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1. INTRODUCTION

Since the beginning of nuclear reactor physics studies,
perturbation theory has played an important role. As well known,
it was first proposed by Wigner [1] as early as 1945 to study
fundamental quantities such as the reactivity worths of different
materials in the reactor core. It is also well known that this
first formulation, today widely used by reactor analysts, makes a
consistent use of the adjoint flux concept.

The advantage of using perturbation theory lies in the fact
that instead of making a new, often lengthy direct calculation of
the eigenvalue {and then of the real flux) for every perturbed
system configuration, a simple integration operation is required
in terms of unperturbed quantities.

It is interesting that as early as 1948 Soodak (2]
associated to the adjoint flux the concept of importance, viewing
it as proportional to the contribution of a neutron, inserted in a
given point of a critical system, to the asymptotic power.

Along with the introduction of the concept of importance
and, parallel to it, along with the development of calculational
methods and machines, from the early 60' a flourishing of
perturbation methods, at first in the linear domain and then in
the nonlinear one, have been proposed for the analysis of reactor
core, shielding, nuclide evolution, thermohydraulics, as well as
other fields.

The perturbation formulations proposed by various authors may
be subdivided into three main categories, according to the
approach followed in their derivation:

1. The heuristic approach, making exclusive use of importance
conservation concepts, adopted first by Usachev (3] and then
extensively developed by Gandini [4-7]. It will be referred to,
in the following, as heuristic generalized perturbation theory
({HGPT) method.

2. The variational approach adopted, in particular, by Lewins [8],
Pomraning {9], Stacey [10],Harris and Becker {11l] and Williams
[127].

3. The differential method, proposed by Oblow [13] and extensively
developed by Cacuci [14], based on a formal differentiation of
the response considered.

Each of the above methods has its own merit, although all of
them can be shown equivalent to each other [15}].

Here the heuristically based, generalized perturbation theory
{(HGPT) [(3-7] methodology is considered for analysis of
subcritical, source-driven systems, in particular the so called
ADS (Accelerator Driven Systems), now considered with increasing
interest in many laboratories for their potential use as nuclear
waste burners and/or safer energy producers. A formulation for
time dependent, as well as for stationary conditions, 1is
correspondingly derived, clarifying some peculiar physical aspects
of subecritical systems with respect to their «critical
counterparts.



2. THE HGPT METHOD

In the HGPT method the importance function is uniquely
defined in relation to a given system response, for example, a
neutron dose, the quantity of plutonium in the core at end of
cycle, the temperature of the ocutlet coolant.

The HGPT method was first derived in relation to the linear
neutron density field. Then it was extended to other linear ones.
For all these fields the equation governing the importance
function was obtained directly by imposing that on average the
contribution to the chosen response from a particle [a neutron, or
a nuclide, or an energy carrier] introduced at a given time in a
given phase space point of the system is conserved through time
(importance conservation principle). Obviously such importance
will result generally dependent on the time, position, and, when
the case, energy and direction, of the inserted particle.

Consider a linear particle field density represented by
vector £ (e.g., the multigroup neutron density field) and a

response Q of the type

tp
9 = J'< st £>dt = << st £ >> (2.1)

to
where st is an assigned vector function and where < > indicate
integration over the phase space. Weighting all the particles
inserted into the system, let's assume a source s, with the

corresponding importance (£*) will obviously give the response
itself, i.e.,

<<f*,5>> = Q = <<st, >, (2.2)
which represents an important reciprocity relationship.

From the first derivations mentioned above the rules for
determining the equation governing the importance function £* were
learned. They imply, in relation to the equation governing £*

- change of sign of the odd derivatives,
- transposing matrix elements,

- reversing the order of cperators,

- substitution of the source s with s%.

The first three rules will be generally called "operator

reversal" rules.

The HGPT method was then extended to any field governed by
linear operators for which the rules for their reversal were
known. In particular, it was extended to the derivative fields,
obtained from expanding to first order, around a given starting
solution, a number of important nonlinear equations as those

governing:

- the coupled neutron/nuclide field, relevant to core evclution

and control problems,
- the temperature field, relevant tc thermohydraulics.



2.1 General Formulation.

Consider a generic physical model defined by a number of
parameters pj (§=1,2,...,J) and described by an N-component

vector field £ obeying equation
m(fip) = 0 . (2.3)

Vector f£(q,t) generally depends on the phase space coordinates q
and time t. Vector p represents the set of independent parameters
py (3=1,2,...) fully describing the system and entering into
Eqg. (2.3). Their value generally determines physical constants,
initial conditions, source terms, etc. Equation (2.3) can be
viewed as an equation comprising linear, as well as nonlinear,
operators and is assumed to be derivable with respect to
parameters pj and (in the Frechet sense) component functions fn
(n=1,2,...,N).

Consider now a response of interest, or functional Q given by
Eqg.(2.1). In the following, we shall look for an expression giving

perturbatively the change 80 of the response Q in terms of

perturbations Spj of the system parameters. In particular,
expressions giving the sensitivity coefficients relevant to each
parameter py will be obtained.

Expanding equation (2.3) around a reference solution gives
- daf
setting £/J=dpj ’

J
2 dp;(HE;y + my3) + 02 = 0, (2.4)
j=1

om

where 0> is a second, or higher order term, and where m/4y = 01
]

The (Jacobian) operator H is given by the expression
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where by I e have indicated a Frechet derivative.
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Since parameters Pj: and then their changes dpy, have been
assumed to be independent from each other, it must folliow

HEy; + 75 = 0 (2.6)

which represents the (linear) equation governing the derivative
functions £;3. The source term m;3 is here intended to account
also, via appropriate delta functions, for the initial and, if the
case, boundary conditions.

Consider now functional

Q5 = <<u¥, f£/5>> . (2.7)

Introducing the importance (£*) associated with field £75, if
4e use it as weight of the source term m/j . and integrate space-~
and time-wise, according to the source reciprocity relationship,
Eq.(2.2), the resulting quantity will be equivalent toO functional

Q3. i.e.,
Q3 = <<t*,m;5>> , (2.8)
where the importance #* obeys the (index—independent) equation
g*e* + nt = 0 (2.9)

H* being obtained by reversing operator H. As said above, this
implies transposing matrix elements, changing sign of the odd
derivatives, inverting the order of operators.

We can easily see that the sensitivities Sj (§=1,2,..-+J) of
system parameters can be written

- o8 ant « Om
ss = = << T=— f>> + <<€ 5T >> (2.10)
’ dp; dopj dpj '

where the first term at the right-hand side represents the s0
called, easy to calculate, direct term.

The overall change §q due to perturbations op+ (3=1,2, ...+ D)
of system parameters can be written, at first order,

J

oht x Om

= - £> <<f >>] . 2.11
50 = 2, Op3 [<< %3 > + <<£7, o >] ( )

i=1

Higher order expression may pe obtained making explicit use of the
derivative functions described above.
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3. NUCLIDE/NEUTRON FIELD

The HGPT methodology may be applied to the core cycle
analysis during burnup, in which optimal design parameters and
fuel shuffling strategies are sought. Before considering these
problems in subcritical systems, HGPT methods developed in the
past for analogous problems in critical systems are first
reviewed. These same methods can be in fact easily extended to
cope with such new problems.

An HGPT related perturbation methodology relevant to the
(heavy) nuclide density evolution has been first developed in 1975
(17]. Kallfeltz et al. {18] coupled it with the HGPT methodology
relevant to the neutron field to account for nonlinear effects
inherent to burnup problems. Other efforts in the nonlinear domain
have been made by Harris and Becker [11}, who arrived at a still

crude formulation, and, successively, by Williams [12] and Gandini
[6,71.

Williams used variational techniques starting from the time-
wise discretized neutron and nuclide density equations, along with
the quasi-static approximation.

Gandini used the heuristically based HGPT method after having
formally extended the neutron and nuclide densities to a contrecl
(intensive) variable. The equations obtained governing the
corresponding (time-wise continuous) importance functions are
relevant to the physical solution. Different schemes of
integration can then be defined [19]

Typical quantities which can be analysed with this
methedology are:

- the amount of a material specified in a given region at the end
of the reactor life cycle;

— the d.p.a. of a specific material and at a given position;

- the residual reactivity at the end of the reactor life cycle.
The analysis of this quantity may be of particular interest in
studies aiming at extending the reactor life cycle.



3.1. Source driven systems

The methodology mentioned above for long term nuclide/neutron
core cycle evolution analysis may be very well applied to source
driven, subcritical systems.

One of the advantages often claimed for the subcritical source
driven power systems is associated to the fact that the power
level may be basically controlled by the source strength (via the
regqulation of the accelerator current). So, no control, or
regulating elements would be necessary, if a sufficient breeding
is available (and/or an appropriate core burnable poison
distribution is provided at the beginning of cycle) in the core
for compensating the reactivity loss during burnup. To represent
this, we shall write the equations relevant to the neutrxon and
fuel nuclide densities n and Cso respectively, and to the control

(intensive} variable p (the time behaviour of this control
variable will be such to maintain the assigned power history W):

on
n,c.| )y = - de + Ee, + a- = 0 {3.2}
ey BrCelP = x £ c .
m“”(n,cflp y = <cf,Sn> -w =0 , {3.3}

where B is the neutron diffusion, or transport, matrix operator
(depending on ¢ and p), E the nuclide evolution matrix (depending
on n), s; and s; are given source terms, while

1 1
O¢1 0%2 -+ Ogg
o o, ... Ofg

S = Y e \4 '
o1 Of2 Ofg

Y being the amount of energy per fission, and G?g the microscopic
g'th group fission cross-section of the m'th heavy isotope. V is
the diagonal neutron velocity matrix. Quantities 7Y, V, W and o?g

may be considered generally represented by {(or function of) system
parameters py. Source terms s, and s, are also parameter

dependent.

Since we generally consider systems at quasi-static, i.e.,
stationary conditions, the time derivative at second member of Eg.(3.1)
may be neglected in the course of the integration process.



functional of variables n, Cg/ and p, could be

Any response,
considered for analysis. We think instructive to limit
consideration to the responsé defined by the expression
te
Q = pltp) = Ia(t-tr) pit) dt (3.4)
t
-}

e strength required at tg

We may assume that, at
If some

which corresponds to the relative sourc
to assure the power level imposed.
unperturbed conditions, p(t)=1 in the interval (to'tr)'

system parameter (for instance, the initial enrichment, oOT some
as in an optimization search

other material density) is altered,

analysis, it may be of interest to evaluate the corresponding
change of p at the end of cycle, to make sure that given upper
limit specifications of the source strength are non exceeded.

Along with the HGPT methodology, the equations for the

corresponding importance functions result

_ on* _ *_ ok *x % T *
> = B*n* + Qe + S7cP (3.5)
dc’
- TEF = E*c; + n" + snp* (3.6)
<p*, s> + O8({t-tp) = O (3.7)
. . _ 3 (Ec,)
Q" and 27 Dbeing operators adjoint of £, = =5 ]} and

[
J (Bn
Q (= ac, )’ respectively.

Eq.{(3.7) corresponds to an orthonormal condition for n*.



In order to determine the 'final' value n*(tF) required for
starting the integration of Eq.(3.5), in consideration of the
nature of the above governing equations, we shall first write n*
and p in the form*

n*(r,t) = mnp(r) d(e-ty) + B'(x,t) (3.8)
p*(t)y = pr dlt-tgp) + Pr(E) (3.9)
with n*(z,t) and 5*(t) being finite functions, vanishing at tg.

Replacing into Eq.(3.5), integrating in the interval (tg-g,
tgt€), and then making €0, we obtain the equation

Bnp + STe (tglpy = O (3.10)

sl
. *x : '
Let us now define mg as obeying eguation

x5 n

B*n} + STe (ty) = 0 , (3.11)

~
We note that n; corresponds to the importance relevant to
functional <cgf{tp),Sn{tp)>, i.e., to the system power W. From the

source reciprocity relationship, we may write

<cg(tp) ,Smitp)> = <n}, 3> = W . (3.12)

From constraint, Eq.{(3.7), we easily obtain

* 1 1
pr = - = -3 (3.13)
F <ag, Sp> W
and then
~ %
A n
al = nppp = - - (3.14)

*+ The diverging of n*(r,t) at tp may be explained on physical grounds
recalling the meaning of importance (in this case, the contribution to the
given response by a neutron with the same space/time coordinates} and
considering that the response here is p(tF), i.e., the control assumed to
maintain the power at a prefixed level. A neutron introduced at tp into the
system would in fact produce a (delta-like) impulse of contreol p to balance
its effect on the power level. Then, the importance associated to such
neutron would be characterized by a similar delta-like behaviour. A quite
similar reasoning applies in relation to the diverging of importance p*(t}
at tg., considering that its physical meaning corresponds to the
contribution to the response [p(tp)] due to a unit energy ingsertion at tg
or, which is the same, to an overall power pulse S(t—tF).



From this 'final' value, a recurrent calculational scheme may be
defined starting from tgy and proceeding backward.
vant to the j'th parameter Pj

The sensitivity coefficient rele
can then be defined as

___dp(t__i') * it d 0
apy pr [y 5 (B2 + =)> T oy (<cg, 50> - W 1o

ty
~ P oE -x O
+ I[<n*, (Bn +8 y>+<e*, 3. € >+ p” (<cf,Sn>-W}]dt.
. %y ° oy %3
o
(3.15)

t right side accounts

(3.13). The first term a
The second,

anges at Ctf-
pltr) produced by

with p; given by Eq.
for effects on pltr) due to parameter ch

erm accounts for analogous effects on

integral t
parameter changes at times t<tr.



Rather than on the source term, a control on the neutron
absorption in the multiplying region could be of interest. In this

case, the (intensive) control variable p would represent the

average penetration of the neutron elements, or the average
density of the soluble boron in the coolant, and then would enter
into the (transport, or diffusion) operator B. The orthonormal

condition for the neutron importance n* would now be, rather than
Eq. (3.7)0

x» OB
g
In this case, the sensitivity coefficient with respect to a given

parameter pj would always be given by Eq.(3.15}), with 3; obeying
Eq. (3.11), but with

<n n>+ O(t-ty) = 0 . (3.16)

(3.17)

In general, a control strategy, by which an automatic
resetting of the imposed overall power is actuated, might imply a
control intervention on both the neutron scurce strength and the
absorbing elements within the multiplying region. In this case, p
(which remains a unique, intensive control variable) would affect
both operator B and the neutron source [in this latter case, via
an appropriate p- and parameter dependent coefficient a(plp),

assumed unity at unperturbed conditions]. The distribution between
these two control mechanisms could be described by appropriate
parameters (subject to perturbation analysis). The sensitivity
coefficient, in this case, with respect to a given parameter pj4

would always be given by Eg. (3.15), with 3; obeying Eq. (3.11}, but
with

1
Pp = - . (3.18)



Statignary Case

To study a given subcritical system at the beginning of its
cycle life, we may consider the corresponding stationary case,
i.e., that same system in which the neutron source and the nuclide
density are assumed time-independent during an arbitrary time
interval (t,,tpg). We assume that at t, the neutron density (n,),

as well as the control (p,) have already reached stationary

conditions. So, also these two quantities are time-independent in
the same time interval. Their governing equations can then be
written, in case the power level is controlled by the source

strength,
Bn + p 8, = 0 (3.19)

<cfo'sno> - Wo =0 . (3.20)

Also here we shall assume that at unperturbed conditions P=1-

The same equations derived previously are applicable to this
case, with the advertence of replacing t, with with t, and setting

the coupling coperators 5% and.ﬂ; appearing in Eqgs. (3.5) and (3.6)
equal to zero. The sensitivity coefficient of the response p(tgp)
(=p(t)=p,, i.e., constant in the whole interval (t, tg) ! relevant
to the j'th parameter pj can then be obtained. Since in this case
¢*, as well as n* and p”, vanish, recalling Eq.(3.15), we obtain

d d d
E%? == p: [<n;, 5;; (Bn°+ sno)> + 35; (<cf°,Snb> - WO)]
(3.21)
where
1
pr = A (3.22)

and nz obeys equation

*x __ Xk T =
B*n} + STc. o . (3.23)

- W



If, rather than via the source strength, the power level reset
control ls assumed to be regulated via neutron absorption, so that

the control Po would enter intoc operator B, the sensitivity
coefficient would be given always by Eq. (3.21), but with

1
E
Py = - 35 . (3.24)

[+

We might as well consailder a (fictitious) contrel mechanism
affecting the fission source, rather than the neutron absorption,
i.e., we might choose as control a coefficient multiplying the
fission matrix (F) and, therefore, entering into the Beltzmann, or

diffusion, operator B (=A+p_F). The sensitivity coefficient would
be given again by Eq. (3.21), but with

Py = - ——— . (3.25)



neactivity of cupcritical Systems

For resetting the power level, we have considered above
hich the following types of

different control mechanisms to W
equations governing the neutron density may be associated:

B(p)n, * poano(p) = 0 {source control) {3.26)
B(pob)no + s (p) = 0 (neutron absorption, (3.27) ]
or fission control) ,
B(pob)no + u(polp)sno(p) = 0 (mixed control)? (3.28) '
dependence i{s indicated.

where the control and parameter
coefficient @ 1is given and reflects the mix
Eqs.(3.26), (3.27) and (3.28) may be genera

equation
(3.29) :

ed strategy chosen.
lly represented by

.(n,o) ("F"c»'po‘p ) =0 .
alized so that

The sensitivity expression (3.21) may be gener

dm )
<p*, —2Beol 5 4 < Sp > W
‘;Eo - - nofl op ;l—)_-\- (<Cgor %o o’ , (3.30) .
p.
J <n;, —f{n.0)
%9,

with n; obeying Eq.(3.23).
may now be obtained.

pation expression
(3.30) is not subiject

A corresponding pertur
appearing in Eq.

Assuming that the power LA
to perturbation, we may write:

¥*
po = — <o, dmp oy > 7 <n°:5(Scho)> a1
’ -
<n®* m >
n’, %
o]
om 9(sTe,) :

= —{n.o) =
where &n(n'o) —-Z 8pj apj and 8(STeg,) -z Bpj 3pj
] ]

onsidered also using E4. {3.26), or
Eq. (3.26), relevant to the neutron
jevel would be taken care of
the control rod position, or the
uld be taken care of

+ A mixed control atrategy may be ¢
Eg. (3.27). adopting, for instance,
source control, part of the power
parametrically (e.g., bY properly changing
soluble boron density). The remaining reset Wwo
intrinsically, by the p-control chosen.



As said previously, &8p, corresponds to the control change
necessary to reestablish the power level existing before the
perturbation &m We may as well say that the perturbation

{n,0)°
&n(n,o) [and S(Scho)] would produce a power level change
equivalent to that produced by a contreol change 8Kp given by the
equation
* T
8k = <n;, 8m, . >+ <n ,8(sTe. )> 5329
(4 om y .
<n:” —{n.0)

P,

In the case of the (fictitious) control on the neutron
fission, setting A in place of p to distinguish this peculiar
case, we may explicitly write

<al,, 88n_> <n}, 8s_ > <n_,d(sTc, )>

o "o ~“of " no”

3K, = —3 + 0 - ) (3.33)
<A, I-"no> <n,, I-'no> <m,, Fn°>

The first term at the right side closely resembles the reactivity
expression for critical systems* . So, we shall call a quantity
BKl as given by expression (3.33) a 'generalized reactivity'. To
account for a generic p-mode control mechanism, we shall extend
this definition to SKP, similarly defined by Eq.(3.32), i.e.,

* b T
- <ay, 8}3n°> <ny, 83n0> <n0,8(S Cp) >
Sxp = m + = + o . (3.34)
<n"°', —tn.od o <p*, —D«0) o <n:’ —{n.0)

p, °" %, 30,

and call it generalized p-mode reactivity*.

+ The first term at right hand side of Eg.(3.33) can be demonstrated to
formally approach the standard reactivity expression as the ({(reference)
system considered gets close to criticality conditions (See Rppendix B) .,
*+In the following, if noc ambiguity occurs, we shall call it simply
'reactivity’'.



“-n

We may as well define a (generalized) reactivity coefficient,
as given by the expression

T
oB ds d(STe, )
* x Do <p  ———=%0 o
aKa" _ ZBorapy %7 + SPorBpy " + S 3 ! (3.35)
3 * B * oB * B )
<n?, n > <a*, —m > <p*, —m >
[o] apo fe} o %0 [o] o apo [}

Expressions (3.34) and (3.35) can be useful in the analysis
and exploitation of measurements on subcritical experimental
facilities, as well as for analytical studies of power source
driven reactors (for example, for optimal configuration searches) .

In relation to the application of above formulations to
experimental facility analysis, a (measurable) change of the flux
level produced by a perturbation of a parameter {(such as a
material density, the neutron source intensity, etc.) would be

associated to the corresponding 'reactivity'’ BK:x, where apex "eX"
indicates that it would correspond to a measured quantity. The
determination of SK;X could be effected either directly, by

resetting the initial flux level conditions via the specific p-
mode control chosen (for instance, as is the case for an
experimental facility, through a regulatory rod movement), oOr
indirectly, through its previous calibration vs. neutron flux
level.

cal of

Calculating value 0K the same ‘'reactivity' from

Eqg.(3.34), would enable a comparison between experimental and
calculational results, in view, for instance, of data adjustments
exercises via statistical fitting methods [201. The data to be
adjusted could be differential quantities (e.g., cross-sections),
as well as neutron source parameters (e.g., related to the energy
distribution and intensity) to which 'a priori' uncertainties have
been associated.



A measurement of the power level change consequent to a
perturbation of system parameters could be also used directly in
an ‘'unconstrained' system, i.e., in a system in which no reset
mechanism is considered (which may be the case for anp experimental
subcritical facility). In this case, the neutron density n_ at

unperturbed conditions would obey equation

Ba_ + s, =0. (3.36)
Considering the importance nj governed by Eq. (3.23), relevant
to the system power Wo = <cfo,Sno>, along with the HGPT

methodology [7] we would obtain the perturbation expression
(inclusive also of the so called 'direct effect' term)

OW, = <ng, 88a_> + <n¥, 8s > + <n,8(sTe, )> . (3.37)

This expression could alsc be used for experimental data analysis,

In certain circumstances, Eq.(3.37) could as well be adopted
for system analysis and optimization searches, even though in this
case no direct appreciation would be obtained on the 'reactivity’

SKp associated with the control mode selected.



APPENDIX B. On the 'generalized reactivity'
At pgrevious section an expression was obtained relevant to the

so called 'generalized reactivity' dK;, i.e.,

» + * + *
<n,fn o <n0,Fn o <nFn o>

<n;,88n0> <ngds > <n 5(8Te )>

It was evidenced how the first term at the right side closely
resembles the reactivity expression for critical systems. This
term can be demonstrated to formally approach the standard
reactivity expression as the (reference) system considered gets

close to criticality conditions, the % control coefficient (at
reference conditions) approaching its critical wvalue lc [for
example, consequent to assuming the (reference) neutron source
term, defined as Snoic;no: with (positive) coefficient { approaching
zero, while maintaining unaltered the power level Wy]. To show
this, let us consider {arbitrarily normalized) functions Eo and ¢;
relevant to the corresponding critical system, obeying equations

Ahgy+ ) Fii, =0; A" +A 9= 0 . (B.2-3)

Clearly, functions n, and n; cbeying heterogeneous equations

(3.27) (with source term SnoEC;no, and withp=i) and (3.23),
respectively, for A—A, (corresponding to {—0) approach limiting
values, 1.e.,

n, > af; n, - 0,0, (B.4-5)

where @, is a finite (positive) coefficient while «, diverges.

Correspondingly, the third term at the right side of Eg.(B.l1)
tends to wvanish. Eg.(B.l) then approaches the asymptotic
expression,

<¢,5Bi > N <¢p.08_ >

<@pFh> <G Fng>

m—-
8K, =

(B.6)

The first term at right side formally coincides with the
reactivity expression for critical systems. The sum of the first
and second term may be viewed as a generalization of the
traditional reactivity expression. The second term would allow to
account for the possibility of introducing into a critical system

a neutron source s!'m(sﬁsno), viewed as a perturbation. The

quantity -5k would in this latter case correspond to the control

A
(A) change associated with Bsno, so that in the altered system
(subcritical, after the control reset) the previous power level is
maintained. This possibility so far has not been of particular
interest in critical system studies, SO that reactivity

expressions containing only the first term at right side have been
so far generally considered.



Source Reactivity

Limiting consideration to the source term perturbation,
Eq. (B.6) reduces to

.,SS
SK;.S = f&’_ﬂﬂz . (B.7)

<¢y, Fi>

where —Bl(‘:corresponds (te first order} to the control (A)change

associated with Ssno, gso that in the altered systen (subcritical,

after the control reset) the previous power level is maintained.
So, if the source term perturbation is sufficiently small, the

fission source distribution Fa, will not differ significantly from

that, Fa,, relevant to the corresponding subcritical system with a

multiplication coefficient Koﬂl—&(f. Replacing SK;S with (1-K/), and

Fn, with Fn, Eg. {B.7) may be rewritten in the form

t’ &
K = 8o %pg> (B.8)

o » *
<o, F 0>

A similar relationship may be easily obtained in relation to
any degree of subcriticality. Consider a subcritical system
described by the equation

(A +F)n0+sno-—-0 (B.9)

and corresponding to a given multiplication factor K-

Consider then function ¢; relevant to the corresponding

1
critical system, governed by Eq.{B.3) (with 3~ in place of A),

o
i.e.,

(a* + El" F'yop= 0 . (B.10)

o)

As well known ¢;corresponds to the adjoint of the fundamental mode

- 1 . .
n, [governed by Eq.(B.2), with L~ 1B place of A_] and, according
o
to Soodak (19%48), may be viewed as proportional to the
contribution to the asymptotic power by a neutron inserted in a

given point of the corresponding critical system.



a

Adding and subtracting KLF::o at the left term of Egq.(B.9),
o

multiplying on the left by¢;and integrating, we easily obtain the
relaticenship
1-K,  <¢p.s >
<2 =-5:£—ﬂﬂ-— (B.11)
o <¢,Fn >

which corresponds to the source multiplication reactivity defined
by Greenspan (1976). We can also rewrite it in the form

<dos. >
<o Fn o> =K0%9— (B.12)
[¢)

which evidences the source amplification effect on the integrated
(weighted) fission source. Along with Scodak (1948), quantity
<¢;,Fn°> could be properly interpreted as proporticnal to the
asymptotic power produced in the corresponding K-mode* critical
system (i.e., with the number of secondary neutrons per fission, Vv,
replacing V/Ko) by a neutron source distruibuted as Fa_,

introduced for a given limited time interval, propagating into it
and so giving rise to a persistent, steady state distribution.

*+1.e., relevant to replacing the fission source F n, with -Kl-;F n,. One could as well consider different mo

for instance the so called w-mode (Gandini, 1981b). In this case, the equations governing the real

adjoint fundamental eigenfunctions would be:
0P+ A+ = 0; o @+ @A +FHE® =0,

W, being the corresponding eigenvalue. Rather than expression (B.12), we would have then obtained

*{w)
<pr@g 5

Do

where ©,— 0 for the system approaching criticality conditions. Dividing both sides by <¢*(®

0
<¢5™.n >

rearranging and defining the "effective neutron lifetime” 1 =
<@ Fn >

, We may also write

*(w)
5 >
<¢;(0))an0> = O "no
{
ell™o

Fr

LA



The above relationship may be rearranged so that

= plng> = 1 (B.13)
[ ] * - - ™ * .
<o Fn >+ <5, > 4 <¢3,sn >
<o FN >

which defines, the multiplication ccefficient as the ratio between
the weighted integrated fission source <¢;Fn0> and the sum

(<#gFB >+ <435 >) of this same quantity and the weighted integrated

external source. From the definition of¢;Jall these source terms

are weighted so that only their contribution to the fundamental
mode (or, better, to the asymptotic power in the corresponding
critical system) 1is kept. Then, the larger the (average)
importance of the external neutron source with respect tc the
inportance of the fission one, the smaller the multiplication
coefficient K, required to maintain the prescribed power level
with that same neutron source.

On the other hand, if, rather than the adjeoint flux, we adopt
a unit weight vector u we would obtain the 'actual' multiplication

factor Kact, i.e. ’

<u, Fn_> 1
Kact = g Fa> 7 <u,5 > = <u,s_ > (B.14)
al o **no 1 + 'Tno
<u, Fno>

It is quite evident that Kact=K, in case the external source has
the distribution of the fission source, i.e., if sno=aFnO,(lbeing
a given (positive) coefficient.

From Eq. (B.14) we could as well obtain the expression

<ms_>
<U,FII0> = Km;TKft— (B.15)

which defines the amplification in terms of the 'actual' source

multiplication. Quantity <u,Fa > multiplied by y/v, Vbeing the

(properly weighted) average number c¢f seccondary neutrons andYthat
of energy units per fission, corresponds to the subcritical system
power.



In Egs.(B.12) and (B.15) both left hand side terms are
proportional to the fission rate and, then, to the power level,
Two different amplification factors, Ko/ (1-Ko) and Kact/ {1-Kact).
appear at the right hand side of these same equations. There is no
inconsistency in this fact, since these factors are applied to

different integrated source terms <¢;,sno> and <u,s, > respectively.

So, if the neutron source is located in a 'high weight' position,
relatively to the average fission neutron,* the corresponding
amplification factor Kg/ (1-Kg,) would result significantly smaller
than Kact/ (1-Kaetr) (and, consequently, Ko would result
significantly smaller than Kict) .

A few comments on the concept of subcriticality are
appropriate. When we say that a system is subcritical, usually we
implicitly refer to the fundamental mode since it is with this
mode that the eigenvalue K, is associated. As well known
(Glasstone and Edlund, 1952) higher modes may be excited during a
transient in a subcritical system but, in absence of an external
neutron source, these modes, being associated with smaller
eigenvalues, would vanish more rapidly than the fundamental one.**
In a reactor at subcritical conditions it is then the value of Ko,
rather than that of Kacr, which identifies the degree of
subcriticality, i.e., the 'distance' from reactor conditions such
that this same quantity K, reaches a unit value,

The notion of the coefficient K, .. may be otherwise useful, for

instance as a 'measure' of the efficiency of the neutron source,
as far as the overall 'actual' power is concerned, in a search for
its optimal location [which could as well be identified by

considering, for different source positions, the quantity <¢;sno>
or, better,<<n;gno>, with the importance n; obeying Eqg.(3.23) and
directly associated with the subcritical system power].

-

*
. . . . DoSn0> . . . PoSn0”
*.e., with a relatively high value —2—22—, or, more precisely, with raua(—l:’;m’; significantly larger |

. fo) n0> no
<¢0,Fn >
<u,Fn0> :

*+Experimentally, this means that, removing the neutron source from a subcritical reactor, the sint
determination of the fundamental mode period after the higher modes have vanished would allow, using
inhour formula (Glasstone and Edlund, 1952), the evaluation of K.



ADJUSTMENT METHODS

Cy  (f=1.2....1)
P (j=1,2,....J)
cy’ (4=1,2,...1) and Py
Theoretical model

C_l - Qz‘pt-----p.l) -

Integral quantities, or responses, relevant to

one or more physical systems

Systems parameters.

Experimental values

(2=1,2,...,1)

(1)

Assume a given set of values Do close enough to the true ones p;, weé may expand
Eq.(1) disregarding second and higher order terms and obtain

J

aQ
Qz- Qid + Z'leotpj—po‘j).

j=1%

cal
Cz = O£(p°’1,...,po'J) .

Define (assuming p and Q different from zero)

_ Pi-Po.j
Ypi = Po.j
Qy - Q%
Yayg = cal
Qy
. o0
. Poj T2
Spj =

Qia' P ipg

(-‘=1 yeensl)

(sensilivity coefficienls)

(2)

(3)

(4)

(5)

(6)



introducing vectors

¥p.1 yau
YP - . ’ yQ = (7)
Yp.J yar
R and the sensitivity matrix
Si1 S12 - Sw
s s . . S
2
S - 21 22 J ' (8)
| S S tu
N Eq.(2) may be writlen, in vector form,
Define
a*x
yor . i~ Po.i (10)
| P} Po.j
| ax cal
5 ox G8 - Q7 4
: yaj= cal (11)
Qy

Assume that the that measured quanblies q“ and Og" (and, therefore, ygﬁ and y?{l)
are normally distributed with dispersion matrices Cp and Cq. respectively.

The likelihood function relevant to vectors yq and yp, results

i 1 ) i
| L=aexp{-3 [y5-ya) Ca (G ya)* (vo yp) Cp'ly 3 yp]} ,
{14}

via relationship (9), an estimator

An estimator ip of vecior yp [and, consequently,
aximized. This is

¥q of yql is searched such that the likelihood function L is m.
obtained by solving equation

. Ta-t ~ ~ - ~ :
% FaTea yS-Va) + 2 Tp) Cp (YR Fp) = min (15)
with the constraints

ja - S¥p = . (16)



Having assumed, for simplicity, that (numerically) p; = P (or, which is the
same, that ygf «0), two equivalent solutions may be obtained, i.e.,

T,-1
§p = CpS Ticq +5C,8") yd" (17)

¥o = (G' +STCa's)'sTcalyd (18)

The first solution (implyinq inverting a matrix of the order of the number L of
experimental data Q !.) corresponds to the method of reduction by the Lagrange
multipliers, the second one (implying inverting a matrix of the order of the number
J of experimental data Pj ™ to the so called method of reduction by elements.

Corresponding dispersion matries ép
&, = Cp-CyS'(Cq +SC,ST)'SCp (19)

&' -g'+sTg's . (20)

Pieces of different, independent integral information can be added subsequently,
adopting at each siage the latest up-dated estimates ¥, with dispersion matwix C
Criteria for establishing the degree of confidence can be adopted, for example x

tests, since it resulis that the residual quantity
A -y T(sc ST+ Co) ' vd (21)

is distribuled as 12, i.e., with L degrees of freedom. Its expected value is, therefore,
equalo L.

*

24

Ke , U_cefrb" f '
( v uly /‘xvm /yCig, RE f)res‘s‘/ Boce KOJBM, A

()’- Rovew, Edilor) (1457)






