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0. Introduction

Transcendental methods of algebraic geometry have been extensively studied since a
very long Lime, starting with the work of Abel, Jacobi and Riemann in the nineteenth
century. More recently, in the period 1940-1970, the work of Hodge, Hirzebruch,
Kodaira, Atiyah revealed still deeper relations between complex analysis, topology,
PDE theory and algebraic geometry. In the last ten years, gauge theory has proved
to be a very efficient too! for the study of many important questions: moduli spaces,
stable sheaves, non abelian Hodge theory, low dimensional topology ..

Our main purpose Lere is to describe a few analytic tools which are useful to
study questions such as linear series and vanishing theorems for algebraic vector
hundles. One of the early success of analytic methods in this context is Kodaira's
use of the Bochner technique in relation with the theory of harmonic forms, during
the decade 1950-60. The idea is to represent, cohomology classes by harmonic forms
and to prove vanishing theorems by means of suitable a priori curvature estimates.
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The prototype of such results is the Akizuki-Kodaira-Nakano theorem (1954): i X is
a nonsingular projective algebraic variety and L s a holomorphic line bundle on X
with positive curvature, then H9(X, 25 @ L) = 0 for p+q > dim X (throughout the
paper we set. Qﬁ. = APT% and Ky = AT, n = dim X, viewing these ohjects either
as Loloorphic bundles or as locally free Ox-madules). 1t is only nweh later that an
algebraie proof of this result has been proposed by Deligne-THusie, via characteristic
# methods, in 1986,

A refinement of the Bochner technique used by Kodaira led about ten years later
to fundamental L? estimnates due to Hormander [H8r65], concerning solutions of the
Cauchy-Rietnaun operator. Not only vamishing theoremns are proved, but more pre-
cise information of a quantitative nature is obtained about solutious of J-equations.
The best way of expressing these L7 estimates is to use a geonetric setting first
cousidered by Andreotii-Vesentini [AV65]. More explicitly, suppose that we have
a holomorphic line bundle L equipped with a hermitian metric of weight e~ %,
wlhere ¢ is a (locally defined) plurisnbharmonic function; then explicit bounds on
the L2 norm [ /1272 of solutions is Gbtained. The result is still more useful if the
plurisubharmonic weighi ¢ is allowed to have singularities. Following Nadel [Nad89)],
we define the multiplier ideal sheaf Z{w) to be the sheaf of germs of holomorphic
functions f such that |[{2¢~2¢ is locally sumimable. Then I{y) is a coherent alge-
braic sheal over X and HUX, K x ® L& Z(p)) = 0 for all ¢ = 1 il the curvature of
L is positive (as a current). This important result. can be seen as a generalization of
the Kawainata-Viehweg vanishing theorem ([Kaw82], [VieB82]), which is one of the
cornerstones of higher dimensional algebraic geometry (especially of Mori's winimal
model pregram).

In the dictionary between analytic geometry and algebraie peometry, the ideal
T{g) plays a very important role, since it directly converts an analytic object into
an algebraic one, and, simuitancously, takes care of the singularities in a very ef-
ficient way. Another analytic tool used to deal with singularities is the theory of
positive currents introduced by Lelong [Lel57]. Currents can be scen as generaliza-
tives of algebraic cycles, and many elassical results of intersection theory still apply
to currents. The concept of Lelong number of a current is the analytic analogue
of the concept of multiplicity of a germ of algebraic variety. Intersections of cyeles
correspond to wedge products of currents {whenever thesce products are defined).

Besides the Kodaira-Nakane vanishing theorem, one of the most basic “effective
result” expected to hold in algebraic geometry is expressed in the following conjec-
ture of Fujita [Fuj&7}: if L is an ample {i.e. positive} line bundie on a projective
n~dimensional algebraic variety X, then Kx + (n-+ 1)L is generated by sections and
Kx +(n+2)L is very ample. In the last decade, a lot of efforts has been brought for
the solution of this conjecture - and it scems indeed that a solution might finally
emerge in the first years or the third millenium - hopefully during this Summer
School! The first major results are the proof of the Fujita conjecture in the case of
surfaces by Reider [Rei88] (the case of curves is easy and has been known since a very
long time), and the numerical criterion for the very ampleness of 2K x + L given in
[Dem3b], obtained by means of analytic techniques and Monge- Ampére equations
with isolated singularities. Alternative alpebraic techniques have been developed
slightly later by Kollar [Kol92]. Ein-Lazarsfeld [EL93], Fujita {Fuj93]. 8iu {Siuds,
96], Kawamata [Kawy7a] and Helmke [Hel97]. We will explain here Sin's method
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Dheeanse it s technically the simplest method; one of results obtained by this method
Is the following cffective resnlt: 2K x + mZ is very ample for m > 2 + (3":’1). The
basic idea is to apply the Kawamata-Viehweg vanishing theorem, and to combine
this with the Riemann-Roch formula in order to produce sections through a clever
induction procedure on the dimension of the base loei of the linear systems involved.

Although Siu’s result is certainly not optimal, it is sufficient to obtain a nice
constructive proof of Matsusake’s big theorem ([Sin93], [Dem96]). The result states
that there is an effective value my depending only on the intersection numbers L™
and L™= Ky, such that mL is very ample for m > myg. The basic idea is to combine
results o the very ampleness of 2K x +mL together with the theory of kolomorphie
Morse inequalities ([Demn85b]). The Morse inequalities are used to construct sections
of w' L — K ¢ for m' large. Again this step can be made algebraic (following sugges-
tions by F. Catanese and R. Lazarsfeld), but the analytic formulation apparently
has a wider range of applicability.

In the next sections, we pursue the study of L? estimates, in relation with the
Nulistellenstatz and with the extension problem. Skoda {Ska72D, SkoT8] showed that
the division problem f = 2 g;lt; can be solved holomorphically with very precise L?
estimates, provided that the L2 norm of |f| |g|™7 is finite for some sufliciently large
exponent p {p > n = dim X is enough). Skoda’s estimates have a nice interpreta-
tion i terms of local algebra, and they lead to precise gualitative and quantitative
estinates in connection with the Bzout problem. Another very important result
is the L? extension theorem by Ohsawa-Takegoshi [OT87, Ohs88], which has also
been generalized later by Manivel {Many3]. The main statement is that every L?
section f of a suitably positive line bundle defined on a subavariety ¥ ¢ X can
be extended to a L? section f defined over the whole of X. The positivity condi-
tion can be understeod in terms of the canonical sheaf and normat bundle to the
subvariety, The extension theorem turns out to have an incredible amount of impor-
tant consequences: among them, tet us mention for instance Siu’s theorem [Siu74]
on the analyticity of Lelong numbers, the basic approximation theorem of closed
positive (1, 1)-currents by divisors, the subadditivity property T{e +v) ¢ Z{@)T(y)
of multiplier ideals [DELOO], the restriction formula I(py) € Z{o)y, - .. A suit-
able combination of these results can be used to reprove Fujita's result [Fuj94] on
approximate Zariski decomposition, as we show in the vary last section.

These notes are essentially written with the idea of serving as an analytic tool-
box for algebraic geometry. Although efficient algebraic techniques exist, our feeling
is that the analytic techniques are very flexible and offer a large variety of guide-
lines for more algebraic questions (including applications to number theory which
are not discussed here). We made a special effort to use as little prerequisites and to
be as self-contained as possible; hence the rather long preliminary sections dealing
with basic facts of complex differential geometry. I am indebted to L. Ein, J. Kolldr,
R. Lazarsfeld, Th. Peternell, M. Schneider and Y.T. Siu for many discussions on
these subjects over a period of time of at least one decade. These discussions have
certainly had a great influence on my research work and therefore on the contents
of the present notes.
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1. Preliminary Material

1.A. Dolbeault Cohomology and Sheaf Cohomology

Let X be a C-analytic manifold of dimension . We denote by AP9T% the bundle of
differential forms of bidegree (p, g} on X, i.e., differential forins which can be written
as
U= Z us gdzr Adz ;.

Hl=p, |/ =9
Here (z,,...,2,) denote arbitrary local holomorphic coordinates, f = (F1:-e - 2p),s
J = (j1,-..,Jq) are multiindices (increasing sequences of integers in the range
[1,...,n), of lengths {If = p, |J| = g), and

dz;:=dz,-,/\.../\dz,-p, dEJ:=dEj1!\.../\dZ"jq.

Let £79 be the sheaf of germs of complex valued differential (p, ¢)-forms with €%
coefficients. Recall that the exterior derivative d splits as d = d’ + d" where

du
d'u = > ST o Ader AdEy,
2
Ui=p, |/ =g, 1<k<n O
Ju
d'u = 4&1‘2;‘/\(12;!\de
82;;

Hl=p, |J|=q,1<k<n

arc of type (p+1,q), {p, ¢+ 1) respectively. The well-known Dolbeault-Grothendieck
lemma asserts that any d”-closed form of type (p,q) with ¢ > 0 is locally d”-exact
(this is the analogue for d” of the usual Poincaré lemma for d, see e.g. Hormander
1966). In other words, the complex of sheaves (£7*, @) is exact in degree ¢ >
in degree ¢ = 0, Kerd” is the sheaf (2% of germs of holomorphic forms of degree p
on X.

More generally, if F is a holomorphic vector bundle of rank r over X, there
is a natural ¢" operator acting on the space C®(X, AP9T% @ F) of smooth (p, ¢}
forms with values in F;if s = 37, ., ., saex is a {p,¢)-form expressed in terms of a
local holomorphic frame of F, we simply define d”s := 3 d"s, & ex, observing that
the holomerphic transition matrices involved in changes of holomorphic frames do
not affect the computation of d”. It is then clear that the Dolbeault-Grothendieck
lemma still holds for F-valued forms. For every integer p = 0,1, ..., n, the Dolbeault
Cohomology groups HP9(X, F) are defined to be the cohomology groups of the
complex of global (p,¢) forms (graded by q):

(1.1} HPO(X,F) = HI(C®(X, 47T} & F)).

Now. let us recall the following fundamental result from sheaf theory (De Rham-Weil
isormorphism theorem): let (£°,d) be a resolution of a sheaf A by acyclic sheaves,
i.e. a complex of sheaves (L£*,8) such that there is an exact sequence of sheaves

' 4 &7
0— A L0 St gt Sy pet

and H*(X,L£9 = 0 for all ¢ > 0 and s > 1. Then there is a fonctorial isemorphism
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(1.2) HY{(I(X, L") — HI(X, A).

We apply this to the following situation: let E{F)*2 be the sheaf of germs of O
sections of A?4T% @ F, Then (E(F)P* d") is a resolution of the locally free Ox-
module 2% @ O(F) (Dolbeault-Grothendieck lemma), and the sheaves &£(F)P7 are
acyclic as modules over the soft sheaf of rings €=, Hence by {1.2) we get

{1.3) Dolbeault Isomorphism Theorem (1953). For every holomorphic vector bundle
F on X. there is o canonical isomorphism

HPS(X, F) = HY(X, (2%, ® O(F)). 0

If X is projective algebraic and F is an algebraic vector bundle, Serre’s GAGA
theoremn [Ser56] shows that the algebraic sheaf cohomology group H(X, 25 00(F))
computed with algebraic sections over Zariski open sets is actually isomorphic to
the analytic cohomology group. These results are the most basic tools to attack
algebraic problems via analytic methods, Another important tool is the theory of
plurisubharmonic functions and positive currents originated by K. Oka and P. Lelong
in the decades 1940-1960.

1.B. Plurisubharmonic Functions

Plurisuiharmonic funetions have been introduced independently by Lelong and Oka
in the study of holomorphic convexity. We refer to [Lel67, 69] for more details.

{1.4) Definition. A function u: 2 — [—o00, +00| defined on an open subset 2cC
is said to be plurisnbharmonic (psh for short) if

a)  u is upper semicontinuous ;

L) for every complex line L C C*, uiont 5 subharmonic on 2L, thet 1s, for all
e € {2 and £ € C* with |{| < d{a,012), the function u satisfies the mean value
inequalily

1 An X
u(a) < P j; ula + €9 £)dd.
The set of psh functions on {2 is denoted by Psh({2}.

Wo list below the most basic properties of psh functions. They all follow easily
from the definition.

{1.5) Basic properties.

a) Every function v € Psh({2) is subharmonic, namely it satisfies the mean value
inequality on euclidean balls or spheres:

1
u(a) < m[s(a'r) u(z}d)\(z)
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Joe O QVOTY connected

for every o € (2 and ¢ < d{a, L2 Eitheru = —mooru € L
component of £2,

b} For any decreasing sequence of psh functions uy & Psh(f2). the Hmit w = Timuy
is psh on £2.

¢)  Let u € Psh{{2) be such that u % —oa on every conneeted component of nu
(pe) is a Lamily of sioothing kernels. then w* pe is C% and psh on

@, ={ze 0 dixL0) >}

the family (2% pe) 18 mcreasing in € and lnesp b * pe = &

4y Let wg,....up € Psh{(2) and x : R — R be a convex function such that
x{t1.. .., tp) is increasing in each ¢;. Then P2 CITT 1p) is psh on £2. In partic-
nlar wy 4 -+, max{un, .- cupl, logle™ + -+ e"r) are psh on 2. ]

{1.6) Lemma. A funciion u € CH 1 R) is psh on {2 if and only 1f the hermitian form
Hu(e)(€) = 315 hen 82u/0z;07(a) §5€, is semupositive at every potnd @ € (2.

Proof. This is an casy consequence of the following standard formula

1 @ 2 [ dt .

— ula + ¥ £)df — ufa) = ~ — Hula 4 CE)E) dA(C),
2n fo TJo b Jigee

where di is the Lebesgue measure on €. Lemma 1.6 is a stroug evidence that

plurisubharmenicity is the natural complex anatogue of linear convexity. O

For non smooth functions, a similar characterization of plurisublharmonicity can
be obtained by means of a regularization process.

(1.7) Theorem. If v € Psh({2), u # —00 on every connected component of §2, then
for all £ € C”
Hul) = Y. P e g e D)
= oo Eale € DU
1 Fen 0z;0%x
is a positive measure. Conversely, if v € D($2) is such that Hu() s positive

measure for every &€ € C", there erists o unique function u € Psh{§2) which s
locally integrable on §2 and such thet v is the distribution asseciated to u.

I: order to get a better geometric insight of this notion, we assuIneg more gen-
crally that w is a function on a complex n-dimensional manifold X. If@: X =Y is
a holomorphie mapping and if v € C?(Y,R), we have d'd"(v e @) = ¢*d'd" v, heuce

H{vod)(a,&} = Hu(®(a) ¢'(a).£).

In particular Hu, viewed as a hermitian form on Tx ., does not depend on the choice
of coordinates {z., - . ., 2 ). Therefore, the notion of psh function makes sense on any
complex manifold. More gererally, we have
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(1.8) Proposition. Jf & : X — Y is a holowmorphic map and v € Psh{Y), then
nod & Psh{X). O

(1.9} Example. It is a standard fact that log |z| is psh (i.e. subharinonic) on C. Thus
log | f} € Psh(X) for every holemorphic function f € HY(X, Ox). More generally

log (|f2{™ 4+ + | f4l®*) € Psh(X)

for every f; € H'(X,Ox} and a; > 0 (apply Property 1.5d with u; = oy log |f5]).
We will be especially interested in the singularities obtained at points of the zero
varicty f1 = ... = f, = 0, when the ¢; are rational numbers. O

(1.10) Definition. A psk function u € Psh(X) will be said to have analytic singuler-
iies if 1w can be writfen locelly as

[#3
w=glog (Il +---+1fn) + v,

where o € Ry, v is a locally bounded function and the f; are holomorphic functions.
If X is algebroic, we say that u has algebreic singularities if u can be written ag
above on sufficiently small Zuriski open sets, with o € Q4 and f; algebraic.

Woe then introduce the ideal 7 = J(u/a) of germs of holomorphic functions I
such that |2] < Ce®® for some constant C, i.e.

(bl < COful+---+ ) fwl)-

This is a globally defined ideal sheaf on X, locally equal to the integrai closure T of
the ideal sheaf T = (f1,..., fn), thus 7 is coherent on X. If (g;,..., gn-} are local
generators of 7, we still have

43
u= 2 log{lg:l* + -+ gn ) + O(1).

If X is projective algebraic and u has analytic singularities with o € @, then
w automatically has algebraic singularities. From an algebraic point of view, the
singularities of u are in 1:1 correspondence with the “algebraic data” {7, ). Later
on, we will see another important method for associating an ideal sheaf to a psh
funetion.

(1.11) Exercise. Show that the above definition of the integral closure of an ideal
T is equivalent to the following more algebraic definition: I consists of all germs h
satisfying an integral equation

hd 4 g Bt +.. . tagarhtag=0, ax € I,

Hint. One inclusion is clear. To prove the other inclusion, consider the normalization
of the blow-up of X along the (non necessarily reduced) zero variety V(I). O
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1.C. Positive Currents

The reader can consult [Fed69] for a more thorough treatment of current theory.
Let us first recall a few basic definitions. A current of degree ¢ on an oriented
differentiable manifold M is simply a differential g-form & with distribution co-
efficients. The space of currents of degree g over M will be denoted by D9(M).
Alternatively, a current of degree ¢ can be seen as an clement & in the dual space
DL(M) = (DP(M)) of the space DP(M) of smooth differential forms of degree
p = dim M — ¢ with compact support; the duality pairing is given by

(1.12) (6,0) = /MGAQ, «a € DP(M).

A basic exampie is the current of integration [S] over a compact oriented submanifold
Sof M:

(1.13) {(S),a}= La, dega = p = dimg S.

Then {S] is a current with measure coefficients, and Stokes’ formmla shows that
d[5] = (—1)7"![8S], in particular d[S] = 0 if S has no boundary. Because of this
example, the integer p is sald to be the dimension of & when & € D/ (M). The
current & is said to be closed if d& = 0.

On a complex manifold X, we have similar notions of bidegree and bidimension;
as in the real case, we denote by

DP9X) = D),

?
bl

(X)), n = dim X,

~p.n—-q

the space of currents of bidegree (p, ¢) and bidimension (rn~p,n—g¢) on X. According
to [Lel57], a current & of bidimension (p, p} is said to be (weakly) positive if for every
choice of smooth (1, 0)-forms a,...,op on X the distribution

{1.14) O Al AT AL Alap AT, s a positive measure.

(1.15) Exercise. If © is positive, show that the coefficients & ; of & are complex
measures, and that, up to constants, they are dominated by the trace measure

1 _ i i
09=6/\Eﬁ"=2 *N6r, ,B:Ed’d”lz|2= 3 3 dzadz,

1555n

which is a positive measure.
Hint. Observe that 3 @ 1 is invariant by unitary changes of coordinates and that
the (p, p)-forms icy AT A ... Ay A @, generate APPTE, as a C-vector space. O

A current @ = 130, ;o Oindzy A dap of bidegree (1,1) is easily seen to be
positive if and only if the complex measure z,\,-Xke,-k is a positive measure for
every n-tuple (A1,..., A) € C*.

(1.16) Example. If u is a {not identically —o0) psh function on X, we can associate
with u a {closed) positive current @ = i#8u of bidegree (1,1). Conversely, every
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closed positive current of bidegree (1, 1) can be written under this form on any open
subset 2 ¢ X such that HE (2, R) = H!(82,0) = 0, e.g. on small coordinate balis
{exercise to the reader). O

It is not difficult to show that a product €5 A ... A 8, of positive currents of
bidegree (1,1} is positive whenever the product is well defined {this is certainly the
case if all &; but one at most are smooth; much finer conditions will be discussed
in Section 2).

We now discuss another very important example of closed positive current. In

fact, with every closed analytic set A C X of pure dimension p is associated a current
of integration

(1.17) ([A].o_r):/A a, aeD"P(X),

reg

obtained by integrating over the regular points of A. In order to show that {1.17) is
a correct definition of 4 current on X, one must show that A has locally finite area
in a neighborhood of Aging. This result, due to [Lel57] is shown as follows. Suppose
that 0 is a singular point of A By the local parametrization theorem for analytic
sets. there is a linesr change of coordinates on C" such that all projections

fr {2 2a) o (e 2

define a finite ramified covering of the intersection A N A with a small polydisk
A in € onto a small polydisk Ay in €. Let ny be the sheet number. Then the
p-dimensional area of AN A is bounded above by the sum of the areas of its projec-
tions counted with multiplicitics, i.e.

Area(AN A) <3 nyVol(4y).
The fact that {A] is positive is also easy. In fact
i AT AL Al Aty = | det{oge)Piw AT AL ATwy, ATy

if a; = 3 ajpdwy in terms of local coordinates {wi, . .., wp) on Arge. This shows that
all such forms are > 0 in the canonical orientation defined by lw) AW A.. Ay Ap-
More importantly, Lelong [Lel57] has shown that jA] is d-closed in X, even at points
of Aging. This iast result can be seen today as a consequence of the Skoda-El Mir
extension theorem. For this we need the following definition: a complete pluripolar
set is a set £ such that there is an open covering (§2;) of X and psh functions u;
on {2 with ENiy = u;l(Aoo). Any (closed) analytic set is of course complete
pluripotar {take u; as in Example 1.9},

{1.18) Theorem (Skoda [Sko81], EI Mir [EM84], Sibony [Sib85]). Let E be a closed
complete plurtpolar set in X, and let © be a closed positive current on X ~ E such
that the coefficients ©1 ; of @ are measures with locally finite mass near E. Then
the trivial extension © obtained by estending the measures Gy by 0 on E is still
closed on X.
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Lelong's result d[A] = 0 is obtained by applying the Skoda-El Mir theorem to
@ = [Aseg] 00 X~ Aging.

Proof of Theorem 1.18. The statement is local on X. so we may work on a small
open set §2 such that B2 =v” Yoo}, » € Psh($2). Let x - R = R be a convex
increasing funetion such that x(¢) = 0 for £ < -1 and x{0) = 1. By shrinking {2
and putting vg = (k7w * pe, ) with g, — 0 fasl, we get a scquence of functions
v € Psh(2y N ¢ (£ such that 0 L vy < b, vy =0ina neighborhood of £ 0 &2
and limug(z) = 1 at every point of 2~ F. Let # € (0, 1]) be a tunciion such
that @ = 0 on [0,1/3], # = 1 on [2/3,1] and 0 <4 < 1. Then ¢ 0 o = 0 near Engs
and 6o v, — 1 on 2~ E, Thercfore G = liMg o ool 0 v 1O and

4G = lim @Ad(#oug)
k—+o00

in the weak topology of currents. 1t is therefore sufticient to verify that & A d' {6 o)
couverges weakly to 0 (note that 476 is conjugate to 4'Q, thus ¢ will also vanish).

Assume first that € € DPLn=1{ X} Then @ A d'(fow,) € D™ 71(2), and
we have to show that

@ad@on).m ={@,6w)dvra — 0 Vae DH.

ko

As vy (@, 1yAF) is a non-negative hermitian form ou DLO(N, the Canchy-Schwarz
inequality yields

(@ s AT < @IBAB) (@ ivaT), Yy e D).

Let € DU, 1<y <1, beequalto lina neighborhood of Supp a. We find
I(@. gl(Uk)d"'Uk A §)|2 < (9, T,Md"vk A d”vk.) @, 9,(’Uk}2i(_x A a).

By hypothesis fQ\E O Ada AT < +oo and #(vy) converges everywhere to 0 on 12,
thus (@, 8 (v )2ia AT} converges to 0 by Lebesgue’s dominated convergence theorem,
On the other hand

id'd" ol = vy id'd" vy + 2id v A d"ve = 2dvg A d v
2{0, pid've Ad vy £ (8, id'd"v}).

As 1€ D(2), ve = 0 near F and d6 =0 on 2~ E. an integration by parts yields

(C—),u’)id'd"vg) = (@, vlid'd"¥) < C] 18] < +20
AE

where (" is a bound for the coefficients of id'd"”+. Thus {8, id v Ad o) I bounded,
and the proof is complete when @ € pm-bn=l

In the general casc @ € D'PF, p < n, we simply apply the result already proved
to all positive currents & A v € pm-in-l where v = iy AJ A A F¥ep1, D
Fpop-y TUNS OVET & basis of forms of AP~P~1m=P=1T% with constant coefficients
(Lemma 1.4). Then we get d(@ A~) = d& Ay = 1 for ali such ~, hence d@ =0 0
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(1.19} Corollary. Let @ be & closed pusitive current on X and let E be a com-
plete pluripolar set. Then 10 and 1x. g© are closed positive currents. In fact.
B = 1x. g€ is lhe trivial extension of O x g te X, and 1p0 = 6 - 6. |

As mentioned above, any current € = id'd"u associated with a psh function u is
a closed positive (1, 1}-current. In the special case u = log if| where f € H(X, Ox)
is a non zero holomorphic function, we have the important

(1.20) Lelong-Poincaré¢ equation. Let f € HO(X,Ox) be a non zere holomorphic
function, Zp = Y m;Z;, m; € N, the zero divisor of f and [Z;] = ¥ my[Z;] the
associated current of integration. Then

- B
~9Blog|f = |2,

Proof (sketch). It is clear that id'd”log|f] = 0 in a neighborhood of every point
x ¢ Supp(Zy) = |J Z;, so it is enough to check the equation in a neighborhood of
every point of Supp(Z;}. Let A be the set of singular points of Supp(Z;), i.e. the
union of the pairwise intersections Z; M Z, and of the singular loci Z; sing; we thus
have dim A < n — 2. In a neighborhood of any point z € Supp(Zy) ~ A there are
local coordinates (zi,.. ., #,} such that f(z) = 2]"/ where m; is the multiplicity of f
along the component Z; which contains x and z; = 0 is an equation for Z; near z.
Hence

id’d” log|f] = mjid'd” fog |21] = my[Z;]

in a neighborhood of x, as desired (the identity comes from the standard formula
%rl’d” log{z{ = Dirac measure &y in C). This shows that the equation holds on
X ~ A. Hence the difference 1d'd” log|f| — [Z;] is a closed current of degree 2 with
measure coefficients, whose support is contained in A. By Exercise 1.21, this current
must be 0, for A has too small dimension to carry its support {A is stratified by
submanifolds of real codimension > 4). O

{1.21) Exercise. Let © be a current of degree ¢ on a real manifold M, such that
both € and d& have measure coefficients {“normal current”). Suppose that Supp &
is contained in a real submanifold A with codimg 4 > g. Show that @ = 0.

Hint: Let m = dimg M and let (zy,...,2,,) be a coordinate system in a neighbor-
hood 2 of a point ¢ € A such that AN 2 = {z; = ... = zx = 0}, k > ¢. Observe
that 2;6 = 2;d0 = 0 for 1 € j < k, thanks to the hypothesis on supports and on
the normality of @, hence dz; A O = d(x;0) —2;d0 = 0,1 < j < k. Infer from this
that all coefficients in @ = 3, ©rdz; vanish. O

We now recall a few basic facts of slicing theory (the reader will profitably
consult [Fed69] and [Siu74] for further developments). Let o : M — M’ be a sub-
mersion of smooth differentiable manifolds and let € be a locally flat current on M,
that is, a current which can be written locally as 8 = U + dV where U, V have
Ll coeflicients. It is a standard fact (see Federer) that every current @ such that

loc
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both & and @9 have measure coefficients is locally flat; in particular, closed positive
currents are locally flat. Then, for almost every z' € M’, there is a well defined stice
., which is the current on the fiber ¢ {z') defined by

Gy = U[u"(::') + dVraml(I:).

The restrictions of U, V' to the fibers exist for almost all x* by the Fubini theorem.
The slices &, are currents on the fibers with the same degree as @ (thus of dimension
dim & — dim {fibers)}. Of course, every slice 6, coincides with the usual restriction
of @ to the fiber if © has smooth coefficients. By using a regularization 8, = & p,,
it is easy to show that the slices of a closed positive current are again closed and
positive: in fact U o and V; o+ converge to Uy and Vor in L (7(2”)), thus 8, .
converges weakly to @, for almost every z'. Now, the basic slicing formula is

(1.22) f GAQAJ*B:/ (f 9,,,(33")/\crlo-x(z-)(zr")){:}(zr')
M zreM Sdzres-1(z)

for every smooth form a on M and 8 on M’, such that a has compact support and
dega = dim M — dim M’ — deg B, deg @ = dim M’. This is an easy consequence of
the usual Fubini theorem applied to I/ and V in the decomposition 8 = U + dV, if
we identify locally o with a projection map M = M" x M"” — M’ z = (2", 2") — ',
and use a partitition of unity on the support of a.

To conclude this section, we discuss De Rham and Dolbeault cohomaology theory
in the context of currents. A basic observation is that the Poincaré and Dolbeault-
Grothendieck lemma still hold for currents, Namely, if (D9, d) and (D'(F)P9,d")
denote the complex of sheaves of degree g currents (resp. of (p,q)-currents with
values in a holomorphic vector bundle F), we still have De Rham and Dolbeault
sheaf resolutions

00R—-+D* 0 2% @O(F)— D'(F)P".
Hence we get canonical isomorphisms
(1.23) HEn(M,R) = H{(F{M, D"}, d)},
HPA(X, F) = HY((D(X, D'(F)P*),d").

In other words, we can attach a cohomology class {@} € Hip (M, R) to any closed
current & of degree ¢, resp. a cohomology class {€} € HP9(X, F) to any d"-closed
current of bidegree (p, ¢). Replacing if necessary every current by a smooth represen-
tative in the same cohomology class, we see that there is a well defined cup product
given by the wedge product of differential forms

HUYMR) x ... x HI(M,R) — HO++on (A R),
({61} {1 — {1} AL A {B).

In particular, if M is a compact oriented variety and g; + ... + ¢ = dim M, there
is a well defined intersection number

{61} {83} - - (O} =]M{91}/\.../\{8m}.



2. Lelong Numbers and Intersection Theory 13

However, as we will see in the next section, the pointwise product G1 A ... A By,
need not cxist in general.

2. Lelong Numbers and Intersection Theory

2.A. Multiplication of Currents and Monge-Ampére Operators
Let X be a n-dimensional complex manifold. We set
1
d- = —(d —d").
gnd — )

Tt follows in particular that d° is a real operator, i.e. dcn = d°T, and that dd® =
i;d’d”. Although not quite standard, the 1/2ir normalization is very convenient for
many purposes, since we may then forget the factor m or 2r almost everywhere (e.g.
in the Lelong-Poincaré equation (1.20}).

Let u« be a psh function and let © be a closed positive current on X. QOur desire
is to define the wedge product dd®u A @ even when neither u nor © are smooth.
In gencral, this product does not make sense because dd®y and @ have measure
coefficients aud measures cannot be multiplied; see Kiselman [Kis84] for interesting
counterexamples. Even in the algebraic setting considered here, multiplication of
currents is not always possible: suppose e.g. that € = [D] is the exceptional divisor
of a blow-up in a surface; then D-D = —1 cannot be the cohormology class of a closed
pusitive current [D]?. Assume however that uisa locally bounded psh function. Then
the eurrent u@ is well defined since w is a locally bounded Borel function and © has
measure coefficients. According to Bedford-Taylor [BT82] we define

ddu A © = dd°(u&)

where dd¢( ) is taken in the sense of distribution theory.

{2.1) Proposition. If u 15 a locally bounded psh function, the wedge product dd°u A E
is again a closed positive current.

Proaf. The result is local. Use a convolution u, = u x py 10 get a decreasing
sequence of smooth psh functions converging to u. Then write

dd(u8) = lim_dd*(u,0) = dd"u, 1O

as a weak limit of closed positive currents. Observe that u,& converges weakly to
u€ by Lebesgue’s monotone convergence theorem. O

More generally, if %1, . . ., %m are locally bounded psh functions, we can define
dd®uy A ... AddSum A O = dd®(wddug A . A dd®um A o)

by induction on m. (Chern, Levine and Nirenberg, 1969) noticed the following nseful
inequality. Define the mass of a current & on a compact set K to be

14 J.-P, Demnailly, Analytic methods and nuhiplier ideal sheaves

(11 =j SOl
Ko

whenover K is contained in a coordinale pateh and @ = 3 & jidzy A dZ;. Up to
senuuorin equivalence, this does not depend on the choice of coordinates. 1 K is
1ot contained in & coordivate patch, we use a partition of nnity to define a suitable
seminor ||&]|x. I @ = 0, Exercise 1.15 shows that the juass is coutrolled by the
trace measure, Le. ||@)|x € C [, @ A8

(2.2) Chern-Levine-Nirenberg inequality. For all compact subsets K. L of X with
L C K@, there exists a eonstant C 1 > O snch thai

[lddus A ... A dd um AL € Cror fillzsry - - - litton || 1> iy 11911 K

Prosf. By induction, it is sufficient to prove the result for v = 1 and uy; = w. There
is a covering of L by a family of open balls B;CCBJ < K contained i coordinate
patches of X Let_{g,p) be the bidimension of @, let 3 = %ri'ri”lzP. awd let ¥ € D{B;)
be equal to 1T on B3;. Thew

Hdd‘un Ol 5 = Cf ddun@nfgrt < (] xddun@ g
2 E') a,
As @ and 8 are closed, an integration by parts yiclds

[|[ddu B, p £ C[ w O AddEy AFPTE < O] e 16 1
J
4
where ¢ is equal to € multiplied by a bound for the coefficients of the siooth fortm
ddSy n BPL O

Various examples {cf. [Kis84]) show however that products of (1,1)-currents
dd"u; canaot be defined in a reasonable way for arbitrary psh functions u;. However,
functions u; with —oc poles can be admitted if the polar sets are sufficiently small.

(2.3) Proposition. Let u be @ psh function on X, and let @ be a closed positive
eurrent of bidimension {(p,p). Suppose that u 15 locally bounded on X~ A, where A
is an analytic subset of X of dimension < p at each pont. Then ddu A © cen be
defined in such o way that ddu A O = liny, oo dd s A € in the weak topology of
currents, for any decreasing sequence (u,).30 of psh functions converging to u.

Proof. When u is locally bounded everywhere, we have limw, & = u® hy the
monotone convergence theorem and the result follows from the contimiity of dd®
with respect to the weak topology.

First assume that A is discrete. Since our results are local, we may suppose
that X is a ball B(0, R) € C" and that A = {0}. For every 5 < 0. the function
u>® = max(u, 8} is locally bounded on X, so the product © Addiu®® is well defined.
For |s| large, the function u2¢ differs from u only in a small neighborhood of the
otigin, at which 1© may have a —co pole. Let y bea {p—1,p— 1)-form with constaut
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coellicients and sct s(r) = liminf|;;_,, _qu{z). By Stokes’ formula, we see that the
integral

{2.4) Is) ::/ ddu®* AQ Ay
B{0,r)

does not depend on s when s < s(r), for the difference I{s} — I{s"} of two such
integrals involves the dd® of a current (u®* — ua"') A B Ay with compact support in
B(0,7). Taking v = (dd®|z|*)P~!, we see that the current dd“u A © has finite mass
on B(0,7) ~ {0} and we can define {101 (dd®uA @), 7} to be the limit of the integrals
(2.4) as r tends to zero and s < s(r). In this case, the weak convergence statement
is easily deduced from the locally bounded case discussed above.

In the case where 0 < dim A4 < p, we use a slicing technique to reduce the
situation to the discrete case. Set ¢ = p— 1. There are lincar coordinates (z1,..., 25}
centered at any point of A, such that 0 is an isolated point of AN ({0} x C*~9).
Then therc are small balls B' = B(0,r"} in €%, B” = B(0.r"} in C* ¢ such that
AN (5 x 88"y = (), and the projection map

T:C" =, z:(zl,...,z,,)»—>z':(zl,...,zq)

defines a finite proper mapping AN{B’ x B") —» B’. These properties are preserved
if we slightly change the direction of projection. Take sufficiently many projections
T, associated to coordinate systems {z]*,...,27), 1 < m < N, in such a way that
the family of (g, g)-forms

idz® AdZT AL Adde] AdED

defines a basis of the space of (g, g)-forms. Expressing any compactly supported
stnooth (g, g)-form in such a basis, we see that we need only define

(2.5} j ddu AO A f(2',2")idn AdEL AL ATdzg AdEg =
DtxB"
] { F(2', ) ddoulz', o) A O(2, .}}idzl AdZL A .. Aidzg AdZ,
-

where f is a test function with compact support in B’ x B", and ©{z',+) denotes
the slice of @ on the fiber {z'} x B of the projection «# : C* — C?. Each integral
fp in the right hand side of (2.5) makes sense since the slices ({2'} x B”) N A are
discrete. Moreover, the double integral fB' fB" is convergent. Indeed, observe that
u i1s bounded on any compact cylinder

Kse = B((1 - 6)r) x (E(r"} <B((1- s)r"))
disjoint. from A. Take £ < § <« 1 so small that
Supp f € B{(1 - &)r’") x B{(1 - &)r").

For all 2’ € B((1—4)r"), the proof of the Chern-Levine-Nirenberg inequality 2.2 with
a cut-off function x(2”) equal to 1 on B{{1—¢)r""} and with support in B((1—¢/2)r")
shows that
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/ ddcu(z',-) /\9(2’1!)
B({1—e)r')

< Cellulinoo (g, j 6(2',2") A dde]2" |2
MEB((1—e/2)r7)

This implies that the double integral is convergent. Now replace 1 everywhere by
1, and observe that lim, 40 [p. is the expected integral for every z° such that
B(z', ) exists (apply the discrete case already proven). Moreover, the Chern-Levine-
Nirenberg inequality yields uniform bounds for all functions w,.. hence Lebesgue's
dominated convergence theorem can be applied to [;,. We conclude from this that
the sequence of integrals (2.5) converges when u, | u, as expected. m}

(2.6) Remark. In the above proof, the fact that 4 is an analytic set does not play
an essential role. The main point is just that the slices ({z'} x B”) N A consist
of isolated points for generic choices of coordinates (2, 2). In fact, the proof even
works if the slices are totally discontinuous, in particular if they arc of zero Hausdorff
measure ;. It follows that Proposttion 2.3 still holds whenever A4 is a closed set
such that Hop_1{A) = 0. ]

2.B. Lelong Numbers

The concept of Lelong number is an analytic analogue of the algebraic notion of
multiplicity. It is a very useful technique to extend results in the intersection theory
of algebraic cycles to currents. Lelong numbers have been introduced for the first
time by Lelong in [Lel57]. See also [Lel69], (Siu74], [Dem82a, 85a, 87] for further
developments.

Let us first recall a few definitions. Let € be a closed positive current of bidi-
mension (p,p) on a coordinate open set 2 C C* of a complex manifold X. The
Lelong number of & at a point = € 12 is defined to be the limit

oo (B{z,1))

v(B,x) = 1_l_i.’%l+ v(Q,x,r), where »(6,z,7) = PRy

measures the ratio of the area of @ in the ball B(z,r) to the area of the ball of
radius 7 in €. As 0 = O A 5{wdd®|2]*)P by 1.15, we also get

(2.7) W8, z,7) = %p fB ( )6(z)/\(dd‘|zl2)".

The main results concerning Lelong numbers are summarized in the following the-
orems, due respectively to Lelong, Thie and Siu.

(2.8) Theorem ([Lel57]).

a) For every positive current ©, the ratio v(©,x,7) is a nonnegative increasing
function of r, in particular the limit v(©,z) as r — 0+ olways exists.

b) If @ = dd®u is the bidegree (1, 1)-current associated with a psh function u, then
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(@, ) =sup {v 2 0; u(z) < vlog|z —xl + O(1) at x}.
In particular, if w = log |f) with f € HYX,O0x) and O = dd*u = [Zy], we have
v([Zf), ) = ord(f) = max{m € N: DEf(x) =0, || < m}.

(2.9) Theorem ([TLi67]). In the cuse where © is a current of integration [A] over en
anchytic subvariety A, the Lelong number v([A], z) coincides with the multiplicity of
A at @ (defined e.g. as the sheet number in the ramified covering obtained by taking
u generie Bnecar projection of the germ {A,2) onto a p-dimensional linear subspace

through = in any coordinate patch §2).

{2.10) Theorem {[Siu74]). Let @ be a closed positive current of bidimension (p,p)

on the compler manifold X.

a) The Lelong number v(6,z) is inveriant by holomorphic changes of local coor-
dinates.

b} For every ¢ > U, the set E (&) = {z e X:v{@,2) 2 c} 15 o closed analytic
subsel of X of dimenston < p.

The most. important result is 2.10 b). which is a deep application of Hormander
L? estimates {see Scction 5). The earlier proofs of all other results were rather
intricate ju spite of their rather simple nature. We reproduce below a sketch of
elomentary argnmeets based on the use of a more general and more flexible notion
of Lelong unnber introduced in [Dem87]. Let  be a continuous psh function with
an isolated —oo pole at z, e.g. a function of the form (z) = log Z]SjSN lgs (2)1,
3 > 0, where (91,-.-.gn) 15 an ideal of germs of holomorphic functions in O
witl g~1(0) = {x}. The generalized Lelong number u(6, ) of & with respect to the
weight ¢ is simply defined to be the mass of the measure @ A (ddp)P carried by the
point & (the measure € A (ddp)? s always well defined thanks to Prop. 2.3). This
number can also be seen as the limit {6, ¢} = limg—, oo {8, @, £), Where

(2.11) S(6, o, 1) = f O A (ddp)P.
plz)<t

The relation with our carlier definition of Lelong numbers (as well as part a) of
Theorem 2.8) comes from the identity

(2.12) WO, z.7) = v(@,plogr), olz) =loglz—zl,

in particular #(8, 1) = v{6.log|s ~ 7|} This equality is in turn a consequence of
the following general formula, applied to x(t) = e and t == logr:

(2.13) f B A(ddxo )P =x'(t — 0)p/ & A (ddfp)”,

wlz)<t wiz)<t
where x is an arbitrary convex increasing function. To prove the formula, we use a
regularization and thus suppese that ©, ¢ and x are smooth, and that £ is a non
critical value of . Then Stokes’ formula shows that the integrals on the left and
right hand side of (2.13) are equal respectively to
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/ A A {ddx o zp)p_l Ad(y o), / & A (ddi )" " A,
Jotzi=t Jarzi=t

aud the differential form of bidegree {(p— 1, p) appearing in the integrane of the first
iteral is equal to (x' o @) (dd” @~ Adfp. The expected fonula follows. Part. b}
of Theorem 2.8 is a consequence of the Jensen-Lelong formula. whose proof s left
as Al exercise to the reader.

(2.14) Jensen-Lelong formula. Let u be any psh function on X Then u is integrable
wnth respect to the measure [y = (dd“@)* ™1 A Sy supported by the pseudo-sphere
{olzy =r) und

-r

e (0) :] w{dd®p)™ + / viddu, @, 1) dt. O
{w<r} —o

i our case, we set @(z) = logjz — 2} Then {dd“p)" = & and ju. 35 jusi the
unitary invariant mean value measure on the sphere S{z,e”). For v < vy, Formula
2.14 nnplies

Jo (1) = pa, (1) = / vidd u, o, 4} ~ (v — ro)viddy, ) as T — —00.
v Ty

From this, using the Harnack inequality for subharmonic functions. we get
1(z) ey

liminf ————— = lim = w{ddu. x).
zar loglz — @] re-xe v

These equalities imply statement 2.8 b).
Next. we show that the Lelong numbers #(T', ) only depend ou the asymptotic
behaviowr of @ near the polar set ¢~ *(—o0). In a precise way:

(2.15) Comparison theorem. Let & be a closed positive current on X, and let .-
X — [~o0, +oc| be continuons psh functions with isolated poles at some potntr € X
Assumie that

¥(z)

£ :=limsup —— < +o¢

oz ‘P(Z)
Then v{@,¢) < £71(6, 0}, and the equality holds if £ = lim /.

Proof. (2.12) shows that v{©, k) = Au(@.p)} for every positive constant At
is thus sufficient to verify the inequality v(6,4) < v(G,¢) under the hypothesis
limsup 3 /¢ < 1. For any ¢ > 0, consider the psh function

u. = max{y — o, ).

Fix r < 0. For ¢ > 0 large enough, we have u, = ¢ on a neighborhood of w™ Hr)
and Stokes’ formula gives

(B, p.0) = v(@ u.,v) > (&, u).
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The hypothesis limsupg /¢ < 1 implies on the other hand that there exists to < 0
such that w, = ¥ — ¢ on {u. < fg}. We thus get

w0, u,) = (0, ¢ — ¢} = (8. y),

hence {0, 1) < (@, ). The equality case is obtained by reversing the roles of ¢
and ¥ and observing that lim /¢ = 1/L O

Part a) of Theorem 2.10 follows immediately from 2.15 by considering the
weights @{z) = loglr(z) — 7(z)], ¥{z) = log|r'(z) — 7'(x)| associated to coordi-
nates systemns 1(2) = (z1,...,20), T(2) = (2{,...,25) in a neighborhood of .
Another application is a direct simple proof of Thie's Theorem 2.9 when & = [A]
is the current of integration over an analytic set A C X of pure dimension p.
For this, we have to observe that Theorem 2.15 still holds provided that z is
an isolated point in Supp(€) N ¢~ 1(—o0) and Supp(@) N~ (~co) (even though
7 is not isolated in ¢~ !(~oc) or ¥~!(~o0o)}, under the weaker assumption that
lim supg,ppiey3: 0z Wiz)/w(2) = L. The reason for this is that all integrals in-
volve currents supported on Supp(&). Now, by a generic choice of local coordinates
2= (z1,...,2) and 2" = (2p41,.. ., 2a) o0 (X, 7), the germ (A, z) is contained in a
cone |2} < C|2'|. If B’ C CP is a ball of center 0 and radius r’ small, and B" ¢ C*~?
is the ball of center 0 and radius v = €'/, the projection

pr:AN(B' x B"}) — B

is a ramificd covering with finite shect number m. When z € A tends to x = 0, the
functions
¢(z) = loglz| = log(iz'|* + |z"[1)/%.  (2) = log|2'|.

satisfy lim, o, ¥{z)/@(z) = 1. Hence Theorem 2.15 implies
v([A] z) = v{[4], %) = v([4],¥).

Now, Formula 2.13 with x{t) = ? yields

v([A], ¢, logt) = t‘z”f [A] A (%ddcew)p

{¥<logt}
1 P
— t—zpf = pr" ddc|zf|2
An{l2|<t) (2 )

1 P
= mt””[ (—ddc|z'|2) =m,
onifcr) 2

hence v({A], 1) = m. Here, we have used the fact that pr is an étale covering with
mn shects over the complement of the ramification locus § € B’, and the fact that
S is of zero Lebesgue measure in B,

(2.18) Proposition. Under the assumptions of Proposition 2.3, we have
v(dd“u A O, z) 2 v(u,5)v(B, 1)

at every point x € X.
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Proaf. Assume that X = B(0,r) and z = 0. By definition

r—=0

v{dd®urn @, x) = lim f dd®u A @ A (dd® log |z{)P 1.
lz]<r

Set ¥ = v(u,z) and
u,(2) = max (u(z), (v — ¢) log |z — v}

with ) < g < v {if v = (), therc is nothing to prove}). Then u, decreases to u and

ddu A @ A (dd°log |z)P~! > limsup dd®u, A O A (ddf log |2 P71

Jzi<r vertoe Jzi<r
by the weak convergence of dd°u, A©; here {dd° log |z|)?~! is not sinooth on B(0, r),
but the integrals remain unchanged if we replace log [z| by x(log |z|/7} with a smooth
convex function x such that x(t) =t for t > —1 and x(¢) = 0 for ¢ < —2. Now, we
Liave w(z)} < vlog |z| + € near 0, 80 u,.{z) coincides with {y - £)log|z| — » on & small
ball B{0,r,) C B(0,r} and we infer

f (itf‘"u,,.v'\9/‘\(dulclog|z|)"‘l > ('y—s)f 6 A (dd® log |2])”
lz]€r

|#1<ry

2 (y— e, x).

Asr e )0, B[ and ¢ € |0, y[ were arbitrary, the desired inequality follows. 0

We will Jater need an important decomposition formula of [Siu74]. We start
with the following lemma.

(2.17) Lemma. If @ is a closed positive current of bidimnension (p.p) and Z is an
irreducible analytic set in X, we set

mz =inf{z € Z; v(&,2)}.

a) There is a countable family of proper analytic subsets (Z]) of £ such that
v(0,z) = mz for all x € Z ~{JZ}. We say that myz is the generic Lelong
number of & along Z.

b) IfdimZ =p, then & > mz[Z] and 10 = mz[Z].

Proof. a) By definition of mz and E (&}, we have v(8,x) > mgz for every z € Z
and
v(@,0)=mz on Z~ |J ZnEJ(e).
c€Q, c>mz

However, for ¢ > mg, the intersection Z N E.(B) is a proper analytic subset of A.
b) Left as an exercise to the reader. It is enough to prove that & > mz{Z.g] at
regular points of Z, so one may assume that Z is a p-dimensional linear subspace
in C*. Show that the measure (& — mz[Z]) A {dd°|z|®}” has nonnegative mass on
every ball |z — a| < r with center a € Z. Conclude by using arbitrary affine changes
of coordinates that 68 — mz[Z] > 0. i
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(2.18) Decomposition formula ([Siu74]). Let € be a closed positive current of bidi-
mension (p.p). Then © can be written as a convergent series of closed positive

currents
+oc

@ =Y AlZ)+ R
k=1
where (7)) s a current of integration over en irreducible analytic set of dimen-
sion p, and R is a residual current unth the properiy that dimE.{R) < p for
every ¢ > 0. This decomposition is locally end globally unique: the sets Zy are
precisely the p-dimensional components occurring in the sublevel sets E.(9), and
Ak = Lilgez, VIO, 1} is the generic Letong number of @ along Zs.

Proof of unigueness. If © has such a decomposition, the p-dimensional components
of E(©) are {Zj)a, 5. for v(O.z) = 5 A1([Z;], 3) + w(R, 2} is non zerc only on
U Z; Ul E(R). and is equal to A; generically on Z; {more precisely, ¥{8. 1) = A;
at every regular point of Z; which does not belong to any intersection Z; U Zg, k#7
ot to |J E-{R)). In particular Z; and A; are unique.

Proof of eristence. Let {Z;);51 be the countable collection of p-dimensional com-
ponents cccurring in one of the sets E.(0), ¢ € Q- and let A; > 0 be the generic
Lelong number of 6 along Z;. Then Lemma 2.17 ghows by induction on N that
Ry = © = 3 o cn AjlZ;] is positive. As Ry is & decreasing sequence, there must
be a limit B = Lmn_s 400 Aa in the weak topology. Thus we have the asserted
decomposition. By construction, R has zero generic Lelong number along Zj, so
dim E(J7) < p for every ¢ > 0.

It is very important to note that some components of lower dimension can actu-
ally oceur in E.(R), but they cannat be subtracted because R has bidimension (p,p).
A typical case is the case of a bidimension {n—1,1n—1) current & = dd°u with
w = log({f,[™ + - 1fnI"") and f; € H*X,Ox). In general |JE:(O) = NJy'o)
has dimension < 1 — 1.

Corollary 2.19. Lef 6; = dd®uj, 1 < j < p, be closed positive (1.1)-currents on ¢
compler manifold X . Suppose that there are analytic sets A, D ... D A, in X with
codim A; > j at every point such that each u;, j = 2, is locally bounded on X ~ A;j.
Let {Apxtiy1 be the irreducible components of Ap of codimension p ezactly and
let vy, = minge g, ¥(8;, ) be the generic Lelong number of ©; along Ap. Then
O A ... AOy is well-defined and

+o0
G1A L ABp 2 Z Vik- -Vpk [Ap_k].
k=1

Proof. By induction on p, Prop. 2.3 shows that @1A. . .AB is well defined. Moreover,
Prop. 2.16 implies

v(E1 AL NG, T) = (E,x) .. w(Bp,Z) Z V1 k- Vpk
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al cvery point @ € Apgk. The desired nequality is then a consequence of Siu's
decomposition theoreni. [

3. Hermitian Vector Bundles, Connections and Curvature

The goal of this section is to recall the most basic definitions of hemitian differential
peowetry related to the concepts of connection, curvature and first Chern class of a
line bundle.

Let F be a complex vector bundle of rank r over a smooth ditferentiable man-
ifold M. A connection D on F is a linear differential operator of order 1

DO (M, ATy & Fy — C° (M, AT F)
such that
(3.1) D(f Au)=df Au+ (=18 f A Du

for all forms f € C°(M, APTy), w € C2(X, AT} @ F). On an open set 2 C M
where F admits a trivialization 6 : Fjp = 2% €. a connection I ean be written

Durygdu+ I A

where T € C°°(§2, AT} ® Hom(C, ")) is an arbitrary matrix of 1-forms and d
acts componentwise. It is then easy to check that

Dl {dl + TAT) Au on £,
Since D? is a globally defined operator, there is a global 2-form
(3.2) (D) € C(M. A¥T}; ® Hom(F, F))

such that D?%u = @(D) A u for every form u with values in F.

Assume now that F is endowed with a ¢'°° hermitian metric along the fibers
and that the issmorphism Fg o £2 x C" is given by a O frame (ex). We then have
a canonical sesquilinear pairing

(3.3) C=(M,APTi; @ F) x CF(M, AT} & F) — C™(M, A" T3 @ C)
(u,'u) — {u,'u}

given by

{u,ﬂ}:Zu,\/\ﬁu{eA,ep), U:Zu,\@e,\, ’UiZ'UP®C,1.
A

The connection I} is said to be hermitian if it satisfies the additional property
d{u,v} = {Du, v} + (—1)% “{u, Dv}.

Assuming that {ey ) is orthonormal, one easily checks that D is hermitian if and only
if I'* = —I. In this case @(D)* = —@(D), thus
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i9(D) € C®(M, A>T, @ Herm{F, F)).

(3.4) Special case. For & bundle F of rank 1, the connection form I' of a hermitian
connection L can be seen as a 1-form with purely imaginary coefficients ' = id (A
real). Then we have ©(D) = dI” = idA. In particular i@(F) is a closed 2-form. The
First Chern class of F'is defined to be the cobomology class

i 2
er(Flg = {he(p)} € H2L (M, R).
The coliomology class is actually independent of the connection, since any other
connection [y differs by a global 1-form, Diyu = Du + B A u, so that ©(D) =
B(D) + dB. It is well-knowr that e;(F)g is the image in H%(M,R) of an integral

class e (F) € H*(M,Z); by using the exponential exact sequence
03ZaE-SE" >0,

c1{F) can be defined in Cech cohomology theory as the image by the coboundary
map H'(M,£%) — H¥(M, Z) of the cocycle {g;} € H'(M,£*) defining F'; see e.g.
(GHT78] for details. ]

We now concentrate ourselves on the complex analytic case. f M = X is a
complex manifold X, every connection I on a complex C™ vector bundle F can be
splitted in a unique way as a sum of a (1,0) and of a (0, 1)-connection, D) = D' + D",
It a local trivialization 6 given by a C* frame, one can write

(3.50 Dy—gdu+I"Au,
(3.5") D'y g du 4+ I A,
with [" = I+ 7" The connection is hermitian if and only if I = —(I""}* in any or-
thonormal frame. Thus there exists a unigue hermitian connection 2 corresponding
to a prescribed (0,1) part D",

Assume now that the bundle F itself has a holomorphic structure. The unique
hermitian connection for whichk D" is the d” operator defined in § 1 is called the

Chern connection of F. In a local holomorphic frame (e, ) of E;, the metric is given
by the hermitian matrix H = (ha,), ks, = {ea,€,.). We have

{u,v} = Zh’"ﬁ‘”" AT, = ul A HT,
A
where ! is the transposed matrix of u, and easy computations yield
diu, v} = (du)t A BT+ (—1)%8 vyt A (dH AT+ Hdv)
= (du+ BT ‘u:)f A HT + (—1)98%1 A (du 4+ F '¢HA v)

using the fact that dH = d'H + d'H and 'I?T = H. Therefore the Chern connection
D coincides with the hermitian connection defined by
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Ducpdu+H dHAw,
(3.6)

Doeyd +H 'dHAe=H 'd¢(H), D" =d"
It is clear from this relations that D'? = D"? = (. Consequently D? is given by
to D? = D'D" + D"D’, and the curvature tensor &{D) is of type (1,1). Since
d'd’ + d"d' = 0, we get
(D'D" + D" D'y g B dH Ad"w +d"(H H Aw)

=d" (@ ¢ A

(3.7) Proposition. The Chern curvature tensor O(F) := @(D) is such that
iO(F) € (X, ATy ® Herm(F, F)).
If6: Eyg — §2xC" is a holomorphic trivialization end if H is the hermitian matriz

representing the metric along the fibers of Fi, then

1O(F) ~a id"{H "d¢H) on 0. a

Let (#1,...,#n) be holomorphic coordinates on X and let (e))i<a<r be an
orthonormal frame of F. Writing

IQ(F) = Z c_,-k,\“dzj Adaz ® e; R ey,

we can identify the curvature tensor to a hermitian form

(3.8) B(F)(¢®v) = S cadEaat,

on 'y @ F'. This leads in a natural way to positivity concepts, following definitions
introduced by Kodaira [Kod53], Nakano [Nak55] and Griffiths [Gri66)].

(3.9) Definition. The hermitian vector bundle F is said {o be

a) positive in the sense of Nakeno if é(F)(r) > 0 for all non zero tensors T =
E?’j,\@/@Zj ®eyETy @F.

b} positive in the sense of Griffiths i B(F)(£&v) > 0 for all non zero decomposable
tensors EQue Ty ® F;

Corresponding semipositivity concepts are defined by relazing the strict inegqualities.

(3.10) Special case of rank 1 bundles. Assume that F is a line bundle. The hermitian
matrix H = (h;;) associated to a trivialization & : Fyp ~ 2 x C is simply a positive
function which we find convenient to denote by e™2¢, p € C™=({2,R}. In this case
the curvature form 8(F) can be identified to the (1,1}-form 2d'd"y, and

i i
—O(F) = —d'd"p = dd°
27 (F) dd'p ®
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is a real (1, 1)-form. Hence F is semipositive (in either Nakano or Griffiths sense) if
and only if @ is psh, resp. positive if and only if ¢ Is strictly psh. In this setting, the
Lelong-Poincaré equation can be generalized as follows: let o € HYX.F) be a non
zere helomorphic section, Then

i
:. ('] . = hasl _6.) -
(3.11) dd“log llo|| = [Z,] - - OF)

Forwula {3.11) is immediate if we write flo|| = [¢(o}le™* and if we apply {1.20) to
the holomorphic function f = 8(c). As we shall see later, it Is very important for
applications to consider also singular hermitian metrics.

(3.12) Definition. A singular (hermitian) metric on ¢ bne bundle F' is a metric which

is given in any tronalization 8 Fig S 0xChy
el = 18(8)| e™™),  xe . Lk

where @ € LiA02) is an arbitrary function, called the weight of the metric with

respect Lo the trivialization 8.

If 8 : Fiyp — {2 x Cis another trivialization, ' the associated weight and
g € O(£2M ') e transition function, then 8'(£) = g(z) e for £ € F,, and so
@ = ¢+ log |gf on £21 §¥. The curvature form of F is then given formally by the
closed (1,1)-current z—i;(-){F) = dd¥yg on £2; our assumption v € L}, (£2) guarantees
that &(F) exists in the sense of distribution theory. As in the smooth case, ﬁS(F)
is globally defined on X and independent of the choice of trivializations, and its De
Rhaun cohomology class is the image of the first Chern class 1(F) € HY(X,Z)in
Hfm(J\'.R). Before going further, we discuss two basic examples.

(3.13) Example. Let D = 3 o;D; be a divisor with coefficients o; € Z and let
F = O(D) be the associated invertible sheaf of meromorphic functions u such that
div(a) + D > 0; tue corresponding line bundie can be equipped with the singular
netrie detined by [fu]] = |ul|. If g; s a generator of the ideal of D; on an open
set {2 C X then 8(u) = ung?’ defines a trivialization of @(D) over {2, thus onr
singuiar metric is associated to the weight ¢ = 37 o log |g;|- By the Lelong-Poincaré
eguation, we find

5-O{0(D)) = dip = D),

where [D] = ¥ o;[D;} denotes the current of integration over D. O

{(3.14) Example. Assume that o1,...,0n are non zero holomorphic sections of F.
Then we can defize a natural (possibly singular) hermitian metric on F'™ by

I

1)En

¢ aoyx)| for £ €F

The dual metric on F is given by

”{“2 — i(}(f‘)'z
Bloa(@N? + ... + [Blon(2))]?
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with respect to any trivialization #. The assoclated weight function is thus given by
ola) = log (T, e Bl (2)}[2) 2. 1u this case  is a psh function, thus QF) s
a closed positive current. Let us denote by X the linear systes dofined by ap.. . .. TN
and by Bp = ﬂn;l(U) its base locus. We have a meromorphic map

P X~ Oy — pN-T, ws (o () caalr) o anla))

Theu ;7(_)(17} is equal to the pull-back over X ~ Bg of the Fubini-Study metric
wps = 5= logllz? + . 4 [z [f) of PY=L by &y O

(3.15) Ample and very ample line bundles. A fwolomorphic line bundle I over «
compact compler manifold X s seid to be

a)  wvery ample if the map B 0 X = PN-1 gesociated to the complete tinear system
|F| = P{HY[X.F)} is o reguiar embedding (by this we mean m particular that
the base locus is empty, i.o. Byp) = 0).

b ample of some madiiple . m > 0, w5 very ample.

Here we use an additive notation for Pic{X} = H1(X.J*), hewee the syinbol
ik denotes the ine bundle F&7. By Example 3.15. every ample line buudle £ hos
A smooth hermitian metric with positive definite curvature form: indeed, if the linear
system | F| glves an embedding in projective space, then we get.a smooth hermitian
metric on FE, and the meth root yields a metric on F such that ﬁ(—)(F} =
#JJ“‘MHMFS. Conversely, the Kodaira embedding theorem [Kodd4] tells us that every
positive line bundle £ is ample (see Exercise 5.14 for a straightforward analytic proof
of the Kodaira embedding theorem.

4. Bochner Technique and Vanishing Theorems

W first recall briefly a few basic facts of Hodge theory. Assume for the moment that
A is a differentiable manifold equipped with a riemannian metric g = 3 gipde,®dxy.
Given a g-form w on M with values in F, we consider the global L? norm

2 20V a4
fulP = [ Tt te)
M
where |u| is the pointwise hermitian norm and d¥y is the riemannian volume form.
The Laplace-Beltrami operator assoeiated to the connection D is
A=DD*+ DD

where

D™ C(M, ATy @ F) - C™(M, AT @ F)
is the (formal) adjoint of ) with respect to the L2 inner product. Assume that M
is compact. Since

A CF(M, AT @ F) = C(M, AT @ F)
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is a seif-adjoint eliiptic operator in each degree, standard results of PDE theory
show that there is an orthogonal decomposition

Co (M AT @ F) = HY(M,F) & Im A

where HY(M, F) = Ker A is the space of harmonic forms of degree g; H9(M, F) is a
finite dimensional space. Assume morcover that the connection D is integrable, i.e,
that D? = 0. It is then easy to check that there is an orthogonal direct sum

imA=ImD&ImD*,

indeed (Du. D*v) = (D%u,v) = 0 for all u,». Hence we get an orthogonal decompo-
sition
Co (M, AT @ F) = HY{M,F)®ImD®ImD*,

and Ker 4 is precisely equal to HY(M, F') @ Im D. Especially, the ¢-th cchomology
group Ker A/ 1m A is isomorphic to H#¢(M, F). All this can be apptied for example
in the case of the De Rham groups Hig (M, C), taking £ to be the trivial bundle
F = M x C (notice, however, that a nontrivial bundle F usually does not admit any
integrable connection):

(4.1) Hodge Fundamental Theorem. [f M is a compact riemannian manifold, there
8 an isomorphism

HEp (M. Q) ~ #H (M, C)

from De Rlvam cohomology groups onto spaces of harmonic formns. O

A rather important consequence of the Hodge fundamental theorem is a proof
of the Poincaré duclity theorem. Assune that the Riemannian manifold {M.g) is
oriented. Then there is a {conjugate linear) Hodge star aperator

;AT @C = AT}, @ C, m = dimg M

defined by n A *v = (u, v)dV, for any two complex valued ¢-forms u, v. A standard
computation shows that » commutes with A, hence »u is harmonic if and only if u
is. This implies that the natural pairing

(4.2) HEL (M, C) x HE-M, Q) ({u},{v})»—%fMu/\v

is a nondegenerate duality, the dual of a class {u} represented by a harmonic form
being {xu}.

Let us now suppose that X is a compact complex manifold equipped with a
hermitian metric w = Y wjrdz; A dZi. Let F be a holomorphic vector bundle on
X equipped with a hermitian metric, and let I = D' + D" be its Chern curvature
form. All that we said above for the Laplace-Beltrami operator A still applies to the
complex Laplace operators

Ai’ — DIDI* + D”D" A" = DHDH* + DH-,QDH’

with the great advantage that we always have D'? = D'? = (. Especially, if X is a
compact complex manifold, there are isomorphisms
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(4.3) HPU X, F)~ HPMYX F)

between Doibeault cohomology groups HP4(X, F) and spaces H" (X, F} of A"-
harmonic forms of bidegree (p,g) with values in F. Now, there is a generalized
Hodge star operator

* ATy QF =5 AP TITE @ F*, n = dimg X,

such that u A v = {(u, v)dV,, when the for any two F-valued (p, ¢)-forms, when the
wedge product % A v is combined with the pairing F x £ — C. This leads to the
Serre duality theorem [Serd5): the bilinear pairing

(4.4) HPI(X, F) x H"Ph=a(X, F*), {{u},{'e:])Hf WA
X

is a nondegenerate duality. Combining this with the Dolbeault isomorphism, we may
restate the result in the form of the duality formula

(4.47) HY(X, 2% @ O(F))* ~ H™ (X, 2% @ O(F*)).

We now proceed to explain the basic ideas of the Bochiner technigue used to
prove vanishing theorems. Great simplifications occur in the computations if the
Liermitian metric on X is supposed to be Kéhler, i.c. if the associated fundemental
(1,1)-form

W= iijkdzj AdEy

satisfies dw = 0. It can be easily shown that w is Kihler if and only if there are
holomorphic coordinates (zy,...,2,) contered at any point xp € X such that the
matrix of coefficients (w;.) is tangent to identity at order 2, i.e.

wik(z) =8z + O(|2]%)  at zo.

It follows that ail order 1 operators D, I¥, D' and their adjoints D*, D, D'™ admit
at zg the same expansion as the analogous operators obtained when all hermitian
metrics on X or F are constant. From this, the basic commutation relations of
Kihler geometry can be checked. If A, B are differential operators acting on the
algebra C™(X, ATy ® F), their graded commutator (or graded Lie bracket) is
defined by

{A,B] = AB — (-1)**BA

where a, b are the degrees of A and B respectively, If C' is another endomorphism
of degree ¢, the following purely formal Jacobi identity holds:

(-1)°*{A,[B,C}] + (-1)%*|B,[C, 4]] + (-1)**[C. |4, B]] = 0.
{4.5) Basic commutation relations. Let { X, w)} be a Kdhler manifold and let L be the

operators defined by Lu = w A u and A = L*. Then

[DH*,L] — .lDr, {D“,L} am —“iD",
(A, D"] = —iD™, (4, D] = iD™.
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Froof (sketck). The first step is to check the identity [@"*, L] = id’ for constant
metrics on X = € and £ = X x C, by a brute force calcuiation. All three other
identities follow by taking conjugates or adjoints. The case of variable metrics follows
by looking at Taylor expansions up to order 1. O

(4.6} Bochner-Kodaira-Nakano identity. If (X.w) is Kdbhler, the compler Laplace
operators A and A acting on F-velved forms satisfy the identity

A" = A+ [iQ(F), A].

Proof. The last equality in (4.5) vields D"* = —i[4, D’], hence
A" = [D",8" = -i[D", [4, D')].
By the Jacobi identity we get
(D7.[4. D) = [A,(0', D"]] + [D'.[D", 4]} = [4,6(F)| +i[D'. D),
taking iuto account that [P, D] = D? = O(F). The formula follows. O

Assume that X is compact and that u € C®{X, APT* X @ F) is an arbitrary
{p. ¢)-form. An integration by parts yields

(A ) = || D"l + D™ ulf* = 0

and similarly for A”, hence we get the basic a priori inequality
(4.7) (D"l + | D" ull? 2 f (O1F). Alu, )V,
x

This inequality is known as the Bochner-Kodaira-Nakano inequality (see [Boc48],
[Kodss), (Nak55]). When u s A”-harmonic, we get

fx ((i6(F), Ay + (T, w))dV < 0.

If the hermitian operator [i@(F), A] acting on 4P4T§ ® F is positive on each fiber,
we infer that v inust he zero, hence

HPNX, Fy=H"I(X F)=0
by Hodge theory. The main point is thus to compute the curvature form @{F} and
tind sufficient couditions under which the operator [i@(F), A] is positive definite.
Elemeutary (but somewhat tedious) caleulations yield the following formulae: if the
curvature of F is written as in (3.8) and u = S upgadzr AdZy @ e, J| = p,
[K|=g.1< A< isa (p g)-form with values in F. then

(4.8} (OF) Akuy= Y. g urisa Tarss
JkAu S

+ Z Cikan UkR.K ) iR K 1
kA pRE

- Z Cijap LKA Wi K u
Jhp K
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where the sum is extended to all indices 1 < 7,k < n. U< A p < ¢ and multiindices
| = p— 1. |[8] = ¢ — 1 {here the notation uyxa is extended to noen uecessarily
increasing multiindices by making it alternate with respect to permutalions}, It is
usually hard to decide the sign of the curvature tern (4.8), except in some special
cases.

The casiest case is when p = n. Then all terms in the second summation of
(1.8) must have § = k and & = {1,...,n} ~ {j}. therefore the second and third
swnmations are equal. It follows that i@(F), 4] is positive on (#, ¢)-forius uder the
assumpticn that F is positive in the sense of Nakano. In this case X is automatically
Kihler since

w=Tep(OF) =13 cipandz, Adzy = 0ot F)
J.KA

is n Kahler metric.

(4.9) Nakano vanishing theorem {1955). Let X be a compact comples mantfold and
lel F be a Nekano positive vector bundle on X, Then

HY{X Fy=HI{X,Kxe@F)=0 for every q = 1. O

Another tractable case is the case where F'is o line bundle (r = 1). Indeced.
at each point z € X, we may then choose a coordinate system which diagonalizes
shimtltancousty the hermitians forms w(r) and iG(F){x}. in sneh o way that

wlz) =i Z dzy Adzy, Q(F) ) =i Z yydzp oz,

1€i<n 1<5<n

with 41 < ... < 7. The curvature eigenvalues -y; = ; () are then uniquely defijed
and depeud continuously ot 2. With our previeus notation, we Lave v; = ¢;;1) aud
all other coefficients ¢;pa, are zero. For any (p,g)-form uw =3 wuixdzy Andzg @er,
this gives

GorF, uw= Y (Y wu+ - 3 )kl
|H=p, (K|=g J€J jeK 1<jsn
(41()} = (’71 + .oV Yn—pr1 T T 'Tn)i“‘?-

Assume that i@(F) is positive. It is then natural to make the spoecial choice
w = i@(F) for the Kihler metric, Then v; = 1 for j = 1.2..... 7 and we obtain
(i F), Aw,uy = (p+q— n)|u|?. As a consequence:

{4.11) Akizuki-Kodaira-Nakano vanishing theorem ([AN34]}. IJ I 15 o posative line
bundle on a compact compler manifold X, then

HPX Fy= HUX S8 @F)=0 for p+qg>a+1l. O

More generally, if F'is a Griffiths positive {or ample) vector bundle of rank - > 1,
Le Potier [LP75] proved that H*9(X . F} = 0 for p+ 4 = n+ 7 The proof is
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not a dircet consequence of the Bochner technique. A rather easy proof has been
found by M. Schmeider [Sch74). using the Leray spectral sequence associated to the
projectivized bundle projection P{F) - X.

{4.12) Exercise. It is important for various applications to obtain vanishing theorems
which are also valid iu: the case of semipositive line bundles. The casiest case is the
following result of Girbau [Gir76): let (X, w) be compact Kibler; assume that F is
a line bimdle and that i9(F} > 0 has at least n — k positive eigenvalues at cach
point. for somne integer & 2 0: show that A X. Fy=0forp+g2n+k+ 1.
Hint: use the Kihler metric w, = 10(F) + ew with £ > 0 small.

A stronger and more natural “algebraic version” of this result has been obtained
Ly Sommese [Som78]: define F to be k-ample if some multiple mF is such that the
canonical map

(PImFl X~ B[mp] — PN71

lias at most k-dimensional fibers and dim B, p) < k. If X is projective and F is
k-aimnple, show that H»4X, Fy=0forp+g>n+k+ 1.
Hint: prove the dual result HP9(X, F~1) = 0 for p4 q < n — k — 1 by induction
on k. First show that 7 O-ample = F' positive; then use hyperplane sections Y € X
to prove the induction step, thanks to the exact sequences

V— X @F '@o(-Y) w2 eF ! — (R eF '), —0,
0— A FR — (R eF ), — HeF) —o0 0

5. L*? Estimates and Existence Theorems

The starting point is the loliowing L? existence theorem, which is essentially due
to Hormander [HérG3, 66], and Andreotti-Vesentini [AV65]. We will only outline
the main ideas, referring e.g. to [Dem82b] for a detailed exposition of the technical
situation considered here.

{5.1) Theorem. Let (X.w) be a Kdhler manifold. Here X is not necessarily compact,
but we asswme that the geodesic distance 8, is complete on X . Let F be a hermitian
vector bundle of rank r over X, and assume that the curvature operator A = ARY =
(E(F), A, is positive definite everywhere on AP9Ty @ F, g > 1. Then for any form
¢ € L*(X, AP4T5 @ F) satisfying D"g = 0 and [, (A™g. g) dV,, < +oo, there exists
fe L3X, AP Ts @ F) such that D" f =g and

/ FEav, s[{A*‘g.gwu.
X X

Proof. The assumption that §,, is complete implies the existence of cut-off functions
¥, with arbitrarily targe compact support such that |dy,| < 1 {take ¢, to be a
function of the distance z — d.,(zg, ), which is an almost everywhere differentiable
1-Lipschite function, and rcgularize if necessary). From this, it follows that very
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form u € Lz(X,A”"?Tj} ® F) such that D"y € L? and D" u € L? in the sense
of distribution theory is a limit of a sequence of smooth forins wu, with compact
sipport, in such a way that u, — u, D"u, = D"u and D4, - D" in L2
{just take u, to be a regularization of ¥,u). As a consequence. the basic a priori
inequality {4.7) extends to arbitrary forms u such that u, D"u, D"u ¢ L2 . Now,
consider the Hilbert space orthogonal decomposition

LY X, AP9T% @ F) = Ker D" & {Ker D).

observing that Ker D is weakly (hence strongly) closed. Let v = o + wy be
the decomposition of a smooth form v € PP X, F) with compact support ac-
cording to this decomposition (vy, v do not have compact support. in generat!).
Since (Ker D)L € Ker D"* by duality and g,u; € Ker D" by hypothesis. we get
D"y =0 and

g, o)l = g, m)[* < [X (A7'g.q)dV, [X {Avy, 00) dV,

thanks to the Cauchy-Schwarz inequality. The a priori inequality {4.7) applied to
u = v vields

f {Avy vhdV, 1D 0 + D" 0l = ||D" i ? = 1D o)) %.
X
Combining both inequalities, we find

oo < ( [ (4790 ) 1Dol?

for every smooth {p, g}-form v with compact support. This shows that we have a
well defined linear form

w=D"vr {v,g), L[¥X,AP91T% @ F) 5 D" (DP9F)) — C

on the range of D'*. This linear form is continuous in L2 norm and has norm < &

with 12
c= (f (Alg, g V)
X

By the Hahn-Banach theorem, there is an element f € L¥*(X, AP9~1T% @ F) with
[If]] € C, such that {v,g) = (D'*v, f) for every v, hence D”f = g in the sense
of distributions. The inequality {|f]] € C is equivalent to the last cstimate in the
theorem. O

The above L? existence theorem can be applicd in the fairly general context of
weakly pseudoconver manifolds. By this, we mean a complex manifold X such that
there exists a smmooth psh exhaustion function 3 on X (¥ is said 10 be an exhaustion
if for every ¢ > 0 the sublevel set X, = ¢~ !(c} is relatively compact, i.e. 3{z) tends to
+oo when z is taken outside larger and larger compact subsets of X). In particular,
every compact complex manifold X is weakly pseudoconvex (take ¥ = 0), as well
as every Stein manifold, e.g. affine algebraic submanifolds of CV (take (2} = |2?),
open balls X = B(zg,7) (take ¥(z) = 1/(r — |2 — zp/?}}, convex open subsets, etc.
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Now, a basic observation is that every weakly pseudoconvex Kahler manifold {X._w}
carries n complete Kihler metric: let ¢ > 0 be a psh exhaustion function and set

we = w4 eid'd" Yt = w + 26(2ipd'd"y + id'p AdTY).

Then jdi]., < /e and j(x) — )t < e=18, (z,y). It follows easily from this
estilmate that the geodesic balls are relatively compact, hence 4., is complete for
every € > 0. Therefore, the L* existence theorem can be applied to each Kahler
metric w,e, and by passing to the limit it can even be applied to the non necessarily
complete mnetriec w. An important special case is the following

{5.2) Theorem. Lei (X, w} be a Kéhler manifold, dim X = n. Assume thot X is
weakly pscudoconwver. Let F be ¢ hermitian line bundle and lct

1niz) < ... € i)

be the curvature cigenvalues (ie. the eigenvalues of 1O(F) with respect to the
metrie w) af every puint. Assume that the curvature is positive, s.e. vy > 0
everywhere. Then for any form g € L¥X A™Ty ® F) salisfying D'y = 0
and [ {{v + ..+ 7q) Hgl? dVe < +oc, there emists f € L3 X, AP~ 1Ty @ F) such
that D" = g and

jx 2 av, sfx(vw...wq)"\ngu-

DProof. Indeed, for p = n, Formula 4.10 shows that

(A"vu> z (71 +... +Tq)1u|2!

hence (A= u,u) > (1 + -+ g Hul? O

An important observation is that the above theorem stili applies when the
hermitian metric ot £ is a singular metric with positive curvature in the sense of
currents. In fact, by standard regularization techniques (convolution of psh functions
by sinoothing kerneis), the metric can be made smooth and the solutions obtained
by (5.1) ar (5.2) for the smooth metrics have limits satisfying the desired estimates.
Especially, we get the following

{5.3) Corollary. Let {X.w) be a Kdhler manifold, dimX = n. Assume that X s
weakly pseudoconver. Let F be a holomorphic line bundle eguipped with a singuler
metric whose local weights are denoted ¢ € L. Suppose that

W@(F) = 2id'd"p > ew

for some £ > 0. Then for any form g € LU X, ATy @ F) satisfying D"g = 0,
there exists f € LE(X, AP 1Ty ® F) such that D'"f =g and

] |flPe= 2 dV,, < if lg|%e=2 dVi,. O
X G Jx
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Here we denoted somewhat incarrectly the metric by |f[%¢7 %, as if the weight
¢ was globally defined on X (of course, this is so only il ' is plobally wivial). We
will nse this notation anyway. hecause it clearly deseribes the dependence of the L?
norul on the psh weights,

We now introduce the concept of multiplier ideal sheaf, following A. Nadel
[Nadsy]. The main idea actually goes back 1o the fundamental warks of Bombieri
‘Bow)] and H. Skoda {SkoT2a].

(5.4) Definition. Let ¢ be a psh function on an open sibset §2 & X lo g s associnted
the ideal subsheaf T{g) < O of germs of holomorphee functions | € Oy such that
|/ |2e72% is integruble with respect to the Lebesgue measure m some local coordinafes
near T

The zero variety V{Z(g)) is thus the set of points in a neighborhood of which
¢~ 2% s non integrable. Of course, such poluts oceur only if  las logarithmic poles.
This is made precise as follows.

(5.5) Definition. A psh function o 18 said to have a logarithmic pole of coefficrent
al o point x € X if the Lelong number
(=)

v(w, r) = liminf A%
Z—a lng fz — :J'|

is non zere and o vig,#) = 7.

{5.6) Lemma (Skoda [Sko72a]). Let o be a psh function on an oper set 12 end lek
T € [

a} If ulp z) < 1, then o7 is integrable in o neighborhood of r, in particulor
I(@)e = On.z.

LY Ifelg,x) > n+ s for some integer s 2 0, then ¢" 2 > Oz - |7 in o
nesghborhood of & and I{y)y C mf{; , where My; o 18 the maomal ideal of Oz

¢)  The zero variety V(T(p}) of (i) satisfies

Enlp) CVI(Zie)) C Eilep)
where Eolg) = {2 € X vip, x) 2 o} is the cosubleved set of Lelong nwmbers

af .

Proof. a) Set @ = dd®p and v = »(8,z) = v(g.x). Let x be a cut-off function will
support in a small ball B(z,r), cqual to 1 in Blz,r/2). As (ddlog|z])* = o, we
get
ooy = [ M@ og o — ol
{r,r

- ]B( | HCIP(E) Mog € = sl g

for z € Biz.r/2). Expanding dd®(xe) and observing that dy = ddy = 0 on
B(x,v/2), we find
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o) = | XU Alog ¢ = e log ¢ = A"+ smoorh corms
on B{x,r/2). Fix v s0 small that
[, MO0 A 0gIC = ol < @) < 1
By coutimiity. there exists 8, & > 0 such that
1= [ XS A Tog c ol <15

for all z € B(r, £). Applying Jensen's convexity ineguality to the probability measure
2 (Cy = 1{2) 7' X(Q)O(4) A (ddlog ¢ — )71,

we find

—50(2)=/B( gl — " () +001) >

e2ele) < ¢ 1€ = 2|7 dp Q).
B(z.r)

As
iz (C) < CLl¢ — 22O A (dde|¢) ! = Cal¢ — 2|~ Pdee((),

we get,

(342;,9(2} < CS [ [C _ zlA2(l—6)—(21!:—Z}d(}_‘q(g)1
J Blzr)

and the Fubini theorem implies that e~29(#} is integrable on a neighborhood of .
b) If v{p, x) = v, the convexity properties of psh functions, namely, the convexity
of log r = sup,_ 1 =, ¥{z) implies that

@z} < yloglz — af/ro + M,
where M is the supremum on B(z, r). Hence there exists a constant C > 0 such

that ¢~ > C|z — 2|~?7 in a neighborhood of z. The desired result follows from
the ddentity

2
pz® o
[ [Zanz] Cavis = Const/ (3 laaprait)rn-1=27 g,
Jowrey 2P 0
which is an casy consequence of Parseval’s formula. In fact, if -y has integral part
[¥] = » + s, the integral converges if and only if aq = 0 for || < 5.

c) is just a simple formal consequence of &) and b). O

(5.7} Proposition ([Nad89)). For any psh function p on £ C X, the sheaf T{g) is
a coherent sheaf of ideals over £2. Moreover, if £2 is o bounded Stein open set, the
sheaf T(@) is generated by any Hilbert basis of the L? space H2(£2, @) of holomorphic
functions f on 2 such that [, |f|%e” % dA < +oo.
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Proof. Since the result is local, we may assume that {2 is a bounded pseudoconvex
apen set in C*. By the strong noetherian property of coherent sheaves. the family
of sheaves gencrated by finite subsets of H2(£2, ») has a maximal clement on cach
compact subset of §2. hence H?(§2,4) generates a coherent ideal sheaf 7 C Oy,
It is clear that J C I{y); in order to prove the equality, we need only check that
Je + Z{p)e Ny} = (@), for every integer s, in view of the Krull lemma. Let
f € I{g); be defined in a neighborhood V of z and let # be a cut-off function
with support in V such that # = 1 in a neighborhood of x. We solve the equation
d"u = g = d"(0f) by means of Hormander’s L? estimates 5.3, where F is the trivial
iine bundle £2 x C equipped with the strictly psh weight

F(z) = p(2) + (n + 5) log |z — 7 + |2]2.

We get a solution u such that [, ju?e™2¢|z - 2|20+ 9d) < oo, thus F = 0f —u
is holomorphic, F € H2(2,¢) and fo — Fo = uy € Z(p)z N m}fﬁ This proves the
coherence. Now, 7 is generated by any Hilbert basis of HZ(£2, ©), because it is well-
known that the space of sections of any coherent sheaf is a Fréchet space, therefore
closed under local L? convergence. [m|

The multiplier ideal sheaves satisfy the following basic fouctoriality property
with respect to direct images of sheaves by modifications.

(5.8) Proposition. Let u: X' — X be a modification of non singuler complex man-
ifolds (i.e. a proper generically 1:1 holomorphic map}, and let ¢ be o psh function
on X. Then

1 (OK x) @ I o 1)) = O(Kx) © L{).

Proof. Let n = dimX = dimX’ and let § C X be an analytic set such that
g X'~ 8 = X ~ S is a biholomorphism. By definition of multiplier ideal sheaves,
O(Kx)®I(y) is just the sheafl of holomorphic n-forms f on open sets U C X such
that i*' f A fe~2% € L (U). Since ¢ is locally bounded from above, we may even
consider forms f which are a priori defined only on U < S, because f will be in
L}.(U7) and therefore will automatically extend through 8. The change of variable

formula vields
frtiagere= [ pes g,
v s HU)

hence f € I(U, Q(Kx) ® Z()) iff u*f € Mp~Y(U), O(Kx) @ I{p c iz)). Proposi-
tion 5.8 is proved. O

(5.9) Remark. If ¢ has analytic singularities {(according to Definition 1.10), the
computation of T{¢) can be reduced to a purely algebraic problem.

The first observation is that Z(y) can be computed easily if ¢ has the form ¢ =
Y. a;log|g;| where D; = g7 1(0) are nonsingular irreducible divisors with normal
crossings. Then Z(ip) is the sheaf of functions h on open sets U C X such that
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/ Ihlzl__[lgjrza"d‘l/ < 400.
U

Since locally the g; can be taken to be coordinate functions from a local coordinate
systein {z,.... %), the condition is that h is divisibte by [T g, where m; —a; > -1
for cach j, i.e.my 2 lae;] (integer part). Hence

I(y) = O(~ D)) = O(= Y _|o} D)

where | D} denotes the integral part of the Q-divisor D = 3 a; Dj.

Now, consider the general case of analytic singularities and suppose that ¢ ~
2 log (| o>+ -+ S~ |2} near the poles. By the remarks after Definition 1.10, we may
assume that the (f;) are generators of the integrally closed ideal sheaf J = .J {p/a),
defined as the sheaf of bolomorphic functions h such that || < Cexp{p/a). In this
case, the comnputation is made as follows (see also L. Bonavero’s work [Bon83], where
simnilar ideas are used in connection with “singular” holomorphic Morse inequalities).

First, one computes a smooth modification g : X —+ X of X such that p*J is
an invertible sheaf €{—D) associated with a normal crossing divisor D=3 MDD,
where (I;) are the components of the exceptional divisor of X (take the blow-up
X' of X with respect to the ideal J so that the pull-back of J to X’ becomes an
invertible sheaf @(— D). then blow up again by Hironaka [Hir64] to make X' smooth
and D' have normal crossings). Now, we have Ky = p"Kx + Rwhere R=3 gD
is the zero divisor of the Jacobian function J,, of the blow-up map. By the direct
image formula 5.8, we get

I(p) = (O 5 — w*Kx) 8T(p o)) = s (OR) 8 I(p 0 ).

Now, {f;j o u) are generators of the ideal O(—D), hence
pop~ay  Ajloglgl

where g; are local generators of (O(—Dj). We are thus reduced to computing multi-
plier ideal sheaves in the case where the poles are given by a Q-divisor with normal
crossings 3 oeh; D;j. We obtain Z{p o) =0(- S |ex; ] D5), hence

I(e) = #*Og(Z(Pj - ta)‘jJ)Dj)- u

(5.10) Exercise. Compute the multiplier ideal sheaf Z(y) associated with ¢ =
logi|z|® =+ ...+ |2p|*") for arbitrary real numbers & > {. '
Hint: using Parseval’s formula and polar coordinates z; = r_,-e'gi, show that the
problem is equivalent to determining for which p-tuples {B1,...,0p) € N’ the inte-
gral

t551+1)f‘0| ”tgﬁp‘*])/‘“p dtl dtp

/’ 1-%’3‘ ...rf,ﬂ"rldrl...rpdrp ﬁ-/ , dty  dty
1011 44 rioe {0,117 t1+...+ip t tp
Ap

is convergent. Conclude from this that Z(yp) is generated by the monetnials z’f‘_ o 2p
such that $3(f, + 1)/a, > 1. (This exercise shows that the analytic definition of
Z{ip) is sometimes also quite convenient for computaiions}. O
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Let F be a line bundle over X with a singular metric i of curvature current
O, (F). I ¢ is the weight representing the metric in an open set {2 C X, the ideal
sheaf T() is independent of the choice of the trivialization and s0 it is the restriction
to £2 of a global coherent sheaf Z(k) on X . We will sometimes still write I(h} = I()
by abuse of notation. In this context, we have the following furdamental vanishing
theorem, which is probably one of the most central results of analytic and algebraic
geomerry {as we will see later, it contains the Kawamata-Viehweg vanishing theorem
as a special case).

(5.11) Nadel vanishing theorem ([Nad89], [Dem93bl). Let (X, w} be o Kahler weakly
pseudoconvex manifold, and let F be o holomorphic line bundle over X equipped
with o singulur hermitian metric h of weight . Assume that 10, (F) > ew for some
continuous posilive function £ on X. Then

HY{X OKx + F)®ZI(h)) =0 forallq> 1.

Proaf. Let £9 be the sheal of germs of (n, g)-forms u with values in F and with mea-
surable coefficients, such that both |u[2e=2® and |d”u|2e= are locally integrable.
The 4" operator defines a complex of sheaves {£".d”) which is a resolution of the
sheaf O(K x + F)® T{y): indeed, the kernel of d” in degree 0 consists of all germs
of holomorphic n-forms with values in F which satisfy the integrability condition;
hence the coefficient function lies in Z(p); the exactness in degree ¢ > 1 follows from
Corollary 5.3 applied on arbitrary small balls. Each sheaf £7 15 a C®-muodule, so L*
is a resolution by acyclic sheaves. Let ¢ be a smooth psh exhaustion function on X.
Let. us apply Corollary 5.3 globally on X, with the original metric of ¥ multiplied
Ly the factor e™*°¥, where y is a convex increasing function of arbitrary fast growth
at infinity. This factor can be used to ensure the convergence of integrals at infin-
ity. By Corollary 5.3, we conciude that H? (F(X, E')) = ( for g > 1. The theorem
follows. a

{5.12} Corellary. Let (X,w), F' and ¢ be as in Theorem 5.11 and let Tq,..., x5 be
isolated points in the zero variety V(Z(p)), Then there 15 a surjective mep

HYX Kx + F) — €D O(Kx + L)z, @ (Ox/T(¢)),, -
ISJEN

Proof. Consider the long exact sequence of cohomology associated to the short exact
sequence 0 — (@) = Ox — Ox/I(p) — 0 twisted by O(Kx + F), and apply
Theorern 5.11 to obtain the vanishing of the first A group. The asserted surjectivity
property follows. O

{5.13) Corollary. Let (X,w), F and ¢ be as in Theorem 5.11 und suppose that the
weight function @ 5 such thet v(g,z) > n + & at some point T € X which 15 an
asolated point of E1(p). Then HY(X, Kx + F) generates all s-jets at .
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Proof. The assumption 1s that ¢(p,y) < 1 for y near z, y # z. By Skoda’s lemma
5.6 b), we conclude that =27 is integrable at all such points y, hence Z{g), = Ox .
whilst Z(p), C mjfj by 5.6 a). Corollary 5.13 is thus a special case of 5.12. 0

The philosophy of these results (which can be seen as generalizations of the
Hérmander-Bombieri-Skeda theorem [Bom70], [Sko72a, 75]) is that the problem of
constructing holomorphic sections of X x + F can be solved by constructing suitable
hermitian metrics on F such that the weight o has isolated poles at given points x;.

(5.14)} Exercise. Assume that X is compact and that L is a positive line bundie on X
Let {z1,...,zx5} be a finite set. Show that there are constants 4,5 > 0 depending
only on L and N such that HY(X,mL) generates jets of any order s at all points
w; form > as+ b

Hint: Apply Corollary 5.12 to F = —Kx + mL, with a singular metric on L of
the form h = hge™*¥, where hg is smooth of positive curvature, € > 0 small and
#(z) ~ log |z — ;] in a neighborhood of x;.

Derive the Kodaira embedding theorem from the above result:

(5.15) Theorem (Kodaira). If L is e line bundle on a compact compler manifold,
then L is ample of and only if L 15 positive. O

(5.16) Exercise (soiution of the Levi problem). Show that the following two proper-
ties are equivalent.

a) X is strongly pseudoconvex, i.e. X admits a strongly psh exhaustion function.

b} X is Stein, i.e. the global holomorphic functions HY(X, Ox) separate points
and yield local coordinates at any point, and X is holomorphically convex (this
means that for any discrete sequence z, there is a function f € H%(X,Ox)
such that |f(z,)| = o).

(5-17) Remark. As long as forms of bidegree (n,¢) are considered, the L? estimates
can be extended to complex spaces with arbitrary singularities. In fact, if X is a
complex space and  is a psh weight function on X, we may still define a sheaf Kx ()
on X, such that the sections on an open set I/ are the holomogphic n-forms f on the
regular part I/ 0 X, satisfying the integrability condition i” Iafe e ll (U).
In this setting, the fonctoriality property 5.8 becomes

(K x:(pop)) = Kx{¢)

for arbitrary complex spaces X, X’ such that g : X' — X is a modification. If
X is nonsingular we have Kx(p) = O(Kx) ® I(g), however, if X is singular,
the symbols Kx and Z(¢) must not be dissociated. The statement of the Nadel
vanishing theorem becomes H3(X, O{F) @ Kx{(y)) = 0 for g > 1, under the same
assumptions (X Kihler and weakly pseudoconvex, curvature > ew). The proof can
be obtained by restricting everything to X .g. Although in general Xrey is not weakly
pseudoconvex (e.g. in case codim Xgng = 2), Xreg is always Kahler complete (the

complement of a proper analytic subset in a Kihler weakly pseudoconvex space is
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complete Kahler, see e.g. [Dem82a]). As a consequence, Nadel's vanishing theorem
is essentially insensitive to the presence of singularities. [l

6. Numerically Effective Line Bundles

Many problems of algebraic geometry {e.g. problems of classification of algebraic
surfaces or higher dimensional varieties) lead in a natural way to the study of line
bundles satisfying semipositivity conditions. It turns out that semipositivity in the
sense of curvature (at least, ag far as smooth metrics are considered) is not a very
satisfactory notion. A more flexible notion perfectly suitable for algebraic purposes
is the notion of numerical effectivity. The goal of this section is to give a few funda-
mental algebraic definitions and to discuss their differential geometric counterparts.
We first suppose that X is a projective algebraic manifold, dim X = n.

(6.1) Definition. A holomorphic line bundle L over a projective manifold X is said
to be numerically effective, nef for short, if L-C = J,c1(L) 2 O for every curve
CcX.

If L is nef, it can be shown that LP . ¥ = f}, e1(L)? > 0 for any p-dimensional
subvariety ¥ C X (see e.g. [Har70]). In relation with this, let us recall the Nakai-
Moishezon ampleness criterion: a line bundle L is ample if and only if LF-Y > 0 for
every p-dimensional subvariety Y. From this, we easily infer

(6.2) Proposition. Let L be g line bundle on a projective algebraic manifold X, on
which an ample line bundle A and a hermitian metric w are given. The following
properties are eguivalent:

a) L is nef;
b) for any integer k > 1, the line bundle kL + A is ample;

¢) for every £ > 0, there is a smooth metric he on L such that iG, (L) > —ew.

Proof a) = b). If L is nef and A is ample then clearly kL + A satisfies the Nakai-
Moishezon criterion, hence kI + A is ample.

b) = c}. Condition ¢) is independent of the choice of the hermitian metric, so we
may select a metric h4 on A with positive curvature and set w = iG(A). If kL + 4
is ample, this bundle has a metric hrr,a of positive curvature. Then the metric
hr = (hkr+a ® A7Y)V* has curvature

i8(L) = %(iQ(kL + A~ i0(4)} = —%iQ{A) ;

in this way the negative part can be made smaller than ¢ w by taking & large enough.

¢} = a). Under hypothesis c¢), we get L - C = [ 2.6, (L) 2 — & fow for every
curve C and every £ > 0, hence L - C > ¢ and L is nef. O



6. Numerically Effective Line Bundles 41

Let now X be an arbitrary compact complex manifold. Since there need not
exist any curve in X, Property 6.2 c) is simply taken as a definition of nefness

([DPS94]):

(6.3} Definition. A line bundle L on o compact compler manifold X is said to be nef
if for every £ > 0, there is o smooth hermitian metric he on L such that iG,(L) >
—Ew.

In general, it is not possible to extract a smooth limit kg such that i€,,(L) = 0.
The following simple example is given in [DP394] (Example 1.7). Let £ be a non
trivial extension 0 — © — E = O — 0 over an elliptic curve C and let X = P(E)
be the corresponding ruled surface over C. Then I = Op¢gy{1) is nef but does not
admit any smooth metric of nonnegative curvature. This exarmple answers negatively
a question raised by [Fujg3].

Lot us now introduce the impertant concept of Kodaira-Iitaka dimension of a
line bundle.

{6.4) Definition. If L is a ltine bundle, the Kodaira-fitaka dimension w(L} is the
supremum of the rank of the canonical maps

@, X ~ By — P{V3), z— Hy={o € Vy:o(z) =0}, m=z21

with Vo, = HY(X,mL) and Bp = ey, ¢ {0) = base locus of Vem. In case
V., = {0} for allm > 1, we set w(L} = —oc.
A line bundle s said to be big if (L) = dim X.

The following lemma is well-known (the proof is a rather elementary conse-
quence of the Schwarz lemma).

(6.5) Serre-Siegel lemma ([Ser54], [Sieb5]). Let L be any kine bundle on a compact
compler manifold. Then we have

RY(X,mL) < O(m"™) form =21,

and k(L) is the smallest constant for which this estimate holds. (]

We now discuss the various concepts of positive cones in the space of numerical
classes of line bundles, and establish a simple dictionary relating these concepts to
corresponding concepts in the context of differential geometry.

Let us recall that an integral cohomology class in H*(X, Z) is the first Chern
class of a holomorphic (or algebraic) line bundle if and only if it lies in the Neron-

Sever: group
NS(X) = Ker (H%(X,Z) - H*(X,0x))

{this fact is just an elementary consequence of the exponential exact sequence 0 —
Z - O — O = 0). If X is compact Kahler, as we will suppose from now on in
this section, this is the same as saying that the class is of type (1, 1) with respect to
Hodge decomposition.
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Let NSg!{X} be the real vector space NS(X) @R ¢ HY X R). We define four
COUVEX CONes
KamnlX) C Keg(X) C N8R(X),
Knef(X) - Kpsel‘(X} C NSM(X)

which are, respectively, the conver cones generated by Chern classes c1 (L) of ample
and effective line bundles, resp. the closure of the conuer cones generated by nu-
merically effective and pseudo-effective line bundles; we say that L s effective if mL
has a section for some m > 0, Le. if {mL) = QD) for some effective divisor D
and we say that L pseudo-effective if ex(L) is the cohomology vlass of some closed
positive current T, 1.e. if L can be equipped with a singular hernitian metric b with
T = -21;@,.(1,) > 0 as a current. For each of the ample, effective, nef and pseudo-
effective cones, the first Chern class ¢; (L) of a line imdle L lies in the cone if and
only if L has the corresponding property {for Kpser use the fact that the space of
positive currents of mass 1 is weakly compact; the case of all other cones is obvious).

(6.6} Proposition. Let (X, w) be o compact Kahier manifold. The numerical cones

satisfy the following propertics.

3) K'amp = K:xnp C K,?cf; Knef C Kpsef-

b} If moreover X 15 projectwe algebraie, we have Komp = Koo (therefore Kamp =
Knef)! and Keg = Kpsef-

If L is a line bundle on X and h denoles a Lermitian meiric on L, the following

properiies are equivels nt:

¢} e1(L) € Kamp & 3 > 0, 3h smooth such that i04(L) 7 ew.

d) (L) € Kyet & Ve >0, 30 smooth such that i@x{L) > —sw.

¢} e1(L) € Kpser = b pussibly singular such that i, (L) > 0.

) If moreover X is projective algebraic, then
ei(L) € K @ &{L) =dimX
< Fe > 0, 3k possibly singulor such that (L) > ew,

Proof. <) and d) are already known and e) is a definition.

a) The ample cone Kymyp is always open by definition and contained in K., 50 the
first inclusion is obvious {Kamp is of course empty if X is not projective algebraic).
Let us now prove that Kper € Kpser. Let L be a line bundle with ¢;{L) € Kyes.
Then for every € > 0, there is a current T, = ﬁ@he (L) > —ew. Then T, +cw is a
closed positive current and the family is uniformly bounded in mass for £ € j0,1],

since
’/’(Tg-4»»;%.))."\(«.:"_1 :/ e (L) Aw™ ™! +5f w™
X x x

By weak compactness, some subsequence converges o a weak limit T > Gand T €
e1(L) (the cohomology class {T'} of a current is easily shown to depend continuously
on T with respect to the weak topology; use e.g. Poincaré duality to check this).

b} If X is projective, the equality Kamp = K3 is a simple consequence of 6.2 b)
and of the fact that ampleness (or positivity) is an open property. It remains to



6. Numerically Effective Line Bundles 43

show that Kpser C Keg- Let L be a line bundle with ¢;(L) € Kpser and let ky be a
singular hermitian on L such that T = Ei;e(L) > . Fix a point £y € X such that
the Lelong number of T at g s zero, and take a sufficiently positive line bundle A
(replacing A by a multiple if necessary), such that 4 — Kx has a singular metric
hoa—g, of curvature > ew and such that hig_g, is smooth on X ~ {zo} and has an
isolated logarithmic pole of Lelong number > n at zg. Then apply Corollary 5.13
to =1L+ A - Kx equipped with the metric h%’" ® ha_K, - Since the weight
i of this metric has a Lelong number > n at 2 and a Lelong number equal to the
Lelong number of T = ﬁ@(L) at nearby points, limsup,_,, v(T,z) = v(T,x9) = 0,
Coroliary 5.13 implies that HY(X, Kx 4+ F) = H°(X,mL + A) has a section which
does not vanish at xg. Hence there is an effective divisor Dy, such that O(mL+ A) =
D) and (L) = H{Dn} ~ 2e1(4) =lim 2 {Dn} is in Kep. 0

f) Fix a nonsingular ample divisor A, If ¢,(L) € K2, there is an integer m > 0
such that o1 (L) - ‘-il—c] (A) is still effective, hence for m, p large we have mpL —pA =
D + F with an effective divisor D and a numerically trivial line bundle F. This
implies O(kmplL) = OlkpA + kD + kF) > O(kpA + kF), hence h*(X, kmpL) >
WX kpA+kF) ~ (kp)" A% /n! by the Riemann-Roch formula. Therefore s(L) = n.

H k(L) = n, then k°(X, kL) > ck™ for k > ko and ¢ > 0. The exact cohomology
sequence

0 — HYX, kL - A) — H°(X,kL) — H%(A, kL;4)

where h%{A, kL4) = O(k™~ ') shows that kL — A has non zero sections for k large.
If D is the divisor of such a section, then kL ~ O(A + D). Select a smooth metric
on A such that ;-8(A) > gow for some g¢ > 0, and take the singular metric on
O(D) with weight function ¢p = 3 a;log|g;| deseribed in Example 3.13. Then the
metric with weight vy = (g4 + ¢p) on L yields

1

-OL) = . (,-8(4) 1 [D]) 2 (eo/k)w,

2 Pid
as desired.
Finally, the curvature condition i@, (L) > cw in the sense of currents yields by
definition ¢;(L) € K- Moreover, b) implies K7 0 = K&5. O

Before going further, we need a lemma.

(6.7) Lemma. Let X be a compact Kdhier n-dimensionel manifold, let L be a nef
line bundle on X, and let E be an arbitrary holomorphic vector bundle. Then
RI{X,O(F) @ OkL)) = ofk™) as k — +oo, for every g » 1. If X is projective
algebraic, the following more precise bound holds:

WX, O(E) @ O(kL)) = (k" %), Vg2 0.

Proof. The Kihler case will be proved in Section 12, as a consequence of the holo-
morphic Morse inequalities. In the projective algebraic case, we proceed by induction
onnr =dimX. If r = 1 the result is clear, as well as if ¢ = 0. Now let A be a nonsin-
gular ample divisor such that £ @ ¢(A — Kx) is Nakano positive. Then the Nakano
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vanishing theorem applied to the vector bundle F = E @ O(kL + A — Kx) shows
that H9(X,O{E)® O(kL + A)) = 0 for all ¢ > 1. The exact sequence

0 OkL) = QkL+ A) = OkL + A)jq =5 0
twisted by £ implies
HYUX,0(E)® OkL)) ~ HI YA, O(Eja ® O(kL + A}a),
and we easily conclude by induction since dim A = n — 1. Observe that the argument

does not work any more if X is not algebraic. It seems to be unknown whether the
O(k"~7} bound still holds in that case. 0

(6.8) Corollary. If L is nef, then L is big (i.e. k(L) = n) of and only of L™ > 0.
Moreover, if L is nef and big, then for everyd > 0, L has a singulor metric h = e~
such that maxzex v(p, z} < § and iO,{L) > cw for some & > 0. The meiric h can
be chosen to be smooth on the complement of a fized divisor D, with logarilhmic
poles along D.

Proof. By Lemma 6.7 and the Riemann-Roch formula, we have AMX,kL) =
x(X, kL) + o(k™) = k"L"*/n! + o{k™), whence the first statement. If L is big, the
proof made in 6.5 f) shows that there is a singular metric &, on L such that

-0n (L) = +(-6(4) + D))

with a positive line bundle A and an effective divisor D. Now, for every £ > 0. there

is a smooth metric A, on L such that %Qh, (L} > —ew, where w = 3-~6(A). The

convex combination of metrics k. = k¥ h1~*¢ is a singular metric with poles along
D which satisfies

5}9,,; (L) > elw + [D]) — (1 — ke)ew > kew.

Its Lelong numbers are ev(D, z) and they can be made smaller than & by choosing
€ > 0 small. a

We still need a few elementary facts about the numerical dimension of nef line
bundles.

(6.9) Definition. Let L be a nef line bundle on a compact Kdihler manifold X. One
defines the numerical dimension of L to be

v(L) = max {k =0,...,n; a(L)* # 0 in H*(X,R)}.
By Corollary 6.8, we have x(L) = n if and only if »{(L) = n. In general, we
merely have an inequality.

(6.10) Proposition. If L is o nef line bundle on a compact Kahler manifold, then
s{L} < »(L).
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Proof. By induction on n = dim X. If v(L) = n or k(L) = n the result is true, so
we may assume 1= k(L) <n—1and k = v{L) < m - 1. Fix m > 0 so that
@ = &), has generic rank #. Select a nonsingular ample divisor 4 in X such that
the restriction of @z to A still has rank r {for this, just take A passing through a
point & & [mp) at which rank(d®,) = v < n, in such a way that the tangent linear
map dPgr, . still has rank r). Then x(Lja) 27 = «(L) (we just have an equality
because there might exist sections in HY(A4,mLa) xhich do not extend to X). On
the other hand, we claim that v{L;4) = & = »{L). The inequality v(Lia) =2 v(L)is
clear. Conversely, if we set w = 2—";9(14) > 0, the cohomology class c1{LY* can be
represented by a closed positive current of bidegree (k. k)

A K
T = lim (5;9,.!{15) +Ew)

after passing to some subsequence (there is a uniform bound for the mass thanks
to the Kihler assumption, taking wedge products with w®~*). The current I" must
be non zero since ¢(L)* #£ 0 by definition of k = v(L}. Then {[4]} = {w} as
cohomology classes, and

/ er(Era)t Awt iR = f (D AA] A Wik = [ TAw™ >0
Ja x x

This implivs 1(Lia) > &, as desired. The induction hypothesis with X replaced by
A yields
w(L} < w{Lia) £ v{Lia) < v(L). a

{6.11) Remark. It may happen that k(L) < v(L): take e.g.
LaX=X% X3

equal to the total tensor product of an ample line bundle [, on a projective man-
ifold X; and of a unitary flat line bundle L on an elliptic curve X, given by a
repregentation my{X2z) — U(1} such that no multiple kLo with k # 0 is trivial. Then
HYX kL) = HO X kL) @ H%Xq,kLe) = 0 for k > 0, and thus (L) = —o0.
However cy(L) = prjei{L;) has numerical dimension equal to dim X;. The same
example shows that the Kodaira dimension may increase by restriction to a subva-
riety (if ¥ = X1 x {point}, then x{Ly) = dimY). O

We now derive an algebraic version of the Nadei vanishing theorem in the
context of nef line bundles. This algebraic vanishing theorem has been obtained
independently by Kawamata [Kaw82] and Viehweg [Vie82], who both reduced it
to the Kodaira-Nakano vanishing theorem by cyclic covering constructions. Since
then, a number of other proofs have been given, one based on connections with
logarithmic singularities [EV86], another on Hodge theory for twisted coefficient
systems [Kol85], a third one on the Bachner technique [Dem89] (see also [EV92] for
a general survey, and [Eno93] for an extension to the compact Kahler case). Since
the result is best expressed in terms of multiplier ideal sheaves {avoiding then any
unnecessary desingularization in the statement), we feel that the direct approach
via Nadel's vanishing theorem is probably the most natural one.
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If D=3 a;D; > 0is an effective Q-divisor, we define the muliiptier ideal sheaf
T(D) to be equal to I{y) where ¢ = S ajlg; is the corresponding psh function
defined by generators g; of O(—D;); as we saw in Remark 5.9, the computation of
T(D) can be made algebraically by using desingularizations ju X = X such that
ji* D becomes a divisor with normal crossings on X,

{6.12) Kawamata-Viehweg vanishing theorem. Lel X be a projective algebraic man-
ifold and let F be a line bundle over X such that some positive multiple mF con be
written mF = L + D where L is a nef line bundle and D an cffective divisor. Then

HYX OKx+F) @I(m D)) =0 for q>n-—r{L)

{6.13) Special case. If F 15 a nef line bundle, then

HI(X,O0{Kx +F)) =0 for g>n=-v(F).

Proof of Theorem 6.12. First suppose that v{L) = n, i.e. that L is big. By the proof
of 6.5 f), there is a singular hermitian metric on L such that the corresponding
weight y o has algebraic singularities and

iQo(L) = Zidrd"ga;, > Epw

for sormne sg > 0. On the other hand, since L is nef, there are metrics given by
weiphts 7 . such that £@(L) > ew for every £ > 0, w being a Kihler metric.
Let wp = Y. oy log|g;| be the weight of the singular metric on @) deseribed in
Exampie 3.13. We define a singular metric on ¥ by

1
LIRS E((l — 8Ypr.e +dwe0+ wn)

with € « 8§ < 1, § rational. Then g has algebraic singularities. and by taking &
small enough we find Z(pr) = I(&yp) = Z{L D). In fact, I{ww) can be computed
by taking integer parts of Q-divisors {(as explained in Remark 5.9), and adding dir 0
does not change the integer part of the rational numbers involved when 4 is small.

Now
1

(ldcgap = ‘.TJ’; ((1 - ('J-)dfi(:(,ﬂ.[,‘g + ﬁidd{"lpL‘() + (.idclp‘p)
1 §
> =~ (1-8ew+ degw + D] 2 E
Tmn ™m

if we choose £ < dey. Nadel’s theorem thus implies the desired vanishing result for
all g > 1.

Now. il ¥(L) < n, we use hyperplanc sections and argue by induction on
n = dim X. Since the sheaf O(K x) @ T(m~"D) behaves fonctoriaily with respect
to modifications (and since the L? cohomology complex is “the sane” upstairs and
downstairs), we may assume after blowing-up that P is a divisor with normal cross-
ings. By Remark 5.9, the multiplier ideal sheaf Z(m=10) = O(—{m~1D]) is locally
free. By Serre duality, the expected vanishing is equivalent to
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HUX O-F)@o(m™'D))) =0  for ¢ < v{L).

Then select a nonsingular ample divisor A such that A meets all components D;
transversally. Select 4 positive enough so that G{A+ F —{m~'D]) is ample. Then
HYX,0(~A-F)®0{|m1D|)) = 0 for ¢ < n by Kodaira vanishing, and the exact
sequence 0 = Ox(—A) = Ox — (14),04 — 0 twisted by {—F) @ O(|m™1D]}
yields an isomorphism

HUX,0(-F)® O(lm™'D])) = H(A,O(-Fi4) ® O{|m™ ' D;a]).

The proof of 5.8 showed that v(L,4) = (L), hence the induction hypothesis implies
that the cohomology group on A in the right hand side is zero for ¢ < »(L}. O

7. A Simple Algebraic Approach to Fujita’s Conjecture

This section is devoted to a proof of various results related to the Fujita conjecture.
The main ideas occuring here are inspired by a recent work of Y.T. Stu {Siu96]. His
method, which is algebraic in nature and quite elementary, consists in a combination
of the Riemann-Roch formula together with Nadel’s vanishing theorem (in fact, only
the algebraic case 15 needed, thus the original Kawamata-Viehweg vanishing theorern
would be sufficient). Slightly later, Angehrn and Siu [AS94], [Siu95] introduced other
closely related methods, producing better bounds for the global generation question;
since their method is rather delicate, we can only refer the ready to the above
references. In the sequel, X denotes a projective algebraic n-dimensional manifold.
The first observation is the following well-known consequence of the Riemann-Roch
formula.

(7.1} Special case of Riemann-Roch. Let 7 C Ox be a coherent tdeal sheaf on X such
that the subscheme YV = V(7) has dimension d (with possibly some lower dimen-
sional components). Let [Y] = 3 A;[¥;] be the effective algebraic cycle of dimension
d associated to the d dimenstional components of Y (taking into account multiplicities
A; gtven by the ideal T). Then for any line bundle F, the Euler characteristic

x(Y,OF + mLhy) = x{(X,0(F + mL) ® Ox /J)
is a polynomial P(m)} of degree d and leading coefficient L2 - [Y)/d!

The second fact is an elementary lemma about numerical polynomials (polyno-
mials with rational coefficients, mapping Z into Z).

(7.2) Lemma. Let P(m) be ¢ numertcal polynomial of degree d > 0 and leading
cocfficient aq/d!, ag € Z, ag > 0. Suppose that P{m) > 0 for m 2 mo. Then

a) For every integer N > 0, there exists m € fmg, mg + Nd| such that P(m) = N.
by  For every k € N, there ezists m € [mo, mq + kd] such that P(m) = agkd /291,
¢)  For every integer N > 2d°, there exista m € [my, mg+ N) such that P(m) > N.

48 J.-P. Demailly, Analytic methods and multiplier ideal sheaves

Proof. a) Each of the N equations P(m) =0, P{m)=1, ..., P(m) = N -1 has at
most d roots, so there must be an integer m € {mp, mg + dN] which is not a root of
these.

b) By Newton’s formula for iterated differences AP(m) = P(m+ 1) — P(m), we get

AlP(m) = Z (—l)j(a?)P(mﬁ-d—j}:ad, vm € Z,
1<5<d J

Henceif j € {0,2,4,... ,2[d/2_|} C [0,d] is the even integer achieving the maximum
of P(mg + d — j) over this finite set, we find

24 P(mg + d — ) = ((g) + (;) +) Plmo+d - 7) 2 a4,

whence the existence of an integer m € [mg, mo + d] with P(m) > ag/2%"* The
case k = 1 is thus proved. In general, we apply the above case to the polynomial
@Q(m) = P(km — (k — 1)myg), which has leading coefficient agzk?/d!

c) If d = 1, part a) already yields the result. If d = 2, a look at the parabola shows
that
asN?/8 if &V is even,
>
mE{me v+ N] P{m) 2 {az(Nz ~1)/8 if N is odd;

thus MaXme[mg,mo+n) £{m) 2 N whenever N > 8. If d > 3, we apply b} with &
equal to the smallest integer such that k9/29-1 > N, ie. k = [2(N/2)/%], where
[z] € Z denotes the round-up of x € R, Then kd < {2(N/2)1/9 + 1)d < N whenever
N > 2d%, as a short computation shows. (]

We now apply Nadel’s vanishing theorem pretty much in the same way as Siu
[Siu96), but with substantial simplifications in the technique and improvements in
the bounds. Our method yields simultaneously a simple proof of the following basic
result.

(7.3) Theorem. If L is an ample line bundle over a projective n-fold X, then the
adjoint line bundle Ky + (n+ 1)L is nef.

By using Mori theory and the base point free theorem ([Mor82], [Kaw84]), one
can even show that Kx + (n+ 1)L is semiample, i.e., there exists a positive integer
m such that m{Kx + {n + 1}L) is generated by sections {see [Kaw85] and [Fuj87]).
The proof rests on the observation that n + 1 is the maximal length of extremal
rays of smooth projective n-folds. Our proof of (7.3) is different and will be given
simultaneously with the proof of Th. {7.4) below.

(7.4) Theorem. Let L be an ample line bundle and let G be a nef line bundle on a
projective n-fold X . Then the following properties hold.

a) 2Hx +mL 4+ G generates simulleneous jets of order sy,...,5;, € N at arbitrary
points z1,...,zp € X, i.e., there is a surjective map
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HYX,2Kx +mL+ G) —» P OQKx +mL+G) & Ox.z, /myL.
1<5€p

3n+ 255 -1
T ’

provided that m > 2 + Z (
leiLp

3n+1)

In particular 2K x -+ mL + G 15 very ample for m > 2+ (
n

b) 2Ky + (n+1)L+G generates simultaneous jets of order 81,..., 8, at arbitrary
points £1....,2p € X provided that the mtersection numbers LYY of L over

all d-dimnensional algebraic subsets ¥ of X satisfy

2|if 1

LY > o ZP(E’”*TJ"I).

1g5<

Proof. The proofs of {7.3) and (7.42.b} go along the same lines, so we deal with
them simultaneously (in the case of (7.3), we simply agree that {x1,... ,zp} = 9).
The idea is to find an integer {or rational number) mg and a singular hermitiar
metric ho on Kx + moL with strictly positive curvature current i@, > ew, such
that V(Z{hg)) is 0-dimensional and the weight o of hg satisfies v{pg, ;) = n+ 85
for ail j. As L and G are nef, (m —mq)L + G has for all m > mg a metric A’ whose
curvature 3@, has arbitrary small negative part (see [Dem90}), e.g., i€ 2 —fuw.
Then i@y, + i@p > §w is again positive definite. An application of Cor (1.5} to
F=Ky+mlL+G=(Kx+mgL)+ ({(ra — mg)L + G) equipped with the metric
Iy @ I’ implies the existence of the desired scctions in Kx + F =2Kx + mL+ G
for m > mo.

Let us fix an embedding @,z : X — PY, p 5 0, given by sections Ap, ..., AN €
HY( X, L), and let iy be the associated metric on L of positive definite curvature
form w = %@(L). In order to obtain the desired metric hy on Kx + moL, we fix
a € N* and use a double induction process to construct singular metrics (R plo>1
on ukK x + byl for a non increasing sequence of positive integers by 2 bz > .. >
by > .... Such a sequence much be stationary and mo will just be the stationary
limit mg = limbg/a. The metrics hy, are taken to satisfy the following properties:

o} by, is an algebraic metric of the form

()P
1 Tbe—an 2y 1/(e+1)p’
(Zlgigu‘0§j5N1T£a+ )u(afﬂ"\i‘ﬂ ! 9% g

Neliz, . =

defined by sections a; € HYX, (a + )Kx + mil}, mi < etlp, 1<i <y,
where € — 7x(€) is an arbitrary local trivialization of aKx + bi L ; note that
g )\i“'”b"_“m‘ is a section of

i

au((a+ DEx +mL) + ((a+ 1)bx — am;)ul = (a + Du(aKx + beL).

B ordz (a;) > e+ 1)(n+s;) for all 4, j;

¥ Tlhews1) O T(hgw) and T(hgyvsr) # ZT{he,) whenever the zero vaTiety
V(Z(hy,)) has positive dimension.
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The weight @i = m log 5~ |'r,(¢a+l)’u (af“»)\ﬁaﬂ)b* T )‘2 ol kg, is plurisubhar-
monic and the condition m; < E{f—l-bk iiplies (e+ 1}y -~ amy = 1, thus the difference
Ok — f(Tn]LTJu log 37 |7(4;)1? is also plurisubharmonic. Hence ;T,@m,.,(ah'x +h L) =
%d’d"ﬂﬂk.h > (u%l)m Moreover, condition ) clearly hplies #{2g .. 25} = a(n + $5).
Finally. condition 7} combined with the strong Noctherian property of coherent
sheaves ensures that the sequence (g, ).»1 will finally produce a zero dimensional
subscheme V(Z(hy )}, We agree that the sequence (Mg huwy stops ab this point,
and we denote by liy, = Ry, the final metric, such that dim ﬁ(I(lLk)) =

For k = 1. it is clear that the desired metrics (hy )21 exist if by 1s taken
large cnough (so large, say, that (o + 1)Kx + (b — 1)L generates jets of order
{4 1)(n + maxs;) at every point; theu the seetions oy, ... 7, can be chosen with
my = ... =, = b ~ 1). Suppose that the metrics (g de=1 and By have been
constructed and let us procecd with the construction of (hk:rl_,,),,zl. We do this
again by induction on v, assuming that g1, 18 already constructed and that
dmV (Z(hiy1e)) > 0. We start in fact the induction with » = 0, and agree in
this case that T{hgy1,0) = 0 (this would correspond 1o an infinite meine of weight
idemtically equal to oo}, By Nadel’s vanishing theorem applied to

F, =Ky +mL={aKx + L)+ {m=-k}L
with the metric iy & (A% we get
HYX, 0o+ )Ex + mL)®I{h)) =0 for ¢ = 1. e = by,

As V(Z(hg)) is O-dimensional, the sheaf Ox /I{he) is a skyscraper sheaf, and the
exact sequence 0 — T{hy) = Ox — Ox/Iih) — 0 twisted with the invertible
sheaf Of{a + 1)K x 4+ mL) shows that

HIYX,O{(a+ 1)Kx +mL)) =10 for g > 1, m = by,
Similarly, we find
HUX, Qe+ NKEx +mLy® T(he)) =0 forg = 1. m = beyy

{also true for v = 0, since Ilhgy1,0) = 0), and when m > max{ly, biy1) = bi, the
exact sequence 0 - I(fpt1,) —= Ox = Ox /I(hesr, v) — 0 implies

HIUX, Qe+ 1)K x +mL) @ Ox [Tge ) =0 for g > 1. > by.
In particular, since the H! group vanishes, every section u of (a+ 1Kx +ml on
the subscheme V{Z{hgy1 }) has an extension u to X Fix a basis u},....u} of the
sections on ¥ (T(les1,)) and take arbitrary extensions wy..... N 0 X. Look at
the linear map assigning the collection of jets of order {a + I+ s;) — 1 at all

u = Z ujuj-—»@J,_‘,‘]””("“‘J)_l{u).

points r;

1SJEN
Since the rank of the bundle of s-jets is ("}*), the target space has dimension
n+{a+1){n+s5;)—-1
§= ! .
> ( n
l=j=p
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In order to get a section a,.., = w satisfying condition §) with non trivial restriction
o),y to V{Z(hes1,)}, we need at least N = 4+ 1 independent sections ul, ..., uy.
This conditior is achieved by applying Lemma (7.2) to the numerical polynomial

Pim) = x(X,0((a+ 1)K x + mL} ® Ox [T{hey1,))
=1NX,OUa+ 1)Kx +mL) @ Ox/T{he1,)) 20, m2 by

The polynomial P has degree d = dim V{Z{hgs1,)) > 0. We get the existence of
an integer m € [bg, by + 7] such that N = P{m) > § + 1 with some explicit integer
n € N (for instance 5 = 7(d + 1) always works by (7.2a), but we will also use the
other possibilitics to find an optimal choice in each case}. Then we find a section
Gust € HYX, (e + 1)K x + mL) with non trivial restriction &, to V{T(hei1.)),
vanishing at order > {a& + 1)(n + s;) at each point £;. We just set m, 4, = m, and
the condition myiy < £lb; is satisfied if by + i < #54bey 1. This shows that we
can take inductively
by = {#(bk +v,w)J + 1.

By defuition, Mgy p41 < Rkt1a, hence T(hpirpqr) O T{hrs1, ). We necessar-
ily have Z(ini1011) # T(hes1s), for T{hes1+1) contains the ideal sheaf as-
sociated with the zero divisor of .41, whilst ¢.;1 does not vanish identically
on V{Z(hy41,.)). Now, an easy computation shows that the iteration of byy;, =
| ;27(bg + 7)) + 1 stops at b = a(n+ 1} + 1 for any large initial value &;. In this
way, we obtain a metric k., of positive definite curvature on aK x + {a{y+1) + 1)L,
with dim V(Z(heo)) = 0 and v{ge, £;) = a{n + ;) at each point z;.

Proof of (7.3). In this case, the set {z;} is taken to be empty, thus 6 = 0. By (7.2a),
the condition P(r) > 1 is achieved for some m € b, by 4+ n] and we can take n = n.
As pl is very ample, there exists on pl a metric with an isolated logarithmic pole
of Lelong number 1 at any given point zg (e.g., the algebraic metric defined with
all sections of gL vanishing at zo). Hence

Fl=aKx +(a{n+ 1)+ 1)L + nplL

has a metric &, such that V(Z(h}}) is zero dimensional and contains {xo}. By
Cor (1.5}, we conclude that

Kyx+Fi=(a+1)Kx+ (a(n+1)+ 14 nu)L
is generated by sections, in particular Kx + 91"—%&*%1*&1. is nef. As a tends to +oc,

we infer that Kx + (n + 1)L is nef. O

Proof of (7.4 a). Here, the choice @ = 1 is sufficient for our purposes. Then
In+2s;—1
6= E ’ .
1£5%p

T {z;} #£ 0, we have 6 + 1 > (**7 1} +1 > 2n? for n > 2. Lemma (7.2c) shows that
P(m) > § 4+ 1 for some m € [by, by + ] with p = § + 1. We can start in fact the
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induction procedure k —+ k + 1 with b; = n+ 1 = § + 2, because the only property
needed for the induction step is the vanishing property

HYX2Kx +mL) =0 forg>1,m > by,

which is true by the Kodaira vanishing theorem and the ampleness of Kx + 6, L
(here we use Fujita’s result (7.3), observing that b, > n 4+ 1). Then the recursion
formula ey = [§{be + 7)) + 1 yields by = 5+ 1 = § 4 2 for all &, and (7.4a)
follows. ]

Proof of (7.4b). Quite similar to {7.4a), except that we take y = n, a = 1 and
bi = n+1 for all k. By Lemma (7.2b), we have P(:n) > agk?/2%"1 for some integer
m € [mo, mo + kd], where a4 > 0 is the coefficient of highest degree in P. By Lemma
(7.1) we have ag > infaimy=a L% Y. We take k = [n/d]. The condition P(m) > §+1
can thus be realized for some m € [mg, mp + kd] C [mo, me + 1) a5 soon as

: d. d jod—1
din]-nriffzdL Y [n/dj®/2°7" >4,

which is equivalent to the condition given in (7.4 b). 0

{7.5) Corollary. Let X be a smooth projective n-fold, let L be an ample line bundle
and G o nef line bundle over X. Then m(Kx + (n + 2)L} + G is very ample for
m> () - 2n.

Proof. Apply Th. (7.4a) with &' = a(Kx + (n+ 1)L} + &, so that
2Kx+mL+G =(a+2)(Kx+(n+2)L)+{m—-2n-4-a)L +G,

andt.akem=a+2n+422+(3n:1)_ -

The main drawback of the above technique is that multiples of L at least equal
to {(n + 1)L are required to avoid zeroes of the Hilbert polynomial. In particuiar,
it is not possible to obtain directly a very ampleness criterion for 2Kx + L in the
statement of (7.4 b). Nevertheless, using different ideas from Angehrn-Siu [A894],
[Stu96] has vbtained such a criterion. We derive here a slightly weaker version, thanks
to the following elementary Lemma.

(7.6) Lemma. Assume that for some integer p € N* the line bundle uF generates
simultaneously all jets of order pu(n+35;)+1 at eny point z; in a subset {T,,...,Tp}
of X. Then Kx + F generates simultancously all jets of order s; at x;.

Proof. Take the algebraic metric on F defined by a basis of sections o1,...,0n5 of pF
which vanish at order u{n+ s;}+ 1 at all points z;. Since we are still free to choose
the homogeneous term of degree u(n + s;) + 1 in the Taylor expansion at z;, we
find that 1,..., 2, are isolated zeroes of (Yo} 1{0). i ¢ is the weight of the metric
of F near z;, we thus have ¢(z} ~ (n + s; + %) log |z — z;{ in suitable coordinates.
We replace ¢ in a neighborhood of z; by

@' (z) = max (9(2), |2]* — C'+ (n+ 55) log{z — ;1)
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and leave ¢ elsewhere unchanged (this is possible by taking C = 0 very large).
Then ¢'(z) = 2|2 — €' + (n + 3;) log|z — z;| near z;, in particular @' is strictly
plurisubharmonic near z;. In this way, we get a metric A’ on F with semipositive
curvature ecverywhere on X, and with positive definite curvature on a neighborhood
of {1, ...,T,}. The conclusion then follows directly from Hoérmander’s L? estimates

(5.1) and (5.2). d

{7.7) Theorem. Let X be o smooth projective n-fold, and let L be an ample line
bundle over X. Then 2Kx + L generates simultaneous jets of order s1,...,sp at
arbifrary potnts Ty,. .., Tp € X provided that the intersection numbers L% .Y of L

over all d-dimensgional algebruic subsets Y of X satisfy

gd-1 1)(4 2s;+ 1) — 2
Ld-Y>W Z ((n+ i n:sj_{- ) ), 1<d<n
1<55p

Proof. By Lemma (7.6) applied with F = Kx+Land p = n+1. the desired jet gener-
ation of 2K x + L oceurs if (n+1){K x + L) generates jets of order (n + 1)(n + 5;} + 1
at x;. By Lemma (7.5} again with F = aKx + (n+ 1)L and p = I, we see by back-
ward induction on a that we need the simuitanecus generation of jets of order
fn+)(n+s;)+14+(n+1-alnil)atz.In particuslar, for 2K x +{n+1}L we
need the generation of jets of order {n + 1){2n + 5; — 1) + 1. Theorem (7.4b) yields
the desired condition. 0

We now list a few immediate consequences of Theorem 7.4, in connection with
some classical questions of algebraic geometry.

{7.8) Corollary. Let X be a projective n-fold of general type with Kx ample. Then
mK x is very ample for m 2 my = (3":1) + 4.

(7.9) Corollary. Let X be @ Fano n-fold, that is, a n-fold such that —Kx 1is ample.
Then —mKy s very ample form > mpg = (3":1).

Proof. Corollaries 7.8, 7.9 follow easily from Theorem 7.4 a) applied to L = K.
Hence we get pluricanonical embeddings @ : X — PY such that $*H1) = tmeKx.
The image Y = @(X) has degree

aest?) = [ eOW)" = [ o £morx)” = IR

It can be easily reproved from this that there are only finitely many deformation
types of Fano n-folds, s well as of n-folds of general type with Kx ample, corre-
sponding to a given discriminant {K%/| (from a theoretical viewpoint, this result is
a consequence of Matsusaka’s big theorem {Mat72] and [KoM72], but the bounds
which can be obtained from it are probably extremely huge). In the Fano case,
u fundamental result obtained indepently by Kollar-Miyaoka-Mori [KoMM92] and
Campana {Cam@2] shows that the discriminant K% is in fact bounded by a constant
C.,. depending only on n. Therefore, one can find an explicit bound Cj, for the degree
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of the embedding @, and it follows that there are only finitely many families of Fano
manifolds in each dimension. {J

In the case of surfaces, much more is known. We will content ourselves with
a briel account of recent results. If X is a surface, the failure of an adjoint bundle
Ky + L ta be globally generated or very ample is deseribed i a very precise way
by the following result of I. Reider [Rei8g].

(7.10) Reider’s Theorem. Let X be a smooth projective surfece and let L be o nef
{ine bundle on X.

a)  Assume that I? > 5 and let v € X be o given poind. Then K x + L hes o section
which does not vanish at &, unless there is an effective divisor D C X pussing
through x such that either

L-D=0 end D*= -1; or
L-D=1 and D*=0.

b}  Assume that L? > 10. Then any two points x5 € X (possibly infinitely neor)
are seperated by sections of K x + L, unless there is an effective divisor D C X
passing through = and y such thot either

L- D=0 and D*=-1er - 2; or
L-D=1 and D*=0 or —1;  or
L-D=2 and D*=0. [

(7.11) Corallary. Let L be an emple hine bundle on ¢ smooth projective surface X.
Then Kx + 3L is globally generated and Kx + 4L 15 very araple. If L? > 2 then
Kx + 2L is globally generated end K x + 3L is very ample. 0

The case of higher order jets can be treated similarly. The most general result
in this direction has been obtained by Beltrametti and Sommese [BeS93)].

(7.12) Theorem ([BeS93]). Let X be a smooth projective surface and let I be a nef
line bundle on X. Let p be o positive integer such that L? > 4p. Then for every
0-dimensional subscheme Z C X of length h%(Z, Og) < p the restriction

pz  HY(X,Ox{Kx + L)) — HYZ. Oz(Kx + L)}

is surjective, unless there is an effective diwisor D C X mtersecting the support {Z|
such that 1
L-Dfp§D2<§LoDA ]

Proof {Sketch). The proof the above theorems rests in an essential way on the cou-
struction of rank 2 vector bundles sitting in an exact sequence

02Oy = E—-L®I; 0
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Arguing by induction on the length of Z, we may assume that Z is a (-dimensional
subscheme such that pgz is not surjective, but such that pz: is surjective for every
proper subscheme Z' C Z. The existence of E is obtained by a classical construction
of Serre (unfortunately, this construction only works in dimension 2}. The numerical
condition on L7 in the hypotheses ensures that e1(E)? — 4 cp(E) > 0, hence E is
unstable in the sense of Bogomolov. The existence of the effective divisor D asserted
in 7.10 or 7.12 follows. We refer to [Rei88)], [BeS93] and [Laz97] for details, The
reader will find in [FdB93] a proof of the Bogomolov mequality depending only on
the Kawamata-Vichweg vanishing theorem. O

(7.13) Exercise. The goal of the exercise is to prove the following weaker form of
Theorems 7.10 and 7.12, by a simple direct method based on Nadel's vanishing
theorem:
Let L be o nef line bundle on a smooth projective surface X. Fiz poinis
&1, ..., Tn and corresponding multiplicities s1,..., 8y, and set p= Y (2 +5;)°.
Then H{X,Kx + L) generates simultaneously jets of order s; at all points z;
provided that L2 > p and L - C > p for all curves C passing through one of the
points T;.

a) Using the Ricmann-Roch formula, show that the condition L? > p implies the
existence of a section of a large multiple mL vanishing at order > m(2 4+ s;)
at each of the points.

b) Construct a sequence of singular hermitian metrics on L with positive definite
curvature, such that the weights ¢, have algebraic singularities, v(p.,z;) >
2+ &; at each point, and such that for some integer m; > 0 the multiplier ideal
sheaves satisfy T(myw,41) 2 Tlmaw,) if V{Z{p)) is not 0-dimensional near
SOIHC .'L'J'.

Hint: a) starts the procedure. Fix mpg > 0 such that meL — K x is ample. Use Nadel's

vanishing theorem to show that

HUX,O0((m+mo)L} @ I{dmip,)) =0 forallg>1,m >0, A€[0,1].

Let D, be the effective Q-divisor deseribing the 1-dimensional singularities of ¢,..
Then I(Ame,) C O{—[AmD,]) and the quotient has 0-dimensional support, hence

HYX,0(m+mo)L) @ HN—lAmD,])) =0 forallg > 1, m>0,Ae[0,1]
By Riemann-Roch again prove that
2
(*) AY(X,O((m +mo)L) ® O/O(—|AmD,|)) = %{2,\ LD, — A2D2) + O(m).
As the left hand side of () is increasing with A, one must have D2 < L - D,.

If V{Z(p,)) is not O-dimensional at z;, then the coefficient of some component of
D, passing through z; is at least 1, hence

2L-D,-D:>L-D,2p+1L

Show the existence of an integer m; > ( independent of v such that
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((m +mg)(2+ 5;) + 2)

hO(X, O((m + mg)L) ® OJO{~|mD.]}) > Y A

1SN

for m > m,, and infer the existence of a suitable section of (m; + mg)L which is
not in HO(X, O((sn, + mg)L — |mD,|)). Use this section to construct p,; such
that Z(mi@ui1) 2 Llmae.).

8. Holomorphic Morse Inequalities

Let X be a compact Kahler manifold, E a holomorphic vector bundle of rank r and
L a line bundle over X. If L is equipped with a smooth 1etric of curvature form
©&(L), we define the g-index set of L to be the open subset

q negative eigenvalues }

(8.1) Xl L) = {x € X ; i0(L); has n — g positive eigenvalues

for 0 < ¢ < n. Hence X admits a partition X = AU UQX(q, L) where A =
{z € X; det(B{L);) = 0} is the degeneracy set. We also introduce
(8.1) X(<ql)= |J X6 L)

0<7%q

It is shown in [Dem85b] that the cohomology groups H9{X, E® O(kL)) satisty the
following asymptotic weak Morse inequalities as k — 400

k" i n N
(8.2) R(X,E® O(EL}) S’"Hj;(q,m(”l)q(ﬂsm) + o(k™).

A sharper form is given by the strong Morse ineguelities

3 (-1)IR(X, E@ O(kL))
0<s<q
k" i n
(8.2) <re (-1)9(2—9(1,)) + o(k™).
™ JX(<aL) T
These inequalities are a useful complement to the Riemann-Roch formula when
information is needed about individual cohomology groups, and not just about the
Euler-Poincaré characteristic.

One difficulty in the application of these inequalities is that the curvature in-
tegral is in general quite uneasy to compute, since it is neither a topological nor an
algebraic invariant. However, the Morse inequalities can be reformulated in a more
algebraic setting in which only algebraic invariants are involved. We give here two
such reformulations.

(8.3) Theorem. Let L = F — G be a holomorphic line bundle over a compact Kdhler
manifold X, where F and G are numerically effective line bundles. Then for every
g=20,1,...,n = dim X, there is an asymptotic strong Morse inequality
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S (-1)TIRX L) € % PRSI (’;’)F"-J G+ olk™).

0<<g T o<i<q

Proof. By adding ¢ times a Kihler metric w to the curvalure forms of F and G,
€ > 0 one can write ﬁQ(L) = 8(F) — 0.(G} where §.(F) = 2i—,r9(F) + gw and
8,16 = —zi;Q(G)+ew are positive definite. Let A; 2 ... = An > 0 be the eigenvalues
of ,(G) with respect to 8 (F). Then the eigenvalues of 2= O(L} with respect to 8. (F)
are the real numbers 1 — A; and the set X (< 4, L) is the set {31, < 1} of points

£ € X such that A,y1{z) < 1. The streng Morse inequalities yield

Z (=)W (X kL) € k—"f{ (=1)7 H (1= A)8e(F)" + o(k™).

1
n.
0<i<a Aan<ll o agjen

On the other hand we have

(:‘) 8,(F)™3 A8, (GY = o3(A) 6. (F)",

where o3 (A) is the j-th elementary symmetric function in Aiy.. o An, hence
3 (-1 ('T)F“*JZGJ' = lim/ ST (-1l (M) 8 (F)"
] &0 [y -
0<i<g d<j=q

Thus, to prove the Lemma, we only have to check that

3 (1ol (N - L e (17 [ (-2 20

0€7€n 1<5<n

for all Ay > ... = A, > 0, where 1;_; denotes the characteristic function of a set.
This is easily done by induction on n {just split apart the parameter An and write
al{A) = ad_ (A + ol T1 () An). O

In the case ¢ = 1, we get an especially interesting lower bound {this bound has
been observed and used by S. Trapani {Tra93) in a similar context).

(8.4) Consequence. h0(X, kL) — h*(X,kL} 2 EL(F" - nF"L-G) - olk™).
Therefore some multiple kL has g section as soon as Fr_anFrl.@ >0

(8.5) Remark. The weaker inequality

n

RO X, kL) > k—1(F" —nF"L Q) - o(k™)
n.

is easy to prove if X is projective algebraic. Indeed, by adding a small ample Q-
divisor to F and G, we may assume that F, G are ample. Let moG be very ample
and let &' be the smallest integer > k/mq. Then AP{X, kL} 2 h*(X, kF -~ K'moG).
We sclect &' smooth members G, 1 < § < &’ in the linear system {mgG| and use
the exact sequence
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0= HUX KF — 3" Gy — HY (X kF) ~ D HYG; ke, )-

Kodaira’s vanishing theorem yields H9( X, kF) = 0 and H9(G;. kFg ) =Ulorg = 1
and & > kg By the exact scquence combined with Riemann-Roch, we get
ROUX KLY 2 WX EF =Y G)

kn kufl ) .
= "o =1y pi—1 e yipn—2
> =" - O ) ((m it G- Ot ))

':‘:_n "wo_ k,Tn‘U n—1 n—1
Zn!(F SO F ~G)-~O(k )

T4

> = (Pt —aFtG) -0,

nl
(This simple proof is due to F. Catanese.) |

(8.6) Corollary. Suppose that F' and G are nef and that F is big. Some multiple of
mF — (G has a section as soon as

Fn—l e
m>n T
In the last condition, the factor n is sharp: this is casily seen by taking X = P¥
and F = Ofa,...,a) and G = @by, ..., by) over P{; the candition of the Corollary
is then m > 3. b; /a, whereas k(mF — G) has & section if and only if m > supb; ja:
this shows that we cinnot replace n by n(l — ¢).

9. Effective Version of Matsusaka’s Big Theorem

An important problem of algebraic geometry is to find effective bounds 1o such that
multiples mL of an ample line bundle become very ample for m > mg. From a theo-
retical point of view, this problem has been solved by Matsusaka [Ma172] and Kollar-
Matsusaka [KoM83}]. Their result is that there is & bound mg = mgln, L7, L1 Kx)
depending enly on the dimension and on the first two coefficients L™ and L" 1 Kx
in the Hilbert polynomial of L. Unfortunately, the original proof does not tell much
on the actual dependence of mg in terms of these coefficients. The goal of this sec-
tion is to find effective bounds for such an integer mg, along the lines of [Siu93].
However, one of the technical lemmas used in [Siu93] to deal with dualizing sheaves
can be sharpened. Using this sharpening of the lemma, Siu's bound will be here
substantially improved. We first start with the simpler problem of obtaining merely
a nontrivial section in mL. The idea, more gencrally, is to obtain a criterion for
the ampleness of mL — B when B is nef. In this way, one is able to subtract from
I any multiple of Kx which happens to get added by the application of Nadel’s
vanishing theorem (for this, replace B by B plus a multiple of Kx + (n+1)L).

{9.1) Proposition. Let L be an ample line bundle over @ projective n-fold X and lei
B be a nef line bundle over X. Then Kx +mL — B has a nonzero section for some
integer m such that
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Ln—l_B
mSHT+ﬂ+1.

Proof. Let 1ng be the smallest integer > n L“;l'B. Then myL — B can he equipped

with a singular hermitian metric of positive definite curvature. Let ¢ be the weight
of this metric. By Nadel's vanishing theorem, we have

HUX,OKx+mL-B)®I{g) =0 forg > I,

thus P(m) = h%(X. O{Kx + mL — B) @ I(y)) is a polynomial for m > my. Since
P is a polynomial of degree n and is not identicaily zero, there must be an integer
m € [rg, mp + n) which is not a root. Hence there is a nontrivial section in

HY X, O(Kx +mL — B)) > HYX,0(Kx +mL - B)®I(p))

for some m € [mg, g + 1], as desired. 0

(9.2) Corollary. If L is ampie and B is nef, then mL — B has a nenzero section for

some integer
L* 1. B+ "1 Kx

In

mgn( +n+l).

Proof. By Fujita’s resuit 8.3 a), Kx + (n + 1)L is nef. We can thus replace B by
B+ Kx + (n+ 1)L in the result of Prop. 9.1. Corollary 9.2 follows. O

(9.3) Remark. We do not know if the above Corollary is sharp, but it is certainly
not far from being so. Indeed, for B = 0, the initial constant » cannot be replaced
by anything smalier than n/2: take X to be a product of curves C; of large genus
g; and B = 0; our bound for L = Olai[m]) @ ... 8 Olanlpn]) to have |mL| # [}
becomes m < 3°(2g; — 2)/a; + n(n + 1), which faiis to be sharp only by a factor 2
whena; = ...=a, =1 and g 3> g2 » ... 3 gn ~ +00. On the other hand, the
additive constant n + 1 is already best possible when B = 0 and X = F", o

So far, the method is not really sensitive to singularities (the Morse inequalities
are indeed still true in the singular case as is easily seen by using desingularizations of
the ambient, variety). The same is true with Nadel's vanishing theorem, provided that
K x is replaced by the L? dualizing sheaf wy (according to the notation introduced
in Remark 5.17, wx = Kx(0) is the sheaf of holomorphic n-forms u on X,eg such
that i”"u A % is integrable in a neighborhood of the singular set), Then Prop. 9.1
can be generalized as

(9.4) Proposition. Let L be an ample line bundle over a projective n-fold X and let B
be a nef line bundle over X. For every p-dimensional {reduced) algebraic subvariely
Y of X, there is an integer
<pZ B Y
mEPT Ly TP

such that the sheaf wy ® Oy (mL — B) has a nonzere section. O
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To proceed further, we need the following useful “upper estimate” about L2
dualizing sheaves (this is one of the crucial steps in Siu's approach: unfortunately, it
has the effect of producing rather large final bounds when the dimension increases).

(9.5) Proposition, Let H be a very ample line bundle on o projective aigebruic
manifold X, and let Y C X be o p-dimensional trreducible algebreic subvariety.
If§ = HP .Y is the degree of Y with respect to H, the sheaf

Hom (wy, Oy ((6 — p - 2)H))

has o nontriviel section.

Observe that if Y is a smooth hypersurface of degree 6 in (X, H) = (PP, O(1)),
then wy = Oy (§ — p — 2) and the estimate is optimal. On the other hand, if ¥ is a
smooth complete intersection of multidegree (d;,...,d,) in PP*", then § = 6,...4,
whilst wy = Oy{d1 +... 4+ 8, —p~r — 1); in this case, Prop. (9.5) is thus very far
from being sharp.

Proof. Let X C PV be the embedding given by H, so that H = Ox(1). There
is a linear projection P* -~ PP+l whose restriction # : ¥ — PP to ¥V is a
finite and regular birational map of ¥ onto an algebraic hypersurface Y’ of degree
d in PPtL. Let s € HO(PPt1, (6)) be the polynomial of degree é defining ¥'. We
claim that for any small Stein open set W C PP*! and any L? holomorphic p-
form w on Y' N'W, there is a L? holomorphic (p + 1}-form % on W with values
in O(8) such that %;y:nw = u A ds. In fact, this is precisely the conclusion of the
Ohsawa-Takegoshi extension theorem [OT87], [Ohs88] (see also [Mand3] for a more
general version); one can also invoke more standard local algebra arguments (see
Hartshorne [Har77], Th. III-7.11). As Kpp+: = O(—p — 2), the form % can be seen
as a section of O(8 — p— 2) on W, thus the sheaf morphism u — 1 A ds extends into
a global section of Hom (Wyr, Oy (6—-p— 2)) The pull-back by «* yields a section
of Hom{r*wy, Oy {(§ — p— 2}H)). Since = is finite and generically 1: 1. it is easy
to see that T*wy+ = wy. The Proposition follows. O

By an appropriate induction process based on the above results, we can now
improve Siu’s effective version of the Big Matsusaka Theorem {Siu93]. Our version
depends on & comstant A, such that m(Kx + {n + 2)L) + G is very ample for
m > A, and every nef line bundle G. Corollary (8.5) shows that A, < (3":1) — 2n,
and a similar argument involving the recent results of Angehrn-Siu [AS94] implies
A€ nd—n? —n—1for n > 2. Of course, it is expected that A, = 1 in view of the
Fujita conjecture.

(9.6) Effective version of the Big Matsusaka Theorem. Let L and B be nef line
bundles on a projective n-fold X. Assume that L is ample and let H be the very
ample line bundle H = A\ {Kx + (n+ 2)L). Then mL — B is very ample for

n-1. (B+ H))(3“"+1)/2(Ln—1 ,H)a""’(n/2—3j4)—1/4

(3"*‘-1)/2(
m 2 {2n) (Lr)F /217174
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In particular mL is very ample for

FA -Kx

33 (nf24+3/4)+1/4
=)

m > Cn (L"‘):‘"—2 (n + 24
with Cn = (20} =122, )37/ 243/4) 4174,

Proof. We use Prop. (9.4) and Prop. (9.5) to construct inductively a sequence of
(uon necessarily irreducible) algebraic subvarieties X =Yy 2Yn12... D Yo
such that ¥, = Uj Y;; is p-dimensional, and Y,_, is obtained for each p > 2 as the
union of zero sets of sections

Tp,5 € HO(YPJﬂ Oy, (mp L~ B))

with suitable integers myp; > 1. We proceed by induction on decreasing values of
the dimension p. and find inductively upper bounds my for the integers my ;.
By Cor. (9.2), an integer 1y, for maL — B to have a section o, can be found

with

IL""-(B+Kx+(n+1)L) L 1. (B+ H)
My, <N <n Tn .

Ln

Now suppose that the sections on, .., Op+15 have been constructed. Then we get
inductively a peycle ¥, = 3 ;¥ ; defined by }7;, = sum of zero divisors of
SECLIONS Opy1,; iDL ?p*_]’j, where the mutiplicity g5 on Yy 5 C Ypi1k 18 obtained by
multiplying the corresponding multiplicity pp4x with the vanishing arder of gp1.x
along Yy ;. As cohomology classes, we find

Y= > (mprisl = B) - (p+1,4Ypr1k) € Mipir L Yoo
Inductively. we thus have the numerical inequality
Y, < mpyr...mp L"7P

Now, for each component Y ;, Prop. (9.4} shows that there exists a section of
wy, , ® Oy, (my ;L - B) for some integer

IP-1.B.Y, .
B-Yp, +p+1Spmp+1...an"_]'B+p+l.

My § < P————
S Ly Yp;

Here. we have used the obvious lower bound LF~! .Yy, = 1 (this is of course a
rather weak point in the argument). The degree of Y3 ; with respect to H admits

the upper bound
Oy i= HY Yy 3 S mpyi.. .my HP  L*7P.
We use the Hovanski- Teissier concavity inequality (10.2b)
(L7 HY) (LY < LT H

to express our bounds in terms of the intersection numbers L™ and L"~! - H only.
We then get
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(Ln—l . H)p

Sp S Mpyp1. - Mg "WT-

By Prop. (9.5), there is a nontrivial section in
Hom(wy, ;, Oy, , ({6, — v — 21H)).

Combining this section with the section in wy, , @ Ov, {imp, L — 13} already cons-
tructed, we get a section of Oy, (mp L — B+ (8p; — P~ 2)H) on Yy ;. Since we
do nat want H to appear at this point, we replace B with 2 4 (8, —p — 2)H and
thus get a section a5 of Oy, (my ;L — B) with sowe integer iy, 5 such that

Mp; < PHipy1 - Ty LV B+ (b, —p- +p+1
< PMpir - Mnbay L' (B + H)

2 (L-n—} . h{)p

< p(Mpt1 .- Tin) _(F‘_)P—‘i_ LN (B + H).

Therefore, by putting M = n L*~' . (B + H), we get the recursion relation

(Ln—l R H)p

"WT(mP+I"'m")2 for2<p=<mn-—1,

mp & M
with initial value ny, < M/L™. If we let {fi,) be the sequence obtained by the
same recursion formmla with equalities instead of inequalities, we getl vy, < 7y, with
Moy = MLV Hy= L L™)™ and

L'ﬂ

N S g
Ty, = o 1 T

1. H
for 2 < p < n—2 We then find inductively

- (Ln—l A H)S"“”"(n—ﬂﬂ)-{-l/i!

mp = Ty = (L7 -7

We next show that mgL — I is nef for
1y = max (ma, Ma,.... My, M2...Tn L. B).

In fact. let € < X be an arbitrary irreducible curve. Either C = Yy, for some j or
there exists an integer p = 2,...,n such that C'is contained in ¥}, but not in Yyt
If C C Yy ;> Yp—1, then op ; does not vanish identically on €. Hence (myp ;L — B)ic
has nonnegative degree and

(mpL — B)-C > (mp;L - B}-C 20
On the vther hand, if C =Y ;, then
{mol. — B)-C=21mg—B- }71 > mg— ™. S ALt £ I B

By the definition of A, (and by Cor. (8.5) showing that such a constant exists),
H + @ is very ample for every nef line bundle G, in particular H+mpl — B is very
ample. We thus replace again B with B + . This has the effect of replacing A
with M =n(L" ! (B + 2H)) and mg with
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Trg = IMAXx (mn STl Mg, T ... 0 L7 (3 + H))
The last term is the largest one, and from the estimate on my, we get
r-1 _H}(B““2—1)(n—3/2)f2+(n—2),'2(Ln—1 . (B + H))
(Ln)(ﬂ"—2—1)(n-1,"2)/2+{n—2}/2+1

LB+ H])[3"_1+1)/2(Ln—] ) H)s"-z(n,.'z—sm)_uq
(Ln)&"'z(n/2—]/4)+1/4

mp < M(3“"-1)/2(

< (amy@ vz BT
O

(9.7) Remark. In the surface case n = 2, one can take A, = 1 and our bound yields
ml very ample for
2
m> 4 (L- (K;E:-4L))
If one looks more carefully at the proof, the initial constant 4 can be replaced by 2.
In fact, it has been shown recently by Fernandez del Busto that mL is very ample

for 1[(L (Kx+4L)+1)?
(Ax + +
m> 5 [ Iz +3(,

and an example of G. Xiao shows that this bound is essentially optimal (see [FAB94]).

10. Positivity concepts for vector bundles

In the course of the proof of Skoda’s L? estimates, we will have to deal with duat
bundles and exact sequences of hermitian vector bundles. The following fundamental
differential geometric lemma will be needed.

{10.1) Lemma. Let £ be a hermition holomorphic vector bundle of rank r on a
complez n-dimensional manifold X. Then the Chern connections of E and E* are
related by B(E*) = -*O(E) where ' denotes transposition. In other words, the

associated hermitian forms O(E) and O(E*) are related by

é(E)(Tr T)= Z CikapTs3Thys T= Z T3, ,\ ® ex,
1<5,k8n, 1<A,u<r
OE)(r.7) = 2 awaThThe T Z :Aa

1<5,k<n, 1A, usr

In particular E >g.i¢ 0 if and only if B* <gur 0.

Notice that the corresponding duality statement for Nakano positivity is wrong
(because of the twist of indices, which is fortunately irrelevant in the case of decom-
posable tensors}.

Proof. The Chern connections of E and E* are related by the Leibnitz rule
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d{o A s) = (Dg.o) A s+ (-1)%80 A Dgs

whenever s, ¢ are forms with values in £, E* respectively, and o A s is computed
using the pairing £* @ F — C. If we differentiate a second time, this vields the
identity

0=(D}.o)As+on Dis,

which is equivalent to the formula @(E*) = —'©@(E). All other assertions follow. O

(10.2) Lemma. Let
0—S5 HE 5H Q-0

be an ezact sequence of holomorphic vector bundles. Assume that E i3 equipped
with a smooth hermitian metric, and that S and Q are endowed with the metrics
(restriction-metric and guotient-metric) induced by that of E. Then

(10.3) IFeg: E+858Q, jBg:SaQ-E

are C™ isomorphisms of bundles, which are inverse of each other. In the C°-
splitting E ~ 5 @ Q, the Chern connection of £ admits a matriz decomposition

Ds —-p*
(10.4) pe={ L Dq)

in terms of the Chern conrections of § and Q, where
B € C®(X, AT} ® Hom(S, Q)), B* € C=(X, AT} ® Hom(Q, 5)).

The form 3 is called the second fundamental form associated with the exact sequence.
It 1s uniquely defined by each of the two formulas

(10’5) D;-Iom(S,E)j =g"0B, jofgr= _'D;-’lom(Q‘E)g.'
We have Dy e 008 =0, Dy 518" = 0, and the curvature form of E splits as

- 9(5) - lﬁt A !S —D;{Qm(q‘s)ﬁi )
oE) ( Diomis.yB  OQ)-BAB"

and the curvature forms of § and @ can be expressed as
(10.7} O(S)=G(E)s+ 8 nB,  OQ)=O(E)ig+B8A0",
where G(E) s, O(E) g stand for 7" cG{E)cj and go G(E)o

(10.6)

Proof. Because of the uniqueness property of Chern connections, it is easy to see
that we have a Leibnitz formula

Dr(f A1) = (Dyomee,pyf) Au+ (—1)%8f f A Dpu

whenever u, f are forms with values in hermitian vector bundies £ and Hom(E, F)
(where Hom(E, F) = E*® F is equipped with the tensor product metric and fAu
incorporates the evaluation mapping Hom(E, F) ® £ — F). In our case, given a
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form u with values in F, we write u = jus + g*ug where us = j*uv and ug = gu
are the projections of w on § and @ We then get

Dpu= Dg(jus + g"ug)
= (Dyom(s.E1J) / s + J - Dsus + (Dromiq.m187) Mg +¢" - Dqug-
Since j is holomorphic as well as §* o j = Idg, we find D}}Dm(s 5l = 0 and

tom(s.5y1ds = 0= Dijomp.s)d” 04

By taking the adjoint, we see that j* o D, g pyd = 0, hence Diomis.m] takes
values in ¢*@ and we thus have a unique form S as in the Lemma such that

D;imn(S,E)j = g* o . Similarly. g and g o g* = Idg are holomorphic, thus

Dtomig.@) 140 =0 = 9© Dhigm(@. 539"

and there is a form y € (X, A% T3 ®@Hom(Q, §)) such that Dy pg" =70 7.
By adjunction, we get Dy, g8 = 770 J" and D g9 = O implies
Dy py* = 0. H we differentiate g o j = 0 we then get

0= D;'{om(E‘Q)g Oj +go D;—iam(S‘E)j = ’Y’ Oj* Oj +g°g' O,ﬁ = ’Y* + .39
thus v = —#* and D}y, 0 59" = —J 0 47 Combining all this, we get

Dgu=g"8nrug+j Dsug—3B Aug+g - Daug
:}(Dgug - g /\’U.Q) +y*(BAu5+DQuQ)‘

and the asserted matrix decornposition formula follows. By squaring the matrix, we

get
pr_ | DE—B"AB  —Dsofif—FBoDq
£~ \pgof+BoDs  Dy-BAB :

As Dgofi+B0Ds = DuomsgyB and Ds o 8 + f* 0 Dg = Dyom(.5)8” by
the Leibnitz rule, the curvature formulas follow (observe, since the Chern curvature
form is of type (1, 1), that we must have Di{om(S‘Q)ﬁ =0, Djumo.5)% = M. O

{10.8) Corollary. Let0) = S — E' — Q — 0 be an ezact sequence of hermition vector
bundles. Then

a) Ezegu 0 = QZcnel,

b} E<gu0 = 5 <anurl

¢) E<pa0 = 5 <nal

ard anelogous implications hold true for strict positivity.

Proof. If A is written Y. dz; ® 3;, B; € Hom($, @), then formulas (10.7) yield
I6(5) = iB(E)s — 3_ dz; A dZ ® Bif;,
i0(Q) = BB + p_ dz; A dzi ® BB}
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Since #-{f®@s8) =3 &8; sand 3* - {£E@s) = STELL - s we get

OIS ER 5, ®5) = OEN® .6 @) — D T, 5.8 s,
ik

A(S)(u,u) = O, u) — 17 vl
BUER s, £ @5) = OENE@s.E ®s)+ Zgjﬁ;(ﬁ;; S50 8)

3k

O Eestes)=0EN@stos) =8 Easf |

Next, we need positivity properties which somehow interpolate between Grif-
fiths and Nakano positivity. This leads to the concept of m-tensor positivity.

(10.9) Definition. Let T ond E be complex vector spaccs of dimensions w, v respec-
tively, and let © be a hermation form on T ® E.

a) A fensoru € T ®& E is said to be of rank m of m is the smallest 2 0 integer
such that u cen be writlen

u:ZfJ@sJ, & e, s; € E.
1=1

L) © s said to be m-tenser positine (resp. m-tensor semi-positive) if Glu, ) > 0
(resp. ©{u,u} > 0) for every tensor u € T @ £ of rank < m. n £ 0. in thas
case, we write

O >nl {resp. @2, 0).

We say that a hermitian vector bundle E is m-tensor positive if é(E) S O
Griffiths positivity corresponds to m = 1 and Nakano positivity te m 2 min{n, r).
Recall from {4.8) that we have

(OELAuwy = > Y cuapuysafiksy
|S|=q-1FkAp

for every (m.g)-form u = Y ugadz A ... A dz, A dZr ® e with values in K.
Since ujsa = 0 for j € 5, the rank of the tensor {52050 € C' ®C is in fact
< min{n - ¢+ 1,r}. We obtain therefore:

(10.10) Lemma, Assume that E >, 0 (resp. E > 0). Then the hermitian operator
[{&(E), A] is semiposilive (resp. positive definite) on AT X 2 E for g > 1 and
m > min{n — g+ 1,7}

The Nakano vanishing theorem can then be improved as follows.

{10.11) Theorem. Let X be a weakly pseudoconvezr Kdikler manifold of dimension n
and et E a hermitian vector bundle of rank v such that G(E) >, 0 over X. Then
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H™X EY=0 for g>1 and m > min{n—q+1,7}.

We next study some imiportant relations which exist between the various posi-
tivity concepts, Our starting point is the following result of [DSk79].
(10.12} Theorem. For any hermitian vector bundle E,

E>gyi 0 = F®@detE >pp 0.

To prove thig result, we use the fact that
(10.13) S(det E) = Trg €(F)
where Trg @ Hom{E, E) — C is the trace map, together with the identity
O(E@detE)=0(E} + Tre(6(E)) ® ldg,
which is itself a consequence of (10.13) and of the standard formula
BEQF)=0(FE)2ldr+1dg RO(F).
In order to prove (10.13), for instance, we differentiate twice a wedge product,
according to the formmuia
p
Darplsl A Asﬂ :Z deg‘""’"""deg’f”lszf'\---/\sj'q/\DESj/\--'/\sp.
i=1
The corresponding hermitian forms on Tx @ E are thus related by
G(E@det B)=B(E)+ Trg O(E} @ h,

where i denotes the hermitian metric on E and Trg é(E) is the hermitian form on
Tx defined by

Tep OENE, = Y. B(E)E®erE®er),  £€Tx,

1<A<r

for any orthonormal frame (ey,...,e.) of E. Theorem 10.12 is now a consequence
of the following simple property of hermitian forms on a tensor product of complex
vector spaces.

(10.14) Proposition. Let T, E' be complex vector spaces of respective dimensions n, 7,
and h n hermitian metric on E. Then for every hermition foom @ on T®@ E

Ooafl —= G+ Trg@®h >nax 0.

We first need a lemma analogous to Fourier inversion formula for discrete
Fourier transforms.
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(10.18) Lemma. Let g be an integer > 3, and T3, y¥u, 1| < At < 7, be complex
numbers. Let o describe the set U of r-tuples of g-th roots of unity and put

Z T30 ), y; = Z Yulus UEU;-

1€A<r 1<u<r

Then for every pair (o, 8), I < a, 8 < r, the following identity holds:

Ta¥g if a# B,
r V=t =
q TyYgTalp = _ .
P I O
! 1€pgr

Proof. The coeficient of z,§, in the summation ¢=" ¥ ;. 2,7, 0,54 is given by
9

-r — =
g E Talglrl,.
celr

This coefficient equals 1 when the pairs {o, 2} and {8, A} are equal (in which case
oaT3Ta0, = | for any one of the ¢ elements of U7). Hence, it is sufficient to prove
that

Z GO0 0, = [
aEU;
when the pairs {a, 2} and {8, A} are distinct.

If {o, 2} # {8, A}, then one of the elements of one of the pairs does not belong
to the other pair. As the four indices a, 8, A, i1 play the same role, we may suppose
for example that e ¢ {8, A}. Let us apply to ¢ the substitution o — =, where 7 is
defined by

To =€ 1, =g, for v # a.
We get
g2mile Z if o#u,

TuTgTAT, = = 2
; adg o Z eé'quz if = i,
-
Since g > 3 by hypothesis, it follows that

N oaFsta0, = 0.
[~

Proof of Proposition 10.14. Let {¢;)1<j<n be a basis of T', (ex)1<a<, 8n orthonormal
basis of E and £ = Ej EtyjeT, u= E“ ujnt; ®@ey € T®E. The coefficients i,
of @ with respect to the basis {; @ e, satisfy the symmetry relation Gjeau = €kjua,
and we have the formulas
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9(“1“): Z Cjk)«u“];\ﬁk;u

Jik A
Trg (&, &) = Z cinandsli
FiokoA
((9 +Trg@® h,)(u._ u) = Z Cjk,\puj')\"lfku + Cjk,\,\uj'”ﬂ'k”.
2kA

For every o € Ug (ef. Lemma 10.15), put

f —
Uy = E ATy € C,

1<agr

Ty = Zu;,t, €T , &= ZU’,\EA ek
J X

Lemuna 10.15 implies

_ P - PP
g E Olliy BEr. Ua ®E,) =q " E CikaplljoUpaTATy

ae U;’ UEU;
= Z Cixaplialiny + Z Cikaatipulku-
Bk, A kA

The Griffiths positivity assumption shows that the left hand side is = 0, hence

(@ + Trg @& h){u,u) 2 Z Cikantaliey > 0
Gk
with strict positivity if @ >grs 0 and u # 0. O

We now relate Criffiths positivity to m-tensar positivity. The most useful result
is the following

{10.16) Proposition. Let T be a compler vector space and (E, k) a hermitian vector
space of respective dimensions n, v withr > 2. Then for any hermitian form © on
T ® E and any integer m > |

O s = mTrg@®h—-6>m0.

Proaf. Let us distinguish two cages.

a) m=1 Letu€T®E be a tensor of rank 1. Then u can be written u = £, ® €
with £, € T, & # 0, and g, € E, le1] = 1. Complete e; into an orthonormal basis
{e1....,e.) of E. One gets immediately

(Tre @@ h)(wu) = TepB(EL6) = Y Oli®enii®es)

1<A<r

> 06 ®e,6@€) =6(u,u).

b) m>2 Everytensoru€T®F of rank < rn can be written
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= Z Ex®eyr . £roT,
1€rzg

with ¢ = min(m,r) and (ea)1<r<- an orthonormal basis of E. Let. F' he the vector
subspace of E generated by (5-1~ ., eg) and @p the restriction of & to T @ F. The
first part shows that

e = Trp@r@h-0p >cu 0.

Proposition 10.14 applied to & on T @ F yields
O+ Trr@ @h=qgTrrBr®h - Gp >4 (L
Since u € T® F is of rank < ¢ <, we get (for w £ 0)
O(u, 1) = Op(u.u) < ¢(Trr OF @ W) (u, u)
=g Y Ol ®eyt®e) <mTrpO®hluy). U

1€5,h<q

Proposition 10.16 is of course also true in the semi-positive case. From these
facts, we deduce

{10.17) Theorem. Let E be a Griffiths (semi-)pesitive bundle of rank v = 2. Then
for any integer m = 1

E*®@(det E)™ »,, 0 (resp. =g 0).

Proof, We apply Prop. 10.16 to © = ~@(E*) = *@(E) zgar 0 on Tx @ B” and

observe that
©(det E) = Trp @(E) = Trg- &,

{10.18} Theorem. Let 0 = § — E — Q — U be an exact sequence of hermitian

vector bundles. Then for any m > 1

Esml0 = S®(detQ)™ >p 0.

Proaf. Formmlas {10.7) imply
08 >m i Al IBQ) > i A F.
iG{det @) = Tra (iIB(Q)) > Trolif A 4*).
If we write f = 3" dz; ® 3, as in the proof of Corollary 10.8, then
Tro(iB A 8%} =D idz; Adzy Trg{8;57)
=Y idz; Adz Trs(Bify) = Trs(=10" A B).

Furthermore, it has been already proved that —i8* A 8 Znax 0. By Prop. 8.1 applied
to the corresponding hermitian form & on Tx @ §. we get
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mTrg(—i8" AB)®@Ids +i8" A 8 >, U,

atd Theorem 10.18 foliows. 0

(10.19) Corollary. Let X be o weakly pseudoconvez Kihler n-dimensional manifold,
E u holomorphic vector bundle of rank r > 2 and m > 1 an integer. Then

a) E>gil0=> H"(X E®det E}=0 forq>1;
b) E >guf 0= H™(X, E*®{det E)™) =0 forq 21 andm > min{n - ¢+ 1,7};

¢) Let 0 2 8§ 2 E = @ — 0 be an ezact sequence of vector bundles end
m=min{n—gq+1,vk S}, ¢ > 1. If E >, 0 and if L is a line bundle such that
L@ (det})™™ >0, then

H™ (X, 50 L) =0.

Progf. Immediate consequence of Theorem 10.11, in combination with 10.12 for a),
10.17 for b) and 10.18 for ¢). O

11. Skoda’s L? Estimates for Surjective Bundle Morphisms

Let {X,w) be a Kshler manifold, dimX = n, and let g : E =  a holomorphic
morphism of hermitian vector bundles over X. Assume in the first instance that g
is surjective. We are interested in conditions insuring that the induced morphisms
g: HY (X, E) — H%*(X, () are also surjective (dealing with (n,+) bidegrees is
always easier, since we have to understand positivity conditions for the curvature
term). For that purpose, it is ratural to consider the subbundle § = Kerg ¢ E and
the exact sequence

(11.1) 0-—8 2+E 5Q-—0

where j : § — E is the inclusion. In fact, we need a little more flexibility to handle
the curvature terms, so we take the tensor product of the exact sequence by a
holomorphic line bundle L (whose properties will be specified later):

{11.2) 0 —Sel—Eel 2HQel —0

(11.3) Theorem. Let k be an integer such that 0 < k < n. Setr =tk E, ¢ = rkQ,
s=tkS=r-gq and

m = min{n - k, s} = min{n - &, r - ¢}.

Assume that (X,w) possesses also a complete Kahler metric &, that E >, 0, and
that L — X is a hermitian holomnorphic line bundle such that

iO(L) — (m + €)iO(det Q) > 0
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for some e > 0. Then for every D"-closed form f of type (1, k) with values in QR L
such that || fll < +oo, there exists o D" -closed form h of type (n, k) with walues in
E®L such that f=g-h and

Bl < (1 + m/e) A%

The idea of the proof is essentially due to [Sko78], who actually proved the
special case & = 0. The general case appeared in [Dem82b).

Proof. Let j : § =+ E be the inclusion morphism, ¢* : Q —» Eand j* : E =+ §
the adjoints of g, j, and the matrix of Dg with respect to the orthogonal splitting
E ~ Sa&@Q (cf. Lemma 6.2). Then ¢*f is a lifting of f in E® L. We will try to find
h under the form

h=g"f+ju, uwel} (X AT, ®5&L).

As the images of § and @ in E are orthogonal, we have |i]? = | |2 + |u|? at every
point of X. On the other hand Diyq,; f = 0 by hypothesis and D"g* = —j o §* by
(6.5), hence

Dggrh=—j(8" A f) + 3 Dégr = §(Dsgr — B° A f).
We are thus led to solve the eguation
(11.4} Digru=B8"AJ,

and for that, we apply Th. 3.1 to the (n, %k + 1)-form 8* A f. One now observes that
the curvature of S ® L can be expressed in terms of 4. This remark will be used to
prove:

(11.5) Lemma. Let Ay = [i6(S ® L), A] be the curvature operator acting as an
hermitian operator on the bundie of (n, &k + 1)-forms. Then

(ALNB AL (B A ) < (mfe) 512,

If the Lemma is taken for granted, Th. 8.4 yields a solution u of (11.4) in
L*(X, AT ® S ® L) such that {|ul® < (m/e){lfI*. As {Afl* = IF1* + llull®, the
proof of Th. 11.3 is complete. O

Proof of Lemma 11.5. Exactly as in the proof of Th. 6.18 formulas (6.7) yield
1B(8) 2w 1 AL, 19(detQ) = Trn(if A 57) = Trg{—if" A §).
Since C®{X, AV'T% @ Herm §) 3 6 := —if" A 8 Zgnr 0, Prop. 6,16 implies
m Trg(—1f* A B) @ Ids +HiB* A B >, 0.

From the hypothesis on the curvature of L we get
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(S ® L) 2 i0(5) @ 1y, +(m + £) i0(det Q) ® ldse .
>m (i A B+ (m4e) Trs(~18* AS)@1ds ) @ Mg
Zm (E/'!TE) (—iﬁ‘ A«B} @ IdS®IdL .
For any v € A™**1T% © 5§ ® L, Lemma 6.10 implies
(11.6) {Agv,v) = (e/m) {~if" A B A Av, v},
because rk(S®L) = s and rn = min{n - k,s}. Let {dz, ... ,dz) be an orthonormal
basis of T% at a given point 7o € X and set
B= 5 dz;®8;, B;€Hom(5Q)
15jgn

The adjoint of the operator 8* Ae =3 dZ; A 3] « is the contraction operator 8 1 »
defined by

Ale= Z 5% J(8v) = Z#idzj A A(Bju) = =18 A Av.

We get consequently {~if* A A Av,v) = | J v|? and (11.6) impiies
1B A fou)l? = (LB 2 ) < 71218 1 ol < (mfe){Arv,m) T

This is equivalent to the estimate asserted in the lemma. O

I X has a plurisubharmonic exhaustion function ¥, we can select & convex
increasing function x € C%(R,R) and multiply the metric of L by the weight
exp({—x o %) in order to make the L2 norm of f converge. Theorem 11.3 implies
therefore:

{(1L.7) Corollary. Let (X,w) be o weakly psendoconvez Kihler manifold, g: E — Q
a surjective bundle morphism with r = 1k E, ¢ = 1k @, and L — X a hermitian
holomorphic line bundle. We set m = min{n — k,r - g} and assume that E >p 0
and

iO(L) — (m+£)iB{det Q) 2 0

for some € > 0. Then g induces a surjective map

Ho5 (X E@ L) — H"(X,Q®L).

The most remarkable feature of this result is that it does not require any strict
positivity assumption on the curvature (for instance E can be a flat bundle). A
careful examination of the proof shows that it amounts to verify that the image of

the coboundary morphism
—8' Ae : H™(X,Q®L) — H™™HX,5@ L)

vanishes; however the cohomology group H™**+1(X, 5®L) itself does not. necessarily
vanish, as it would do under a strict posttivity assumption.
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We want now to get also estimates when Q is endowed with a metric given
a priori. that can be distinet from the quotient metric of E by ¢. Then the map
¢ lgg )™ 1 Q —> E is the lifting of @ orthogonzl 1o § = Kerg. The quotient
metric |of on @ is therefore defined in terms of the original metric [o] by

[} = lg*(og™) ™ ol = {lgy™) " teaw) = det(gg”) T {ygeo v)
where g;:,v‘ € End(() denotes the endumorphisii of @ whose matrix is the transposed
of the comatrix of gg*. For every w € det @, we find
|l = det(gg*) ™" fuwl®.
If ¢’ denotes the bundle @ with the quotient metric, we get
ig{det Q") = 19 (det Q) + id'd” log det(gy™).
In order that the hypotheses of Th. 11.3 be satisfied, we are led to define a new
metric Jo| on L by [ul? = |uf? (det(gg*))"m_e. Then
iO(Ly = 1O(L) + (m + £)id'd" log det{gg™) > (m + £} det Q.

Theorern 11.3 applied to (E.Q’, L") can now be reformulated:

{11.8) Theorem. Let X be o complete Kahler manifold equipped with a Kdaller metric
w on X, let B — ) be a surjective morphism of hermatian vector bundles and let
L — X be a hermitian holemorphic line bundle. Set r = 1k /7, ¢ = rk Q@ and
pe=min{n — kv — ¢}, end assume that E > 0 and

QL) — (m + e)ie(det Q) > 0
for some £ > 0. Then for every D" -closed form | of type (1, k) with values in QaL

such that
I= [ o dergg"y 1AV < v,
X

there exists a D" -closed form b of type (r, k) with values in E® L such that f = g-h
und .
/ [R)? (det gg*) ™ dV < (1+m/e) i 0
x

Our next goal is to extend Th. 11.8 in the case when g E — ) is ouly
generically surjective; this means that the analytic set

Y={reX;gs ' Fx—> Qi not surjective }

defined by the equation A%y = 0 is nowhere dense in X. Here Ay 1s a section of the
bundle Hom{AYE, det Q). The idea is to apply the above Theorem 11.8to X ~ Y.
For this, we have to know whether X Y has a complete Kahler nietric.

(11.9) Lemma. Let (X,w) be a Kihler manifold, and ¥ = o~ 10} an analytic subset
defined by a section of o hermitian vector bundle E — X If X 1s weakly pseudocon-
ver and exhausted by Xe = {x € X ; ¥{z) < ¢}, then X~ Y hus a complete Kihler
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metrie for ali c € R. The same conclusion holds for X \Y if (X,w) is complete and
if for some constant C > 0 we have Op <grif Cw ® { Vg on X.

Proof. Set 7 = log|o|®. Then d'r = {D'o,0}/|o|? and DV'P'a = Die = O(E)a,
thus
Dg, D'g} i{D’n:r,c:r} Ao, D'e} {iG(E)o, 0}
ot o]t o>~

For cvery £ € T, we find therefore

_ oD &P — (Do - £,0)*  BE)ESa.E® )

o] lo?

BE)¢otea)

- fof?

ididHT — l{

H7(£)

by the Cauchy-SchvErz inequality. If C is a bound for the coefficients of é(E’) on
the compact subset X, we get id'd”7 > —Cw on X.. Let x € C(R, R) be a convex
increasing function. We set

G=wt+idd"(xor)=w+i(x o7 dd'7+ x" or d'T Ad"7).

We thus see that & is positive definite if ' < 1/2C, and by a computation similar
to that in proposition 8.7, we check that & is complete near ¥ = r~!{—co) as soon

as
/0 VOB dt = +oc.

Omne can choose for example y such that x(¢) = g%(t —log|t]) for t < —1. In order to
obtain a complete Kihler metric on X, ~ Y, we also need the metric to be complete
near dX.. If @ is not, such a metric can be defined by

id'd"y  idy Ady

D=0+idd" logle—¢) 1 =4+ +—_——
ge=9) —v " Te—wr
> id'log{c — )7 Ad"log(e — )7 ;
w is complete on X, ~ {2 because log(c — #)~? tends to +oo on §X,. ]

We also need another elementary lemma dealing with the extension of partial
differential equalities across analytic sets.

(11.10) Lemma. Let 12 be an open subset of C* and Y an analytic subset of 2.
Assume that v s a (p,g — 1)-form with LY coefficients and w a (p, g)-form with
L. coefficients such that d”"v = w on 2 \Y (in the sense of distribution theory).
Then d"v = w on §2.

Proof. An induction on the dunension of ¥ shows that it is sufficient to prove the
result in a neighborhood of a regular point a € Y. By using a local analytic iso-
morphism, the proof is reduced to the case where Y is contained in the hyperplane
2; = 0, with @ = 0. Let A € C*°(R, R} be a function such that A(t) = 0 for ¢t < 1

and A(t) =1 for ¢ > 1. We must show that
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(11.11) f wA o= (—1)‘”’”/ »hd’a

n : [’
for all @ € DR, A~P79T8). Set A (2) = Al|z1}/e) and replace v in the integral
by Arx. Then Ao € D(82 Y, A""P"9T%) and the hypotheses imply

/w!\/\ga:{hl)’ﬂ/ md"(,\,a)=(-1)1?+qf v A (@A A+ Aed ).
Lr 2 n

As w and v have Ll coefficients on {2, the integrals of w A M. and v A A d”a
converge respectively to the integrals of w A a and v A d”a as £ tends to 0. The
remaining term can be estimated by means of the Cauchy-Schwarz inequality:

2
U 'u/\d”z\gf\a| gf v A al2dV. [d" A2 dV ;
I3 [z1]€e Supp a

as v € L}, (£2), the integral [ |[v A ai? dV comverges to Q with £, whereas

[EA R
d"A 2dV<CVIS N <eP sl
|42V < 5 Vol(Supp (1 {Ja} < ) £ €.
Supp o
Equality (11.11} follows when £ tends to 0. a

(11.12) Theorem. The ezistence statement and the estimates of Th. 11.8 remain
true for @ generically surjective morphism g : E — @, provided that X is weakly
pseudoconvex.

Proof. Apply Th. 11.8 to each relatively compact domain X~ Y (these domains are
complete Kihler by Lemma 11.9). From a sequence of solutions on X~ ¥ we can
extract a subsequence converging weakly on X « Y as ¢ tends to +oo. One gets a
form k satisfying the estimates, such that D"h =00on X ~Y and f = g- k. In order
to see that D”h = 0 on X, it suffices to apply Lemma 11.10 and to observe that h
has L2 coefficients on X by our estimates. (]

A very special but interesting case is obtained for the trivial bundles E = 2xC",
= £2 x C over a pseudoconvex open set 2 C C*. Then the morphism g is given
by a r-tuple {g1,...,9-} of holomorphic functions on 2. Let us take £ = 0 and
L = §2 x C with the metric given by a weight e~¥. If we observe that gg* = Id when
rk (@ =1, Th. 11.8 applied on X = 2 g~!(0) and Lemmas 11.9, 11.10 give:

(11.13) Theorem {Skoda [Sko72b]}. Let 2 be a complete Kihler open subset of C"
and ¢ e plurisubhermonic function on 2. Set m = min{n,r — 1}. Then for every |
holomorphic function f on {2 such that '

1= [ Pl ey < soc,
.z

where Z = g~*(0), there exist holomorphic functions (hy,...,hy) on 2 such that
f = Zgjhj and
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/ |2 g|~ 2™ +9)e=% gV < (1 + m/e)]. 0
2~

We now show that Theorem 11.13 can be applied to get deep results concerning
ideals of the local ring O, = C{z1,..., 2.} of germs of holomorphic functions on
(C*.0). Let T = (g1,...,4r) # (0) be an ideal of O,.

{11.14) Definition. Let k € Ry . We associate to T the following ideals:

a)  the ideal f“‘) of germs u € O, such that lu| < C|g|* for some constant C > 0,
where |g1® = {q]* + -+ + fgrl?

b) the ideal Tk) of germs u € O such that

/ uf? [g] =204 4V < 400
n
on o small ball 1?7 centered at 0, if ¢ > 0 is small enough.

(1.15) Proposition. For all k,1 € Ry we have
a) I™ 1k,

by I* cT™ ifkeN;

ik}

R =Hh+)

TV ¢ ;

d) TWIw ¢ Foesn,

All properties are immediate from the definitions except a) which is a conse-
quence of the integrability of ig| ¢ for £ > 0 small (exercise to the reader!). Before
stating the main result, we need a simple lemma.

(13.16) Lemma. If Z = (g1,.-.,4r) and r > n, we con find elements f1,.. ., Gn € T
such that C Vgl € (3] € Clg| on a neighborhood of 0. Fach §; can be taken to be o
hinear combination

Ejﬁaj.gf- Z QjkGk, ajEC'\{O}
1<k<r

where the coefficients {[ay), ..., [an)) are chosen in the complement of o proper ana-
Iytic subset of (PT1)™.

1t follows from the Lemma that the ideal 7 = {(G1s . -1 3n) C I satisfies T =
T and 7% = T for all k.

Proof. Assume that g € O(£2)". Consider the analytic subsets in §2 x (P"~1)" defined
by
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A= {(z, ey oo fwnl}s wy.g(2) = 0}
A¥ = Uirredueible components of A not contained in g 7H0) x (P77
For z ¢ ¢~ (0} the fiber A, = {{[wi],. ... Jwn]): wi.glz) = 0} = A% is a product of
n hyperplanes in P}, hence AN (2~ ¢~ (1)) x {(P"~1)™ is a fiber bundle with base

2~ g0} and fiber (F"~2)". As A* is the closure of this set in §2 x (P7~1)", we

have
dimA* = n+nlr - 2) = n(r — 1) = dim{P"~ )",

1t follows that the zero fiber
A= AT ({0} % (P17

is a proper subset of {0} x (P"~1)®. Choose (a;...., a,) € (T~ {0P)™ such
that (0, ]a1],-...[¢e]) 18 not in A;. By an easy compactness argument the set
A N (B(0,e} x (P"~1)") is disjeint from the neighborhood B{0,£) x [[{B{a;, )] of
{0,fa1],- .. [aa)]) for € smali enough. For z € B(0, e} we have |u,. g(2)| > ¢|g(2)] for
some j, otherwise the inequality |a,. g(z)| < elg{z}| would imply the existence of
h; € € with |h;] < ¢ and ;. g(z) = by, g(z). Since g(z) # 0, we would have

{z,[ar — 1), lan — Bo]) € A* 0 (B0, ) x (P71,

a contradiction. We obtain thercfore

elg(z)} < max|a,. g{z)] < (max|a;!)} g(z)] on 23{0,¢). O

{11.17) Theorem (Briangon-Skoda [BSk74]). Set p = min{n — 1,7 — 1}. Then
2 T4 2P T2O fork>p.

=(k+p)

by TV c I cI¢ joralik € N

Proaf. a} The inclusions £ 7% ¢ TT%) < Tt+1) are obvious thanks to Prop. 11.15,
s0 we only have to prove that F¢*+1) ¢ 7T} Agsume first that v < n. Let f €
Zik+1) be such that

‘ﬂE 49[—2(k+1+5) 2V < +oo.

For & > p— 1, we can apply Th. 11.13 with m = r — 1 and with the weight
@ = (k ~ m)log|g|>. Hence [ can be written f = 3 g;h; with

/ [1)? |g| 26 4) GV < +oc,
7]

thus #; € I0) and £ &€ TT™). When r > n, Lemma 11.16 shows that there is an
ideal J < T with n generators such that J® = T(*1 We find

FALRRY =j(k+1)cjj(k) Cc ITH for E>qn-~1.

b) Property a) implies inductively T*6+#) = T8 7 for all £ € N. This gives in
particular ZF+P} C I%, O
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{11.18) Corollary.

a)  The ideal T 1s the integral closure of T, i.e. by definition the set of germs u € Op,
which satisfy an egquetfion

wWtaudl+- +ag=0, a, €I, 1<s<d

b)  Similarly, T:k) is the set of germs u € O, which satisfy an equation
w ot 4 4ag=0, a, eIl 1<s<d,

where [t] denotes the smallest integer > .

As the ideal 7% s finitely generated, property h) shows that there always
exists a rational number { > k such that T = T,

Proof. a) If u € O, satisfies a polynomial equation with coefficients a, € I°, then
clearly ja,| < C, |g|* and the usual elementary bound

jroots| < 2 max lag]*/®
1<s<d

for the roots of a monic polynomial implies {u| € C |g|-

Conversely, assume that u € 7. The ring O, is Noetherian, so the ideal Z®) has
a finite number of generators vy,...,vx. For every j we have uv; € TTe) = 178,
hence there exist elements b;x € Z such that

uy; = Z bjkvk-

1<k<N

The matrix {ud;; — bjx) has the non zero vector (v;) in its kernel, thus u satisfies
the equation det{ud;x — bjx) = 0, which is of the required type.

b} Observe that w,...,vn satlsfy simultaneously some integrability condition
Ji lws|~2P+=) < 400, thus Zte) = T+ for g € [0,¢]. Let u € T, For every

integer m € N we have

uMy; € ™ Tlotm) ¢ Flemnr),
If & ¢ Q, we can find m such that d(km + ¢/2,Z) < £/2, thus km + n € N for some
7 € ]0,¢[. If k € @, we take m such that km € N and 5 = 0. Then

uwmy; € I = N TP with N=km+neN,

and the reasoning made in a) gives det(u™d;, — bjx) = 0 for some by € IN. This is
an equation of the type described in b}, where the coefficients a, vanish when s is
not a multiple of m and a.,, € TN ¢ L*mel, O

Let us mention that Briangon and Skeda’s result 11.17 b) is optimal for k = 1.
Take for example T = (g1,...,g-) with g;(z) = 2], 1 £ j < r, and f(z) = z1.
Then |f| < Clg| and 11.17 b) yields f™ € I however it is easy to verify t.hat
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fr1 ¢ Z. The theorem also gives an answer to the following conjecture made by
J. Mather.

{11.19) Corollary. Let f € O, and Iy = {z18f/0z1,...,2a8f/82,). Then f € ff.
and for every integer k > 0, fetn-1l ¢ I}“.

The Corollary is also optimal for & = 1 : for example, one can verify that the
function f{z) = (z1...2,)% + 23"~ 4+ - + 23"~V is such that f7~} ¢ T;.

Proof. Set gj{z) = #;8f/8z;, 1 € § < n. By 11.17 b), it suffices to show that
|fI < C|g|- For every germ of analytic curve C 2 t »— y{(t), v £ 0, the vanishing
order of fo~(t) at t = 0 is the same as that of

AT 5 0 o).

Tdat -
1<j<n
We thus obtain

Bf

o< |22 < X g0 [ o] < sl

and conclude by the following elementary lemma. )

(11.20) Curve selection lemma. Let f,g1,...,9. € On be germs of holomorphic
functions vanishing at 0. Then we have |f| < Clg| for some constant C if and only
if for every germ of analytic curve v through O there exists a constant C., such that

[for] £ Cilgonl.

Progf. If the inequality | f| < C|g| does not hold on any neighborhood of 0, the germ
of analytic set (4,0} C (C**7,0) defined by

9i(2) = f(2)anes, 1SiST

contains a sequence of points {z,., g5(z.)/f{2.)) converging to 0 as ¥ tends to +oo,
with f(z.) # 0. Hence (A, 0} contains an irreducible component on which f # 0 and
there is a germ of curve ¥ = (Y, Yn4;) & (C, 0} = (C**7,0) contained in (A, 0} such
that foy#0. Weget gjov=(f 07)‘7’n+_11 hence jg o y(t}| < Clt|{f o v(t)] and the
inequality |f o] < Cy|g o 7| does not hold. O

12. The Ohsawa-Takegoshi L? Extension Theorem

We address here the following extension problem: let ¥ be a complex analytic sub-
manifold of a complex manifold X ; given & holomorphic function f on ¥ satisfying
suitable L2 conditions on Y, find a holomerphic extension F' of f to X, together with
a good L? estimate for F on X. The first satisfactory solution has been obtained
only rather recently by Ohsawa-Takegoshi {OT87, Ohs88). We follow here a more
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geometric approack due to Manivel [Man93], which provides a generalized exten-
sion theorem in the general framework of vector bundles. As in Ohsawa-Takegoshi's

fundamental paper, the main idea is to use a modified Bochner-Kodaira-Nakano
inequality. Such inequalities were originally introduced in the work of Donneily-
Fefferman [DF83] and Donnelly-Xavier [DX84]. The main a prioti inequality we are
going to use is a simplified (and slightly extended) version of the original Ohsawa-
Takegoshi a priori inequality, as proposed recently by Ohsawa [{Ohsbs).

{12.1) Lemma (Ohsawa [Ohs95]). Let E be a hermitian vector bundle on a complex
manifold X equipped with a Kakler metric w. Let 4, A > 0 be smooth functions
on X. Then for every form u € D(X, AP9T% ®@ F) with compact support we have
it + ADD ull® + I D'ull® + A D'ull® + 2 A Fd'n A u?
> ([iO(E) — id'd™y — ix~ d'np Ad™n, Alu, u).

Proof. Let us consider the “twisted” Laplace-Beltrami operators
D’T]D“ + D“T,'D" = 7‘,‘[D’, DHJ + 1D’,TI]D“ + [Dl«! n]Dl
=&+ (d)D" ~ (dn)"D"
D!J??Dh’t + DH*T)D” = ??[D”,D”*] + [D”, W]Dﬂi + [D”"« ??]DN
_ T}A” + (dHT])DUw _ (d”n)‘D”,
where 1. (d'n), (d”n) are abbreviated notations for the multiplication operators 7je,
(d'm) A s, (d"0) Ae. By subtracting the above equalities and taking into account the
Bochner-Kodaira-Nakano identity 4”7 — A’ = [1@(E), A], we get
D”nD”' + Df!lr??Dln‘ o DfﬂDf% _ D-’tnDI
(12.2) = qliE), Al + (d"n)D"™ — (d"g)* D" + (d'n)* D' — (d'n) D",
Moreover, the Jacobi identity yields

(D", [d'n, A]] - {d'n, |4, D"]] + [A,[D",d"3]] =0,

whilst {4, D] = ~iD’* by the basic commutation relations 7.2, A straightforward
computation shows that [D”,d'nl = —(d'd"n) and [d'n, 4] = i(d"n)*. Therefore we
get

(D7, {d" ] +ild'n, D] - [A, (d'd"n)] =0,

that is,
lid'd", A] = D", (@) +1D", d'n] = D"(@'n)* +(@"n)" D" + D™ (d'n) + (@n) D"
After adding this to {12.2), we find
D'gb'™ + D" D" — B'pD"™ — D™D’ +[id'd"n, A
= qli@(E), Al + (d"n) D" + D"(@"n)* + (dn)" D'+ D™ (d'n).

We apply this identity to a form v € D(X, A79T% ® E} and take the inner bracket
with u. Then
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(D" D" yu ul) = gnD"u, D7) = |l D" ull?,
and likewise for the other similar terms. The above equalitics imply

nr D" ul? + i Dl — W3 Dal)? — |t D uf|?
i
YMiQE) - id'd g, Alu,u)) + 2Re (D" u (dn)* ) + 2Re (0w, d'y A ud).

By ueplecting the negative terms —{n# D'ull? — iz D'*ul|? and adding the squares

1A D2 4 2Re (D™, (dn) ul) + |~ (n) ull® 2 0,
AT D'l + 2Re {D'u,d'n A uh) + A~ 2dnAwl? >0
we get
hn® + ARl 4l D7ull + AE Dl AT Al 4 AR a0 il
2 ((O(E) — 1 d'd"n, Al ).
Finally, we use the identities
(Y (d'n) ~ (dy){d"n)" = [d"n A)d'n) +id"n)[d'n, A] = [id"n A d'y, A],
A= Fd'y Aull® — A3 (@) ul? = — (A" dy A dn, Alu, ),
The ineguality asserted in Lemma 12.1 follows by adding the second identity to our

last inequality. |

In the special case of (n,g)-forms. the forms D'u and d'y A w are of bidegree
{n -+ 1,q), hence the estimate takes the simples form

(12.3) H(vﬁ-{—)\%)D"*UHQ—FHT}%D"MHZ > (i@ (E)—id'd"n=ia"" d'nad "y, Au, ud.

{(12.4) Propesition. Let X be a complete Kdhler manifold equipped with a (ron ne-
cessarily complete) Kihler metric w, and let E be ¢ hermitian vector bundle over X.
Assume that there are smooth and bounded functions n, A > 0 on X such that the
(hermition) curvature operator B = Bgl - = [ni@(E) —id'd"n— A~ td' A dn, Au
is positive definite everywhere on A™ITE @ E, for some g > 1. Then for every form
g€ LAX, 49T @ E) such that D"g = 0 and [ (B~ g, ) dV., < +oc, there exists
Fe LAX A9 1Ty @ E) such that D" f = g and

[ ngpav <z | (570

X IX

Proof. The proof is almost identical to the proof of Theorem 8.4, cxcept that we use
{12.4) instead of (7.4). Assume first that w is complete. With the same notation as
in 7.4, we get for every v = vy + va € (Ker D") & (Ker D"} the inequalitics

g, )% = g o)® < fx (Bg.q)dV,, ])'{<Bm,m>dvu.

and
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f){(thm)de < et + A0y |2 + I3 D"uy | = ||(n} + A1)D"0)?
provided that v € Dom D**. Combining both, we find
o < ([ B g mav )it xhomop
This shows the existence of an element w € L2{X, A™T} ® E) such that

ol < [ (B0, 0)av. and
X
{v,gh = {(n? + AT)D"™v,w)  ¥g € Dom D" N Dom D'

As (n/2 + A1)2 < 2(n+ A), it follows that f = (/2 + A} hw satisfies D”f = g as
well as the desired L? estimate. If w is not complete, we set w, = w + £ with some
complete Kéhler metric &, The final conclusion is then obtained hy passing to the
limit and using a monotonicity argument (the integrals are monotonic with respect
to €). O

(12.5) Remark. We will also need a variant of the L2-estimate, so as to obtain
approximate solutions with weaker requirements on the data: given & > 0 and
g € L}X, A™T% ® E) such that D"g = 0 and [, (B + 1)~ g, g} dV., < +o0,
there exists an approximate solution f e L?(X, A“’Q‘IT} ® FE) and a correcting
term h € L2(X, A"IT% @ E) such that D" f + §/2h = g and

f(nu)*‘ifﬁdef |h|2des2]<(B+6r)-1g,g>dvu.
X X X

The proof is almost unchanged, we rely instead on the estimates

g )] < fx (B +6D)"g.q)dY,, /X (B + 611, v1) Vi,

and
f (B + 81wy, v1) dVi, < [|(n? + A3)D"™w|[? + 6u])2. O
X

(12.6) Theorem. Let X be o weakly pseudoconver n-dimensional compler manifold
equipped with ¢ Kéhler metric w, let L (resp. E) be a hermitian holomorphic line
bundle (resp. a hermitian holomorphic vector bundle of rank v over X), and s a
global holomorphic section of E. Assume that s is generically transverse to the zero
section, and let

Y ={z e X; s(x) =0,4"ds(z) # 0}, p=dim¥ =n-r

Moreover, assume that the (1,1)-form iO(L) + rid'd”log|s|? is semipositive and
that there is & continuous function o > 1 such that the following two inequalities
hold everywhere on X :

_1 {18(E}s, s}

a) QL) +rid'd log|s? > o BE
8
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b) |s| < e,

Then for every smooth D" -closed (0, q}-form [ overY with values in the line bundle
A™TE: @ L (restricted to Y), such that f, [fI?|A"(ds)|2dV,, < 400, there erists a
D' -closed (0, q)-form F over X with values in A®T; @ L, such that F is smooth
over X ~ {s = A" (ds) = 0}, satisfies Fiy = f and

|F|? / oS
T g e <€ |, Tt

where Cr 15 a numerical constant depending only on r.

Observe that the differential ds (which is intrinsically defined only at points
where s vanishes) induces a vector bundle isomorphism ds : Tx /Ty — F along Y,
hence a non vanishing section A™(ds), taking values in

A" (Tx/Ty) @det EC ATk & det E.

The norm |A"{ds)| is computed here with respect to the metrics on A™T% and det E
induced by the Kihler metric w and by the given metric on E. Also notice that if
hypothesis a) is satisfied for some a, one can always achieve b) by multiplying the
metric of E with a sufficiently small weight e~*°¥ (with ¢ a psh cxhaustion on X
and x a convex increasing function; property a) remains valid after we multiply the
metric of L by e~{"+25 %% where ay = inf e x a{z).

Proof. Let us first assume that the singularity set X = {3 = 0} N {A"(ds) = 0} is
empty, so that ¥ is closed and nonsingular, We claim that there exists a smooth
section

Foo € C®(X, AT @ L) = C®(X, AT @ AT, ® L)

such that F, coincides with f on Y and D" F,, = 0 at every point of ¥. In fact,
let us consider a covering of ¥ by open coordinates patches IU; C X such that there
are holomorphic retractions p; : U; — Y NU; of U; onto ¥ MYj, and let ¢; be a non
vanishing holomorphie section of ATy & Liy,. On Y NUj, we can write the form f
as f = w; @251y, with a d’-closed (0, g)-form w; on Y MUy, hence f; = (p;w;)®e;
is a d"-closed extension of f to U;. Let §; € D(U;) be a partition of unity such that
3.8; =1 on a neighborhood of Y. Then

Foo=Y 8;f;

satisfies all requirements, for
D'Fao=3 d"8iAf;, D'Fao=3 d"8;Af=0 onY.

Since we do not know about F, far from Y, we will consider a truncation F, of F
with support in a small tubular neighborhood {s| < € of ¥, and solve the equation
D'"u, = D"F, with the constraint that u, should be 0 on ¥, As codimY = r, this
will be the case if we can guarantee that |u.|?|s| =" is locally integrable near Y. For
this, we will apply Proposition 12.4 with a suitable choice of the functions 5 and A,
and an additional weight {s|~%" in the metric of L.
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Let us consider the smooth strictly convex funetion xo : ] — 00,0] — | — 00,0]
defined by xo(t) =t — log(1 — t) for ¢ < 0, which is such that xolt) €8, 1< xp <2
and xi(t) = 1/(L — )%, We set

O = iog(is]z +52)s N =E— xo(oe)-
As |5} < e~ < e}, we have o < 0 for £ smali, and
N 2 E~0ce > £—logle ™ + e2).

Given a relatively compact subset X, = {1 < c}CCX, we thus have n. 2 2a for
¢ < ¢{e) small enough. Simple calculations yield

. i{D's, s}
id O = W,
g, = i{D's, D's}  i{D's,s} A {s,D's} {iQ(E)s, 5}
|sj2 + €2 {]s]® +£2)? [s]? + €2
€2 {{D's, s} A {s. I¥'s}  [iG(E)s, s}
SR s ke
2 :
> ‘Izﬁid'u:rS Adlae — -u-—-—{]lfi(zE_gs&j;},

thanks to Lagrange’s inequality i{ D's, s} A {s, D's} < |s|%i{D's, D's}. On the other
hand, we have d'n. = ~xa(oe)do, with 1 < xh{e.) < 2, hence
Sid'd" e = xh(o.)id'd" o, + x5 (e )id ae A d"o,
: {iO(E)s, s}

£ XH(UE) L it
2l + d'n. A d -2
Z (2|5E2 X:)(Ue)z)l Ne Ne |SL2+62

We consider the original metric of L multiplied by the weight |si=2. In this way,
we get a curvature form

-1 {iO(E)s, s}

. c 2
(L) + rid'd" log[sl* > o [sF + 2

by hypothesis a) [the inequality is still valid with 13)? + ? in the denominator in
place of |s|2, thanks to the semipositivity of the left hand side]. As 7, > 2 on X
for £ small, we infer

Xoloe)
xb(ﬂs)g

2
ne(iO(L) +id'd" log |s|*) — id'd"n. — id'n Ad'ne > T‘[;Tiid’m Ad'n,

on X.. Hence, if Ac = x§(0:)?/x((ac), we obtain
B, == [n:(i&®(L) +id'd" log i812) — id'd"ne — A7 Vid'ne Ad'ne , Al
2
€
(d”’?c)(d”??c)‘

2
E° .y i _
> {—Fldﬂs"\d ’7::11] = 2R

2ls

as an operator on (n, q)-forms (see the proof of Lemma 12.1}.
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Let 8 : B — [0,1] be 2 smooth cut-off function such that g{t) =1on]—oc,1/2],
Suppf C | — oo, 1] and || < 3. For ¢ > 0 small, we consider the (n,g)-form
F. = 8(e~?s5|*)Fa and its D"-derivative

ge = D" Fe = (1 + 725|200 (e s g A Foc + (e 25| Y D" Fa

[as is easily seen from the equality 1+ £ 2s]? = e e |. We observe that g has
its support contained in the tubular neighbarhood |g| < e; moreover, as € = 0, the
second term in the right hand side converges uniformly to (0 on every compact set;
it will therefore produce no contribution in the limit. On the other hand, the first
term has the same order of magnitude as d"o. and d'"1je, and can be controlied in
terms of B.. In fact, for any (n, ¢)-form u and any (n,q + 1)-form v we have

(e A, o)) = u, (@ ne) w}* < Jul?| (@)l = Jul*({d"ne)(d "ne) v, v)

2|s|2
2L e (Bev v,

IA

This implies

2|s]®
?'I’U.‘?.

(B (d" e A, (d7e Ay <

£
The main term in g, can be written
g = (L7828 (2t ) xploe) " d e A P

2

As 22 < 2 and (1+ e 2s)xh{oe) " < 2 0m Suppgé” < {Is] < e}, we find

(B gD, gty < 88'(e 725 ))? | Faol .

Instead of working on X itself, we will work rather on the relatively compact subset
X, Y., where Y, = YN X, =¥YN{ < c}. We know that X.~ Y, is again complete
Kihbler by Lemma 7.9. In this way, we avoid the singularity of the weight |s| 7%
along Y. We find

/ (B;‘gé“,gé”)rls\'“mssf |Fo |26 (=2 1% sl 2 VL,
Xe~Y. XY

As F coincides with f on ¥, it is not hard to see that the right hand side converges
t0 &, [y |F|2|1A7(ds)|~2dVy,., where ¢, is the “universal” constant

o= | gz AN o
€0 J2l<1 [=1*

depending only on r. The second term
6 = 81" Fa

in g. satisfies Supp(géz)) < {8} < €} and |g£2’1 = O(ls|) (just look at the Taylor
expansion of d"Fy, near Y). From this we easily conclude that

/ , (B'g®, gi |s| ¥ dVx W = O(),
Xo=Y.
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provided that B, remains locally uniformly bounded below near ¥ (this is the case
for instance if we have strict inequalities in the curvature assumption a)). I this holds
true, we apply Proposition 12.4 on X\ Y, with the additional weight factor |s|=2",
Otherwise, we use the modified estimnate stated in Remark 12.5 in order to solve
the approximate equation D"u + 8*/2h = g, with § > 0 small. This yields sections
U= U5, o = hoe s such that

[ (e + Aed ™ utee 218 =2 AV, + f Ve al2ls|~2 dV,,
X~ Y, ~

e (3

< 2[ {((Be + 617 g., 9.5 72 dV,,,
XoNYe

and the right hand side is under control in alt cases. The extra error term 612k can
be removed at the end by letting § tend to 0. Since there is essentially no additional
difficulty involved in this process, we will assume for simplicity of exposition that
we do have the required lower bound for B, and the estimates of gg1 and gﬁ
as above. For § = 0, the above estimate provides a solution u.. of the equation
D" = g. = D"F, on X, ~ Y, such that

fx Y(ne+/\s)—’|uc,542!sr2"dvx,u52 f (B ger ge} 8] dVx

c™Te

T
< lée, e dVy o, + O(€).
<o [ ppiagpeve + 00

Here we have
= log(|s|” + %) < log({e™2* +£?) < —2a+ O(?) < -2 4+ O(e?),
fle = € = Xo(0e) < (14 O(e))e?,
Ae = % ={1-0 ) +(1-e)<(3+ O(e))ol,
ne+ A < (44 Oe))o? < (4+ O())( - log{}sP? + £2))".

As F is uniformly bounded with support in {|s| < €}, we conclude from an obvious
volume estimate that

f |Fe[? AV Const
x. (Is? + &%) (—log(|s[* +2))27 " = (loge)?’
hence £, = F, — u, . satisfies
2 2
for. BT o s e Gy
in addition to this, we have d"”F. . = 0 by construction, and this equation extends

from X, ~ ¥, to X, by Lemma 7.10.

If ¢ = 0, then u. . must be smooth also, and the non integrability of the weight
|s|72" along Y shows that ., vanishes on Y, therefore

<
AVx < Ger fy 7 (@

Foety = Fopy = Foqiy = f.
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The theorem and its final estimate are thus obtained by extracting weak limits, first
as ¢ ~+ 0, and then as ¢ — +oo. The initial assumption that ' = {s = A"(ds) = 0}
is empty can be easily removed in two steps: 1) the result is true if X is Stein, since
we can always find a complex hypersurface Z in X such that T cYn 2 CY,and
then apply the extension theorem on the Stein manifold X - Z. in combination with
Lemma 7.10; ii} the whole procedure still works when X is nowhere dense in ¥ (and
possibly nonempty). Indeed local L? extensions f; still exist by step i) applied on
small coordinate balls U; ; we then set Foo = 3 8, fj and observe that |D"F, [2|s| =%
is locally integrabie, thanks to the estimate fU [F121s]=%r (log |s])~2dV < +-oc and
the fact that | ¥ d"8; A f]! = O{|s}®) for suitable & > 0 [as follows from Hilbert's
Nuilstensatz applied to f] fk at singular points of ¥'.

When g > 1, the arguments needed to get & smooth solution involve more
delicate considerations, and we will skip the details, which are extremnely technical
and not very enlightening.

(12.7) Remarks.

a) When ¢ = 0, the estimates provided by Theorem 12.6 are independent of the
Kéhler metric w. In fact, if f and F are holomorphic sections of ATy @ Lover Y
{resp. X), viewed as {n, 0)-forms with values in L, we can “divide” f by A’ (ds) €
AYTX/TY)* ® det E to get a section f/A"(ds) of APTY @ L ® (det E)~! over Y.
We then find

F|?dVx . = i {F, F},

2 2
%dvyﬁ = {f) A7 (ds), {/A7(d5)].

where {s, s} is the canonical bilinear pairing described in (6.3).

b) The hermitian structure on E is not really used in depth. In fact, ane only needs
E to be equipped with a Finsler metric, that is, a smooth complex homogeneous
function of degree 2 on E [or equivalently, a smooth hermitian metric on the tau-
tological bundle Op(gy(—1} of lines of E over the projectivized bundle P{E)]. The
section ¢ of E induces a section [s] of P(F) over X \ s71(0) and a corresponding
section & of the pull-back line bundle [s)*Op(g)(—1). A trivial check shows that
Theorem 12.6 as well as its proof extend to the case of a Finsler metric on E, if we
replace everywhere {iG(E)s, s} by {i6([s]*Op(xy(—1})3,5} (especially in hypothe-
sis 12.6 b)). A minor issue is that |A"(ds}| is (a priori) no longer defined, since no
obvious hermitian norm exists on det E. A posteriori, we have the following ad hoc
definition of a metric on (det E')* which makes the L? estimates work as before: for
z € X and £ € A"E}, we set

2_if oz i EAE
|f|r—c‘_ ZE£:9(|Z|) P

where |z| is the Finsler norm on E; {the constant ¢, is there to make the result agree
with the hermitian case; it is not hard to see that this metric does not depend on

the choice of §]. ]
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We now present a few interesting corollaries. The first one is a surjectivity
theorem for restriction morphisms in Dolbeault cohomology.

(12.8) Corollary. Let X be e projective algebraic manifold and E a holomorphic
vector bundle of rank r over X, s a holomorphic section of E which is every-
where transverse to the zero section, ¥ = 5710}, and let L be « holomorphic line
bundle such that F = V" ® E* is Griffiths positive (we just mean formally that
}i@(L) @ Idg ~18(E) >Grs 0). Then the restriction morphism

HO9(X, ATy ® L) > HO(Y, ATy ® L)

15 surjective for every q > 0.

Proof. A short computation gives

<ot 2 _ -y {SvD’s}
id'd” log|s] —1d(-_———l B )

({D's D's}  {D's, s} A{s, D’s} {s,0(E }) _{ie(E)s, s}
s? st is]? - s)?

thanks to Lagrange s inequality and the fact that @(E) is antisymmnetric. Hence, if
4 is a small positive constant such that

i
—iQ(E) + ;iG(L) R > dw®ldg > 0,

we find
iG(L)+rid'd log|s]? > rdw.

The compactness of X implies iG{F} < Cw ® Idg for some C > 0. Theorem 12.6
can thus be applied with a = r§/C and Corollary 12.8 follows. By remark 12.7 b),
the above surjectivi'y property even holds if L}/” @ E* is just assumed to be ample
(in the sense that the associated line bundle m*L¥" ® Oppy(1} is positive on the
projectivized bundle « : P(E) — X of lines of E). a

Another interesting corollary is the following special case, dealing with bounded
pseudoconvex domains f2CCC". Even this simple version retains highly interesting
information on the behavior of holomorphic and plurisubharmonic functions.

(12.9) Corollary. Let 2 C C" be a bounded pseudoconver domain, and let Y C X
be a nonsingular complezr submanifold defined by o section s of some hermitian
vector bundle E with bounded curveture tensor on {2. Assume that s is everywhere
transverse to the zero section and that |s| < e~' on £2. Then there is a constant
C > 0 (depending only on E), with the following property: for every psh function
@ on £2, every holomorphic function f on Y with f, |f|?|A"(ds){"e~¥dVy < 400,
there erists an extension F of f to §2 such that

LF|? [f] -
fiwvmwm d%<cfnmdweww
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Proaf. We apply essentially the same idea as for the previeus corollary, in the spocial
case when L = (2xC is the trivial bundle equipped with a weight function e—#—41#I"
The choice of a sufficiently large constant A > 0 gonarantees that the curvature
assurption 12.6 a} is satisfied (A just depends on the presupposed Lound for the
curvature tensor of E). ]

{12.10) Remark. The ‘-pl—'(,id.l case when Y = {zn} is & point is especially interesting,
In that case, we just take s{z) = (ediam £2)7!(z ~ z5), viewed as a section of the
rank r = n trivial vector bundle 2 x C* with |s§ < e We take @ = | and replace
|512%(~ log|s)? in the denominator by |52}, using the inequality

1 1
~log|s| = Eloglsl‘E < Efsl‘f, Ve > (h

For any given value fo, we then find a holomorphic function f such that f(zy) = fo

and )
/ FiE2) e’“’"”dVg <
2

|2 wlzo)
[Z_ZDIE(T:—E) ‘

e2(diam IZ)E(“ €) o

We prove here, as an application of the Ohsawa-Takegoshi extension theorem,
that every psh function on a pseudoconvex open set {2 < C™ can be approximated
very accurately by functions of the form clog | f|, where ¢ > 0 and f is 2 holomorphic
function. The main idea is taken from [Dem92]. For other applications to algebraic
geometry, see [Dem93b] and Demailty-Kollar [DK96]. Recall that the Lelong number
of a function ¢ € Psh((2} at a peint g is defined to be

1 su .
v(p,29) = liminf & = li —p—M
zowo loglz —ap]  ro0. logr
In particular, if ¢ = log|f] with f € O(2), then #{p, 7o) is equal to the vanishing
order ordg,(f) = sup{k € N; D* f(xq) = 0, V]a| < k}.

(12.11) Theorem. Let ¢ be a plurtsubhermonic function on a bounded pseudoconver
open set £2.C C*, For everym > 0, let Hp(my) be the Hilbert space of holomorphic
Junctions [ on £2 such that [, |f|?e7?™7d) < +oo and let @, = s log 37 joef?
where (a¢) is an orthonormal basis of Hep(me). Then there are constants €y, Cy > 0
independent of m such thal
2 oz - D nla) € swp 9l0) + = log 2
m = T K-zler moorn
for every z € §2 and v < d(2,802). In particular, v, converges to ¢ pointwise
and in Ll topology on (2 when m — +oo and

b) w@ak%5uwm55qu)mmmmzea

Proof. Note that 3 {o4(z)|® is the square of the norm of the evaluation linear form
f = f{z) on Hol{myp). As ¢ is locally bounded above, the L? topology is actually
stronger than the topology of uniform convergence on compact subsets of £2. It
follows that the series 3 o} converges uniformly on £ and that its sum is real
analytic. Moreover we have
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1
em(z) = sup —logif(z)|
feB( ™
where B(1) is the unit ball of #o{mep). For r < d(z, 812}, the mean value inequality
applied to the psh function |f}? implies

1 2
J era©

arrin fnl

IF(2)? <

exp (2m sup 'p(C))/;}U!zc_zm‘Pd,\.

- 2
anr n/n! 1§—z|<r

If we take the supremum over all f € B(1) we get

1
() < — log ————
om(z) < scﬁ‘i&rw“) t o O S
and the second inequality in a) is proved. Conversely, the Ohsawa-Takegoshi exten-
sion theorem {estimate 4.10) applied to the 0-dimensional subvariety {z} C £2 shows
that for any & € C there is a holomorphic function f on §2 such that f(z) =a and

f 1f12e—2mnpd,\ < CS|alze—2m:.c>(z)1
n”

where € only depends on n and diam 2. We fix a such that the right hand side
is 1. This gives the other ineguality
1 log Cy
miz) = —1 = - .
P2} 2 —Yoglal = () = S

The above inequality implies v(gm, z) < ¥(p, z). In the opposite direction, we find

sup wm(r) € sup p({) + '1—108 C—:
|z —z|<r [(—z|<2r m T
Divide by logr and take the limit as r tends to 0. The quotient by logr of the
supremurn of a psh function over B{z, r) tends to the Lelong number at z. Thus we
obtain 0
v(m,z) Z V(P 2} — ol

Theorem 12.11 implies in a straightforward manner the deep result of [Siu74]
on the analyticity of the Lelong number sublevel sets.

(12.12) Corollary. Let ¢ be o plurisubharmonic function on a complex manifold X.
Then, for every ¢ > 0, the Lelong number sublevel set
Edlg) = {z€ X; v(p,2) 2 c}
is an analytic subsel of X.
Proaf. Since analyticity is a local property, it is enough to consider the case of a

psh function ¢ on a pseudoconvex open set 2 ¢ C*. The inequalities obtained in
12.11 b) imply that
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Ec(ﬁ")= m Ec—n/m((l’m)-

m>mp

Now, it is clear that Ec{ipm) is the analytic set defined by the equations ag"] (z)=0
for all multi-indices a such that ja| < mc. Thus E(y) is analytic as a (countable)
intersection of analytic sets.

We now translate Theorem 12.11 into a more geometric setting. Let X be a
projective manifold and L a line bundle over X. A singular hermitian metric A on
L is a metric such that the weight function ¢ of k is L} in any local trivialization
{such that L,y = U x C and [[{ffxa = |€le=#(=), ¢ € L, = C). The curvature of L can
then be computed in the sense of distributions

i P
= -2—7;9h(L} = 00y,

and L is said to be pseudoeffective if L admits a singular hermitian metric h such
that the curvature current T = 2{,9,,(1,) is semipositive [The weight functions ¢ of
I are thus plurisubharmonic]. Qur goal is to approximate T in the weak topology by
divisors which have roughly the same Lelong numbers as T'. The existence of weak
approximations by divisors has already been proved in [Lel?2] for currents defined
on a pseudoconvex open set f2 C C* with H%(2,R) = 0, and in {Dem$2, 93b] in
the situation considered here (cf. also [Dem82b)], although the argument given there
is somewhat incorrect). We take the opportunity to present here a slightly simpler
derivation. In what follows, we use an additive notation for Pic(X), L.e. kL is meant
for the line bundle L®*.

(12.13} Proposition. For any T = g—i,r-Qh(L) > 0 and any ample line bundle F,
there is a sequence of non zero sections h, € HYX,p,F + q,L) with ps.qs > 0,
limg, = +oo and limp,/g. = 0, such that the divisors Dy = + div(ks) setisfy
T = lim D, in the week topology end sup ex [¥(Ds, ) - w{T, z)} = 0 as § = +oo.

(12.14) Remark. The proof will actually show, with very slight modifications, that
Proposition 12.13 also holds when X is a Stein manifold and L is an arbitrary
holomorphic line bundle.

Proof. We first use Hérmander's L? estimates to construct a suitable family of holo-
morphic sections and combine this with some ideas of [Lel72] in a second step. Select
a smooth metric with positive curvature on F, choose w = 2= O(F) > 0 as a Kahler
metric on X and fix some large integer k (how large k must be will be specified
later). For all m > 1 we define

wn(} = sup log S5,
125<N ™

where (f1,..., fn) i3 an orthonormal basis of the space of sections of O(kF + mL)
with finite global L2 norm [y || f|i?dV... Let er and ey, be non vanishing holomorphic
sections of F and L on a trivializing open set {2, and let e¥ = |lepl, ¥ = |lecl|
be the corresponding weights. If f is a section of O(kF +mL) and if we still denote



12. The Ohsawa-Takegoshi L? Extension Theorem 93

by f the associated complex valued function on 2 with respect to the holomorphic
frame e ® e, we have || f{z)|| = |f(2)|e=*¥(x)-me(=); here y is plurisubharmonic,
+ is smooth and strictly plurisubharmonie, and T = 138, w= L907. In §2, we
can write

() = 300, L i0g 1 (6)] = 9(8) = 7o)

In particular T, = %ngm +T+ %w is a closed positive current belonging to the
cohomelogy class e, (L) + %cI(F}.

Step 1. We claim that T, converges to T as m tends to +oc and that T,y satisfies
the inequalities

(12.14) (T, x) —
at every point z € X. Note that Ty, is defined on 2 by T = ;;a%mﬁ with

1
vmalz) = sup —log|f;(2), flf;lze_z’““"z"“”deil.
1g5<N ™ 2

We proceed in the same way as for the proof of Theorem 12.11. We suppose here that
£ is a coordinate open set with analytic coordinates {z1,.. ., zp). Take z € £2'CCf?
and r € rg = 3d({2,802). By the L? estimate and the mean value inequality for
subharmonic functions, we obtain
F e R e T I
T He—aler U

{—zl<r

with constants €, C independent of m and + (the smooth function 1 is bounded
on any compact subset of £2). Hence we infer
C2

1
1 < — ——
(12.15) U {2} < Kgx:ng(c) + 5 log 2

If we choose for example r = 1/m and use the upper semi-continuity of y, we
infer limsup,_, 4o ¥m,2 < @. Moreover, if 7 = v(p,x) = v{T,z), then ¢({) =
+log|¢ — zt + O{1) near z. By takingr = [z —z| in (12.15), we find

n n
tmle) S sup plQ)= logr +O(1) < (v~ =) togiz - =i+ 0(1),

b(Ton,2) = vlm ,8) 2 (1= =) 2 v(Tm) = o

Ir the opposite direction, the inequalities require deeper arguments since we actually
have to construct sections in H(X, kF +mL). Assume that {2 is chosen isomorphic
to a bounded pseudeconvex open set in C*. By the Ohsawa-Takegoshi L? extension
theorem (remark {4.11)), for every point r € 2, there is a holomorphic function g
on 2 such that g{z} = e™** and

/ lo(z}2e™ ™ (2) < Cs,
it}
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where (3 depends only on » and diam{{2). For x € §Y, set
a(z) = 6(|z — z|/r) gl2) ep(z)* @er(z)™, r=min (1,271d(s2',892)),

where # : R — [0,1] is a cut-off function such that 8(¢) = 1 for t < 1/2 and
B(t) = 0 for t = 1. We solve the global equation Hu = v on X with v = do, after
multiplication of the metric of kF + m/l with the weight

gmesla) () = 8(]z - z}/r) oglz — x| 0.
The (0,1)-form = can be considered as a {n, 1)-form with values in the line bundle
O{~Kx + kF +mL) and the resulting curvature form of this bundle is

Ricci(w) + kw + mT + 7080,
m

Here the first two summands are smooth, i008p, is smooth on X ~ {z} and > 0 on
B(z,r/2), and T is a positive current. Hence by choosing k large enough, we can
suppose that this curvature form is > w, uniformly for = ¢ (2. By Hérmander’s
standard L? estimates [AV65, Hor65, 66], we get a solution u on X such that

/ i[,u“2e42np,de < 04/ |g|26-—2kw—27n‘p42rap, {ﬂ/u < CS§
X /2| z-x| T

to get the estimate, we observe that v has support in the corona r/2 < |z — x| <7
and that p; is bounded there. Thanks to the logarithmic pole of pr, we infer that
u(z) = 0. Moreover

/ HUHZde E/ Eg|‘26—2ku‘f—2mnpdvu S CG,
12 2+ B(0,r/2)

hence f = o —u € HO(X, kF +mL) satisfies I If1PdV, < Gy and
()] = llo ()] = lg@ ler ™ e (@™ = ller(* = e FPO,
In our orthonormal basis {f,), we can write f = 3 A, f; with 5" |4;]* € C7. There-
fore
e=k60) = | 1)) € S gl sup ISzl < VO em i),
1
w(®) 2 — log(CrNY 2|7 (@) 2 —-(1ug(c*7N)”’- + kw(:.;))
m m

where N = dim HY{X,kF + mL) = O{m"). By adding ¢ + £y, we get vma 2
w— Cgm~logm. Thus imm 400 ¥m2 = @ everywhere, Ty, = i()ﬁvm‘g converges
weakly to T = ;65«;;, and

T, ) = v, 1) < vip.a) = viT, x).

Note that v(vm .z} = & minord(f;) where ordy{f;) is the vanishing order of f;
at z, 5o our initial lower bound for #{Tm, &) combined with the last inequality gives

n 1
R — mi < ).
(12.16) v(T, ) o < — min ord.{f;) < (T, )
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Step 2: Construction of the divisors D,.
Sclect sections {g1,....gn} € HU(X, kg F) with kg so large that koF is very
ample, and set.

hem = figr+ ...+ fhgn € HO(X, (ko + £k)F + tmL).

For almost every N-tuple (.. .., gn), Lemma 12.17 below and the weak continuity
of 30 show that

13 = 1.
Ap'm = Fm—;ﬂa logihg‘m| = % dlv(hg'm)

converges weakly 10 Try = £08uy, 5 as £ tends to +oo, and that
1 1

U(Tvmr) S V(_“Al mn-'r) S U(T! 1") + .

" ém

This, together with the first step, implies the proposition for some subsequence
Dy = Ayg),e £(5) > 3 1. We even obtain the more explicit inequality

v(T,z) — % < u(%dam,z) <v(T,z}+ EL |
™

(12.17) Lemma. Let §2 be an open subset in C* and let f1,..., fxv € HY(N,04)
be non zero functions. Let G C HY(12,0q) be a finite dirensional subspace whose
elements generate all 1-jets at any point of 2. Finally, set v = sup log |f;| and

he=figi+...+ fhan, g5 € G~ {0}

Then for all (g1,...,95) in (G ~ {0})" ezcept a set of measure 0, the sequence
7 log Ihy| converges to v in LY (£2) and

loc

1 1
u(v,z)ﬁv(ElogM,l) SV(U'I)+E’ Vre X, Vi 1.

Proof. The sequence } log |k| is locally uniformiy bounded above and we have
. 1
E-L]Toc Zlog |he(z)] = v(z)

at every point z where all absolute values |f;(z)| are distinct and all g;{z) are
nonzero. This is a set of full measure in £2 because the sets {|f;1> = |fi|?, j # !} and
{g; = 0} are real analytic and thus of zero measure (without loss of generality, we
may assume that {2 is connected and that the f;’s are not pairwise proporticnal).
The well-known uniform integrability properties of plurisubharmonic functions then
show that } log|kel converges to v in L} (£2). It is easy to see that »(v,z) is the
minimum of the vanishing orders ord.(f;), hence

v(log |he|, ) = ordy{hy) > Lu(w, 2).
In the opposite direction, consider the set £ of all (¥ + 1)-tuples

(€, g1, gN) E T x GV
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for which v(log |he|, z) = £v(v,x) + 2. Then & is a constructible set in 2 x GV: it
has a locally finite stratification by analytic sets, since

= U = 0°5@#0}x6%)n () {(z(8);: DOhatz) = 0}

820 g, |al=a |B1< s +1

The fiber £, {{z} x G™) over a point £ € 12 where »{v, z) = min ord;(J}) = sis the
vector space of N-tuples {g;) € GV satisfying the equations Dﬁ(ij g;(x)) = 0,
|8} € €5 + 1. However, if ord.{f;} = s, the linear map

(0....,0,85.0,...,0) — (Da(ffgj(m)))\mg,“

has rank n + 1, because it factorizes into an injective map J1g; — Jf"“(ffgj}. It
follows that the fiber £ N ({z} x GV) has codimension at least n + 1. Therefore

dimé& <dim(2 x G¥)~ (n+1) =dimG™ -1

and the projection of £ on GV has measure zero by Sard’s theorem. By definition
of £, any choice of (g1,...,9x5) € GV ~ lJ¢» 1 Pr{€¢) produces functions kg such that
v(log |hel,z) < £v(v,z)+ 1 on £2. a O

13. Invariance of Plurigenera of Varieties of General Type

The goal of this section is to give a proof of the following fundamental result on the
invariance of the plurigenera, proved by Y.T. Siu [Siu97].

{13.0) Theorem (Siu). Let X — § be a smooth projective family of varieties of
general type on ¢ connected base §. Then the plurigenus pn(X,) = A°( X mKx,)
of fibers is independent of t for all m > 0.

Given a family v : X —+ 5 of projective varieties, the proof of the invariance
of the plurigenera of fibers X, = ¥~ !(¢) is easily reduced to the case when the
base is the unit disk 4 C C (in general, one can always connect two arbitrary
points of § by a chain of small analytic disks, and one can take the pull-back of
the family in restriction to each of those disks). We can therefore suppose that
7: X — A. In that case, we have a canonical isomorphism Kx, ~ Kxx, on each
fiber, given by w — di A u [in this way, we will allow ourselves to identify K x, and
Kxx, in the sequel]. we know from Grauert's direct image theoremn [Gra60] that
the direct image sheaves v, (}(mK x) are coherent, and moreover, the plurigenera
pm(Xi) = RO(Xy, (mK X )1x,) are upper semi-continuous functions of £. The jumps
occur precisely if a section on some fiber X, does not extend to nearby fibers.
Proving the invariance of plurigenera is thus equivalent to proving that a section of
mKXngD on a fiber X, can be extended to a neighborhood of X,, in X. We can
assume without loss of generality that t; = 0. The strategy of Siu’s proof consists
more or less in the use of suitable singular hermitian metrics on K x and Ky, {with

“minimal singularities” ), combined with L? extension theorems with respect to these

metrics.
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13.1. Metrics with minimal singularities

One of the main ideas in the proof of the invariance of plurigenera - although it is not
completely explicit in [Siud7} - rests on the fact that the singufarities of hermitian
metrics on a line bundle L can reflect very accurately the base loci of the sequence
of linesr systems |mL|{, precisely when metrics with minimal singularities are used.
We follow here the approach of [DPS00].

{13.1.1) Definition. Let L be @ pseudo-effective line bundle on a compact complez
manifold X . Consider two hermitian metrics hy, kg on L with curvature iy, (L) = 0
in the scnse of currents.

(1) We will write by < ha, and say that hy is less singular then ha, if there exists
a constant C > 0 such that by < Chs.

{ii) We will write hy ~ ho, and sey that hy, ho are equivalent with respect o
singularities, if there exists a constant C > 0 such that C~1hy € by < Chy.

Of course hy =< hg if and only if the associated weights in suitable trivializations
locally satisfy w2 < 1 + C. This implies in particular p(p1,z) € ¥(pa,x) at each
point. The above definition is motivated by the following observation.

(13.1.2) Theorem. For every pseudo-effective line bundle L over a compact complex
manifold X, there exists up to equivalence of singularities o unique class of hermitian
metrics h with minimal singulerities such that 19 (L) 2 0.

Proof. The proof is almost trivial. We fix once for all a smooth metric koo (whose
curvature is of random sign and signature), and we write singular metrics of L under
the form i = hooe~2¥. The condition i€, (L) > 0 is equivalent to 130y > —u where
u = i@y, (L). This condition implies that 4 is plurisubharmonic up to the addition
of the weight woo of hoo, and therefore locally bounded from above. Since we are
concerned with metrics only up to equivalence of singularities, it is always possible

to adjust ¥ by a constant in such a way that sup y ¥ = 0. We now set

i = hooe " 2¥mi% . Pmin() = sup B(z)

where the supremum is extended to all functions ¢ such that supy ¥ = 0 and
ooy > —u By standard results on plurisubharmonic functions {see Lelong

[Lel69]), min still satisfies £38Ymin > —u (ie. the weight g + Ymin 42 Hmin
is plurisubharmunic). and Amip 15 obviously the metric with minimal singularities
that we were looking for. O

Now, given a section ¢ € HP(X,mL)}, the expression he) = g™ falz)>™
defines a singular metric on L, which therefore necessarily has at least as much
singularity as hmin as, L.e, # log|o)? < @min + € locally. In particular, |o|2e = ¥mn
is tocally bounded, hence ¢ € HO(X,mL ® Z(RET)). For all m > 0 we therefore
have an isomorphism
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HO(X, mL & I(h®m)) —— HY(X,mL).

min

By the well-known properties of Lelong numbers (see Skoda [5k72]), the union of

all zero varieties of the ideals I(hﬁ}: is cqual to the Lelong sublevel set

(1313) E+(hmin) = {-'L' € X: V(‘Pmi:nl') > 0}

We will call this set the virtnel base locus of L. Tt is always contained in the “alge-
braic” base locus

By = ﬂ Birar)s By = ﬂ " H0),
m>0 el (X, mL}

but there may be a strict inclusion. This is the case for instance if L € Pic"(X) is such
that all positive multiples mZ have no nonzero sections; in that case Ey(Bmin) =10
but [Vpnp Bimej = X. Another general situation where Ey (lmin) and By can
differ is given by the following result.

(13.1.4) Proposition. Let L be a big nef line bundle. Then hipin fias zero Lelong
numbers cverywhere, 1.e. B {hpin) = 9.

Proof. Recall that L is big if its Kodaira-litaka dimension w(L) is equal to n =
dirmm X . In that case, il is well known that one can write gl = A+ E with A ample
and E effective, for mp sufficiently large. Then mL = ((m — mg)L + A) + E is the
sum of an ample divisor 4,, = (m —mg)L + A plus a (fixed) effective divisor, 50
that there is a hermitian metric Ay, on L for which i@y, (L) = iiS(Am) + ;%[E]
with a suitable smooth positive form 1©@{Ap,). This shows that the Lelong numbers
of the weight of h,, are O(1/m), hence in the limit those Of Ntmin aT€ 2ero.

If k is a singular hermitian metric such that 49, (L) > 0 and
{13.1.5) HYX,mL@I(h®™) =~ HYX,mL} forallm >0,

we say that k is an analytic Zariski decomposition of L. We have just seen that such a
decomposition always exists and that i = hpin i5 2 solution. The concept of analytic
Zariski decomnposition is motivated by its algebraic counterpart (the existence of
which generally fails) : one says that L admits an aigebraic Zariski decomposttion if
there exists an integer mp such that mgL = @(E+ D) where E is an effective divisor
and D a nef divisor, in such a way that HY(X, kD) ~ H%X, kmoL) for all k = 0. If
O(+D) is generated by sectians, there is a smooth metric with semipositive curvature
on (D), and this metric induces a singular hermitian metric A on L of curvature
current mLO(ié)(O(D)) + [E]). Its poles are defined by the effective Q-divisor H%EE
For this metric, we of course have T{h®¥™) = O(~kE), hence (13.1.5) holds true
at least when m is a multiple of my.

13.2. A uniform global generation property

The “uniform global generation property” shows in some sense that the curvature
of the tensor product sheaf L @ Z{h) is uniformly bounded below, for any singular
hermitian metric A with nonnegative curvature on L.
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(13.2.1) Lemma. There exists an ample line bundle G on X such that for every
pseudoeffective line bundle (L, h), the sheef O(G + L) ® I(h) s genernted by its
global sections. In fact, G can be chosen as follows: pick any very ample line bundle
A, and take G such that G — (Kx +nA) is ample, e.g. G =Kx + {n+ 1)A.

Proef. Let ¢ be the weight of the metric & on a small neighborhood of a point 24 € X.
Assume that we have a local section u of O(G + LY® Z(h) on a coordinate open balt
B = B(zq,48), such that

j [u{2)|2e ™22z — 5| T3PV (2) < oo
B
Then Skoda’s division theorem [Sko72b] implies u(z) = >"(2; — #; 0)v;(2) with
[ s (23|22 2 — o[~ HP-1+IgV (2} < too,
B

in particular u,, € O(G+LY®I(R)®@myx ;- Select a very ample line bundie A on X,
We take a basis 0 = (5] of sections of HY(X,G ® mx ,,) and multiply the metric
h of G by the factor |o]=2"*€). The weight of the above metric has singularity
(n+£)log|z — 20| at zg, and its curvature is

(13.2.2) iG(G) + (n + £)iB8log jo|? 2 iO(G) — (n+ £)B(A).

Now, let f be a local section in H*(B, (MG + L) @ I{h)) on B = B(z,d), § small.
We solve the global 9 equation

fu=06f) onX

with a cut-off function # supported near zy and with the weight associated with
our above choice of metric on G + L. Thanks to Nadel’s theorem 5.11, the solution
exists if the metric of G + L — Kx has positive curvature. As i@x(L) > 0 in the
sense of currents, (13.2.2) shows that a sufficient condition is G — Kx —nA > 0
(provided that ¢ is small enough). We then find a smooth solution u such that
Uz, € O{G+ L)@ I(h) ® mx ,,, hence

F=8f —ue HYX,0(G + L) ® I(h))

is a global section differing from f by a germ in O(G+ L)®I{h}@mx .,. Nakayama's
lemimna implies that HY(X, (G +L)®T{h)) generates the stalks of H{G+L)@T(h).

13.3. A special case of the Ohsawa-Takegoshi-Manivel L? extension
theorem

We will need the special case below of the Ohsawa-Takegoshi L? extension theorem.
(Notice that, in this way, the proof of the theorem on invariance of plurigenera
requires 3 essentially different types of L? existence theorems !}.

(13.3.1) Theorem. Let v : X — A be a projective family of projective manifolds
parametrized by the open unit disk A C C. Let Xp = v 1{0), n = dimg Xo, end let
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L = X be a line bundle equipped with o hermitian metric written locally as ™%,
such that 100y > w in the sense of currents, with a suitable positive (1,1)-form w
onX. Let0 <r < landd, ={ted; |t| <r}. Then there exisis o positive
constant A, such that the following statement holds. For every holomorphic n-form
f on Xo with values in L such that

f 1f2e*dV < oo,
Xo

there exists a holomorphic (n+ 1)-form fon y~HA,) with values in L, such that
flx, = fFA~*{dl) on Xy and

f [fl2e=*dV < A, f |f[2e~*aV.
X Xo

(13.3.2) Remark. It should be noticed that no hermitian metric on the tangent
bundle of Xq or X is required in order to define the integral of the square of the
norm of holomorphic forms f and f on Xp and X' ; in fact, it suffices to integrate

the volume forms i f A T and i™+1° f A 7.

13.4. Construction of a hermitian metric with positive curvature on Kx,

From now on, we suppose that X — A is a family of projective manifolds of general
type {i.e. that all fibers X, are of general type). A technical point to be settled first
is that the hermitian metric on Kx must be chosen in such a way that its curvature
current dominates a smooth positive definite (1, 1)-form, so that the Skoda division
theorem and the Ohsawa-Takegoshi-Manivel L? extension theorem can be applied.
This point is easily settled by means of a variation of Kodaira's technique which
consists in expressing a sufficiently large multiple of a big line bundle as the sum of
an effective divisor and of an ample line bundle.

{(13.4.1) Lemma. There exists a positive integer a such that aKy = D+ F, where D
is an effective divisor on X which does not contain Xg, and where F is a positive
line bundle on X.

Proof. Let F be a positive line bundle on X, and let r, be the generic rank of
HY%(X;,aKx, — F), which is achieved for £ € A~ §; in the complement of a suitable
locally finite subset S, € A. Fixt; € A~} S,. Since X;, is of general type, we know
that A%(X, ,aKx, ) > ca®, hence h*(X;,,aKx, — F) 2 c'a" for suitable ¢,¢/ > 0
and a large enough. By the choice of ¢;, every non zero section of HO(X,,, aKx,, -F)
can be extended into a section s of H%(X,aKx — F), hence aKy = D + F where
D is the zero divisor of s. If necessary, we can eliminate any unwanted component
Xo in the decomposition of D by dividing s with a suitable power of ¢. [

The next step is to construct hermitian metrics on Kx, and Kx, respectively,
and to compare their multiplier ideal sheaves. By the results of section 13.1, there
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exists a metric with minimal singularities on Xy {unique up to equivalence of sin-
gularities). We will denoter by ¢ the weight of this metric. Similarly, there exists a
metric with minimal singularities on every relatively compact neighborhood of X, in
X . and by shrinking the base A, we can suppose that this metric exists on the whole
space X. We will denote by v the restriction to Xo of the weight of this metric. By
definition.  is at least as singular as g on X, hence by adding a constant, we may
eventually assume that ¢ < .

On the other hand, Lemma 13.4.1 shows that we can choose an integer a > 2
such that aKx = D+ F, where I} is an effective divisor on X which does not contain
Xy as a component, and F is an ampile line bundle on X. After a has been replaced
with a sufficiently large multiple, we can make the following additional assumptions:

(134.2) F— Kx > Kx +nA for some very ample ine bundle A on X.
{13.4.3) there is a basis of sections of HY(X, F) x, providing an embedding of X,
onto a subvariety of projective space.

Let sp be the canonical section of the line bundle O(D), so that the divisor of
spis D. Let uy,...,uny € HY(X, F) be sections such that

U Xgs -2 UN|Xg

form a basis of H*(X, F)|x,. Since spu; € HYX,aKx) (1 € j < N), we get a

hermitian wnetric 5

= (lorrir)

on the line bundle K y. Moreover
1
¥ = = (loglsni® +x)

where x = log(}" |1;|?) defines a smooth hermitian metric with positive curvature
on F. Therefore, i0d¢ is a positive definite current. Furthermore, the singularities of
i on X are at least as large as those of the weight ¢ which is by definition the weight
with minimal singularities on X. By adjusting again the weights with constants, we
can state:

(13.4.4) Lemma. The hermitian metric e~V has positive definite curvelure and
P < <o on Xp.

The crucial argument is a comparison result for the multiplier ideal sheaves on
Xy defined by €po and £y, respectively, when £ is large. In the sequel, the notation
I((£+ a — )¢ + £) wil} stand for an ideal sheaf on X, (and not for an ideal sheaf
on X, even when the weight is possibly defined on the whole space X).

(138.4.5) Proposition. Select 0 < £ < 1 so small that e™ V¥ is locally integrable on X
{possibly after shrinking the base A) and el';u"’ is locally tntegrable on Xy, Then

Tl -¢e)po+(a+ep) CLT{E—1+a—c)p+ey)

Jor every integer £ > 1.
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Proof. We argue by induction on €. For £ = 1, Lemuna 13.4.4 implies
(1-&pot+la+a)v s (l—clpo+ap+ed <C+(a-clg+er
siee ¢3g s locally bounded above by a constant C. Thus we get
(1 — )go + (a+£)$) C I({a - e + e,

as desired.

Now, suppose that the induction step £ has been settled. Take an arbitrary
germ of function f in the ideal sheaf T({£+1 — €)ipg + {2 + &)1)), defined on a small
neighborheod U of a point P € X,. Fix a local non vanishing holomorphic section
eof ( +a}ix, on U. Then s = fe is a section of

O{f+a)Kx,)RT((L+1~c)pp + (a+e)¢)
on U. Observe that, given an arbitrary plurisubharruonic function £, we have
(€ + log|sp|?) = I(¢) & O(- D).

Writing aKy, = (I + F)|x, thanks to Lemma 13.4.1 and ay¢ = log|sp|® + x by
definition of 1, we can reinterpret s as a section of
QUK x, + (D+ Flix, ) @T({£ + | — skpg + £ + log fspl® + x)
=0+ 2)Kx, + Ex,) @ L€ + 1 - £)gpn + €4},
where F' = F'—2K x (since y is smooth, adding x does not change the multiplier idela
sheal). Let us observe that (£41—g)g +eip defines a hermitian metric with positive

curvature on {£ + 1)K x,. By the above hypothesis (13.4.2) and Proposition 13.2.1
applied with ¥ = Xg and L = (¢ + 1)K x,, we conclude that

O+ 2)Kx, + Ejx, ) ®T{({ + 1 —e)hpo + £9)

is generated by global sections on X,. We can therefore without loss of generality
restrict ourselves to the case of germs f such that fe coincides on U with a global
section

s€ HY (X0, Ol(€+ 2K x, + BEx,) @ I((£ + | = £)pp + 1)) .
By reversing the order of calculations, we find
H® (X, O£+ 2)Kx, + Ex,) @ L({£+1 - e)pg + ey))
= H (X0, O((£ + a)Kx,) @ T((£ + 1 ~ €)po + {a + £)1))

C HY (Xo, O((£ + a)Kx,) @ T({£ ~ €)ga + (¢ + €}¥))
CH"(Xo,0(((+a)Kx,) @L({£ +a~ 1 ~clp + &),

[the first inclusion is obtained by neglecting the term g in the weight, et the second
one is a consequence of the induction hypothesis for step ¢]. Now. the weight

(f+a—-1-elp+ey
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defines » hermitian metric wich positive definite curvature on L = (£ +a — 1)Ky,
and Proposition 13.3.1 implies that s can be extended inte a global section § €
HY(X, (¢ + a)Kx} {maybe after shrinking A). The definition of o implies |5 =
C elé+e)¥ | hence
B“Ze—-(l+u)‘p—sw < Ce—nﬂ
is integrable on X. from there, we conclude that
Je=s5=5x, € O(({+a)Kx, ) ®T{({ + a}p + 4],

hence f € T({f+ a)y + ey). The step £ + 1 of the induction is proved.

13.5. Proof of the invariance of plurigenera.

Fix an integer m > 0 ang an arbitrary section s € H% X, mKx,). By definition of
@0, we have |s]? £ Ce™¥ on X,. If sp is the canonical section of O(—D} of divisor
D, we conclude that stsp is locally L? with respect to the weight g—fmyo—iate)y
for ay has the same singularities as log|sp|? and e~¥ is supposed to be locally
integrable on Xo. The functions s'sp are locally in the ideal sheaf Z{{fm — e)wo +
(a + £)1). By Proposition 13.4.5, they belong to Z{{ftm ~1 - el + ) le.

f |stsD|2e—(lm—1A€)<p—e¢ < 400
u

on each sufficiently small open set U such that Kx, |/ and O(—D)|U are trivial. In
an equivalent way, we can write

] |s[2te(tm=1medpla e < foo.
v

Take £ large enough so that a/(f — 1) < e. Then P~ 13T¥ < (Ce~¥ soit integrable
sur [/. By Holder inequality with conjugate exponents £, £ =48/(£-1), wefind

1/¢ (£~1)/¢
Joo > (f |s|2£€—(lm—1—€)\0+(a-6)¢) ([ e‘f"rﬁﬂ")
u U

2[ |s|2e—(m—-’;—%)«DH%—{r)we(l—})rp—%v.lf=f|S!26—{m—1—6)rp—6w
1) U

with & = £/£. We can consider s as a section of Kx, + Lx, with L = (m — 1NKx.
The weight (m — 1 — )@ — 5y defines a hermitian metric on L with positive definite
curvature, and s is globally L? with respect to this metric. By the Ohsawa-Takegoshi-
Manivel extension theorem, we can extend s into a section § € HYX,Kx+ L) =
HY X, mK ), possibly after shrinking 4 again. This achieves the proof of the main
theorem. O

104 1.-P. Demailly, Analytic methods and multiplier ideal sheaves

14. Subadditivity of Multiplier Ideals and Fujita’s
Approximate Zariski Decompostion

We first notice the following basic restriction formula, which is just a rephrasing of
the QOhsawa-Takegoshi extension thecrem.

(14.1) Restriction formula. Let pp be a plurisubharmonic function on a complez mani-
foid X, and let Y C X be a submanifold. Then

() € @)y

Thus, in some sense, the singularities of  can only get worse if we restrict to a
submanifold (if the restriction of ¢ to some connected component of ¥ is identically
—o0, we agree that the corresponding multiplier ideal sheaf is zero). The proof is
straightforward and just amounts to extend locally a germ of function f on ¥ near
a point ¢ € Y to a function f on a small Stein neighborhood of yg in X, which is
possible by the Ohsawa-Takegoshi extension theorem. As a direct conseguence, we
get:

(14.2) Subadditivity Theorem.
(i) Let Xy, Xz be compler manifolds and let p; be o plurisubharmonic function
an X;. Then
I(pr o pr + w2 o p2) = T Z(1) - 97 ' Llw2).

{ii) Let X be a compler manifold and let @, 3 be plurisubharmonic functions on X.
Then
I(p+ %) < I(p) - I(¥)

Proof. (i) Let us fix two relatively compact Stein open subsets Uy C X1, U2 C Xa.
Then H2(Uy x Uz,prop1 + 920 p2, P dV: @ p3dVs) is the Hilbert tensor product
of H*(U1, p1.dV1) and H2(Uy, ¢2,dVz), and admits (f; & £} as a Hilbert basis,
where (ff) and (f]’) are respective Hilbert bases. Since T{@1 0 p1 + 2 © P2) |0, xU; 18
generated as an O, xv, module by the (f B £/") (Theorem 5.7), we conclude that
(i) Lolds true,

(i) We apply (i) to X1 = Xz = X and the restriction formula to ¥ = diagonal of
X x X. Then

I +¥)=I((wop +¥epy) C I{popm+vom)y
= (pif(so) ®p‘£I(¢))W =I(p) I()-

As an application of subadditivity, we now reprove a result of Fujita [Fuj93],
relating the growth of sections of multiples of a line bundle to the Chern numbers
of its “largest nef part”. Fujita's original proof is by contradiction, using the Hodge
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index theorem and intersection inequalities. The present methode arose in the course
of jeint work with R. Lazarsfeld [Laz99].

Let X be a projective n-dimensional algebraic variety and I a tine bundle
over X. We define the volume of L to be

!
v(L) = limsup = A%(X, kL) € [0, +oo].
k=400 kn

The line bundle is said to be big if v(L) > 0. If L is ample, we have h9(X, kL) = 0
for ¢ > 1 and &k » 1 by the Kodaira-Serre vanishing theorem, hence

BO(X kLY ~ x(X, kL) ~ %k"

by the Riemann-Roch formula. Thus v(L) = L™ ( = ¢;(L}*) if L is ample. This is
still ¢rue if L is nef (numerically effective), i.e. if L-C > 0 for every effective curve .
In fact, one can show that A%(X, kL) = O(k"~?) in that case. The following well-
known proposition characterizes big line bundles.

(14.3) Proposition. The line bundle L is big if and only if there o multiple mol such
that mol. = E + A, where E is an effective divisor and A an ample divisor.

Proof. If the condition is satisfied, the decomposition kmgL = kE + kA gives rise to
an injection H%(X,kA) < H(X, kmgL), thus v{L) > m;"u{A) > 0. Conversely,
assume that L is big, and take A to be a very ample nonsingular divisor in X. The
exact sequence

00— Ox(kL - A) — OX(kL) —_— OA(kth) — 0
gives rise to a cohomology exact sequence
0— HO(X, kL - A) — HY(X, kL) — H(A,kL4),

and h%(A, kL 4) = O(k" ") since dim A = n — 1. Now, the assumption that L is big
implies that h%(X, kL) > ck™ for infinitely many k, hence HO(X, mglL — A} #£0 for
some large integer mg. If £ is the divisor of a section in H(X,mgL — A), we find
fpl — A = E, as required. O

(14.4) Lemama. Let G be an arbitrary line bundle. For every £ > 0, there erisis a
posittve integer m and a sequence £, T +0o such that

WX, 8, (mL - @) > EL:"!”" (v(L) - €),

tn other words, v(mL — G) > m"(v(L} — ) for m lorge enough.

Proof. Clearly, v(mL — G) > v{mL — (G + F)) for every effective divisor E. We can
take E so large that G+ F is very ample, and we are thus reduced to the case where
G is very ample by replacing G with G + E. By definition of v(L), there exists a
sequence k, T +o00 such that
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km c
a o =
WX kL) 2 2% (U(L) - 2)

We take m > 1 (to be precisely chosen later), and £, = [%] sothat k, = {,om—+r,,,
0 <r, < m. Then

Lu(mL - GY =k, L ~ (r.L + £,G).
Fix a constant ¢ € N such that ¢G ~ L is an eHective divisor. Then r L < maGG
{with respect tu the cone of eflective divisors), hence

hn(X, E{ml - @) > WX kL — (6, + um}C).

We select a smoeoth divisor D in the very ample lincar system |G|, By looking at
global sections associated with the exact sequences of sheaves

0= O+ 1)D)® Ok, L) = O{—jD) ® Olk,L) = Oplk,L — jD) = 0,
0 < j < 5, we infer inductively that

BOX kL — D) > WX kL) ~ 37 RND,Oplk.L - iD))
0<j<s
2 NN kL) — shY(D k. Lyp)
k7

Ly
n!

(w(L) - g) ~ skl

where C depends only on L and 7. Hence, by putting s = £, + am, we got

le =
o] (4 = =1
(X, . (mL - G)) 2 vy ('U(L) — ;j) — O, + am)k]
£t

z
7!

(U(L) - g) - Clb, +am)(f, + N Im"E
and the desired conclusion follows by taking £, = m = 1. O

We are now ready to prove Fujita’s decomposition theorem, as reproved in
[PELO00).

(14.5) Theorem (quita)._Let L be a big line bundle. Then for every € > O, there
exists e modification u: X — X end g decomposition "L = E + A, where E is an
effective Q-divisor and A an ample Q-divisor, such that A™ > v{L) — &.

{14.6) Remark. Of course, if »*L = E + A with & cffective and A nef, we get an
injection

HY(X kA) = HY(X,kE + kA) = HO(X ki L) = HO(X, kL)
for every integer k which is a multiple of the denominator of E, hence A™ < v(L}.
(14.7) Remark. Once Theorem 14.5 is proved, the same kind of argument easily

shows that ,
~ lim Mo
w{L) = kl:r-:-]oc P h' (X, kL).
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because the formula is true for every ample line bundle A.

Proof of Theorem 14.5. It is enough to prove the theorem with A being a big and

nef divisor. In fact, Proposition 14.3 then shows that we can write A = E' + A’

where E' is an effective Q-divisor and A' an ample Q-divisor, hence
E+A=E+el +(1-c)A+ed

where 4”7 = {1 —¢)A +¢cA’ is ample and the intersection number A”" approaches
A" as closely as we want. Let G be as in Lemma 13.2.1 (uniform global generation).
Lemma 14.4 implies that v{mL—G) > m"(v(L}—&} for m large. By Theorem 13.1.2,
there exists a hermitian metric hy, of weight @, on mL — G such that

HY (X f(mL - G)) = HY(X,4(mL - G) @ I(fpm))
for every £ > 0. We take a smooth modification X — X such that
W I(pm) = O (~E)
is an invertible ideal sheaf in Og. This is possible by taking the blow-up of X with
respect to the ideal Z{y,,) and by resolving singularities (Hironaka [Hir64]). Lemma
13.2.1 applied to L' = mL — G implies that O{mL) & I(pm) is generated by its
giobal sections, hence its pull-back O(m p*L — E) is also generated. This implies
mpuL=E+A

where E is an effective divisor and A is a nef (semi-ample) divisor in X. We find
HO(X,e4) = HY(X ¢(mp'L - E))
5 HY(X, w (O0mL) @ T(vm)})
5 HO(X, p* (O(¢mL) @ Z(fpm)))-

thanks to the subadditivity property of multiplier ideals. Moreover, the direct im-
age pa " I(fpy) coincides with the integral closure of Z(fp,), hence with Z{lpm),

because a mulsiplier ideal sheaf is always integrally closed. From this we infer

HO(X, £A) 5 HY(X, O(¢mL) ® T{€¢m))
5 HY(X, Olt(mL — G)) @ Z(£pm))
= H°(X,O(¢(mL - G))).

By Lemma 14.4, we find
~ m
RO(X,€4) 2 —m" (v(L} - £)
n!

for infinitely many £, therefore v(A) = A" 2 m"{v{L) — £). Theorem 14.5 is proved,
up to a minor change of notation & v+ 1E Am LA ]
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