed
through the input buckling, is found. In the second case the flux spectrum for a critical

system is calculated.
The flux ¢ ™ from Eq.(3.22) is then normalised
then multiplied by the flux from Ea. (3.20):

to the total flux from Eq. 3 21) and

, ¢(")
(n) _ (n=1)¥G__ (3.23)

0G: "9z p
PG

Gv) Flux normalisation.

First the fission reaction rate is calculated:

{Rmf““=zz{vzwzs"-“z(aéz;¢g;)} (624
&)

i mz

where all indices have the previous meaning, ie., i — isotope, G — group in few-group
scheme, (n) —-burn-up step, M — burn-up material index, and the summation for each
matetial is carried out for all zonus containing this material.

The mean energy per fission is calculated as

| . ‘ .
2{5*2\w"—“z(aé;:,,wgf;)]}
mzl_ (7

PG L N 13 s oy R
0.6075-1.6-107 {RR}™

where & is the energy release per fission for isotope I.

(3.25)
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The formula (3.25) is a modification introduced to WIMSD-4 by Aragones and
Ahnert {16,17] which gives the encrgy release per fission in MeV/fission.

The isotopic content of fissionable material in the fuel is calculated as a number of
grams of fissionable isotopes in the height of 1 cm of the cell or macrocell considered
multiplied by the Avogadro number. It can be:

(A) calculated at the first entry into the code according to the formula:

c= {VZZNf,fO)A‘} (3.26)
m,z 2

il
where A4’ atomic weight of isotope i read from the library and the summation is taken
over burnable materials m and for each material over zones containing that material.?

(B) if the input card FUEL -1 is present, the value of ¢ is calculated from Eq. (3.26)
in each burn up step using the actual number densities N, ™.

(C) if an input card FUEL ¢, ¢>0 is present, this value of ¢ is used instead of the one
calculated by Eq. (3.26).

In cases (A) and (C) the value of ¢ is printed under the name ‘initial inventory’. In
any case the value ¢ is used to get the flux level. For that purpose the power in the n-th

L. . .
burn-up step, P ”, is calculated on the basis of last number densities and fluxes:

o tsloslivergletietl) o

i m,z (€]

where the previous convention cn summation over materials m and zones containing
those materials holds.
Hence the normalisation factor. ¢, is obtained as

plo)
pH ’

=

z

(3.28)

where P is the power defined in input data. The factor & is then used for flux
normalisation. In case of required normalisation to a given power the normalisation is
carried out following the formula:

gl = gl (n) (3.29)

(r.2 .z
(v)  Integration of burn-up eguations:

Integration of burn-up equations for each material m and isotope i is done by
trapezoidal method with the burn-up equation written in the form:

i 2 2 s
2 Since all zone volumes V. are calculated, as sums over (#/; —#; ) for curvilinear and as

(r,,; — 1 ) in planc geometry, with r, the distance to the /-th layer of the cell or macrocell from its

centre, the factor 7 is missing in Eq. (3.26) in cylindrical and spherical geometry.
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where A4 is the decay constant of nuclide i, {RR}*' is the absorption reaction rate of
nuclide i, and coefficients g and g% are expressed through yields of fission products i

from fission of nuclide k, production fractions, capture and fission reaction rates.
Solution of Eq. (3.30) gives the number densities of all isotopes i in the current step n.
In WIMSD-5 several additional possibilities have been introduced for burn-up

calculations [2,18].

3. Results of lattice calculations

3.1. Types of lattice code results

The direct results of the solution of the neutron transport equation are k-eff or k-inf and
the neutron flux. in as many energy groups as they were used in the calculation and in
mesh intervals applied in the numerical solution.

These results can be then used in secondary calculations t0 deliver other needed
quantities. Secondary quantities calculated from the multiplication factors are the
reactivity effects of various types: temperature reactivity coefficients, effects of lattice
pitch dimensions, burnable absorber number densities, etc.

The effective multiplication factor, if given in the resuits, may be only a rough
approximation of this quantity. “he resuli based on the buckling approach can be
reasonable only if the reactor is of a very rcgular shape, and surrounded by a
homogeneous reflector (no dry lattice above the critical stand).

The neutron flux is used in calculations of reaction rates. They can be calculated
directly from the regional neutron flux and cross sections.

Reaction rates are usually defined for a reaction of type x, where x can be

absorption, fission or production, as:
i
Z lr/z(’- g I(D £,z
[RR}, = Lz — (3.31a)

2.V
z

and are effectively calculated as finite sums over materials and isotopes. The physical
meaning of definition of Eq. (3.31a) is the number of interactions of type x per unit
volume. The reaction rates may be calculated for a chosen isotope (i.e., without the
summation over i) or for reactions caused by all isotopes present in the chosen material.
They are usually calculated for a chosen energy interval, e.g., for the thermal region.

Sometimes a different definition is applicd based on microscopic cross sections. In
the WIMSD code reaction rates {RR} *i_in group g for isotope i, in the cell material or
cell zone z, and for reaction of type x are calculated as:




z Vza‘;‘jgog.z

X

{RR}3, = (3.31b)

The quantity based on macroscopic cross sections is then called the number of
reactions of a given type x, in group g for isotope i, and is defined as

{RR}); = NW,050,., (3.32)
- _
with a sum taken over regions z containing the isotope #, with the number density N.

3.2.  Homogenisation of macroscopic cross sections

The most important secondary results of the reactor lattice calculations are the
macroscopic cross sections for use in calculations of the whole reactor. These cross
sections have to be given in a smalier number of energy groups than that used in lattice
calculations and in homogenised regions. Thus, the problem of homogenisation is met.

The conditions to preserve important characteristics of the reactor can be formulated
through the following two equations [19]:

JEE( P (r)dr = [Z3(r)ge(r)dr (3.33a)
4 v

~ [Dg(r)vg (r)ds = [J(r)as (3.33b)
s S

1

where g=1,2....,GG is the energy group index, x = fot, a, f; is the cross section type index,
r the spatial variable, ¢ denotes the neutron flux, D denotes the diffusion coefficient, .J -
the neutron current, Sy is the k-th surface of the i-th region, and the variables of a
homogenised cell are denoted by a bar.

Since all homogenised parameters are assumed to be spatially constant within
each i-th region, the homogenised psrameters can be rigorously defined:

[Zai(r)pg(riar

i

ok S 3.34a
&ll) [8(rdr (-342)
V
J' J (r)dS
P G S— 3.34b
& i Vg (r)dS ( )
S::

The difficulties are seen from the last two equations: an a priori knowledge of the
integrated reaction rates and net currents for each cell is required. The flux shape
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of the homogenised constants must also be known. Thus a
d into the process of evaluation of homogenised constants.
Additionally Eq. (3.34b) must be valid for all surfaces, k, of the region i If continuity

conditions of scalar flux and net current are imposed on all surfaces, Eq. (3.34b) will

define values of diffusion coefficients which are different for each surface. Hence, an
tion and the most commonly employed

effective procedure requires an approximal
procedures for determining homogenised parameters relax the conditions for which the

quantities of interest are preserved:
The numerators of Egs. (3.34) are approximated by performing a cell lattice

calculation for each distinct cell type in the reactor. The equality of integrals over
detailed and averaged fluxes is assumed:

fotar = fprrdr (3.35)

v, v,

resulting from the use
nonlinearity is introduce

This relationship is not automatically satisfied since none of the homogenised
regions in realistic reactors satisfies the white boundary condition for which the
heterogeneous flux shape is computed. Thus, Eq. (3.34) has to be understood as an

approximation.
The homogenised diffusion cocfficients can be defined such that:

1
e b (1 )
i Lj D g(" I

L AR (3.36)
D.g,i lj[‘)‘bg(f‘)df‘
while for all other types of cross sections the formula is assumed:
- j):gf (r)dg (r)dr
)::f PR f;.__,_.. R (337)
Igﬁy (r)dr
Y,

acrocell region 18 composed of several subregions

In practical calculations the cell/m:
The integrals in Eqgs. (3.36, 3.37) are changed

for which the average flux is computed.
into sums over subregions j € i

1 2 _bl eV
n:__:i"‘ £/ , (3.38)
Dg,i Z¢g~fo
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o ZZ;.f‘fbg,jVj
E;i B (3.39)
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Homogenised parameters determined by making the approximation defined by Egs.
(3.36-3.39) are generally referred to as flux-weighted constants and have been used in
standard lattice spectrum codes. The conventional diffusion theory, using this
approximation cannot exactly reproduce all integral reaction rates, average fluxes in
each cell and the averaged fluxes and currents at the interfaces. To adjust a diffusion
theory solution to all these physical quantities additional degrees of freedom must be
introduced [19]. The assumption given by Eq. (3.36) is the most inaccurate one and its
improvements are dated even over 20 years ago. The modern homogenisation methods
are based on the postulate that the integral reaction rates, average fluxes and average
leakage are conserved. Various approaches have been proposed, some of them being
already implemented into reactor code systems.
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