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A Fano manifold is a smooth projective vartety whose anti-canonical class ™1 is ample.

In dimension 1, the Riemann sphere Py is the only example of a Fano manifold. In higher
ditnensjons, two possible sources of complication exist, as usual:

{i) The product of two Fane manifulds is again a Fano manifold, or more generally, many
fiher bundics over Fano manifolds with Fano fibers are themselves Fano.

(ii) The blow-up of a Fano manifold with a suitable center is again Fano.

To handle complications of these sorts in higher dimensions, the minimal model program
has been deveioped since 1980's. Many aspects of this program were surveved hv several
authors, e.g., (e.g.[KM]}, and I believe that some of these will be touched upon in some other
lecture series of this school. For uniruled varieties, there is another machinery in handling
these matters, developed in 1990’s based on the concept of rationally connected varieties,
which was nicely surveyed in [KI} and {Mi]. For these reasons, I will exclude probleins of
this sort completely from our discussion, by assuming that our Fano manifolds have Picard
number 1.

There have been a large number of works on Fano manifolds of Picard number 1, inchud-
ing a complete classification for dimension 3 and those with high indices (see [IP] and the
references therein). Here, the index of a Fano manifold means the positive integer represent-
ing the anti-canonical bundle, when we identify the Picard group of the Fano manifold with
Z. The methods employed in these works inchude the classical method of double projections,
adjunction theory, vector bundle techniques, as well as methods coming from the mintmal
model program.

In the last few years, Ngaiming Mok and I have been trying to develop a geometric theory
of Fano manifolds of Picard number 1 from a different perspective, by using rational curves
of minimal degree on Fano manifolds. Undoubtedly, the importance of rational curves in the
study of Fano manifolds is well-known and most works mentioned above also use rational
curves extensively as one of the main geometric tools. What is new in our study is an
emphasis on the subvariety in the projectivized tangent spaces of the Fano manifold defined
by the tangent directions of rational curves. Before starting a systematic discussion, let me
roughly describe some motivations and history surrounding this idea.

The story begins with two related conjectures which were outstanding in 1970's. Both
were proposed as a generalization of the uniformization of Riemann surfaces for the genus
zero case. The first one, Frankel conjecture, was proposed as a differential geometric gener-
alization and the next one, Hartshorne conjecture, was proposed as an algebraic geometric
generalization:

Frankel conjecture A compact Kdhler manifold with positive holomorphic bisectional
curvature is the projective space.

Hartshorne conjecture A projective manifold with ample tangent bundle s the projec-
tive space.

Hartshorne conjecture implies Frankel conjecture. Frankel conjecture was solved by Siu
and Yau ([SY]} and Hartshorne conjecture was solved by Mori {{Mol}). These two proofs
are of completely different nature. The method of Siu-Yau depends heavily on the positive
curvature condition and seems very difficult to be generalized in the study of other Fano
manifolds. On the other hand, Mori’s work really provided a new ground for the study
of higher dimensional Fanc manifolds. Mori established the fundamental fact that a Fano
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manifold is uniruled, namely, there exists a rational curve through each point. When the
tangent bundle is ample, he recovered the projective space by studying the space of all
rational curves of minimal degree through a given point on the manifold. This last step of
his proof, recovering the Fano manifold from the information on rational curves of minimal
degree is what concerns ns most here. Under the assumption of ample tangent bundle, this
was an easv step in Mori's work. But the story gets more exciting when we look at more
general Fano manifolds.

Around the time of the resolution of Frankel conjecture, the following generalization to
the case of semi-positive curvature was proposed, in essence, by Siu and Yau:

Generalized Frankel conjecture A Fano manifold with o Kéhler metric of non-
negative holomorphic bisectional curvature is @ Hermition synmumetnic space.

Before explaining what a Hermitian symmetric space is, let me state the corresponding
generalization of Hartshorne conjecture, due to Campana and Peternell ([cr):

Campana-Peternell Conjecture A Fano manifold with nef tangent bundle 15 e rational
homogeneous space.

Here ‘nef tangent bundle’ means roughly that the manifold has non-negative curvature
in algebro-geometric sense. See [Pe] for a precise definition and a good survey of a circle
of related results, including above mentioned conjectures. A rational homogeneous space
means a homogeneous Fano manifold. We can write it as G/P for a complex semi-simple
Lic group ¢ and a parabolic subgroup P. When P is a maximal parabolic subgroup and the
isotropy action of I en the tangent space at a base point is irreducible, we say that G/P is
an irreducible Hermitian svmmetric space, A Hermitian symmetric space means the product
of finitely many irreducible Hermitian symmetric snaces.

Gouneralized- Frankel conjecture was solved by Mok {[Mk1}). As Mori did in the proof of
Hartshorne conjecture, Mok considered the space A of all rational curves of minimal degree
through a given point x on the Fano manifold X with non-negative holomorphic bisectional
curvature, and tried to recover the Hermitian symmetric spaces using it. For this, he ex-
amined the subvariety C; € PT:{X) consisting of tangent directions to members of X,. In
Mori's case, C; is just the total projectivized tangent space PT;(X) and its role was negligi-
Lle. But in Mak’s case, it was essential to consider C,, not just X, What made him to study
this subvariety of the projectivized tangent space? Well, he wanted to recaver Hermitian
symmetric spaces and until then, the only characterization of Hermitian symmetric spaces
without assuming homogeneity of the manifold is the one based on Berger's classification of
holonomy groups ([Be], [Si]). Berger's work is for general Riemannian manifolds. Here [ will
just state the Fano case.

Berger’s Theorem If the holonomy group of a Kéhler metric on o Fano manifold X
al a point r does not act transitively on PT:(X), then X is a Hermifian symmeiric space
different from the projectiwve space.

With some oversimplification, Mok's idea is to show that the subvariety C, is invariant
under the action of the holanemy group of a suitable deformation of the given Kahler metric of
non-negative holomorphic bisectional curvature. Then by Berger's theorem, vne can recover
Hermitian symmetric spaces.

A patural approach te Campana-Peternell conjecture s to try to translate Mok's proof
inte algebraic geometry. The variety C; is already defined algebraically and the concept ‘non-
negative curvature’ has a natural algebraic analogue. The major problem is an aralogue of
Berger's theorem. ‘Holonomy group' is a purely differential geometric concept. When a
Riemannian metic is given, there exists a natural way of translating a tangent vector along a
given arc, called ‘Levi-Civita connection’. The parallel translation 1long a closed arc starting
from and ending at z induces a linear transformation of 75(.X). The holonomy group is the
subgroup of GL(T:(X)) generated by the elements coming [rom parallel translations along
all possible closed arcs. Oue definitely needs a Riemannian metric or at least a connection to
define this concept. Thus for Campana-Peternell conjecture, an approach in this direction
looks difficult. After all, rational homogeneous spaces other than Hermitian svmmetric
spaces cannot be characterized by their holonomy. Perhaps, one needs a completely different.
approach from Mok's?

Fortunately, I had a chance to discuss the problem with my adviser, Yum-Tong Siu,
when [ was a graduate student. in the early 1990°s, and he gave me an interesting advice.
He encouraged me to develop “algehro-geometric holenomy theory™, drawing my attention
to the following analogies.

Riemannian geomelry | Algebraze geometry
geoadesics rational curves of minial degree
parallel translations along arcs | splitting of T'(X) along rational curves
holonomy group 7

The main role of a metric in the helonomy theory is to give parallel translations along
arcs. Sin’s suggestion is that the splitting of tangent bundle of X along a rational curve
should be an analogue of parallel translation. OF course, a major problen is to understand
in what sense this is an analogne. Although [ am still not sure what algebro-geometric
holonomy is, his suggestion makes e realize the significance of studying the splittings of
T{X) along various rational curves. This has been a continuous source of motivation and
inspiration for the project that I want to discuss in this lecture seres.

The anatogy of geadesics in Riemannian geometry and rational curves of minimal degree
in algebraic geometry is actually not so direct. In Riemannian geemelry, a geodesic exists
in any given direction. But on a Fano manifold different from the projective space, rational
curves of minimal degree exist only in special directions. In fact, the hero of our story
will be the subvariety C; € PT,{X) consisting of tangent directions to rational curves of
minimal degree through a generic point z € X. Roughly speaking, these special directions
can be viewed as the direction where the manifold is most positively eurved. Thus Gz is
the total PT.(X) for the projective space, but is a strictly smaller subvariety for other Fano
manifolds of Picard nunber 1. In 2 problem like Canpana-Peternell conjecture, where we
want to generalize a known result for the projective space, we have to use this smatler set of
posilive directions to imitate what was done with the full supply of positive directions. To
achieve this we will exploit the projective geometry of the projective subvariety C; € PT,(X).
In other words, the subvariety €, of tangent directions to rational curves of minimal degree
is equipped with a natural projective embedding and the projective geometric properties of
this embedding will be a key ingredient of our study. This is reminiscent of what micro-
local analysts do over the cotangent space to use special ‘elliptic’ directions of a non-elliptic
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operator 1o get ‘sub-clliptic’ result resembling that of fully elliptic operator. In this sense,
what we are goiug to do can be said to belong to “micro-local projective geometry”.

I have to warn yon that these grandiose names “algebro-geometric helenomy theory”
and “micro-local projective geometry” should not be taken too literally. 1 introduce these
terms just becanse they may help you grasp the main philosophy of the project. In reality,
our project at the present stage cannot even be called a theory at all. 1 will just give some
exaptes and discuss some results which follow from the projective geometric study of €,
combined with the splitting of the tangent bundles. In concluding this introduction, 1 want
to say that although Campana-Peternell conjecture was the original motivation of this study,
we won't talk about it agaiu in this lecture series. At present, the conjecture seems to be far
away from our perspective and 1 will not be surprised if it is solved by a completely different
approach from ours.

Some of the material below overlaps with the survey article [HM4], which has a slightly
more complex analytic flavor. However, there were some significant new developments (espe-
cially Section 3 below) after that article was written, so the perspective of this lecture series
is somewhat different from that survey. After all, this lecture series is aimed at explaining
the basic geometric ideas, rather than surveying recent works, although 1 will mention most
of our recent works at least briefiy.

This note consists of five sections. In the first section, we give the definition of the
variety of minimal rational tangents, which is the central object of the study. We will give
several examples. In the second section, the problem of linear nondegeneracy of the variety
of minimal rational tangents is treated with some applications to the simplicity and the
stability of the tangent bundles. The third section treats one of the most fundamental
results of this study, Cartan-Fubini type extension theorem. The fourth section explains
some applications of the extension theoremn, with the help of the concept of the variety of
distinguished tangents. In the last section, we discuss some open questions.

1 Variety of minimal rational tangents

1.1 Basics on deformation theory of curves

Our main tool is basic deformation theory of curves on a projective manifold. Let us recall
it briefly. [Kl] is a standard and comprehensive reference for this.

Let C be a smooth curve on a projective manifold X of dimension n. Given a deformation
Cy of C = (y, its initial velocity %h:uC‘, defines a section of the normal bundle N, In this
way, the vector space H?(C, N¢) can be viewed as the (virtual) tangent space to the Hilbert
scheme of curves on X at the point corresponding to the curve €. Conversely, given a
section ¢ € H%(C, N¢g), o can be realized as the initial velocity of some deformation C, of
C if certain cohomology classes in H'(C, N¢), called the obstructions, vanish. In particular,
if HY(C, N¢) = 0, then any section of HY(C, Ng) can be realized as the initial velocity of a
deformation of C. This means that any virtual tangent vector to the Hilbert scheme at the
point corresponding to ' is actually the tangent space to a holomorphic arc in the Hilbert
scheme, and so the Hilbert scheme is smooth at that point.

Now fix a point & € C. Given a deformation C, of C with the point x fixed, ie. x € G,
for all 1, its initial velocity as a section of the normal bundle of C vanishes at z. In other
words, it defines an element of H°(C, N¢ ® m,) where m, denotes the maximal ideal of the
point 2. So the vector space H°(C, Nc ® m,) is the tangent space to the Hilberl scheme
of curves on X passing through the point z. Just as above, if HY{C, Ne ® m;) = {0, then
any section can be realized as the initial velocity of some deformation of C fixing x and the
Hilbert scheme of curves passing through x is smooth at the point corresponding to C.

When (' is not smooth, its deformation theory becomes more complicated. In this lec-
ture series, the singular curves we will deal with are only rational curves and for rational
curves, it is easier to consider parametrized rational curves first, by which we mean a mor-
phism [ : P; — X which is birational over its image. Often, we will not distinguish the
parametrized rational curve from its image f(P;), and just call f a rational curve. The initial
velocity for a deformation f; of f defines a section of the tangent bundle f*T(X) over P,. So
HO(P,, f*T(X)) is the virtual tangent space to the space Hom(P,, X) of parametrized ratio-
nal curves on X at the point corresponding to f. If HY{P,, f*T(X)) = 0, this space is stnooth
at that point and any section of f*T(X) can be realized as the initial velocity of an actual
deformation. Now fix a base point ¢ € P, and let z = f{0). By the same argument as before,
HYP,, f*T(X)®m,) is the tangent space to the space Hom({P,;0), {X; z)) of pararetrized
rational curves sending o to . If HY(Py, /*T{X) ® m,) = 0, then Hom({P;0), (X x)) is
smooth at the point corresponding to f and any section of f*T{X) vanishing at o can be
realized as the initial velocity of a deformation of f sending o to 7.

Recall that any vector bundle on P, is isomorphic to a direct sum of line bundles. In
particular, for any parametrized rational curve f : P, -» X, the pull-back of the tangent
bundle T(X) of X splits as

X)) = Ola) @ 8 0(an)

for some integers a; > --- > a,. The parametrized rational curve f or its image f(P) is
said to be free, if all the integers a;,...,a, are nonnegative. A free rational curve can be
deformed to cover a Zariski open subset in X' because any section of f*T(X) can be extended
to a family of deformations of the parametrized rational curve f from the vanishing of

H'(Py, f'T(X)) = HY(P,O@)& & Ofan)).

1.2 Minimal rational curves

From now on, we assume that X is a Fano manifold of Picard number 1. We will use the
following fundamental result of Meri ([Mo1], [K1}, [Mi}) without a proof.

Theorem 1.1 X s uniruled, namely, there exists o rational curve through each point of
X.

From the countability of the number of components of the Hilbert scheme, there exists a
countable set of proper subvarieties of X so that any rational curve through a point outside
this countable set of proper subvarieties is free (See {Kl] for details.). Then the deformation
of such free rational curves will cover a Zariski open subset of X. In particular, for a generic
point x € X, there exists a free rational curve through z.
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The degree of f*K ' will be called the anti-canonical degree of the parametrized rational
curve f: P} — X A free rational curve of minimal anti-canonical degree will be called a
minimal free rational curve. A minimal rational curve is an effective i-dimensional
eycle in X which can be obtained as a deformation of minimal free rational curves. A
minimal rational component is a component of the Chow space of X whose menibers
are minimal rational curves.

A free rational curve is said to be standard i

TiX)ey = P TIX) = OQ)a00)Pe0™'?

where p + 2 is the anti-canonical degree K3 f(P)). In this case, the unique O(2)-factor
of f*T(X) corresponds to the tangent bundle T(P) and f must be an immersior. The
image f(P;) may not be smooth but has only nodal singularities. The quotient bundle
[TT(X)/T(P,) of a standard rational curve will be called its normal bundle. The following
result of Mori ([Mol]), which we will use without proof again, shows that there are lots of
standard rational curves on X'. Mori’s mnethod of proof is nowadays called ‘bend-and-break’
([K1).

Theorem 1.2 A generic member of a munimal rational component is standard.

Choose a minimal rational component. K. For a generic point x € X, let X; be the nor-
malization of the Chow space of members of K through z. The following is again essentially
proved in [Mol].

Theorem 1.3 K, is the union of finitely many smooth algebraic varieties of dimension
P

Let us briefly recall the proof. First of all, note that any member of X, is free from
the genericity of r. A component of Hom({(P; 0}, (X, z)) belonging to X is smooth from
HYP,./*T(X)®m,) = 0 for a {ree rational curve f and of dimension

hﬂ(Pl,O(l) OO E EO(—l)]"_l_”)
= p+2

I

R(Py, f*T(z) ® my)

The normalized Chow space X, can be obtained by taking a gquotient of corresponding
components of Hom{{P;;0), (X;z)j by the 2-dimensional automorphism group of P; fixing
o and this quotient is nice enough to preserve the smoothness. See {KI] ot Section 2 of [HMZ2]
for details.

1.3 Tangent map and variety of minimal rational tangents

A generic member of each component of K; is a standard rational curve which is smooth
at x. We define the tangent map at z as the rational map 7, : K; = PT(X) which
sends a member of K, smooth at z to its tangent direction at z. Although the tangent map
1, is fundamental in our study, we know very little about it for a general Fano manifold of
Picard number 1. In fact, the only result we know of, which holds without any additional
assumption on X, is the following.

Proposition 1.4 For a Fano manifold X of Picard number 1 and any choice of minimal
ratronal component K, the tangent map 7, al a generic point x 1s an immersion al the point

=1

of Ko corresponding te a standard rationel curvc. In porticulor, 7, is generically finite over
s wmage.

Proef. Lev £ 2Py — X be a standard rational curve with (o) = x, which is a member
of X,. Then

. df i
T = k€ PTHY)
where z is a local coordinate on Py centered at o. Given a tangent vector

v e Tiplk,) = HOP,. N;®©m,)

where Ny denotes the normal bundle to f{P1), we can find a defurmation f of f = fuyso
that its initial velocity %h:u is 2. Then the differentinl

dr : T[”{]Q) -+ Tr({f_‘)(PTr(‘Y))

sends v Lo

#0) = S
d . di;
= kel
v
- E;{z"-u

But from the splitting tyvpe of ¥y @m, = O? & O(-1)"" =P a non-zero section cannot have
vanishing differential. Thus dr{v) # 0. O

Let ¢, € PT.(X) be the strict image of the tangent map. C; is called the variety of
minimal rational tangents at x. This will be the central object of our study. Note that
there are only finitely many possible choices of . Thus there are only finitely many possible
choices of C; for a generic point z. In this sense, C; is a naturally defiued subvariety which
sits inside the projectivized tangenut space. For a large class of exanples, we can show that
7, is an embedding by the following preoposition.

Proposition 1.5 Suppose X can be embedded in a projective space Py so thet through

each point of X there exisls a bine in Py which lies on X Then the fangent map 7; ol @
generic poinl @ € X s an embedding and Cy is smoolh.

Proof. Clearly, minimal rational curves are lines in Py Lying on X . Since two distinct
lines through = have distinet tangent vectors, the tangent map 7, is a 1-to-1 morphism. It
suffices to show that 7, is an immersion. By Proposition 1.4, this is equivalent to showing
that any line € through z is standard. Let

T(X)le = Ola))d- - Ou.}

=

with ¢, = - > an > 0. We know that a; > 2 because T(P)) is a subbundle of T(X)|
from the smoothness of €. On the other hand, T{Y)|~ is a subbundle of T(Py)|e
A2 @[] Thus a; = 2,1 2 a, 2 -+ 2 ap 2 0 and € is standard. O

2
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The condition of Proposition 1.5 is satisfied by prime Fano manifolds of index > %—'

Recall that a prime Fano manifold is a Fano manifold of Picard number 1 so that the
ample generator L of the Picard group is very ample. The index 2(X) of a Fano manifold
is the positive integer satisfving K3 = i( X)L in the Picard group. For a minimal rational
curve (',

n+1 > p+2
Ry
t(AX)C- L.

Thus if £(X) > 2} must be a line under the embedding given by L.

1.4 Examples

Now let us look at some examples to get a feeling of what the variety of minimal rational

tangents looks like.

1.4.1 Projective spaces

For the projective space P, a minimal rational curve is just a line. For any point z € P,,,
the Chow space K, of all lines through 7 is isomorphic to P,,_, and the tangent map 7, :
P..1 = PT.(P,) is an isomorphism. Thus the variety of minimal rational tangents at every
x is the fuil projectivized tangent space PT,({P,).

1.4.2 Fano hypersurfaces

A smooth hypersurface X C Py, of dimension n > 3 and degree 1 < d < n+ 1 is a Fano
manifold of Picard number 1. Let F(tg,...,ln41) be & homogeneous polynomial of degree
d defining X and r = [zq,...,7,,1) be a generic point of X. A line through = is given by
[To+ Ayo, .+ - Zrr + Ay ] where [yg, . .. \Un41) 18 & point of P, ; and A € C is a parameter.
This line lies on X' if and only if

Fleo+ Ao, .- Fpat F Alngr) = 0

holds for all A € C. Expanding in A, we get
1 1
F(z) + M (0)F() + X (8@ F @) + -+ Mo (A ) FR) = 0
where

& a
A 1= —_— . n .
2{y) gy +ty S

Thus if d < n, the variety of minimal rational tangents at r is the smooth complete inter-
section defined by the system of equations in y

Ar(y)F(z)
(A{W)F{zy = 0

I
(=3

(B:(y)F(z) = 0.

Among these the first one is just the defining equation for PT,{X). Thus {; is a smooth
complete intersection of multi-degree (2,3,....d}ford < n.

When d = 2, X is the hyperquadric Q, which is homogeneous. C; € PT, (V') is a4 smooth
hyperquadric Q..o for any x € X.

When d is high but d < n, we get examples where the variety of minimal rational tangents
is Calabi-Yau or of general type.

When d = n, C; is a finite set of cardinality n!.

When d = n + 1, there exists no line on X" passing through a generic point. However
there exist conics through a generic point ([KIl] V. 4.4.4) and C; is a finite set.

1.4.3 Fano threefolds

From the classification of Fano threefolds of Picard number 1 ({1s]), excepting P; and Qj, all
the other Fano threefolds of Picard number 1 have finitely many rational curves of minimal
degree through a generic point. When C. is finite, it is obvious that 7, : K; — C; is an
isomorphisim.

1.4.4 Grassmannians

Let X = Gr(s, V) be the Grassmannian of s-dimensional subspaces in an (5 +r)-dimensional
vector space V. Under the Plicker embedding, there exist lines on X. Thus 7, is an
embedding by Proposition 1.5. It is well-known that a line on Gr(s, V) through a point
corresponding to an s-dimensional subspace W of V is determined by a choice of a subspace
W' of dimension s — 1 contained in W and a subspace W of dimension s + 1 containing W.
The line consists of subspaces of dimension s which are containing W’ and contained in W,
So K. for x corresponding to W is isomorphic to PW* x P(V/W) and the tangent map is
just the Segre embedding

7 Ko = PW* x P(V/W) = PT(X)=P(W*'® V/W).

There is another interesting way to see this. We have the universal bundle & and the universal
quotient bundle @ on X so that T(X)} = & ® Q. Suppose C is a line on X. Let
S'le
Qle

withd, > - 2 b,,61 2 -+ 2 ¢ Since A'y' is (s +r)-times the Pliicker bundle, the splitting
of T(X) over a line C is

O o8 0(b,)
Ole)) @+ ®O(er),

e 1R

$'eQc = 0@ s0N)T oo T
It follows that

&7 obyaok- 1))

Ole) ®[O(c - 1)

0
e IR
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with b+ ¢ = 2. In particular, the tangent bundle of C which is the unique (3(2)-factor in
T{X}}e must be the pure tensor O(b) ® O(c). So the variety of minimal rational tangents
€, is conlained in the set of pure tensors in T,(X'} = §; ® @;. Since the dimension of C; is
s+ 7 — 2 which is equal to the dimension of the Segre variety in P(S; @ @), we see that
K, = C, is isomorphic to Py x P,y and 7, is just the Segre embedding.

1.4.5 Hermitian symmetric spaces

Generalizing the examples of hyperquadrics and Grassmannians, we have irreducible Her-
mitian symmetric spaces. An irreducible Hermitian symmetric space is a Fano manifold X
of Picard number 1 which is homogeneous and the isotropy group at a base point © € X
acts irreducibly on T.(X). The ample generator of the Picard group is very ample and lines
exist under this embedding, so Proposition 1.5 applies. The isotropy group action at z has
a unique closed orbit in PT,(X), the highest weight orbit, and this is exactly the variety
of minimal rational tangents at z. From this, it is easy to identify the variety of minimal
rational tangents. Here is the list.

(X T REG ] 2
Gris.r) P._, xP,_, Segre embedding
SO2r)/Uir) | Gr(2,r-2) Pliicker embedding
Sp(r)/U(r) P, 2nd Veronese embedding
Q. Q. standard embedding
Cayley plane | SO(10)/U(5) minimal embedding
E:/Eg x U{l) | Cayley plane | exceptional Severi embedding

Note the remarkable fact that C, is a (not necessarily irreducible) Hermitian symmetric
space of rank 2. Here the rank of the Hermitian symmetric space means the minimal degree
of a rational curve in a generic tangent direction through a given point, measured with
respect to the direct sum of generators of the Picard group of each irreducible factor of the
Hermitian symmmetric space. Various aspects of the geometry of Hermitian symmetric spaces
related Lo the variety of minimal rational tangents are discussed in the book [Mk2], where
the variety of minimal rational tangents is called the characteristic variety.

1.4.6 Homogeneous contact manifolds

A subbundle I of the tangent bundle of a complex manifold M is called a distribution on
M. For cach € M and any two vectors u, v € Dy, let 4, % be local sections of I extending
u,v. Regarded as sections of T{M), we can consider the bracket [&, 7] of two vector felds.
The value of the vector field |4, 9] at = depends on the choice of the local extension &, 4, but
two different choices of local extensions result in the difference by a vector in D, Thus

[v,v] = [&,9] mod D

gives a well-defined section [,] of Hom(A?D T{M)/D). We will call it the Frobenius
bracket tensor of D.
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A contact structure on a complex manifold M of odd dimension n = 2m + 1 is a
distribution D < T{MY of rank 2m whose Frobenius bracket defines a svmplectic form on
D, for each =z € M. The line bundle L = T(M}/) is called the contact line bundle.
The Frobemus bracket is just an L-valued svmplectic form on D, This gives an isomorphism
D= @ L. I follows that 200{D} = el and Ky,' = ml in Prc(M).

A homogeneous contact manifold is & homogeneous Fano mamfold with a contact
structure. The classification of homogeneous contact manifolds was done by Boothby ([Bo])
and for each complex simple Lie algebra g, there exists a unique homogeneous contact. man-
ifold where the Lie group G of g acts transitivelv as holemorphic autemorphisms preserving
the contact structure. It is precisely the highest weight orbit, namely, the unique closed
orbit, of the adjoint action of ¢ on Pg. For the simple Lie algebra of type A, the corre-
sponding homogeneous contact manifold has Picard number 2, and it is the projectivization
of the cotangent bundle of a projective space. Excepting this, all the other homogeneous
coutact manifolds have Picard number 1.

Let X be a homogenecous contact manifold of Picard number 1. If the contact line bundle
L s not a gencrator of Pic(X), then I\’}l is (m + 1}-multiple of some line bundle and so
X is Py, by Kobayashi-Ochiai characterization of the projective space. Pag,y is the
homogeneous contact manifold associated to the simple Lie algebra of type C.

Now let us assume that X is a homogeneous contact manifold of Picard number 1 and
the contact line bundle L is a generator of the Picard group. It is koown that for any
homogeneous Fano manifold of Picard number 1, the generator of the Picard group is very
ample and there are lines on the Fano manifold under this projective embedding. For X, the
degree of the line with respect to K3' = ml ism. Thus p = m — 2. Restricting the exact
SeqUence

00— D —+T(X)—> L —10
to a line €, we have
0—D—0ae)" ?e0™ — O) — .

Thus the tangent bundle T(C}) = O{2) must be contained in D. It follows that , < D,. In
particular, the variety of minimal rational tangents is degenerate in PT,(X).

Applying Proposition 1.5, we know that the variety of minimal rational tangents is a
smooth subvariety. We can characterize X as a homogeneons Fano manifold of Picard number
1 where the isotropy representation on the tangent space has an irreducible submoedule of
codimension 1. Then the variety of minimal rational tangents is the unigue closed orbit
of the isotropy action on P, (see [Hwl] for details.). From this, one can easily identify
the variety of minimal rational tangents. In fact, the homogeneous cone le < Dy of the
variety of minimal rational tangents is a Lagrangian cone with respect to the svmplectic
structure on D, induced by the Frobenius bracket. In other words, €, has dimension m and
the cestriction of the symplectic form to the tangent spaces of C} 1s zero. Here is the list.



12 Rational curves on Fano manifolds
g | K,=2C | m:K,-PD |
S0m4d | P X Q2 Segre embedding

Go P, twisted cubic

Fy Sp(3)/U{3) | minimal embedding

Eq Gr(3,3) Pliicker embedding

E SO{12)/U(6) | minimal embedding

Ex | E7/Es x U(1) | minimal embedding

It is illuminating to see the so,,,4-case more explicitly. In this case, the homogenous
contact manifold X is just the variety of lines lying on a hyperquadric of dimension m + 2.
Let {] € X be a point correspanding to a line { € Q2. A line in X passing through [I]
corresponds to a I-dimensional deformation of ! fixing a point, spanning a plane Py C Q.
A plane in Q.42 containing [ is determined by a choice of a line through PT,(I) in the
variety of minimal rational tangents of Q.2 at a point y € L. Thus the set of planes in
Q42 containing ! is somorphic to Q,,-z. It follows that the variety of minimal rational
tangents is isomorphic to Py x Q,,,_» where the Py-factor comes from the choice of one fixed
point on L

The contact bundle D in this case can also be described explicitly. Note that the normal
bundle Ny of { in Quip is O(1)* @ and the tangent space to X at [I] is naturally isomorphic
to

H°(,N) = HY(P,00)"e0),

which has dimension 2m-+1. Let D) be the subspace corresponding to HYP;, O(1)™) which
Lias dimension 2m. This is precisely the contact distribution on X. A deformation of ! fixing
a point has initial velocity in Dy, which explains why Cyy is contained in Dy

1.4.7 Symplectic Grassmannians

The examples of irreducible Hermitian symmetric spaces and homogencous contact manifolds
may have given the impression that the variety of minimal raticnal tangents of a homogeneous
Fano manifold is homogeneous itself. This is not the case for symplectic Grassmmannian X of
i-dimensional isotropic subspaces in a 2/-dimensional symplectic vector space for 1 <4 < [

Let V' be a 2l-dimensional vector space with a symplectic form w. X is the set of all
i-dimensional isotropic subspaces of V', 1 < ¢ < . It is known that the dimension of X
is 1(4f — 3 + 1)i. There is a canonical inclusion X C Gr{i,V) and lines on X arc just
lines of Gr(7,1") lying on X. Fix an {-dimensional isotropic subspace W C V. A line on
X through [W] corresponds to a choice of an (i — 1)-dimensional subspace I/ C W and an
{i+ 1)-dimensional subspace U' C U1, where Ut = {v € V,w{v,u) = 0,Yu € U}. Hence the
variety of minimal rational tangents at [W] can be identified as a subset of PW* x P(V/W),
defined by

Cw) = {(Mp) e PW* x P(V/W), w(w, ) = 0for all w € W satisfying A{w) = 0}.

Projections to PW* realize Cjy) as a Py-_g-bundle on P;_,. It contairns the trivial
subbundle

H {(A i) € Cuy, A€W pe WHWY

Pi_y x Po_aioy.

[t
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Let F be a vector bundle on PW” so that PF = (. F CPW* x (V/W) and F contains
the trivial subbundle PW* x (WL/W). The fiberof Fat A € W* is

{ € V/W, wiw,u) =0if Mw) =0}.

Modulo the trivial subbundle W+ /W, the fiber can be identified with CA by associating
the linear functional w(-,v} € W" to v in the fiber of F. Thus the quotient line bundle
of F modulo the trivial subbundle is the tautological bundle for PW*. It fellows that
Fxo"rg0(-1).

The embedding Cw) = PF € PW* x P(V/W) restricts to the Segre embedding on
H. For a trivial bundle O on P, |, the Scgre embedding of the projectivized bundle is
induced by the dual tautological line bundle of the projectivization PO(—1)?. Thus the
embedding of PF should be induced by the dual tautological bundle when we view it as
P(O(-1)%-% & O(-2}). Hence C[w!]C PHY( PW’ 0(2) ® H{1)¥-*)" and the linear span
of H corresponds to the kernel of HY(PW*,0(2)). Note that h°(P,_;,0{2) & O(1)*%) =
Yi(i+1) + (21— 20)i = dim X. Thus Kjw) = P(O(-1)*"#*@O(-2)) as a projectivized vector
bund]e on P;_, = PW and the tangent map 7w is the embedding defined by the complete
linear system of the dual tautological Jine bundle of the projectivization.

The variety of minimal rational tangents P(O{~1)*"%@O(~2)) is not homogeneous, but
it is almost homogeneous, consisting of two orbits, the hypersurface H and its complement.

1.4.8 Moduli space of stable bundles of rank 2 on a projective algebraic curve

Let R be a projective algebraic curve of genus ¢ > 2. A vector bundle W of yank 2 and
degree d is stable if any line subbundle of W has degree strictly smaller than . The moduli
scheme SU g(2, d) of stable bundles on R of rank 2 with a fixed determinant of odd degree d
has a natural structure of {(3g — 3)-dimensional Fano manifold of Picard number 1 (See [NR|
and the references therein.). Since S (2, d) is isomorphic to SI{g(2,1) as long as d is odd,
we will assume that d = 1. Then stability condition for W means that any line subbundle
has non-positive degree.

When g = 2, X = Sl{g(2,1) is a Fano threefold, in fact, the mtersectmn of two quadrics
in P5. Seo the variety of minimal rational tangents is just 4 points in the plane PT,(X) given
by the intersection of two conics.

Let us assumne g > 3. Then a generic point [W] € X corresponds to a strongly stable
bundle on R in the sense that any line subbundle of W has negative degree. There are special
rational curves on X through [W], called the Hecke curves, constructed by Narasimhan and
Ramanan ([NR]). Let us recall their construction.

For a rank 2 bundle W, its projectivization PW is canonically isomorphic to the projec-
tivization of its dual PW”. Given a point 7 € PW, we use the same letter 77 to denote the
1-dimensional spaces in W and W* corresponding to 7.

Let [W] € X be a strongly stable bundle. Let w : PW — R be the natural projection.
Given a point 7 € PW with y = n{n} € R, the canonical projection W, — W, /i defines a
new rank 2 bundle W*% by

0= W?— W — 0, (W,/mf—0
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Let 17 be W™ the dual of W7, Then det{V) = —det(W) + Ly, where L, is the line bundle
on Jt corresponding to the divisor y. For each » € PV, we have

0 VYV O, @ (V,/v) — 0.

1" has the same determinant as 15 and one can check that V¥ is stable because W’ is
strongly stable. Thus the family {V*".» € PV} defines a rational curve on X, called the
Hecke curve associated to n € PW. It is a smooth rational curve.

At the point p, the map W} — W), has 1-dimensional kernel. Let # € PV, be its
annihilator. Then the dual of V7 is isomorphic to W. So the Hecke curve associated to
n € PW is a rational curve through [W] € X.

A more geometric way of describing this construction is as follows. Let BL(PW) be the
blow-up of the ruled sutface PW at the point . The exceptional divisor Ej is canonically
isomorphic to PT,(PW). The strict transforin of the fiber PW, is a {—1}-curve on Bl (PW)
and can be blown-dows to get a new ruled surface PW?". For each choice of a tangent
direction v € PT,(PW) = E, = PW}, we blow-up PW? at » and then blow-down the
strict transform of the fiber P to get a new ruled surface PW7*. The family of bundles
{Wr € PT,(PW}} is the Hecke curve and when v is tangent to the fiber of PW — R,
we vecover W.

It turns out ((Hw3]) that Hecke curves are minimal rational curves of X and they are
generic in a minimal rational component of X. 1 do not know whether there exists any
other minimal rational component. 1t is known that X is a prime Fano manifold ([BV]),
but Hecke curves have degree 2 with respect to the generator of Pic{X}. Different choices
of y € PW give different rational curves through (W} Thus Ky is naturally isomorphic
to the ruled surface PW. The tangent map 7wy @ Ky — PTijwy(X) can be described as
follows. Let 77 be the relative tangent bundle of the Pi-bundle 7 : PW — R. 1t is easy
to see that 7,77 = ad(W), the traceless endomorphism bundle of W, and Rz, T = 0.
From the standard deformation theory of vector bundles, the tangent space to the moduli
schome S (2, 1) at [W] is HY(R, ad(W)). Thus the tangent map is a morphism from PW
to PH'(R.ad(W)). Consider the line bundle 7* Kr & 77 on PW. From

HY(R,Kp® ad{W))
HY(R, ad(W))*,

HYPW m KpeT™)

it is not difficult to see that 7y is the morphism defined by the compiete linear system
associated to the line bundle 7K 5 ® T, In fact, it is not difficult to show that this is an
embedding for g > 5. I do not know whether it is an embedding for g = 3, 4.

In general, the moduli scheme SU x(r, d) of stable rank r bundles of a fixed determinant
of degree d is a Fano manifold of Picard number 1 if 7 and d are coprime. One can define
Hecke curves similarly and the tangent map is an embedding given by a complete linear
svstem when the genus is high enough. I expect that these are minimal rational curves, but
do not have a proof yet.

2 Distribution defined by the linear span of the variety
of minimal rational tangents

2.1 Introductory remarks

Let X be a Fano manifold of Picard number | aned we fix a minimal rational component
K so that the variety of minimal rational tangents C, C PTL(X) is defined at a generic
point z of X. Our hasic philosophy is that many problenss ob X can be solved by using the
prajective geometry of C;. This approach is effective only when we have some information
about, the projective geometry of C,. When a specific Fano manifold is given, sometimes it
is not too difficult to deseribe the variety of minimal rational tangents explicitly, as we saw
in the examples in Section 1. For this reason, our approach is so far most successful when
dealing with problems concerning a specifically given Fano mamfold.

Hewever, quite often we have to deal with Fano manifolds which are not explicitly given
and even for well-known Fano manifolds, there are many cases where explicit description
of the varicty of minimal rational tangents is hard. For this reason, it is natural to study
the projective geometry of the variety of minimal rational tangents n a general setting.
Unfortunately, essentially nothing is known about the variety of minimal rational tangents
for a general Fano marifold .. But under a reasonable assumption on A, we can get non-
trivial inforination on C.., as we have already seen in Proposition 1.5, In this section, we will
give anther example of this, which is more involved.

One of the most basic question we can ask about a subvariety of the projective space is its
nondegeneracy, namely, whether it is contained in 4 hyperplane or not. In many examples we
have seer. the variety of minimal rational tangents is a nondegenerate subvariety of PT,{.X).
However in the case of homogeneous contact manifolds different from the add-dimensional
projective space, it is contained in the contact hyperplane PL) C PT,.(X) and its affine
cone is Lagrangian with respect to the symplectic form on Dy arising from the Frobenius
bracket of the contact distribution I ¢ T(X). From these, one may expect the following:

{1) For many Fano manifolds of Picard number 1. the variety of minnmal rational tangents
at a generic point T € X is a nondegenerate subvariety of PT.(X).

{ii} When C, is degenerate in PT,{X), jet W, be its linear span in T, (X). The collection
of W,'s, as r varies over generic points of X define a distribution on a Zariski open subset
of X. Then the variety of minimal rational tangents has a special property with respect to
the Frobenius bracket of this distribution

The main goal of this section is to explain some results which confirm these two expec-
tations partially. In addition te its intrinsic interest, 1 think the discussion of this topic s
valuable because it shows very transparently

(a) the use of the condition on the Picard number of X

{b) the use of the deformation theory of rational curves;

{c) the use of the projective geometry of the variety of minimal rational tangents.

While reading this section, please keep these three points in mind and examine how they
are used.
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2.2  Frobenius bracket of the distribution

Our main object of study is the distribution 1 which is defined on a Zariski open subset
of X by the linear span of the varicty of minimal rational tangents. The variety of minimal
rational tangents is not necessarily irreducible and its linear span means the lincar span of
all the components. Note that we can always ‘saturate’ W to a distribution defined outside
a set of codimension > 2. More precisely, regard W as a subsheaf of the tangent bundle and
consider the annihilator subsheaf W+ € QY(X). Then the saturation of W is the subsheaf of
T(X) consisting of vectors annihilated by Wt. The saturation gives a distribution cutside a
subvariety E of codimension > 2 which agrees with I on the open set where W is originally
defined. From now on, W will denote this saturated distribution.

The following lerama is very convenient when discussing the property of W with respect
to a generic minimal rational curve.

Lemma 2.1 Given eny subsel E C X of codimension > 2, we can find o stendard
minimal rational curve disjoint from E,

Progf. Choose a standard minimal rational curve €' through a generic pointx € X,z ¢ F.
Let Ne = O(1)" ® O*"'"% be the normal bundle of C. Choose sections y,...0, of Ng
corresponding to independent sections of ¢{1)” vanishing at x, and sections 0,4, ..., 0,
of N which gencrate the trivial factors O"~'=? of N, Since there is no obstruction, we
have an (n — 1)-dimensional deformations of C whose initial velocities are contained in the
linear span of y,..., 0,y in HY(C, N¢:). Suppose all members of this {r ~ 1)-dimensional
family of curves intersect E. Since E has codimension > 2, this means that we have a
1-dimensional subfamily passing through a given point y € E. In particular, in the linear
span of 0,,...,0,_; in H%C, Ng), there exists a non-zero section vanishing at y. But this is
impossible because ay,...,0,-1 are pointwise linearly independent outside x. Thus generic
deformation of C, which is itseif 4 standard minimal rational curve, is disjoint from E. O

Recall Frobenins theorem that the Frobenius bracket of a holomorphic distribution van-
ishes identically if and only if the distribution arises from tangent spaces of the leaves of a
holomaorphie foliation. In this case, we say that the distribution is integrable. The most
basic fact about the distribution W is the following which is a consequence of the condition
on the Picard number of X

Proposition 2.2 If W s ¢ proper distribution, then it is not integrable.

Proof. Suppose the variety of minimal rational tangents is degenerate and the distribution
W is integrable, so that it defines a non-trivial foliation on X — E. The leaf of £ through a
generic point  of X — E is a coniplex analytic submanifold in X — E. We want to show that
this submanifold can be compactified to a subvariety of X. For this, we build-up a sequence
of subvarieties z = V(x) C V!(z) C V(%) C --- inductively by the rule

Vi{x) := the closure of the wnion of members of X through generic points of Vi=(x).

Cleariy, V¥(z) has strictly bigger dimension than V'~1{x) unless Vi(z) = V*'(z}. Thus
VR(x) = V**'(z), namely, any member of K through a generic point of ¥"(x) is already
contained in V"(x). Since all members of X through generic points of X are tangent to W,
we see that the generic part of V*(z) is contained in the leaf through « for all <. Thus if y
is a generic point of V*(x}, then T,(V"(z)) C W,. On the other hand, from the property of
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V). C, < T,(V*(x)). It follows that T,(V"(z)) = W, and the variety V"{r) must be the
eomplex analytic closure of the leaf through .

Thus X — E is foliated by the leaves of the integrable distribution W which are algebraic
subvarieties. So we have an algebraic fibration p: X — FE — 5 over an algebraic varicty S.
By Lemina 2.1, a generic member € of K is contained in X — E and by the definition of W',
C must be contained in a fiber of p. Take a generic hypersurface H in S disjuint from p{C).
Then € is disjoint from the divisor p~'(H) in X, a contradiction to the Picard number. O

From Proposition 2.2, we see that the Frobenius bracket tensor {,]: A?W — T{X - E)/W
is not identically zero. Now we want to examine what are the special properties of the variety
of minimal rational tangents with respect to [,].

Let C < X be a standard minimal rational curve through a generic point z. Then C; is
immersed at o ;= PT.(C) and we can consider the projective tangent space of C; at o. This
tangent space has a simple description in terms of the splitting of T(.Y)|¢.

Proposition 2.3 Let T, © T3(X) be the {p + 1)-dimensional subspace correspoﬁndmg to
the positive factors of the splitting T(X)|c = G(2) & [O()P @ O" P, Then PT, is the
projective tangent space of C; at a.

Proof. As in the proof of Proposition 1.4, the differential of the tangent map at a standard
minimal rational curve f : Py — X is equivalent to sending a sectivn v of f*T(X') vanishing
at T to ‘;—” with respect to the coordinate z on P,. Since v is a section of the positive part
of the splitting T7{X)|¢c, 2 is also in the positive part of the splitting. Cunsidering that

d
dim(C,) = p is equal to the dimension of P{O(2) ® O(1)P), the result follows. O

This gives the following information about the Frobenius bracket of W:

Proposition 2.4 Let T, € PAYW, be the subvariety consisting of lines of PW, which
are tangent to the smooth locus of C,. Then T, is conteined in the projectivization of the
kernel of the Frobenius bracket tensor [,]: A°W, — T (X)/W,.

Proof. We need to show that (e, #] = 0 for any @ € W; corresponding to a generic point
of C; and any 7 € Ta. We may assume that both a and 3 are non-zero.

To prove this, it suffices to find a local complex analytic surface through z which is
tangent to W in a neighborhood of £ and whose tangent space at z contains o and §.
Let C be a standard rational curve through z in the direction of o and fix a point y € C
different from z. By the definition of T,,, 5 is a vector in the positive part of the splitting of
T(X)|c. Thus there exists a non-zero section ¢ of the normal bundle N¢ so that o(y) = 0
and o(z) = 3. Since H'(C, Ne ® m,) = 0, we can find a deformation C, of C fixing y whose
initial velocity is exactly ¢. The union of these curves C, define a local analytic surface &
through r whose tangent space at z is spanned by T:(C) = o and o(x) = . Moreover
its tangent space at z near z is spanned by T,(C}} and ¢,(z) where o, € HY(C,, N, ® m,
is the velocity of C; at t. By Proposition 2.3, this implies that &,(z) is in the projective
tangent space of C; at PT,{C,), hence in W,. It follows that the surface S is tangent to W,
as desired. O

Proposition 2.4 explains why the cone over the variety of minimal rational tangents is
isotropic with respect to the symplectic form on the contact distribution D for the homoge-
neous contact manifolds different from the odd-dimensional projective spaces. In this sense,
Proposition 2.4 fulfills our expectation (ii} mentioned at the beginning of this section.
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2.3 Nondegeneracy of the variety of minimal rational tangents

Now 1 will turn to the expsctation (i). So far, the only examples we have seen where the
variety of minimal rational tangents is degenerate is the homogeneous contact manifold. In
that example, n = 2m+ 1 and p = m ~ 1 so that p = ”——;3 Note that X is emibedded in a
projective space by the ample generator of the Picard group and is covered by lines under
this cinbedding. If we take a hyperplane section, we get a Fano manifold of one dimension
low and the minimal rational curves are just lines which lie on this hyperplane section. So
the variety of minimal rational tangents at a generic point will be a hvperplane section of
the variety of minimal rational tangents for the homogeneous contact manifold. This way,
hyperplane sections of the homogeneous contact manifold provide us new examples of Fano
manifolds of Picard number 1 whose variety of minimal rational tangents is degenerate. By
taking successive hyperplane sections as long as there are lines through generic point, we
get many examples of Fano manifolds of Picard number 1 whose variety of minimal rational
tangents is degenerate. In all these examples, we have p < ﬂ,}e Arte there other examples
where p > 2237 It would not be easy to find such examples, because of the following result.

2
Theorem 2.5 Let X be g Fono manifold of Picard number 1 unth p > 15-3 If the variely

of minumal rational tangents is smooth, it 15 nondegenerale in PT.{X).

The proof uses some deep resnlt from projective geometry applied to C,. This argument
shows the philosophy of 'micro-local projective geometry’ nicely.

Let w be an anti-symmetric bilinear form on a vector space W and J C W be a cone
which is isotropic with respect tow. fwis nondegenerate, i.e., symplectic, it is well-known
that dim(J) < 9-'*"12(—”1. This needs not be true if w is degenerate. However, it remains true
if we assuine that PJ ¢ PW is a non-linear smooth subvariety:

Proposition 2.6 Let W be a vector space and J C W be a non-linear cone with dim(J) >
‘1—‘"‘7“’-‘-). such that PJ is a smooth subvariely of PW. Let T C PA*W be the variety of
tangential lines of PJ. Then T is nondegenerate in PA%W.

It seems that this was proved for the first time in [HMS5], although it is a rather simple
consequence of Zak's theorem on tangencies ([Za]):

Theorem 2.7 Let Z C Py be a non-linear smooth variety of dimension k and Py C Py
be an i-dimensional linear subspace. Then the set of points on Z at which Py is tangent to
Z 15 at most of dimension { — k.

Proof of Proposition 2.6. Suppose T is degenerate and choose a non-zero element w of
AZW*, so that J is isotropic with respect to w. Let ¢ € W be the kernel of w, namely,

@ = {weWw(w,v)=0foralve W}

Let 7 : W — W/Q be the quotient. w induces a symplectic form on W/Q. Let T be
the tangent space of m(J) at a generic point. Then P{z~'(T}) is a subspace of PW of
dimension dim(Q) + dim(x(J)) ~ 1 which is tangent to P.J along a subset of dimension
dim{J) — dim(w{J}). By Zak’s theoremn on tangencies,

dim(J) —~ dim{x(J})) < dim{Q) + dim{x(J)) — 1 — (dim{J) — 1)
dim(J) — dim(x(gy) < M@

2
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Buat w{./} is an isotropic cone in the symplectic vector space /6. thus

dim{W [Q}

dim{n{J}) = 5 Z
This gives the contradiction
i (W /€
dim{J} = dim(n(J)) > dim(J) - &(‘2{’@1

dim{H” 1

- clim(J)_f.}mQ( ), d”_“z(C_J)

dim(@)
. 2

where the last inequality follows from the assumption dim(J} = E‘L'L'ZL”J O

We are ready for the proof of Theorerm 2.5.

Proof of Theorem 2.5. Assume that C; is degeneratre, defining the non-trivial distribution
W of rank m < m. From the assumption that C, is smooth and of dimension p > -":—1
Propasition 2.4 and Proposition 2.6 imply that the Frobenius bracket tensor of W vanishes

identically. This is a contradiction to the non-integrability of W, Proposition 2.2. O

Combined with Proposition 1.5, we get

Corollary 2.8 For a prime Fano manifold of dimension n with index > "—;—1 the variety

of minimal rational tengents is nondeyenerate.

2.4 Stability of tangent bundles

Now let me turn to some applications of the results we discussed. Recall that a vector bundle
V on X is simple if dim H°(X, End(V)) = 1, in other words, if the scalar multiplications
are the only endomorphisms of V.

Theorem 2.9 For o Fano manifold X of Picard number I, +f the veriety of minimal
rational tangents is irreducible and nondegencrate for some choice of the minimal rational
companent, then the tangent bundle T(X) is sinple.

Proof. Let £ be an endomorphism of T(X). Choose a minimal rational compaonent X for
which the varicty of minimal rational tangents is irreducible and nondegenerate. Let z € X
he a generic point and v € T:(X) be a tangent vector to a standard minimal rational curve
¢ through z. Let @ be a vector field on C extending v having two distinct zeroes. Then £(D)
is a section of T(X)|c vanishing at two distinct points where # vanishes. From the splitting
type of T(X)|c, either £(7) is identically zero or it is a vector field on C again which are
proportional to #. 1t follows that » is an eigenvector of § in T, {X'). Since this is true for any
choice of v in ¢, which is nondegenerate in PT,(X), we see that every vector of T,{X} is
an eigenvector of £, thus & acts as a scalar multiplication on T, (A for generic € A, The
cigenvalucs must be constant along standard minimal rational curves because ¢ and &(¥) are
just a constant multiple of each other. Tt follows that £ is just a sealar multiplication and
T(X) is sinple. O
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Theorem 2.9 can be applied 1o most examples we have seen in section 1. Combined with
Corollary 2.8, we see that a prime Fano manifold of index > 22 has simple tangent bundle.
As a matter of fact, for prime Fano manifolds of index > % we can refine the method
further to show that their tangent bundles are stable {[Hw2], [HM5)).

Recall that a vector bundle Voof rank 7 on X is stable if for any subsheal F ¢ V' of
rank k.1 < k < r ~ 1, the inequality
a(F) - (Ky'y! alV) - (Ky')r!
k T

holds. Since X" has Picard ninber 1, we can check this inequality by restricting F and V' 1o
a generic standard minimal rational curves. Namely, given a torsion free sheaf F of rank £,
define its slope u(F) as the rational number —”—‘-%m for a generic standard minimal rational
curve C. By Lemma 2.1, F is locally free on C, so the meaning of ¢,(F) - C is clear. Then
a vector bundle V of rank r is stable if for any subsheal F of rank k,1 < & < r — 1, the
inequality p{F) < p{V) holds. In particular, if the tangent bundle T(X) is not stable, there
exists a subsheaf F C T(X) with slope u(F) > L;ri If we choose F with maximal possible
value of u(F7), it is casy to check that F defines an integrable distribution on a Zariski open
subset of X'. Let & be the rank of F'. Using Proposition 2.3, the inequality

C](.{‘;‘:}'C - p+2

T

can be translated to the statement

dim{PF, nPT,) + 1 N p+2
k - on

In other words, the instability of T(X) results in some excessive intersection property of the
tangent spaces of the variety of minimal rational tangents with a lincar subspace in PT (X}

Proposition 2.10 Suppose the intersection of the projective tangent space at a generic
point of C, with any linear subspace in PT.(X) has dimension < E(p +2) -1 where k — 1
is the dimension of the linear subspace. Then the tangent bundle T{X) is stable.

Using this, one can show that the stability of the tangent bundles of many Fano manifolds
of Picard number 1 ([Hw2]). For example, the stability of the tangent bundle of the moduli
space of rank 2 bundles over a projective curve was proved using this argument ([Hw3]}. The
proof of the following Theorem was sketched in [HMS5].

Theorem 2.11 A prime Fano manifold X of indez > "—':—] has stable tangent bundle.

Proaf. Suppose not. By Proposition 2.10, we have a linear subspace PF ¢ PT,.(X) with
dim(F) = k so that its intersection with the projective tangent space at a generic point of
C: has dimension > £(p+2) — 1. Let

¥ :PT(X) — PF — Pn-#-!

be the projection from PF to a complementary linear space. Let ¢ be the generic fiber
dimension of ¥|c,. By the assumption, g > %{p +2).

2]

Let T be the projective tangent space to ¥(C;) at a generic point o € ${C,;). Then
¥~ 1T} is a linear space of dimension

dim(T)+k = p—-g+k

This linear space ¥~ '(T) is tangent to 1" along the fiber {¢|c, )™ (ar). From Proposition 1.5,
C. is smooth. By Zak's theorem on tangencies,

dim{y~'(T}) - dim(C;)

<
< {(p-g+kj-p

dim|(¥lc, )" ()]
q

S0 we get ¢ < % Combined with ¢ > ¥(p +2), we have i{X} =p+2 < 3, a contradiction.
a

3 Cartan-Fubini type extension theorem

3.1 Statement of Cartan-Fubini type extension theorem

When we Jooked at the examples of varieties of minimal rational tangents in Section &, vou
may have noticed the striking fact that when two Fano manifolds of Picard namber 1 are of
different type, their varieties of minimal rational tangents are of quite different nature. This
leads to the following natural question.

Question 3.1 Let X be a Fano mantfold of Picard number I Choose a minamal rationel
component K ond lei C; be the variety of minimal rational tangents at o generic point. Does
C; determine X in the following sense?

Let X' be any other Fano manifold of Picard number ! with a choice of minimal retional
component K' and let ;. be the variety of minimel rational tangents at a generic puint.
Suppose there are analyfic open subsets U C X, U’ C X' with a bikolomorphism ¢ - U — U’
such that there exists an isomorphism ¢ : PT(U) — PT(U') of projective bundles compatible
with ¢ satisfying Y(C;) = Clyy for each z € U. Then X is biholomorphic to X'

The answer depends on X. One example where the answer is no is the moduli space of
rank 2 bundles of a fixed determinant of odd degree over a projective curve R of genus 2,
which is equivalent to the complete intersection of two quadrics in Ps. As we have seen in
Section 1, the variety of minimal rational tangents for this moduli space is the union of 4
points in Py = PT{X) which are the intersection of two conics. Thus the isomorphism type
of C; C P, is independent of z and also independent of the projective curve R, while the
biregular type of X depends on A.

On the other hand, when X is the projective space P,,, Cho and Mivaoka showed that the
answer to Question 3.1 is yes (JCM]). Recently, Mok and | have found out that the answer
is yes for any irreducible Hermitian symmetric space ((HM9]).

Unfortunately, for most examples of X, 1 do not know an answer to Question 3.1 and it
seems rather difficult to guess what the answer will be for a given X, even for examples like
Fano hypersurfaces. However, if we weaken the question by assuming that the isomorphism



Rational curves on Fano manifolds

3~
[N

¢ of the projectivized tanpent bundle comes from the differential of ¢, we can give an
affirmative answer for many examples ((HM7}):

Theorem 3.2 Let X be a Fono manifold of Picard number 1 with a choice of minimal
rationel component K so that the variety of minimal rafionel tangents Cp at a gencric pond is
of posttive dimension p > ( ond the Gouss map of C; as a projective subveriety of PT{X) 15
generically finite. Let X’ be any Faneo manifold of Picard number 1 unith a choice of minimal
rational component X' for which we denote the variely of minimal rahionel tangents el a
generic peint ' by Ch. Suppose there exist connected analylic open subsets U < X, U' C X'
and o biholomorphic map ¢ : U — U’ so that the differential ¢, : PT(I7) — PT{U") sends
C, wsomorphacally to €y for general z € /. Then ¢ can be eriended to e biholomorphic
map X — X'

Note the difference in the statement of this theorem from that of Question 3.1. The
thearem requires a stronger condition that the isomorphism between the varieties of minimal
rational tangents are induced by the differential of the map on the base. The statement of
the theorem is stronger in the sense that the isomorphism between X and X' is an extension
of the given map . while in Question 3.1, the isomorphism between X and X' may not
be reiated to . For example, when X is the projective space, the answer to Question 3.1
is ves by Cho and Mivacka, but Theorem 3.2 does not hold. In fact. for X = X' = P,,
the condition ¢,(C;) = C,,, is satisfied by any biholomorphic map ¢ : U — U, because
C; = PT.(X). Note that in this case, the Gauss map is not generically finite. Recall that
the Gaunss map of non-linear smooth projective subvariety is generically finite ([GH]), in fact,
finite ([Za]). Thus Theorem 3.2 can be applied to all the examples we have seen as long as
p > 0, excepting the projective space. It may be true that the statement of the theorem
holds for the case of p = 0, too. But our proof strongly depends on the condition p > 0.

There are some earlier results in the direction of the theorem. About eighty vears ago,
E. Cartan and G. Fubini had initiated the study of a related problem for hypersurfaces
in the projective spaces. For this reason, we call Theorem 3.2 as Cartan-Fubini type
extension theorem. The study of Cartan and Fubini was completed with modern rigor
by Jensen-Musso {[JM]). Meanwhile Ochiai proved Theorem 3.2 when both X and X' are
Hermitian svmmetric spaces ({Oc]) and this was generalized to other homogeneous Fano
manifolds by Yamaguchi ([Ya]}. The method emploved by Jensen-Musso is that of moving
frames and Ochiai-Yamaguchi's works are in terms of Lie algebra cohomologies. Our method
is completely different. It uses deformation of rational curves and analytic continuation.

3.2 Proof of Cartan-Fubini type extension theorem

¥ will explain the main ideas of the proof of Theorem 3.2, which consists of the following 4
steps.

Step 1 To show that the map ¢ sends local pieces of members of X in U to local pieces
of members of X' in U,

Step 2 To extend the domain of definition of ¢ from the analytic open set U to an etale
open set.

Step 3 To extend the domain of defirition of the map from an etale open set to a Zariski
open set.
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Step 4 To extend the domain of definition of the map from a Zariski open set to the
entire Fano manifold X.

Refore going into details, let me point out that the condition p > 0 is used only in Step
2 and Step 3, while the Gauss map condition is used, in essence, only in Step 1. Step 1 and
4 hold also for p = ( case.

For Step 1, we start with some definitivus. Given a distribution T on a complex manifold
M, regarded as a subsheaf of the tangent sheal, its Cauchy characteristic is the subsheafl
defined by

Ch{D) = { local sections f of D satislving [f, ¢] = 0 for ail local sections g of D}

where [, g] denotes the Frobenins bracket for the distribution D. Ch(D) is an integrable
distribution over an open set where it is locally free. The following lennna can be checked
by a direct computation with the bracket, which we leave as an exercise.

Lemma 3.3 Let ¢ - M —+ N be a submersion of compler manifolds so thet the fibers
of g define a distribution Ker(dg) on M. Let P be a distribution on N. For the pull-back
distribution gD defined by

(.{I.D)m = (d_(])7 : (Dq(m))
where dy © T (M) = Ty (N) i3 the differential of g of the point m ¢ M. we have
Ker(dg) < Chi{g D).

Let € ¢ PT{X) be the closure of the union of €;'s as 1 varies over generie points of X
Consider the universal family p: U — K over the component. K2 of the Chow scheme ([KK1],
1} and the associated marphism g U = X. Then the normalization of the fiber p='(x)
corresponds to our X, Thus we can take union of the tangent maps = @ Kz — C; to get
a rational map 7 : i — C, which is genorically finite. The images under + of the fibers of
pon I induce a multi-valued foliation by curves an generic part of €. Let us denote this
multi-valued foliation by F. A leaf of F is the lift of & minimal rational curve to its tangent
vectors. If we restrict to a local analytic open subset of €, we can choose a ‘branch’ of this
multi-valued foliation to get a genuine foliation on analytic open subset.

Now we define a distribution P of rank 2p + 1 on generic part of ¢ by defining its fiber
at o €€ as

P, = (dn) "(T.)

where dn : T,(C) — T.(X) is the differential of the natural projection 7 @ € -+ X at
a € C, 7 =rnla)and T,  To(X) is the linear tangent space of C; at o as in Proposition 2.3.
Note that this distribution P on € over an analvtic open set {7 C X is completely determined
by the information of the embedding € € PT(X) over {7, Stmilarly, the embedding ¢ C
PT{X') induces a distribution P’ ot €. Then @ {C|i;) € C' implies that o, sends P to P’

Recall that at a generic point [C] of KX corresponding 1o a standard minimal rational
curve ', the tangent space of X is canonically isomoerphic to H°{C, N¢-). From

Neo = Oy gem'r
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there exists a natural subspace Q¢ C HC, N} corresponding to the sections of O(1)P-part
of Nc. This defines a natural distribution Q on generic part of K.

Choose an analvtic open subset O in & so that 7| is biholomorphic. We regard O as
an open subset of C. F can be regarded as a vnivalent foliation on (F corresponding to the
fibers of p. From Proposition 2.3, P = p°Q. From Lemma 3.3, ¥ C CA(P). In fact, the
following holds.

Proposition 3.4 If C, has generically finite Gauss map, then F = Ch{P).

This is the part where the Gauss map condition is used. Instead of giving a detailed proof
of this, let me explair the main idea. First let us examine what the condition on Gauss map
means. It is perhaps easier to look at the affine case. So let Z € C" be an affine variety of
dimension m and let z € Z be a generic smooth point, Let 2i,..., z, be a local coordinate
svstem of Z at z and w,...,w, be an affine coordinate system on C™. The Gauss map of
Z is just associating to z its tangent space T,(Z). If the Gauss map is not generically finite,
its differential has kernel in a neighborhood of 2. Let V' € T;(Z) be in the kernel of the
differential of the Gauss map. This means that in the direction of V', the tangent spaces
T.(Z) remain constant to the first order as x varies in a neighborhood of z. In particular,
for any local vector field w on Z, regarded as a section of T{C"} restricted to Z,

a ad
w = 61(21,---,2m)37+"’+Un(31=-~,2m)aﬂ—,
1

n
its derivative in the direction of V

. . & a
Vw = V(al(z,,...,zm}]é;ur; R V(a"(z;,.“,zm])gw—

remains tangent to Z at z. Conversely, one can see that if V is a tangent vector to Z at
z so that Vw(z) € T.(Z) for any local vector field w of Z, then V' is in the kernel of the
differential of the Gauss map. This can be applied to a projective subvariety of P,_; by
taking its affine cone. Using this interpretation, the proof of Proposition 3.4 goes as follows.

First one shows that if there exists a vector in Ch(P), which is not in F,, where a is a
generic point of C, then there must exist such a vector V' tangent to the fibersof m: € — X,
namely, V € T,{C.) where x = n{a). This follows from a simple manipulation of Jacobi
identity for the brackets of vector fields. Now the condition V &€ Ch{P}, can be written, by
some abuse of notation, as

v.Pl c P,
and this implies
[V, PATPT(X))) C PNTPTAX)).
Combined with the fact
Po T (PT:(X)) = Tu(Cs),
we get

V,\T(€)] ¢ TIC.).
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Thus Vw(e) € T,{C.) for any local vector field w on C; near ¢ and 17 must be in the kernel
of the Gauss map. So the assumption on the Gauss map gives V' = 0.

Now for Step 1 of the proof of Theorem 3.2 can be achieved as follows. As mentioned
before, . : |y — £'{yv sends P to P'. By Proposition 3.4, this implies that ¢, sends F to
', which means that local pieces of members of K are sent to local pieces of members of K.

Once Step 1 is done, the rest is extending a map which sends pieces of members of K to
pieces of members of K'. This is done by an analytic continuation along mininal rational
curves, in the following way. Suppose C is a standard minimal rational cnrve intersecting
the open subset U. ¢ is defined on € N ¥/ and we want to extend it to oiher points on C.
To define the extension at a point y € C, consider a deformation C, of C fixing the point
y. This is where we need to have p > 0. If p = 0 there exists no non-trivial deformation
fixing a point. Now consider the local pieces I N C,. By Step 1, (/N C}) is a local piece
of some minimal rational curve C; belonging to K'. These curves Cf have a unique common
point §' and we define y* as the image of y. The common point y' exists because it exists
when y is chosen to be inside U. It is unique because C}’s do not have deformations fixing
two or more points. In fact, if such a deformation exists, then its initial velocity is a section
of the normal bundle of a standard minimal rational curve vanishing at two or more points,
a contradiction to the splitting type. This way we can extend ¢ along standard minimal
rational curves intersecting U. This enlarges the domain of definition of ¢ to a bigger open
set /. Applying the same argument to U, we can analytically continue along standard
minimal rational curves intersecting [J. We can repeat this procedure until the domain of
definition covers a Zariski open subset in X. But there is a gap in this extension argument.
A point outside I/ may belong to different standard minimal rational curves intersecting U.
So when we carry out the analytic continuation, we end up with a multi-valued extension
of ¢. So what we get at the end is a multi-valued extension of ¢ over an etale open subset
U of X, namely a quasi-projective variety U with an etale morphism v : [/ - X covering a
Zariski open subset of X and a morphism ¢ : U - X' extending . This completes Step 2,
Here, a priori, one has to worry about the possibility of an essential analytic singularity for
. But this can be easily taken care of, because the analytic continuation can be done along
the whole minimal rational curve. We skip the details.

Step 3 is to extend ¢ to a morphism @, defined on a Zariski open subset X, of X. To
do this, we have to reduce the multi-valuedness of . First of all, we can reduce the multi-
valuedness of ¢ by identifving two points u; and v € U il w(u;) = v(ug) and $u;) = @(ug).
So let us assume that there is no such two distinct points. Then we claim that v must be
1-to-1, which implies that {7 is Zariski open in X. Suppose not. Choose a standard minimal
rational curve € C X generically and pick a generic point x € C. Then there exists an
irreducible component C of v~ (C) containing a pair of points u;,u; € E with viw) = v(u,)
and @p(u) # $(ua), from the following Lemma.

Lemma 3.5 Let 7 : ¥V — X be a generically finite morphism from a normal variety
Y onto e Fano manifold X with Picard number 1. Suppose for ¢ generic standerd ratronal

curve C C X belonging to a chosen munimal rational component K, each component of the
inverse tmage 7~ H{C) is birational to C by n. Then 7w : Y — X itself is birational.

Proof. Suppose 7 is not birational. We can choose a ramification divisor R C Y of 7
so that m{R) is a divisor in X. By genericity of C, we may assume that 7~'(C) lies on
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the smooth part of the normal variety Y. Let | be any irreducible cormponent of 7° o,
Then €, is also a rational curve and deformaticus of € give deformations of C since w¢, is
birational. It follows that the space of deformations of C and the space of deformations of
C, have equal dimensions. So we have Ky - €, = Kx-C. This implies €' is disjoint from the
ramification divisor B C ¥ Sinee this holds for any component C, of =~ (T}, C is disjoint
from the divisor 7{fR), a contradiction to the assumption that X is of Picard number 1. O

Now let €, be a deformation of C with z fixed, which exists by g > 0. Then their inverse
images under » contains comiponents C, which are deformation of C fixing u; and ;. Then
their images under & define a {amily of standard rational curves in X' fixing two distinct
point p{u;) and w(u,), a contradiction. This finishes Step 3.

By applying the same extension to p~! : U — U, we see that the rational map ¥,
obtained in Step 3 is birational. For Step 4, first we claim that &, has no exceptional set of
codimension 1. Suppose not and let E C X be an exceptional set of codimension 1 which is
contracted to a set Z of codimension > 2. From the Picard number condition, all members
of K intersect £. It follows that generic members of X' must intersect Z, a contradiction to

Lemma 2.1.
Now that &, defines a biholomorphism between X and X' outside sets of codimension

> 2, we can push sections of powers of K}' to sections of powers of K}} inducing an
isomorphism HY(X,mK ;') = HYX',mK5!) for all m. Since X and X’ are Fano, they are
isomorphic by this map, finishing Step 4. This completes the proof of Theorem 3.2.

Let me remark that for homogeneous Fano manifolds, the analytic continuation in Step
2 can be carried out using C*-actions. See |HM3] or [Mk3] for this approach. Also in [Mk3],
a more differential geometric treatment of Step 1 is given for Hermitian symmetric spaces,
which might be ielpful in understanding the key idea.

3.3 Curvature

We will discuss some applications of Theorem 3.2 in the next section where the conditions
on the map y is, in a sense, guaranteed a priori. Before this, I want to discuss hew one can
ever check the condition on ¢ in a setting where it is a priori not obvious. This has to do
with nnderstanding the difference between Question 3.1 and Theoremn 3.2. We may state the
problem as follows.

Let X and X' be Fano manifolds of Picard number 1 with minimel rational components
K and K, respectively. Suppose there exist analytic open subsets U ¢ X, U’ C X' with an
isomorphism 1 : PT(UY — PT(U"') which sends C|y to Oy tsemorphically. Does there exist
open subsets U, C U, U, C U' and a btholomorphic map p : Uy — U so that p.(Clo,) = Cpp, 7

This is a question in local differential geometry. 1 want to illustrate this point for the case
when X is the smooth hyperquadric in P,,;. As we saw in Section 1, the variety of minimal
rational tangents is a (n — 2)-dimensional hyperquadric in PT;{X). Since X is homogeneous,
this is the case for every point ¥ € X Thus we are given a subbundle of PT{X) with fibers
isomorphic to hyperquadrics. This is a ‘conformal strueture’ on X

In general, a conforma! structure on a complex manifold M is a vector hundle mor-
phism ¢ : Sym*T(M) — L for a line bundle L, which gives a nondegenerate symmetric

~o
=1

bilincar form at each fiber To(AfY. The hyperguadric in T, (M) defined by the zero lo-
cus of ¢ 1s called the null-cone at x. Equivalently, & conforial structure on M is just a
fiber subbmndle € ¢ PT(M) whose fiber at each point m € A is a smooth hyperquadric
C, C PT,(A).

After choosing a local trivialization of L, ¢ can be regarded locally as a holomorphic
Riemaunian metric {e.p. [Le]).

i

o = Zg,}(z)dz’@)d:]

ty=1

in some tocal holomorphic coordinate system zy.....2,. Here (g,;) is a nondegenerate sym-
metric matrix. Just following the vsual formalism of Ricmannian geometry, we can define
the Levi-Civita connection

_ 1 i P agkl af},r Gng
T ok Rt FUE £
g 25 6&1 (L dzy
and the curvature tensor
ar: ar:
— il Jk ot
;*f G - a1 + Z(rﬂ uk ” er uz)

I

which is a local holomerphic tensor antisviumetric in & and [ Similarly we ¢an define
geodesics as local holomorphic curves satisfving the geodesic equation

o2k & ddy?

+ —L =0
dit 4 Mot dt

All these notions depend on the choice of the local trivialization of the line bundle L.
However certain part of the curvature tensor, named Weyl tensor, is independent of the
local trivialization. Geodesics which are tangent o the null-cone, called null-geodesics,
are independent of the tocal trivialization of L. If the Weyl tensor vanishes, we say that the
conformal structure is flat. In this case, there exists a local trivializasion of L with respect to
which the local Riemannian metric is flat. In other words, there exists a locat holomorphic
coordinate system, called a flattening coordinate system, with respect to which

oo~ Zdzi @dz

Unfertunately, T do not. know of a good reference for this standard fact in conformal differ-
ential geometry. A proof in a more general setting 1s given in [Gu] which is summarized in
the first section of [HM1] in a language more friendly to algebraic peometers.

For the hyperquadric, the conformal structure given by the variety of mimimal rational
tangents is flat. This can be seen by an explicit choice of a flattening coordinate system. Asa
matter of fact, the opeu cell defined as the complement of a singular hyperplane section of the
hyperguadric in P,y carries # natural affine coordinate system which flattens the conformal

structure.  This is an example of what is called *Harish-Chandra coordinate system' on
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Hermitian svmmetric spaces (([HM3], [Mk2]). Minimal rational curves are precisely the aull
geodesics.

When we apply Theorem 3.2 to the hyperquadric X, the condition that ¢.Cr =
means that the conformal structure defined at generic points of X7 by the variety of minimal
rational tangents is flat. The difference between Question 3.1 and Theorem 3.2 in this case is
exactly the Weyl tensor. In this sense, this difference, in general, can be viewed as a notion
of curvature and what Question 3.1 is implicitly asking is whether the ‘geometric structure’
given by the variety of minimal rational tangents is flat, namely the curvature vanishes.

Even in the case of the conformal structure, it is not easy to show that the Weyl tensor
vanishes for X'. To give you some idea how the curvature can be handled by minimal
rational curves, [ want to discuss a special case. Let X be a Fano manifold of Picard number
1 whose variety of minimal ratjional tangents is a hyperquadric. Thus a conformal structure
is given on a Zariski open subset of X' Now make the strong assumption that this conformal
structure extends to the whole X . Under this assumption, we will show that the Weyl tensor

W ¢ HY“X A’T'(X)® End(T(X))
vanishes identically. For a standard minimal rational curve C,

T(X)le = o@ a0 s

because p = dim(C,) = =~ 2. To show that W vanishes at a generic point £ € X, we need to
show the vanishing of Wu A v} € End(T,{X}} for all possible choices of «,v € T.{X). Buy
we know that A?7,(X) is spanned by elements of the form o A 3 where o is a generic point
of €y and 3 is in the tangent space to C; al o [rom Proposition 2.6. Let C be a standard
minimal rational curve in the direction of a. Let & be a section of T(C) C T(X)|e which is
non-zero at . Let 3 be a section of T{X ). which has value § at . By Proposition 2.3, we
know that g is a section of O(2) @ [O(1)]"? and we can choose it to have a zero at some
point y € C. Let us consider W (&, 8) as a section of End(T{X))|c. It has three zeros, two
coming from that of & and one coming from that of 3. But

End(T(X))le = O2) &[0 a 0 1m0 5 [0(- 1) e 0{—2)

cannot have a non-zero section with three zeros. Thus W {a, 8) vanishes at = and conse-
quently W vanishes on X

A similar argument as above works for any Hermitian symmetric space where “the con-
formal structure’ is replaced by the natural geometric structure on the Hermitian symmetric
space ([HM1]). For example, one can show that if the tangent bundle of a Fano manifold of
Picard number 1 is isomorphic to the tensor product of two vector bundles of rank > 2 (this
geometric structure is called ‘Grassmann-spinor structure’ in [Ma]), then the Fano manifold
is the Grassmannian.

Of course, the assumption on the extendability of the conformal structure {or other
geometric structure modeled on a Hermitian symmetric space} arising from the variety of
minimal rational tangents to the whole X is a strong one. However, it is possible to show
that such an extension indeed exists and give an affirmative answer to Question 3.1 for
Hermitian symmetric spaces ((HM9]).
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4 Applications to generically finite morphisms over Fano
manifolds of Picard number 1

4.1 Varieties of distinguished tangents

In this section, we will discuss certain rigidity properties of a generically finite morphism
f:¥Y — X from a projective manifold ¥ onto a Fano manifold X' of Picard number 1. Qur
strategy is to study the inverse images of minimal rational curves on X under f. These
curves are, in general, not rational. This leads us to seek a generalization of the variety of
minimal rational tangents for non-rational curves. A natural generalization is the following.
For a given projective manifold ¥, fix a component M of the Chow scheme of curves. For
a generic point y € Y, let M, be the subscheme correspording to members of M passing
through y, which we assume to be non-empty. We have the tangent map 7, : M, — PT,(Y)
defined at those points corresponding to members of M, which are smooth at y. Then the
closure of the image of 7, would play the role of the variety of minimal rational tangents.
But to have an interesting theory, the image of 7, should be a proper subvariety of PT,(Y).
Unfortunately, I do not know of a suitable setting for non-rational curves where this image is
a proper subvariety. (If anyone knows a non-trivial example, please let me know.) To remedy
this, we will refine our definition so that even when the image is not proper, some proper
subvariety can be defined naturally. This is done by considering a natural stratification
associated with the tangent map and the proper subvariety will be defined as a stratum.

Consider a morphism h : M — Z where M, Z are quasi-projective varieties. The h-
stratification of M is a decomposition M = M; U---U M, of M into a disjoint union of
quasi-projective subvarieties which is induced by k and satisfies the following conditions.

hl Each M, is smooth and its image A{M;} is also smooth.

h2 For any tangent vector v to kR(M;)}, we can find a local holomorphic arc in M, whose
image under h is tangent to v.

h3 When a connected Lie group acts on M and £, and h is equlvanant under these
actions, each M; is invariant under the group action.

It is easy to see how to construct such a stratification. Repeatedly using the usual strat-
ification of a variety into smooth locus and singular loci, we can always find a stratification
satisfying h1. We can stratify each stratum further by the rank of the restriction of A to
the stratum to achieve the condition h2. But after this new stratification, hl may be vio-
lated. Then we apply the singular loci stratification to each stratum again. After a finitely
many steps of applying these two stratifying procedures, we end up with the stratification
satisfying both h1 and h2. Since this procedure is canonical, h3 is autematic.

Now consider the stratification arising from the tangent map. Given a smooth projective
variety ¥ and a point y € ¥, choose an irreducible component N of the Chow scheme
of curves on Y passing through y. Let A" C N be the open subscheme corresponding to
curves smooth at y. We consider only the case when A’ # . Let A” be the underlying
quasi-projective variety of N’. We can decompose A” into disjoint union of finitely many
quasi-projective subvarieties, N' U --+ U N, according to the geometric genus of the curves
corresponding to points of A”. So curves corresponding to N7, 1 < j < [ have the same
geometric genus. For a choice of N7, define the tangent morphism & : N7V — PT,(Y)
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which assigns to a curve smooth at y its tangenm direction at y. Now we can consider
the d-stratification of ¥7 = MJ U+ U M}, The closure of the image $(M) is called &
variety of distinguished tangents. In other words, a subvariety of PT,{}) is a variety
of distinguished tangents if it is the closure of the image ®(M]) for some choices of A, Ni
and M;. The following three properties are important.

d1 For given Y and y, there are only countably many varieties of distinguished tangents
in PT,(Y).

d2 Let D C PT,{Y)} be a variety of distinguished tangents. Then for any tangent vector
v to P, we can find a family of curves I belonging to NV smooth at ¥ so that the derivative
of the tangent directions PT(l,} € P, (Yyat t =01is v

d3 Suppose a connected Lie group P acts on Y fixing y. Then any variety of distinguished
tangents in PT,(¥) is P-invariant under the isotropy action of P on PT,{Y).

d1 follows from the fact that there are only countably many irreducible components of
the Chow scheme. d2 follows from the property h2 of h-stratification. d3 fellows from the
property h3 of h-stratification. The property d1 is the key to the rigidity result we will
discuss. d2 is one of the key point of the definition of varieties of distinguished tangents.
Unlike the standard minimal rational curves, it is very rare that we have a goed information
on the normal bundle of high genus curves. As a result, their defermation theory can be
very trickv. But d2 automatically takes care of obstructions to deformations. d3 is useful
in the study of homogeneous spaces,

4.2 Pull-back of the variety of minimal rational tangents under a
generically finite morphism

Given a curve { ¢ Y and a smooth point y € ¥, there exists a unique variety of distinguished
tangents in P7T,(}") determined by the component of the Chow scheme and the stratum of
the ®-stratification containing { . It will be denoted by D,({). The next Proposition is a
direct consequence of d1.

Proposition 4.1 Let l,,z € Z be a family of curves through y € Y parametrized by an
irreductble variety Z so that [, is smoeoth at y for a generic z. Let Z € PT,{Y'} be the closure
of the union of the tangent directions PT (l,) for generic z € Z. Then Z C Dy(l;) for e
generic z € Z.

Proof. Z C U,ezD,(l.) by definition. But 2 is irreducible and the union is a countable
union by d1, from which the result follows. O

Let ¥ € Y he a sufficiently general point. When { C V' is a smooth curve through y and
N} is its conormal bundle, we have the following bound on the dimension of the variety of
distinguished tangents.

Proposition 4.2 dim(D, (1)} < dim(¥) - 1 - A%(!, N}?).

Proof. Given a tangent vector v to Dy({}, we can find a deformation {; of Iy = { fixing ¥
so that the derivative of their tangent directions gives v by d2. The initial velocity of this
deformation is given by an element x € H%I, &) with &, = 0. Given any w € HO([,N),
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the pairing < w, & > must be a constant holomorphic function on /. Thus

0 = d<w.x> (T,
< duw (T, (1) ky = + < w de(T(1) >

= <>y,

So sections of N give constraints on tangent vectors of D!}, If ¢ is sufficiently gencral,
there nmst be A% N7) independent, constraints, [

As a matter of fact, even when { is not smooth. an anzlogue of Proposition 4.2 holds if
we replace N} by a suitable sheaf {section 1 of [HM4]}. An irreducible component of the
variety of tinimal rational tangents on & Fano manifold is an example of the variety of
distinguished tangents and Proposition 4.2 is an analopgne of the fact that the dimension of
Crisp=mn—1-hYNC, NLY becanse

N o= ol

for a standard minimal rational curve €. The next proposition provides a good supply of
examples of varieties of distingnished tangents.

Proposition 4.3 Let f: Y — X be a generically finate morplism from o smooth variety
Y onto ¢ Feno manifold X of Picard number I. For a sufficiently general point x € X outside
the branch locus, let C; © PT.(X) be the variety of minimal refionel tangents for e choice
of the minimal rational component on X. Then for y € f7'(x), each irreducible component
of dfy"(Cr) C PT{Y), the inverse image of the veriely of minimal ratienal tangents under
the differential df, - T,(Y) — To(X), &5 @ varwety of distinguished torgents.

Proof For simplicity, we will assume that all curves involved are smooth. Consider
the irreducible family Z of rational curves defining an irreducible compenent A of C;. Their
inverse images have components containing v, defining an irreducible family of curves through
y. By Proposition 4.1, df;‘(A) C D, (1) for some curve I where f(I) is a generic member of Z.
We know that df,'(4) has dimension p. On the other hand, since B°(f({), Nj) = n—1-p,
BRI, N7} 7 n—1-—p. Thus &, H{A) and Dy{l} must have the same dimension by Proposition
4.2, and we are done. O

4.3 Rigidity of generically finite morphisms

We are ready for the foliowing rigidity theorem ([HM7]).

Theorem 4.4 Let ¥ be ¢ smooth variety and X, t € A = {1 € C, |t} < 1} be a famaly of
Fano manifelds of Picard number { with minimal ratione! components Ky for which Cartan-
Fubtni type extension (Theorem 3.2} holds. Suppose f; 1 Y — 5 is a family of generically
finite morphisms parametrized by t € A, Then there exists a famly y, of biholemorphic
morphisms from Xo to Xy with go = ¢d such that fi = g0 fo.

Proof. Choose a connected analytic open subset {F C Y so that fi| is biholomorphic
for all + € A and let U, = f,{I7). For a generic point y € U and z, = f,(y). components of

df,HC;,) form a family of varieties of distinguished tangents in PT,(Y) by Proposition 4.3.
From d1, df"NCe,) = dfy ' (Cqp) at y for all t € AL It follows that v : Uy — U, defined by

wr = feo (folir) ™!
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prescrves the varicties of minimal rational tangents. By Cartan-Fubini type extension, we
see that ¢ extends Lo a bilwlomorphic merphism g, : Xp — X, with the desired property. O

Theorem 4.4 is certainly not true when X, is the projective space. It can be applied to all
the examples we have seen in Section 1 other than the projective space as long asp > 0. 1t
is new cven for Fano hvpersurfaces or Hermitian symmetric spaces. An immediate corollary
is

Corollary 4.5 For a given smooth variety Y, there are only countably many smooth
hypersurfaces of degree < n — 1 in P,y which con be the image of a generically finite
morphism from Y.

4.4 The caseof p=10

It is natural to ask whether Corollary 4.5 holds for smooth hypersurfaces of arbitrary degrees,
It is well-known that there can be only finitely many hypersurfaces of degree > n + 3 which
can be the image of a rational map from ¥ (e.g. [KOl). E. Viehweg had told me that using
the results on the semi-positivity of the direct images of powers of dualizing sheaves (e.g.
Section 7 in |MoZ2]), one can show that only countably many hypersurfaces of degree n 4 2
can be the image of 2 morphism from Y. Thus only the degrees n and n + 1 are open. In a
recent work ([HM8]), Mok and I settled these cases by proving an analogne of Theorem 4.4
for the case of p = 0, although we were not able to establish Cartan-Fubini type extension
for that case:

Theorem 4.6 Let Y be o smooth variety and X, € A be a famaly of Fane maonifolds of
Picard number 1 which have minimal retional components K, with p = 0. Given g family of
generically finite morphismns f; 1 Y — X, there exists a family of bitholomorphic morphisms
¢ Xo— X, sothat fi = g0 fo.

The proof is quite different from that of Theoremn 4.4. This is an example of a general
phenomenon that the geometry of the case of p = 0 has essential difference from the geometry
of the cases of p >> 0. Of course, this may be due to our lack of proper understanding of the
situation. When p = 0, there are finitely many minimal rational curves through a generic
point. The geoinetric structure it defines in a neighborhood of a generic point is that of
a multi-valued foliation by curves. Such a geometric structure is called a web. The local
differential geometry of webs is rather complicated and so far, we were not able to use it.
Instead, we exploit the existence of discriminantal locus of the multi-valued foliation.

The condition p = (1 is equivalent to the triviality of the normal bundles of standard
minimal rational curves and we need to study curves with trivial normal bundles in general
smooth variety 1o prove Theorem 4.6. Let ¥ be a smooth variety. Following the name of the
local geometric structure it defines, a projective variety MM with finitely many components
in the reduction of the Chow scheme of Y is called a web, if (a) generic members of each
component of M are curves with only nodal singularities and with trivial normal bundles,
and {b) members of each component of M cover a Zariski open subset in ¥.

Let A be a web and p: U — M, pu:{ = Y be the universal family morphisms. In an
analytic neighborhood of a fiber of p corresponding to a curve with nodal singularity and
trivial normal bundle, the morphism g is an immersion. In particular, g is generically finite.
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The degree of i is called the degree of the web M. As before, we can define the tangent
map 7 : U4 ~—+ PT(Y). Let C C PT(Y) be the closure of the image (i) and 7 : C — X
be the natural projection, which is generically finite. An irreducible hypersurface M C Y is
called a discriminantal divisor of the web M if 7 is not etale over a generic point of M.
(This definition is different from that of [HM8], but suflices for cur purpose here.) Many
examples of webs with non-empty discrimninantal divisors are provided by Fano manifolds:

Proposition 4.7 For a Feno manifeld X of Picard number 1 which has o minimal
rational component K with p = 0, the set H of discreminental divisors of the web K is
non-empty. Moreover a member of K intersects H at least at two disiinct powits on the
normaelization P,.

Proof. Suppose H is empty. Then p: 14 = X is etale outside a set of codimension > 2,
A generic minimal rational curve is disjoint from the set of codimension > 2 by Lemma 2.1,
50 its inverse image in I must have d distinct components {from the simply-connectedness of
P, where d is the degree of M. Thus y : & —+ X is a birational mnorphism from Lemma 3.5.
Since g is unramified in a neighborhood of a generic fiber of p : If — K, this is a contradiction
to the Picard number of X. Now for the last statement, apply the same argument to C, the
complement of one point on P,. O

A key property of webs is the following simple Lemma which follows from the unrami-
fiedness of i in a neighborhood of a generic fiber of p. We will leave the proof as an exercise.

Lemma 4.8 Given a web M on'Y and an trreducible hypersurfoce H C Y, a component
C of @ member of M passing through a generic point h € H s either lransversel fo H at
every point of H NC' or conlained in H.

The following Proposition provides many examples of webs whose members are not nec-
essartly rational curves.

Proposition 4.9 Let f : Y' = Y be o generically finite morphism between smooth
varieties. Suppose Y has a web M. Then for a generic member C of M, each component
of f7HC) is a curve with nodal singularity whose normel bundle is trivial.

Proof. A generic member of each component of the web M intersects the branch locus of
f transversally from Lemma 4.8. From this we see that each component of f~'(C) has only
nodal singularities. Now the n — 1 independent sections of the conormal bundle of C' can
be pulled back to thase of compaonents of f~!(C), which gives the triviality of the normal
bundle of each component of f~1(C). O

From Proposition 4.9, we see that the components of f1{C) as C varies over M define
a web on Y, which we call the inverse image web and denote by f~'(M). The degree of
F~'(M) is the same as the degree of M. A key property of the inverse image web is

Proposition 4.10 Let the notation be as in Proposition {.9. For a discriminanial divisor
M C Y of the web K, each component of f~'{(M) on which f is generically finile, is a
discrimsnantal divisor of f~1(K).

Proof. It suffices to show that if a hypersurface H of Y is not a discriminantal divisor
of f~Y{K}, then f(H) is not a discriminantal divisor of X. We may assume that H is a
ramification divisor of f. Let d be the degree of X. Through a generic point k of H, there
are d distinct curves C,,...,Cy, belonging to M which has d distinct tangent vectors. We
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claim that at most one of ..., Cy is not contained in H. In fact, il Cy. C; are not contained
in H, f{C)) and f{C) are transversal to f{H) by Lemms 4.8, This implies that C; and
sy are taugent to the kernel of dfy, so they are Ltangent to each other at h, a contradiction.
Since fly is nuramified at k, d or  — | members among Cy, ..., Cy, which are contained in
H, are sent. to curves in f{f) with distinct tangents in at f{h). Thus f(C), ... [(Cy) have
d distinet tangents at (1), Thus f{H) is not a discriminantal divisor. O

Proof of Theorem 4.6. The key point is that the inverse image web [ '(K,) is independent
of . This is because there are only countably many webs on Y from the countability of the
number of contponents of the Chow scheme. Let M, be the union of all discriminantal
divisors of K,. Then f7'(M,) is also independent of ¢ from Praposition 4.10. Fix a generic
member € of any component of f71(K,). By a general argument, which we will skip, we can
reduce the proof to showing that any two points on C which have the same iinage under fg
have the same image under f for anv ¢ Since f;'(A4,) is independent of ¢, we know that
any two points which are sent to the same point in My are sent to the same point in M,.
But by Proposition 4.7, at least two paints of f{C) are in M. Thus fi|c can be regarded
as meromorphic functions on the curve € with the same zerces and poles, and so they are
constant multiple of each other, which implies that any two points with the sane value of
fo must have the same value of f,. O

4.5 Morphisms from G/P onto smooth varieties

Another application of Propasition 4.3 is the following theorem proved in [HM4] which gives
an affitmative answer to a problem of Lazarsfeld {[La]). As a matter of fact, this problem
was the main motivation for introducing the concept of varieties of distinguished tangents.

Theorem 4.11 Let X be a smooth variety and G/ P be o homogeneous Funo manifold of
Picard number 1. If there exists a surjective morphisin [ G/P — X, then either X is the
projective space or f is an 1somorphism.

It is easy to see that X is a Fano manifold of Picard number 1 and [ is a finite morphism.
Sa we can apply Proposition 4.3. For the proof, we need to use the structure of the isotropy
representation of G/P in detail. To give the essence of the idea without using too much Lie
theory, I will just discuss the case when &/ P is the Grassmannian.

Sketch of the proaf for the Grassmannian. For the Grassmannian Gr(s, V) of s-dimensional
snbspaces in a camplex vector space V of dimension > 2s, the tangent space at [W] is nat-
urally isomorphic to Hom(W,V/W). The isotropy subgroup at [W] is the group of linear
automorphisms of V' preserving W. Under the action of this group, PHom(W, V/W) has
orbits §1,.. .. S* where

5% .= {¢ € Hom(W,V/W), ( the rank of (} = k}.

The variety of minimal raticnal tangents Cw) C PHom(W,V/W) corresponds to S'. Lk
is well-known that the closure of 5% is an irreducible subvariety of PHom({W, V/W) whose
singular locus is precisely the closure of S%77. for 1 < & < s, with 5 = 0. Consider the fiber
subbundle §* € PT(Gr(s, ¥')) whose fiber at [W] is the closure of Sj.

Given a finite morphism f : Gr(s. V) — X with X different from the projective space,
let I ¢ X be a small connected open set disjoint from the branch locus. Let U, L5 be

two components of f7H{I7} and ¢ : Uy = 7, be the biholomorphism induced by f. Since
X s different from P, the variety of minimal rational tangents 1s a proper subvaricty of
PT,(X) for x € U by [CM]. Thus 4, ((;} = 8, for some I < s by Proposition 4.3 because
a variety of distinguished tangents must be S;' for some & by d3. [t means that ¢ preserves
S and henee ' because §5Uis procisely the singular locus of 8% for | < & < s. From
the Cartan-Fubini type extension applied to the Grassmannian, ¢ can be extended to an
automorphism of Gris, V).

Since Uy, U; can be chosen as any components of f71{{7}, we see that f is a Galois covering
outside the ramification locus. Moreever one can show that an automorphism extending ¢
must fix the ramification locus of f pointwise. Thus there exists a finite group G acting on
Gr(s, V) fixing an effective divisor H peintwise. But one can show that i a homogeneous
Fano manifold of Picard number 1 has a finite group action hxing a hypersurface pointwise,
the Fano manifold must Be either the projective space or the hyperguadric and the quotient
by the group must be the projective space, a contradiction to the assumption that X is not
the projective space. O

The above proof can be applied to other Hermitian symmetric spaces directly. The
orhit structure of the isotropyv representation for these cases is quite similar to that of the
Grassmannian. For general G/ P, this is no longer true  Especially, the number of orbits of
the isotropy representation can be infinite for cxceptional groups. Nonetheless, essentially
the same proof works with minor modification. Also let me point out that one can avoid
using the result of [CM] by using a much weaker result in [Mk1]. See [HM4] for details.

Some special cases of Theorem 4.11 were obtained previously by different methods. For
the case when G/F is a hyperquadric, it was proved by Paranjape-Srinivas ([PS]) and Cho-
Sato ([CS]) independently. The special case when G/ is a Hermitlan symimetric space,
in particular a Grassmannian, was proved by Tsai ([Ts]). In another direction, Paranjape-
Srinivas studied self-maps of G/F of arbitrary Picard number and showed that a ramified
self-map factors through a self-map of some projective space. They asked the fellowing
analogue of Theorem 4.11 for abelian varieties, which was proved by Debarre {[De]):

Theorem 4.12 Lei A be a simple ebelian variely end { : A = Y be a finile morphism
onto a smooth variety Y with non-empty ramification. Then Y is ¢ projective space.

Recently, Mok and I generalized it to arbitrary abelian varieties ([HM6]) using some of
the ideas presented in Section 2:

Theorem 4.13 Lei A be an abelian variety and [ A — Y be o finile morphism onto o
smooth variety Y with non-empty ramification. Then Y s ¢ bundle of projective spaces over
a smooth variety Y’ of sirictly smaller dimension, namely, there exisls ¢ smooth morphism
oY = Y’ whose fibers are projective spaces. Moveover, there exists an abelian voriety A’
with a (nof necessarily ramnafied) finite morphism f': A" = Y7

The essential point of Theorem 4.13 is when ¥ is a Fano manifeld of Picard number 1.
For Theorem 4.12, Debarre showed that curves in a simple abelian variety have ample normal
bundles, which implies that minimal rational enrves in ¥ have ample normal bundles. For a
general abelian variety A, one can show easily that the variety of minimal rational tangents
of ¥ consists of finitely many linear subspaces. The main point of the proof of Theorem
4.13 is to exciude this possibility, combining deformation theory of rational curves and some
topological considerations.
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5 Open questions

There are many important questions about Fano manifolds for which the methods discussed
in this lecture series may have some apphications. Here 1 will list some questions which
are directly voncerned with the theory of the variety of minimal rational tangents itsell.
Most of these are about the structure of the variety of minimal rational tangents. From
the examples that we have examined. we can see some general patterns about the variety of
minimal rational tangents. Of course, it is dangerous to make a guess about general Fano
manifolds of Picard number 1 from the data of a handful of exampies. But some speculations
can serve as guides for further study.

Question 1 For any Fune menifold of Picard number I and any choice of a minimal
rational component, is the langent map at a generic pvint an immersion, or even an embed-
ding?

This was true for all the examples we have scen. By Proposition 1.4, 7, is an immersion
if all the minimal rational curves through a generic point are standard rational curves. To
show this in general seems to be very difficult. However this question is open even for many
specific cases, for example, the low genus cases of the moduli of bundles on curves.

Question 2 Is C, srreducible if it has positive dimension? fs it ot least true for prime
Fano manifolds?

Of course, if C; is smooth and 2p 2 n, then €, is irreducible because any two subvarieties
of dimension p in P,,_, intersect if 2p > n. Other than this trivial one, 1 do not know of any
general result.

Question 3 Assumne that 1. is en embedding and C, is trreducible, s C, linearly normal
in its finear span in PTL(X)¥ Is it true at least for prime Feno manifolds?

Of course, this is the case if 2p > 3n by Zak’s theorem on linear normality. It is remarkable
that in all the examples we have seen with » > 0, the variety of minimal ratiotial tangents is
linearly normal. For Hermitian symmetric spaces and homogeneous contact manifolds, this
fact was crucially used in the proof of their deformation rigidity ({HM2], [Hw1]).

Question 4 Are there examples where C; C PT,(X) is degenerate, which does not come
from linear sections of homogeneous contact manifolds? Especially when 2p = n, is there
an example of X with degeneraie C;, different from the homogeneous contact menifolds? Is
there one among prime Fano manifolds?

When C; is smooth and degenerate with p = 2n, the distribution W defined by the linear
span of C; must have corank 1 by Theorem 2.5 . Moreover one can show that its Frobenius
bracket gives a symplectic form, thus W defines a contact structure at generic points. It is
not clear whether this contact structure can be extended to the whole X. If that is the case,
then we can say that X is a homogeneous contact manifold at least when it is a prime Fano
manifold.

Question 5 Does Cartan-Fubini type extension holds for the case of p = 0¢

Step 1 of the proof of Theorem 3.2 is automatic for p = 0. The main difficulty is with
the analytic continuation in Step 2 and the univalence in Step 3. It is very likely that the
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answer is affirmative. One evidence is Theorem 4.6, which is an analogue of Theorem 4.4.
Another evidence is that the following weaker extension holds in some cases.

Let U U" be connected open subsets in X and ¢ : U — U7 be n biholomorphic map preserv-
ing the varieties of minimal rational tangents. Then ¢ can be ettended to an eufowiorphism

of X.

For example, we can check by direct caleulation that Mukai-Umemura threefolds ([MU])
has this extension property. Also this holds for hypersurfaces of degree n in P,y from the
work of Jensen-Musso ([IM]). I do not know of other examples.

Question 6 Is the Gauss map of the variety of minimal rafional tengents generically
finite for ¢ Fano manifold of Picard number 1 different from the projective space?

This 15 true for all the examples we know of. If the answer to Question 1 is ves, Question
6 is equivalent to the following by Zak's theorem on the finiteness of the Gauss map for a
nonlinear submanifold ([Za]).

Question 7 Can the components of the vartety of minimal rationa! tangents be proper
lineer subspuces of positive dimension in PT,(X)?

This is related to the main difliculty encountered in the proof of Theoremr 4.13 ([HM6]).
If a component is linear, the local distribution defined by that component is integrable by
the arguments in the proof of Proposition 2.4. This implies, by Proposition 2.2, that the
variety of minimal rational tangents cannot be irreducible. The leaf of this local foliation is
very close to a projective space in the sense that it is covered by rational curves of minimal
degree through a generic point. In this sense, Question 7 is related to the following question.

Question 8 Cun there exist a submanifeld Z C X isomorplic to Py for some 1l <k < n
so that the normal bundle of Z is trivial and lines of Py correspond to stunderd minirnal
rational curves on X ¢

Combining Question 5 and Question 6, we can ask

Question 9 Does Cartan-Fubini type extension holds for all Fano munifolds of Picard
number I, excepling the projeclive space?
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