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Introduction

The aim of these notes is to present a general framework for proving the absence of
base points of a linear system under certain numerical assumptions. For example, if H
is an ample divisor on a smooth projective variety X of dimension d, then, by a famous
conjecture of T. Fujuta, the linear system |Kx + mH| should be base point free, if
m > d, where Kx is the canonical divisor on X. For m > 1d(d + 1), it was proved by
U. Angehrn and Y.-T. Siu [1], that the above linear system has indeed no base points.
In {5] this bound on m was slightly improved by a different method. But both methods
are based on techniques which were used in the eighties of the last century, to prove
the so-called base point free theorem. Roughly speaking it says, if L is a nef divisor on
X such that M := L — Ky is nef and big, then L is semi-ample, i.e. the linear system
|mL| is base point free for large integers m. The idea of the proof of this result is, first
to use the Riemann-Roch theorem to get a divisor D € |[nM | for some large integer n,
which is very singular at a given point z € X, and then applying a generalized form of
Kodaira’s vanishing theorem to show that the restriction of global sections of the sheaf
Ox(mL) to the ‘most singular locus’ Z of the divisor D is surjective for m > 0. Since
this locus Z has smaller dimension than X, the result basically follows by induction.
But there are a few technical difficulties with this approach. First, the original point
z might be not contained in the most singular locus Z of D. Therefore, we cannot
prove the existence of a section of Ox (mL) which is non-vanishing at z, but only non-
vanishing somewhere else. In fact, the traditional argument proves only non-vanishing
at the first step and then indirectly from this, the base point free theorem. In Section 3
we will follow a modified strategy, to get the base point freeness directly. This will be
important in the proof of effective results like Fujita’s conjecture. There are mainly
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2 THE BASE POINT FREE THEOREM AND THE FUJITA CONJECTURE

two new ingredients in this approach. On the one hand, since we basically want to
ignore singular components of the divisor D not containing the point z, we can only
show, that the restriction of global sections of the sheaf Ox(mL) twisted by a certain
ideal sheaf, the ‘multiplier ideal sheaf’ (cf. §1), to the subvariety Z is surjective. This
causes no real problem, since the multiplier ideal sheaf will be supported away from
z and in a more general context, e.g. separation of points, the use of multiplier ideal
sheaf is even very natural. On the other hand, before we can apply the vanishing
theorem, we have to resolve the singularities of D by blowing-up X. The existence
of such a resolution is guaranteed by Hironaka’s theorem, but the blow-up produces
certain ‘pole-divisors’, disturbing the picture slightly. From the vanishing theorem
we only get sections of Ox(mL) with possibly poles along those pole-divisors. But,
since those divisors are exceptional with respect to the resolution, there is actually no
contribution from them. The problem is, that after restricting to the subvariety Z, the
pole-divisors may not be exceptional anymore. In Section 1, we therefore introduce a
new concept which handles this problem.

In Section 2, we will study the basic properties of ‘adjoint systems’. Roughly
speaking, an adjoint system is a complete linear system on a normal variety together
with a generalized resolution and a certain semi-positivety property. The advantage of
formulating base point freeness in terms of abstract adjoint systems is, that they behave
quite stable under basic operations like resolutions of singularities and restricting to
certain subvarieties. They form good a framework for both, the proof of the base point
free theorem as well as the proof of Fujita's conjecture.

The final section is devoted to effective base point freeness. We will use the
results of Section 1 and 2, to prove Angehrn and Siu’s theorem. The crucial point is
the construction of a ﬁltratlon of a local ring, with small ‘multiplicity’ and small ‘log-
canonical threshold’. At a smooth point, this filtration is just given by powers of the
maximal ideal. In general, the filtration is obtained, by degenerating the corresponding
filtration at a smooth point along a curve to the singular point. The rest of the
argument is basically the same as in the proof of the base point free theorem. The result
is far away from the Fujita conjecture, but together with a much more complicated
convexity argument discussed in its simplest form at the end of this section, one can
actually obtain optimal results.

Preliminaries

Let X be a normal variety over an algebraically closed field of characteristic zero. A
Weil-prime divisor of X is an irreducible subvariety P C X of codimension 1. A Q-.
divisor on X is a finite formal linear combination A = 3" ¢; P; of Weil-prime divisors P;
with rational coefficients g;. The round-up, resp. round-down of A is defined by

AT = Z g P resp. LA = Z Lgia F;,

where "¢;" resp. Lg; 0 denotes the round-up, resp. round-down of the rational number g;.
‘A Q-divisor A is called Q-Cartier, if an integral multiple mA of A is a Cartier divisor,
i.e. if the reflexive sheaf Ox(mA) associated to mA is locally free for some positive
integer m. If g : X — S is morhism onto another normal variety S, a Q-Cartier
divisor M on X is called g-nef, if the degree of M restricted to any curve contained
in a fiber of g is non-negative. The Q-Cartier divisor M is called g-big, if for any open
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affine subset U C S, the linear system of sections of Ox(nM) on g~*(U) defines a
birational map, for some positive integer m. The use of Q-divisors is based on the
following tricky generalization of Kodaira's vanishing theorem.

(V) Theorem (Kawamata (8], Viehweg [14]). Let g : X — S be a proper morphism
and let M be a g-nef and g-big Q-divisor on X. Assume that X is smooth and the frac-
tional part of M has simple normal crossings. Then, the higher direct image sheaves

R f.Ox(Kx +"M") are all zero for all i > 0.

Because of the assumption on X being smooth and the fractional part of the Q-divisor
M having simple normal crossings, one usually has to blow-up X, before one can
apply the vanishing theorem. If X is a normal variety and A is a Q-divisor on X,
then we call a proper birational morphism f : X — X from a smooth variety X, a
log-resolution of the pair (X, A), if the union of the exceptional locus of f and the
preimage of the support of A is a divisor with simple normal crossings. The existence
of such a log-resolution is provided by the following famous theorem.

(R) Theorem (Hironaka [7]). If X is a normal variely and A is a Q-divisor on X,
then the pair (X, A) has a log-resolution.

Actually, H. Hironaka proved that it is possible to resolve the singularities of the pair
(X, A), by only blowing-up smooth subvarieties of its singular locus. This is sometimes
useful to know, if one wants to check the independends of a certain invariant or property

on the log-resolution.

1. Multiplier Ideals

In this section we will introduce the concept of quasi-effectivety. The purpose of this
concept is to handle the problem of non-effective divisors coming from the resolution of
singularities. We will see that the property is stable under many basic operations, most
important the restriction to critical components. Moreover, we will define multiplier
ideal sheaves for such non-effective divisors.

(1.1) THE ADJOINT TRANSFORM. Let f : X — X be a proper birational morphism
from a smooth variety X onto a normal variety X and let A be a Q- divisor on X such

that Kx + A is Q-Cartier. Then, there is a unique Q-divisor f*A on X, such that
(1.1.1) ' (Kx+A4A) = Kg+ ffA

and the difference of f*A and the strict transform of A is f-exceptional. The Q-divisor
f#A is called the f-adjoint transform of A. In particular, if the birational morphism
f is a log-resolution of the pair (XX, A), then the support of the adjoint transform f*A
has simple normal crossings. We will write the round-down of A as

(1.1.2) LAl = A, - AL
with two effective divisors A, and A_ having no common component. The divisor A,

is the positive part and A_ is the negative part of A. The Q-divisor A is effective if
and only if A_ = 0. For our purpose, the following generalization will be quite useful.
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(1.2) Definition. Let g : X — S be a proper morphism with connected fibers between
normal varieties and let A be a Q-divisor on X. If the natural inclusion map

(1.2.1) 9:Ox (_A+) R Q*OX(A—— A+)

is an isomorphism, then we say that A is g-quasi-effective.

(1.3) EXxAMPLE. If g : X — § is a proper birational morphism between normal vari-
eties and E is an effective divisor on X, then —E is g-quasi-effective, if and only if E is
g-exceptional. But if the general fiber of g has positive dimension, then the divisor —E
can be g-quasi-effective without being g-exceptional. This happens for example, if E is
a prime divisor with a one-codimesional center on S and there is another prime divisor
P on X, having the same center on S. Then, any rational function on S which has a
pole at E must be singular along P as well. Hence, —F is g-quasi-effective.

(1.4) Proposition. Let g : X — S be a proper morphism and let A be o g-quasi-
effective Q-divisor on X such that A, and A_ are Cartier divisors.

(1.4.1) Let A be a Q-divisor on X with A > A. If the two divisors A, and A_ are
Cartier divisors, then the Q-divisor A is also g-quasi-effective.

(14.2) Leth: S — S bea flat morphism and denote by p and g the projections of the
fiber product X xg § onto S and X. If A is Q-Cartier, then g* A is p-quasi-effective.
(1.4.3) Let f: X —X be a proper birational morphism from a smooth variety X and
let A be @ Q-divisor on X, such that A — STIA is f-exceptional. Then,

(1.4.4) §..Oj(—ﬁ+) C g*OX(—A+), where §=go f

and A is §-quasi-effective. Moreover, if X is smooth, A has simple normal crossings
and A = f*A, then the above inclusion is in fact an equality.

(1.5) PROOF. First note that A, > A, and A_ < A_. In particular the divisor
P=A,—A, is effective and the two leISOI'S A_ and P have no common component.
Hence, the restriction of A_ to X’ = P is also an effective divisor and therefore, the
locally free sheaf Ox:(—A,) is a subsheaf of Ox/(A_— A,). From this, we get the
following commutative diagram with exact rows

0 — g.0x(-A,) — 6.0x(-A,) — 0.0x: (- A,)

n n N
(1.5.1) 0 — g.O0x(A_—AL) — g.0x(A - A,) — 9.0x.(A—A,)
n
g*OX(A—— A+)

Since A is g-quasi-effective, the two inclusions in the middle column are in fact equal-
ities and with a diagram chasing we see that the inclusion in the left column is also
an equality which proves the first statement.

(1.5.2) To see (1.4.2), note that p.(¢*F) = h*(f. F) for every coherent sheaf F on
X, because h is flat (see e.g. [4, Prop. III 9.3]). Moreover, g is also flat and hence
(g*A). = ¢*(A_) and (¢*A), = ¢*(A.). Therefore, applying the base change formula
to F = Ox{(~A,) and Ox(A_— A,) we see that ¢*A is p-quasi-effective.
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(1.5.3) The divisor A is g-quasi-effective if and only if L A is g-quasi-effective. There-
fore, because of (1.4.1), in the first statement of (1.4.3) we may assume than A is a
Cartier divisor and that there exists an effective f-exceptional divisor E on X such
that A = f*A - E. Since we have f,03(E) = Ox the projection formula implies

(1.5.4) 3.0 (B —A)) = g.Ox(A—A,).

On the other hand A, < f*(A,) and hence the difference f*(A,) — A, is effective
and f-exceptional too. Applying the projection formula once again, we see that

(1.5.5) 705 (-A,) = ¢.0x(-A,).

Since A is g-quasi-effective, this shows that A is g-quasi-effective and under the as-
sumptions made at the beginning of (1.5.3), the inclusion (1.4.4) is an equality.

(1.5.6) Finally, assume that X is smooth, A has simple normal crossings and A = f*A.
The morphism f can be dominated by a sequence of blow-ups along smooth subvarieties
by Hironaka's Theorem (R), and it is therefore enough to prove equality in (1.4.4) only
for such a blow-up. But for such a single blow-up it is quite easy to seethat A, < f*A,
and this implies the desired equality. O
(1.6) Definition. Let g : X — § be a proper morphism with connected fibers between

normal varieties and let A be a g-quasi-effective Q-divisor on X such that Kx + A is
Q-Cartier. Choose a log-resolution f: X — X of the pair (X, A). The ideal sheaf

(1.6.1) In = §.0z{(—(f*A),) C Os,  where j=gof

is independent of the choice of f by (1.4.3), and will be called the multiplier ideal
sheaf of (X, A). We say that (X, A) is regular over ¢ € S, if o is not contained in the
support of the multiplier ideal sheaf Z. Otherwise (X, A) is called singular over o.

(1.7) REMARK. The pair (X, A) is called log-terminal at a closed point z € X, if there
is a log-resolution f : X — X of (X, A} such that the adjoint transform f*A has no
prime component with coefficient larger or equal than 1, which meets the fiber f~*(z).
Therefore, the pair (X, A) is regular over o, if and only if A is g-quasi-effective and
(X, A) is log-terminal at all closed points « € g~ (o).

(1.8) Definition. Let X be a normal variety and let A be a Q-divisor on X. If P is
a prime divisor on X whose coefficient in A is equal to 1, then P is called a critical
component of the Q-divisor A.

(1.9) Reduction Lemma. Let g : X — S be a proper morphism from a smooth
variety X onto a normal variety S and let A be a Q-divisor on X with simple normal
crossings. Let P be a critical component of A and assume that

(1.9.1) M = —(Kx +A) isg-nef and g-bdig,
(1.9.2) A = A~ P  is g-quasi-effective.

Denote by X' 25 &' A g{(X') the Stein factorization of the restriction of g to the
subvariety X' = P. Then, the Q-divisor A’ = Al|x: is g’'-quasi-effective and

(1.9.3) 0.0x:(=AL) = 9.0x(-A,) - Og.

Moreover, if (X, [S) is regular over o € S, then h is an isomorphism over o.
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(1.10) PROOF. From the definition of M and A we see that

(1.10.1) Kx+M = A-P and Kx+"™M = A -A,-P.
Therefore, we have an exact sequence of coherent sheaves on §

(1.10.2) 9:0x (A= A,) — g.0x: (A - A,) — R'¢.Ox (Kx +"M")

and from by the Vanishing Theorem (V), the last higher direct image sheaf in this
sequence js zero. Hence, the right vertical map in the commutative diagram

9.0x (_A+) e g*OX(A—_ A+)

(1.10.3) o |
9:0x:(-4,) — 9.0x/ (AL A))

is surjective. Since A s g-quasi-effective, the upper horizontal map is an isomorphism
and therefore, the lower horizontal map is also an isomorphism and the left vertical
map is surjective too. This proves that A’ is g’-quasi-effective and since g.Ox: = Og,
we also have the Equality (1.9.3). In particular, if (X,A) is regular over ¢ € S,
then the map Og — g is surjective in a neighborhood of ¢ and h has to be an
isomorphism over o. O

(1.11) REMARK. Without the assumption on A having simple normal crossing in the
Reduction Lemma (1.9}, the conclusion is not anymore true. But there is still an
inclusion of multiplier ideal sheaves as we will see now. In general, let g: X — §
be a proper morphism with connected fibers between normal varieties and let A be a
Q-divisor on X such that —(Kx +A) is g-nef and g-big. Let P be a critical component
of A and assume that P is normal and Cartier and A := A — P is g-quasi-effective.
Let g’ : X! — 5’ be the connected map from the Stein factorization of the restriction
of g to the subvariety X’ = P and assume that the @-divisor A’ = AI x' is ¢’-quasi-
effective. Denote by Tz C Og the multiplier ideal sheaf of the pair (X ,Z&) and by
Za+ C Ogr the multiplier ideal sheaf of (X', A’). Then, we have the inclusion

(1.11.1) Iar C Iz-0g.

(1.11.2) PROOF. Let f : X — X be a log-resolution of the pair (X,A) and denote
by X’ C X the strict transform of X’. Then, the restriction f’ of the morphism f to
the subvariety X’ is a log-resolution of the pair (X’,A’) and the f'-adjoint transform
of A’ is related to the f-adjoint transform of A by the formula

(1.11.3) (f*a - X'z = f*47

To see this, note that both hand sides of (1.11.3) agree on all non- f’-exceptional prime
components, because P is a critical component of the Q-divisor A. It is therefore
enough to check their numerical equivalence. The definition of the f-adjoint transform

of A on the left hand side implies

(1.11.4) f*A - X' = f{(Kx+A) - (Kz +X)
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and applying the adjunction formula twice, we see that
(1.11.5) (Kx +4)|y = Kx'+4 and (Kz+X')|y = K.

Hence, the restriction of the first term on the left hand side in Equation (1.11.4) to
the subvariety X’ is numerically equivalent to f™*(Kx+ 4+ A’) and that of the second
term is numerically equivalent to K 3,. But their difference is by definition numer-
ically equivalent to the f'-adjoint transform of A’, which proves (1.11.3). Now, the
Reduction Lemma (1.9) implies that the multiplier ideal sheaf Za- is the restriction of
the multiplier ideal sheaf of the pair (X, f*A — X'). But since f*A — X' 2 f*A, this
last multiplier ideal sheaf is contained in 75 and this proves (1.11.1). O
(1.12) Definition. Let g : X — S be a proper morphism with connected fibers be-
tween normal varieties and let A be Q-divisor on X such that Kx + A is Q-Cartier.
We say that A is stably g-quasi-effective if there is a log-resolution f : X — X of the
pair (X, A) such that A f#A is §-quasi-effective for all positive rational numbers A € 1
near to 1, where § = g o f. Then, the ideal

(1.12.1) I = () 80x(—(Af*A),) C Os
A<l

is called the stable multiplier ideal sheaf of (X,A). We say that the pair (X,A) is
critical over o € X, if it is not regular over ¢ and ¢ is not contained in the support of
the stable multiplier ideal sheaf Z3.

(1.13) REMARK. Let X be a smooth variety and A a Q-divisor on X with simple
normal crossings. The difference of t AL and LAAL is an effective and reduced divisor
if A < 1 is a rational number which is near enough to 1. Its components are exactly the
prime divisors on X, whose coefficients in A are positive integers. In particular, every
critical component of A appears in the difference of the two round-downs. Moreover,
if f: X — X is a proper birational morphism from a smooth variety X, then the
difference f*(AA), — (A f*A), is effective and f-exceptional. This implies, that the
stable multiplier ideal sheaf is independent of the choice of a log-resolution.

(1.14) REMARK. The pair (X, A) is called log-canonical at a closed point z € X, if
there is a log-resolution f : X — X of (X, A) such that the adjoint transform f*A
has no prime component with coefficient larger than 1, which meets the fiber f —i(x).
Therefore, the pair (X, A) is critical over o, if and only if A is stably g-quasi-effective
and (X, A) is log-canonical at all closed points z € g~ 1(o), but not log-terminal at
some closed point z € g~1(o).

(1.15) EXERCISE (Connectedness Lemma). Let g : X — S be a proper morphism
with connected fibers between normal varieties and let A be a Q-divisor on X. Assume
that A satisfies the following two conditions

(1.15.1) —(Kx + A) is g-nef and g-big,
(1.15.2) —(A_) is g-quasi-effective.

Let Z C X be the closed subset consisting of all closed points € X such that the pair
(X,A) is not log-terminal at z. Prove that the intersection Z N g~ (o) is connected

for every closed point o € S.
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(1.16) ExXercISE (Multiple Reductions). Let R be a normal local Noetherian ring, de-
note by § = Spec R its spectrum and let ¢ : X — § be a proper morphism with
connected fibers from a smooth variety X. Let A be a stably g-quasi-effective Q-
divisor with simple normal crossings on X such that

(1.16.1) - (Kx + 4A) is g-ample,
(1.16.2) . (X,A) is critical over o,

where ¢ € S is the closed point of S. Denote by Pi,..., P, the critical components of
A. By our assumption, we know that there is at least one critical component. Show
that the intersection P; N...N P, is non-empty. In particular r € dim X.

2. Adjoint Systems

The general framework for the proof of effective as well as non-effective base point
free theorems is that of adjoint systems. We will see that, if an adjoint system has
a specialization which is singular enough, then the freeness of this adjoint system
can be reduced to a smaller dimensional adjoint system. In this way, one can prove
the freeness by induction on the dimension. The idea of this procedure goes back to
Shokurov’s proof of the non-vanishing theorem [13]. But the more general concept of
specializations introduced in this section, plays a crucial rule in the proof of Fujita’s

conjecture.

(2.1) Definition. Let X be a smooth, S a normal variety, g : X — S a proper
morphism with connected fibers, A be a stably g-quasi-effective Q-divisor on X and
L a line bundle on S. There is a Cartier divisor L and a Q-divisor M on X such that

(2.1.1) 'L ~ Ox(L) snd M = L—(Kx+A).

The triple X = (X 48, A, L) is called an adjoint system, if the Q-divisor M is semi-
ample. In this case, A is called the fized part and M the free part of X. The variety
X is the total space and S is the base of the adjoint system X.

(2.2) EXAMPLE. Let X be a normal variety, £ be an invertible sheaf on X and let A
be an effective Q-divisor on X such that Kx + A is Q-Cartier. Assume that for some
positive integer n, the invertible sheaf £"(—n{Kx + A)) is generated by its global
sections and let f : X — X be resolution of singularities of X. Then, the triple
(X — X, f*A, L) is an adjoint system.

(2.3) MODIFICATIONS. Let X = (X -2 §,A, £) be an adjoint system, X a smooth
variety and f : X — X a proper birational morphism. Then, the triple

(2.3.1) %= (X5 5AL), where § = gof and A = f*A,

i

is also an adjoint system. In fact, if M is the free part of X, the free part of % is just
J*M which is semi-ample.- The adjoint system X is called a modification of ¥. If the
fixed part A of the modification ¥ has simple normal crossings, then the modification
is a resolution of the adjoint system X.
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(2.4) SPECIALIZATIONS. Let X = (X N S, A, £) be an adjoint system. A specializa-
tion of ¥ is a proper birational morphism f: X — X from a smooth variety X onto
the total space X, together with an adjoint system

(2.4.1) = (XL A ) with A> f*A,

where § = go f. For short, we will say that Xisa specialization of X without
mentioning the morphism f explicitly. The effective Q-divisor F = A = f*A is called
the increment of the specialization. If M is the free part of X, then the free part
of Xis M := f*M — F. Reversely,if f: X — X isa proper birational morphism
from a smooth variety X and F is an effective Q-divisor on X such that f*M — F is

semi-ample, then the triple
(2.4.2) (XS, f*A+F L)

is a specialization of X and every specialization is of this form.

(2.4.3) Specializations of the adjoint system X are in natural relation to linear subsys-
tems ® C |mM|, where m is a positive integer such that mM is a Cartier divisor. To
see this, let f : X — X be a proper birational morphism from a smooth variety X
and denote by f*0 the linear system on X consisting of all divisors f*D with D € d.
The morphism f is called a resolution of the linear system 9, if there exists a Cartier

divisor f*vy, on X, such that

D > f*0;, for all effective divisors D € f*0 and the

2.4.4
( ) linear system f*Op. = {D — f*0q, | D € f*0} is free.

In this case, the divisor f*?, is unique and is called the fized part of f*9. The linear
system f*0y.. is called the free part of f*0. By a theorem of O. Zariski, every finitely
generated linear system has a resolution. Now, let f : X — X be a resolution of a
linear subsystem ? C [mM| and let F = L f*0,,. Then, the adjoint system defined by
(2.4.2) is a specialization of X with increment F and free part M = f*M — F. Note
that f*0q.. = ImM | and therefore, M is indeed semi-ample. Reversely, assume that
the adjoint system (2.4.1) is a specialization of X with increment F and semi-ample
free part M. Then, there is a positive integer m, such that |mM]| is base point free.
Therefore, the morphism f is a resolution of the linear system

(2.4.5) 0 :={De|mM||f'D>2mF}

and the fixed part of the linear system f*0 is mF. The specialization corresponding
to the linear system © is unique up to modifications.

(2.5) Definition. An adjoint system X is called big, if its free part is big. X is called
stable if its free part is ample and the support of its fixed part has simple normal cross-
ings. We say that X is complete, if its total space is complete. A stable specialization
of X is a specialization of X which is stable as an adjoint system.

(2.6) Lemma. An adjoint system X has a stable specialization if and only if it is big.
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(2.7) ProoF. If X has a specialization which is big, then ¥ is of course also big.
Hence, the condition that X is big is necessary for the adjoint system to have a stable
specialization. Now assume that X is big. By Chow’s lemma, X has a modification
with a quasi-projective total space X. Therefore, we may assume that there is an
ample divisor  on X. Since the free part M of X is big, the linear system |mM — H|
has a non-trivial member D, if m > 1. By Hironaka’s theorem, there is a projective
morphism f : X — X from a smooth variety X with an effective Q-divisor F, such
that f*H — E is ample and the union of the supports of f*D + E and f#A has simple
normal crossings. Let € > 0 be a rational number with em < 1and let F = ¢(f*D+E).
Then, the divisor f*M ~F=(1-em)f*M +e(f*H — E) is ample and hence, X has
a stable specialization with increment F. O

(2.8) REMARK. Note that in the Proof (2.7) we only use that the free part M of the
adjoint system X is nef and big. Nevertheless, because of the correspondence between
linear subsystems of [mM]| and specializations of X explained in (2.4.3), it is more
natural to assume that M is semi-ample instead of just being nef.

(2.9) REDUCTIONS. Let X = (X £+ S,A, L) be a stable adjoint system. A critical
component of X is a critical component of the pair (X,A). Let P be a such critical
component of X. Then we can define a new adjoint system

(2.9.1) = (XL AL

as follows. Let X’ be the support of P and let X' 1+ &' = g(X’) be the Stein
factorization of the restriction of g to X’. Since the coefficient of P in the Q-Cartier
divisor A — P is zero, we may restrict it to X’ and this restriction is a simple normal
crossing Q-divisor A’ on the smooth variety X’. Finally, we define £’ = h*L. Then,
the pull-back of £’ to X’ is the restriction of g*£ to X' and the Q-Cartier divisor
Kxr + A' is Q-equivalent to the restriction of Kx + A to X’, by the adjunction
formula. Hence, the free part of X’ is simply the restriction of the free part of X to
X' and is therefore ample. Moreover, the Reduction Lemma (1.9) implies that A’ is
stably g’-quasi-effective. In particular, X’ is a stable adjoint system, which is called
the elementary reduction of X with respect to P.

(2.10) Definition. Let X = (X -+ 5, A, £) be an adjoint system and & € S be a
closed point of the base S of X. We say that X is regular, resp. singular, resp. critical
over g, if the pair (X, A) is regular, resp. singular, resp. critical over o. The maultiplier
ideal sheaf of X is the multiplier ideal sheaf of the pair (X, A).

(2.11) SIMPLIFICATIONS. Let X be an adjoint system which is regular over o and let
X be a stable specialization of X which is critical over o. We assume that X has only
one critical component P which meets the fiber over 0. By wiggling the coefficients of
the fixed part of %, this can always be achieved. Let X’ be the elementary reduction
of X with respect to P. Then, the pair (X',0) is called an elementary simplification
of the pair (X, o).

(2.12) Definition. Let ¥ = (X -5 S, A, £) be a complete adjoint system which is
regular over ¢ and denote by Za the multiplier ideal sheaf of X. We say that X is free
at o, if the sheaf £ ® 75 has a global section, which is non-vanishing at the point o.
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(2.13) Theorem. Let X be a complete adjoint system which is regular over o and let
(X',0) be an elementary simplification of (X,0). If X' is free at o, then X is also free
at the point o.

(2.14) PROOF. There is a stable specialization X = (X —— S,A, L) of the adjoint
system X such that X' = (X' — §',A’,L') is an elementary reduction of X with
respect to some critical component P of the adjoint system X. For a small rational
number £ > 0, let D = A — ¢P. Then, the triple X, = (X — 5, D, £) is another
stable specialization of X. -Let £ be the pull-back of £ to X and denote by M. the
free part the adjoint system X.. Then,

(2.14.1) Lg(D.— D, -P) = Oz(Kz+"M").
and since M, is ample, the Vanishing Theorem (V) implies that
(2.14.2) HYX,Lz(D.—D,-P)) = 0.

Denote by Lx+ the restriction of L3 to X’ and note that, by the construction of the
reduction X’ we have A’ = D,|x: and A_ = D_|x/. Therefore, the restriction map

(2.14.3) I'(X,L3(D-- D)) — T'(X', Lx:/(AL~ AL))

is surjective. Let Z C Og be the multiplier ideal sheaf of the adjoint system X and
denote by J C Og the multiplier ideal sheaf of the specialization X.. Since the
multiplier ideal sheaf 7' C Qg of the reduction ¥’ is the pull-back of 7 by the
Reduction Lemma (1.9), the push-forward of the map (2.14.3) is

(2.14.4) TS, LRJT) — TS, L)

Since J C Z, this proves that every global section of the sheaf £’ ® I’ extends to
a global section of £ ® 7 and this extension is non-vanishing at & if and only if its
restriction to S’ is non-vanishing at o. O

(2.15) LOCAL ADJOINT SYSTEMS. An adjoint system (X 2, 8,A, L) is called local, if
§ = Spec R and R is a local Noetherian ring. In this case, R = I'(X, Ox), the mor-
phism g is the universal morphism onto an affine variety and the invertible sheaf £ is
trivial. Hence, a local adjoint system is completely determinate by the pair X = (X, A)
and we will also call the pair X a local adjoint system. In other words, a local adjoint
system is a pair (X, A), where X is a smooth variety such that R = I'(X,0Ox) is a
local Noetherian ring, X is proper over § = Spec R and A is a stably g-quasi effective
Q-divisor on X such that its free part M = —(Kx + A) is semi-ample. A local adjoint
system is called regular, if it is regular over the only closed point ¢ € S and we say
that another local adjoint system X’ is a simplification of X if the pair (¥',0) is a

simplification of (%, o).
(2.16) ExampLE (Localizations). Let X = (X £, 8,A, L) be an adjoint system and
let o € S be a closed point. Denote by X, the fiber product X xg SpecOg , and let

A, be the restriction of A to X,. The pair X, = (X,,4A,) is then a local adjoint
system, the localization of X at the point . The adjoint system X is regular over o if

and only if X, is regular.
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(2.17) EXERCISE (Point Separation). Let ¥ = (X & S, A, L) be a complete adjoint
system and £ C S be a finite subset of closed points, such that X is regular over every
point of £. For any subset £’ C I let Zyy be the intersection of the multiplier ideal
sheaf Za of the adjoint system X with the ideal sheaf of ¥’. Then, for any such subset
we have an exact sequence

(2.17.1) 0— Iy — Ig\gzr — O — 0.
We say that X separates the pair (¥, ¥’) if the natural restriction map
(217.2) P(S, L @ IE\E’) — P(S, L ® OE')

is surjective. Generalize the concept of a simplification for pairs (X,X) and proof a
version of Theorem (2.13), which applies to this situation. ‘

3. The Base Point Free Theorem

The base point free theorem was proved in [13] by using an idea of [12]. Instead of
this, we will follow and refine the ideas of the proof of the non-vanishing theorem from
[13] to get base point freeness directly. There are basically two cases to consider. If
line bundle £ is numerically trivial, we will see in Lemma (3.3) that it is indeed trivial
and hence, without base points. Otherwise, we will show in Proposition (3.6), that
the corresponding adjoint system has a simplification, which concludes the proof by
induction. In this non-effective version of base point freeness, we have to take special
care on curves C with the property deg L|c = 0, since any global section of £ will
be constant along C. Hence, if such a curve meets the support of the multiplier ideal
sheaf, all the points of C are base points of the adjoint system.

(3.1) Definition. Let ¥ = (X -5 §, A, L) be an adjoint system. X is called nef, resp.
numerically trivial, if the degree of the line bundle £|¢ is non-negative, resp. zero, for
all curves C C S. It is called #rivial if the line bundle £ is trivial.

(3.2) NUMERICALLY FREE ADJOINT SYSTEMS. Let X = (X -5 §,A, £) be a nef ad-
joint system and o € S be a closed point of the base of X. Then, we define a subset

of S as follows

there is a connected curve C C S
2.1 X,0) = ‘e S
(3.2.1) (%,0) {0 € ‘ with ¢,¢’ € C and degﬁ[c=0}
In particular, X is numerically trivial if and only if (¥,0) = §. Denote by T the
multiplier ideal sheaf of X. The adjoint system X is called numerically free at o, if
the support of Z5 and the set (X, o) are disjoint. If X is numerically trivial, then it is
numerically free at o if and only if its multiplier ideal sheaf Zx is trivial.

(3.3) Lemma. Let X be a complete, big and numerically trivial adjoint system. If X
is numerically free at some point o, then it is trivial.
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(3.4) PrROOF. Let X = (X 2, 8,A,L) and denote by M the free part of ¥. By
Hironaka’s Theorem (R), the adjoint system X has a resolution and hence, we may
assume that the fixed part A has simple normal crossings. Since X is numerically
trivial and numerically free at some closed point ¢ € S, the multiplier ideal sheaf of X
is trivial. Hence, the projection formula implies that

(3.4.1) 0.0x(Kx+"™M7) = g.(¢°L®Ox(A -AL)) = L.

By the Vanishing Theorem (V), the higher cohomology groups of the locally free sheaf
Ox(Kx +"M") are zero, because the Q-divisor M is nef and big and its fractional

part has simple normal crossings. Therefore,
(3.4.2) RO(S,L) = RY(X,O0x(Kx + ™M) = x(X,0x(Kx +"M")).

Let L be a Cartier divisor on X with g*£ ~ Ox(L). Since £ is numerically trivial, the
divisor L is also numerically trivial. Therefore, tensoring the Equation (3.4.1) with
the locally free sheaf £* = g.Ox(—L) and applying the Vanishing Theorem (V) once
more, we also get

(3.4.3) h%(8,05) = x(X,0x(Kx +"M"— L)).

Of course, h°(S,Og) = 1. On the other hand, the Euler characteristic of a coherent
sheaf is a deformation invariant (cf. e.g. [4, proof of Theo. III 9.9]) and since L is nu-
merically trivial, i.e. deformation equivalent to 0, the two Euler characteristics (3.4.2)
and (3.4.3) coincide. (The numerical invariance of the Euler characteristic is also a
consequence of the Riemann-Roch theorem.) In particular we find h%(5, £) = 1 and
since £ is numerically trivial, this is only possible if £ =~ Os. O

(3.5) EVENTUALLY FREE ADJOINT SYSTEMS. Let X = (X =, 8, A, £) be a nef adjoint
system. A nef line bundle M on § is called numerically L-adjacent, if deg Nl¢ = 0 for
every connected curve C C § with deg £L|c = 0. Assume that the free part M of the
adjoint system X is ample. Then, for every numerically £-adjacent line bundle N,

(3.5.1) EWN) = (X5 8,0, L8N)

is an adjoint system with the property (X(A),¢) = (X, ) for all closed points o € S.
Actually, the free part of X(N) is the Q-Cartier divisor

(3.5.2) M) := M+ N, where Ox(N) =~ g'N.

Since M is ample and N is nef by assumption, the Q-Cartier divisor M (N) is also
ample. Let o € S be a closed point. We say that X is eventually free at o, if there
is a positive integer £ such that the adjoint system X(Lf @ N) is free at o for every
numerically £-adjacent line bundle A. Our aim is to prove that numerically free and
eventually free are equivalent.

(3.6) Proposition. Let X be a complete, stable and nef adjoint systemn. Assume that
X is not numerically trivial and numerically free at some point o. Then, there is
a positive integer n and a closed point o' € (X,0), such that (X(£"™), ¢') has an
elementary simplification which is numerically free at o’.



14 THE BASE POINT FREE THEOREM AND THE FUJITA CONJECTURE

(3.7) ProOF. Denote by M(L™) the free part of ¥(£") and let d be the dimension of
the total space of X. The construction of a critical specialization is based on:
(3.7.1) Claim. For every t > 0 there is a positive integer n, such that M(L™)% > 9.

(3.7.2) PROOF. Let C C S be a curve with deg L|c > 0 and choose a curve € C X
which maps onto C. Since M is ample, for large integers m, the linear system
mM]| contains elements Hy,..., Hy_1 such that the intersection Hy N ---N H4_; is a
curve which contains C as a component. Let L be a Cartier divisor on X such that
Ox (L) = g*£. Then, L is nef and from Kleiman’s criterion [9] we get

(3.7.3) (M +nL)? > n-LM*? > n.LC/md L.

Our choice of € implies L.C > 0 and this proves the claim. O

Now, choose a closed point z € X with g(z) = o and ¢ := d — s, where s is the
multiplicity of the fixed part A at the point z. By Claim (3.7.1) there is a positive
integer n, such that M(L£™)¢ > t4. Since M(L") is ample, the Riemann-Roch theorem

implies

(3.7.4) BO(X, Ox (m- M(£™)) > (md;!t)d for m > 0.

Hence, for large integers m there exists elements D € [m M (E“)I with multiplicity
larger than m - ¢ at z. Note that (X, A) is regular over all closed points ¢’ € (X,0)
and that (X, A + ¢D) is singular over o, if the multiplicity of A + gD at z is larger
than the dimension d of the total space X. Hence,

(X, A + gD) is regular over
all closed points ¢ € (X, 0)

(3.7.5) ¢ = sup { geQ

is a positive rational number with me < 1 by our choice of D. In particular, F = ¢D is
an effective Q-divisor on X, such that M (L") — F = (1—mc) M (L") is ample and the
pair (X, A + F) is critical over some point ¢’ € (X,0). Therefore, F is the increment
of a big specialization X, of the adjoint system X(£"). By Lemma (2.6) there is a
stable specialization X of the adjoint system X,. Moreover, the increment of this last
specialization can be chosen arbitrary small and hence, by decreasing c slightly and
wiggling the coefficients of the fixed part of X, we can achieve that X is regular or
critical over all closed points of the set (X, o) and there is unique critical component P
of X which meets g~ (X, o). Let X’ be the elementary reduction of ¥ with respect to
the critical component P and choose a closed point ¢’ € (¥,0) N g(P). Then, (¥',0')
is an elementary simplification of (X(L"), o) which is numerically free at o. 0O

(3.8) Theorem. Let X be a complete, stable and nef adjoint system and o a closed
point of its base. If X is numerically free at o, then it is eventually free at o.

(3.9) Proor. Let X = (X 2,8, A, L). If X is numerically trivial, then its multiplier
ideal sheaf is trivial and if AV is a numerically £-adjacent line bundle on S, then, £ and
N are trivial by Lemma (3.3). Therefore, X(N) is obviously free at 0. Hence, we may
assume that X is not numerically trivial. Then, by Proposition (3.6) there is a positive
integer n and a closed point ¢’ € (X,0), such that (¥(£™),0’) has an elementary
simplification (X', 0’} which is numerically free at ¢’. Denote by S’ the base of X,
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let h: S’ — S be the natural morphism and define £ = h*£™. By induction on the
dimension of the total space of the adjoint system, we may assume that X’ is eventually
free at o'. In other words, there is a positive integer ¢ such that for every numerically
£’-adjacent line bundle A” on §’, the adjoint system X'(L’ Y@ N') is free at o’. Let
{ = ¢ -(n+1) — 1 and A a numerically £-adjacent line bundle on §. Then, the line
bundle N’ = h*A is numerically £'-adjacent and ( X'(£'¥®N"), ¢’ ) is a simplification
of (X(L®N), o' ). Hence, X(Lf @ N) is also free at o by Theorem (2.13), i.e. there
is a global section of the sheaf £+ ® N/ ® T which is non-vanishing at ¢’. But there
is a connected curve C containing ¢ and ¢’ such that the degree of the line bundle
L6 @ N restricted to C is zero. Therefore, the section is constant on C and in

particular non-vanishing at o. O

(3.10) Corollary (Base Point Free Theorem). Let X be a normal variety, A an effec-
tive Q-divisor on X such that (X, A) is log-terminal and L a nef Cartier divisor on X,
such that mL — (Kx + A) is nef and big for some m > 0. Then, there is a positive
integer no such that the linear system |nL| is base point free for alln 2 ng.

(3.11) PrROOF. Let £ = Ox(mL). By Lemma (2.6) and Remark (2.8) there is a log-
resolution f : X — X of the pair (X, A) and an effective Q-divisor F on the smooth

projective variety X, such that the triple

(3.11.1) x:= (XL x A+F L)

is a stable adjoint system. Moreover, since we may replace F' by e F' for any positive
rational number ¢ € 1, we can achieve that X is regular over every closed point z € X.
Hence, there is an integer £, such that X(LE ® N) is free for every numerically £-
adjacent line bundle A. Let ng = £-m. Since the line bundle Ox (nL) is numerically
L-adjacent for all n 2 0, it follows that [nL| is base point free for all n = ne. O

(3.12) EXERCISE. Let X = (X <, 5,A, L) be a complete, stable and nef adjoint sys-
tem and ¥ C S be a finite subset of its base. We say that ¥ is numerically separated
by X, if the adjoint system is numerically free at all points o € 3 and

(3.12.1) (X,0)N{X,0") = B forall 0,0’ €L with o # o'
Show that there is a positive integer ¢, such that X(Lf ® N) separates T for every
numerically £-adjacent line bundle A, if the set ¥ is numerically separated by X.

4. Some Effective Methods

In this section, we will reformulate results of [1} in terms of filtrations of a local ring.
This makes the proof of those results particularly coherent. We have to calculate two
invariants of a filtration, which comes from a degeneration of the filtration of a regular
local ring by the powers of its maximal ideal, the multiplicity and the log-canonical
threshold. The first calculation is elementary commutative algebra and the second
is based on the Reduction Lemma (1.9). The original argument used the Ohsawa-
Takegoshi Extension Theorem [11] instead. Once the filtration is constructed, the
existence of simplifications is easy to prove, and almost the same as in the proof of the
base point free theorem. But it is still difficult to prove the Fujita conjecture, since
one has to apply the same argument to the simplification again, which is only possible
under much stronger assumptions on the linear system. At the end of this section, we
will discuss some prospects how to overcome those difficulties.
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(4.1) Definition. Let R be a ring. A family q = (g;)¢ of ideals q; of the ring R for all
positive real numbers ¢ with trivial intersection is called a filtration of R, if

(4.1.1) . qs C q¢ forall s 2t >0,

(4.1.2) gs -Gt C qs4t forall s,2> 0.

If R be a local ring with maximal ideal m, the filtration q is called primary, if all the
ideals q; are m-primary ideals of R, for all t > 0.

(4.2) THE MULTIPLICITY OF A FILTRATION. Let R be a local Noetherian ring with
maximal ideal m and let q = (g;); be a primary filtration of the ring R. We define the
Hilbert function of the filtration q by

(4.2.1) ©0q(t) = lengthp R/q;.
Denote by d = dim R the dimension of the local ring R. The limit
(4.2.2) multq = d!-limsup p,(t)/t?

t—o0

is called the multiplicity of the filtration q. Note that the multiplicity of a filtration
is always finite. To see this, let £ be a positive integer such that m* C q; and let e
be the multiplicity of the local ring R. Then, it follows from (4.1.1) and (4.1.2) that
m™ C q,, for all positive integers n and hence, multq < e - £9.

(4.3) Definition. Let X = (X, A) be a regular local adjoint system and denote by R
the local Noetherian ring of regular functions on X. Let q be a filtration of the local
ring R and g : X — Spec R the natural morphism. Then, the supremum

¢,t € Q and a € q; such that the
pair (X,A +c- g*(a)) is regular
is called the log-canonical threshold of the filtration g.

(4.4) EXAMPLE. Let R be the localization of the polynomial ring k[z1,...z4] at the
maximal ideal (z1,...z4). Then, the pair ¥ = (X, A), where X = SpecR and A = 0

(4.3.1) e(X,q) = sup{c-t

is a local adjoint system. Let wp,...,wq be positive real numbers. On R\ {0}, we
define a function
(4.4.1) v (3 @i, .. T - -xz“ = min{ w1 i1 +... + wyig | Gi,..iy 70 }

The function v is actually the restriction of a valuation of the field of rational functions
on X. Therefore, for any non-negative real number ¢, the subset

(4.4.2) q. = {a€ R\ {0} |v(a) >t} U{0}
is an ideal of R and the family (q;); is a filtration of the local ring R. This filtration

turns out to have the following log-canonical threshold and multiplicity
1

(4.4.3) co(%,9) = w1 +---+wq and multq = .
w] . wd

The calculation of the log-canonical threshold can be found in [10] for the case, where
all the weights w; are rational numbers. The general case follows from this by an
approximation argument. The calculation of the multiplicity is easy. Note that, if we
normalize the multiplicity to 1 (i.e. w; - -wg = 1), then the filtration corresponding
to the case with all weights equal to 1 has the minimal log-canonical threshold d.
Actually, there is no filtration of R with multiplicity 1 and a smaller log-canonical
threshold than d, but this is not so easy to see.
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(4.5) Lemma (Angehrn and Siu [1]). Let X = (X, A) be ¢ regular and big local adjeint
system. Then there is a filtration q of the ring of regular functions R on X, such that

(4.5.1) ¢(%X,q) € dimR and multqg = 1.

(4.6) PrROOF. Let § = Spec R and denote by o the unique closed point of §. We
choose a curve C C S through the closed point ¢ of 5, such that the general point §
of C is a smooth point of § and a regular value of the natural morphism g : X — 5,
and the smooth fiber g~1(¢) is not contained in the support of A. Let h: C — C be
the normalization of C and denote by R¢ the ring of regular functions of S¢ := S x C.
Define ho : C — S¢, ¢ — (A((),¢) and for any real number ¢ let

(4.6.1) qot == { a € Re | ordhc(g) az t},

where £ is the general point of C. The ideal q¢, of R is the kth symbolic power of
the vanishing ideal of the curve he(C) € So, where k = Mt7. Choose a closed point
~ € € with h(y) = o. Then, ¢ : § «— S¢, { — ({,7) is a closed embedding and for
every real number ¢ the restriction g := ¢*(qc,:) is an ideal of R. Moreover, the family
q = (q:); is a primary filtration of the local ring R.

(4.6.2) THE MULTIPLICITY OF q. First note that the order of rational functions @ on
Sc at the general point of the curve hg(C) is actually a valuation of the function field
of the variety Sc. Therefore, the graded algebra

oo

(4.6.3) Grgc = @ (ac,k/0C,k+1)
k=0

is an integral domain. In particular, the quotients qc /qc k+1 are torsion free Oa-
modules and since € is a smooth curve, those modules are locally free. Moreover, since
the general point of C is a smooth point of S, their rank is

d+k-1
(4.6.4) ranko,, (ack/Ack+1) = ( d—-1 )’

where d = dim R. The vector space Gx/qk+1 is just the stalk of the vector bundle
qg k/9Ck+1 b the point v € C. Hence, the length of R/q; as an R-module is

m+7 d
(46.5) W) = (TN ~ 4

and the multiplicity of the filtration q is equal to 1.

(4.6.6) THE LOG-CANONICAL THRESHOLD OF g. Let ¢ be a positive rational number
and let a be a regular function on S with a € q;. We want to show

(4.6.7) Claim. The pair (X A +c-g*(a)) is not reguler ifc-t > dim R.
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(4.6.8) To see this, let X¢g := X x5 S¢ = X x C and denote by gc and g the two
projections from X¢ onto S¢ and X respectively. Choose an element @ € dc,: with
¢*a = a and denote by P the prime Cartier divisor X x {7} of Xc. Then,

(4.6.9) Ac:= ¢"A + P + c-gi(a),

is stably gec-quasi-effective by (1.4.1) and (1.4.2). Let Z C X be the closure of the
preimage 951 (hc(€)). Note that the codimension of the subvariety Z in X¢ is equal
to d = dim R and that the order of Ac—P along Z is at least d. Therefore, the pair
(Xc, Ac—P) is singular over every closed point of the image of he. In other words,
the support of the multiplier ideal sheaf of Ag—P contains the curve ¢ C Sc. To
compare this multiplier ideal sheaf with that of the restriction

(4.6.10) (Ac=P)ly = A+ c-g*(a),

we use (1.11.1). The Q-divisor Kx,+ A¢ is numerically equivalent to ¢* (Kx+ A).
Since ¢ is an affine morphism and the pair (X, A) is a big local adjoint system, this
implies that the Q-divisor —(X Xo+ Ac) is nef and big. Hence, the multiplier ideal
sheaf of the pair (X,A +c- g*(a)) is contained in the restriction of the multiplier ideal
sheaf of (X¢, Ac — P) to the local ring t"(Rg) ~ R. The support of this last ideal
sheaf contains the point (g,v) as we have seen above and this proves the claim and
the inequality ¢(X,q) < d. |

(4.7) Definition. Let ¥ = (X -4 §, A, L) be a complete adjoint system with free
part M and d = dimS. We say that X is large, resp. very large, if there is an ample
Cartier divisor H on S such that

(4.7.1) M-—d-g*"H, resp. M- 3d(d+1)-g"H isample.

(4.8) Theorem. Let X be a complete adjoint system. If X is large, and o is a closed
point of the base of X, then (X, 0) has an elementary simplification. If % is very large,
then (X, 0) has an elementary simplification which is also very large.

(4.9) ProOF. Let X, = (X,,A,) be the localization of the complete adjoint system
X=(X g, S,A, L) at o and choose a filtration q of the local ring Og, with mul-
tiplicity 1 and log-canonical threshold less or equal that d = dim .S, which exists by
Lemma (4.5). Let M be the free part of X and H an ample Cartier divisor on S,
such that M —d- g*H is ample. Then, A- M ~d- g*H is still ample, if A < 1 is a
positive rational number near to one. Since the degree of H on S is at least 1, the
Riemann-Roch theorem implies that

(m-A)?
d!

Hence, there exists an element D € {mH|, such that the local equation of D at ¢ lies in
the ideal 9., Then, since the log-canonical threshold of q is at most d, the supremum

(4.9.1) K (X, Os(mH)) > for m > 0.

(4.9.2) c := sup{ge Q|(X,A+gq-g"D) is regular over o}

is a rational number with mAc € d. Define F = ¢ - g*D. Since M — E =M —mcH
is ample, the effective Q-divisor F is the increment of a specialization X of X which is
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critical over the closed point o. By using Lemma (2.6) and arguing as in (3.7), we may
assume that X is stable, critical over ¢ and X has exactly one critical component P
over . Then, the elementary reduction of X with respect to P is an elementary
simplification of the pair (X, o).

(4.9.3) Now, assume that A- M — 3d(d + 1)+ g* H is ample and let H' be the pull-back
of H to the base S of the simplification of X constructed in the previous step. Since
the natural morphism S’ — S is finite, H' is ample. Moreover, the free part M’ of
this simplification is the restriction of the free part M = M — F of the specialization
X and M — 1d(d— 1) g"H is still ample. But d’ = dim §’ < d — 1 and therefore, the
Q-divisor M’ — 1d’(d’ + 1) - g™ H' is also ample. O

(4.10) Corollary. Let X be a complete and very large edjoint system. If X is regular
over a closed point o of the base of X, then X is free at 0.

(4.11) PrRoOOF. By Theorem (4.8), the pair (¥, 0) has a very large simplification (X', o)
and by induction on the dimension of the total space of the adjoint system, we may
assume that X’ is free at the closed point ¢. But then, Theorem (2.13) implies that X

is also free at o. 0

(4.12) Corollary (Angehrn and Siu [1]). Let X be a smooth projective variety with
canonical divisor Kx of dimension d and H an ample Cartier divisor on X. Then,

the linear system |Kx + mH| is base point free, if m > %d(d+ 1}).

(4.13) PROOF. The triple (X -5 X, 0, Kx + mH) is a very large adjoint system which
is regular over every closed point of X. Hence, the linear system |Kx + mH| has no
base points by the previous corollary. O

(4.14) REMARK. There are basically two reasons, why the simple arguments of (4.9)
are not sufficient for a proof of the Fujita conjecture. First of all, the estimate of
Lemma (4.5) can be considerably improved, if one knows more about the fixed part A.
Actually, from the construction of the simplification in (4.9}, we see that the fixed part
A is already quite singular over o, at least after the first induction step. It was shown
in {5], that this idea leads already to an essential improvement of Corollary (4.12). The
other important observation is, that if the simplification at the first step has to have
a positive dimensional base, then there must be an even more singular specialization.
We will conclude these notes with an explanation of this phenomenon.

(4.15) CONVEXITY. Let § be a normal projective variety and ¢ € S a closed point
of §. For simplicity we assume that ¢ is a smooth point. Choose a local coordinate
system (zj,...,zq) at the point ¢ and some monomial order for those coordinates

(cf. e.g. [2, Section 15.2]). For any formal power series in the x;, we define
(4.15.1) w3 ai,..i T - -:cff = min{ (i1,...,%a) | @iy..ig #0},
where the minimum is taken with respect to the chosen monomial order. Again, u
is the restriction of a valuation. If D is a Cartier divisor on S and p is the Tailor

Expansion of a local equation for D at o, then we define u(D) = p(p). Moreover, let

(4.15.2) (D) := (iy---ig)/%, where u(D) = (i1,...,1d).
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(4.15.3) Claim. Let H be an ample divisor on S and A a positive real number with
Xé < HY. Then, for large m there are divisors D € |mH| with g(D) > m - A/d.

(4.15.4) PROOF. For any positive integer m we are defining subsets ®(m) C R¢ by
(4.15.5) ®(m) = {u(D)/m|D e |mH|}

and denote by @ the closure of their union. Note that representatives of the set ®(m)
form a basis of the vector space of global sections of Og(mH) and therefore,

(4.15.6) h2(S,0s(mH)) = #&(m) ~ Vol&-m?,

Comparing this with the Riemann-Roch theorem, we see that d!- Vol ® = H4. On the
other hand, since u is a valuation, the set ® is actually a convex subset of R%. If the
conclusion of the claim would be wrong, the set @ would be disjoint from the set

(4.15.7) U o= {(wy,...,wa) | w1 wa>(A/d)*}

and since this set is also convex, there is a tangent plane to the boundary of ¥, which
separates ¥ from @ (cf. Fig. 1). Now, the subset of Rgo consisting of all points below
a tangent plane to the boundary ¥ is a simplex with volume A%/d!, independently of
the tangent plane. Since ® is contained in this simplex, we find d! - Vol® < )9, in
contradiction to the assumption on the degree of H. O

w2

w1

Fig. 1. The two convex subsets of the Proof (4.15.4).

If we choose a monomial order which starts with the vanishing order 4; + --+ + ig4
then, the divisor D with (D)} > m - A/d has vanishing order greater than m - ), since
the geometric mean of positive real numbers is bounded by their arithmetic mean.
Therefore, the divisor D has at least the same properties as the divisor from (4.9).
But the invariant fi(D) controls also the order of D in a small neighborhood of ¢. This
idea was first used by T. Fujita [3] to get some effective results in 3 dimensions and
further developed in [5] and [6]. It is in general not easy to make use of Claim (4.15.3)
but at least its idea is the key observation to the proof of Fujita’s conjecture.
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(4.16) EXERCISE. The estimate of Lemma (4.5) is in general far from being optimal,
even if A = 0. Show by example, that for every ¢ > 0 there exists a regular and big
local adjoint system X = (X, 0) and a filtration g of the local ring of regular functions R

on X such that

(4.16.1) c¥%,q9) < ¢ and multqg = 1.

Note, that by the remark at the end of Example (4.4), this is impossible if X is smooth.
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base, 8 negative part, 3
. local, 11 positive part, 3
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Eventually free, 13
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total space, 8
Adjoint transform, 3

Big, 2, 9 Filtration, 16

primary, 16
Complete, 9 Fixed part
Critical, 7, 10 of a linear system, 9

Critical component, 5, 10 of an adjoint system, 8
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Free, 10

Free part
of a linear system, 9
of an adjoint system, 8

Hilbert function, 16
Increment, 9

Large, 18

Log-canonical, 7
Log-canonical threshold, 16
Log-resolution, 3
Log-terminal, 5

Modification, 8

Multiplicity, 16

Multiplier ideal sheaf, 5, 10
stable, 7

Nef, 2, 12
Numerically adjacent, 13

Numerically free, 12
Numerically trivial, 12

Quasi-effective, 4
stably, 7

Reduction. See Elementary reduction
Regular, 5, 10
Resolution. See also Log-resolution
of a linear system, 9
of an adjoint system, 8

Simplification. See Elementary simpli-
fication
Singular, 5, 10
Specialization, 9
stable, 9

Trivial adjoint system, 12

Very large, 18
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