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Semipositivity, vanishing and applications

Yujiro Kawamata

May 1, 2000

1 Semipositivity theorem

The seimipositivity theorem proved in [6] was used for the study of alge-
hraic fiber spaces whose fibers have nonnegative Kodaira dimension. Now
its logarithmic generalization will be applied for those with negative Kodaira
dimension as well.

We start with recalling the semipositivity theorem (6] Theorem 5) with
slightly different expression:

Theorem 1.1. Lei X and S be smooth projective varieties andlet f : X — S
be o surjective morphism. Lei n = dim X — dim Y. Assume that there exisis
o nornal erossing divisor I' on S such that f is smooth over Sy = S\ T.
Then the following hold:

(1) F = }.Ox(Kyss) s o locally free sheaf, where Ky;6 = Ky — [*Ks.

{2) Let # : P = P(F) = 5 be the associated projective space bundle,
and let Py = n7'(Sp). Then the tautological invertible sheaf Op(l) on P
has a singular hermifioan metric h which is smooth over Py and such that
the curvelure current © 1s sernipositive and that the corresponding maultiplier
ideal sheef coincides with Op.

(3) Let Xy = f7YS,) and fo = [flx,. If the local monodromies of
R fo.Qy, around the branches of I' are unipotent, then the Lelong number of
B wanishes af eny point of P. In perticulor, F 15 numericelly semipositive.
If ©@ s stricily positwe at ¢ point on Fy, then Op(1) s also big.

Prosf. The hermitian metric b o Fs, is defined by the integration along
the fiber: for s € S and u,v € Fy,

Falu, v} = const. / u AU
=)

By [3}. the curvature form of h is Griffiths semipositive. Hence the simoath
metric b on Oplilp, induced from A has semipositive curvature form as
well. Moreover. it is extended to a singular hermitian metric k over P. The
muitiplier ideal sheaf is trivial because the sections of F are L2. In the case
(3). the growtl of the metric is logarithmic. So the Lelong number vanishes,
anel the last starements follow from the regularization of positive currents

(2. a

Let X be a sinooth projective variety, amd B & normal crossing divisor.
Let Hy e a local svstem on Xy = X\ B. A varation of Hodge structures
on Xy is defined by a decreasing ltration {F§} of Hg = Hz ® Oy, by locally
free subsheaves which satisfy certain axioms {[3]). Assume in addition that
the local monodromies of Hz around the branches of B are unipotent. Then
the cononical extension H oof Hy 1s defined as a locally free sheaf on X as
follows. Lot {z).--- . z,} be a local coordinates at a given point « € X such
that B is defined by an equation z; -+ -z, near 2, and T; the monodromies of
Hy aronnd the brances of B defined by 2, = 0. Then for multi-valued fat
sections v of M. the expression

1 '
5= exp(—m ; leg T, log z; v

is single-valued and give a holomorphic section of Hy. The canonical ex-
tension H is defined as a locally free sheaf on X which has a basis near z
consisting of the s for v varving a basis of Hz. The filtration {F¥'} extends
to a filtration {F7} of H by locally free subsheaves such that H/FP are also
locally free (or all p {[32]).

Let f : Y — X be asurjective morphism from another smooth projective
variety whose geowetric fibers are not necessarily connected. Assume that
[ is smooth over Xg. Let d = dimY — dim X, ¥y = f~"{Xo) and fo = [l
Then Hy = R*V4{y. Z;, gives a variation of Hodge structures on X, for any
g > 0, and F4(H) coincides with R7fowysx ([6] and [19]).

The following lemma is obvious:

Lemma 1.2. Let X be a smooth projective variety, and B a normal crossing
divisor. Let Hy be e variation of Hodge structures on Xy = X\ B whose local
monodrowes around the branches of B are unipotent, and H the canonical
extension of Ho = He@Ox, on X, Let 71 X' = X be « generieally finite and
surjective morphism from o smoth projective vaviely such that B' = (n* B}



is u nurmel crossing dwisor. Let Hy = 7" He be the induced varsation of
Hodge structures on Xy = X'\ B, and H' the cenonicel extension of Hy =
H; @Oy, on X' Then H' = x*H.-

The semipositivity theorem is generalized to the logarithmic case by the
coveriug method:

Theorem 1.3. Let X and § be smooth projective varieties, let f: X8
be u surjective morplism, and let B be an effective Q-disor on X whose
suppoit s o normol crossing divisor and whose coefficients are strictly less
then 1. Assuwwe that there ezists a normal crossing divisor T on S such that
T is smooth and Supp(B) is relative normal crossing over Sy = S \I'. Let D
be « Curtier divisor on X. Assume that D ~g Kx;s+B. Then the Jollowing
hold:

(1) F = {.0x(D) is o locally free sheaf.

{2} Let # : P = P(F) — § be the associated projective space bundle,
and let By = w71(5;). Then the {autological invertible sheaf Op(1) on P
has o singular hermitian metric b which is smooth over Py and such that
the curvature cwrrent © is semipositive and thet the corresponding multiplier
ideal sheaf coincides with Op.

{3) There vaists o finite surjective morphismo 1 S — § Jrom u smooth
projective vaviety S such that IV = ¢ YT 45 ¢ normal crussing divisor and
satisfies the following conditions: Let X' — X x 5" be « hirational morphism
from u suwoth projective variety which is isomorphic over Sy and such that
the union of the pull-back of the support of B, the pull-back of the support of
T and the erceptional locus is o normal crossing divisor. Let FiX o8
end 7 0 X' — X be the induced morphisms. An effective Q-divisor B' on
X' is defined such that its coefficients are strictly less than 1 and that R =
TN x5+ B) = (Kyye + B') is a divisor. Let D' = 7D - R, Then R is
effective, und the ussumptions of the theorem are setisfled by f: X' — &' B
and D', The locally free sheaf 7' = FoOx: (D) on &' sutisfies that o* F o F.
The stugulur hermitian metric b induces a singular hermitian metric k' on
the tautvlogicul snvertible sheof Op (1) on P’ = P{F'), and the Lelong number
of the curveture current © vanishes ot any pomnt of P'. In particular, F' is
numericelly serdpositive. If €' is strietly positive at o point on P, then
Op: (1) is absu big.

Proof. Let m be the minimal positive number such that mD ~ m(Kx;s+B).
We take 4 rational function £ on X such that div(h) = —-mD+m(Ky s+ B).

3

Let = : ¥ — X be the normalization of X in the field CLXIRY™), and
let. yr ¥ = 1" be a desingularization such that the composite morphism
¢ 3" = 5 is smouth over S;. We have

=1

7Oy = P Ox (—kD + kB x5 + LkBL).
k=0

The Galois group G = Z/mZ acts on ¥ such that the above direct summands
of @.Ch: are vigenspaces with eigenvalues exp(2x/=1k/m).

Siuce 7 is ctale outside the support of B, ¥ has onlv rationai singular-
itles, lence p, Oy (Ky) = Oy({Ky). We apply Theorem 1.1 to the sheaf
GOy ldvyg) = fum Oy (Kyys). By duality, we have

m—1
7Oy () 2 @D Ox(Kx + kD — kK g5 — LkBL}.
k={
By caking & = 1 {we may assume that m > 2). we obtain our assertions (1)
and (2) since £.Ox(D - LB} = f.Ox(D).
For (3). we use the unipotent reduction theorem for the local mon-
odromies of y ([6)). ]

If the base space is 1-dimensional, we have a sinipler expression:

Corollary 1.4. Let X fe o complete normal variety, wnd B an effective
Q-divisur o X such that the pair (X,B) ds KIT. Let f : X = C be ¢
surjectoe morplisme o o smooth curve. Let D be o Cartier divisor on X
such that I~y Kyye + B, Then LOx(D) is a numerically semipositive
locally free sheaf on C.

Proof. Let p : X’ = X be a log resolution for the pair (X, B), and set
By + B) = Ky + B'. The coefficients of B' are less than 1 and negative
voefficients appear only for exceptional divisors of u. We set B' = -5} + B
where 5; is an effective integral divisor and Bp is a Q-divisor whose coeffi-
clents belong to the intervat (0, 1). Since the support of B} is exceptional far
e we have 1,0y (B} = Oy, By applying the theorem o the pair {X', Bf),
we deduce that the sheaf f,Oy(D) = T O D + By) s numerically
senipuositive. 0
Corollary 1.5. Let X, B and f : X — C be as in Corollary 1.4. Let D be
e Cartier divisor on X such thet H = D — (Kxjc+ B) is nef and big. Then
f+Ox (D) is « numerically semipositive locally free sheaf on C.
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Proof. There exists an effective Q-divisor B’ such that (X, B + B’) is KLT
and D ~p Ky + B+ B O

In the case of rank one sheaf, we have a more precise result which is not
used later:

Corollary 1.6, fn Theorem 1.5, assume that F = Og(F) is an invertible
sheaf. Lel E be on effective divisor such that E ~ D~ f*F. Let A be the
srwaltest Q-divisor supporied on U such that (X. B —E+ f*({I'— A)) i3 sublC
aver the generic points of I Then F' — A is nef.

Proof. Let 12 X' = X be the log resolution of the pair (X, B + E + f*T').

We have j* f*F ~ p' (D~ E) ~¢ p*(Kx/5s + B — E} ~g Kx+;s + B’ for some
Q-divisor B'. Then our assertion is proved in [15] Theorem 2. 0

2 Adjunction

Theorem 2.1. Let X be o normal projective variety. Let D® and D be effec-
trve Q-daisors on X such that D < D, (X, D% s log terminal, and (X, D)
is oy canomical. Let TV be a minimal center of log cononical singularities for
(X.D). Lei H be un ample Cartier divisor on X, and € a positive rational
number. Then there exists an effective Q-divisor Dy on W such that

(I\’,\( =+ D -+ EH)'VE.' ~gQ J\"W + DM'

and Hat the par (7. D) s log terminel In porticular. 7 hos ondy retional
singalariies.

We recall the terminology. A pair (X, D) of a normal variety and an
eflective Q-divisor is said to be log terminal (KLT) (resp. log canonical
(L)) if the following conditions are satisfied:

(1) Ky + D is a (3-Cartier divisor.

(2) There exists a projective birational morphism g @ ¥ — X from a
smooth variety ¥ with a normal crossing divisor ZJ E; such that a formula

Ky + Z BjEj ~gy ,‘J*(I\:X + D)
3

holds with ¢, < 1 {resp. < 1) for all j, where ~q denotes the (linear
equivalence.

ey = L then the subvariety ¢¢(£;) of X 1s called a center of loy cunonical
stngulnrities, wnl the discrete valuation of C(Y) corresponding to the prime
divisor E, is called & place of log canonical singularities.

If D" and D are effective Q-divisors on « normal variety X such that
D" < D.{X. D"} is KLT, and that (X. D) is LC, then there exists a mini-
mal element among the centers of log canonical singularities for (X, D} with
respect to the inclusions {cf. [13]). Though the argument in (13] on the man-
sl center of log cononical singulerities treats only the case where D = ().
it can he easily extended to our case. In particular. a minimal center of log
canonical singularities is alwavs normal.

Proof. There exists an effective (rdivisor I’ which passes through W and
satisfies the following conditions: (X, (1 — ¢)D + D'} is LC for a rational
number o such that 0 < o < 1, W is a minimal center of log canonical
singularities for (X, (1 — o)D + D), and there exists only one place of log
canonical singularities for (X, (1 — a)D + D'} above .

Let Dy = (1 —a)D +tD for 0 < ¢ < 1, and let 1 Y — & be an
embedded resolution for the pairs (X. Dy} and (X, D) simultaneousiy. We
write

Ky + E+ Fy g " (Wy + D)

where E is the only place of log canonical singularities for (X, D) above W
it # 0. By construction, the coefficients of Fy|z are less than 1 1 ¢ # 0.
Morcover. eveu if t = 0, the coefficients are less than 1 for vertical components
of Fi|p with respect to u, because W is a minimal center.

We lave R'p.Oy(—E + "—=F;") = 0 by Kawamata-Viehweg vanishing
thecrem. and the natural homomorphism u. Oy (T—F7) — p.Oe{T-Fe™)
is surjective. Since the negative part of F) is exceptiocnal for j, it follows that
there 15 a natural isomorphism Qw — w, O ("~ F s if t # 0.

We mav assunie that there is a resolution of singularities ¢ © 17— J°
which factors pr0 £ — W Let f: E — 17 be the induced morphism:

E —— ¥

/|
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We may also assuine that there exist normal crossing divisors P and @ on
E and V. respectively. such that the conditions of Corollary 1.6 are satisfied
for Fy|p i 1 # 1. since we have

Wiy + Di)lg~q (Ky + B4+ F)|s = Kg + Fg.

We define Q-divisors Ay and A, on V for 0 <t =1 such that K+ Fyjg ~g
STK v + My + Ay) as in the semipositivitry theorem. By construction, the
voefficients of 2\, are less than 1 for any t. By the semipositivity theorem,
My is nef for i # 0. hence for any ¢.

The sutjectivity of the homomorphism Oy — #.Op("=F|e™) implies
that. if o.Q) # 0. then there exists a j such that fIP)=Qrandd; > 1—1wy;.
Thus G < & aml ¢, 7, is effective.

We let f = (), and set M = M, and A = Ay, Since M is nef, we may
assuine that there exists rational numbers ge such that ¢ > 0 (resp. = 0) if
3,60 = [t (resp. # 0) and that M +eg* H —¢' 2orueQeis ample for 0 < ¢ « e.
We take a general effective (hdivisor A’ ~g M +eo"H — ¢ ,0.Q with
very small coefficients and a very ample divisor as a support. Let Dy =
. (M’ -+ A). Then we have (Ky + D+ ¢H)|lw ~q Kw + Dy, and

o' (N + Dw) ~g Ky + M +A+¢ ZlﬂQ:.
{

If' ¢ is chiosen simall engugl, then the coefficients on the right hand side are
tess than 1.l (M, Dy) is KLT. O

Remark 2.2, Since the choice of M' is generic in the proof of Theorem 2.1,
we can take Dy such that the following holds. Let D' be an effective Q-
Cartier divisor on X whose support does not contain W. Assume that
(W, Dy + D'|w) is not KLT. Then W is not a minimal center of log canon-
ical singularities for (X, D + D), Indeed, the variation of Hodge structures
considered in the proof does not change if we teplace D by D+ DY, Then A
is replaced hy A + G'(D’IH/)‘ and Dy by Dy + D"lw.

3 Effective non-vanishing and base-point-freeness

The celebrated Kodaira vanishing theorem implies that the cohomology groups
HYX, Ky + H) vanish for p > 0if X is a smooth projective variety and H is
an ample divisor. It is natural to ask when H(X, Kx + H) does not vanish.

7

More generally. we consider the following problem in this article. Let
X be a cowplete normal variety, B an effective R-divisor on A, and D a
Cartier divisor on X', Assume that the pair (X, B) is KLT (log terminal),
D is nef, and that H = D - (Kx + B) is nef and big (cf. [18] for the
terminalogy). By a generalization of the Kodaira vanishing theorem ([18]
Theorem 1.2.5}, we have HP(X,mD) = 0 for any positive integer m. The
problem is 1o find a condition on the integer 1 for which the non-vanishing
HY X DY # 0 holds or moreover that the linear svstem |mD| is free. By
the base point free chieorem ({18} Theorem 3.1.1). it is known that ImDj is
free for sufficiently large integer m. Fujita’s freeness conjecture implies that
it should e free if s > dim X + 1. Qur prediction is that HY(X, D) £ 0
abways helds (Conjecture 3.1).

3.1 Reduction
We consider the following problem:

Conjecture 3.1. Lei X be a complete normal wuriety, B an effective R-
dwonsor on X such that the pair (X, B) is KLT, and D o Cartier divisor on
X Assume thet D is nef, and that H = D — {(Kx + B) is nef and big. Then
HYX. D) #u.

This problem was considered in (1] in order to construct ladders on log
Fano varieties. By the generalization of the Kodaira Vanishing Theorem
{[18] Theoremn 1.2.5), we have HP(X,D) = 0 for any positive integer p.
Thus the coudition H(X, D) # 0 is equivalent to saying that (X, D) # 0.
Our problen is a topological question, unlike the case of the Abundance
Conjectures.

The base point free theorem says that there exists a positive integer m,
such that the linear system {mD| is free for m 2 my. The following reduction
theuren is obtained as an application of the base point free theorem and the
semipositivity theorem with the help of the perturbation technique,

Theorem 3.2. In Conjecture 5.1, one may assume that B is o Q-divisor
and that H is emple. Moreover, one may assume that D is also ample if one
replaces X suitobly.

Proof. By the Kodaira lemma, there exists an effecive R-divisor E such that
B+ E is u Q-divisor. the pair (X, B + E) is KLT, and that H — E is ample,
Thereforé, we may assume that B is a Q-divisor and that H is ample.
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By the Base Point Free Theorem, there exists a proper surjective mor-
phisiu o 0 X' — X' with connected fibers to a normal projective variety such
that £ ~ ¢* 1)’ for an ample Cartier divisor I on X”. We have H%(X, D) £ 0
it and only if HY{A”, D'} # 0. We shall show that there exists an effective
Q-divisor B on X’ such that (X', B') is KLT and D' — (K x. + B') is ample.

Since H is already assumed to be ample, we can write H = Hy + 2¢* H'
with Hy and H' being ample Q-divisors. Since Hy is ample, there exists an
effective -divisor By such that B + Hg ~g By and that (X, By) is KLT. We
set Dy = Ky + By. Then Dy ~g ¢" D) for D = D' - 2H".

We construet birational morphisms g : Y = X and ¢’ - ¥’ — N from
smoeoth projective varieties such that ¢ o p = ¢ oy for a morphism v : Y —
YOWe write (" (Wy + By) ~ Ky + Ep. If poand g are chosen suitably, then
we Tay assuiie that the conditions of Corollary 1.6 are satisfied for ¥ and
Ey. Then there exist Q-divisors Ey and M on 17 such that Ky + By ~g
Ky + El+ M. gl By is effective, LEjs < 0 and M is nef. Since H' is ample,
there exists & Qudivisor E' ~q B+ M + ™ H' on Y’ such that B = p E' is
effective and L £’y < 0. Then we have Dy + H' ~q Ky + B' and (X', B'} is
KLT. Since D' ~q Ay + B’ + H', we obtain our assertion. O

3.2 Surface case
We lave a complete answer in dimension 2.

Theorem 3.3. Let X, B and D be as tn Conjecture 8.1. Assume that the
numerical Kodatra dimension v{X, D) is ot most 2; namely, assume thal
D?* = 0. Then ihe following hold.

(1) HOX. DY #4.

{2} The binenr systemn [mD)| is free for any integer m such that m > 2.

Proof. WWe may assume that dimX = »(X, D) < 2 bv Theorem 3.2. Let
p00 XN = X he the minimal resolution of singularities. Since "Ry — Ky
is effective. we can write p*(Ax + B) = Ky + B' with (X', B') bemg KLT.
Therefore. we may assume that X is smooth. By Theorem 3.2 again, we may
also assume that A 1s ample and that D is big.

Assnme first that dimX = 1. Then the assertions follow immediately
from the Riemann-Roch theorem.

We assume that dim.N = 2 in the following. We prove (1), By the
Riemann-Roch theorem. x(X, D) = %D(B + H) + x{X,0x). Thus, if
x(N.Oy) 2 0. ther y(X. D) > 0. Let us assume that x(X,0Ox) =1-¢g < 0.

Then there exisis o surjective morphism f : X — € to a curve of genus ¢
whose generic fiber 15 1sonierphism to P'. By Corollary 1.5, the vector bundle
f.O0x (D — [*i ) is numerically semipositive, Since Oy (D) is f-nef, it is f-
generated. lience we have a surjective homoemorphism f* f,Ox (D — f*Re) —
Ox (D — [ Ne). and the latter sheaf 1s nef. Thus (D - [*he)(B+ H) > 1.
Since [N (B+H) 2 —f*Ae- Ky =4g—4, we have x (X, D) > g¢-1> 0,

In order to prove (2), we take a general member Y £ |D] as a subscheme
of X. We have an exact sequence 0 = Ox{(m — 1)D) — Ox(mD) —
Oy(mD) = 0 and HH{X, (m — 1)D}) = (. hence it is sufficient to prove
the freeness of {0y (mD)|. Let m be any ideal sheal of Oy of colength
1. We shall prove that HY(Y, m(mD)) = 0. By duality, it is equivalent
to Homim.wy (—mD)) = 0. where wy 2 O (R'y + YY), Since deg wy
(Yoo = (V.0 = VIR + 1) is even aud deg wy(-2D) = Y(h'y
V=2D)= =Y {B+ H) < 0, we have deg wy(—mD) < —2. Since x{}.m)
(3. 0y ) = 1. we have the desired vanishing.

O+

Our bennd for the freeness in Theorem 3.3 is better than the one given
hy the Fujita cowjecture. But we cannot expect similar thing in higher di-
Mensions:

Example 3.4. (1) (Oguisc) Let X be a general weighted hypersurface of
degree 10 in a weighted projective space P(1.1.1,2,5). Then X is smooth,
dimX = 3. and Ky ~ 0. Let D= H = Ox(1). We have HY (X, D) # 0. and
2D is free. Bt |30 is not free, and [4D| is not very ample,

(2) Let o be an odd integer such that 4 > 3, and let X he a general
weighted hypersurface of degree 2d in P(1,--- . 1,2.d), where the number of
I's is equal to 5 = dim X. Then X is smooth. Let D = J5(1}. We have
Ky ~(d-=n~—2)D, D" =1 and |[mD| is not free if m is odd and m < d.
For example. if # = d — 2, then Kx ~ 0 and |[nD]| is not free.

{3) Let & be an integer such that d # 0 (mod 3) and > 4. Let X be
a general weighted hypersurface of degree 3¢ in P(1,---,1,3,4) as in (2}.
Then X is smooth. Let D = Ox(1). We have Ny ~ (2d —n—3)D, D" =1,
and {3 ks not free if 2o 2 0 {mod 3) and = < . For example, [2D] is not
free. and |[{¢ — 1)D] is not free if d = 2 {inod 3).

3.3 DMinimal 3-fold

We have so far an affirmative answer only for minimal varieties in the case
of dimension 3.

10



Proposition 3.5. Let X be o 3-dimensional projective variety with at most
canonicul singulerities, and D a Cartier divisor. Assume that Ky is nef, und
D — Ky is nef and big. Then HYX, D) # 0.

Proof. By a crepant blowings-up, we may assume that X has only termi-
nal singularities. Then we have x(Oy) > -5 fxeo by {10], and 3¢; — Fig
is psenclo-effective by Mivaoka [23) (see also [33]). By the Riemann-Roch
theorew. we caleulate

| T 1 ’ 1
]IU(‘X, D)= E.Dl - EDZA/‘ -+ EDK; + 1—2-DC2 -+ X(O,\)

1 L1 2 1 .
52D~ Ix,\-){gD2 +3D(D - Kx) + (D - Kx)?}

1 1
+ :‘a(?D - I\’){J(SCQ - .Ki) -+ 5;{1\’,\'6‘2 =+ X(O,\;)
iz

NN

|

Proposition 3.6. Let X be a complete variety of dimension 3 with at most
Gorenstenn cononical singularities, and D a Cartier divisor. Assume that
Ky~ 0 and D is ample. LetY € [D| be & general member whose ezistence
i yuaranteed by Proposition 3.5. Then the pair {X.Y) is LC. In perticular,
Y ois SLC.

Proof. Assume that (X,Y) is not LC. Let ¢ be the LC threshold for (X,0)
50 that ¢ < 1 and (X, ¢1") is properly LC. Let ¥ be a minimal center, By
[15) Theorem: L. for any positive rational number ¢. there exists an effective
Q-divisor B' ou W such that (Ky + ¢l + eDilw ~g Nw + B' and (W, B')
is KLT. By the perturbation technique, we may assume that W is the only
LC center for (X, ¢} + eD) and there exists only one LC place E above W
if we replace ¢ and € suitably (cf. [13] Proposition 2.3).

Therefore. there exists a birational morphism 4 : Y — X from a smooth
projective variety such that we can write p{Ex+eY +eD)= Ky + E+ F,
where the support of £ + F is a normal crossing divisor and the coefficients
of Fare strictly less than 1.

We consider au exact sequence

- Iy (D) = Ox(D) = Ow(D|w) = 0,

11

where Iy = 11, Oy (— £} is the ideal sheaf for W. Since D—{Ky+cY+eD)is
ample. we have H'(Y " D—E+ ~Fu) = Oand R, Oy (p* D—E+L—-F) =
0 for p > U by the generalization of the Kodaira vanishing theorem. Since
#.Oy(L—F 1) = Ox. we obtain H'(X,Tw (D)) = 0. Hence the homomor-
phisin HY(X. D) — H%(W, D|w} is surjective. We have H{W, D|\y) # 0 by
Theorem 3.3. 1t follows that W is not contained in the base Jocus of |D], a
contradiction. O

3.4 Weak log Fano varieties

The follvwing is proved by Ambro [1]. We shall give a shorter proof of the
second part as an application of Theorem 3.3.

Theorem 3.7. Let X, B and D be as in Conjecture 3.1, Assume that there
exists a positior vattonal number v such thet r > dim X — 3 » 0 and —{Hx+
B} ~q 7. Then the following hold.

(1) HY{(N.D) # 0.

2} Let Y € |D} be v general member. Then the pair (X. B + ¥Y) i PLT.

Proof. (1) is proved in [1) Lemma 2. We recall the proof for the convenience
of the reader. We set n = dimX, d = D" > 1. g = Bp»-! >, and
plt) = A(X.tD) for t € Z. Siuce p(0) = 1 and pl=1) = p(~-2) = --- =
PM—n + 3) = 0. we can write

p(t) = ”l,m+ B +dr
pit) = 1! 2(n—1)!

-1

Il

(n—1){n-2)
d

{ )
S D2 (= 3+ 0t bt )

for some nunbers o, 6. Hence

_n{r—n+35) fn
akﬁ—-—2 3+2d.

Omn the other hand, we have

6 (=1)"p{—n+2) = (0= 2)* ~afn = 2) +8) - 1

d
nln—1

12



Therefors
B4+dir—n+3)
2

(2) We mayv assume that D is ample by Theorem 3.2, Note that the
morplisn @ in chis case is birational and the condition ~(Ky + B) ~g rD
is preserved. Assumie that (X, B+ Y) is not PLT, and let ¢ < 1 be the LC
threshold so that (X, B + ¢Y') is properly LC. Let W be a minimal center.
By [15]. for any positive rational number ¢, there exists an effective Q-divisor
B on W such that (Ky + B +¢cY +eD)|w ~q Kw + B and (W, B') is KLT.
Then —(Ky + B} ~g r'D|w for 7' = r - ¢ — ¢. Since ¢ can be arbitrarily
small. we have ' > dim W~ 3 and #' > -1.

I dim 177 2 3. then HY(W, D) # C by {1). Otherwise. we have also
H"W.D|w) # 0 by Theorem 3.3. By the vanishing theorem. we have
HYX. (D)} = 0 as iu the proof of Proposition 3.6, From an exact se-
Quence

BN Dy =pil) =n—1+(=1)"p(-n+ 2} + > 0.

G- Iw(D) -3 Ox(D) - Ow(Dlw) = 0,
it follows that M is not contained in the base locus of | D|, a contradiction. O

The following result deals with the case which is just bevond the scope
of Theorew 3.7,

Theorem 3.8. Let N be o complete variety of dimension 4 with at most
Gorenstein canonwieal singularities. Assume that D ~ — Ky is ample. Then
the following Told,

(1) HY{X, D) #£ 0.

{2) Let Y € | D} be a general member. Then (X,Y) is PLT, hence Ky ~ 0
and Y has ondy Gorenstein cenonical singularities.

Proof. We shall prove (1) and (2) simultaneously. Let m be the smallest
positive integer such that HY(X,mD) # 0. We shall derive a contradiction
from mr > 1. \We take a general member ¥ € [mD].

Assnime first that (X.Y) is PLT and m > 1. Then Y is Gorenstein
canonival. We have an exact sequence

0 = Oy(=D) = Ox((m—1)D) = Oy [Ky) = 0.

We have x{X,0x(—D)) = 1 and x(X, Ox({m — 1)D)) = 0. On the other
hand, we have y(Y. Ky} = g;Kycz > 0 by [23], a contradiction.
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Next assume that (X,¥) 15 not PLT and m > 1. Let ¢ be the LC
threshold so that ¢ < 1 and (X, ¢Y) is properly LC. Let W be a minimal
center. If dim 1" = 3, then we have ¢ < 1. By [15], for any positive
rational number e, there exists an effective Qrdivisor B' on W such that
(Ky + Y +eD)l ~p Nw + B and (W, B") is KLT. By the perturbation
technique. we nay sssume that W s the only center if we replace ¢ and ¢
suitablv,

We consider an exact sequence
= Iy {mD) = Ox{(mD) = Ow(mD|w) — 0.

Since mD — (Ky + Y + ¢D) is ample, we have H'{X, Iyy (mD}) = 0 by the
vanishing theorem. Hence the homomorphism HY(X, mD) — HY(W, mD|w)
is surjective. If dim W < 2, then we have H°(W, mD|w) # 0 by Theorem 3.3.
We shall also prove that H*(W,mD|u} # 0 in the case dim W = 3. Then it
tollows that W7 is not contained in the base locus of [mD|, a contradiction,
and (1) and (2] are proved.

Assinne than i W = 3. We get v = em — 1 + ¢ s0 that Ky 4
B~y Dl Let plt) = x{W,tDlw). If we set d = (D|w)? > 0 and

6 = B'(D|w)? = 0. then
d, —rd+d,

plt) = i P b+

for sonse nmmbers & and ¢ by the Riemann-Roch theorem. By the vanishing
theorem. we have —p{—1) > 0 and p{m —~ 1} > 0, because v’ < m — 1. Then

plair) :(m = l)ém-t- Lyd + e + 1)(4_’" d+8)
+ —(—1) + {me + V)p(m — 1) -
m
Thus we Lave HY(W mD|w) # 0. O

4 Length of extremal ray

Theorem 4.1. Let (X, B) be a log terminel pair of dimension n and let
@ X = Y be o contraction morphism associated to an estremal ray. Then
the exceptional lucus E s covered by o fumily of rationel curves C such that
(=W y + By < 2u. Moreover, if ¢ is birationel, then the striel inequality
holds.

14



Theorem 4.2, Let X be u normal prujective variety of dimension n with
an wmple Curtier divisor H, and let C be o curve contained tn the smooth
locus of X such that (Ky - C) < 0. Then for any point 2 € C there exists a
rationel curve L containing z such that

n{H-C)

(H-L)< max{-:m,

(H-C}}

Theorem 4.3. Let (X, B) be u log terminal pair end f : X — S u projective
orphisi with an f-ample Cartier divisor H. Then

A=sup{t € QH +t(Kx + B) is f-ample}

woeith +oc or u rotional number. In the latier case, let v be the smallest
positive iteyer such that 7Ky + B) becomes a Curtier divisor and let d be
the maxminum of the dimension of fibers of . Ezpress Afr = p/y for coprime
positive wtegers p,g. Then g < v{d + 1).

5 Relative version of Fujita’s freeness conjec-
ture
The toilowing is Fujita's {reeness conjecture:

Conjecture 5.1. Let X be o smooth projective variety of dimension n and
L an omple divisor. Then the invertible sheaf Ox (K x +mL) is generated by
global sections i m > n+ 1, orm=n and L™ > 2.

We have a stronger local version of Conjecture 5.1 [¢f. [13)):

Conjecture 5.2. Let X be a smooth projective variety of dimensionn, L o
nef and biy invertible sheaf on X, and 2 € X ¢ point. Assume that L" >
and LYZ = n? for eny ireducible subvariety Z of X of dimension d which
cortains . Then the noturel homomorphism

HY(X,wx ® L) — wy ® L ® kiz)

is surjective.
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We shall extend thie above conjecture to a relative setting.

Let [} = X be a surjective morphisin of smwoth projective varieties.
We note that the geometric fibers of f are not necessarily connected. Assume
that there exists a normal crossing divisor B = Y% B, on X such that f
is smooth vver Xy = X'\ B, Then the sheaves R f,wyvyx are locally free for
q 2 0 {[0] for ¢ = 0 and [19] in general). We note that even if we change the
birational model of ¥, the sheaf R f.wyx does not change.

The relative version is the following:

Conjecture 5.3, Let f Y = X be a surjective morphism from a smoeoth
profectio: variely to o smooth proectwe variely of dimension n such that f
s smooth voer Ny = X'\ B for a normal erossing divisor B on X. Let L
be wn arple divisor on X, Then the locally free sheaf R f,wy @ OxlmlL) i
generated by global sections if m > n+ 1, or m = 1 and L™ > 2.

We Liave again a stronger local version:

Conjecture 5.4. Let f : Y = X be a surjective morphism from o smooth
projective variety tw o smooth proective variety of dimension n, L a nef and
big invertible sheaf on X, and £ € X o point. Assume the Sollowing cond;-
tions:

(1) There s a norinal erossing divisor B on X such that [ is smooth over
Xo=X\ B

{2 L" > »n* and LYZ > n% for any weducible subvuriety Z of X of
dunension d which contains &,
Then the natural homomorphism

HYX R oy @ L) - Rifony @ L@ k(2)
is surjective for any ¢ > 0.

In 13, the following strategy toward Conjectures 5.1 and 5.2 was devel-
oped:

Theorem 5.5. Assume the followig condition: jor any effective Q-divisor
Dy o X such that (X.Dy) is KLT. there erists an sffective Q-divisor D on
X such that

(1) D= AL Jor sume 0 < A < 1,

(2) The puir (X, Dy + D) is properly log canonical at z, and

(8) {x} is a log canonical center for (X, Dy + D).
Then the conclusion of Congecture 5.2 holds. fn this way, Conjecture 5.2 for
dim X < 3 and Conjecture 5.1 for dim X = 4 hold.

16



Onr main result is the relative version of the above theorem:

Theorem 5.6. Assuwime the followig condition: for eny effective Q-divisor
Dy one X such that (XN, Dy) is KLT, there exists an effective Q-divisor D on
X such thal

{1 D= AL for sume 0 < A < 1,

{2) The pair (X, Do + D) 15 properly log canonical at x. and

(9} 4o} is u doy cunonical center for {X, Dy + D).
Then the conclusion of Conjecture 5.4 holds. In particular, Conjecture 5.4
for dim X < 3 und Congecture 5.8 for dim X = 4 hold.

Remark 5.7 1t is easy to prove Conjecture 3.1 in the case L is very ample.
[19] proved Conjecture 5.3 in the case L is verv ample.

5.1 Parabolic structure and vanishing theorem

We peneralize the notion of parabolic structures of vector bundles by [21]
vver ligher dimensional base space:

Definition 5.8. Let f: Y — X be a surjective morphism of smooth pro-
jective varieties. Assume that there exists a normal crossing divisor B =
Z:‘:J B, en X such that [ is smooth over Xy = X'\ B. We fix a nonnegative
integer ¢. We define a parabolic structure on the sheafl R fiwyyx. It is a
decreasing filtration of subsheaves Fitrth = Floe-t{ R f vy ) of R fuwyx
with mului-tclices + = (¢, ..., tn) (0 < 4;) defined by

L F R fewnc )) = {5 € DIUR fowyyx) | (H s is LP
with respect to the Hodge metric},

where z; 1s a local equation of the branch B; on an open subset I/ C X

Lemma 5.9. (1) F' D F¥ fort < t'.

(2} Fh...‘.i.h,. iy — Ft]‘...,t”....tﬁ fDT‘ U <€ << 1.

(3 Flietob oy o Plicobieats g OA-(—B,).

{41 Let Yo = £ (Xo). fo = fly, and d = dim Y — dim X. If all the local
monodromies of B ELQy, eround the branches of B are unwotent, then
Fro= FY forany t = (F... . ) with0 < ¢ < 1.

Proaf. (1} through {3) are obvious. {4) It folows from the fact that the
growth of the Hodge metric is logarithmic in this case ([6]). O
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Remurk 5,06, For negative values of the #,, we can also define F* as sub-
sheaves of B9 f,wypx @ Ox (mB) for sufficiently large i by using the formula
Lemnma 5.9 (3). We also write Fitvotn — LG8

Definition 5.11. For alocal section s € T'{U, R fuwyyx ). we define its order
of growth along B by

url{s) = Z el (s} B; = illf{Z(l —1;)8;|s € T{L" F}""‘r")}.

H

We note that 5 ¢ T{L FE-096Y and

(U Fo) = {5 € (U, R* fuwyyx} lord(s) + 3 6:B; < B}

There is a nice local basis of the sheal R7f,wy/x:

Lemma 5.12. Al any point v € X, there exists an open neighborhood U and
u bosts {5,000 sit of T(U, R fowygx) such that

(H zrh +UI'(||($1;J)SI‘ o (H Z:J.‘-furd,(.s,_ )J)S‘r

P 1

generates F(UF/0 b (R fun x3) for any t, where the 2, are local equetions
af the By on L7, In particular, the sheaf FU (R f,unyx} is locally free for
any i.

Progf. 1t is known that the local monodromies around the branches of B
acting on the cohomology sheaf R f 7y, are quasi-unipotent, where d =
dim1” — dimX. We shall prove that the filtration F* is determined by the
vigenvalues of this action,

Singe onr assertion is local, we replace X by an open neighborhood U7
of + € X i rhe classical topology which is isemerphic to a polydisk with
coordinates {zy..... 2.} such that BN U is defined by z,-- 2, = 0. To
simplify the notation, we write X instead of U7, There exists & finite Galois
and surjective morphism 7 : X — X which is etale over X, such that,
for the induced morphism f' : ¥ — X' from a desingularization ¥’ of the
fiber product 37 %y X', the local system R“*qf[’),zqa has unipotent local
monodromies around the branches of B' = 77!(B). where we set X =
TN Yy = SN and fy = f'hy Let o 0 ¥ — Y be the induced
morplisin.

18



We nnay assuine that X' is isomorphic to a polydisk centered at a point
L= 77 ) with coordinates {20, ..., 20}, and the morphisin 7 : X' — X is
given by @z = 2" for some positive integers m,. where m; = 1 for i > r.
The Galuis gronp G = Gal{X'/ X} is isomorphic to [, Z/ (m,). Let g1, .. gy
e generators of G such that g z; = C:ij 2; for some roots of unity ¢, of order
;.

The group G acts on the sheaves BYflwyy and wy- equivariantly such
that the invariaut part (7,{R? flwy 3 @wy )} is isomorphic to Rifiwyx &
wy. bevanse (dowh )¢ = wy and RPouwys = 0 for p >0

The veeror space BY fluyy @ kla') is decomposed into simultaneous
elgenspaces with respect to the action of G. Let s, be a simultaneous eigen-
vector sl that yls, = (& s, for some o; with 0 € o; < my. Let & be a
section of B9 fluy., v which extends s,.o. Then the section

. ZZ (It s
Hg‘ my i=1 k=0 H‘- m',‘

satisfies that ¢7s = (5 ¢,

Ou the other Land. dej A Ade, = ([],m7 2 "™ )dzy A -+ Adz, is a

generating sectiun ol wyr. Therefore, ([T, 27 )s" descends to a section s of

Rifoavon. 1the s, varies among a basis of R fluyye & wl2’), then the
corresputiling sections s make a basis of the locally free sheaf R founy.

We have ord;(s) = a;/my, since the Hodge metric on the sheaf R fluoyix

lias logaritlznic growth along B, Therefore, the sections (I, rtctalmiay

form a basis of « locally free sheaf F'te-t (R?f.wy,y). D

Rennark 5.13. The Hodge metric and the flat metric on the canonical exten-
sion of the variation of Hodge structures R+ £ 2y, @ Oy, coincide when re-
stricted to the subsheaf Rf.wy;x. Therefore. the statement that the Hodge
metric ou the canonical extension has logarithmic growth is easily proved for
R foy v,

By using the basis obiained in Lemnia 5,12, we can study the base change
of the sheaf RBY f,wyy:

Lemma 5.14. Let v : X' = X be a generically finite and surjective mor-
phism from « smoth projective variety such thet B' = (*B)rea = 30, B!,

is o normul crossing divisor. Let p: Y — ¥ x5 X' be o birational morphism
Jrom ¢ smovth projective variety such that the induced morphism fly s X
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is smooth over Xy = XN'\B'. Let 0 : Y' — V' be the induced morphism. Then
the followiny hold.

(1) Lei {si.. .. 5} be the basis of T{U, Rifowy,x) in Lemma 5.12. und
let U7 he ani apen subset of X' in the classicul topolugy such that /)y cU.
Then the equulity ordin®s;) = w*ord(s;) kolds, und the basis {7°s,, .. .. T8 )
of C(U' 77 B9 f2y 0y ) sutisfles the conclusion of Lenuna 5.18 in the sense that
seciions

ot (w5 LR SR SIS o P :
(1_[.:,-,L ol 1)“)'.rr'sl,.,.,(l—‘[ 2 Bt sy

- i

form a busis of T(L, F“l""”lf(R"f_’w].-f',,\-:)) for any ¥ = (t],.. . &), where

the z, wre local equations of the Bl on U'. In particular, the sections

Lond, s [ g "
(H::'m e *})J)W.Hh“”lnsgol At “]J)ﬂ"sk.

'
i

Jorne a busis of T(U R fluner ).

(2)
Flit), (R‘d’f:w)--/,\")
= 3w P (R ) ® O (— S BBl + 300 - e B,

where the sum is {uken mside the sheaf R fowypx. In particular,

By v = Z a0 Fheet (qu‘w‘r/,\-) & 0.\_,(_LZ{1 — )" By ).
t T

Proof. (1) Since the s; are derived from the basis in the case of uniputent
monodromies. we obtain cur assertion by Lemma 1.2,

(2) We can check the assertion locally. We write mB; = Y myBy for
some nonnegative integers myy. Then the left hand side is generated by the
sections

URIPE T PIE LPYS N
{H Zp L 8
W
lor | < f < &, while the right hand side is by

PR At ordi (4 ) )m ot + 30 (1 Yooy,
JIE: ' s
"

20



for 1 < ;< i,
Since ords (7 s4) = 37, ordi(8;)myr, we should compare

o+ Z ord;(s; e o
ﬂ.]l(l
3['}11{2[{_1,‘ + ordilsg) ) mie + 0t + Z(l — 1 g a).
v ¥

Sincer

Z(J, A+ ord, (sy) )i + Lt + Z(l = t)my o — Ll + Z ord; (87 ) o

i

> Z(u‘., +ord:(s;) a)mg -+ Z(l —t; —ordi(s;)lmp — 1 > ~1,

we observe that they are equal, where the minimuin is attained when i =
L —ordils;} —¢; lor 0 < ¢; « 1. Therefore, we obtain the equality. 0

Theorein 5.15. Let L be o nef and big Q-diviser whose fractional part s
supparted vw 3. Then

HUX. Y Pl (R fox) @ wx(TL~ S (1 = t)B7) = 0
I i

Jor p > 0. where the sum s token inside the sheaf R7f,wy ® Ox (TL7).
Progf. By [6]. if we replace B by ancther normal crossing divisor B such that
B < B. then there exists a finite Galois and surjective morphism# : X' - X
[rom a smoth projective variety which is etale over Xy and such that #°L
has integral coefficients and all the local monodroinies for R“""-‘fé‘zxé are
muipotent.  Let & be the Galois group for #. By [19] Theorem 2.1 and
[8} Theorem 3.3, we have

HP (X R flwy @ Ox (7" L}) =0

forp> 0. Let B'=27"(B). Then n*(Kx +B) = Kx+B'. By Lemma 5.14,
we have

HI(. Z Pt (R gy ) 0-\"“@2“ + 1t B

[
+Y =t)r B+ n' Ky + B+ L)} =0
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for any 0 < ¢, < 1.
We want o calenlate the G-ivariant part of the locally free sheaf

et (R oy ) @ 7O (03 (1 4 14) B

+ 3 (1=t Bis+ 7" (K + B+ L))).

For this purpose. let 4 be the largest divisor on X such that

AT {1+ 1B - S 0 —t)a" B+ nt (B + L.

[f we ser 15 = 0. then this is equivalent to the condition

TA ST (L= (1-1)B)+ 7B,

Hence we obtain
A="L=3(1-14)B"

and onr assertion is proved., ]

Remark 5.16. We note that the sum

Z F"]“":"'(R"_f.wr,r,\') Ruwy("L — Z(l —1,)B,7)

i

s & lovally free sheaf because it is the G-invariant part of a locally free sheaf
as shown in the sbove proof, though it locks comiplicated. It is the subsheaf
of L? section. We ean extend the non-vanishing problem to this sheaf,

Proof. Let {~).--- .s;} be the basis of R?f.uy,x in a neighborhood of &
whicl is obtained in Lemma 512, We shall prove that the image of the
homomorphism

HYUYX Ry @ L) = R foon- @ L @ slx)

contains s; Guy ® L®k(2). Let us consider ord(s,) as an effective divisor on
X. By the assumption of the theorem, there exists an effective Q-divisor D
such that [~ AL with 0 < A < 1, (X, ord(s;}+ D) is properly log cancnical
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at z. and that {x} is a minimal log canonical center. By the perturbation of
D, we may assume that {r} is the only log canonical center which contains
i, and there exists only one log canonical place E above the center {z}. Let
i X' = X be a birational morphism from a smooth projective variety such
that £ appears as a smooth divisor on X’ We write

PRy +ord(s;p+ D) =Ky +E+ F,
where the coefficients of F are less than 1. We may assume that the union of
the exceptional locus of ¢ and the support of p~!(B+ D) is a normal crossing
divisor. Let B' = p"Beq = 37, Bj,. For any ¥ = ({1, -, t}.), we have
Ky + (1= Nl -3 (1-t)B,
-

=@ (Wy + L) = E = F+p'ord(s;) = Y (1~ )B,.

By Thevremn 5.15, we obtain
Z Fho b (RO flwyryxn) ® Oy (p* (Kx + L)

—E+r F 4 pord(s;) — Z(l—t' B =0.

Since
Z ot (RS fluney30) @ O (u* (K x + L)

t
+"—F 4 p*ord( s,)—z (1-t3BLM)

is a locally free sheaf on X, we have a surjective homomorphism
HOX' 3" P (RI flue x0) @ Oy (u* (Kx + L)
,_.

—F + plord(s,) — Z(] — )87}

i

—+ HY(E, ZF" R flwye ) @ Qe (Kx + L)

+ "—F-i— prord(s;) — Z(l —t) B M),

i
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We have

pT=F + plord(s;) = Y (1-14)B,7) < 0

it

if 0 <t} < 1. Hence
HOX ZF'N (R flwygx) ® Ox (i (Kx + L)

vF + ptord(s;) — Z(l -~ )BiM)
C HX R fawyyx @ Ox{Kx + L)).

We note that the #;, need not be contained in the interval [0, 1) in the above
sutr. On the other hand, if we define the ¢!, by

Zt;,B,-r = Z(l —€y) By — plord(s;)
i v
for sufficiently siall and positive numbers €}, thew the divisor

T—F+plord(s,) - D> (1 - #)B°

i

is effective and its support does not contain E, even if F is contained in B
. . ’ 4 .

Since ord(p’s;) = yord(s;), we bave p*s; € F'r ot (R? flwysy:) for such

t;,. Hence

Wy ® O (Kx + L))
¢ HYE. ZF‘ ----- W (R fluryr 3 @ Ol (Kx + L)

+ r—F +utord(ss) = Y (1~ ) BL)).

Therefore. s; ® wy ® L ® (z) is contained in the image of the set of global
sections H”{\ RYfoun- @ L). (]
6 The extension problem of pluricanonical forms

The purpuse of this paper is to review some recent development on the ex-
teusion problen of pluricancnicat forms from a divisor to the ambient space.
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The main touls of the proofs are the muitiplier ideal sheaves and the vanishiug
theoraius for Lhem.

Let X be a compact complex manifold. The ni-genus B, (X) of X for
A positive integer m s defined by P, (X) = dim HYX, mK ). The growth
arder of the plurigenera for large m is called the Kodaire dimension w{X):
we have P,(Y) ~ n™) for any sufficiently large and divisible m. We have
the following possibilities: £(X) = —00.0.1,---, or dim X. In particular, if
#(X) = dim X then .\ is said to be of general type. 1t is important to note
that rhese invarisnts are independent, of the hirational models of X .

The plurigenera are fundamental discrete invariants for the classification
of algehraic varieties. But they are by definition not topological invariants.
However. in order that such classification is reasonable, the following conjec-
rare due to fitaka should be true:

Conjecture 6.1. Let S be an algebreic variety, and let f 1 Oy — § be
u smooth olyebraic morphism. Then the plurigenera Pn(X,) is constant on
# € 5 jor uny positive integer m.

A morphism between complex varieties which is birationally equivalent
to a projective morphism will be called an elgebraic morphism in this paper.
The algebraicity assumption in the conjecture is slightly weaker than the
Projertiviey,

This conjecture is confirmed by Iitaka [4] in the case in which dim X, = 2
by using the classification theory of surfaces. Nakayama {26] proved that
the coujectire follows if the minimal model exists for the family and the
abundance coujecture holds for the generic fiber. Thus the conjecture is true
if dim X, = 3 by |12] and [20].

On the other hand, Nakamura [25] provided a counterexample for the
generalization of the conjecture in the case where the morphism f is not
algebraic. In his example. the central fiber Xy is a quotient of a 3-dimensional
simply counectedd solvable Lie group by a discrete subgroup. We note that X
is & non-iKihler wanifold which has non-closed holomorphic 1-forms. So we
only consider algebraic morphisms in this paper. 1t is interesting to extend
our results to the case in which the fibers are in Fujiki’s class C.

The tullowing theorem of Siu was the starting point of the recent progress
on this conjecture which we shall review.

Theorem 6.2. (Siuj Let S be a complex variety, and let [ : X — 5 be
o gmooth projective morphism. Assume thot the generic fiber X, of [ is «

suriely of yenerol type. Then the plurigenera Fr (X)) 15 constant on i € §

Jor uny positeoe iteger m.

We fave also a slightly stronger version:

Theorems 6.3, Lot 5 be an algebraic variety. lei A be o compler variciy.
and fet f 2 X — S be o proper flat algebraie morphasm.  Assume the! the
fibers Xyo= [7'1) have only canonteal singulurities Jorony t € 8 and that
the yeneric fiher X, is o variety of general type. Then the plurigenera P, (X))
is coustant, ond € S for any positive nieger .

According 1o Nakavama, we define the numerical Kodairg dimension v(X)
as follows (this is #, 1.} in [27]; there is another version £, (A7) of numerical
[Kodaira dimeusion in [27] which we do not use). Let X be a compact complex
manifold and lee & be a nonuegative integer. We define v(X) 2 kil there exisrt
adivisor £ ou X ancd w positive number ¢ such (hat dim HOLY, mhiy+H) 2
e lor any suticiently large and divisible m. If there is no such &. then we
put #(N) = —oc. It is easy to see that s(N) < p(X) < dimX. By
the Kodalra lemma, s(X) = dim X if and only if v(X) = dim X. The
abundence conjrcture states that the equality s(Y) = v{X7) abways holds.
Nakayama confirmed this conjecture in the case v{X) =0 ([27)).

By considering wm /Ny + H instead of mhi y, Nakavama obtained the [ol-
lowing:

Theorem 6.4. (Nukeyamo) Let § be an algebrai variety, let A be a compler
vereety. and ek f 0V — 5 be w proper flat alyebreic morphisr. Assume that
the fibers Xy = [7U8) haee ondy canonicol singuluritios for any t € 5. Then
the wawnericel Noduiro dimension v{\,) is constant ont € S, In particuler,
i ane fiber Xy is of general type, then so ure wll the Jbers.

For the finer classification of algebraic varieties, it is useful to consider
not unly the discrete invariants P, (X) but alse the infinite sum of vector
spaces

R(X) = B H (X mKy)
m20
which has a patural graded ring structure over € = HYX.O4). This con-
tinnous invariant B{Y), called the canouical ving of X, is alsy independent
of the birational models of X. It is conjectured that R(X) is always fiuitely
generated ax a graded C-algebra. If this is the case, then Proj R{X) is called
a canonical rodel of X,
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A canonica! singulerily (resp. terminel singulerity) is defined as a singu-
larity which mayv appear on a canonical model of a variety of general type
whose canonical ring is finitely generated (resp. on 2 minimal model on
an algebraic variety), The formal definition by Reid is as follows: a nor-
ma} variety Y is said to have only canonical singuiarities (resp. terminal
singularities) it the canonical divisor Ky is @-Cartier and. for a resolution
of sigularities i 0 Y — X which has exceptional divisors Fj, if we write
WAy = Ay o+ Z, a;Fythen oy <0 (resp. wy < 0) for all 4.

For exauple. the canonical singularities in dimension 2 have been studied
extensively, They are called in many names such as do Val singularities,
rational double points, simpie singularities, or A-D-E singularities. The ter-
minal singularity i dimenston 2 is smooth, and the terminal singularities in
dintension 3 are classified by Mori and others (cf. [31]).

Let us consider the subset of a Hilbert scheme with a giver Hilbert poly-
nomial which cousists of points corresponding to the canonical models of
varieties of general tvpe. This set should be open from the view point of
the muduli problem of varieties (cf. [38]). The following is a local version of
Theorem 1.27 sl says that this is the case (this result was previously known
up to dimension 2):

Theorem 6.5. Lei f: X = B be o flat morphism from o germ of an ol-
yebraie veriely tu w germ of u smooth curve. Assume that the central fiber
Xo = f7UP) has only canonical singularities. Then so has the total space
A as well as any fiber X, of f. Moreover, if p - V = X is o birational
morplism from o novmal variety with the strict trensform X of X, then
h‘l,' + X Z it Ny + .\'(]}.

The [olluing theoremn answers a similar question for the deformations of
dnimal models (this was previously known up to dimension 3):

Theorem 6.6. /28] Let f + X — B be u flai morphism Jrom a germ of an
algebruic varicty to o germn of @ smooth curve. Assume that the central fiber
Xy = F7UP) has only terminal singulurities. Then so has the total space
A as well us uny fiber Xy of f. Moreover, if u : V = X is a birational
morphusm frone o normal veriety with the strict transform X of X, then the
support of Ko+ X ~ p*(Kx + Xg) contains oll the exceptional divisors of u.

The following theorem, which is stronger than Theorem 6.3, savs that
oulv the abundance conjecture for the generic fiber implies the deformation
invariance of the plurigenera:
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Theorem 6.7. /28] Let S be an algebraic variety, let X be o cotnples variely.
andlet |2 A — 5 be o proper flat algebraie wmorpkism. Assume that the fibers
No= 0 hewe ondy cunonscal singularities and thet k(X)) = v{X,) for
the generic fiber X, of f. Then the plurigenera P, (X,) is constant onit € S
for any positive integer m.

Now we explain the idea of the proofs. Since we assumed the algebraicity
uf varieties, there exist divisors which are big. Hence we can use the vanishing
thearems of Kodaira type as in [7) and [36]. Indeed. if Kx, is nef and big for
the central fiber X in Theorem 1.2, then the extendability of pluricanonical
forms follows imnmediately from the vanishing theorem,

Thus the problen is to extract the nef part fraom the big divisor KNy,
This is shwilar to the Zariski decomposition problem (cf. {111): Let X be
d sinooth projective variety of general type. If we fix a positive integer m,
then there exists a projective birational morphism p,, : ¥, = X such that
i, (K ) is decomposed into the sum of the free part and the fixed part:
fo Ay ) = B, + M. If there exists one # 1Y — X which serves as the
i simultanecusly for all m, then P = SUPmuFm/m is the desired nef part,
and the decomposition p*Ky = P+ N in Div(V)® R for N = inf, 50 Ny, /m
gives the Zariskn decomposition of K x. The difficulty arises when we have an
infinite tower of blow-ups. It is known that if the Zaviski decotnposition of the
canouical divisor exists, then the canonical ring R{X) is finitely generated
(1))

So we use instead the concept of multiplicr ideal sheaf which was first
introduced by Nadel, We consider the series of ideal sheaves on X, instead
of the decompositions on the series of biow-ups. Since the structure sheaf of
Xy is noetherian, we do not have the difficulty of the infitity in this case; we
take just the nnion of the ideals.

The yemaining thing to be proved is the compatibility of the multiplier
ideal sheaves on Xy and on the tota) space X coustructed similarly for Ay
This is proved iy a tricky induction on m discovered by Siu.

References

[1] F. Ambra. Ladders on Fano varieties. alg-geom /9710005, J. Math.
Sui. (New York) . 94(1999), 1126-1135.



[2] 1.-P. Demailly. Regularization of closed positive currents and inter-
arctaon theory. ). Alg. Geon. 1{1992). 361-409.

13} P. Grittiths. Pertod of integrals on algelraic mantfolds TI1 Publ.
Marh. LH.E.5. 38(1970), 125-180.

] S. litaka. Deformation of compact compler surfaces I, II, IH. in
Global Analvsis, papers in honor of K. Kodaira, Princeton Univ.
Press (1969), 267-272. ]. Math. Soc. Japan 22(1970), 247-26.
23(1471). 6GD2-705.

{5] S. 1shii. Swmall defermations of normal singularities. Math. Ann.
275(1986). 139-148.

[6] Y. Kawamata. Characterizetion of abelian werieties. Compusitio
Mathi. 43(1981). 253-276.

[7] V. Kawamata. A generalization of Kodatre- Rumunujam’s vanishing
theoremn. Math, Ann. 261 (1982), 43-46.

[8] Y. Kawamata. Pluricanonical systems on minimal algebraic vari-
eties. luvent. Math. 79 (1985), 567-588.

[2] Y. Kawamata. Minimal models and the Kodaire dimension of alge-
lrade fiber spuces. 3. reine angew. Math. 363 (1985). 1-46.
[10

L

Y. Kawamata. Ou the plurigenera of mintmal algebroic 9-folds with
Ky =0 Math, Ann. 275{1986). 539-546.

[11] Y. Kuwamata. The Zariski decomposition of log-canonical divisors.
in Algebraic Geometry Bowdoin 1985, Proc. Symp. Pure Math. 46
{1987). Amer. Math. Soc., 425-433.

[12] Y. Kawwnata. Abundance theerem for minimel threefolds. Invent.
Math. 108 (1992), 220-246.

[13] Y. Kawwmnata. On Fujita’s freeness conjecture for 8-folds and §-
Jolds, alp-geom /9510004, Math. Ann. 308 (1997), 491-505.

[14] Y. Kawamata. Subaedjunction of loy canonical divisors for a sub-
vuriety of codimension 2, alg-geom/9511015, Contemporary Math.
207 (1997), TO-88.

29

f15] V. Kawamata. Subadjunetion of loy cunonical divisors 1. ale-

geom /§712014, Amer. J. Mach. 120 {1998), 893-899.

16] Y. Kawamata  Deformations of cononicol singuleritics. alg-
geont /9712018, 1. Amer. Math. Soc. 12 (1999). 85-92.

(7] Y. Nawamata, On the catension probiemn of pluricancnical forms,
niatl AG /9809091, Gontemporary Matl). 241(1999). 193-207.

(18] Y. Kawamata. K. Matsuda and K. Matsuki, Introduction to the
nindinel model problem. Adv. St. Pure Math, 10(1987), 283-360.

(L9} ). Kollidr. Higher direct images of dualizing sheoves I Ann, of Math.
123(1986). 11-42.

[20] 7. Kollir aud 8. Mori. Classification of three dimnensional fips. J.
Awmer. Math, Soc. 5{1992), 533-702.

[21) V. B Mebta and C. S, Seshadri. Moduls of vector bundles over
cwctes wnth parabolic structures. Math, Ann, 248 (1980), 205--239.

[22) M. Mella. Ezistence of good divisors on Mukai varieties.

[23] Y. Mivaoka. The Chern classes und Kodaire dimension of a v
e wviety. Adv, St. Pure Math. 10(1987). 449-476.

[24] A. Nadel. Muitiplier ideal sheaves and the emistence of Kihler-
Linstein netrics of positive scolor curvature. Aun, of Math,
13211089, 349-596.

[250 1. Nakawura. Comples paralielisable manafolds wnd their small de-
[ormnedions, 3. Diff. Geom. 10{1975), 85-112.

[26] N. Nakavama. Invariance of the plurigenera of alyebraic verieties
wider winimnal model conjectures. Topology 25(1986), 237-251.

[27] N. Nakavama. Zoriski decomposition end abundance. RIMS. 1997,

[28] N. Nakayaumna, fnvariance of the plurigenera of elgebraic verieties,
RIMS. March 1998.

[291 T. Oliawa and K. Takegoshi. On the eristence of L¥-holomarphic
Junctions. Math. Z. 195, (1987), 197-204.

30



[30) M. Reid. Canonical 3-folds. in Géowsétrie algébrique Angers, 1979
273-310.

[31] M. Reid. Young person’s guide to canonical singularities. Proc.
Symp. Pure Math. 46-1(1987), 345-414.

[32] W.Schmid. Varistion of Hodge structure: the singularities of period
mapping. nvent. Math, 22 (1973), 211-319.

[33] N. Shepherd-Barron. Miyaoka’s theorems on the generic seminey-
atinty of Ty und on the Kodaira dimmension of mininal reguior
threefolds. Astérisque 211{1992), 103-114.

[34] Y.-T. Sin. Iwortance of plurigenera. alg-geom /9712016,

[35] H. Skoda. Application des technigues L? ¢ lu théorie des ideayx d'un
wlgébre de fonctions holomorphes wvec poids. Ann. Sci. Ec. Norm.
Sup. 5(1972), 548-580,.

[36) E. Vielwes. Vanishing theorevns. ), reine angew. Math. 335(1982),
1-8.

[37] E. Vichwes. Weak positivity and the additivity of the Kodaira di-
mension for certwin fiber spuces. Adv. St. Pure Math, 1{1983), 329~
353.

[38] E. Viehweg. Weak positivity and the stobility of certain Hilbert
puinds. Invent. Math. 96(1989), 639-667.

Departmient of Mathematical Sciences, University of Tokyo,
Konaba. Meguro, Tokyo, 153-8914, Jupan
kawamata s u-tokvo.ac.jp

31



