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Abstract

The basic features of elastic and inelastic scattering within the framework of the spherical
and deformed nuclear optical models are discussed. The calculation of cross sections, angular
distributions and other scattering quantities using J. Raynal’s code ECIS95 is described. The
use of the ECIS method (Equations Couplées en Itérations Séquentielles) in coupled-channels
and distorted-wave Born approximation calculations is also reviewed.

1 Introduction

A npuclear reaction is initiated when a nucleon or nucleus collides with another nucleon or nucleus.
Reactions are characterized in first place by the incoming nuclei and the cutgoing reaction
products. Examples of the usual notation for this are *C{n,n)"C, for the elastic scattering
of neutrons on '2C, %6Fe(p,t)*Fe, for the pickup by a proton of two neutrons from %Fe, and
25U (n,n’) for inelastic neutron scattering from 23U,

A complete description of a nuclear reaction involves other observable quantities beside the
incoming muclei and the outgoing reaction products. Among these are the relative energy of
the incoming and outgoing nuclei and the scattering angle of the outgoing products. When the
nuclei/nucleons involved have spin and/or excited states, their polarizations and/or excitation
energies can also be observed.

The characteristics of the reactions induced by a given pair of incident nucleons/nuclei can
be summarized in distributions of the occurrence of the reaction products, called cross sections.
Quantitatively, the cross section o, for the production of a product p is defined as

number of particles p produced per unit time ()
Op —

number of incident particles per unit time per unit area

Cross sections have the dimension of area. The information obtained from cross sections often
depends quite strongly on the internal structure of the initial and final nuclei. In fact, the
comparison of experimental scattering observables with those obtained from various nuclear
models can teach us a great deal about the structure of individual nuclei. After having used
such a comparison to determine the model parameters appropriate for a given system, one hopes
to use the same parameters to predict cross sections in other energy ranges or in neighboring

systems.



At low energies and for all but the lightest nuclear systems, nuclear reactions occur on two
very distinct time scales. Direct reactions occur promptly, on a time scale of the same magnitude
as the time it takes the projectile nucleus to pass by the target nucleus. Compound nuclear
reactions, which involve the formation of a quasi-boﬁnd intermediate complex, occur on a time
scale that is at least several orders of magnitude larger. A naive application of the uncertainty
relation, AEAt > K, would lead one to expect their energy scales to be inversely related. This
is, in fact, the case. The contributions of direct reactions to the cross sections vary smoothly
with energy. Compound nuclear reactions make contributions to the cross sections that fluctuate
rapidly with energy.
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Figure 1: The total cross section for neutrons incident on %8Ni at low incident energy, taken from
the data of Ref. 1

The difference in the energy dependence of the direct and compound nucleus contributions
to the cross section is clearly seen in Fig. 1, which displays the total neutron cross section on
58Nji at extremely low incident neutron energy. One observes a direct reaction cross section — the
result of elastic scattering of the neutron, in this case — that varies slowly with energy, except
where it is punctuated by a faster variation due to the presence of a compound nuclear state
of %Ni of about the same energy. At such low energies, separation of the direct and compound
nucleus cross sections is a fairly straightforward {although often grueling) task.

At higher energies, the density of compound nucleus states becomes so large that the individ-
ual contributions can no longer be resolved. It then becomes impossible to distinguish the slow
energy dependence of the direct contribution from the rapid variations of the compound nucleus
one. An example of this is given in Fig. 2, where the total cross section for neutrons incident
on *Ni is again shown, but now at higher energies. The fluctuations in the cross section, called
Ericson fluctuations,[3] do not permit the determination of the contribution to the cross section
of each individual compound nuclear state. Instead, only the average properties of the compound
nucleus contribution to the cross section can be determined. It is in this context that the optical
potential plays a crucial role in the separation of the two contributions.

The principal objective of the optical model is to describe just the prompt, direct reactions
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Figure 2: The total cross section for neutrons incident on “Ni in a small incident energy range
close to b MeV, taken from the data of Ref. 2

in a nuclear collision. To separate the direct reactions from the compound-nucleus ones (the-
oretically), one assumes that the compound-nucleus reactions do not contribute to the average
wave function and scattering amplitudes, due to their rapid fluctuations in energy. Note that
the compound-nucleus reactions still DO contribute to the average cross sections, which are, for
the most part, proportional to the squares of the amplitudes. The energy-averaged amplitudes,
however, are associated with the scattering amplitudes for the prompt component of the scatter-
ing. The optical mode! potential is defined as the potential which furnishes the energy-averaged
scattering amplitudes.

In a wider context, the optical potential can be considered an effective potential that takes
into account all of the physical processes one does not want to take into account explicitly.
The most important of these are the rapidly fluctuating compound-nucleus contributions to the
scattering. But direct processes are also included at times. One example of this is the use of
an effective spherical optical model potential to take into account the coupling to excited states
of the target. Another example is the deuteron optical potential, which usually contains the
contribution of direct deuteron breakup.

As well as being fundamental for the calculation of direct reaction observables, optical model
calculations are also used to produce the transmission coefficients essential for the analysis of
compound nucleus cross sections within the Hauser-Feshbach statistical theory. They are thus
one of the first and most important steps in the evaluation of nuclear cross sections.

2 Formal development of the optical model

To derive the optical model from ‘first principles’, one begins by partitioning the Hilbert space
of states into a component P containing the prompt states and an orthogonal component @ that
contains the closed channels of the intermediate compound complex.{4] As a concrete example,
one may consider P to be the subspace consisting of a nucleon scattering on °¥Ni, while Q consists



of the ground and excited states of the nucleus **Ni {and other processes, such as -y emission,
that have been neglected). The projection operators, P and @, onto the subspaces P and @Q,
respectively, which satisfy the properties

p=pf Q=0q
P?=P @=0q (2)
P+@Q=1,

are then used to decompose the state vector of the system, ¥, and the Schrédinger equation it
satisfies,

(E - H)¥ =0. 3)
The prompt component of the state vector is P¥, while the slower component is QW¥, with
¥ =PV +QU. (4)

We can multiply the Schrédinger equation on the left by P or by @) and use the decomposition
of the wave vector to write the equation as two coupled equations,

(E — Hpp)P¥ =VppQV¥ (5)
and
(E — Hgq)Q¥ = VopPV¥, (6)
where
Hpp = Hyp + Vpp = PHyP + PV P, Vpg = PHQ, etc.,

and we have assumed that the contributions to the Hamiltonian of the internal degrees of freedom
and the kinetic energy, both contained in Hp, do not couple the P and @ subspaces. We may
formally solve the first of these, Eq.(3), as

Po; = ¢t 4 VpoQU;, (7)

E*) —Hpp

in which the (+) denotes an incoming wave boundary condition, the vector ¢>§+) satisfies the
Schrédinger equation in the P subspace,

(B — Hpp)p " =0, (8)

with an incoming wave in channel i alone (and none in the @ subspace) and P¥; and @Q¥; are
the components of the full wave vector that evolve from this incoming wave. The solution P¥;,
when substituted into the second coupled equation, Eq. (6), yields

(E — Hoq — Wqo)QW; = Vops! ", {9)
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where

1

E(+) _ HPP VPQ - (10)

WQQ = VQp

We can decompose the P-subspace Greens function into its real and imaginary parts as

1 PP
EY) —Hpp E—Hpp

—iﬂ'ES(E —pr), (].1)

where P.P. represents the principal part. The open channels in the P subspace thus make a
negative imaginary contribution to Wgg, which results in singularities in the wave vector in the
lower half of the complex E plane.

Eq. (9) can be solved to obtain the @-subspace component of the wave vector as

_ 1 (+)
Qu; = F—Tlag —Wag Vord; (12)

which then permits the expression of the P-subspace component of the wave vector as

1 1
E® —Hpp '9E — Hgg - Weq

PO, = ¢t 4 Vordit . (13)

A careful analysis of the last expression leads one to the scattering matrix 7y; giving the transition
amplitude in the P subspace,

Ta=Tg + <

v 1
PQ Q
E - Hgg — Wgq

P ¢£”> : (14)

The first term in this expression is the direct scattering amplitude associated with scattering in

the P subspace alone. The second term describes the slower processes that result from coupling
through the states of the Q subspace. The first term varies slowly as a function of energy while
the second term varies rapidly.

The energy average of the P-subspace wave vector can now be written as

1
(PE:) =6 + MVPQ < QQ) Vorsdi", (15)

where
egg = £ — Hgg — Wog (16)

is the only rapidly varying function of the energy in the expression. The average wave vector
can be written in a Schrédinger-equation-like form by multiplying both sides of the expression,
Eq' (15)1 by EH-) - HPP)

(E ~ Hpp) {PT;) = Vpg < ;@) Vard! . (17)

Using Eq. (15) again to rewrite the wave vector qﬁz{-ﬂ as

1

U+ (B = Fpp) Vi (1eqq) Var (18)

PASIS
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substituting this in Eq. (17) and performing a bit of algebra, one finally obtains the optical
model equation,

1
E — Hpp — Vpg - Vor| (PT;) =0. (19)
(L/eqq) ™ +Waq '
The optical potential can thus be written as
1
Vopt = Vepp + Vpg Ver- (20)

(1/eqq) " + Woq

To conclude the formal development of the optical model, one must evaluate the average value
{(1/egg)- The simplest way of doing this is to average the quantity 1/eqg over a normalized
Lorentzian density,

1 / p(E'n EO)
— ] = dEO ’ (21)
<eqq> By — Hgg ~Waq
where
A 1
P(E, Ep} = (22)

2m (E — Bo)2 + (A/2)

Assuming the quantity 1/egg to have no poles in the upper half of the complex E plane {due
to causality, it should have them only in the lower half-plane), we can perform the integral by
closing the contour and calculating residues in the upper half plane to obtain

1 1
_ , 23
<6QQ> E+iA/2—HQQ—WQQ ( )
and hence
1
Vi = Vor .- 24
opt VPP+VPQE“HQQ+?:A/2 QP (24)

The optical potential is obviously energy-dependent, non-local and complex due to the energy-
averaged propagator {E — Hgg + iA/2)7! in the second term. Its imaginary part is negative,
resulting in a potential that is absorptive. The flux of particles leaving the scattering region is, in
this case, smaller than the incident flux, with the remaining fraction of the flux being absorbed
by the potential. It is through its imaginary part that the optical potential takes into account
the flux that is lost from the states of the P subspace to the states of the Q subspace.

The optical scattering matrix can easily be derived in the same manner. One obtains

Vrg <g$5> Vor ¢$+)> , (25)

with (1/egq) given by Eq. (23). Observe that the second, rapidly fluctuating term does not

(M= T(ip) + <¢5§:)

vanish completely. Indeed it should not vanish in general, for its average contribution describes
the loss of flux from the prompt channels to the long-lived compound-nucleus states.



3 Low-energy neutron scattering

At low relative energies, a collision between charged nuclei or a nucleus and a charged nucleon is
dominated by the Coulomb force, which keeps the two beyond the range of nuclear interaction.
Only neutrons can enter sufficiently close to a nucleus at such energies to feel the effects of the
nuclear force.

Several factors also simplify the description of low-energy neutron scattering. The centripetal
barrier keeps all but the 1=0 s-wave contribution effectively out of the reach of the nuclear
interaction for energies greater than about 50 keV. In addition, with few exceptions, nuclei
have no excited states at energies lower than about 20 keV. The prompt component of neutron
scattering then reduces to s-wave elastic scattering in this energy range.

The optical model equation for the s-state wave function 4y is

(Eem =T = Upp) 22 =0, (26)
which can be reduced to
d? . 2
d;";“ + [k* - ﬁ_g‘u,,,,t] Wo =0, 27

where the wavenumber is k = 1/2uEq,/R%, 1 is the reduced mass and E,y, the center-of-mass
energy.

To solve this equation numerically, one develops the solution, g ine(r), starting from r = 0,
using the condition that the wave function vanishes at the origin, g ne(r = 0) = 0 and one
of many possible numerical methods {Cowell, Numerov, modified Numerov, Runge-Kutta, etc.).
The equation is solved numerically out to a radius ry,,, beyond which the optical potential can
be neglected. For values of the radius equal to or larger than this matching radius, the solution
to the differential equation that satisfies the incoming wave boundary condition takes the form

Yoeat(r) = (e — Sei®") r> . (28)

One requires, at the matching radius ry,, that this external wave function and its derivative be
the continuous extensions of the numerical wave function obtained in the the internal region and

of its dertvative. This results in two equations,

ao¥0,int(rm) = %-(e*ikr"‘ — SpetFr™) {29)
and

an%%,mt("”m) = g(e_ﬂ"’“ + Spekrmy (30)

whose solution yields the amplitude of the internal wave function, ag, and the S-matrix element,
So.



Once the S-matrix is known, the cross sections can be calculated. For the case of s-wave
scattering, these are

2T
Ttot = k_g(l_ReSO)7
T
ou = 7l -11, (31)
w T
and g, = F“"'S"lg):ﬁ%’

where T} is the s-wave transmission coefficient. The reaction cross section and the transmission
coefficient T} are non-zero when the S-matrix element Sy is smaller than one in magnitude. This
occurs when flux is absorbed by the long-lived compound-nucleus states. Care must be taken,
however, when comparing the optical model reaction cross section to the experimental one. A
part of the flux absorbed by the compound nucleus can later be re-emitted in the elastic channel,
in which case it should rightly be considered part of the elastic cross section.

Of the three cross sections, only the total one can be compared directly with experimental
data, as it is the only one that is linear in the scattering amplitude (here the S-matrix element
So). The S-matrix element can be written in general as the sum of an average and a fluctuating
part, S = Save + Sp1. The average elastic cross section then has the form

™ K
(0a) = 75 |Sae = 1F + 25 (IS - (32)

The first term alone gives the elastic cross section of the optical model. The second term
contributes to the optical model reaction cross section.

Other scattering quantities of physical interest can also be calculated for low-energy neutron
scattering. At extremely low energies - below the resonance region — the elastic cross section is
observed to approach a constant value, 6. This value is used to calculate the scattering radius,
R = /o far.

In the resonance region, s-wave and p-wave strength functions can be defined. The s-wave
strength function, sg, relates the average neutron partial width (I'p) and spacing Dp of the
resonances to the optical model absorption. One has, approximately,

o — {T'o} ( Ey )l/2~ 1 — S|
*” "Dy \Eem 3 Foom

where Ej is usually taken to be 1 eV. The factor /F.,, the s-wave penetrability, cancels the

(33)

energy dependence of the neutron partial width, so that the strength function varies slowly
with the incident neutron energy. The p-wave strength function, s, relating the average partial
width and spacing of the { = 1 reonances is defined analogously in terms of the p-wave S-matrix
elements and penetrability.

Adjustment of the optical model parameters at low energy to reproduce the s-wave and p-
wave strength functions, the scattering radius and the total cross section is known as the SPRT
method.[5] A good fit to these observables is important in determining the low energy behavior
of the optical cross sections and the transmission coefficients, which is important, in turn, in

determining the behavior of compound nucleus cross section calculations near threshold.
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4 The phenomenological optical potential

The formal derivation of the optical potential presented in Section 2 might suggest that it could
be calculated directly. Although a good deal of work has indeed been done in this direction, the
resulting potentials are often difficult to calculate and still not sufficiently precise. They also
have the drawback of being non-local, which can greatly complicate solution of the corresponding
Schridinger equation.[6, 7, 8]

Instead, phenomenological optical model potentials are normally used to compare and fit to
experimental data. With few exceptions, these potentials are taken to be local. However, the
qualitative characteristics of the geometry and the general trend of the energy dependence of
the phenomenological potentials are quite similar to those found in microscopic potentials. Both
types of potentials are, after all, trying to describe the same physical processes.

In the empirical potentials, the functional form is usually determined by a Hmited set of
parameters that are adjusted to obtain a best fit with the experimental data. Over the years, a
standard form of the phenomenological optical model potential has evolved, which permits the
parametrization of the scattering of a light particle (neutron, proton, deuteron, triton, *He or
alpha) from a given nucleus. This is

Uopt () =
+Ve(r) a Coulomb term,
=V fv(r) a real volume term,
+Vsgv{r) a real surface term,
— W, gw(r) an imaginary surface term, (34)
—iWy, fw(r) an imaginary volume term,

—tgo I3 Vso b, (1) a real spin-orbit term,
+idgol - §Wyo hw,,(r} and an imaginary spin-orbit term,

where the spin-orbit constant is dy, = (h/mc)? ~ 2 fm?, m, being the pion mass.
The Coulomb term is usually taken to be the interaction of a point charge with a uniformly
charged sphere of radius I,

3 _ 2
Vo(r) = (E 2?1%5) ZyZse* /R, r < R, (35)
ZpZye [T r> R,

where Z, and Z; are the projectile and target charge, respectively. Although this potential
neglects the surface diffusivity of the nuclear charge distribution, it is a reasonable approximation
in the case of the scattering of light particles from nuclei.

The real and tmaginary volume terms are normally taken to be of Wood-Saxon form,

1
" T+expl(r — Ri)/aj]

where R; and a; are the radii and the diffusivities, respectively, of the two terms. The Wood-
Saxon form factor, shown in Fig. 3, can be thought of as a smoothed step function, falling from

i 1=V, W, (36)

one for values of the radius r smaller than the radius R; to zero for values of r greater than R;,

in a few multiples of the diffusivity a;.
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Figure 3: The Wood-Saxon (solid line) and sharp cutoff (dashed line) form factors with a radius
of R=>5 fm and a diffusivity of a=0.5 fim are shown.

The real volume potential refiects the average interaction of the projectile with the nucleons
of the target nucleus. The Wood-Saxon form factor it uses is quite similar in form to the nucleon
density of a saturated nucleus (A > 30 ). (For lighter nuclei, a Gaussian geometry is sometimes
used.) The strength of the real volume potential is roughly proportional to the mass of the
projectile and decreases with the incident energy, in qualitative agreement with the results of
calculations of the nuclear mean field.[9]

The imaginary volume potential takes into account the loss of projectile particles due to
collisions with the nucleons of the target. It is zero at low energies, for which the projectile does
not have sufficient energy to knock out a target nucleon. At higher energies, it increases slowly
with the incident energy, as the phase space available for nucleon knockout increases. At even
higher energies, both the real and imaginary volume potentials for nucleon scattering are fairly
well described by the impulse approximation, in which the the target density is simply folded
with the nucleon-nucleon cross section.[10, 11]

The real and imaginary surface terms of the optical potential are taken to be either the
derivative of a Wood-Saxon,

(Y = —dg ) = exp [(r — Ri)/ai .
#) = 8aGr K) = exp i Rl A
or a Gaussian,
gi(T) = exp [%@‘)—2] i=V,W. (38)

In either case, the potential peaks at a radius R; and falls to zero within a few multiples of the
diffusivity a;. A derivative Wood-Saxon form factor with diffusivity aw s is almost indistinguish-
able from a Gaussian form factor with diffusivity ag = 2.2laws, as shown in Fig. 4. The code
ECIS95 uses only the Wood-Saxon derivative form.

The imaginary surface term of the optical potential takes into account the absorption due
to the coupling to the quasi-bound compound nucleus states and to the excitation of low-energy

10
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Figure 4: The derivative Wood-Saxon (solid line) and Gaussian (dashed line} form factors with
a radius of R=5 fm and diffusivities of aws=0.5 fm. and ag=1.105 fm, respectively, are shown.

collective modes, which have their couplings concentrated in the nuclear surface. Similar many-
body effects can also be invoked to justify the presence of a real surface term. However, given
the imaginary surface term, the existence of the real term can be shown to follow directly, by
using a dispersion relation based on the causality of the optical potential (no singularities in the
energy upper halfplane).|12] The dispersion relation shows that an energy-dependent imaginary
potential W (r, E) necessarily leads to a contribution AV (r, E) to the real potential given by

PP. f® W(r,E')

AV(T‘, E) = T o E_E dE’ (39)

Obviously, if the imaginary term is a surface one, the real term resulting from the dispersion
relation will be a surface one as well.

Both the real and imaginary spin-orbit terms of the optical potential are taken to have a
Thomas form factor,

1 exp [(r — R;)/ai]
ra; (1+ exp[(r — R;)/ai))

hilr) =~ & filr) = = Vi Wi (40)
Like the surface imaginary term, the Thomas form factor, shown in Fig. 5, yields potentials
which peak at a radius near R; and fall to zero in a few multiples of the diffusivity a;.

The Thomas form factor, as well as the spin-orbit potential itself, can be derived (for spin
1/2 particles) by performing a reduction of a Dirac equation with Wood-Saxon potentials to
an equivalent Schrédinger equation.[9] The spin-orbit interaction and the Thomas formn factor
can then be interpreted as but another manifestation of the volume interaction of the incident
particle with the nucleons of the target nucleus.

The phenomenological optical potential is thus parametrized in terms of a set of potential
strengths and corresponding geometrical parameters. These paramneters have been adjusted for
many systems and values of the relative energy. Several attempts have been made to adjust a
single set of parameters to a wide range of systems by introducing a dependence on the target
charge and mass as well as that on the relative energy. The potentials obtained using such sets

11
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Figure 5: The Thomas form factor with a radius of R=>5 fm and a diffusivity of a=0.5 fm is
shown.

of parameters are called global optical potentials. Many individual and global optical parameter
sets can be found in an old compilation by Perey and Perey.[13] However, the best modern
reference for optical potential parameters is the Reference Input Parameter Library (RIPL),
available both online and in CD from the Internationational Atomic Energy Agency.[14]

For nucleons, typical values of the potential strengths are

Va (45-55)MeV-(0.2-0.3)F,
W= (2-T)MeV+(0.3-0.5)F E < 8-10MeV, (41)
Vie = (4-10)MeV.

Above 8 - 10 MeV, W, is usually constant or slightly decreasing. V; and Wy, can normally
be taken to be zero as can W below about 10 MeV. Above about 10 MeV, W is constant or
slightly increasing. As mentioned above, for heavier particles, the real volume potential V' scales
approximately linearly with the mass.

The radii R; characteristically take on values close to that of the radius of the target matter
distribution. They are often parameterized in terms of reduced radii r; and the target mass as
R; = 'r,-Atl/ 3, with the reduced radii in the range r; =~ 1.2 - 1.3 fm. The diffusivities normally
take on values in the range a; = 0.4 - 0.7 fin, except in the case of a Gaussian surface form factor,
for which the typical values are slightly larger.

Not ail of the optical model parameters are uniquely determined by the experimental data.
It has been observed, for example, that fairly wide ranges of the parameters V, R,, W, and
as result in equally good fits to the experimental data if the values of VRf, and Wya, remain
constant. These are known as potential ambiguities.

5 Partial wave expansion in the single-channel optical model

When angular momenta greater than the s-wave contribute to the scattering, the wave func-
tion and the scattering matrix are determined most conveniently when decomposed in angular
momentum partial waves.

12



The partial wave expansion of the scattering wave function of a particle of spin s [15] can be
written as
W = 4m 1 iatwj gr 2y ynt ok
=2 e OV AV R, (42)
tin

in terms of the spin-angular functions
Vi (7) =it (svimljn) Yim(7) lsv) | (43)
mr

where [ and 7 are the orbital and total angular momenta and |sv} is an eigenvector of the particle
spin. In the expansion of the wave function, o; is the Coulomb phase, # denotes the angular
variables and k the direction of the incident momentum. (The S-matrix element in partial wave
! for pure Coulomb scattering of the projectile from the target would be e?:) The factor
i‘e*"@/;,j {r}/kr could have been written as simply 1/1,’ (r) in the partial wave expansion. The form
used above simplifies later manipulations.

When the partial-wave expansion of the wave function is substituted it the optical Schrodin-
ger equation, one can extract an independent equation for the wave function 1/}{ in each partial
wave. One finds

{d? {I+1)

L h2o2H (Ueen(r) + ] Uso(r}) } ¥i(r) =0, (44)

dr? r?

h?

where the spin-orbit constant is dl’ =de (J(F+ 1) — I+ 1) —3(3+1})/2 and Uen and Uy, are
the central and spin-orbit terms of the phenomenological optical model potential discussed in

the previous sectiomn.
The incoming-wave boundary condition requires that asymptotically the wave function take

the form of an incoming plane wave and an outgoing scattering wave,
U exp (i 7+ inlog(kr — k7)) Y [sv) (sv] (45)
v

+ ! exp (tkr — inlog(2kr)) Z sty fo(8) (s,
r 4
where the f,/,(6) are the spin-projected matrix elements of the elastic scattering amplitude and
n is the Coulomb parameter, n = 2, Z;e? /h2k. To be consistent with this expression and satisfy
the differential equation, the wave function ¢ must have the asymptotic form,

Yi(r) = Bir) + (Gur) +3Rr) O = & (H7 () - B (r)edons]) e o, (46)

where C’f = (Sf — 1)/2:, F; and G, are the regular and irregular Coulomb wave functions,
respectively, and H, li = TGy £ 1F}) are the linear combinations of these that asymptotically
contain only incoming (H; )} or outgoing (H;') waves. S/ is the nuclear part of the S-matrix

element and e%“! the Coulomb part.
The S-matrix elemernts, Sf', are obtained in the same manner as Sy is obtained in the case of

low-energy neutron scattering. In the internal region, the differential equation for each partial
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wave, Eq. (44), is solved numerically out to the radius, ;. The numerical solution and its
derivative are matched there to the wave function in the external region, given by Eq. (46), and
to its derivative, to obtain the ampitude in the internal region, a{ , and the S-matrix element, S{ .

The only novelty to the solution here is deciding with which partial wave to stop the cal-
culation, for { and j extend to infinity. The calculation is normally stopped when the nuclear
S-matrix elements are sufficiently close to one. This occurs when the centripetal barrier no longer
permits the projectile to enter the range of nuclear interaction with the target. For partial waves
of larger !, the scattering reduces to pure Coulomb scattering (or for neutrons, no scattering at
all), as is evident from Eq. (46).

When the asymptotic form of the partial wave function, qbl’ , of Eq. (46), is substituted in
the partial wave expansion of the total wave function, Eq. (42), and the result is compared to
the expected form of the asymptotic wave function, Eq. {45}, one can extract the partial wave
expansion of the scattering amplitude,

A R .
)= 5 2 (s = 1) DB, (47)
in
or,in terms of its spin—projected matrix elements,

fuou(8) = Z (e%95] = 1) Vi (P)Yig (k) (im's0'ljn) (imllmav) . (48)

Due to the slow convergence of the Coulomb term, it is convenient to write these amplitudes in
a form in which the Coulomb contribution has been summed exactly,

fru(8) = MZ [(e¥t = 1) + €27 (87~ 1)] Yiew (7 Yy (B)

f

x {Im'sV'|jn) (jnilmsv)
Fie ; ; . ot
= S fol®) + 5 30 (8] — 1) Vi (AYin(R) (49)
ijn
x (Im'sv/|jn) (yn|lmsv) ,
where
_ n i ) .
fol8) = ohsin? 62 exp [ inlog (sm 9/2) + 2300] (50)

is the Coulomb amplitude.
For spin-0 particles, there is only one amplitude This is

£(8) = foo(8) = fc(8 Z (2 + 1)e* (S} = 1)Pi(cos 8). (51)
For spin-1/2 particles there are two distinct amplitudes. They are
A0) = fir=Ff s (52)
1 By 1 1
= Jel0)+ 523 e [(z NS — 1)+ 1St —1)| Picosh).

l
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3-3 = 1-

1 . 1 —L

= Y % [S:+2 — 5 2] Pl {cos ).
!

N

L

2
2ik

The differential elastic cross section for an unpolarized incident beam is obtained by averaging

the squared magnitude of the scattering amplitudes over the initial values of the projectile spin
and summing over the final ones. The general expression that results is

= e T (54)

For spin-0 particles, this is
o i) 5=10. (55)

For spin-1/2 particles, it is
9~ 14@)? + BO)P s=1/2. (56)

For particles of spin-1/2 and greater, one can define vector and tensor spin observables in
terms of other combinations of the amplitudes. In particular, for particles of spin-1/2, the vector

polarization, P(8), is

_ 2Im A*(0)B(8)

PO) = — a0 (57)

The fraction of flux absorbed from each partial wave is given by the transmission coeflicient,
Tf , defined as

T =1- |Sﬂ2 : (58)

When the S-matrix element is unitary, no flux is absorbed and the transmission coefficient is
zero. When absorption is complete, the transmission coefficient is one. These quantities are
essential for calculating statistical reaction cross sections. Quite often, optical model calculations
are a mere preliminary to statistical model calculations and are performed only to obtain the
transmission coefficients.

The total flux lost in the scattering is related to the reaction cross section through the

equation
| -
op ==, $7-da. (59)
v

where it is understood that the probability current,

7= 2}; (qﬁvlp - (vqﬂ‘)ﬁr) , (60)



-

is integrated over a surface which tends to infinity. The reaction cross section can be expressed
in terms of the transmission coefficients as

1 = ;
= e————— 2i+1)T7.
Cr 23+1k2§(3+ )Tl (61)

For charged particles, integration of the differential elastic cross section of Iq. (54) leads to
an infinite result, due to the infinite range of the Coulomb interaction. For neutrons, it yields

the elastic cross section,

do T P12
sa= | d0 22 =53 (2 + |- 62
This is often called the shape elastic cross section to distinguish it form the compound elastic
one.
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Figure 6: Various experimental measurements of the n +58 Ni total cross section, identified by
their EXFOR access numbers, are shown together with two optical model calculations.

For neutrons, a total cross section can also be defined as the sum of the elastic and reaction
cross sections,

7 ) ;
Otot = Ogf + O = k—22(23+1)(1-—ReSf). (63)
i
The total cross section takes into account all flux lost from the incident plane wave, either by
scattering or by absorption. Comparing the expression for the total cross section with that of the
scattering amplitude, A(#), one sees that the optical theorem is explicitly verified by the partial
wave expansion,

4
Cror = %ImA(B —0°). (64)

As observed earlier, when it exists, the total optical cross section is the average of an am-
plitude and can thus be compared directly with the energy-averaged experimental data. This is

16



done in Fig. 6, where a selection of the experimental measurements of the n +°® Ni total cross
section is shown together with optical model calculations using the parameters of A. Prince[16]
and those used in the exercises. Although there is a great deal of dispersion in the low energy
data, the calculations succeed in following its trend.

T T T T T T YT

®Ni+n FElastic’

hS -
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1 It st il A L4l 1 141 :vanal
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Figure 7: Various experimental measurements of the n +°% Ni elastic cross section, identified by
their EXFOR access numbers, are shown together with two optical model calculations.

The optical elastic and reaction cross sections involve the average of a squared amplitude and
cannot be compared directly with the energy-averaged experimental data. The compound elastic
cross section is part of the optical reaction cross section rather than the elastic cross section.
The experimental elastic cross section can thus greatly exceed the optical component of the cross
section. This is illustrated in Fig. 7, in which a selection of the experimental measurements of
n +°8 Ni are compared to optical model calculations using the parameters of Prince[16] and of
the exercises. At energies sufficiently high for the elastic compound nucleus cross section to have
dropped to zero {which usually occurs at an energy of the order of a few MeV), the differential and
integral (when it exists) optical elastic cross sections can be compared with the energy-averaged
experimental data. Note that the elastic cross section for neutron-induced scattering can also be
compared to the experimental data at extremely low incident energies, where it is customarily
expressed as a scattering radius R'.

At high energies, the reaction cross section can also be compared to experimental data.
However, the reaction cross section cannot be measured directly, making the data for such a

comparison scarce.

6 Using ECIS95 for single-channel optical model calculations

To perform a single-channel optical model calculation with ECISS5 [17, 18, 19{, one must first
provide it with the parameters it needs to perform the calculation. The first of these are the
system parameters — the charges and masses of the projectile and target, Z,, Ap, Z;, and Ay,
and the relative energy, Eom = AtFia/(Ar + 4p). Also needed are the parameters defining
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the optical potential, the potential strengths — V, W, W,, V,, and W,, and the geometrical
parameters — the reduced radii r; and diffusivities a;. The spin and parity of the target ground
state must also be provided, although they are actually irrelevant in the single-channel problem.

The input file to ECIS95 for a single-channel calculation is not difficult to prepare. The
code, however, does not permit the input of energy-dependent parametrizations, a common
characteristic of potential strengths. Instead, the strengths at each value of the energy must be
calculated and entered separately. This is a task easily delegated to a small utility program. But
it is then a small step to a utility program that prepares the entire input. An example of the
dialogue with an interactive program of this type, PRECIS, is given in the Appendix.

Once the input is ready, the code can perform the requested calculations. This is done along
the lines already discussed. For each set of system parameters, internal and external regions
and a matching radius are first defined. For each partial wave, the wave function is calculated
numerically in the internal region and matched to the external wave function to obtain the S-
matrix element. Once the S-matrix elements are known, cross sections, transmission coefficients
and angular distributions can be calculated.

ECIS95 calculates cross sections automatically. S-matrix elements (in the form C,j = (Sf —
1}/2¢) are printed on request. Differential cross sections, polarizations and transmission co-
efficients are calculated and printed on request. If desired, the differential cross sections and
polarizations can be plotted. However, the code does not calculate low-energy observables —
the sp and s, strength functions and the scattering radius, R'.

The code ECIS95 permits comparison with and fitting to experimental data. For this, the
code calculates and minimizes the x2, which takes the following form, for a differential cross
section,

do(8;) dcr'*'(@-)) ]2

2 — 3/ i A Tin. h

with do®(8;)/d) the experimental value at angle §; and Ao”(#;) the experimental error. When

the normalization of the experimental data is uncertain, it can also be adjusted by redefining the
2

X° as

00 = 5 A2 (00— 2 00/80%0)] + (-3 0T (66
X - dQ ) dQ T ? 1

i
where AT is the experimental normalization and AAT its error. The experimental data can be
in the form of integrated and differential cross sections or polarizations. Again, the utility code
PRECIS can be used to facilitate input preparation, as shown in the Appendix.
A drawback to the data fitting abilities of ECIS95 is its limitation to a single value of the
relative energy at any one time. Just as it cannot utilize energy-dependent parametrizations of
the potential strengths, it cannot adjust their parameters.
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7 The generalized optical potential

The single-channel or spherical optical model treates the target nucleus as if it were spherical.
But nuclei are often deformed. Even those that are spherical are often susceptible to shape
oscillations. Deformed and vibrational nuclei possess low-lying collective states that are easily
excited in a collision. As these excitations are prompt reaction modes, one would expect their
description to lie within the scope of a generalized optical model. The standard extension of the
optical model takes into account the expected deviation from spherical symmetry by modifying
the radii R; of the terms in the optical model potential.

A vibrational nuclens possesses a spherically symmetric ground state. Its excited states
undergo shape oscillations about the spherical equilibrium mode.[20] To take these into account,
the radii of the terms in the potential are expressed as

R; = Ry (1 + an Y/\u(f')) (67)

Ap
- (1+Z \/27— Z p T () bA—u)YAu(‘F)) .

where the b}u and by, are the creation and annihilation operators of nuclear phonons and the
By are the amplitudes of their respeciive shape oscillations. One usually expands the optical
potential to first or second order in the creation and annihilation operators,

. oty .
Uopt(rv 7') = Uopt('r) + Z a}g}t ROi Z LY Y/\,u('r) (68)
i 1

Ap
2
o%U,
t 3 R (Z Aru YVau(F )) :

thereby taking into account the direct excitation of one- and two-phonon states. The vibra-

tional model including one-phonon states is called the first-order vibrational model, while that
containing the two-photon states as well is known as the second-order model.

The nucleus % Ni serves as an example of a typical vibrational nucleus. Two neutrons from a
doubly magic configuration, it has a spherically symmetric J = 0% ground state and a J = 2+
excited state at E_.=1.454 MeV that can be considered a one-quadrupole-phonon vibrational
state. At about twice the energy of the one-phonon state, in particular, at E,=2.459, 2.776,
and 2.943 MeV, one finds a trio of states with J = 41, 2%, and 0", respectively, which can
be interpreted as the two-phonon states. The fact that the first two these (but not the third)
decay almost exclusively to the J = 271 excited state corroborates such an interpretation, but
also shows its limitations.

A statically deformed nucleus possesses rotational excited states.|[20] When the nucleus pos-

sesses axial symmetry, the radii are replaced by

Ri(8') = Ry (1 +> B YAU(H’)) : (69)

A
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where 3, is the static deformation of mutipolarity A and the angle ¢ is in the body-fixed frame.
This substitution could be extended to the general case of triaxial nuclei without too much
difficulty (at least at this point}. The model is then called the assymetric rotational model in
contrast to the (axially) symmetric one. In either case, the potential obviously depends on the
orientation of the principal axes of the target.

When the deformation of the nucleus is large, expansion of the potential in a Taylor series is
not a good approximation. It is better to expand it directly in multipoles as

Uopt(ra f’) = Z UA(T) YAO(F’)a (70)
A
where the multipole potentials are obtained as
Ur(r) = [ 49 Ul 0)¥30(8) . @)

In the body-fixed frame, the moments Uj,(r) with p # 0 vanish. The body-fixed angles 7' are
related to the space-fixed ones 7 by a rotation through the angles that define the orientation of
the nucleus, which are the collective angular coordinates of the nucleus, #jps. For the spherical
harmonics, this implies that

Yao(#) =3 You(#) Dog(Fine) = Y Yaul#) Y (Fine) » (72)
b n

where the D;}#, are rotation matrices with the special value for 4’ = 0 used in the last equality.
The optical potential in the rotational model can thus be decomposed as

Uapt ('F, 'F'z'nt) = Z U)\(T) YAM(TA) Y:#(ﬁm) - (73)
Ap

The nucleus 28U provides an excellent example of a statically deformed nucleus with rota-
tional excitations. Its 01 ground state possesses static quadrupolar e hexadecapolar deformations
with By = 0.198 and B = 0.057. Its first four excited states, at E; — J"= 0.044 MeV-2F, 0.148
MeV-41, 0.307 MeV-67, and 0.518 MeV-8t, iniciate a rotational band that can be traced to at
least the 287" state at E,=4.516 MeV. Each of these states decays exclusively to the next lower
state in the rotational band.

Morel elaborate couplings between projectile and target can also be described through ap-
propriate generalizations of the optical potential. One of these was mentioned above — the
assymetric rotational model — obtained by taking into account triaxial deformations of the nu-
cleus. Another is the vibrational-rotational model which couples static deformation to dynamic
shape oscillations. More details about these can be found in Ref. 19.

The generalization of the spherical spin-orbit potential to a deformed one is not as straight-
forward as the above discussion would make it appear. In spin-1/2 systems, it can be obtained
from the Dirac equation by eliminating the lower components of the wave function to obtain an
equivalent Schrodinger equation for the upper ones. It then appears in it full Thomas form as,

V U(F) x —iV - &, (74)
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where & are the Pauli matrices. Applying this form of the coupling to a typical term in the
multipole expansion, Uy(r) Y,,(#), Raynal found that its matrix element between two partial
waves, |l;7;) and |{fjr}, takes the form

VWA B X~ = g ) ) { ;| a0

Ux(r), d
+ = (vi — ¢ )"&? (75)
R A e R 8

For the spherical optical model, A = 0, v; = vy and this expression reduces to the usual one.
In the code ECIS95, six parameters 2z, 22, 23, 24, 25, and zg have been introduced to generalize
the form of the deformed spin-orbit coupling. They appear as

11d U
[?UA(T)] (21 + 23 +247p) + A:T)

26(% ~ ’Yf)cfi—r (76)

r

+ "(j) [2A(A + 1) = (7 = w)lvs =7 = 1)] -

The full Thomas form of the potential corresponds to the values
zZir=2z4 =0 and Zo =23 =25 = 25 = 1. (77)
The deformed spin-orbit interaction can be increased by a factor z by using
z1=2=0, z2— 1, and Z3 =25 =2 = T . (78)

In the generalizations of the optical potential discussed in this section, the introduction of
target degrees of freedom leads to a potential that depends on the relative orientation of the target
with respect to the projectile. The system is no longer invariant under independent rotations of
the target or the projectile and their individual angular momenta are not conserved. However,
in all cases, the system continues invariant under a simultaneous rotation of the projectile and
target. The total angular momentum thus continues to be a conserved quantity.

8 Partial wave expansion in the coupled-channels optical model

The partial wave expansion proceeds in the coupled-channels optical model much as it did in the
single-channel one. There are several new features however. The first of these is that the excited
states and their angular momentum must now be taken into account.

To include the angular momentum of the target, the spin-angular functions are coupled to

the target states to form target-spin-angular functions,

lsgc(r) - Z (jnIN 1JM>y (T‘) UN) (79)
nlN:

where the |I.N,) represent the target states with total angular momentum and angular mo-

mentum projection I, and N, respectively. In the vibrational model, these are the one- and
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two-phonon states,

1
LN =6} 5 10)  and  |LNe) = ———— [}6,] , 10). (80)

1 + iy ] I N,
In the axial symmetric rotational model, they are the rotational states, which can be written in

terms of the rotation matrices D}y as

o 1 2f,+1
e N = s o

x [XK('F:'nt) D5 (Fint) + (=)~ % x_k(Tint) DR'?:,_K(TAint)] )

(81)

where x .+ is the internal wave function of the rotational band, I, its internal angular momentum
and K the projection of the total internal angular momentum on the symmetry axis.
The scattering wave function is expanded in a sum over both the excited states and the
angular momenta. The expansion can be written as
ei%tc

U=dr ) ViMoo PV Bihjres ger) = Vinge (k) - (82)
C

ljed M
<I’j'C'

Factors of ¥ and et /kcr, where k. is the wave number in channel ¢, have again been extracted
from the wave functions to simplify later manipulations. The Coulomb phase now depends on
the channel energy, through k., as well as on the angular momentum.

In the deformed optical model, the wave functions, 11),‘,’ P c,,ljc(r), couple different values of the
angular momenta ! and j and different channels ¢ for each value of the total angular momentum
J. This contrasts with the single-channel optical model, in which the wave function for total
angular momentum j also possesses a well defined orbital angular momentum . This is due to
the fact that the interaction couples the different partial waves in the deformed model, while it
does not do so in the spherical one. (If it did, a partial wave expansion in terms of the wave
functions 't/}f,I in Eq. (42) would, in general, have been necessary.)

When the partial-wave expansion of the wave function is substituted in the optical Schrodin-
ger equation, the latter can be reduced to a set of coupled equations for each value of the total

angular momentum J. These are

K[ d2 U@ +1)
2% {F T2 + k2 } wf’rj'c',ljc(r) (83)
- Z ul.]j'c',l”j”c"(r),llbi{’j"c",ljc(r) = 0.,
gt

where the potential matrix elements are calculated with respect to the orthonormal target-spin-

angular functions,
Ul 1e(r) = / g AV (F)Uopt (7, Fint) VI () (84)

Although the target-spin-angular functions used to calculate these matrix elements have a well-
defined projection M of the the total angular momentum J, the matrix elements that result are
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independent of this value if the system is rotationally invariant. When the system is invariant
under time-reversal, the potential matrix is also symmetric under interchange of the primed and
unprimed indices.

By writing the matrix elements as matrices,

U816y i00c. = Ly, ko 6yl — Ky, (85)

J J
Yo aie(r) = Culr), Ui jrer 1je(r) = Us(r),
the Schrédinger equation can be recast in a more familiar form as a matrix equation,

d>  Lj(Lj+1) 9 24

{&—;5——1_2—4'}{‘[—5—2[]}(‘!’) ‘I’J(T‘)IO. (86)
The incoming-wave boundary condition again requires that asymptotically the wave function

take the form of an incoming plane wave and an outgoing scattering wave. Here this takes the

form
¥ — Zexp (zEC -7+ incloglker — ke - 1"')) Z |svI Ne) (sl N
C v
1
+; Z exp (tker — iny log(2kyr)) (87)
cc’

X

Y|V LN Fun un, (8) {sVIN|

v’

where the f,, N, (6) are the target and projectile spin-projected matrix elements of the elastic
scattering amplitude.

The asymptotic form expected of the wave function in the partial wave of total angular
momentum J can be most easily expressed using an obvious extension of the matrix notation
above. To be consistent with Eq. (87) and satisfy the differential equation, the matrix wave
function ¥; must have for its asymptotic form,

Wy(r) = Fi(r) + (Gslr) +iFs(r))Cy (88)
= % (H} (r) — Hj(r)eingew-’) el

where C; = (55 — 1;)/2i, Fy and G; are the regular and irregular Coulomb wave functions
in (diagonal) matrix form, respectively, and H7 = ¥/ (G; £ iF;) are the linear combinations
of these that asymptotically contain only incoming (H;} or outgoing (H}r) waves. Sy is the
nuclear part of the S-matrix element. One can loosely interpret the half of the Coulomb phase
shift €7 that precedes the nuclear S-matrix in Eq. (88) as the Coulomb deflection accumulated
on the incoming half of the ‘trajectory,” with the half of the Coulomb phase shift following the

nuclear S-matrix then being the Coulomb deflection of the cutgoing half of the ‘trajectory’.
The S-matrix elements, Sy, can be obtained by an obvious extension of the method used for
the spherical optical model. In the internal region, the differential equation for each partial wave,
Eq. (86) is solved numnerically out to the radius, r,. The numerical solution and its derivative
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are matched there to the wave function in the external region, given by Eq. (88}, and to its
derivative, to obtain the amplitudes in the internal region, a;, and the S-matrix elements, S;.
This is repeated for increasing values of J until the value of S; which results is sufficiently close
to one.

The important difference between the deformed optical model and the spherical model is that
the wave function in partial wave J is not a scalar, as it is in the spherical model, but a matrix.
The differential equation that must be solved is also a matrix one. Although the only solution
that is normatly of interest is the one in which the target is in its ground state in the incoming
wave, the complete matrix solution is needed to invert the matching equations and obtain the
S-matrix. The calculation is thus much more time consuming than in the spherical case.

To obtain the partial wave expansion of the scattering amplitude, one repeats the procedure
used earlier: substitute the asymptotic form of the partial wave function, ¥; of Eq. (88), in
the partial wave expansion of the total wave function, Eq. (82), and compare the result to the
expected form of the asymptotic wave function, Eq. (87). One then finds

— _47r

iy T i, 1 2 i.
f(8) = 2—3 (e“ft ¢ Spj:c:,[jce te — 51"!6j‘j6c’c) k—cy‘i’g,d(r)y,‘fsﬁf(k) . (89)

ljeJM

i!jfcn’
Its target and projectile spin-projected matrix elements are

— A1 . —J , 1

fv’NcrvNc(B) = E{ Z (ewvc' Sl'j'c',ljcew!c _ Jl’laj’jac"c) E-

C

ljel! i’

JMmm! an!

X Yo (7) Yoo () (I'm/s0/|'n") (90)
X (§'n' Ty No |T MY (TM | jnI N.) (jn|lmsv) .

In the scattering problem considered here, the flux, not the density, is conserved. When a
state is excited, the energy that goes to excitation must be taken from the relative motion. The
relative velocity thus decreases, as does the flux. To take this into account, the S-matrix and
scattering amplitude must be renormalized as

ke <7 25 p-1/2
Siyetie =\ T Stetie or S;=Ky"8; K2, (91)
C
and
ke -
fon,un(0) = s I AR (92)

When the system is time-reversal invariant, the matrix Sy is syminetric.
The scattering amplitude with the Coulomb term extracted thus has the form

fu‘NcaVNc(g) = av’ufchrchCC(g)

4 e (s )
o 2 A (Sl‘j’c‘,zjc - 5t'z5j'j5c’c) ete

Lict!jte! (]

JMmm'nn!
X Yo (P) Yy (k) (I'm/ s/ [5'n) (93)
x (' Ty Nu| M) {(JM|jnl Nc} {jnlimsv) .
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where

n . ) .
feeld) = _m exp [—ine log (sin® 0/2) + 2io.| (94)

is the Coulomb amplitude in channel c.

Once the scattering amplitude is known, calculating cross sections is a simple matter. The
differential cross sections for an unpolarized incident beam and target are obtained by averaging
the squared magnitude of the scattering amplitudes over the initial values of the projectile and
target spin and summing over the final values. The differential elastic cross section for a collision
in which the target is initially in its ground state is then given by

Fongono®)]” - (95)

dge[ — 1 Z
a2 (2s+ DL +1) &
0

viNg

The differential inelastic cross section for inelastic scattering to an excited state ¢ can be written

similarly as
do 1 2
FRE A g
d?  (2s+1)(20p +1) ZN [ oo O] (96)
VN[‘):

where it should be emphasized that the sum over N/ refers to a sum over the spin projections of
the final state ¢ only.

Due to the infinite range of the Coulomb force, the integrated elastic cross section is finite
only when at least one of the two colliding particles is neutral. In the particular case of neutrons
incident on a nucleus, integration of the differential cross section of Eq. (95) yields.

1

m 2
% = 9020 + 1) k2

(97)

J
Z (2.] + 1) |Sl'j’Co,leo - 5[';5j'j
5l
J
The integrated inelastic cross sections exist for for both neutral and charged particles. They take
the form

1
(25 + 1)(2Ip + 1)

2
% S (27 +1) ’Sﬂj,c,,jm| cFco. (98)

Hirli
J

e =

Just as in the single-channel problem, the total flux lost from the elastic channel can be
related to the reaction cross section through the equation

1
m:—;fﬁda (99)

where the probability current,

h
24y

70 (‘I’gv‘l’u - (V‘I’O)T‘I’o) ; (100)

is integrated over a surface which tends to infinity, with ¥y being the ground-state component

of the wave function. However, in the coupled-channel problem, it is also possible to define an
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absorption cross section, which can be related to the total flux lost from all channels, elastic and
inelastic, as

1 o -
Cats = =< $ Y Je-dd, (101)
c
where the probability current in channel ¢, 7, is
. h
o= 5 (elve, - (vete,), (102)

with ¥, the component of the wave function that asymptotically occupies state c.
Using the asymptotic form of the partial waves, Eq. (88), the expression for the reaction cross
section can be reduced to

1 T 7
(25 + 1)(21p + 1) k2 2 @7+1) (5"’6"’-"' ~ |87 cosieo

ity
eJ

Ty

2) . (103)

The contribution of each partial wave to the reaction cross section is determined by the fraction
of the flux lost from the elastic channel. The absorption cross section can, of course, be reduced
to a similiar form, which can be written as

1 P ;
= 1.3 Ticods 104
abs = 35+ 1)(2Ip + 1) k2 %(2-1 + 1) Tijeo pjeo > (104)

where the coupled-channels transmission coefficients have been introduced. These are defined as

J o J J
ﬂljlcl,ljc - Jllltsjfj(sc‘c - Z SI";'”C”,l’j’c’SI"j”c”,ch . (105)
llljfl‘cﬂ‘
The similarity of the transmission coefficients to the single-channel ones becomes clear when they
M g
are written in matrix form. The transmission matrix in partial wave J can be written in terms
of the corresponding S-matrix as

Tr=1;-8%5;. (106)

Comparison of the form of the reaction and absorption cross sections reveals a simple relation
between the two,

Or = Oabs + D 0. (107)
c#eo
In other words, the elastic channel loses flux to both the prompt inelastic channels and the
long-lived compound states. The reaction cross section takes both of these into account.

The absorption cross section and the corresponding transmission coefficients characterize the
trangition of flux from the prompt channels to the compound states. These are the guantities
of principal interest for compound-nucleus calculations. When using coupled-channels transmis-
sion coefficients in compound-nucleus calculations, it is quite common to use just the diagonal
elements of the transmission matrix and neglect the off-diagonal ones. A careful analysis by
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Engelbrecht and Weidenmiiller |22] showed that a more correct procedure is to perform the
compound-nucleus calculation in a basis in which the transmission coeflicients are diagonal and
transform the resulting cross sections back to the non-diagonal basis. ECIS95 can, in fact, per-
form such an analysis. However, discussion of this feature of the code requires entering fairly
deeply into the details of the statistical model, which will not be done here.

For neutral particles, the neutron in particular, the elastic cross section is finite. A total
cross section can then be defined as the sum of the elastic and reaction cross sections,

1 T
Otot = Ot + Op = TR > @27 + 1)(1 — Re Sif oy tieo) - (108)
3J

The total cross section takes into account the occurence of scattering of any type. It is a measure
of the flux lost from the incident plane wave state.
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Figure 8: Various experimental measurements of the n +°® Ni E;=1.454 MeV 27 inelastic cross
section, identified by their EXFOR access numbers, are shown together with two optical model
calculations.

Just as in the case of the elastic cross section, care must be taken when comparing inelastic
optical model cross sections with experimental data. At low energies, these cross sections are
dominated by their compound nucleus contribution, as shown in Figs. 8 and 9, for neutron-
induced excitation of the first excited state in %Ni and 238U, respectively. One observes that
the direct process plays a very minor role in the excitation of these states in the first few MeV
above threshhold. Tn Fig. 8, the %®Ni data are compared to optical model calculations using
the parameters of A. Prince[16] and those of the exercises, both with a phonon amplitude of
B2=0.2. Note the strong influence of the optical model parameters on the direct component of
the inelastic *®Ni excitation. The Prince parameters yield an inelastic cross section that is almost
twice that of the parameters of the exercises, although both use the same phonon amplitude. The
2381J data of Fig. 9 is compared to an optical model calculation using the parameters of Young
and Arthur[21], which fits the higher energy data quite well. One notes that the direct excitation
cross section of the 2381 27 state reaches a value of almost 500 mb. In general, the inelastic
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excitation of a rotational band can be quite large, demanding a coupled channels method for its
precise calculation.
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Figure 9: Various experimental measurements of the n +2% U E,=0.044 MeV 2% inelastic cross
section, identified by their EXFOR access numbers, are shown together with an optical model
calculation.

9 Using ECIS95 for coupled-channels optical model calculations

Most of the information needed to perform a coupled-channels optical model calculation using
ECIS95 is already needed to perform the single-channel calculation. This information consists
of the system parameters — the charges and masses of the projectile and target, Z,, A,, Z;, and
A;, and the relative energy, Eop, as well as the potential strengths — V, W, W, Vo and W,
and the geometrical parameters — the reduced radii r; and diffusivities a;.

The additional information that must be furnished concerns the excited states of the target
and the oscillation amplitudes or deformation parameters that determine their excitation. The
excitation energy, spin and parity of each of the excited states must be provided to the code.
The spin and parity of the ground state, requested but irrelevant to the single channel case, are
also necessary now. {Although only the total angular momentum has been mentioned, parity is
also conserved in purely nuclear reactions.)

In the vibratioral model, an excited state can be a one-phonon state, a two phonon state or a
mixture of the two. ECIS95 requires this information to calculate the coupling correctly. When
a state is a mixture of one- and two-phonon states, the code also requires a mixing parameter.
In the pure symmetric rotational model, all possible excited states are members of the same
rotational band and more information on their structure is unnecessary.

In the vibrational model, each phonon must be characterized by its angular momentum and
amplitude of oscillation. In the rotational model, the static deformations (A = 2, 4, ...} must
be furnished. In this case, one must also furnish the maximum value of A to be used in the
multipole expansion of the potential. A reasonable value for this parameter is twice the angular
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momentum of the most highly excited state. Terms in the multipole expansion with A larger
than this value have no effect and need not be included. The exclusion of terms with A smaller
than this value omits coupling and reorientation terms that are usually small but that can still
have observable effects.

The simplest description of the phonon amplitudes or the static deformations assumes them
to be the same for all deformed terms in the optical potential. It is also possible to use a
different set of phonon amplitudes or deformations for each term in the potential. In fact, it is
even possible to furnish a different set of optical model parameters for each of the states. In this
case, it is the ground state potential that is deformed to obtain the coupling matrix elements.

With the input prepared, the code performs the calculations along the lines discussed earlier.
It calculates cross sections automatically while S-matrix elements (in the form Cf = (Sf —1)/24)
are printed on request. Differential cross sections, polarizations and transmission coefficients are
also calculated and printed on request. If desired, the differential cross sections and polarizations
can be plotted. The code permits comparison with and fitting to experimental data, as in
the single-channel case, with the same restriction to a single value of the selative energy. An
interesting feature that is particular to the coupled-channels case is the ability to adjust the sum
of cross sections for two or more states to unresolved experimental cross sections.

10 The ECIS method

The ECIS method (Equations Couplées en Itérations Séquentielles — Sequential iteration of
coupled equations) provides an alternative to the conventional matrix method of performing
coupled-channels calculations. Instead of the differential representation of the wave equation,
the Schrodinger equation, it uses its integral representation, the Lippmann-Schwinger equation,

T =0 +GiU' T, (109)

where G is the Green’s function of the same Schrédinger equation satisfied by ¥7 and the
+ superscript means that the wave function 1116" satisfies incoming-wave bounday conditions
while the propagator G(')" asymptotically contains only outgoing waves. The ECIS method takes
advantage of the structure of the Lippmann-Schwinger equation by placing the diagonal solution
of the single-channel optical model in ‘115’ and G and relegating the channel coupling to the
interaction term, U’.

In the single-channel optical model problem, one can define incoming- and outgoing-wave
solutions, hfci {r}, of the wave equation in each channel,

& Il+1 2 , ;
{ET—?— D 18 B (Uenelr) + Usa,c(r))}h{f(r) ~0, (110)

where the spin-orbit coustant d{ =ds G+ D ~I{I+1)—3(3+1)}/2 is as before. Asymptotically,
these solutions have the same behavior as the incoming and outgoing Coulomb waves,

WE(ry = HE(r) = €% (Gro(r) £ iFie(r)) - (111)
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They are, however, solutions to the optical Schrédinger equation at all values of . Numerically,
they can be obtained by solving the differential equation inward from the matching point, using
the conditions for matching to the asymptotic Coulomb functions as the initial conditions.

The incoming- and outgoing- wave solutions to the optical Schrodinger equation are not
regular at the origin. Through a comparison with the asymptotic form given in Eq. (46), it is
easy to convince oneself that a linear combination of the two that is regular is given in terms of
the S-matrix as

Vo) = L (R0 - (reesy,)
= P (r)ee, (112)

where the last equality simply makes note of the relationship between the wave function 1/){: and
the single-channel wave function 1,[)3'c of the partial wave expansion in Eq. (42). The S-matrix has
been relabelled Sp to emphasize its relation to the single-channel problem as well.

The single-channel Green’s function in channel ¢ can be decomposed in partial waves as

GL.7) = = SV ), (113)
Iin
where the partial-wave Green'’s functions are defined in terms of the regular and outgoing partial
wave solutions as

2p

g () = = 9 (r) B (). (114)

The channel Green’s functions can then be combined into the complete single-channel Green’s
function appropriate to the coupled-channels problem,

Gg(7,7) = Y G (7,7 HeNe) (1N (115)
ch

= ,Z Vi (#) gl () Vi () -

I;r_'

When the partial wave expansions, Egs. (82) and (115), are substituted in the Lippmann-
Schwinger equation, Eq. {109}, it can be reduced to a set of coupled equations for each partial
wave,

Piieielr) = Yi(r )51'153‘3"56’6 1o
+[ dr' e (7'1 ') Z ul'j et ”(r’)'lwbl{’j"c":ljc(ri) ’

ll'l' Hcﬂ'

In matrix notation, this takes a much simpler form,

U y(r) = Tgy(r) + fom dr’ Gy (r, 7 YU (r") 5 (r'), (117)
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where Wo; = U}, €'Y is the coupled-channels (diagonal) matrix form of the single-channel wave
function of Eq. (42). Asymptotically, this partial wave equation tends to

%(Hj(r) — Hj(r)e §yei ) et
= ! (H} (r) — Hj(r)e’-‘”so_;ei‘”) e~ (118)
#K—lw,; ood'\I‘ N (! '
(r) ; r'Wes(rYUs(r' )y ¥ (r').

Extracting the coefficient of the outgoing Coulomb wave, H}", one cbtains an expression for the
coupled-channels S-matrix,

SJ:50J+2z£E‘; ‘1/2/ dr! Ty () U (r') Uy () K5 /2 (119)

(Recall that Sy = K3/* S, K7'/%)

The drawback to this form of obtaining the S-matrix is that it first requires knowledge of
the full coupled-channels wave function. The ECIS method tries to obtain this knowledge by
solving the partial-wave Lippmann-Schwinger equation, Eq. (117), iteratively. To describe the
method precisely and simply, the notation in use must be modified slightly to permit a compact
representation of the submatrices between two channels in a given partial wave, an example being
the component of the interaction, U, ., where the partial wave index J has been suppressed. The
matrix structure of U, takes into account the I'j', 15 dependence.

The ECIS method first assumes that the excited states have been arranged in order of decreas-
ing coupling with the ground state. It begins iterating by using the single-channel ground-state
wave function as the zeroth-order approximation to the coupled-channels ground-state wave
function, lIJ(()O) (r) = Yoo (T).

The first-order approximation to the wave function of the first excited state is

1 o o0 dr' ot gt ot 111(0) '
(r) = 0 T gy (ryr WU (r') Ty (), (120)
with the corresponding approximation to its S-matrix element being

S0 2im e [ o () Ul ) (). (121)

The first-order iteration to the wave function of excited state j is given by

l [ ai,'rgJ rr

with the approximation to the S-matrix element being

j-l
) |t By + 3 Ul e | (122)
i=1

s 2 0 () (123)

h\/F/ dT‘I’QC]T‘)[
Z ey
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Note that the jth excited-state wave function is not given merely in terms of the zeroth-order
approximation to the wave function, which contributes the first term in the expressions above.
It also makes use of the j — 1 first-order wave functions already calculated to improve the
approximation.

After approximating each of the N excited states in turn, the first-order iteration is concluded
at step N + 1 by correcting the ground-state wave function,

W) = w % dr ot (e [Ue () 7O
0 (1) = Woglr) + , 9% (r, ') [Ugo(r") Ty '(r') (124)
al {1
+> Up(r) o7 (") ],
i=1
and S-matrix element,
2 oc
S = S+ 2igg [ a8 o) [Uinlr) 1) (125)
0

N
+3 U e ],
=1

where Sy, is the single-channel ground-state S-matrix element.

In the successive iterations, the most recent approximation to the wave function in each of
the channels is used. In iteration m, for example, each of the N excited states are approximated
as

'Il(m) (r) / dr' gj (r,7') [Z (" \Iigmgl)(r') (126)

Ul () T (! Z Ly e™ () ],

with corresponding S-matrix elements

{(m) _ . - ' ryoglm—1)
s = nm[ dr’ o, (r )[Z () BV ) (127)
Ul (') Ty Z e ]

The iteration concludes with a new approximation to the ground-state wave function
W)~ Vel + [ dr it () [Upelr') 95V ) (129)
+ Z U () ey
and S-matrix element,

S(()m) = S[)cn+2% [ d'r \Il()co(r') [UOO( )'I‘m l}( ) {129)
+ZL{’ yei™e) ).
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[teration of the equations is continued until the S-matrix converges. Unfortunately, this does
not always occur when the coupling is strong. The code ECIS95 can attempt to improve the
convergence through the use of Padé approximants. These attempt to approximate a power
series expansion in terms of a ratio of polynomials. To this end, ECIS95 actually solves the
Lippmann-Schwinger equation in the form

V=0 +AG{U' ¥, (130)

where X is a multiplicative factor that is taken to be one at the end of the calculation. In practice,
this is done by storing the intermediate results for each state independently at each iteration.

The ECIS method has two advantages over the usual method of solving the coupled-channels
problem. The first and most important is that it need only solve the system of equations with
the incoming-wave boundary condition of physical interest. The conventional method requires
solutions for all possible incoming waves, in order to invert the matching equations and obtain
the S-matrix. Thus, even though the ECIS method is iterative, it is often much faster than the
conventional method of solution.

A second advantage of the ECIS method is that it permits calculations using deformed spin-
orhit potentials. The integration method used by ECIS95 to numerically solve the differential
equations takes advantage of the standard form of the radial Schrodinger equation, which con-
tains second derivatives but no first derivatives. As the deformed spin-orbit potential of Eq. (75)
normally contains first derivatives, it would require another method of integration. The alterna-
tive is to use the ECIS method, which has no restrictions of this type.

11 The distorted-wave Born approximation

The distorted-wave Born approximations {DWBA) can be understood as a simple iterative ex-
pansiont of the Lippmann-Schwinger equation in powers of the potential. It is thus a good
approximation when the coupling is weak.

Making use of the general expressions for a partial wave J, Egs. {117) and {119), one has for
the zeroth-order approximations (starting values) for the wave function and S-maitrix,

v (r) = wps(r) and S = Sy (131)
The first-order distorted-wave Born approximation, or just DWBA, to the wave function is then
oc
() = os(r) +/0 dr’ Goz(r, T ) Us{r') o (r'), (132)
while the DWBA to the S-matrix is
2 —1/2 -
st = 805+ ziﬁg ;' /0 dr' T (rY UL (r') By s (r') K 2. (133)

Note that the S-matrix is clearly symmetric when the optical potential matrix U} is symmetric.
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The DWBA is at times extended to second order in the coupling. In this case, one obtains
for the wave function,

o0
() = Wos(r)+ [0 dr’ GE,(r,r') Ul (r') o (r') (134)
+ fﬂ dr' Gy (r, ) U}(r’)fn dr' G, (', ") U () Tos ("),

and for the S-matrix

o0
S =5y + 22‘%2‘-’{;1/2 _/; dr' oy (') Uy (r') Wos (') K5 °
o0
+ 2 K [Tt wostr) U () (139)
0

O gt NI (o m -1/2
x]o " G, 7Y U (") s (r") K72

The DWBA is usually not extended beyond second order. If higher order terms in the
interaction are necessary, it is usually better to resort to other methods, such as the conventional
or ECIS methods for coupled-channels calculations.

Although similar in form, the ECIS method and the DWBA are not equivalent. The first-
order DWBA contains terms of at most first order in the coupling. In the ECIS method, this is
necessarily the case only for the first excited state in the first iteration. The approximation to
the second state, in the first iteration of the ECIS method, contains a second-order contribution
obtained by coupling the ground state to the first excited state and the latter to the second
excited state. This term appears in the DWBA ounly in the second-order approximation.

The DWBA was developed to approximate the effects of the coupling between channels when
that coupling is weak. It assumes that the contribution of the next-order term will always be
relatively small compared to the last term included, due to the weakness of the coupling. The goal
of the ECIS method is to solve the coupled-channels problem quickly and efficiently, irregardless
of the magnitude of the coupling. It thus makes use of all the information it has on hand.

12 Reduced matrix elements and form factors

In Eq. (84}, the target-spin-angular functions were nsed to calculate the matrix elements of the
optical potential,

Ui 1ielr) = f & tint A VML () Uogt (7, Font) VL) (136)

It was noted that although these elements are calculated for a particular value M of the projection
of the total angular momentum J, the matrix elements that result are independent of this value if
the systein is rotationally invariant. The representation of these matrix elements will be discussed
here.

The most general form of a rotationally-invariant interaction between a projectile and a

target couples tensor operators acting on the orbital angular momentum, i)‘YM(ﬁ), the spin of
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the projectile, (J,, and the angular momentum of the target, chf(ﬁm), to a scalar,

opt r T'mt Z ,\cm 7' Y/\.u( )qu qu{(ﬁnt) ( Aok ) . (137)
Aok oV 5

In principle, the radial dependence of each term, VAC;%(T), can depend on the angular momenta

of the tensor operators, A, o, and s, as well as on the initial and final channels, ¢ and ¢’

The interactions in the vibrational and rotational models (with a spherical spin-orbit poten-
tial) are simpler than the general one above, as they couple only the orbital and target angular
momenta. In these cases, the projectile-spin tensor operator is itself a scalar. This is not true in
general, as can be seen from the form of the deformed spin-orhit potential in Eq. (75).

The matrix elements of the general interaction of Eq. {137), calculated with respect to the

target-spin-angular functions, can always be written in the form

ui’fs‘j’d,lsjc(r) Z Gi{?’?‘cc',ls_gc (S’l Qp |S) (Ic'l Qt IIC> /\G'K. ) - (138)
.\o'r:
The factor G2 s J,d lsjc is a geometrical /statistical coefficient, which gives the appropriate weight

to the angular momenta involved,

JHE g A
Gl’sg’c’lnc = (_) +C+J?’ i (139)

x /(20 + 1)(20 + 1)(2A + 1)(2' + 1)(25 + 1) (2 + 1)
SR A
000 I I, J i ok
The reduced matrix elements of the projectile and target angular momentum tensor operators,
{s'| Q2 |s) and (Iy| Q% |I.) can, in principle, contain information about the nuclear part of the
maftrix elements. In the macroscopic models discussed, the reduced matrix element for the
projectile is just a number, the number 1, to be precise. The reduced matrix element for the
target depend on the oscillation amplitude in the vibrational model and on the deformation
parameters in the rotational one.

Models with quite general couplings can be constructed in terms of their reduced matrix
elements and form factors. In this way, it is possible to construct microscopic as well as alternative
macroscopic models of the nuclear coupling. ECIS95 permits the definition of the interaction
in terms of its reduced matrix elements and form factors {the geometrical factor is calculated
within the code). It thus has the flexibility to perform coupled-channels calculations with an

almost arbitary coupling.

13 The ECIS method and the DWBA in ECIS95

When the spin-orbit potential is not deformed, there is almost no difference, from the user’s point
of view, between the conventional and ECIS methods of perforiing coupled-channels calculations
in the code ECIS95. The information needed to perform the calculation is almost identical in
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the two cases. The only differences are in technical details, such as the maximum number of
ECIS iterations and the use or not of Padé approximants, and in the execution time, which is
generally shorter when the ECIS method is used.

When the spin-orbit potential is deformed, the results of the conventional and the ECIS
method of calculation can differ, as the conventional method cannot take into account the dei-
vative terms that appear in the potential. Only the ECIS method can perform the calculation
correctly in this case.

When compound-nucleus cross sections are requested from the code ECIS95, it is usually
better to use the conventional method of calculation. To obtain the transmission coeflicients,
it is necessary to calculate the complete S-matrix. The conventional method of calculation is
usually more efficient at doing this than the ECIS one (at least if the spin-orbit potential is not
deformed).

The ECIS method in ECIS95 can always be used to calculate the first-order distorted-wave
Born approximation. For this, the code must be restricted to perform just the first ECIS iteration.
One must also take care that the excited states couple only to the ground state and not among
themselves. From Eq. (122), it is clear that the ECIS method would take into account coupling
among the excited states, if such coupling were included, thereby going beyond the DWBA.

A particular case of the second-order DWBA can also be performed using the ECIS method.
In this case, which can be treated using a simple extension of the method above, the ground
state couples to a set of excited states that couple to yet another set of distinct excited states.
A direct coupling of the ground state to the second set of states could also be included. The
states must be arranged so that the first set that couples to the ground state comes before the
second set of excited states. Again, one must take care that no coupling is allowed among the
states in each set. The ECIS method will then perform the second-order DWBA calculation
in its first iteration, making it extremely useful for the calculation of two-step statistical direct
cross sections.

14 Final remarks

These lectures have tried to describe the basic nuclear physics problems to which ECIS35 can
be applied. For lack of time, however, only the most basic applications could be addressed.
Several other possible applications, such as the more elaborate macroscopic models — the
vibrational-rotational model and the asymmetric rotational model — as well as the Engelbrecht-
Weidenmiiller statistical model, were mentioned, but no details were given. Many of the capabil-
ities of ECIS95 were not even mentioned. Among these are the ability to perform Dirac optical
model calculations, heavy-ion optical model calculations that include long-range Coulomb exci-
tation and excitation of both the projectile and the target, and calculations of transfer-reaction
cross sections within the zero-range distorted-wave Born approximation. In short, the code
ECIS95 has many capabilities. It can be a powerful tool in the hands of those who know how to
use it.

The optical model and optical potential continue to be subjects of intense research. One
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can find out more about the directions this research is taking in the proceedings of a recent
conference{23].
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Appendix A: A dialogue with the code PRECIS

The following is a sample dialogue with the code PRECIS. This particular example prepares the
input file of Exercise 4, which will adjust the phonron amplitude of the vibrational model to a set
of n+%8Ni differential and integrated cross sections.

To prepare an input file for ECIS95, begin by entering the name of your file.
ecis-exd
Enter the title that you wish to appear on the output.
n + 58Ni -- Optical parameters fit to data set
Enter 1 if the logical switches are to be printed
0 otherwise.
1
Enter the number corresponding toc the projectile.
neutron

proton
deuteron

tritium
helium-3

[« 2T ¢ L VL N v
|

alpha

Enter the charge, mass, spin and parity (+1 or -1) of the target.
28. 58. 0. 1.
Enter 1 to use a global potential,
0 to enter the potential parameters.

Enter 1 if dispersion terms are to be taken into account,
0 otherwise.

0

Enter rO(v}, ri(v), av, v0, vi, v2, vl and cv,

where v = v0 + vl*e + v2*e**2 + vlxln{e) + cv*sqrtle) and rv0=rO(v) + ril(v)#e.
1.27 0. 0.75 48.87 -0.369 0.002 0. 0.

Enter rO(ws), riws), aws, ws0, wsl, ws2, wsl and cws,

where ws = ws0 + wsl*e + ws2*e**2 + wsl¥ln(e) + cws*sqrt(e)

and rws0=rQ(ws) + ri(ws)*e.
1.34 0. 0.3756 14.13 0.16 -0.006 0. 0.

Enter r0(w), ri(w), aw, w0, wi, w2, wl and cw,

where w = w0 + wilke + w2+e*x*2 + wl*ln(e) + cwrsqgrt(e) and rwl=r0(w) + ri(w)*e.
1.2 0. 0.6 0. 0. 0. ©. 0.

Enter r0(vso), ri{vso), avso, vso0, vsol, vso2, vsoland cvso,

where vso=vsol + vsol*e + vso2xe**2 + vsol*lin(e) + cvso*sqrtie)

and rvso0=r0{vso) + ri{vso)*e.
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1.267 0. 0.75 6.75 0. 0. 0. O.
Enter rcG and ewmax.

1.25 12,
For each of the potentials vc, w, vso and wso, enter 1 if its deformation
is to be taken into account, otherwise enter 0.
0000
Enter the number of excited states to be used.
1
Enter 0 to use the vibrational model,

1 to use the rotational model.

0
Enter the number of distinc¢t phonons to be used.
1
For each phonon, enter its angular momentum and its amplitude.
2 0.2
Enter the energy (in MeV), spin and parity (+1 ou -1) of the first
excited state.

1.454 2. 1.
Enter the number of phonons used to describe the first
excited state.

1
Enter the number(s) identifying the phonon(s) used to describe this state

phonon no. 1
1 2

Enter 1 to include the contribution of the compound nucleus,
0 otherwise.

Enter 1 to use the standard coupled channels method,
0 to use the ECIS method.

Enter 1 if the C-matrix elements, C={5-1)/2i, are to be printed
0 otherwise.

Enter 1 if the transmission coefficients are to be written on unit7,
0 otherwise.

Enter it if angular distributions are to be calculated,

0 otherwise.
Enter 1 if experimental data are to be input,
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0 otherwise.

Enter 1 if experimental angular distributions are to be plotted,
0 otherwise.

Enter 1 if parameters are to be adjusted,
0 otherwise.

For each of the following parameters, enter the precision desired of the fit.
If the precision is given as 0., the parameter will not be adjusted.

v, rvl, av

0. 0. 0.

vs, rvs(, avs
0. 0. 0.

ws, rws0, aws
0. 0. 0.

w, w0, aw
0. 0. 0.

vso0, rvsol, avso
0. 0. 0.

wso, rwsol, awso
0. 0. 0.

The amplitude of the multipolarity 2 phonon
0.01
Enter the number of projectile energies at which calculations will be performed.
7
Enter 1 if the experimental data are on file,
0 if they will be input.
1
Enter the complete name of the data file.
ecis-ex4.dat
Enter 1 to prepare the input data to another ECIS95 calculation,
0 to stop.
0
Your input to ECIS95 is in file ecis-ex4.in.
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Appendix B: Computer Exercises

Introduction to the Code ECIS95
Date — 14-03-00

Exercise 1 — n + %8Niyg

1. Spherical Optical Model Calculation: Using the program PRECIS, generate an input data
file for the ECIS95 code for neutrons incident on 3¥Nigg at 0.1, 1.0 and 10.0 MéeV in the
laboratory system that:

¢ Includes onty the 01 58Ni ground state,
e Uses the global optical potential parameters of Wilmore-Hodgson,
e Prints the C-matrix elements, C=(S-1)/2i, and
» Calculates and plots the differential elastic cross section in 10° intervals from 0° to
180°.
Look at the contents of the input data file and try to identify the parameters that you
entered.

If you have not requested that transmission coefficients be calculated, you should find only
one output file from ECISY5. It contains the input data used, the C-matrix elements and
integral and differential cross sections. For each value of the incident energy,

e Find the optical potential parameters,

— Find the C-matrix elements, and

— Find the integral and differential cross sections.

Are the optical potential parameters constant?

Exercise 2 — p + *®Niy

1. Spherical Optical Model Calculation: Using the program PRECIS, generate an input data
file for the ECIS95 code for protons incident on ®®Nigg at 1.0 and 10.0 MeV in the laboratory
system that:

e Includes only the 0 %8Ni ground state,
e Uses the global optical potential parameters of Perey,

e Prints the C-mairix elements, C=(5-1)/2i, and
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e Calculates and plots the differential elastic cross section in 10° intervals from 10° to
180°.

Look at the contents of the input data file and try to identify the parameters that you

entered.

If you have not requested that transmission coefficients be calculated, you should find only
one output file from ECIS95. It contains the input data used, the C-matrix elements and
integral and differential cross sections. For each value of the incident energy,

s Find the optical potential parameters,

— Find the C-matrix elements, and

- Find the integral and differential cross sections,

Are the optical potential parameters constant? What happened to the integral cross sections?
Why didn’t you do this calculation at 0.1 MeV?

Exercise 3 — n + 58Nigg

1. Spherical Optical Model Calculation: Using the program PRECIS, generate an input data
file for the ECIS95 code for neutrons incident on %®Niyg that:

e Includes only the 07 3¥Ni ground state,
e Uses the following optical potential parameters:

- ry = 1.27 fm, ay = 0.7 fm, V) = 48.87 MeV, Vp = —0.369, and V5 = 0.002
MeV—L,
— rw, = 1.34 fm, aw, = 0.375 fm, Wy = 14.3 MeV, W, = 0.16, W, — —0.006
MeV L,
- ry, = 1.27 fm, ay,, = 0.75 fm, and V5 = 6.75 MeV,
with all other potential strengths zero,

# Includes the file of experimental data ecis-ex3.dat,

s And adjusts the diffusivity aw, of the surface imaginary potential.

Look at the contents of the input data file and try to identify the parameters that you
entered.

o Find the final values of the adjusted parameter.

e Find the comparisons between the experimental data and the calculations.

How would vou use your results?
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Introduction to the Code ECIS95
Date — 15-03-00

Exercise 4 — n + 58Niyg

1. Deformed Optical Model Calculation: Using the program PRECIS, generate an input data
file for the ECIS95 code for neutrons incident on *®Nigg that:

» Includes the 0% 58Ni ground state and the 2% excited state at 1.454 MeV as a vibra-
tional state,

e Uses the following optical potential parameters:
— ry = 1.27 fm, ay = 0.75 fm, Vp = 48.87 MeV, Vj = —0.369, and V2 = 0.002
MeV—1,
— rw, = 1.34 fm, aw, = 0.375 fm, Wy = 14.3 MeV, W, = 0.16, W = —0.006
MeV 1,
- ry,, = 1.27 fm, ay,, = 0.75 fm, and Ve = 6.75 MeV,
with a phonon amplitude 82 = 0.2 and all other potential strengths zero,
# Uses the standard coupled-channels method,

e Includes the file of experimental data ecis-ex4.dat,

e And adjusts the phonon amplitude 8 = 0.2.

Look at the contents of the input data file and try to identify the parameters that you
entered.

¢ Find the final values of the adjusted parameter.

e Find the comparisons between the experimental data and the calculations.

How do the inelastic cross sections vary with energy? How do the the reaction cross sections and
differential elastic cross sections compare with the those you obtained with the spherical optical

model? How would you use your results?

Exercise 5 — n + 98 Nigg

1. Deformed Optical Model Calculation: Using the program PRECIS, generate an input data
file for the ECIS95 code for neutrons incident on *Nigg in the range of energy from 0.1
MeV to 20 MeV in the laboratory system that:

e Includes the 01 8Fe ground state and the 2 excited state at 1.454 MeV as a vibra-
tional state,
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s Uses the following optical potential parameters:

- ry = 127 fm, ay = 0.75 fm, Vy = 48.87 MeV, Vj = —0.369, and V, = 0.002
MeV—!,
- Tw, = 1.34 fm, aw, = 0.375 fm, W_-;O =143 MeV, Wsl = 016, W32 = —0.006
MeV1,
- 1y, = L.27 fm, ay,, = 0.75 fm, and Vo = 6.75 MeV,
with a phonon amplitude 8 = 0.2 and all other potential strengths zero,
e Uses the standard coupled-channels method,
o Prints the C-matrix elements, C=(5-1)/2i,

e Calculates transmission coefficients.

Look at the contents of the input data file and try to identify the parameters that you
entered.

After running ECIS95, you should find two output files. One of these contains the input
data used, the C-matrix elements and integral and differential cross sections. The other
will contain the transmission coefficients. Studying these, for each value of the incident
energy,

e Find the optical potential parameters,

— Find the C-matrix elements,

— Decipher the file of transmission coeflicients. In what order are they listed?

How do these quantities vary with energy?

Exercise 6 — n + ?3%Ug,

1. Deformed Optical Model Calculation: Using the programn PRECIS, generate an input data
file for the ECIS95 code for neutrons incident on »®Ugy at 0.1, 1.0 and 10.0 MeV in the
laboratory system that:

e Includes the 0% 238U ground state and the excited rotational 2% state at 0.044 MeV
and 4t state at 0.148 MeV,

o Uses the global optical potential parameters of Madland and Young and static defor-
mations fp = 0.198 and 34 = 0.057,

# Uses the standard coupled-channels method,
o Prints the C-matrix elements, C=(S8-1)/2i,

» (Calculates and plots the differential cross sections in 10° intervals from 0° to 180°,

and



o Calculates transmission coefficients.

Once the input data file is prepared, look at its contents and try to identify the parameters
that you entered.

After running ECIS95, you should find two output files. One of these contains the input
data used, the C-matrix elements and integral and differential cross sections. The other
will contain the transmission coefficients. Studying these, for each value of the incident
energy,

e Find the optical potential parameters,

— Find the C-matrix elements,

— Find the integral and differential cross sections for the elastic and inelastic channels,
and

— Decipher the file of transmission coefficients. In what order are they listed?

How do these quantities vary with energy? How do they compare with the results you obtained
with the vibrational model?
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