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A Quick And Dirty Early Universe/ Cosmology Course

Gary Steigman *
*Departments of Physics and Astronomy, The Ohio State University Columbus, OH 43210, USA

This series of lectures is intended to provide an introductory, non-rigorous overview of those aspects of the
standard, hot big bang cosmology useful for understanding and appreciating the astroparticle physics-cosmology
connection. Following a minimal introduction to the cosmography and dynamics of the Universe, the basic physics
underlying the early evolution of the Universe is outlined. The intent of these lectures is pedagogical and no claim
of originality is made. If these lectures are sucessful, the previously unitiated might be prepared to proceed from

here to an understanding of current literature on the particle physics-cosmology connection.

1. Introduction

Progress in elementary particle physics inex-
orably points towards “new physics” at ever higher
energy scales, stretching the ingenuity and bud-
gets of the high energy physics community. Thus
in the last 2-3 decades, attention has increas-
ingly turned to the Ultimate Accelerator - the
Early Universe - as a probe of physics at the high-
est energies. Increasingly, particle physicists are
becoming fluent in cosmology and astrophysics
(sadly, the reverse is only rarely occurring). In
anticipation of the next generation of accelera-
tors (LHC, etc), and in view of the flawless suc-
cess of the "standard model” of particle physics,
the Universe - at present and during its early evo-
lution - i1s providing an indispensible laboratory
for the study of high energy physics. It is the in-
tent of these lectures to provide the vocabulary
necessary for at least a superficial understand-
ing and appreciation of this cosmology-particle
physics connection. There is no attempt - nor
claim of - completeness or rigor in this exposi-
tion. The interested reader is encouraged to move
on from this pre-introduction to such texts as
Zeldovich-Novikov([1] and Kolb Turner[2]; further
details and, especially, further references may be
found there. The approach to cosmology here is
inspired and informed by Weinberg(3]; the reader,
however, is encouraged to regard with skepticism
any quantitative results in that excellent book as
they are likely to have been superceded by more
recent observations.
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2. Cosmography

X-ray, y-ray as well as Radio Astronomy data
offer strong support for the Optical data which
reveals a Universe which - on the very largest
scales - is homogeneous and is expanding isotrop-
ically. The high isotropy of the cosmic back-
ground radiation (CBR)-the 2.7K blackbody ra-
diation - provides the best evidence that the Uni-
verse, at present and during most of its history, is
1sotropic and homogeneous. Such a Universe may
be described by a unique metric - the Robertson-
Walker metric[3].

ds® = c*dt* — a%(1)[(d®)? + r2dQ?] (1)

In (1), s is the proper distance, ¢ the speed
of light (in most of the following, ¢ = 1), t the
time and a(t) is the scale factor which describes
the expansion of the Universe. © and r are two
alternative comoving radial coordinates,

dr

90 = Ay

(2)
where k is the 3-space curvature constant. The
comoving angular coordinates 6 and ¢ (which will
not concern us here) are contained in d§2°

dQ? = (d6)? + sin?6(d¢)? (3)

To 1lustrate the use of (1), consider photons or
other particles which move on geodesics (ds=0).
The equation of motion, which relates the comov-
ing radial coordinates to the cosmic time, is

dr cdt

40 = (1— kr2)t/2 =% a(t) (4)
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This leads us naturally to the concept of the
(particle) Horizon. Consider a photon emitted at
© =0 at t=0. At any later time the comoving
radial coordinate of this photon will be,

oult) = [ % (5)

Op(t) is the furthest - in comoving coordinates
- a signal or any causal effect could have traveled
up till time t.

In our somewhat oversimplified view of the Uni-
verse we imagine a class of particles (e.g., galax-
ies) which expand with the average expansion of
the Universe. These “comoving particles” remain
at fixed values of the comoving coordinates; i.e.,
Oy is independent of time (“g” stands for * gala.xy”)
Now if light is emitted by a galaxy at 9, at ¢,,
it WIII be observed at @ = 0 at a later tlme t
where,

to cdt )
o= [ =5 (©)

Since Oy is constant,

0, ¢ ¢ dt,
dt,  a, a, dt,

=0 (7)

so that time intervals at emission and observation
scale with the scale factor.

dt,/dt, = a,/a, (8)

Wavelengths and frequencies of light may be re-
lated to the time intervals to reveal that photons
emitted with frequency (wavelength) v,(J,) will
be observed at a shifted frequency (wavelength)
Vo(A,) where

afa, = A /A, = v. /v, (9)

That is, as the Universe expands (a, > a.) all
wavelengths are stretched (A, > A.). The “red-
shift” 2 is defined by z = (A, — A.)/A. so that
1+2=a,/a.

Since 3-space is, in general, curved (k # 0) and
expanding (a(t)) there are many different, oper-
attonally defined, distances. Here we restrict at-
tention to the “proper distance” along a radius.

Although artificial, it may be related to obser- -
vationally defined measures (see[1-3]). Suppose
time were stopped (dt = 0) and distance was
measured along a radius (df = d¢ = 0). Then
we would find

R(t) = a(8)0 = a(t)/ (I—W (10)

For example, the proper radial distance to the
horizon is,

edt!

Ri(t) = a(t)On () = a(t) f o (11)

‘The proper volume at time t, out to comoving
radial coordinate 8, is

v(e, t)—~4?ra3(t)/ —~—-§’;W (12)

Note that for the special, “flat” 3-space case
(k=0),©=rand V= irE

3. Dynamics

To proceed further we must describe the evolu-
tion of the Universe; we must determine the time
dependence of the scale factor. The Hubble pa-
rameter is a measure of the expansion rate of the
Universe.

1 da

H(t) = = H (13)

The present value of the Hubble parameter,
H, = H(t,), is often called the Hubble “con-
stant” Since H, has dimensions of velocity /length,
it is conventional in astronomy to measure H, in
units of kms~!'Mpc~! where 1Mpc ~ 3 x 102
cm. The inverse of the Hubble parameter is a
timescale - it provides a measure of the age of the
Universe. Thus we may write

H, = 100k kms~ ' Mpc~1 (14)
H7'=98r"Gyr

h in (14) is introduced to account for the present
observational uncertainty in H,; it is likely that
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04-05< h <0.9-1.0. The equations describ-
ing the dynamics of the evolution of the Universe
are found by substituting the Robertson-Walker
metric (eq. 1} into the Einstein equations(l, 3].
The Friedman-Lemaitre equation relates the ex-
pansion rate (H) and the density (p).

8 kc?
2 _
H=3Cr-7 (1)

In (15) G is Newton’s gravitational constant, p
the (total) universal mass (energy) density, k is
the 3-space curvature constant and c the speed
of light. If there is a non-zero cosmological con-
stant A, then A/3 should be added to the right
hand side of eq.15. Eq. 15 may be rewritten in a
suggestive form,

1 da,, GM _ 2

2 dt) a ke (16)
where M = 4Za®p. From (16) it is clear that
the geometry (k) and dynamics are related; for
k < 0 unlimited expansion is possible; for £ > 0
the Universe expands to a maximum and then
recollapses.

There are two unknown functions of time a(2)
and p(t) in eq. 16. Thus, another equation is
required; it has a form suggestive of entropy con-
servation (dU + pdV = 0).

dp+3(p+p)dafa=0 (17)

In (17), p is the (isotropic) pressure. Thus, to
solve for the evolution of the Universe, the equa-
tion of state: p = p(p), must be specified. Two
limiting cases suffice to describe most epochs in
the evolution of the Universe. If the density is
dominated by pressureless {non-relativistic) mat-
ter, e.g., “ordinary” baryonic matter, the Uni-
verse is called “Matter Dominated” (MD). In this
case pa® = constant and (15) may be solved for
any choice of k. Note that for a(t) < a, and/or
k=0, eq. 15 simplifies and, for a MD Universe,
a~ t*/3 and H(t)t = 2/3. If, in contrast, the uni-
versal density is dominated by relativistic matter
(“radiation”) for which p = 1/3pc® (we are be-
ing careless about ¢ = 1), the Universe is called
“Radiation Dominated” (RD). In this case pa® =
constant and, again, (15) may be solved for any

choice of k. Again, for early evolution {(a — 0

- and/or £ = 0), eq. 15 simplifies and, for a RD

Universe, a ~ t*/? and H(t)t=1/2. Note that
for the early (a — 0) evolution of the Universe
and/or k = 0, p(t) ~ t~2. For thermal radiation,
p ~ T* so that the temperature and scale factor
vary inversely with each other,

T/T =d fa=(1+2)/(1+2) (18)

For the early, RD Universe, T ~ t~1/2,

It is interesting to compare the universal “po-
tential energy”, GM/a = 4”—36—,0 a?, to the uni-
versal “kinetic energy”, 1/2(da/dt)?

In (19), the critical density is p. = 3H?/8%G.
Comparing (15) and (19) reveals the deep con-
nection between Dynamics and Geometry.

ke = (aH)* (2 - 1) (20)

In general €2 is time-dependent. For & > 0,5 >
1 and, as the Universe expands, ! — oo. For
k < 0,2 < 1 and, as the universe expands, ? —
0. Thus, for £ # 0, may be anywhere in the
range 0 < £2 < oo. Further, at the earliest epochs
(@ — 0),2 — 1. So, as the Universe evolves, Q2
should depart from unity and, much later, should
either be very small or very large. However, at
present, some 10-20 Gyr after the Big Bang, Q2
1s apparently within an order of magnitude of
unity. It is this “coincidence”that led Dicke &
Peebles[4] to propose that k=0; in this case, 2 =
1 for all times {see eq. 20). The inflationary
paradigm(5] proposes a physical mechanism for
driving kc?/a® — 0.

3.1. Age of the Universe

For the “Open” Universe model, k < 0, as the
Universe continues to expand, p — 0. In this
case, Ht — 1. If Q, « 1, then this mode}
would be a good approximation to the present
Universe and {, = H;! =~ 9.8h~! Gyr. In any
realistic model, however, p > 0 and this has the
effect of slowing the expansion (the scale factor
is a concave function of time). As a result, the
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Universe is always younger than H~! : t, < H; L.

That is, t, = H;! f(Q,) where f < 1. For the

MD Universe,

i oM 2dx
o®)= [ ey @)

Note that farp(0) =1 and farp(1) = 2/3.
For the RD Universe,

rdzr 1

fan(ﬂo):]o @+ (1= 2272~ 1yl

3.2. The early (RD) Universe

Recall that for non-relativistic (pressureless} mat-

ter pyr ~ a3, while for extremely relativistic
(radiation) matter pgr ~ a4, so that as the
Universe expands it evolves from an early RD
epoch to the present MD epoch (per/pNr ~
a~1). Further, if we concentrate on the early evo-
lution of the Universe, any curvature may be ne-
glected (i.e., kc?/a? €« 87 Gp/3). Thus, for the
early Universe, (15) & (17) reduce to

327
3
It is conventional to write the total density in

terms of the photon density, introducing an “ef-
fective” number of degrees of freedom

——Gpt’=1 (23)

— 9
P= eéj Py (24)

Since p, ~ T4, g.y;T* t? = constant, so

the expansion rate, t~! ~ ge" 2T2 increases with
geys. For an early, RD Umverse
t(sec) = 249, *Ti2y (25)
If g.s; increases - due, for example, to the pres-
ence of “new” (ER) particles - then at fixed T,
the Universe is expanding faster and is therefore
younger (compared to the “standard” case).
Knowing the time-temperature relation is key
to probing the physics of the early Universe. Pri-
mordial nucleosynthesis in particular provides a
unique window to the early Universe. Any new
physics which modifies the time-temperature re-
lation at the epoch of nucleosynthesis may be re-
vealed in the abundances of the light elements

D> He *He and "Li[6]. Thus, the remainder of
these lectures concentrates on the thermodynam- -
ics of the early universe and illustrates the results
with several examples. For further details, seefl-
3, 7.

4. The Thermal History of the Early Uni-
verse

In equilibrium at (photon) temperature T, the
number density of (blackbody) photons is

L= B0 s o g0y em® (26)

The energy density in CBR photons is

pr= BT &

YeVem™3(27)

It is convenient to relate the number/energy
densities of other particles to that of photons. For
extremely relativistic bosons (e.g., pions when T' >
My ),

np/n, = (98/2)(Ts/Ty)’ (28)
pa/py = (g8/2)(T/Ty)*

In (28), gg is the number of helicity states and
Tg the temperature of each boson. The difference
between Fermi-Dirac and Bose-Einstein statistics
leads to similar but slightly different results for
ER, fermions.

nr/ny = 3/4gr/2)(Tr/Ty)? (29)
prloy = 1/8(9r /2)(Tr/Ty)*

Comparing (24) with (28) and (29), we may
write for g.;s

Gess = Z .‘)'B(

To illustrate the above, consider as an example
the epoch when the temperature is in the range
~ 1—100 MeV. During this epoch the only con-
tributors - in the standard model - to the total en-
ergy density are ER photons, et pairs, v,, vy, vr.

+5 o Pt 3)
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Also, during this epoch all particles are in ther-
mal equilibrium so that T, = T, = T,,. Thus, in
this epoch,

Gejs =2+ 7/8(4+3x 2)=43/4 (31)
and
t(sec) = 0.74 Ty, (32)

As another example, consider the epoch when
T <« rm,, so that the ex pairs have annihi-
lated away (but, the Universe is still radiation
dominated). Now the only ER particles present
are 7, Ve, ¥y, vy. As we will see shortly, the pho-
tons have been “heated” relative to the decoupled
neutrinos by the annihilating electrons, so that
T, = (11/4)*/3T,,. Therefore, in this case

Gesr =2+ (7/8) x 3x 2(4/11)*/3 =336 (33)
and
t(sec) = 1.3 Toily (34)

It is important to note that in some variations
on the standard model (e.g., 2 massive tau-neutrino
with m,, a few to a few tens of MeV), even the
early energy density need not be RD. Nonethe-

less, we may still define g.ys through eq.24: g.5;/2 =

prot/p- However, eq. (30) only applies when
pror is dominated by the contribution from ER

particles.

4.1. Entropy Conservation: Tx vs. T,

- As the Universe expands and cools, particles
will envolve from ER to NR and, when T' < m,
they will begin to annihilate and/or decay. Al-
though these massive particles may cease to con-
tribute to pror, their annihilation/decay “heats”
the remaining interacting ER particles. However,
at any epoch, pror may consist of contributions
from interacting {coupled) particles as well as from
non-interacting (decoupled) particles. An exam-
ple is the Universe after e* annihilation, domi-
nated by interacting photons and decoupled neu-
trinos. In order to evaluate the contribution of a
decoupled particle - call it X - to g.ys, we must
know the ratio T /T.,. Entropy conservation[l-

.3, 7] permits us to find this ratio.

Consider the entropy in a comoving volume of
the expanding Universe,

S~ a*(p+p)/T ~ *p/T) (35)

We may relate p to p, and p, /T to n, in such
a way that we may define,

S = g(T)Ny(T) (36)

where No(T') is the number of CBR, photons in
our comoving volume at temperature T. Except
during phase transitions, as the Universe evolves
S is conserved. Now, since our particle X is de-
coupled, Sx itseif is conserved and Nx(T), the
number of Xs in a comoving volume is unchanged
(no production/annihilation; X is assumed to be
stable). As long as X decoupled when extremely
relativistic, Nx ~ a®T% ~ VT%. Thus, Tx pro-
vides a measure of the evolution of our comoving
volume. That is, we may specify the size of our
comoving volume by specifying Nx. As a result,
alx = constant. Now, since S and Sx are con-
served, so toois Sy = §—8x . That is, the entropy
carried by the interacting particles is separately
conserved.

St = g1(T)NA(T) (37)

Note that Sy ~ g7a®T3> ~ g/(T, /Tx)? remains
constant as the Universe evolves. This is the re-
lation we have been searching for; as g; decreases
when particles annihilate/decay, the ratio T, /Tx
increases.

To illustrate the application of (37), consider
the ordinary neutrinos which decouple at tem-
peratures of a few MeV. Somewhat later, when
the temperature falls below ~ 1/2MeV, et pairs
annihilate heating the CBR photons. If “before”
indicates prior to e* annihilation but after v -
decoupling, then

Before i gr =2+ (7/8) x 4=11/2 (38)

If “after” denotes after e¥ annihilation is com-
plete,

After gy =2 (39)
Comparing (38), (39) and (37), we find that
N_ffter:(ll/‘l)N,?efore (40)
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and, (75 /Tx)ageer = (11/4)V/3. .

Thus, in our same comoving volume (contain-
ing Nx X - particles which, in this case, might
be the decoupled neutrinos), there are more pho-
tons after e* annihilation and, they are hotter
than they would have been had the e* not anni-
hilated.

Since below m, there are no further ER parti-
cles, the “After” quantities in (40) are those we
would observe today. '

Nyo = (11/4)Ny(T > m,)
(T4/T0)o = (11/4)/3

We are often interested in physics at scales higher
than the few MeV decoupling scale of neutrinos.
To apply our results to higher temperatures -
when the neutrinos were still coupled/interacting
- we must relate N, above a few MeV to N, be-
low m.. For T > few MeV (the scale at which
the neutrinos decouple),

(41)

91(TIN(T) = (D) (few Mev) = (S)v,, (a2)

In (42), g7 (few MeV) =24+ 7/8(4+3 x 2) =
43/4. As an example, consider a particle X which
decouples at Tyx where: m, < Tyx < my (105 <
Tax < 135MeV). Then, g;(Tux) = 43/4 + 7/8 x
4 = 57/4 (the ER muon contributes the extra
degrees of freedom), so that t(sec) ~ 0.64 Tirtv
and,

11 57
Nyo = B~ "ZN‘V(TJX) (43)
43/11
Tx [T))e = [—L——_]/3 — 0.65
(Tx /Ty) s"(TM)]

4.2. The Epoch of Nucleosynthesis

Many of the early Universe constraints on par-
ticle physics beyond the standard model follow
from comparison of the predictions of big bang
nucleosynthesis (BBN) with the observed abun-
dances of the light elements[6] . The neutrinos
decouple shortly before the epoch of nucleosyn-
thesis so that, from BBN to the present, the ratio
Tx /T, is preserved. For T' > m.,T, = T, and
gr = 43/4 so that,

43/4

m]”a = (I‘{)O (44)

Tx
(—ﬁ)NUC—[ T

Suppose, for illustration, that the X particle
in the previous example (m, < Tyx < My) is
a “new” (more weakly coupled) light nreutrino
(fermion; gx = 2). Then, (Tx /T, )nve = (43/57)1/3 =
0.91 and the effective number of degrees of free-
dom at BBN increases to
90y = % + '% x 2(%)NUC = 1114§ (45)

It is convenient to introduce “the equivalent
number of extra neutrinos” AN, = Apror/py.
If Apror is due to new ER particles, it follows
from (24) and (30) that

AN, = Y e +8/1 (2N e 46)
F v B ¥

In (46) the prime on the sums is a reminder that
the standard model particles (v, e*, v,, vy, Vr) are
not included.

Thus, at BBN, we may write

43 7

g{)}’jc = + —4AN,, (47)

Recall that, for the early RD Universe, the ex-
pansion rate {¢~!) varies with P;*/g'r: so that in the
presence of “extra” ER particles the early Uni-
verse expands faster by a factor

. 7
§ =t/t' = (phor/pror)'/? = (1_+'¢1_13A No)!?(48)

For our previous example of a new neutrino
which decouples above m,, AN, = 0.69 and ¢ =
1.05. Thus, at a fixed temperature the Universe
would be ~ 5% younger; this may affect the pre-
dicted relative abundances of the light elements
produced during BBNJ[9].

As another example, consider a new, light, weakly
interacting scalar (boson; gx = 1) which decou-
ples above the pion mass but below the tempera-
ture of the quark-hadron transition. At 7Tx the
interacting degrees of freedom are: v, 7%, 7° e% u*
Ve, Vy, Vr, 50 that

91(Tax) = 43/4+ (7/8) x 443 =69/4 (49)
Then, (Tx /T, )nuc = (43/69)1/3 = 0.85 and

=81, Txyays _
AN, = —( 2)(Tv ~nuc = 0.30. (50)
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In this case £ = 1.02.

As the above examples suggest, BBN can con-
strain the properties (masses, couplings) of new
particles. An upper bound to AN, will, in gen-
eral, lead to a lower bound to T3x and an upper
bound to the couplings of new particles. For a
new “fermion”,
ar 43/4 4/3 (51)

AN, = =
2 [ gr(Tax)

If the new particle is a boson,

AN, = —[—— 52
g 7 [g;(T}X) (52)

A recent reexamination of BBN[9] finds the bound

AN, < 0.3 which, for a new light neutrino re-
quires

43/4 _ 106
gr{Tax) = (AN, >~

(53)

Such a large value of g; requires that any new
particles must have decoupled above the quark-
hadron transition temperature.

5. Summary

The intent of these lectures was pedagogical. It
is the hope that student will be prepared - and
encouraged - to take the next step. The excellent
texts[1-3] and the review articles{6, 7] may help
pave the way. It is my firm belief that the sym-
biotic relationship between astrophysics and high
energy physics, which has grown and developed
over the last few decades, is an enduring one of
great value to cosmology and to particle physics.
It is my hope that these notes provide a useful
primer to this new and exciting area of research.
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