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ABSTRACT

These lectures are intended to provide an overview of gravitation the-
ory and a framework for some others at this Summer School on As-
troparticle Physics and Cosmology. We will first discuss the foun-
dations and structure of metric theories of gravity, developed from
the consequences of various extremal action principles. Then we re-
strict our consideration to scalar-tensor theories of gravity, and intro-
duce various astrophysical applications. The weak-field applications
are the index of refraction of gravity and gravitational waves. The
strong-field applications are compact objects, their surrounding parti-
cle orbits, and cosmology. Except for waves and cosmology, effects of
the scalar field are assumed negligible, reducing the theory to general
relativity.

*Supported in part by NASA ATP grant NAG 5-3102.



1 Key Concepts and Principles

Gravitation is the most fundamental interaction, affecting all forms of mass-
energy. This allows its geometrical description, at least within the classical (non-
quantum) regime that we shall consider. The scope of this regime is indicated in
figure 1. Useful results rather than detailed derivations will be emphasized. The
approach that we will take and some applications that we will briefly consider are

outlined in figure 2.
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Fig. 1. The domains of our knowledge of the physical world, with the mass and
size of representative objects indicated. A theory of quantum gravity is needed at
distances less than the Planck length Lp = \/RG/c3.



The textbooks that are closest to our viewpoint are by Schutz! at the intro-
ductory level and by Misner, Thorne. and Wheeler? at the comprehensive level.
Except for only setting the speed of light ¢ = 1, but not the gravitational constant
G. we adopt their notation and conventions.

We shall first consider the broad class of metric theories of gravitation. This
class is defined by the specification of how gravity affects matter. The manner in
which matter generates gravity is separately specified by each theory within this

class. Metric theories are based upon a few key concepts and principles:

1} Universality of Free-Fall (UFF)

This principle states that if a test particle is placed at an initial event and
is given an initial velocity there, its subsequent worldline through spacetime will
be independent of its structure (i. e., all forms of energy ‘fall’ at the same rate).
A test particle is conveniently defined as one whose charge, mass, and size are

reduced until experimental results are unchanged.

2) Coordinate Frame

A coordinate {or reference) frame can be visualized as a continuous set of
spatially labeled ‘clocks’ filling spacetime. Such generalized clocks merely provide
the time label of events. Infinitesimal distances are best measured by the radar
method. The proper distance is ¢/2 times the round trip travel time, as measured
by an ideal clock carried by the fiducial observer. The time associated with the

measurement is the average of the photon emission and reception times.

3) Inertial Reference Frame

This is a local coordinate frame in which any free test particle is unaccelerated
(to a specified accuracy) within a small specified region of spacetime. It can always
be constructed at any point (event) in spacetime (if UFF is valid). A physical
realization is a nonrotating lab in free-fall, small enough that the effects of tidal

gravitational forces are negligible.
4) Einstein Equivalence Principle (EEP)

This principle states that in all inertial frames, the nongrawtational laws of
physics are those formulated within special relativity (when local Lorentz coordi-

nates are employed).

Employing the EEP, we will see how gravity emerges from a local analysis.

Demanding that the laws of physics retain their form under general coordinate



transformations r*" = r#'(r®} (general covariance) will then allow us to determine
how matter couples to gravity: via a metric tensor. This metric tensor has com-
ponents g, (r*) which can be put in the Minkowski form Nuw. With 8¢, /0r* = 0.
in every inertial frame (which is then called a local Lorentz frame).

Note that all tensor equations (T = 0) are generally covariant. Such an
equation will thus be true in all coordinate systems if it is known to be true in
any one (such as a local Lorentz frame).
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Fig. 2. The structure of these lectures.



2 Tensor Algebra in Metric Spacetimes

Tensor algebra is the study of geometrical objects (scalars. vectors. tensors. . . J

at any fixed point Py. These objects exist independent of any coordinates. so form
the proper description of physical reality.

2.1 Vector

In curved spacetime, we require a local definition of a vector. A familiar one is

v= (E)
X ) 5,

to some curve P(A) at the point P, where the vector exists, where dP is the

the tangent vector

infinitesimal displacement vector. If the path parameter A is chosen as the proper
time 7 (for a nonzero mass particle), the tangent vector is the four-velocity U =

dP/dr.

2.2 Tangent Space

The vectors at any point Py form this abstract four dimensional vector space. All
geometrical objects at this point reside in this tangent space (not in spacetime}).

2.3 Basis

A basis is a set of four linearly independent vectors e, (o = 0,1,2,3) at a point
Py. Any vector v at Py can be represented by its components v®:

v =1%, (summation convention) .

Consider some coordinate system: four functions z*(P). A (global) coordinate

basis is then

e, = OP/3z",

indicated in figure 3. We shall only employ such bases.
.Most other aspects of tensor algebra are direct generalizations from special

rel'ativity in each tangent space, as follows.
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Fig. 3. Coordinate basis vectors in the tangent space at Py, tangent to the coor-

dinate curves there.

2.4 Tensor

A tensor can be thought of in at least two ways:
e As a direct product: T=T%"¢, Qe5®--- .

e As a linear operator on vectors. giving a scalar (number):
T(u,v,...) = T(es €5, .. )u®? - = Tog. u®? .- .

The second equality defines the components of a tensor.

2.5 Metric Tensor

This generalization of the Minkowski metric of special relativity, with components
nue = diag.(—1,1,1,1). produces the scalar product of vectors: u-v = g(u.v).

Its components then also represent scalar products:

g(ea.€3) = €4 - €3 = gag = (€5, €a) = 4a -

Other aspects are:
e The interval ds? = g(dP.dP) = gasdr®dr’ (dP = dze,) .

e Its inverse. given by g#*?g,, = 6*,. & ‘Raising and lowering indices":

— _ v _ v
v, = v-e,=g(v%, e, =g,0",

v o ug
v o= ¢ gt = 9", .
This generalizes to give

Tﬂ

a 7y

_— galug.TUTlu-GU‘n = g.@ﬂTaaﬁr‘“



and the generalized scalar product T";.rVQN"’T, for instance.

It 1s important to remember that all measured quontities are scalars. For
instance. the energy of a photon of four-momentum p measured by a detector of
forir-velocity U {as shown in figure 4) is £ = —U - p = ~U%p,. This reduces to

£ = p® in an instantaneously comoving (U' = 0) local Lorentz frame.

u

r

Fig. 4. The interaction of a photon of four-momentum p with a detector of four-

velocity U.

e Contraction produces a new tensor of rank two lower; for instance
_ o _ T
Quv =M pov =9 Mo

independent of choice of basis.

2.6 Change of Basis

This is represented by e, = L, e,, generated by the tranformation matrix
L* .(Pg). With the inverse transformation matrix constructed from LA L7 = 6%

one obtains the transformed components
! “an ! e
c:rg'm = Laa rgr e Tr{,-
of a tensor. using the above equations. Under a tranformation of coordinate bases

[generated by the four functions z#'{z®)], the tranformation matrices assume the

form
L%, =87/ . L%, =0r/ar™ .

2.7 Four-volume Element

The unique scalar which generalizes all the usual properties of a volume element
is

dViy = vV~g drldxidrdr® = /=g¢d'r



where g is the determinant of the matrix g,, .

2.8 Gradient of a Function

This operation on a function f(z®) is represented as

df = f%qa = gagf.,@ea =g Eﬁea ,
in terms of its partial derivatives in a coordinate basis. The directional derwative
of a function along a curve P(A) (at Pp) is then

df _dz=of _ . _
D anGen U fesvedf

This scalar indicates how much the function f changes in the direction of the
tangent vector v.



3 Extremal Action Principles for Matter and

Their Consequences

The fundamental special-relativistic laws of physics may obtained by extremizing
the (scalar) action Z = [ Ld*r, 6T = 0. Within metric theories, the effects of

gravity on a classical material system may be obtained by the replacements
I — fﬁ\/—g diz, L — LN — Guvs Ay, Ay, ‘Tatter’) (1)

Variation with respect to A, gives Maxwell's equations in an arbitrary metric field.
(Complete antisymmetrization and symmetrization of indices will be denoted by
[@B- -] and (af---) .) We will add the contribution of the gravitational field(s)
to the action 7 later.

3.1 Stress-Energy Tensor

Under the variation g,, ~+ g, + 8g,., the stress-energy tensor T is defined by

8T = § / TH 66,0/~ d% | (2)

This definition automatically generates all of its desired properties from special
relativity.

3.2 Energy-Momentum Conservation

Since the ‘matter’ action Z,s is a scalar, it will be unchanged under a coordinate
transformation # — z# = z# + €#(x®), here taken to be infinitesimal. It will also
be unchanged by a subsequent change £* — z* in the integration variable. This

induces the net change

09 = —(9ov€” , + Guo€’ L + Guvo€’)

the Lie derivative of g,,. Under this variation of the metric tensor components,
one obtains 6Ty = [ T*, e°y/—gd*r , where

T“a’:.u = (1/v _9)[\/ ) T“a].# - %g,uv,dTpu

Note that the divergence 7% ;€ must be the components of a vector, since its

contraction with the components €’ of the infinitesimal displacement vector is a



scalar. Since 6Zys = 0 for arbitrary €”(r®), we obtain the four components

TH =10 (or T* , =0), (3)

oip

representing conservation of energy and momentum. The latter are the equations
of motion of the continuum.

3.3 Test-Particle Equation of Motion

The prescription (1) gives the action

dz* dzv\'*
Tu=-[ (-0 St) @
for a test particle, where the tangent vector to the particle's world line z())
is dP/dX = (dz*/d\)e, = i*e,. Vary the worldline, and choose A (after the

variation) so that g,,###* = —m?2. The rest mass m > 0. The components of the
particle’s four-momentum are then p* = ##. Then 6Ty = —m™! [ Q,6z%d\ = 0,
SO

Qa = dpa/dA — $guap"p’ = 0. (4)

Thus if the metric components g,, are independent of any coordinate x°, the
corresponding four-momentum component p, is conserved.

We also find that the vector components

d?*z® a | dz*dz® D {(dz® Dp®
o — e — ——— . m— — = e— T
@ _dz\2+{,¢w} 3 dA_DA(dA) Dy O (5)

where the Christoffel symbol (connection coefficient in a coordinate basis, not the
components of a tensor) is

{ ; } - { ) } = %gaﬂ(g‘,u‘# +g°”""" - g“y‘c) ' (6)

pv v

For rest masses m > 0, equations (4) and (5) also govern the particle’s four-
velocity U® = p*/m = dz®/dr, where the proper time interval dr = mdA.

It can be shown that in the neighborhood of a freely-falling observer. coor-
dinates can be chosen so that g, = 7., and g... = 0 along his/her worldline.
It then follows from equation (5) that all test particles in that neighborhood are
indeed unaccelerated (dz®/dr = constant = dz'/dz® = constant), verifying that
it is an inertial frame.

fo



3.4 Gradient and Covariant Derivative of a Tensor

Since Q% = Dp*/DAX are the components of a vector [given by equation (3)], it
follows that for any vector field with components V*(x#),

D dr lw | A

o o’ p) 428 _ o dr¥
ofol) s

are also the components of a vector. It thus also follows that V', must be the

DV= dve + { o }V“dr"

!

components of a (rank 2) tensor: the generalization of the gradient to operate on
vectors. The generalization of the directional derivative is the covariant derivative,
with the above components DV*/DA.

Denoting the directional derivative operator D/DA along a basis vector e, by

V., its effect on a vector V can also be described as
Vu(Ves) = (V,V)e, + VI(V,e,) =V e, .

Comparing with equation (7), we see that the connection coefficients describe how
the basis vectors vary with position:

a
Ve, = {#V}ea.

The application to tensors of any rank follows straightforwardly to give
a o
T e TO + . o _ .
=13 0t {O'M} a. T {ﬁﬂ'} P,

It then follows that the gradient of the metric tensor vanishes: gns, = 0.
As an interesting example, consider the Maxwell field-strength tensor, whose

components F,,, are generated from the components

a
Ay = A = {uu} A

of the gradient of the potential via F,, = A, — A, = 24, = 24, ). The last
equality follows from the symmetry of the Christoffel symbols [equation (6)], and
reflects the curious fact that only partial derivatives seem to appear in the matter

Lagrangian [equation (1)].



3.5 Geodesic Deviation <= Riemann Tensor

Consider two freely falling test particles with infinitesimal separation Ar®e,, as
indicated in figure 5. The:ir separation vector can be constrained to obev Ax-p =
0. It is then purely spartial (Arg = 0) in an instantaneously comoving frame

(U' = 0) for a nonzero mass test particle.

4x

—a———

L
_

s —

P

Fig. 5. The paths of two nearby test particles.

Subtracting their (geodesic) equations of motion (5) gives

« e | dPAZC a ) drtdzv, a | dr* dAzx”
ST =T +{uu}‘aﬁdz\£\r +2{W}E\' )

=0,

Now since DAr®/DA (but not dAz*/d\) are the components of a vector. so is the
result of applving the operator D/DA [defined by equation (7}] again. Employing
the above equation. this operation produces the equation of geodesic deviation

D?Are + pe dr* dx¥
DAz “V dN dA

Since both terms in this equation are the components of vectors. the quantities

(o) (o) - )

must be the components of a {rank 4) tensor, called the Riemann (curvature)

Ar® =90. (8)

tensor. It plays a role similar to that of the electromagnetic field tensor F,, in
the extension of the equation of motion (5) to charged test particles:

D (dm“) 9 pa dr?

Dr\dr /)~

m  Tdr

the generalized Lorentz force equation. We see, however. that the Riemann tensor
represents the physical field gradients {tidal forces). and only relative gravitational
acceleration has physical meaning.

The symmetry properties of the Riemann tensor {analogous to F., = Fu)

are

Raj,uu = R([aﬂ][,u.u]) ’ R[a@uu] =0

1



the first giving 6 7/2 independent components and the second giving one less. for

a total of 20 independent components. Its {(unique) contractions are
R;.w = gadRﬂpou . R =-g‘pru \

the components of the {svmmetric) Ricci tensor and the Ricci scalar. It also obevs
the Bianchi identities

Rasjpug = 0. (9)

analogons ro the homogeneous Maxwell equations Fi¢ = 0 and their tunique’

double contraction
G*, =0 ({G* = R —~ 319" R) ,

which involves the components of the Einstein tensor G.

Consider the parallel transport of a vector S along some curve P(\), defined
by DS*/DA = 0. If the curve is the boundary of an infinitesimal area generated
by the displacement vectors §a and éb, the change in S after a complete circuit is

AS* = -R* . 5%64°6b7 . (10)

aly

This is another way to characterize the Riemann tensor. Now parallel transport
the vector around all six faces of an infinitesimal cube. as shown in figure 6. Since
the pairs of paths along each edge must cancel, the total change AS* = 0. This
has been characterized as ‘the boundary of a boundary equals zero'.? Expressing
this result in terms of equation (10) then produces the Bianchi identities (9).
giving them an intriguing geometrical meaning.

Fig. 6. The parhs of vector transport which generate the Bianchi identity.

/3



4 Gravitational Field Equations

4.1 Scalar-Tensor Theories

We now complete the implementation of the extremal action principle by adding to
the matter Lagrangian density £y [specified in equation (1)} a Lagrangian density
L which depends solely on the gravitational field(s). Adopting the principle of
simplicity that has worked so well in deriving the laws of physics, we are tempted
to include nature’s simplest (scalar, spin 0) field ¢ in addition to the metric tensor
field g. In analyzing the field equations, more insight is gained by employing the
"spin representation’, in which g denotes the metric tensor which corresponds to
a pure spin 2 field. On the other hand, g = A%(¢)g is the metric tensor discussed
above, through which gravity couples to matter.

If we require only that the field equations be of at most second differential
order, the most general Lagrangian density is then?

Lo = (167G) ™ (R — 20" 0 400 — 2M(9)] ,

where G is the bare gravitational constant. Thus there are two free functions in
this theory*?: the matter coupling function A(w) and the ‘cosmological function’
Alp).

Extremizing the action Zg with respect to variations in §,, and ¢ then gives
the field equations

~

Gu = 87GTw — duA(p) + 20,00 — i 0aps | (11)
POy = —4nGa()T + 3dA/dp . (12)

The scalar field-matter coupling function is
alp) = din A/dp = a; + az(0 — o) + -+ , (13)

where the expansion is about the present cosmological value g of the scalar field.
Expanding the self interaction A(y) in the same way shows that the effective range
of the scalar field is of order (d2A/dy?); /2.

“The stress-energy tensor T is defined, as in equation (2), with respect to
variations of & It obeys the modified conservation laws [compare with equation

(3)}

Tuu‘.v = a(@)T‘P.u ' (14)

i4



indicating the separate effects of the spin 2 and spin 0 fields.

If the coupling function A(y) has a minimum, Damour & Nordtvedt® and San-
tiago. Kalligas, & Wagoner” have shown that in most cases the theory is attracted
toward that minimum during the expansion of the universe, thus approaching gen-
eral relativity | ¢ = constant, A(¢) = constant, a(y) = 0. This is in accord with
the small experimental limit® a? < 1073, {The Brans-Dicke theory® is the special
case a(y) = constant, A(p) = 0]

Although there is local interest in this broad class of theories, for the most
part we shall concentrate on general relativity for the remainder of these lectures.
The two exceptions will be gravitational waves and cosmology. where a scalar field
introduces qualitatively new effects.

In addition, we will employ the fact that most matter in the universe is well
approximated as a perfect fluid, described by the stress-energy tensor {obtained
from the EEP)

pr = (p + p)UMUI/ + P (15)

where p is the mass-energy density, p is the pressure, and U is the four-velocity
of the fluid. Such a fluid flows adiabatically (conserving specific entropy).

4.2 Weak-Field Equations

Throughout almost the entirety of all regions much smaller than that of the ob-
servable universe, gravitational fields can be considered weak. This means that
(except near black holes and neutron stars) one can choose coordinates such that

the metric assumes the nearly Minkowski form
Guv = TN + hyu(2%) |huw| € 1.

For instance, within the solar system, |k, | S GMy/Roc? = 2.12 x 106, We
shall consider isolated sources T, and can neglect the cosmological constant
A{pg) within such regions.

We work to first order in A,,, and utilize our freedom of general infinitesimal

coordinate transformations =% (P) = z*(P) + £%(P), which produces the change
h,u.’u’ = h;w - Eu,u - gu,,u. (16)

in the metric perturbation. This is directly analogous to the gauge transformation

A, = A, + x, in electrodynamics; and leaves the Riemann tensor components



Rapgu. like the Maxwell field strength tensor components F,3, invariant to this
order. We can then use our freedom in choosing the four functions £%(P) to
impose the coordinate condition

Bw"ﬂ =0, Eﬁw =hy — b (h= T?aﬁhaﬂ) )
analogous to the Lorentz gauge condition A%, = 0 in electrodynamics.

The Einstein field equations (11) (with ¢ = ¢y = constant) then produce the
weak field equations

705 = Oy = —167G T | (17)

identical in structure to those in electrodynamics. (With the Lorentz gauge con-
dition, equation (17) is consistent with the conservation laws T/, = 0; analogous
to J¥, = 0 in electrodynamics.) Thus the solution is of the same form:

hup(x®) = 4G [ Tp(z® — |2 — i), 2%)jzt — 28| Bt . (18)
p pv

A Newtonian system is one in which all (macroscopic and microscopic) veloci-
ties are nonrelativistic {and thus the retardation in equation (18) is negligible), in
addition to having a weak field. In such systems the dominant component of the
stress-energy tensor (15) is seen to be Ty = p. Therefore we see from equation
(18) that the dominant component of the (trace-reversed) metric perturbation is
hoo = —4®, where @ is the Newtonian gravitational potential. (This also identifies
the meaning of the coupling constant G.) Then the spacetime interval becomes

ds® = gagdz®dz® = —(1 + 2®)dt* + (1 ~ 2@)(dz” + dy® + d2?).  (19)

Incidentally, the result hgg = —2¢ can be obtained more generally by com-
paring Newton's second law with the geodesic equation of motion (5) for slowly-
moving test particles. In the same limit (in which dz®/dr = §%), the spatial
components of the equation of geodesic deviation (8) become

9%®
Oxiox’

Azt -
X —RigAr ¥

Ax?

shdwing how the tidal gravitational forces affect the separation of nearby particles.



5 Weak-Field Applications

5.1 Index of Refraction of Gravity

Consider a photon passing through a Newtonian gfavitational potential (for which
|0®/6t| « iV ®]|) produced by some localized distribution of mass. This is a good
approximation for all observed systems. In the geometrical optics limit. we follow
a photon initially travelling in the direction e, far from the masses. so subsequentlyv
p* =dr/d\ = p' = p. As shown in figure 7, it will be deflected by a very smail

angle &. with components a¥ = p¥/p, where the index V =y, z.

Fig. 7. Photon path through a localized weak field.

The equation of motion (3) then gives

pll M ECTAER T

when the weak-fleld metric (19) is inserted in the Christoffel symbols. With
d¢ = dr = pd) and da”V/dz = p~ldp" /dz, we obtain

a= —Q/V@dhfvmde, (20!

p* = 26 yp’

where we have identified the effective gravitational inder of refraction n(r'} =

1-2& (> 1).
Using the fact that 0 = ds?® & g,dt? + g,,dz? for the photon, we obtain its

coordinate velocity

d _ 1/2
ix( 9”) >1+201/n,
af

B Qrr

1



as expected. The time delay, relative to a photon traveling between the same
initial and final values of r in the absence of any mass. is then

/.\.t:—2/<pde=2f|¢>|de=f(n-1)de. (21)

However, when the emitter and receiver of the photon are very far from the mass
coordinate time ¢ equals proper time 7 at both locations. So this is the observed
time delay measured by such pairs of observers.

Thus in both respects (bending and delay), empty space acts as if it had this
index of refraction.

5.2 Gravitational Waves

Unfortunately, all gravitational waves will be weak when they reach our detectors.
The vacuum weak-field equations (17) Oh,, = 0 and Lorentz gauge condition
Fl: o = 0 allow a representation in terms of plane transverse monochromatic
waves .

R = A e . ALk =0, ki4°=0,

with wave vector k. However, both the field equations and Lorentz gauge condition
are preserved under another infinitesimal coordinate {(gauge) transformation (16)
if the generator also satisfies the wave equation 0&, = 0. One can then use the
four additional degrees of freedom to set hg; = 0 and h=0 (so now Euu = hy,).
In summary, we have constructed the transverse-traceless (TT) gauge, in which
the eight independent conditions

h'.u.O = hjk,k = hkk = 0

leave two independent polarization states, again in direct analogy with electrody-
namics.

We can also include the possibility of a weak scalar wave p; = ¢ — (g, since
the tensor field equations (11) are unaffected through first order in ¢; (except
that h,, — fzp, = h,, — 281917, in the above equations). The scalar field
equation (12) (with A constant) becomes Oy, = 0, giving the same plane-wave
representation.

To uncerstand the response of a gravitational-wave detector, consider slowly
moving free test particles whose separation is much less than the gravitational

wavelengths involved. Now employ a local Lorentz frame (a different choice of

18



gauge). in which physical {e. g.. radar} and coordinate distances are equal through
first order in the particle separation Ax. The equation (8) of geodesic deviation
becomes d?Ar/dr? =

metric g = 4%(v)&. In terms of our spin representation.

—R',0Ar! as before. involving only the matter coupling

Rigjo = Rugjo + a1{wij — Si59.00) -
In the previous TT gauge, one obtains é?l;o = —{,iz?m. However. the gauge

(coordinate) invariance of the weak-field Riemann tensor allows us to use this

expression in the above equation of geodesic deviation, giving

d*Ax'/dr? = (1ATT) + 18,000 — v o) AT (22)

Fig. 8. Wave-induced distortions of a ring of test particles.

In figure 8 we show the resulting positions of an initially circular ring of test
particles (at phases 7/2 and 3#/2) for each polarization state: (a) ATT = —-h;g
(b) fzf_} = fzg, (c) ¢1. They remain in the plane transverse to the propagation
vector & shown.

For separations Az in the same direction as k, equation (22) also shows that

there is no response to any of the three wave components.

/4



6 Strong-Field Applications

6.1 Compact Objects

Throughout any spherically symmetric spacetime, we can choose Schwarzschild
coordinates, in which the interval assumes the form

ds? = —e*®"gt? 4 2 gr? 4 r2[dg? + sin® Bde?] (23)

so that the proper area (measured by a set of observers at fixed r and t) of any
spherical surface is 47r?, We consider here isolated bodies, so the metric potentials
®, A — 0 as r — oo. In addition, we shall consider static (U* = 0, 8/0t = 0)
bodies.

Then the only non-trivial momentum conservation equation 7,7, = 0 gives
hydrostatic equilibrium:

dp b

also indicating that ®(r) is the generalized Newtonian potential. The only struc-
tural difference from the Newtonian equation is the addition of the pressure to
the ‘inertial mass-energy density’.

The {tt} component of the Einstein field equation gives, after an integration,

e = [1 - 2Gm(r)
r

-1 r
] , m(r) = 47r/; plr)ridr., . (25)

Let r = R be the radius of the star, defined by p(R) = 0. Then m(r > R) = M,
the total gravitational mass (defined by applying Kepler's third law to distant
orbits).

The {rr} component of the Einstein field equation gives the generalization of
the Newtonian field equation:

st = M ) (26)
dr r(r - 2Gm)

We see that pressure also contributes to the ‘gravitational mass-energy density’,
and strong fields (2Gm/r — 1) also steepen the potential gradient (and therefore,
from equation (24), the pressure gradient). The {68} and {¢¢} components of
the field equation are redundant.

Finally, if the equation of state assumes the form

p = p(p, s(p)) (specific entropy s determined separately) , (27)



we have four equations (24. 25, 26, 27) to determine ®. A{and m). p. and p. For
the major applications, white dwarfs and neutron stars. the entropy effectively
vanishes since the particles providing the pressure support (electrons or nentrons.
respectively) are degenerate.

Continuity of ®(r) and A{r) at the stellar surface allows matching to the ex-

terior {or black hole) Schwarzschild solution
e =e®=1-20M/r,

also obtained from the above equations. With the additional boundary condition

m o rd

as r — 0, a set of stellar models is then a one-parameter [e. g., p. = p(0)]
family. Such equilibrium models are stable when dM/dp. > 0.

The maximum mass of white dwarfs and neutron stars are of the same order,
M3/m2 = 1.86M,, where the Planck mass Mp = \/ECTCE =2.1x10"° g and m,
is the nucleon mass. An extensive survey of this subject is provided by Shapiro

and Teukolsky.’

6.2 Orbits

One of the most powerful probes of the strong gravitational fields near neutron
stars and black holes is analysis of the orbits of test particles (or those com-
prising gaseous accretion disks), here taken to have rest mass m > 0. Within
the Schwarzschild geometry, we can define the orbital plane as § = #/2. From
equation (4), with p* = mdz*/dr, we then see that both the energy and angular
momentum (per unit mass)

m T dr’ m dr’

E=—-&=( _2G'M)dt E:p—¢=r2d—¢

are conserved along each orbit. The relation g,,p#p” = —m? then gives us the

remaining (energy) equation

dr\? =0
(5) =

As in Newtonian theory, we can understand the orbits via plots of the effective

YLry, V= (1—2GM) (1+g) .

T

<

potential V, shown in figure 9 for 7 > 2GM (nonrotating black hole horizon).
For instance, radial turning points occur where V = E, and stable (and un-

stable) circular orbits correspond to the minima (and maxima) of V. However.
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we notice two new (relarivistic) features: (a) A particle is captured by the black

hole if its specific angular momentum is low enough (£ < 2v/3GA) or its spe-
cific energy is high enough (£ > Viar): {b) Stable circular orbits onlv exist for
L >2V3GAM. at r > 6G M.

For rotating (Kerr) black holes. the metric tensor is much more complicated.

but effective potentials can still be obtained? for orbits with angular momentum

parallel or anti-parallel to that of the black hole. The ‘dragging of inertial frames’

by the rotation of the mass produces many interesting new effects. such as a region

(the ‘ergosphere’) ouside the horizon where all observers must rotate in the same

direction as the hole.
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Fig. 9. The effective potential V is plotted for various choices of L. Also shown

are the rhree classes of orbits (constant E, L).
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6.3 Cosmology

6.3.1 Kinematical Analysis

We shall first outline some general features of cosmology within the framework of
any metric theory of gravity (incorporating the EEP). The analysis of the large-
scale properties and evolution of the universe!® has at its foundation one key
observation, tsotropy, and one key assumption, the Copernican Principle. (By
large scale we shall mean distances D & 3 x 10® light years, roughly 1/30 of the
radius of the visible universe.)

We first define a preferred set of observers: those who view the cosmic mi-
crowave background (CMB) radiation as isotropic on the corresponding angular
scales (2 2 degrees). The CMB is isotropic to an accuracy of 107> (after remov-
ing the effect of our motion), the size of the observed intensity variations im-
printed by the primordial density fluctuations which formed galaxies, etc. Galax-
ies (such as ours} have random velocities with respect to this frame such that
(¥?¥/cHV? 1073,

We shall then attach our spatial coordinates to such observers, so they become
comoving with respect to the average motion of the matter. We also take the time
coordinate to be their proper time, so the averaged (over volumes AV ~ D?) four-
velocity of the matter has components U* = 6§.

The Copernican Principle (CP) asserts that our position in the universe is
not special, but typical. The basis for this assumption is the similarity of our
galaxy and local group of galaxies to other such systems observed throughout the

universe. One then obtains the following consequence!!:

CP + Observed isotropy = Universal isotropy = Homogeneity.

‘Universal' means with respect to all comoving observers. The property of
large-scale homogeneity has been dubbed the Cosmological Principle. It means
that all large-scale properties of the universe depend only on the proper time ¢ of
the comoving observers. However, we see from the above that it is not an inde-
pendent principle; it follows from the CP (so the same acronym is appropriate).

.Another consequence of assuming the CP is the form of the metric, which
cofresponds to the fact that the curvature of the three-spaces { = constant must

also be uniform. We adopt the representation in which the interval is

ds® = —dt? + a(t)[dx* + T(x)(d6” + sin® 6dg?)] , (28)

43



where x is a dimensionless comoving radial coordinate, the curvature K = k/a?(t).
and
siny, k=+1
= X s 0
sinh x , -1
Of course, a flat space (k = 0) is also the limit of the other two choices as the
radius of curvature a(t) — oo.
Essentially all of our information about the universe comes to us via (radial)
photons. So we integrate equation (28) for ds = 0 = df = d¢ from a comoving
emitter (at time ¢ and radial coordinate x) to us (at time t; and x = 0) to give

X:A“a*uqah (29)

Applying equation (29) to two photons separated by one period of oscillation, the
fact that x remains fixed gives the fundamental redshift (Z) formula

1+ Z = Ao/ A = a(to)/alt) . (30)

Thus we see that the scale factor a(t) directly stretches wavelengths, as well as
determining physical (radar) distances such as the radial one dl = a{t)dy.

A final consequence of the symmetry induced by the CP plus observed isotropy
is the fact that the matter stress-energy temsor 7}, must assume the same form
as that for a perfect fluid, given by equation (15). We shall now denote the
corresponding effective density and pressure of the matter by pn, and py,.

6.3.2 Dynamical Analysis

In order to understand what governs the dynamics of the evolution of the universe,
we take the metric theory of gravity to be within the class of scalar-tensor theories
presented above. We again employ the spin representation, in which the spin-2
metric § = A~%(p)g, where g is the (physical representation) metric that couples
directly to matter. However, we can retain the same form of the metric {given by
the interval (28)] if we instead employ the time df = A~'(p)d¢t and scale factor
a(f) = A~1(p)a(t). But we must remember that physical distances and times are
gi\}en by the interval ds? = A%(p)d&?. Correspondingly, physical matter densities
and pressures are obtained from pp, = A™*(@)p and pm = A4 () Pm.

LY



The field equations (11) can then be put in the form
B/ad*ajdi? = —47Gpy + o + 3 Pm + Pl - (31)
(3/6%)[(da/df)® + k] = STG(pm + H.) . (32}

while the scalar field equation {12) assumes the form

d*o/df? + (3/2)(dd/di)dp/dE + 1dA/dp = —4nCalp)|pm — 3bm) - (33)
We have introduced the effective scalar field density and pressure

po = (81G) 7 [(de/di)® + Ap)], B, = (87G)[(dp/d)? — Alp)] . (34)
In addition we have ‘microscopic conservation of energy’, in the form
d[(pm + py)a’|/dE + (pm + P,)da*/df = 0 . (35)
Using equation (33) renders equation {31) redundant, while equation (32) can be
put in the form of ‘macroscopic energy conservation™
y(da/di)? +~Ula) = —k/2, (36)

where the effective gravitational potential i = —(47G/3)@%(pm + p,). For a small
comoving sphere of radius R, = xa(f) and mass M, = (47R%/3)(pm + p,), one
finds that x4 = —GM.,/R..

Let us consider the present epoch (when ¢ = ), noting that we can set
A{wo) = 1. In addition, we use the fact that its derivative [see equation (13)] is
small: a?(pe) = @ < 1073, Therefore the spin and matter representations are
approximately the same today. The measured Hubble constant is then

_{lda} - dy
Ho= (a&z)o“H"““(E)o‘

The fundamental dynamical equation {36) then assumes the form

Qo+ Qe + D + Q= (1 — apldp/dlna)g)?, (37)
where we adopt the standard notation
871G (pm)o k Alpo) _ (dp/dt)}
flo 3H? S (agHo)? ' I 3HZ *= T 3H]

Note that equation (37) differs from the standard result'® because of the con-
tribution of a possible time dependence of the scalar field via Q, and the term
which makes the right hand side no longer equal to unity. We point this out to
illustrate one way in which a dynamical scalar field can impact the comparison of

cosmological models with observations.
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