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VERY AMPLE LINE BUNDLES ON QUASI-ABELIAN VARIETIES

SHIGEHARU TAKAYAMA

1. INTRODUCTION

This article is a continuation of my previous works concerning adjoint bundles on weakly
l-complete Kihler manifolds [T2] {T3]. A complex manifold X is said to be weakly 1-
complete if there exists a smooth function ® : X — R which is plurisubharmonic and
exhaustive. Here we consider a concrete application of the following abstract, but eflective,
vanishing and existence theorem.

Theorem 1.1. [T3, Theorem 4.1.A-B] Let X be a weakly 1-complete manifold with a
positive line bundle L. Assume that X has no compact compler subspace of positive
dimension. Then HI(X,Kx ® L ® J) = 0 for any analytic coherent ideal sheaf J which
defines a zero-dimensional compler subspace of X and for any ¢ > 0. In particular the
restriction map HY (X, Kx ® L) — Kx ® L ® Ox/J is surjective.

Here K x is the canonical bundle of X. The assumption: the absence of positive dimen-
sional compact subspaces seems to be restrictive. However this theorem can be seen as a
variation of Cartan-Serre’s fundamental theorem for Stein manifolds. Moreover, as we will
discuss, such weakly 1-complete manifolds make an important class of open manifolds.

We let T be a discrete subgroup of C*. The quotient complex Lie group C*/T", which is
called a guasi-forus, is a weakly 1-complete Kéhler manifold with trivial canonical bundle
[K1]. The existence of a positive line bundle is described by the so-called generalized
Riemann relations [AG] [CC2, §2]. If a quasi-torus C"/T" has a positive line bundle L,
there exist an abelian variety A, a quasi-torus Y without a compact subvariety of positive
dimension, and a surjective holomorphic group homomorphism ¢ : A x Y — C*/T
with finite kernel {see 2A). Theorem 1.1 for ¥ says that there exists few obstruction to
construct global sections of g*L|,«xy for a € A. Thus if every ¢*L|4x, with y € Y has
sections (by virtue of Lefschetz’ theorem on A}, we can construct sections of g*L, as well
‘as that of L. By using this principle, we shall show the following very ampleness criteria
of positive line bundles over quasi-tori.

Lefschetz-type Theorem 1.2. Let X be a quasi-torus with a positive line bundle L.
(1) Assume that X has no positive dimensional compact subtorus. Then L is very
ample.
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(2) L®2 is very ample if and only if there is no positive dimensional compact subtorus
A of X such that (A, L|4) is a principally polarized abelian variety.
(3) L®3 is very ample.

The second assertion for abelian varieties is proved by Ohbuchi [Ob). In a previous
work [T2, §4C], we obtained satisfactory results on the distinct points separation by
global sections. It depended on existence theorems in [T1]. We also showed Theorem
1.2(3) in [T2, Theorem 1.3], for which the so-called Lefschetz’ trick for non-compact
quasi-abelian varieties (cf. [CC1, Corollary 3.7]) was needed to separate infinitesimally
near points. Unfortunately we were not able to show Theorem 1.2(1) and (2) in [T2],
because Lefschetz’ trick did not work well for lower tensor powers, like very ampleness of
L and of L®%. Theorem 1.1 (or its variation: Theorem 2.4) enables us to show Lefschetz-
type theorem 1.2 for general polarized quasi-abelian varieties without using Lefschetz’
trick for non-compact quasi-abelian varieties.

There are several earlier works on Lefschetz-type theorems. The author was influenced
by works of Abe [A1] [A2] [A3], and of Capocasa-Catanese [CC1] [CC2]. Although we
will not use them explicitly here, their works of Kazama-Umeno [K2] [KU], and of Vogt
[V1] [V2] are also important as foundations in this field. Refer [T2, §1] about relations
with results in [CC2].

We show Theorem 1.2 in the next section. In the last section, we will give two extremal
examples of the pair X and L as in Theorem 1.2(1).

2. LEFSCHETZ-TYPE THEOREM

2A Polarized quasi-abelian variety. We recall basic notions and properties. A quasi-
torus C"/T" is said to be a toroidal group (also a Cousin quasi-torus), if there is no
non-constant holomorphic function on it. There exists a decomposition: Morimoto’s de-
composition [M, Theorem 3.2}, unique up to isomorphism, as a product of complex Lie
groups C*/T" = C* x (C*)* x X, where X is toroidal. Hence the study of quasi-tori is
almost reduced to that of toroidal groups.

Definition 2.1. A toroidal group X = C*/T is said to be a quasi-abelian variety if the
following generalized Riemann relations are satisfied: there exists a Hermitian form H on
C™ such that

(i) H is positive definite, and that

(ii) the imaginary part Im H of H takes integral values on T" x T,

A Hermitian form H satisfying (i) and (ii) is said to be a polarization of X; in addition
such a pair (X, H) is said to be a polarized guasi-abelian variety.

The condition (i) can be replaced by the following: H is positive definite on the max-
imal complex subspace contained in the real span of I' (cf. [AG]). A Hermitian form
H satisfying (ii) defines a cohomology class (Im H)|rxr € H%(X,Z). This definition is
slightly different from that of [CC2, Definition 2.1] [T2, §4], in which we consider a pair
(X, L) of a quasi-abelian variety X and a holomorphic line bundle L whose first Chern
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class ¢; (L) € H?(X,Z) is obtained as the imaginary part of a positive definite Hermitian
form on C". Here we stress on the topological object ¢;(L) = (Im H)|rxr € H?(X, Z).

By a partial analogy of Poincaré’s reducibility theorem (cf. [CC2, Proposition 2.3]) and
a theorem of Morimoto [M, Theorem 6.4, Remark 6.6}, we can decompose quasi-abelian
varieties after taking finite coverings as follows (cf. [T2, Proposition 4.8]):

Lemma 2.2. Let X be a guasi-abelian variety. Then

(1) there erists a compact subtorus A (: the mazimum abelian subvariety) of X which
contains any compact connected complex subspace V' of X passing through the unit element;

(2) there ezists o closed quasi-abelian subvariety Y of X without a compact complez
subspace of positive dimension, such that the natural homomorphism A x Y — X is
surjective with finite kernel;

(3) moreover Y in (2) is uniguely determined from a given polarization of X .

2B Positive line bundle and canonical reduction. We will discuss properties of
positive line bundles on quasi-abelian varieties. The following result gives some equivalent
formulations of positive line bundles on quasi-abelian varieties.

Theorem 2.3. [T2, Theorem 1.2} Let L be a holomorphic line bundle over a quasi-torus
C*/T'. Then the following four conditions are equivalent to one another

(1) L is ample.

(2) L is positive.

(3) There ezists a Kdhler form in the first Chern class ¢;(L) € H*(C"/T, R).

(4) The alternating form c;(L) : T x T' — Z given by the first Chern class is obtained
as the tmaginary part of a positive definite Hermitian form H on C™.

By using Morimoto’s decomposition and Lemma 2.2, we see the following theorem as
a corollary of our general theory: Theorem 1.1.

Theorem 2.4. Let X be a quasi-torus. Assume that X admitts a positive line bundle L
and that there is no positive dimensional compact subtorus of X. Then HIX,LJ)=0
for any analytic coherent ideal sheaf J which defines a zero-dimensional complex subspace
of X and for any q > 0. In particular the restriction map H*(X,L) — L ® Ox/J is
surjective.

Hereafer we focus on a polarized quasi-abelian variety (X, H)} with a non-trivial abelian
‘subvariety. Let g : A x Y — X be the finite covering homomorphism as in Lemma 2.2.
We regard the kernel G of ¢ as the covering transformation group. We take a holomorphic
line bundle L on X such that c;(L) = (Im H)|rxr in H(X,Z). By Theorem 2.3, L is a
positive line bundle.

Let us decompose the line bundle L after taking the finite covering g. Welet 7, : Y —
axY CAxYforae Aand j,: A~ Axy C AxY for y € Y be the inclusions, and
let pg : AXY — Aand py : A XY — Y be the projections. We set

Li=j3¢"L and Ly :=ig"L



4

positive line bundles over 4 and Y respectively. We let A := Pic®A be the dual torus of
A which is the group of line bundles over A with the null first Chern class, and let

P — AX A be the Poincaré line bundle

[GH, Chapter 2 §6] [LB, Chapter 2 §5]. Welet g4 : A x A —s A be the projection. We
consider a holomorphic map

B:Y — A defined by B(y) :=j}g"L ® jsg* L%V

Since Y is toroidal and 3(0) = 0, the map § must be a group homomorphism (cf. [AG]).
Then by the universal property of the Poincaré line bundle [LB, Chapter 2 Proposition
5.2], the following isomorphism follows:

FL=(1ax ) (ALa®P)@py Ly 2 phLa® (14 x BYP @ ptLy,

where 14 : 4 — A is the identity map. We will use the following general result for the
compact factor A (cf. [GH, p. 329]).

Lemma 2.5. The dimension d := dim H°(A, £L,) is positive. Moreover there exist d-
sections {6;}L., C HY(A x A, ¢, L4 ® P) such that their restrictions {Bilaxe}l, generate
HYA X & Ls® Py) for every € € A, where Pe := P|axe the restriction.

2C Lefschetz-type theorem. We let (X, H) be a polarized quasi-abelian variety, and
let L be a positive line bundle on X with ¢;(L) = (Im H)|pyr. Let g: A x Y —3 X be
the finite covering homomorphism as in Lemma 2.2. We assume that both factors 4 and
Y are non-trivial. We use these notations throughout this subsection.

We would like to show a counter part of the following theorem (cf. [LB, Chapter 4 §5]):

Ohbuchi’s Lefschetz-type Theorem 2.6. [Ob] Let £ be an ample line bundle on an
abelian variety A. Then |L%2| is not very ample if and only if (A, LY} is reducible with a
principally polarized abelian variety factor.

Our main technical result is as follows:

Proposition 2.7. (1) L is generated by its global sections if and only if (g*L)| axy s, for
every y €Y. (2) L is very ample if and only if (¢*L)|axy is, for everyy € Y.

Using [T2, 2B], by virtue of this proposition, Lefschetz’ theorem {cf. [GH, p. 317]),
Ohbuchi’s theorem 2.6 and of Morimoto’s decomposition, we can state our results as
follows: ‘

Theorem 2.8. Let X := C*/T be a quasi-torus with a positive line bundle L. Then

(1) L®™ is generated by its global sections for every m > 2

(2) L®™ is very ample for every m > 3;

(3) L®? is very ample if and only if there exists no positive dimensional compact subtorus
A of X such tha (A, L|a) is a principally polarized abelian variety.
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As we will see below, our claim follows from elementary combinatorial constructions by
virtue of Theorem 2.4 and Lefschetz’ theorem for abelian varieties. We can paraphrase
Theorem 2.8(3), by using [CC2, Proposition 2.5, as in [LB, Chapter 4 Theorem 5.5].

Proof of Proposition 2.7
The proof consists of two parts: Sublemma 2.9: the separation of distinct points; Sub-
lemma 2.10: the separation of infinitesimally near points.

Sublemma 2.9. Assume that the linear system |(g*L)| axy| over A x y separates any set
of r distinct points on A x y for everyy € Y, then |L| also separates any set of r distinct
points on X.

Sublemma 2.10. Let k be a non-negative integer. Assume that for every y € Y, the
restriction map H'(A x y,¢*L) — ¢*L @ (’)Axy/M’jtlwxy 18 surjective for every a € A.
Then the restriction map H*(X,L) — L®OX/M’§{;} is also surjective for everyz € X.

Proof of Sublemma 2.9. This is proved in [T2, Lemma 4.12(3)]. However we give the proof
for the readers conveniences.

Let zj,... ,%, be 7 distinct points on X. We set g '(z;) = {a;; X y,lj}ﬁ'l for every 1.
For example we construct a section s € H%(X, L) such that s(z;) # 0 and s(z;) = 0 for
any 7 > 1. We note that

(i) for every z;, a set g~'(z;) N (A x y1) consists of at most one point;

(ii) for every pair (4, j) with ¢ # j, g7 (z:) N g~ (z;) N (A X y11) is an empty set. Hence
a set (U_; 97 (z:)) N (A %X y11) consists of at most r distinct points.

Then by the assumption and Lemma 2.5, there exists a section § € H*(Ax A, ¢4 L4QP)
such that ((14 x 8)*6¢){a1; x y11) # 0 and that ((14 x 8)*@){a; x y11) = 0 for any
ai; X y11 € g7 (@) N (A x yn) with i # 1.

By Theorem 2.4 for Y and Ly, there exists a section f € H°(Y, Ly ) such that f(y,) # 0
and that f(y;;) = 0 for any y;; with yi; # vy

Then the trace of the product

5= 1617 X gi((la x 50 53 )
9E€G
is a section with the desired properties, where |G|™! is the degree of the covering g :
AxY — X. O

Proof of Sublemma 2.10. We take a point z € X, and set g7'(z) := {a; X yj}ﬁll. We con-
sider a fibre A x ;. By our assumption and Lemma 2.5, there exists a finite number of sec-
tions {0x}rea € H*(Ax A, ¢5L4®P) such that their restrictions {((14 X 8)*0x)| axy; }rea
on A x y; generate ¢"L ® Ouaxy /M5 arxun-

On the other hand, by Theorem 2.4 for ¥ and Ly, we can take a finite number of sections
{fu}uem of Ly such that they generate Oy /MEL at gy, and {fuluew € H' (Y, Ly ®

® yj¢ylM’}°,E). Let us consider their products

S = {(1a x BY0, ® py futreapem C HY(AxY,g"L).
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We just note that the differentials of the maps 14 x 4 and py do not cause any troubles,
since they are group homomorphisms, i.e., they are locally linear. Then it is clear that S
generates Oaxy /M45EY, . at a; X y; and vanishes in O 4,y /ME]

AxYa;xy, at any other
a;j x y;. Then their traces

Gi€G

5= {IGI‘1 > 9 ((La x B)"6, ®p;’f.u)} C H(X,L)
Aeh,ue M

generate L @ Ox /MK'] a

Let us complete the proof of Proposition 2.7. It is easy to see that the “only if’ parts
of (1) and (2). Sublemma 2.9 with r = 1 shows the “if’ part of (1). We also see that
Sublemma 2.9 with r = 2 and Sublemma 2.10 with k = 1 shows the “if” part of (2).

3. EXAMPLE

We present two extremal examples of quasi-abelian varieties without a non-trivial com-
pact subtorus. The first one is a good example to explain our Lefschetz-type theorem
1.2(1).

Let I' be a discrete subgroup of C* of rank I' = n + ¢ for some 0 < ¢ < n, and set
X = C*/I'. We (may) assume that I is generated by (n + ¢)-row vectors of the following
period matrix; Cousin second normal form (cf. [V1, Proposition 2]):

P = (pl ...Pn+q) = (Ino_q %) 3

where Q = (I, S) is a period matrix of a g-dimensional compact complex torus, and R is a
real matrix. We let C{ := RI'Ny/~1RI be the maximal complex linear subspace contained
in the real span of I We take a holomorphic coordinate (z,... y2g; W1y ... Wyog) Of
C" = Cf x C*79, and let {ey,... ,e,} be the unit vectors. We set 'y := QZ%% and
T := C}/T'r. The projection 7 : C* — C¥ induces a group extension:

0 —-C) 79— X —T—0.

We see that X is a quasi-abelian variety without a non-trivial compact subtorus, if I' N
C{ = {0} and if 7" is abelian. We set

HE = g 2 Hermitian form on C” such that |
o '’ Im H takes integral valueson ' x I'[’
HT. .= | gy, _ @ Hermitian form on Cf such that
T= " Im H takes integral values on 'y x I'r [ °

The projection 7 induces a map =* : HI'r — HI'. The principal part of H € HT is a
Hermitian matrix (H (e;, ;) }1<i,j<q. because the following relation holds: (H (e:, €;))1<i j<q
is positive definite if and only if there exists a positive line bundle I on X such that
ci(L) = (Im H)|rxr. We would like to understand the difference HI' \ m*HI'7. We set
M := {(H(es, €;))1<i i< H € HT};
MT'r := {(w" H (e, €;))1<ij<qs H € HI'7}.



Example 1 [Al, §4]
We assume that rank I' = n 4+ 1 and that X = C*/T is toroidal. Then X is a quasi-
abelian variety without a non-trivial compact subtorus. In this case, Abe showed

Proposition 3.1. [Al, Proposition 4.1] The set MI' is dense in R. In particular, for any
given holomorphic line bundle L on X satisfying the condition in Theorem 2.3(4) and for
any given positive integer g, there exist holomorphic line bundles L, and L, on X, both
satisfying the condition in Theorem 2.3(4), such that L = L' & L,.

P=(P1p2p3)=(0 ! \/b__l),

For example we take

1l a

where @ and b are real numbers. The quotient C2/T is toroidal if and only if @ or b is

irrational. Then
M = {af +bm +n; £,m,n € Z};

MI'r = Z.

Since we can take the positive integer ¢ in Proposition 3.1 arbitrary large, if we know
Theorem 2.3, it sounds reasonable that L would be very ample, and so on. This example
was a supporting fact, in October 1996, that we would have a chance to prove Theorem
1.2(1). However the following example shows that the situation is not as simple as we
expected.

Example 2

We take real numbers ro = 1,7,... ,74 which are linearly independent over . We let
T" be a discrete subgroup of C?* which is generated by five row vectors {pi,... ,ps} of the
following period matrix:

01 0 +/-1 0
P=(p--p)={0 0 1 0 =1
1 r T T3 T4

Then X = C3/T is a quasi-abelian variety without a non-trivial compact subtorus. We
take a Hermitian form H € HI'. We set A := Im H and k;; := —A(p;,p;) € Z. We can
compute relations among r;'s, ki;’s, A(ei,e;)’s and A(e;, v/—1e;)’s, by using

p1 =€3, Px=¢€1+Tme3 ps=+v—le +rzes,
P3 = €y +Trae3, ps = +/—leg + ryez.

Then it follows, from our assumption: 1,r,,... ,74 are linearly independent over Q, that
kig=kiz=kiy=kis =0, kog=kgs, ks = kas.

Then we have

k24 k25 Y _1k23 0
(H(ei, ej)) = kas + v/ —1kos kss 0
13 0 0 H (es, 6’3)

This implies that
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Proposition 3.2. (1) For any given H € KT, there exist Hy € HI'r and Hy € HI with
Im Hy = 0, such that H = n*Hy @ Hy; in other words,
(2) For any given holomorphic line bundle I on X, there exist a holomorphic line
bundle Ly on T and a topologically trivial holomorphic line bundle Lo on X such that
Z 7*Lr ® Lo. Moreover L is positive if and only if Ly is.

In spite of this situation, every positive line bundle on X is very ample. These phe-
nomena: Example 1-2 and Theorem 1.2(1) are still mysterious to the author.

REFERENCES

[A1] Abe Y., Sur les fonctions péiodiques de plusiers variables, Nagoya Math. J. 122 (1991), 83-114.

[A2] Abe Y., Eristence of sections of line bundles over a toroidal group and its gpplications, Math. Z.
216 (1994), 657-664.

[A3] Abe Y., Lefschetz type theorem, Ann. Math. Pure Appy. 169 (1995), 1-33.

[AG} Andreotti A.- Gherardelli F., Some remarks on quasi-abelian manifolds, Global analysis and its
applications, Intern. Atomic. Energy Agency, Vienna, vol. II, 1974, pp. 203-206.

(CC1] Capocasa F.- Catanese F., Periodic meromorphic functions, Acta Math. 166 (1991), 27-68.

[CC2] Capocasa F.- Catanese F., Linear systems on quasi-abelian varieties, Math. Ann. 301 (1995),
183-197.

(GH] Griffiths P.- Harris J., Principles of Algebraic Geometry, John Wiley and Sons, 1978.

[K1] Kazama H., On pseudoconvexity of complex abelian Lie groups, J. Math. Soc. Japan 25 (1973),
320-333.

(K2] Kazama H., 8-Cohomology of (H, C)-Groups, Publ. RIMS. 20 (1984), 297-317.

[KT] Kazama H.- Takayama S., 83-problem on weakly 1-complete Kdhler manifolds, Nagoya Math. J.,
to appear.

[KU] Kazama H.- Umeno T., Complez abelian Lie groups with finite-dimensional cohomology groups, J.
Math. Soc. Japan 36 (1984), 91-106.

[LB] Lange H.- Birkenhake C., Complez Abelian Varieties, Grundlehren Math. Wiss. vol. 302, Springer
Verlag, 1992.

[M] Morimoto A., On the classification of noncompact complez abelian Lie groups, Trans. Amer. Math.
Soc. 123 (1966), 200228,

[Ob] Ohbuchi A., Some remarks on ample line bundles on abelian varieties, manuscripta math. 57
(1987), 225-238.

[T1] Takayama S., Adjoint linear series on weakly 1-complete Kdihler manifolds I: global projective
embedding, Math. Ann. 311 (1998), 501-531.

[T2] Takayama S., Adjoint linear series on weakly 1-complete Kihler manifolds II: Lefschetz type theo-
rem on quasi-Abelian varieties, Math. Ann. 312 (1998), 363-385.

T3] Takayama S., The Levi problem and the structure theorem for non-negatively curved complete
Kdéhler manifolds, J. Reine Angew. Math. 504 (1998), 139-157.

[V1] Vogt C., Line bundles on toroidal groups, J. Reine Angew. Math. 335 (1982}, 197-215.

[V2] Vogt C., Two remarks concerning toroidal groups, manuscripta math. 41 (1983), 217-232.

Shigeharu TAKAYAMA

Department of Mathematics, Graduate School of Science, Osaka University. Toyonaka,
Osaka, 560-0043 JAPAN. e-mail address: taka@math.sci.osaka-u.ac. jp

Address from April 1, 2000:

Graduate School of Mathematics, Kyushu University. Hakozaki, Higasi-ku, Fukuoka,
812-8581 JAPAN.



