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1 Introduction

The past few years have seen a tremendous increase in our understanding of the dynamics
of superstring theory. In particular it has become apparent that the five ten-dimensional
theories, together with an eleven-dimensional theory (M-theory), are different limits in
moduli space of some unifying description. A crucial ingredient in understanding the rela-
tion between the different perturbative descriptions has been the realisation that the soli-
tonic objects that define the relevant degrees of freedom at strong coupling are Dirichlet-
branes that have an alternative description in terms of open string theory [1, 2, 3].

The D-branes that were first analysed were BPS states that break half the (spacetime)
supersymmetry. It has now been realised, however, that because of their description in
terms of open strings, D-branes can be constructed and analysed in much more general
situations. In fact, D-branes are essentially described by a boundary conformal field
theory [4, 5, 6, 7, 8, 9] (see also [10, 11, 12, 13, 14, 15] for earlier work in this direction),
the consistency conditions of which are not related to spacetime supersymmetry [16, 17,
18]. In an independent development, D-branes that break supersymmetry have been
constructed in terms of bound states of branes and anti-branes by Sen [19, 20, 21, 22, 23,
24] (see also [25] for a good review). This beautiful construction has been interpreted in
terms of K-theory by Witten [26], and this has opened the way for a more mathematical
treatment of D-branes [27, 28, 29]. It has also led the way to new insights into the nature
of the instability that is described by the open string tachyon [30].

The motivation for studying D-branes that do not preserve spacetime supersymmetry
(and that are therefore sometimes called non-BPS D-branes) is at least four-fold. First, in
order to understand the strong/weak coupling dualities of supersymmetric string theories
in more detail, it is important to analyse how these dualities act on states that are not BPS
saturated. After all, the behaviour of the BPS states at arbitrary coupling is essentially
determined by spacetime supersymmetry (provided that it remains unbroken for all values
of the coupling constant), and thus one is not really probing the underlying string theory
unless one also understands how non-BPS states behave at strong coupling. The dualities
typically map perturbative states to non-perturbative (D-brane type) states, and thus one
will naturally encounter non-BPS D-branes in these considerations.

The second motivation is related to the question of whether string duality should
intrinsically only apply to supersymmetric string theories, or whether also non-super-
symmetric theories should be related by duality. This is certainly, a priori, an open
question': it is conceivable that spacetime supersymmetry is a crucial ingredient without
which there is no reason to believe that these dualities should exist, but it is also con-
ceivable that spacetime supersymmetry is just a convenient tool that allows one to use
sophisticated arguments and techniques to verify conjectures that are otherwise difficult
to check. Dirichlet branes play a central réle in the understanding of string dualities, and
if one wants to make progress on this question, it is important to develop techniques to
analyse and describe Dirichlet branes without reference to spacetime supersymmetry.

Thirdly, one of the interesting implications of the Maldacena conjecture [37] is that one
can obtain non-trivial predictions about field theory from string theory. In the original

1Recently, some suggestive proposals have however been made {16, 31, 32, 33, 34, 35, 36].
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formulation this was applied to supersymmetric string and field theories, but it is very
tempting to believe that similar insights may be gained for non-supersymmetric theories.
This line of thought has been developed recently, starting with a series of papers by
Klebanov & Tseytlin [18].

Finally, non-BPS D-branes offer the intriguing possibility of string compactifications
in which supersymmetry is preserved in the bulk but broken on the brane. Various models
involving branes and anti-branes have been constructed recently (38, 39, 40, 41}, but it
is presumably also possible to construct interesting models involving non-BPS D-branes.
The fact that at specific points in the moduli space their spectrum is bose-fermi degenerate
may be of significance in this context [42].

The main aim of these lectures is to explain the boundary state approach to D-branes,
and to give some applications of it, in particular to the construction of non-BPS D-
branes. The structure of the lectures is as follows. In section 2 we explain carefully the
underpinnings of the boundary state approach and apply it to the simplest case, Type
ITA/TIB and Type 0A/0B. In section 3 we use the techniques that we have developed to
construct one of the simplest non-BPS D-branes - the non-BPS D-particle of the orbifold
of Type IIB by (=1}:Z; — in detail. If we compactify this theory on a 4-torus, it is T-
dual to Type IIA at the orbifold point of K3, which in turn is S-dual to the heterotic string
on T*. This connection (and in particular the various non-BPS states in this duality) are
analysed in detail in section 4.

2 The boundary state approach

Suppose we are given a closed string theory. We can ask the question whether it is
consistent to add to this theory additional open string sectors in such a way that the
resulting open- and closed theory is consistent. The different open string sectors that we
can add are characterised by the boundary conditions that we impose on the end-points of
the open strings. Conventional open strings have Neumann boundary conditions at either
end; if we denote by X*(t, s) the coordinate field, where { € IR and s € [0, 7] are the time
and space coordinates on the world-sheet of the open string, then this is the condition
that

O XH(t,0) = O, XH(t,m) = 0. (2.1)
We can also consider open strings whose boundary condition at one or both ends is of

Dirichlet type, i.e.
X(t,0) =a”, (2.2)

where a* is a constant. Finally, we can consider open strings that satisfy Neumann
boundary conditions for some of the X*, and Dirichlet boundary conditions for the others

B, XH(t,0) = 0 p=0,...,p

XU(t0) = o  w=p+l...0. (2.3)

The endpoint of such an open string is then constrained to lie on a submanifold (a hy-
perplane of dimension p + 1), whose position in the ambient space is described by a;
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this submanifold is then called the Dirichlet p-brane or Dp-brane for short. The different
boundary conditions of the open string are in one-to-one correspondence with the dif-
ferent D-branes. We can therefore rephrase the above question as the question of which
D-branes can be consistently defined in a given closed string theory.

The idea of the boundary state approach to D-branes is to represent a D-brane as
a coherent {(boundary) state of the underlying closed string theory. The key ingredient
in this approach is world-sheet duality that allows one to rewrite the above conditions
(that are defined in terms of the coordinate function of the open string) in terms of the
coordinate function of the closed string. At first, the coordinate functions of the open
and the closed string theory are not related at all: the world-sheet of the open string is
an infinite strip, whilst the world-sheet of the closed string has the topology of a cylinder.
In particular, the closed string world-sheet is parametrised by 7 and o, where 7 € R is
the time variable, and o is a periodic space-variable o € [0, 27| (where ¢ = 0 is identified
with o = 27).

Suppose now that we consider an open string that has definite boundary conditions
at either end (and can therefore be thought of as stretching between two not necessarily
different D-branes). If we determine the 1-loop partition function of this open string, we
have to identify the time coordinate periodically (and integrate over all periodicities). The
open-string world-sheet has then the topology of a cylinder, where the periodic variable
is t, and s takes values in a finite interval (from s = 0 to s = 7). Because of world-sheet
duality, we can re-interpret this world-sheet as being a closed string world-sheet if we
identify ¢ with o (up to normalisation) and s with ; from the point of view of the closed
string, the diagram then corresponds to a tree-diagram between two external states.

[‘\

Figure 1: World-sheet duality

Furthermore, the boundary condition on the ends of the open string become conditions
that must be satisfied by the external states; since we exchange (f,s) with (o, 7) these
conditions then become

0, X#(0,0)\Dp) = 0 p=0,...,p

X(0.0)|Dp) = a"\Dp)  v=p+1....9, (2:4)

and a similar relation for s = 7 = 7. Here we have assumed that the boundary condition
at s = 7 = 0 corresponds to those of a Dp-brane.
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It is useful to rewrite these conditions in terms of the modes of the closed string theory.
To this end, let us recall that the coordinate field in the closed string theory can be written
as

X1, 0) = X{(r +0)+ Xi{r—0), (2.5)
where in terms of modes,
Xt = 133” + lp“(T +0) + 4 3 laf'”e“'n(f+e>r) (2.6)
2" T2 240"
Xt = 1:1:“ + lp"(r —0)+ ! 3 l(fi““e*""'(“") : (2.7)
2 2 25n n

These modes satisfy the commutation relations

(o, a] = mé* bp _y
[af,,ay] = 0 (2.8)
@k, &) = mdé dm, _n-

In terms of modes the conditions (2.4) then become

p|Dpy = 0 p=0,...,p
(ah +ak,)|Dpy = 0 p=0,...,p
T (2.9)
(a% ~a“,)|Dp) = 0 v=p+1,...,9
v|Dp) = «’|Dp) v=p+1...,9.

The boundary conditions for the fermions are more difficult to establish. Ultimately
they are determined by the condition that the closed string tree diagram reproduces, upon
world-sheet duality, the open string loop diagram (see (2.31) — (2.34) below). In order to
formulate the appropriate condition, it is necessary to introduce an additional parameter
1 (that corresponds to the different spin structures), and the relevant equations are then

EWHWET |Bp,n) = 0 p=0,...p

2.10
[Bp,my = 0 v=p+1,...,9. ( )

vy —inv,

The actual D-brane state |Dp) is then a linear combination of the boundary states | Bp, 1)
with 7 = +. It is also worth pointing out that the equations can be solved separately for
the different closed string sectors of the theory (z.e. the NS-NS and the R-R sector, as well
as the corresponding twisted sectors if we are dealing with an orbifold theory). We shall
therefore, in the following, usually denote by |Bp,n) the solution in a specific sector of
the theory: the D-brane state is then a certain linear combination of the boundary states
in the different sectors and with 7 = =.

In the following we shall always work in the NS-R formalism; we shall also, for sim-
plicity, work in light-cone gauge, and we shall always choose the two light-cone directions
to be g = 0,1.2 The boundary conditions in both light-cone directions will be taken

2For a good introduction to the covariant approach see the lecture notes by Di Vecchia and Liccardo
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to be Dirichlet; the boundary states we describe are therefore really D-instantons (i.e.
they satisfy a Dirichlet boundary condition in the time direction). However, by means
of a double Wick rotation, these states can be transformed into states whose boundary
conditions are specified as above [7]. In these conventions we necessarily restrict ourselves
to D-branes with at least two Dirichlet directions; thus we can only describe Dp-branes
with —1 < p < 7. Also, since the two light-cone directions are always Dirichlet, only p—2
of the transverse directions satisfy a Dirichlet boundary condition in order for the state
to describe the Wick rotate of a Dp-brane; thus in these conventions the boundary states
that combine to define a Dp-brane are characterised by the following conditions

p*|Bp,n) = 0 pw=2,...,p+2

(e +&%){Bp,m) = 0 Hw=2,...,p+2

(a,';—c'i’in)pr,n) =0 v=p+3,...,9
z’|Bp,n) = a“|Bp,n) v=01,p+3,...,9 (2.11)

Ew“—kmw |Bp,n} = 0 pu=2,...,p+2

¥y —ippr, ) |Bp,ny = 0 v=p+3,...,9.

It is actually not difficult to describe the solution to these equations. In each (left-
right-symmetric) sector of the theory, and for each choice of 5, the unique solution is of
the form

|Bp, a, n) Nf [T  dke**|Bp K, n), (2.12)
v=0,1,p+3,...,9

where A is a normalisation constant that will be determined further below, and |Bp’,-lz, 7)
is the coherent state

— 1P+2 1
|Bp,k,n) = exp{ >, ——Za“ &, + — Z ot &, (2.13)
n>0 n,u =p+3
P42
+in Y | = 2 v, - Z Wit | o Bk,
r>0 n=2 p=p+3

The ground state is a momentum eigenstate with eigenvalue k, where k* = 0 for p =
2,...,p+ 2; in the NS-NS sector, it is the unique tachyonic ground state, whereas in the
R-R sector, it is determined by the condition (2.10) with r =0, i.e.

wé’—in%)in,k,mgﬂL =0 v=p+3,...,9. '

If the theory under consideration is an orbifold theory (such as the theory we shall discuss
later), there are also similar boundary states in the corresponding twisted sectors. The
actual D-brane state is then a certain linear combination of these states in the different
sectors of the theory and for both values of n; it is characterised by three properties
16, 32):



(i) The boundary state is a physical state of the closed string theory, i.e. it is GSO-
invariant, and invariant under orbifold and orientifold projections where appropri-
ate.?

(i1) The open string amplitude obtained by world-sheet duality from the closed string
exchange between any two D-branes constitutes an open string partition function,
i.e. it corresponds to a trace over a set of open string states of the open string
time-evolution operator.

(iii) The open strings that are introduced in this way have consistent string field inter-
actions with the original closed strings.

One is usually also interested in D-branes that are stable; a necessary condition for this
is that the spectrum of open strings that begin and end on the same D-brane is free of
tachyons. If the underlying theory is supersymmetric, one may sometimes also want to
impose the condition that the D-branes preserve some part of the supersymmetry, and
that they are therefore BPS saturated; this requires that the spectrum of open strings
beginning and ending on the D-brane is supersymmetric. However, there exist interesting
D-branes in supersymmetric theories that are stable but not BPS [20, 21, 17, 26, 44, 45,
25, 46, 47, 48]; some examples of these will be described later.

The first condition is usually relatively easy to check, although it requires care in all
sectors that have fermionic zero modes. (We shall describe the relevant subtleties in some
detail for the case of Type IIA and Type IIB in subsection 2.2.) The second condition is
in essence equivalent to the statement that world-sheet duality holds. It is a very powerful
constraint that determines the normalisations of the different boundary states (as we shall
show in the next subsection). This condition can be formulated in terms of the conformal
field theory and is sometimes referred to as Cardy’s condition (see also subsection 2.4).
The third condition is very difficult to check in detail; as far as I am aware, there is
only one theory (ramely the two Type OA and OB theories) for which it seems to imply
constraints that go beyond (i) and (ii).

It should be stressed that the above conditions are intrinsic consistency conditions
of an interacting string (field) theory; in particular, they are more fundamental than
spacetime supersymmetry, and also apply in cases where spacetime supersyminetry is
broken or absent.

2.1 World-sheet duality

Before describing some examples in detail, it is useful to illustrate the condition of world-
sheet duality more quantitatively (since the same calculation will be needed for essentially
all models). The closed string tree diagram that is represented in Figure 1 is described
by
o0
| di(Dgle ™= |Dp). (2.15)
0

3Since we are working in light-cone gauge, we do not have to impose any other constraints.
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where H, is the closed string Hamiltonian in light cone gauge,

m ~ -

Ho=7nk®+2r Y [Z(a‘inaﬁ + G AR+ Y (gt kgt | + 270, (2.16)
7#=2,...,9 Ln=1 r>0

The constant C, takes the value —1 in the NS-NS, and 0 in the R-R sector. Under the

substitution ¢ = 1/2, this integral should become the open string one-loop amplitude

that is given by

QtTr(e_ZtH"'P) (2.17)

where P is an appropriate projection operator, and H, is the open string Hamiltonian
given as
1 oo
Hy=p" + @ +7 3 3 alnaf+ 3 il gl +7C. (2.18)
p#=2,.,9 n=1 r>0

Here ¥ denotes the open string momentum along the directions for which the string has
Neumann (N) boundary conditions at both ends, % is the difference between the two
end-points of the open string, and o and ¥# are the bosonic and fermionic open string
oscillators, respectively; they satisfy the commutation relations

[0, k] = m ™ b _p, {WE, 5} = 6" 6, s (2.19)

For coordinates satisfying the same boundary condition at both ends of the open string
(i.e. both Neumann (N ) or both Dirichlet (D)) n always takes integer values, whereas r
takes integer (integer + 1) values in the R (NS) sector. On the other hand, for coordinates
satisfying different boundary conditions at the two ends of the open string (one D and
one N) n takes integer+1 values and r takes integer +; (integer) values in the R (NS)
sector. The normal ordermg constant C, vanishes in the R-sector and is equal to —3 +
in the NS sector (in @ = 1 units) where s denotes the number of coordinates satlsfymg
D-N boundary conditions. The trace, denoted by Tr, is taken over the full Fock space of
the open string, and also includes an integral over the various momenta.

The calculation (2.15) can be performed separately for the different boundary states in
the different components since the overlap between states from different sectors vanishes.
For definiteness let us consider one specific example in some detail, the tree exchange
between two Dp-brane boundary states in the NS-NS sector. (The result for the other
sectors will be given below.) Thus we want to consider the amplitude

/0 di <BP, alvn|8_ch pr:a2s7}>NS—NS:' (220)

where |Bp, a, )xsns 1S the coherent state in the NS-NS sector given in (2.12). The mo-
mentum integral gives a Gaussian integral that can be performed, and the amplitude
becomes*

o — aj—as 2 — ——
Nﬁs.sto dl 1R T (Bp, 0, n|e | Bp, 0, Mxs.ns - (2.21)

41t is convenient to choose the convention that the amplitude is bilincar so that the prefactor is N
rather than AN. On momentum eigenstates the amplitude then satisfies (ki [ka) = 6(k1 — k2).
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In order to determine the overlap between the two coherent states, we observe that the
states of the form

1 1 Mi oo h
I (omnt) 1), (222)

where n; > n;;; and if n; = n;4y then u; < piyq, form an orthonormal basts for the space
generated by the modes o#&% and similarly for

H ll, (s, ) 10) (2.23)

Here the bilinear inner product is defined by the relation

(ako, x) = ~(d, 0l x), (e, x) = (o, ¥}, (2.24)

and similarly for a# and ¥ together with the normalisation

(l0y,10)) = 1. (2.25)

It is then easy to see that the above amplitude becomes

2 -~ _.l._zﬁf — fi(g)
N2 / dil R (2.26)

2mt and the functions f; are defined as in [4]

where ¢ = e~

filg) = ﬁi{l(l—q )

f2(9) = *lfnﬁ (1+¢),

Al = o T+,

fila) = ¢ % L0~ ). (2.27)

3
ﬂ.

Next we substitute ¢ = 1/2/, and using the transformation properties of the f; func-
tions,
fl(emn/t) = \/Efl(e_m)v fQ(e_ﬂ/t) = f4(€fm:): (2 28)
fale™™*) = fale™™), fale™™y = fale™), '

the above integral becomes

’) __L /oo (]t rp+n fﬂ;iz'_y fd (Q) (2 29)

Vasiss? 7@



where § = e~™. This is to be compared with the open string one-loop amplitude

& dt V oa dt 1 n|—n 2 875
i 'Q'"ETrNS( -—2£Hg) — p+l fo _(Qt)—ge-}—le—(—%l)—t f3 (q) (230)

(2m)p+t o 2 7@

where V,; is the world-volume of the brane, which together with the factor of (2¢
comes from the momentum integration. Thus we find that

N ¢Lab]
)72

32(2m)Ptl r dt
[dl (Bp, Til e_chla.gcd Bp, 7?)Ns.Ns — _N‘SS‘NS__L o TI'Ns [e—tHo] . (2_31)
Vo J 2
Similarly we find
_ 32(2m)P+Y o dt _
/ dl (Bp,n| et | Bp, —n)s.ns = N?(T)l—-— gTrR[e el (2.32)
Pt

NZ_32(2r)PH1 [ dt
16V, 2

/dl (Bp, nl e_IHc!osed

Bp, Man = — Trys[(-1)Te™),  (2.33)

and
N2, 32(2m)P* rdt
16 Vo J 2

[‘“ (Bp,n| e~ fetesd | Bp, —n)nn =0 = — Try [(—1)7e™] . (2.34)

We learn from this that we can satisfy world-sheet duality provided we include ap-
propriate combinations of boundary states and choose their normalisations correctly. We
have now assembled the necessary ingredients to work out some examples in detail.

2.2 A first example: Type IIA and 1IB

Let us first consider the familiar case of the Type IIA and Type IIB theories. The spectra
of these theories is given by

ITA : (NS+,NS+) @ (R+,R—) & (NS+,R—) @ (R+, NS+)

2.35
IIB: (NS+,NS+)& (R+,R+) @ (NS+,.R+) & (R+,NS+), (2.35)

where the signs refer to the eigenvalues of (—1)" and (—I)F , respectively. In particular,
the NS-NS sector is the same for the two theories, and consists of those states for which

both (—1)F and (—1)3‘: have eigenvalue +1. Given that the tachyonic ground state has

eigenvalue —1 under both {—1)F and (—1)‘6, the boundary state given by (2.12) and (2.13}
transforms as

(_1)1i'ina a, ’7) = _|BP73’—7?>
(_1)F|Bpaa\n> = N|Bpaaa_n>'
Thus
in, a)NS—.\'S = (|Bp,a, +>N5-.\'s - pr, a, "')NS-NS) (2.36)
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is a GSO-invariant state for all p. It follows from (2.31) and {2.32) that this state does
not describe a stable D-brane by itself since the open string that begins and ends on

| Bp, @) ns.ns consists of an unprojected NS and R sector, and therefore contains a tachyon
in its spectrum. In fact (2.36) with

_1__ Vp+1
64 (2m)P+!

NIES-NS = (2'37)

describes the unstable Dp-brane for p odd (even) in Type 1IA (I1IB) that was considered
by Sen in his construction of non-BPS D-branes {24, 25!; the unstable D9-brane of Type
IIA was also used by Hofava in his discussion of the K-theory of Type IIA [27].

In order to obtain a stable D-brane, we have to add to (2.36) a boundary state in the
R-R sector; since the R-R sector involves fermionic zero modes, the discussion of GSO-
invariance is somewhat delicate, and we need to introduce a little bit of notation. Let us
define the modes

1 ~
|IJ. T — 5’ y IJ’
which satisfy the anti-commutation relations
{v, i} =0, {99} =0, (2.39)

as follows from the fact that both the left- and right-moving fermion modes satisfy the
Clifford algebras,
(i) = o5,
{yr g} = 0 (2.40)
{vr vt = o

In terms of ¥4 (2.14) can be rewritten as

¥h|Bp, k ,n)ﬂ = 0 w=2,...,p+2
) (2.41)
v Bk, mrw = 0 v=p+3,...,9.
Because of the anti-commutation relations (2.39) we can define
p+2
|Bp,k, +)§ H% H ¥ |Bp.k, =)k (2.42)
v=p+3
and then it follows that
p+2 9
1Bp,k, - = [T vt T1 o%1Bp.k )% (2.43)
u= p=p+3
On the ground states the GSO-operators take the form
] 9 9
(-1F = TT(v2 H v+t {2.44)
ji=2 =2

11



|

|

-

and
(-1)F }1 (V2yh) = H(¢+ - (2.45)
Taking these equations together we then find that
(-1)F1Bp.k,mitk = |Bp.k,—mk (2.46)
(-1)F1Bp. k)% = (=1)"'Bp,k, ~m). (2.47)

The action on the non-zero modes is as before, and therefore the action of the GSO-
operators on the whole boundary states is given by

(_l)iprsaaTF)R-R = |Bps ; )RR (2.48)
(-1)F|Bp,a, e = (-1)""'|Bp,a, —rr- (2.49)

It follows from the first equation that the only potentially GSO-invariant boundary
state is of the form

|Bp; a)R-R = (|Bps a: +>R-R + ]Bpa a, —)R-R) » (250)

and the second equation implies that it is actually GSO-invariant if p is even (odd) in the
case of Type IIA (1IB). In this case we can find a GSO-invariant boundary state

|Dp, a> = |Bp, a>NS-NS + |Bp, a)R-R . (2'51)
This state satisfies world-sheet duality provided we choose

1 Vo 2 _ 1 Vo
128 (2m)p+l RR g (o)l (2:52)

NP?SfNS =

This gives rise to an open string consisting of a GSO-projected NS and R sector; in
particular, the GSO-projection removes the open string tachyon from the NS sector,
and the D-brane is stable. The D-brane is also BPS since the open string spectrum is
supersymmetric.

Actually the condition of world-sheet duality does not specify the relative sign between
the NS-NS and the R-R component in (2.51) since only the square of the normalisation
constant enters the calculation.® The opposite choice of the sign defines the anti-brane
that is also BPS by itself; however, the combination of a brane and an anti-brane breaks
supersymmetry since the two states preserve disjoint sets of supercharges. This can also
be seen from the present point of view: the open string that stretches between a brane and
an anti-brane consists of a NS and a R-sector whose GSO-projection is opposite to that
of the brane-brane or anti-brane-anti-brane open string. In particular, the open string
tachyon from the NS sector survives the projection; the system is therefore unstable, and

51t also, obviously, does not specify the overail sign. but this is just the familiar ambiguity in the
definition of quantum mechanical states.
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certainly does not preserve supersymmetry. It is also possible to analyse the action of the
supercharges on the boundary states directly [6].

Finally, we should like to stress that the above analysis shows not only that Type lIA
and Type 1IB has BPS Dp-branes for the appropriate values of p, but also that these are
the only stable D-branes of Type IIA and Type IIB. This is not necessarily the case -— as
we shall see below, some theories possess stable D-branes that are not BPS.

2.3 A second example: Type 0A and 0B

As a second example let us examine the D-brane spectrum of Type 0A and Type 0B
[16, 18, 49, 32]. These theories can be obtained from Type IIA and IIB as an orbifold by
(=1)F*, where F* is the space-time fermion number. The effect of (—1)*” in the untwisted
sector is to retain the bosons (i.e. the states in the NS-NS and R-R sectors) and to remove
the fermions (i.e. the states in the NS-R and R-NS sectors). In the two remaining sectors,
the GSO projection acts in the usual way

NS-NS: Pgsow =4 (1+(=1D)F) (1+(-1)F) (2.53)
R-R: Pasow =14 (1+(-DF) (1= (-DF),

where the + sign corresponds to Type IIB, and the — sign to Type IIA. In the twisted
sector, the effect of (=1} is to reverse the GSO projection for both left and right-moving
sectors. In addition only the states invariant under (—1)f" (i.e. the bosons) are retained.
Thus the states in the twisted sector are again in the NS-NS and the R-R sector, but their
GSO projection is now

NS-NS: FPgsor = § (1 - (_1)F) (1 - (_1)@ (2.54)
R-R: Posor = 3 (1 - (_1)F) (1 + (”1)F) '

where now the — sign corresponds to Type 1IB, and the + sign to Type IIA. Taking
(2.53) and (2.54) together, we can describe the spectrum of Type 0A and Type 0B more
compactly as the subspaces of the NS-NS and R-R sectors that are invariant under the
GSO-projection

NS-NS: Peso = 4 (1+(-1)7*F) (2.55)
R-R: Pgso=1(1x(-1)F+F). '
The resulting spectrumn is thus given by
DA : (NS+,NS+)® (NS-,NS—)& (R+,R-)® (R—,R+) (2.56)

0B: (NS+,NS+)@® (NS—,NS—-) & (R+,R+)® (R—~,R—).

The NS-NS sector is the same for the two theories: in particular, the low lying states
consist of the ground state tachyon (that is invariant under (2.55) since it is invariant
under (2.54)), and the bosonic part of the supergravity multiplet, ¢ e. the graviton, Kalb-
Ramond 2-form, and dilaton. On the other hand, the R-R sector is different for the two
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theories (as is familiar from Type IIA and Type IIB). There are no tachyonic states, and
the massless states transform as

0A : (8, ®8.) D (8. ®8,) =28, +2 56,

(2.57)
0B : (8, ®8,) D (8. ®8) =2-1+2-28+70.

In the case of Type 0OA, the theory has two 1-forms and two 3-forms in the R-R sector,
whereas Type 0B has two scalars, two 2-forms, and a 4-form (with an unrestricted 5-form
field strength). The states in the R-R sector of Type OA and Type OB are therefore
doubled compared to those in Type IIA and Type 1IB. One may therefore expect that
the D-brane spectrum of these theories is also doubled.

In the NS-NS sector, each boundary state |Bp,a,n) is by itself GSO-invariant; the
most general GSO-invariant boundary state in the NS-NS sector is therefore

IBP, a) NS-NS — 01+|BP, a, +>NS-NS + IBpa a, _)NS-NS : (2-58)

If aya_ # 0, it follows from (2.32) that the open string that begins and ends on the
same boundary state contains space-time fermions. Since the closed string sector only
consists of bosons, this presumably means that the open-closed vertex of the string field
theory cannot be consistently defined; thus condition (iii) suggests that we have to have
ayo_ = 0.8 Thus there are two consistent NS-NS boundary states, and they are given
by |Bp,a,+)ns.ns and |Bp, a, —)nsns. As before, neither of them is stable since the open
string that begins and ends on this state has a tachyon from the unprojected open string
NS sector. In oder to stabilise the brane, we have to add a boundary state in the R-R
sector, but as before, these are only GSO-invariant provided that p is even (odd) for Type
0A (OB). For each such p we are then left with four different D-brane states (together
with their anti-branes)

|Dp1 aa n) n’> = |Bp5 aa n)NS-NS + |Bp) a1 T]’>37R 1 (259)
where L v v
2 _ * Vptl 2 _ p+1
Nusns = 5 (2m)ptr” New = =3 (2m)ptl’ (2.60)

However not all of these branes are mufually consistent: the open string between the
boundary state |Dp, a, +,+) and |Dp, b, —, +) consists of a R-sector together with a NS-
sector with a (—1) insertion, and likewise for |Dp,a, —, —) and [Dp, b, +, —). Thus there
are only two mutually consistent D-brane states for each allowed value of p which we can
take to be

|Dp,a, +, +) and \Dp,a,—, —). (2.61)

These D-branes have played an important role in recent attempts to extend the Maldacena
conjecture [37] to certain backgrounds of Type 0B string theory [18].

SIf the theory actually possesses one brane with aya. # 0, the mutual consistency condition between
different branes to be discussed below implies that the theory has only one stable brane (and anti-brane)
for each allowed value of p; this would also seem to be in conflict with the doubled R-R spectrum of the
theory.
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2.4 More abstract point of view: Conformal field theory with
boundaries

The construction of D-branes in terms of boundary states that we have described above
can be understood, from a more abstract point of view, as the construction of a conformal
field theory on a world-sheet with a boundary [8]. Given a conformal field theory that is
defined on closed world-sheets (i.e. on closed Riemann surfaces), we can ask the question
whether we can extend the definition of this conformal field theory to world-sheets that
have boundaries. The prototype geometry of such a world-sheet is an infinite strip that
we take to be parametrised by (¢,s), where 0 < s <7 and ¢t € R.

As before, we can then consider the situation where the strip is made periodic in
the t-direction with period 2x7. The manifold is then topologically an annulus, and the
relevant partition function becomes

Zog(g) = Tr g2, (2.62)

where § = e~2"" o and 3 label the boundary conditions at either end of the strip, and

H,p is the corresponding Hamiltonian. This partition function can be expressed in terms
of the representations of the chiral algebra of the conformal field theory (see for example
[50] for an introduction to these matters),

Zag(@) = D noexi(d), (2.63)
where x;(§) is the character of the representation labelled by 1,

x:(§) = §"#Tr, &, (2.64)

and c is the central charge of the corresponding Virasoro algebra.
Under world-sheet duality, i.e. the modular transformation T + 1/T, each character
transforms as

xil@) =350 (2.65)
i
where ¢ = 72T and thus (2.63) becomes
Zap(@) = 3 s SIx3(0) - (2.66)
ij

This should then again be interpreted as the cylinder diagram between external (bound-
ary) states of the original closed conformal field theory. The closed string trace will give
rise to a character of the chiral algebra provided that each boundary state satisfies the

condition
(Sn - (—1)"S_,)|Ba) =0, (2.67)

where S is an arbitrary (quasi-primary) field of the chiral algebra, and hg is its conformal
weight. In particular, choosing L = S we have the condition

(Ln ~L_n)|Bay =0 (2.68)
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which is just the condition that the boundary preserves the conformal invariance. A so-
lution to these conditions has been constructed by Ishibashi [51] and Onogi and Ishibashi
[52], and the corresponding coherent states are sometimes called Ishibashi states. The
actual boundary states are linear combinations of these Ishibashi states, where the (rel-
ative) normalisations are determined by the condition that the numbers nf, in (2.63)
are non-negative integers for all choices of @ and 3. For left-right symmetric rational
conformal field theories (for which the chiral algebra has only finitely many irreducible
representations), explicit solutions to these constraints have been found by Cardy {8].
Finally, the string field theory condition (iii) is related to the condition that the sewing
relations of the conformal field theory are satisfied [9}.

For the examples of free theories (such as the bosonic Veneziano model),” the condition
(2.67) for S = X* (where hs = 1) is just the condition that the boundary state represents
a space-time spanning D-brane; the different boundary states (that are labelled by o in
the above) are then the different position eigenstates (labelled by a).

In order to describe boundary states that correspond to D-branes other than space-
time spanning D-branes, the above analysis has to be generalised slightly. In fact, it is
actually not necessary to demand that (2.67) holds, but it is sufficient to impose

(Sn = (=1)"p(5_n))|Ba) =0, (269)

where p is an automorphism of the chiral algebra that leaves the conformal field L invariant
(so that (2.68) is not modified). With this modification, the abstract approach accounts
for all D-branes in the above model. However, it can also be generalised to theories on
curved spaces that do not possess free bosons (and for which the definition of a Neumann
or Dirichlet boundary condition is somewhat ambiguous}. In particular, this analysis has
been performed for the Gepner models [54, 55, 56] and the WZW theories [57, 58, 59, 60,
61, 62].

1t should be stressed though, that the conformal field theory analysis that we have just
sketched usually applies to the whole conformal field theory spectrum. For theories with
world-sheet supersymmetry on the other hand, the spectrum that is relevant for string
theory consists only of a certain subspace of the conformal field theory spectrum, namely
of those states that are invariant under the GSO-projection. Thus the conformal field
theory approach has to be slightly modified to take this into account. More significantly,
the sewing conditions of the conformal field theory only guarantee a consistent definition
of the various amplitudes for the full conformal field theory, but it is a priori not clear
whether they are sufficient to guarantee the consistency on the GSO-invariant subspace
of string theory, i.e. the string field theoretic consistency conditions (see (iii) above).® At
any rate, at least for the free theories that we are considering in these lectures, most of
the subtleties concern the nature of the GSO-projection, and therefore go beyond at least
the naive conformal field theory analysis.

"This theory is obviously not rational, and thus Cardy’s solution does not directly apply; see however
[53].
8This was, by the way, already peinted out in [9].
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3 The non-BPS D-particle in IIB/(—-1)"1Z,

Up to now we have described a general construction of D-branes that does not rely on
space-time supersymmetry. We want to apply this technique now to the construction of
stable non-BPS D-branes. From the point of view that is presented in these lectures, the
simplest stable non-BPS D-brane is presumably the D-particle of a certain orbifold of
Type IIB [17, 20}; this shall be the topic of this section.

As was pointed out by Sen some time ago {19], duality symmetries in string theory
sometimes predict the existence of solitonic states which are not BPS, but are stable
due to the fact that they are the lightest states carrying a given set of charge quantum
numbers. One example Sen considered concerns the orientifold [63, 15] of Type 1IB by
QZ, where T, is the inversion of four coordinates. This theory is dual to the orbifold of
Type 1IB by (—1)FtZ,, where Fy, is the left-moving spacetime fermion number. As we shall
explain below, the spectrum of the orbifold contains in the twisted sector a massless vector
multiplet of A" = (1, 1) supersymmetry in D = 6, and this implies that the orbifold fixed-
plane corresponds to a (mirror) pair of D5-branes on top of an orientifold 5-plane [19].
Because of the orientifold projection, the massless states of the string stretching between
the two D5-branes is removed, and the gauge group is reduced from U(2) to SO(2). The
lightest state that is charged under the SO(2) is then the first excited open string state
of the string stretching between the two D5-branes: in the open string NS-sector the first
excited states are

W5 010) 8 states
a'il"/)iugl{)) 8 - 8 = 64 states (3.1)
wfl/2w51/2w€1/2|0> (i) = Of states

and in the R-sector the relevant states are

a”|8s) 8 - 8 = 64 states

" |8e) 8- 8 = 64 states. (3.2)

Thus there are altogether 128 bosons and 128 fermions which form a long (non-BPS)
multiplet of the A" = (1,1) D = 6 supersymmetry algebra.

Since these states are stable, one should expect that the dual (orbifold) theory also
contains a stable multiplet of states that is charged under this SO{2). However, since
they are not BPS, the corresponding state cannot be a BPS D-brane; in fact, as we shall
show below, the orbifold theory possesses a stable non-BPS D-particle that is stuck to
the orbifold fixed plane and satisfies all the required properties.

3.1 The spectrum of the orbifold

Let us first describe the orbifold of the Type 1IB theory in some detail. For simplicity we
shall consider the uncompactified theory, i.e. the orbifold of R*!/(—1}"2Zy. Let us choose
the convention that Z, inverts the four spatial coordinates, x5 ..., 2% The fixed points
nnder 7, form a 5-plane at 2% = 27 = 2% = 2° = 0, which extends along the coordinates

z2,..., 2% as well as the light-cone coordinates z% z'. In light-cone gauge, type IB
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string theory has 16 dynamical supersymmetries and 16 kinematical supersymmetries.
The former transform under the transverse SO(8) as

Q~8,, Q~8,. (3.3)

The orbifold breaks the transverse SO(8) into SO(4)s x SO(4) r, where the SO(4)s factor
corresponds to rotations of (22,...,z%), and the SO(4)r factor to rotations of (z°,. .., z%).
The above supercharges therefore decompose as

8, — ((2,1),(2,1)) + ((1,2),(1,2)), (3-4)

where we have written the representations of SO(4) in terms of SO(4) =~ SU(2) x SU(2).
The operator T, reverses the sign of the vector representation of SO(4)g (the (2,2)), and
we therefore choose its action on the SO(4)g spinors as

SR I o3
The action of (—1)** is simply
) Qo -Q, Q-Q, (3.6)
and the surviving supersymmetries thus transform as
Q~((2,1),(2,1), Q~((1,2),(1,2). (3.7)

From the point of view of the 5-plane world-volume this is (dynamical, light-cone) N =
(1,1) supersymmetry®.

The unbroken supersymmetry of these models can also be determined by analysing
which states in the (untwisted) sector are invariant under the orbifold projection. The
NS-NS sector is the same for both IIA and IIB, and it consists in ten dimensions of a
graviton gan (35 physical degrees of freedom), a Kalb-Ramond 2-form By (28) and a
dilaton ¢ (1). In six dimensions, the graviton gives rise to a 6d graviton g, (9), four
vectors g,; (16) and ten scalars g;; (10). The Kalb-Ramond 2-form gives rise to a 6d
2-form B,, (6), four vectors By (16), and six scalars By; (6). Under Zy(—1)"* (or Iy),
the vectors are all removed, and we retain a 6d graviton, a 6d 2-form and 17 scalars.

The R-R sector of Type IIB in ten dimensions consists of a 4-form with a self-dual
5-form field strength (35), a 2-form (28) and a scalar (1). In six dimensions, the 4-form
becomes one scalar (1), four vectors (16) and three 2-forms (18); the 2-form becomes a
2-form (6), four vectors (16) and six scalars (6), whilst the scalar remains a scalar. If
we orbifold by Z,(—1)%*, we retain the eight vectors, and remove the scalars and the
2-forms: thus we have a graviton, a 2-form, four vectors and one scalar (which combine
into a supergravity multiplet of A = (1,1)) together with 4 vectors and 16 scalars {which
combine into four vector multiplets of A = (1,1)).1

9The same orbifold of type IIA would vield .V = (2,0) supersymmetry.
18A convenient summary of the various supermultiplets can be found in [64].
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On the other hand, if we orbifold by Z;, we retain the four 2-forms and eight additional
scalars. Thus we have a graviton and 5 2-forms with self-dual 3-form field strengths (that
combine into a supergravity multiplet of A = (2,0)) together with 5 2-forms with anti-
self-dual 3-form field strengths and 25 scalars (which combine into five tensor multiplets
of N = (2,0)).

The analysis for Type 1TIA is analogous. The R-R sector in ten dimensions consists of
a 3-form (56) and a 1-form (8). In six dimensions, the 3-form becomes seven vectors (28),
four 2-forms (24) and four scalars (4), whilst the 1-form becomes a vector (4) and four
scalars (4). If we orbifold by Z;(—1)"t, we retain the four 2-forms and the eight scalars,
and therefore have the same massless states as in the IIB orbifold by Z; giving N = (2,0)
supersymmetry; if we orbifold by Z,, we retain the eight vectors, and thus obtain the same
massless states as in the IIB orbifold by Z;(—1)t giving ' = (1,1) supersymmetry.

In addition to the untwisted sectors, the theory also contains a twisted sector that is
localised at the 5-plane. In the twisted sector the various oscillators are moded as

: _ Z p=2,...,5 Z+1/2 p=2,...,5
twisted NS : ne{z+1/2 ©=6... .9 TE{Z ©=6.....9

. _ y/i w=2...,5 y/ p=2...,5
twisted R : ”E{ZH/z p=6...,9 TE{Z+1/2 p=6. 9. B8

The ground state energy vanishes in both the R and NS sectors, and they both contain
four fermionic zero modes that transform in the vector representation of SO(4)s and
S0(4) g, respectively. Consequently the twisted NS-NS and R-R ground states transform
as

((2,1) +(1,2))

@ (
where the charges correspond to SO(4)s (SO
unique massless representation of D = 6 N
gravity multiplet) is the vector multiplet

((2,2),(1,1))+((1,1),(2,2)) + fermions . (3.10)

(2,1) +(1,2)), (3.9)

(4)g) in the R-R (NS-NS) sector. The
= (1,1) supersymmetry (other than the

In order to preserve supersymmetry, we therefore have to choose the GSO-projections in
all twisted sectors to be of the form

1

Pasorr = 7(1= (~1")(1+ (=1)). (3.11)

This agrees with what we would have expected from standard orbifold techniques, namely
that the effect of (—1)* is to change the left-GSO projection in the twisted sector. In
addition, the spectrum of the twisted sector must be projected onto a subspace with either
(=1)fZ, = +1 or (~1)*T; = —1 (in the untwisted sector only +1 is allowed). Since
twisted NS-NS (R-R) states are even (odd) under (—~1)7, and Z, reverses the sign of the
vector of SO(4)g (and leaves the vector of SO(4)g invariant), we conclude that in the
present case the twisted sector states are odd under {(—1}7-Z,.

Having described the spectrum and the GSO projections of the various sectors in
some detail, we can now analyse whether a D-brane boundary state with the appropriate
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properties exists. Since the non-BPS state in the orientifold theory is localised at the
orientifold plane, one would expect that the corresponding non-BPS D-brane should be
a DO-brane that is stuck to the orbifold fixed plane; we shall therefore analyse in the
following whether such a D-brane state exists. For definiteness we shall assume that the
DO0-brane is oriented in such a way that it satisfies a Neumann boundary condition along
the z? direction.

In the (untwisted} NS-NS sector the action of (—1)f* is trivial, and I acts on the
boundary state given in (2.36) as

I4IBP, a)NS-NS = |BP, I4a)NS-NS 3 (3~12)

since T, acts in the same way on left- and right-movers. If a = ag lies on the fixed plane,
T,a9 = ao, and the boundary state is invariant. Thus we have a physical p = 0 NS-NS
boundary state

|0, ap) = | B0, ag)ns.ns - (3.13)

On the other hand the p = 0 R-R boundary state is not physical since, as we saw in
section 2.2, it is not invariant under the GSO-projection.'!

In the twisted sector, the boundary state is of the same form as described before,
except that now the moding of the different fields is as described in (3.8). Since there are
only bosonic zero modes for i = 0,1,2,3,4,5, and since z? is a Neumann direction, the
position of the D0-brane boundary state is described by a 5-dimensional vector b that
can be identified with ag. Both the twisted NS-NS and the twisted R-R sector contain
fermionic zero modes, and the ground state of the D0-brane boundary state therefore has
to satisfy

Yo| B0, ag, ~M)insy =0  forv=6,7,89, (3.14)
in the twisted NS-NS sector, and
1!)12?"807?7)&31&.'1* = 0 (3.15)
We|BO, ~n)ohr = 0 for u =345,
in the twisted R-R sector. On the ground states, the G5O operators act as
twisted NS-NS : (=) = [IP_a(V2y8) . (=1)F = (VYY)
_ (3.16)
twisted R-R : (=1} = [E,(V24l), (~1)7 = [oa(V20§) .
Using the same arguments as before in section 2.2 we then find
(_1)F|Boa ag, 1) ns-ns, 1 = 1301 a9, —7)xs.Ns.T 1
(_1)F|Boa ap, 77>NS.N5.T = +|BO> ap, _77>NS-NS.T ) (3.17)

'This boundary state is actually also not invariant under (—1)f=Z,, as follows from the analysis of
[20].
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and
(*1)F]Boaa03n)R-R‘T = |BoaaUa_n)R-R.Ta
(_1)F|B01a07 TF)R-R.T = —IBO, ag, _—n)R-R,T- (318)

Because of (3.11) it then follows that only the combination
|70, ao) = (| B0, aq, +irnr + | BO, ag, _>R-R.T) ) (3-19)

in the twisted R-R sector survives the GSO-projection, and that no combination of twisted
NS-NS sector boundary states is GSO invariant. In addition, the ground states of the
twisted R-R sector boundary state are odd under (—1)ftZy, as they are precisely the
vector states of SO(4)g that arise in the twisted sector. We therefore have one further
physical boundary state, and the total D-particle state is of the form

D0, ag) = U0, ag) + |T0,a0) . (3.20)

We can then determine the cylinder diagram for a closed string that begins and ends on
the D-particle, and we find that

[°° di(D0, ag|e="H<| D0, ag)
Q

> dt f3(9) — £3(a) : f3( Q)

= Rty & LTV R AEE L L BET VS T 3.21
e @@ (20

where f; is defined as in (2.27}. Thus if we choose

1 1/1 2 1 ‘/l
_ b — = 22
Nl\?S-NS 128 (271,) H NR-R;T 2 (271,) 7 (3 2 )
we obtain (compare [20])
Vi dt 1
—LH, _ N _ L Py, 2tHo

/dl{DO,ao e '\ D0, ag) = 7 gTINS‘R[Q(]. + (=1} Iy)e } : (3.23)

The open string spectrum thus consists of a NS and a R sector, and both are projected by
1/2(1 + (~1)FZ,). The tachyon of the NS sector is even under Z; but odd under (-1)F,
and is therefore removed from the spectrum. This indicates that the D-particle is stable.

In addition, 4 massless states are removed from the NS sector, leaving 4 massless
bosons, and the R sector contains 8 massless fermions. Including the zero modes in the
light-cone directions,* this gives the D-particle 5 bosonic zero modes and 16 fermionic
zero modes. The former reflect the fact that the D-particle is restricted to move within
the 5-plane, and the latter give rise to a long (2% = 256-dimensional) representation of
the six-dimensional A = (1, 1) supersymmetry algebra. Finally, the D-particle is charged

12\When counting the zero modes of a D-brane one must include the light-cone directions as well as the
physical (transverse) massless states of the open string. See for example '65] for a discussion of the type
IIB D-string,.
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under the vector field in the twisted R-R sector. We have therefore managed to construct
a boundary state that possesses all the properties that we expected to find from the S-dual
description.

Sen has proposed a different realisation for this state as the ground state of a D-string
anti-D-string system [20}. In order to describe this construction, it is useful to consider
the theory where at least one of the four circles that are inverted by the action of Z4 is
compact. (This will serve as a preparation for the following section where we consider the
T-dual of the configuration where all four circles are compactified.) Let us then consider
a Dl-brane anti-D1-brane pair that wraps around this compact circle, z%, say. In the
reduced space, the branes stretch from the fixed point at z% = 0 to the fixed point at
8 = 7 RS,

As we have seen before, the ground state of the open string between the brane and
the anti-brane is a tachyon; this indicates that the system is unstable to decay into the
vacuum. However, we can consider the configuration where we switch on a Z; Wilson
line on either the brane or the anti-brane. This implies that the tachyon changes sign as
we go around the circle, and thus the ground state energy of the open string is given by

= 2
m 2+R§ (3.24)

In particular, the ground state of the open string is only tachyonic if Rg > /2, on the
other hand, for Rg < v/2 the ground state of the open string is massive, and the brane
anti-brane system is stable.

As we shall see in the next section, the non-trivial Z; Wilson line implies that the
twisted R-R charge at the endpoints of the D1-brane have opposite sign. Thus the com-
bined system of the brane anti-brane pair only carries twisted R-R charge at one end (but
not the other); it also does not carry any untwisted R-R charge, and therefore has the
same charges as the non-BPS D-particle that we have just discussed (see Figure 2). This

Figure 2: D1-brane anti-brane pair with a relative Z; Wilson line and the DO-brane.

suggests that the brane anti-brane pair decays into the D-particle if Rg > /2. This inter-
pretation is further supported by the fact that for R < V2, the open string that begins
and ends on the D-particle contains a tachyon, and thus indicates that the D-particle is
not the stable state. Indeed, the projection 1/2(1 + {—1)FZ;) removes the tachyon with
winding number 0, but the anti-symmetric combination of winding number w = %1 is
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contained in the spectrum; this state has mass

1 (Rg\*
L - — 3.25
mt= =2+ () (3.25)
and thus becomes tachyonic if Rs < v/2. One can also compare the mass and the R-R

charge of the two states, and they agree indeed.

4 Non-BPS states in Heterotic — Type II duality

If we consider the compactification of the above IIB orbifold on a 4-torus (on which T,
acts) then the theory is T-dual to

IIB on T4/ (-1}t T, <" 1IA on T/Z, . (4.1)

The orbifold of T4/Z; describes a special point in the moduli space of K3 surfaces, the
so-called orbifold point. On the other hand, Type ITA on K3 is known to be S-dual to
the heterotic string on T* [70].

Under T-duality, the stable non-BPS D0-brane of the Type IIB orbifold becomes a
stable non-BPS D1-brane of Type IIA on K3; it is then natural to ask whether one can
identify the corresponding non-BPS state in the heterotic theory. This is actually an
interesting problem in its own right since both theories of the dual pair are quantitatively
under control, and one can make detailed comparisons. The following discussion, except
for section 4.3.2 that has not been discussed before, follows closely [44] (see also [66]).

4.1 The setup

Let us first explain the conventions of the orbifold of the Type ITA theory. In the untwisted
sector, the GSO-projections are given as in (2.35). If we denote the compact coordinates
along which 7, acts by z°,...,2°% the moding of the fields in the twisted sectors is as in
(3.8). Furthermore, the GSO-projections in the relevant twisted sectors are given by
twisted NS-NS 11— (-1)F) (1 - (-=1)F), (4.2)

4

twisted R-R %(1 - (m])F) (1 + (—1)F) (4.3)

Since the theory has D = 6 A" = (1,1) supersymmetry, the states in the massless R-RR
sector must form a vector, and thus the GSO-projection must be the same as for the T-dual
IIB/{—1)Ft T, orbifold. Consistency with the operator product expansion, in particular
the OPE

R-R x R-R;T = NS-NS;T (4.4)
then determines the GSO-projection in the twisted NS-NS sector; in fact, since the GSO-

projection of Type IIA and Type [IB are opposite in the untwisted R-R sector, the same
must hold in the twisted NS-NS sector.!?

BFor a recent discussion of the subtletics associated with the cheice of the GSO-projections in the
twisted sectors see [67)].
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Next let us recall the precise relation between type IIA at the orbifold point of K3
and the heterotic string on T¢; the following discussion follows closely [68]. Let us denote
the radii of the compactified coordinates by Ry4; and Ry, for Type IIA and the heterotic
string, respectively. The sequence of dualities relating the two theories is given by

het T* -1 T 25 1B TY/Z, -S> 1B T4/Z% 5 1IA TY/Z,, (4.5)
where the various Z, groups are
Zy=(1,90,) Zjy=(1,(-1)"L) Z;=(1,Z). (4.6)

Here Z; reflects all four compact directions, 2 reverses world-sheet parity, and Fj is the
left-moving part of the spacetime fermion number. The first step is ten-dimensional S-
duality between the (SO(32)) heterotic string and the type I string [69], which relates the
(ten-dimensional) couplings and radii as'*

gr < g;," Ry x 9‘;:1/2th . (4.7)

The second step consists of four T-duality transformations on the four circles, resulting
in the new parameters

g = Vi'gr x Vi'gs

R, = Ry « g,lll 2R,jj‘ )
where V; = [1; Ry; and Vj = []; R, denote the volumes (divided by (27)1) of the T* in
the type I and heterotic strings, respectively. This theory has 16 orientifold fixed points.
In order for the dilaton to be a constant, the R-R charges have to be canceled locally,
i.e. one pair of D5-branes has to be situated at each orientifold 5-plane. In terms of the
original heterotic theory, this means that suitable Wilson lines must be switched on to
break SO(32) (or Eg x Eg) to U(1)'; this will be further discussed below. The third step

is S-duality of type IIB. The new parameters are given by

(4.8)

it

q = g o Vhfi’;l
— -1/2 -1
Ry = ¢7'’R; « V'R .

=1

(4.9)

Finally, the fourth step is T-duality along one of the compact directions, say 2% The
resulting theory is type IIA on a K3 in the orbifold limit. The coupling constants and
radii are given by

g4 = g"(BD™' = gi'Rusly”
RAj = R;" = 21/111/2}%;3.1 forj;éﬁ (4.10)
Ras = (RN)™' = 271, Y2 Ry,

where we have now included the numerical factors (that will be shown below to reproduce
the correct masses for the BPS-states).'® In addition, the metrics in the low energy
effective theories are related as [70]

G, = Vg ’Gh, . (4.11)

foy

liNumerical factors are omitted until the last step.
15Tn our conventions aj, = 1/2, o’y = 1.
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The corresponding point in the moduli space of the heterotic theory has B = 0 and
Wilson lines that can be determined in analogy with the duality between the heterotic
string on S! and type IIA on S'/QZ, (type IA). A constant dilaton background for the
latter requires the Wilson line A = ((3)%,0®) in the former [71, 72, 73], resulting in the
gauge group SO(16) x SO(16). The sixteen entries in the Wilson line describe the positions
of the D8-branes along the interval in type IA. This suggests that the four Wilson lines
in our case should be

o - () )
# = ()0 G) o)
1\? 1?2 1y\? 1?2
7 _ + 2 {7 2 1 2 (2 2
AT = ((2) @ (5) 0 (5) 0 (5) ,0)
1 1 1 1 1 1 1 1
6 _ z — _ _ Z - hl _
A - (2501210!2!0}210!210:2:0725032)0), (412)

so that there is precisely one pair of D-branes at each of the sixteen orientifold planes.
Indeed, this configuration of Wilson lines breaks the gauge group SO(32) to S0(2)'¢ ~
U(1)'%, and there are no other massless gauge particles that are charged under the Cartan
subalgebra of SO(32). To see this, recall that the momenta of the compactified heterotic
string are given as [74]

P, = (P,p) = (VK + Abew; -2%? +’w';R,;)

. (4.13)
Pr = = -w'R, |,
R Pr (2R1- )
where p' is the physical momentum in the compact directions
p'=n'+ BYy; - VF AL — §A}\,Af,{wj, (4.14)

w;,n; € Z are elements of the compactification lattice I'*, and V¥ is an element of the
internal lattice I''¢. For a given momentum (P, Py), a physical state can exist provided
the level matching condition

1_. 1.
§Pi +Np—1= §Pf3+ Np —cr (4.15)

is satisfied, where Ny and Ny are the left- and right-moving excitation numbers, and
cr = 1/2 (cr = 0) for the right-moving NS (R) sector. The state is BPS if Ny = cg [78],
and its mass is given by

1. | 1_. 4
‘ITi’li - (§P§ + ;\r[‘ - 1) + (§P}2f + J\r‘r,rg - ('R> = P}Z‘; -+ Q(IVR — CR) . (116)
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The massless states of the gravity multiplet and the Cartan subalgebra have N =1
and P, = Py = 0. Additional massless gauge bosons would have to have Ny = 0, and
therefore P2 = 2. If w; = 0 for all ¢, this requires V? = 2 and p; = 0. The possible choices
for V are then simply the roots of SO(32), and it is easy to see that for each root at least
one of the inner products VX A% is half-integer; thus p* € Z + 1/2 cannot vanish, and
the state is massive. On the other hand, if w; # 0 for at least one ¢, the above requires
(V + Aw)? < 2, and it follows that V + Aw = 0, i.e. that the massless gauge particle is
not charged under the Cartan subalgebra of SO(32).

4,2 BPS states

In order to test the above identification further, it is usefu! to relate some of the per-
turbative BPS states of the heterotic string to D-brane states in IIA on T*/Z,, and to
compare their masses. Let us start with the simplest case — a bulk D-particle. This state
is charged only under the bulk U(1) corresponding to the ten-dimensional R-R one-form
C‘,(qll g- It can be described by the boundary state

|D0; a, b, fl) = (lBO; a, b)NS-NS + € IBO; a, b)R-R)
+(1B0;a, =b)ys.xs + €1| BO; a, —b)rr), (4.17)

where a denotes the position along the uncompactified directions for which the D-brane
has Dirichlet boundary conditions, i.e. 2, z', 23, z4, 2% and b denotes the position along
the compacitified directions, z%,...,z". Since the directions z%,...,z° are compact, the
corresponding momenta, are quantised, k* = m;/R4;, and the momentum integrals are
replaced by sums; thus the boundary state becomes

9 - ———
|BO,a,b,n)=N[ [T dkve* ™ (H 3 e*'mi**‘/ﬂm) |BO, k, m, 7), (4.18)

v=0,1,3,....5 i=6 m;cZ

where | B0, k, m, n) is given by the same formula as in (2.13). The GSO-invariant boundary
state |B0;a,b) is then again given as in (2.36) and (2.50). (Since we are dealing with
the untwisted sector of a Type IIA orbifold, the R-R sector boundary state with p even
is GSO invariant.) The state in (4.17) is manifestly also invariant under the orbifold
operator Zy since it is the symmetric combination of a D0-brane state together with its
image under 7Z,.

In order to determine the correct normalisation of the different boundary states we
have to perform a similar calculation as before in the case of the uncompactified Type
ITA and Type IIB theory. There are, however, two minor modifications. Firstly, since
the momenta along the four compact directions are quantised, one cannot simply do the
Gaussian integral; instead, one is left with a momentum sum that can be transformed,
using the Poisson resummation,

o 2
T eim/RY i S ,—2tm{nR) (4.19)
e = [ . :
mezZ \/fnez
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into a winding sum which in turn appears in the open string trace.'® Secondly, the open
string that one obtains from (4.17) will have four sectors (depending on whether each end
of the string is at (a, b) or at (a, —b)), each of which consists of

[NS - R] %(1 +(-1)F). (4.20)

However, under the action of Z,, the four sectors are pairwise identified, and therefore
only half as many open string states survive. Taking this into account, the normalisation
of the boundary states in (4.17) turn out to be

11 W 11 ¥

2128 (2) RasRuRasRasNgn = —5572-5-  (421)

RAGRATRASRAQNIES-NS = 8 (2m)

As before, €; = +1 differentiates a D-particle from an anti-D-particle.

The corresponding state in the heterotic string has trivial winding (w; = 0) and
momentum (V = 0, p' = 0), except for ps = €;. Level matching then requires that
Ny =1, and therefore the state is really a Kaluza-Klein excitation of either the gravity
multiplet or one of the vector multiplets in the Cartan subalgebra. Its mass is given by

(4.16)

mp(D0) = ﬁ%. (4.22)

The corresponding mass in type 1IA can be found using (4.10) and (4.11), and turns out

to be 1
Y2 ma(DO) = — . (4.23)
ga

This is in complete agreement with the mass of a D-particle.

ma(D0) =V,

1

Next consider the D-particle that is stuck at one of the fixed planes (which we may
assume to be the fixed plane with b = 0). The mass and the bulk R-R charge of this
D-particle is precisely half of that of the bulk D-particle that we discussed above; it is
therefore sometimes called a ‘fractional’ D-particle [75]. It also carries unit charge with
respect to the twisted R-R U(1) at the fixed plane. The corresponding boundary state is
then

‘Doa a, €1, 52> = |BOE a>NS—NS + €] !BO; a>n.n + leBO-f a)NS-NS;T -+ 51€2|BO; a>n~n,"r . (4-24)

As we have seen above, the boundary states in the untwisted sector are GSO- and orbifold-
invariant. As regards the boundary states in the twisted sectors, the analysis is completely
analogous to the analysis of the previous section, the only difference being that the GSO-
projection in the twisted NS-NS sector is now opposite to what it was there; as a conse-
quence the DO-brane boundary state is also GSO-invariant in that sector.

The normalisation of the boundary states in the untwisted sector is as for the case of
the bulk D0O-brane above,

11 W
2128 (27}

. 11 WV _
RagRarRasRaoNy , = —oo (4.25)

RasRarRasRasNi s = 28(2m)°

Y80 fore details on this can be found in [20] and [42].
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and in the twisted sectors it is

1 V 1 V,
NI\ZIS-NS;T = EE’%TS’ NF%—R;T = _1'(‘5‘;_) (4.26)

With these normalisations, the open string between two such D-particles is given by
i
[NS - R] Z(l +eae(~D)F) (1 + eeh). (4.27)

If we consider the limit of the bulk D0-brane state as b — 0, i.e. as the bulk D-particle
approaches the fixed plane, the normalisation of the boundary states of the bulk brane is
indeed twice that of the corresponding components of the fractional brane. This demon-
strates explicitly that the mass and the untwisted R-R charge of the bulk brane is indeed
twice that of the fractional brane.

As before, ¢, = *1 and €;e; = +1 determine the sign of the bulk and the twisted
charges of the fractional brane, respectively. In the blow up of the orbifold to a smooth
K3, the fractional D-particle corresponds to a D2-brane which wraps a supersymmetric
cycle [76]. In the orbifold limit the area of this cycle vanishes, but the corresponding
state is not massless, since the two-form field B‘® has a non-vanishing integral around
the cycle {77]. In fact B = 1/2, and the resulting state carries one unit of twisted charge
coming from the membrane itself, and one half unit of bulk charge coming from the D2-
brane world-volume action term [ d30 C%) A (F® + B®). At each fixed point there are
four such states, corresponding to the two possible orientations of the membrane, and the
possibility of having F = 0 or F' = *1 (as F' must be integral, the state always has a
non-vanishing bulk charge). These are the four possible fractional D-particles of (4.24).
Since there are sixteen orbifold fixed planes, there are a total of 64 such states.

In the heterotic string these correspond to states with internal weight vectors of the

form

V = +(0",1,£1,04*) (n=0,...,7), (4.28)
and vanishing winding and internal momentum, except for pg = +1/2. The sixteen
twisted U(1) charges in the IIA picture correspond to symmetric and anti-symmetric
combinations of the (2n + 1)’st and (2n + 2)'nd Cartan U{1) charges in the heterotic
picture. It follows from the heterotic mass formula (4.16) that the mass of these states is

1
DO = —/—— . 4.2
ma(D0) = 55— (4.29)
As before, this corresponds to the mass
—-1/2 1
mA(DOJr) = Vh Gh T?lh(DOf) = —Qa, (430)

in the orbifold of type IIA, and is thus in complete agreement with the mass of a fractional
D-particle.

Additional BPS states are obtained by wrapping D2-branes around non-vanishing
supersymmetric 2-cycles, and by wrapping D4-branes around the entire compact space.
One can compute the mass of each of these states. and thus find the corresponding state
in the heterotic string. Let us briefly summarise the results:
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(i) A D2-brane that wraps the cycle (z',z’) where i # j and 4,7 € {7,8,9} has mass
ms = Ra;Ra;/(294); in heterotic units this corresponds to my = 2Ry, where
k € {7,8,9} is not equal to either ¢ or j. The corresponding heterotic state has
we = 41, pt =0, (V £ Ax)¢ =2, and Ny = 0.

(i) A D2-brane that wraps the cycle (z*,z°), where ¢ is either 7,8 or 9, has mass

ma = RaiR4s/{294); in heterotic units this corresponds to m, = 1/(2Rx;). The
corresponding heterotic state therefore has p* = +:1/2, w/ =0, V? =2, and Ny = 0.

(iii) A D4-brane wrapping the entire compact space has mass my = [[; R4:/(2g4); in
heterotic units this corresponds to my, = 2Rps. The corresponding heterotic state
therefore has wg = 1, p =0, (V = A4)?2 =2, and N, = 0.

4.3 Non-BPS states

The heterotic string also contains non-BPS states that are stable in certain domains of the
moduli space. One should therefore expect that these states can also be seen in the dual
type IIA theory, and that they correspond to non-BPS branes. Of course, since non-BPS
states are not protected by supersymmetry against quantum corrections to their mass,
the analysis below will only hold for g, < 1 and g4 < 1 in the heterotic and type IIA
theory, respectively.

4.3.1 Non-BPS D-string

The simplest examples of this kind are the heterotic states with vanishing winding and
momenta (w; = p; = 0), and weight vectors given by

Vo= (07, 42,007

V: — (OQm,:I:l,i1,02n’i1’i1’012—2nr2m) . (431)

The results of the previous section indicate that these states are charged under precisely
two U(1)’s associated with two fixed points in ITA, and are uncharged with respect to any
of the other U(1)'s. There are four states for each pair of U(1)’s, carrying &1 charges with
respect to the two U(1)’s. In all cases V2 = 4, and we must choose N = cp + 1 to satisty
level-matching. These states are therefore not BPS, and transform in long multiplets of
the D =6 A = (1,1) supersymmetry algebra. Their mass is given by

my, = 2vV2, (4.32)

as follows from (4.16); in particular, the mass is independent of the radii.

On the other hand, these states carry the same charges as two BPS states of the form
discussed in the previous section (where the charge with respect to the spacetime U(1)s
is chosen to be opposite for the two states), and they might therefore decay into them.
Whether or not the decay occurs depends on the values of the radii, since the masses of
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the BPS states depend on them. In particular, the first state in (4.31) carries the same
charges as the two BPS states with p = #1/2, and weight vectors of the form

Vl — (O'Z'rl’ 1’ 1, 014—-21'1)
V'Z = (0275, 1! _1: 014—2n) H (433)

where we have assumed that m is even and written m = 2n; if m is odd, the two weight
vectors are

Vl — (0271, 1’ 1, 014—2n.)
% = _(0211., 11 _ls 014_2”) ’ (434)

where m = 2n+1. The mass of each of these states is 1/(2Rps), and the decay is therefore

energetically forbidden when
1

2v2
More generally, the above non-BPS state has the same charges as two BPS states with
w; = 0, and internal weight vectors

Rus < (435)

Vi = i(om,1,0’“,1,014"m-’€)
Vy = ﬂ:(Om,l,O",—l,Ol"’m‘k), (4.36)

where again the non-vanishing internal momenta are chosen to be opposite for the two
states. The lightest states of this form have a single non-vanishing momentum, p; = +1/2
for one of i = 6,7,8,9, and their mass is 1/{2R);). Provided that

1
R < —= i=6,7,8, 9, (437)

2V/2
the non-BPS state cannot decay into any of these pairs of BPS states, and it should
therefore be stable. Similar statements also hold for the non-BPS states of the second
kind in (4.31).

We should therefore expect that the ITA theory possesses a non-BPS D-brane that has
the appropriate charges and multiplicities. This state is easily constructed: it is a non-
BPS D-string that stretches between the two fixed planes into whose fractional D- partlcles
it can potentially decay. Let us for simplicity consider the state that stretches along x°
from the origin to the fixed plane with coordinates (7R 4g,0,0,0}), and let us denote the
transverse position by ¢ (where ¢ has non-trivial coordinates along z°, zt, 2%, 2, 2%). Then
the boundary state is given as

|51,c; B,¢) = |Bl,c;@)ysns + € (|Bl,c;0)m,ﬂ;T + ew|Bl, c; (mRas,0,0, 0)):1.3;1") , (4.38)

where # denotes a Wilson line which originates from the fact that the 8 dlI‘CCthIl is
compact so that the NS-NS vacuum can be characterised by a winding number we.l" In

1"The relevant closed string Hamiltonian contains then also an additional term v?/{4n), where v is the
winding length.
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fact, the boundary state {B1, ¢; 8) ys.ns 1s defined by
IB].,C; 9>NS-NS = ZeiﬂwelBl,C;w(s)Ns_Ns, (4.39)

we
where | B1, ¢; we)ns.ns 1S given by (2.36), (4.18) and (2.13) except that |B1,k, n)® in (2.13)
is now replaced by
|B1,k, we)®. (4.40)

This tachyonic ground state has winding number wg along the z° direction, and momen-
tum equal to k' for i # 6. Because it describes a D1-brane with a Neumann direction along
x2, we also have that k% = 0; furthermore the momenta k* for 1 = 7,8,9 are again quan-
tised. This boundary state is (as before) obviously invariant under the GSO-projection;
invariance under the orbifold projection requires that § = 0 or # = = (since Z, maps
wg — —ws.) The correct normalisation will turn out to be

1V

RA?RASRAQNr?S-NS ~ 64 (2r)2"

(4.41)
where Vi, = mR6V4, with Vi being the volume along the z?-direction along which the
D1-brane has a Neumann boundary condition.

The two boundary states in the twisted R-R sector are localised at different fixed
planes, and are otherwise standard boundary states. Since the twisted R-R sector does
not have any fermionic zero modes in the z% direction, the ground state satisfies the same
zero mode condition as the DD0O-brane boundary state discussed above; this also implies
that it is GSO-invariant. The parameter € takes the values £1, and determines the sign
of the twisted R-R charge at one end of the Dl-brane. The correct normalisation will
turn out to be LV

NE =21 4.42
R-R 4 (271') ? ( )
where V) is the world-volume along the z? direction.

In order to describe the corresponding open string it is convenient to use a different

description for the orbifold [20]. Let us denote, as before, by Zy the reflection of the four

coordinates z%,...,z% and let 7} be defined by
;| ot e = ifi £6,
14 . { .’1','5 — QTFRAG — LL‘G. (443)

Let us consider the compactification where initially the radius of the sixth circle is 2R 4.
The Z, x Z, orbifold of this theory that is generated by Z, and T} is then equivalent to
the above orbifold. In order to see this we observe that Z; and Zj commute with each
other, and that both are of order two. The Z; x Z; orbifold can therefore equivalently
be described as the Z;-orbifold of the ZjZ,-orbifold; however, Z,Z; is the translation
28— 2% + 27 R 46, and its effect is simply to reduce the radius from 2R 46 to R 4.

For the above choice of normalisation constants, the spectrum of open strings that
begin and end on the above D-string is then given as

[NS - R | % (1+(-171)) (1 + (-1 (4.44)
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where the terms that involve Z; come from the twisted R-R sector localised at 0, the
terms involving Z; come from the twisted R-R sector localised at (mR46,0,0,0), and the
remaining terms arise from the untwisted NS-NS sector. (More specifically, the term with
the unit operator corresponds to the contribution where wg is even, whereas the term
1/4(~-1)FT,(-1)F T, = 1/4(28 — 25 + 2rRag) comes from the terms with we odd.

Since 8 and e can only take two different values each, there are four different D-
strings for each pair of orbifold points. These four D-strings are only charged under
the two twisted sector U(1)s associated to the two fixed planes, and the four different
configurations correspond to the four different sign combinations for the two charges.
These charges are of the same magnitude as those of the fractional D-particles, since the
ground state of twisted R-R sector contribution satisfies the same zero-mode condition,
and has the same normalisation (compare (4.26) and (4.42)). Furthermore, it follows
from (4.44) that the D-strings have sixteen (rather than eight) fermionic zero modes, and
therefore transform in long multiplets of the D = 6, A" = (1, 1) supersymmetry algebra.
These states therefore have exactly the correct properties to correspond to the above
non-BPS states of the heterotic theory.

Figure 3: The non-BPS D1-brane and the two fractional DO-branes into which it can
decay.

The open string NS sector in (4.44) contains a tachyon. However, since the tachyon is
(—1)F-0dd, and since 7, reverses the sign of the momentum along the D-string, the zero-
momentum component of the tachyon field on the D-string is projected out. Furthermore,
since T,7 acts as 2% — 2% + 27 R 46, the half-odd-integer momentum components are also
removed, leaving a lowest mode of unit momentum. As a consequence, the mass of the

tachyon is shifted to
1 1

b1 4.45
2 " R, (4.45)

my = —
For Ras < /2 the tachyon is actually massive, and thus the non-BPS D1-brane is stable.
On the other hand, for Has > V2 the configuration is unstable and decays into the
configuration of two D-particles that sit at either end of the interval. These D-particles
carry opposite untwisted R-R charge, and their twisted R-R charge is determined in terms
of the twisted R-R charge of the D-string at either end.
One can also understand this instability from the point of view of the two fractional
BPS D-particles. Since they carry opposite untwisted R-R charge, the open string between
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them consists of

1 F
[NS - R) 2(1 - (-0F)(1£1.). (4.46)
The ground state of the open string NS sector therefore has a mass
1 2
m? = —% + (WRA5T0)2 = ~5 + (%) ) (4.47)

and so becomes tachyonic for Ras < v/2, indicating an instability to decay into the non-
BPS D-string. The D-string can therefore be thought of as a bound state of two fractional
BPS D-particles located at different fixed planes. This is also confirmed by the fact that
the classical mass of the D-string (4.52) is smaller than that of two fractional D-particles
{4.30) when

Ras < V2, (4.48)

and thus the D-string is stable against decay into two fractional D-particles in this regime
(see Figure 3). In terms of the heterotic string, this decay channel corresponds to {4.33).
Given the duality relation (4.10), the domain of stability of the non-BPS D-string (4.48)
becomes in terms of the heterotic moduli

V2R < 2V/2. (4.49)

Thus the D-string is stable provided that Ry is sufficiently small; this agrees qualitatively
with the regime of stability in the heterotic theory (4.35). (Since we are dealing with non-
BPS states, one should not expect that these regimes of stability match precisely!)

Other decay channels become available to the D-string when the other distances 24
(¢ = 7,8,9) become small. In particular, the D-string along z% can decay into a pair
of D2-branes carrying opposite bulk charges, i.e. a D2-brane and an anti-D2-brane, and
wrapping the (z%, %) cycle.

+ -

++ ++ + > +

Figure 4: A D2-brane anti-brane pair and the non-BPS D1-brane into which it can decay.
The twisted R-R charge of each D2-brane at each of the four corners is one half of that
of the non-BPS Dl-brane.

Since the mass of each D2-brane in the orbifold metric is R4;Ra6/{2g4), the D-string
is stable in this channel when

R‘A‘i > (l =17,8, 9) . (450)

1
V2
The D-string can therefore also be thought of as a bound state of two BPS D2-branes. This
decay channel can also be understood from the appearance of a tachyon on the D-string
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carrying one unit of winding in the z* direction, when R4 < 1/ V2 (23], or alternatively
from the appearance of a tachyon between the two D2-branes when Ry; > 1 /2. In terms
of the heterotic string, these decay channels are described by (4.36). Using the duality
relation (4.10) as before, {4.50) then becomes

V. VPRy < 2v2  for j #6. (4.51)

Thus the D-string is stable against this decay provided that R,; is sufficiently small, and
this agrees again qualitatively with the heterotic domain of stability (4.37). A similar
analysis can also be performed for D-strings that stretch between any two fixed points.

One can also compare the mass of the non-BPS D1-brane with that of the dual het-
erotic state. As we mentioned before, one should not expect that these are related exactly
by the duality map since for non-BPS states the masses are not protected from quantum
corrections. Indeed, the classical mass of the above non-BPS Dl1-brane is given by

RAG
V294’

where the factor of v/2 comes from the fact that the normalisation of the untwisted NS-NS
component (4.41) is by a factor of v/2 larger than that of the standard BPS D-brane of
Type II (2.52). In heterotic units, this mass is o 1/V,, and therefore does not agree with
(4.32).

In the blow up of the orbifold to a smooth K3, the non-BPS D-strings correspond
to membranes wrapping pairs of shrinking 2-cycles. Since such curves do not have holo-
morphic representatives, the states are non-BPS. For each pair of 2-cycles there are four
states, associated with the different orientations of the membrane; the membrane can
wrap both cycles with the same orientation, or with opposite orientation. In either case
the net bulk charge due to B = 1/2 can be made to vanish by turning on an appropriate
world-volume gauge field strength (F = =£1 in the first case, and F' = 0 in the second).
The decay of the non-BPS D-string into a pair of fractional BPS D-particles is described
in this picture as the decay of this membrane into two separate membranes, that wrap
individually around the two 2-cycles. It would be interesting to understand in more detail
how non-BPS branes behave away from the orbifold point; first steps in this direction have
recently been taken by [79].

ma(D1) = (4.52)

Finally, the entire discussion also has a parallel in the T-dual theory that we analysed
in the previous section. The non-BPS D-string that stretches along z® is mapped under
T-duality to the non-BPS D-particle of the IIB orbifold. (The two different values @ = 0,7
correspond to the two possible positions, and € to the sign of the charge of the D-particle.)
The non-BPS D-string can be formed as a bound state of a fractional D-particle and a
fractional anti-D-particle (see Figure 3). Under T-duality, the D-particle anti-D-particle
pair becomes a pair of a BPS D-string and an anti-D-string of the IIB theory that stretch
along the z® direction; since the D-particles sit on different fixed planes, the BPS D-
strings have a relative Wilson line. Thus the non-BPS D-particle can be understood
as the bound state of a Di-brane anti-D1-brane pair with a relative Wilson line; this
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reproduces precisely the construction of Sen [20].'® By T-duality it follows that the D-
particle is stable provided that

1
R>— i=6,780. (4.53)

V2

Similarly the other decay channels can also be related to decay channels considered by
Sen.

4.3.2 Non-BPS D3-brane

In addition to the non-BPS D1-brane, the IIA theory also has a non-BPS D3-brane for
which an analogous analysis applies. The corresponding boundary state has a component
in the untwisted NS-NS sector, and a component in each of the eight twisted R-R sectors
that are localised at the vertices of the cube along which the D3-brane stretches. The D3-
brane is characterised by three Z, Wilson lines (that determine the relative signs of the
twisted R-R charge at the different end-points), and one additional sign (that determines
the overall sign of the twisted R-R charges). The states in the twisted R-R sector are again
GSO-invariant, since their ground state satisfies the same fermionic zero mode conditions
as the D0-brane state. Furthermore, a careful analysis of the boundary state reveals [47]
that the non-BPS D3-brane carries at each corner precisely one half of the twisted R-R
sector charge of a fractional D0-brane. This normalisation is consistent with the decay
process of the non-BPS D3-brane into a D2-brane anti-brane pair {see Figure 5) that is
the analogue of the decay process of Figure 3.!° The non-BPS D3-brane is stable against

Figure 5: A non-BPS D3-brane and the D2-brane anti-brane pair into which it can decay.

this decay provided that the three radii along which it stretches are each smaller than
V2. There is also a decay channel along which the D3-brane can decay into a D4-brane
anti-D4-brane pair (this is the analogue of the decay process of Figure 4), and the non-
BPS D3-brane is stable against this decay process provided that the transverse radius is
larger than 1/\/§

In order to identify the corresponding states in the heterotic string it is convenient
to consider the different non-BPS D3-brane states (that are characterised by four signs

8In the previous section we considered the uncompactified theory where all radii are infinite; in this
regime the D-particle is stable.

YIndeed, the decay process of Figure 3 implies that the twisted R-R charge of each end of a non-BPS
Dl-brane is the same as that of a BPS D0-branc. and the decay process of Figure 4 implies that this
charge is twice as large as the twisted R-R charge of a BPS D2-brane at each of its four corners.



and their position in the T%) in conjunction with those non-BPS D3-brane states that
correspond to the configuration where a non-BPS D1-brane is embedded within the D3-
brane.2’ Since the magnitude of the twisted R-R charge at the end-point of the non-BPS
D1-brane is twice that of the non-BPS D3-brane, the sign of the twisted R-R charge of
the bound state differs at two vertices from that of the original D3-brane. Proceeding in
this way, we can thus obtain D3-brane states with 27 = 128 different sign combinations
at the eight end-points. (For conventional D3-branes, the number of combinations was
only 2¢ = 16!) In addition we can localise the D3-brane in 2 - 15 = 30 different ways:
there are fifteen different direction vectors between the vertices of the unit cell, and we
can choose the D3-brane to be orthogonal to any one of them; for each such orientation,
we can then localise the D3-brane at two different positions. Taking all of this together
we are therefore looking for 30 - 27 states in the heterotic theory.

The states that correspond to these non-BPS D3-branes in the dual heterotic theory
must be charged under eight of the sixteen U(1)s that are described following (4.28), but
not under any of the other U(1)s. The charge with respect to each of these eight U(1)s
must be precisely half of that of the states in {4.28). Furthermore, for each allowed set
of eight such U(1)s (there are 30 such sets that correspond to the different localisations
of the D3-brane) there are 128 such states that differ by the signs of the charges at the
end points. Heterotic states with these properties can be found as follows: there are 128
states that are only charged under the first eight U(1)s, and the corresponding internal
weight vectors are of the form

(31,32,33,34,08) y (454)

where a; is a two-dimensional vector which is equal to one of the following four vectors
e; = (1,0), e; = (—1,0), fy =(0,1), f, =(0,-1). (4.55)

Of the 4* = 256 combinations only those are allowed (i.e. have integer inner product with
A®) where an even number of the a; are equal to e, or ez (and an even number of the a;
are equal to f; or f2); this reduces the number of possibilities by half to the desired 128.
It is not difficult to check that all of these states are only charged under the first eight
U(1}s (provided we choose the momentum and winding numbers appropriately), and that
the magnitude of the corresponding charge is precisely half that of the states in (4.28).
Furthermore, these are the only states with this property.

We can similarly construct states that are charged under eight U(l)s by choosing
different positions for the four a; vectors in the sixteen dimensional space. Since the
resulting states should not be charged under any other U(1)s, we have to demand that
the internal weight vectors have integer inner product with all four Wilson lines; the

20()ne can presumably describe this configuration also as a non-BPS D3-brane with a non-trivial electric
flux. It would be interesting to understand this in more detail.
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possible configurations are then
0,0,0,0,a,a,a, a) ,
0,0,a,a,0,0,a,a) ,
0,0,a,2,a,a,0,0},
0,a,0,a,0,a,0,a), (4.56)
)
)

¥

(a, a,a,a0,000
(2,2,0,0,a,2,0,0
(a, a,0,0,0,0,a,a
(a, 0,a4,0,a,0,a,0
(
(

¥
¥

a,0,a,0,0,a,0,a
a,0,0,a,a,0,0,a
(a, 0,0,a,0,a,a,0

0,a,0,a,a,0,a,0
0,a,a,0,0,a,a,0
0,a,a, O,a,0,0,a).

b k]
b b}

?

There are fourteen different such classes of states, and this construction accounts therefore
for 14 - 128 states.
The remaining 16 - 128 states correspond to states in the spinor representation of
S0(32). These are the states whose internal weight vectors are of the form
11 1 1t 1 1 1 1 1 1 1 1 1 1 1 1
(ii,ié,ii,i§,i§,i§,ii,:l:i,ﬂ:§,i§,:t§,:i:§,:|:§,ﬂ:2,j:§,:|:§), (4.57)
where the number of + signs is even. Each of these 2!° states is charged under eight of
the sixteen internal U/(1)s. In order for the state to be uncharged under any other U(1),
we have to demand again that the inner product of the internal weight vector with each
of the four Wilson lines is integral. For each Wilson line, this condition selects one half
of the states, and since the four conditions are independent of each other, the number of
states that have this property for all four Wilson lines is 2'' = 16 - 128. Together with
the above 14 - 128 states we have therefore found all 30 - 128 states that correspond to
D3-branes (including those that contain D1-branes within). It is also easy to see that
these are all the states in the heterotic theory that have the above properties!
As we have seen above, there are 30-16 conventional non-BPS D3-brane configurations;
these are mapped under T-duality (of all four circles) to the various non-BPS D1-brane
configurations that we have discussed before; their number is

16
4-(2):30-16 (4.58)

and is therefore in agreement with the above. The remaining bound states of non-BPS
D3-branes with non-BPS D1-branes are mapped into themselves under T-duality.

One can also analyse the stability of these non-BPS states in both theories. For
example, the spinor state with internal weight vector

1111111 1 1111111 1
T At Atatlalaln'n’ Al Ain'a'mlnlalol o (459)
2'27972°2°2°2° 27 272722222 2
has the same charges as the two BPS states with momenta
(Pr,peipehr = (—3.(3)% —5.0%), Rag; *Rhg) (4.60)
(Pr,pripr): = ((0%, —%. (%)6. —5 ) —finy: Rhg) . '
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The mass of all of the above non-BPS states in the heterotic theory is my = 2v/2, whereas
the mass of each of the two BPS states in (4.60) is my = 2R4g; thus the non-BPS state
(4.59) is stable against the decay into (4.60) provided that

Rpo > (4.61)

1
7
The two BPS states in (4.60) correspond, in the IIA theory, to two D2-branes that
extend along the z7, z% plane (this follows from the analysis at the end of section 4.2.},
and the non-BPS D3-brane extends along the z7, 2%, z° directions. The decay process that

we are considering is therefore that depicted in Figure 5. The mass of the D3-brane is

1
V294
whereas the mass of each of the two D2-branes is

1

ma(D2) = ERATRAS : (4.63)

ma(D3) = RarRasRag, (4.62)

The non-BPS D3-brane is therefore stable against this decay process provided that
Rag < V2. (4.64)

(This is by the way what was already mentioned following IMigure 5.) In terms of the
heterotic theory the last equation becomes

V. Rpe > V2. (4.65)

Again, this agrees qualitatively with (4.61). The other cases are similar.

4.3.3 Bose-Fermi degeneracy

BPS D-branes carrying identical charges do not exert any force on each other, and can
be at equilibrium at all distances. This is a consequence of supersymmetry, and reflects
the fact that the spectrum of open strings living on the world volume of the system has
exact degeneracy between bosonic and fermionic states at all mass levels. As a result the
partition function of the open strings, which corresponds to the negative of the interaction
energy of the pair of D-branes, vanishes identically.

A non-BPS D-brane (such as the D-branes we have analysed above) breaks supersym-
metry and the spectrum of open strings that begin and end on 1t does in general not
have exact Bose-Fermi degeneracy. The open string partition function, and hence the
interaction energy of a pair of such D-branes, is then not zero. The D-branes then exert
a force on each other, and the system is not in equilibrium.

It was observed in [42] that the partition function depends non-trivially on the moduli
(in particular the four radii), and that there exist special points in the moduli space where
the spectrum develops exact Bose-Fermi degeneracy. For definiteness let us consider the
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case of the non-BPS D-particle of the IIB orbifold. We are interested in the situation
where all four directions along which the orbifold acts are compact; the boundary state
for the D-particle is then given as in the previous section, except that the momentum
integrals along 2% . . ., z° are replaced by sums, and that the normalisation constant in the
untwisted NS-NS sector is changed to

1 W

RsR7 Ry RN, o = 8@

(4.66)

(Details of this can again be found in [42).) The open string partition function is then
given by

¢ Vi o4 o) _ . B@(@
“2 [fl(q (HZ ) fl(a)‘*fz(a')“}' wen

=6n,cZ

Let us now consider the critical case where R, = ﬁ for each 7 = 6,7,8,9. In this case we

get
3@ = % g (4.68)

n€Z ncZ
Using the sum and the product representation of the Jacobi d-function 93(0|7) [80],

2(0lr) = ¥ = [1(1 - @)1+ = L@@, (469)
neZ n=1
where § = ¢?™7, and the identity
FD) S5 P 1a0) = (4.70)
we get
Z ~n? \/‘fl(q ( ) (4'71)
neZ ( ( )

Using Eqgs. {4.68) and (4.71), (4.67) then becomes
Z=0. (4.72)

Since the integrand of Z vanishes for all t, this shows that there is exact degeneracy
between bosonic and fermionic open string states at all mass level, although the brane is
non-BPS.

The critical radii where the spectrum of open strings develops exact bose-fermi de-
generacy correspond precisely to the values below which the non-BPS D-brane becomes
unstable against decay into a pair of BPS branes {20}. This is not a coincidence: For
R > % the massless spectrum in light-cone gauge contains four bosonic states, but eight
fermionic states. In order to have Bose-Fermi degeneracy at the massless level, we need
four extra massless bosonic states: these are the would-be tachvons that precisely become
massless at the critical point.
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We can use this result to conclude that when Rg = R; = Rg = Ry = 12, the force
between a pair of non-BPS D-particles vanishes at all distances. To see this we note that
if we consider a pair of such branes separated by a distance r in any of the non-compact
directions transverse to the brane, then the partition function of open strings stretched
from one of the branes to another is given by the same expression as (4.67) except for
an overall extra factor of @ /2"" in the integrand, reflecting the energy associated with
the tension of the open string stretched over a distance r. Thus at the critical radius the
partition function vanishes, reflecting that the potential energy V(r) between the pair of
branes (which is equal to negative of the partition function) vanishes identically for all r.

Since Yp.ez F2Rin! is a monotonically decreasing function of R; (as 0 < § < 1), we see
that for R; > % the integrand of Eq. (4.67) is a negative definite function. Thus V(r}is

positive definite. Furthermore since V(r) only depends on r via G727 it follows by the
same argument that V'(r) is negative, and hence that V(r) is a monotonically decreasing
function of r. Thus for R; > —\}—5, where the non-BPS brane is stable, the interaction
between a pair of such branes is repulsive at all distances.
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