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We review the dynamical mean-field theory of strongly correlated electron systems which is based on
a mapping of lattice modeis onto quantum impurity models subject to a self-consistency condition.
This mapping is exact for models of correlated electrons in the limit of large lattice coordination (or
infinite spatial dimensions). It extends the standard mean-field construction from classical statistical
mechanics to quantum problems. We discuss the physical ideas underlying this theory and its
mathematical derivation. Various analytic and numerical techniques that have been developed
recently in order to analyze and solve the dynamical mean-field equations are reviewed and compared
to each other. The method can be used for the determination of phase diagrams (by comparing the
stability of various types of long-range order), and the calculation of thermodynamic properties,
one-particle Green’s functions, and response functions. We review in detail the recenl progress in
understanding the Hubbard model and the Moit metal-insulator transition within this approach,
including some comparison to experiments on three-dimensional transition-metal oxides. We present
an overview of the rapidly developing field of applications of this method to other systems. The
present limitations of the approach, and possible exteasions of the formalism are finally discussed.
Computer programs for the numerical implementation of this method are also provided with this

article.
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l. INTRODUCTION

The discovery of the heavy fermion compounds and
of the high-temperature superconductors has revived in-
terest in strongly correlated electron systems. These are
systems in which the strength of the electron-electron
interactions is comparable to or larger than the kinetic
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energy. The investigation of this class of systems goe.
back to the early 1960s. The main motivations at the
{ime came from experimenis on transition metal oxides
from the Mott metal-insulator transition, and from the
problem of itinerant ferromagnetism.

Theoretical progress in the ficld has been impede«
however by the extreme difficulty of dealing with evet
the simplest model Hamiltonians appropriate for these
systems, such as the Hubbard model and the Kondo lat
tice model. Only in the one-dimensional case do wi
have a variety of theoretical tools at our disposal L«
study these models in a systematic manner. For two- anc
three-dimensional models, one is often unable to asses
confidently whether a given physical phenomenon is in
deed captured by the idealized Hamiltonian under con
sideration or whether a theoretical prediction reflects :

true feature of this Hamiltonian, rather than an artifac *

of the approximation used in its solution. These difficul
ties originate in the nonperturbative nature of the prob
lem, and reflect the presence of several competing physi
cal mechanisms for even the simplest models. The
interplay of localization and lattice coherence, of quan
tum and spatial fluctuations, and of various competin;
types of long-range order are important examples.
Numerous approximation schemes have been em
ployed to circumvent these difficulties, but many theo
rists in the field have learned to consider with cautior
those approximations (such as arbitrary resummation

of some class of diagrams) that are not based on somr

controlled limit, by which we mean that some extrem
limit of the model is considered {often after some gen
eralization) wherein the problem simplifies and can b
solved in a controlled manner. The reason to favor thes:
approaches is not that of out-of-place mathematica
rigor, but rather that it is often easier to identify whic!
of the physical aspects of the problem will be privileges
by a specific limit, and thus to choose that specific limi
best adapted to the physical phenomenon under consid
eration. In favorable cases, the physical ingredients tha
have been left out can be reintroduced by expandin
around this starting point. Of course the dramatic in,
crease in computational power has also stimulated a di

rect numerical solution of these models using exact di

agonalization and quantum Monte Carlo methods, a

recently reviewed by Dagotto (1994). However, the ex

act diagonalization technique is limited by the exponen

tial growth of the computations with system size, whil |

the quantum Monte Carlo method is restricted to rathe
high temperatures by the minus-sign problem. Despit
the interest of these numerical studies, these limitation
have often prevented the extraction of reliable low:
energy information. Until these limilations are ovel
come, analytic tools remain essential for the study of th
strong correlation problem. ;
This article reviews a new approach to the problem ¢
strong correlations that has been developed over recer
years and has led to some progress in our understandin
of these systems. The essential idea is to replace a lattic
model by a single-site quantum impurity problem em
bedded in an effective medium determined sel,”
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consistently. The impurity model offers an intuitive pic-
ture of the local dynamics of a quantum many-body
system. Also, a large number of techniques developed
over a thirty-year period of intensive study of impurity
models are available. The self-consistency condition cap-
tures the transiation invariance and coherence effects of
the lattice. We refer to this approach as the local impu-
rity self-consistent approximation (LISA) in this article.

The LISA is the natural generalization of quantum
many-body problems of the Weiss mean-field theory fa-
miliar from classical statistical mechanics. The term
“mean-field theory” should be taken with caution how-
ever: the present approach does not assume that all fluc-
tuations are frozen (this would lead to the Hartree-Fock
approximation). Rather, it freezes spatial fluctuations
but takes full account of local quantum fluctuations (i.e.,
of temporal fluctuations between the possible quantum
states at a given lattice site). Hence the LISA method is
best characterized as a “dynamical mean-field theory.”
The main difference with the classical case is that the
on-site quantum problem remains a many-body problem
(which nevertheless can be addressed with a variety of
techniques).

As in classical statistical mechanics, this dynamical
mean-field theory becomes exact in the limit of large
spatial dimensions d —w, or more appropriately in the
limit of large lattice coordination (note that the coordi-
nation z is already quite large for several three-
dimensional lattices: z=6 for a cubic lattice, z=12 for a
face-centered-cubic lattice). This ensures the internal
consistency of the approach and establishes 1/z as a con-
trol parameter. Indeed, it is the pioneering work of
Metzner and Vollhardt (1989) on the limit of large di-
mensions for strongly correlated fermion models that
triggered the developments leading to the LISA method
in the form reviewed here. However, this approach may
be viewed in a broader context, as a starting point for
the investigation of many finite-dimensional strongly cor-
refated systems, in the same sense that the Weiss mean-
field theory is the starting point of most investigations in
the classical statistical mechanics of three-dimensional
systems. In particular, the method can be used as an
approximation to more realistic models of actual mate-
rials, taking into account several orbitals, and specific
lattice structure and density of states, as obtained, e.g.,
from local density approximation (LDA) calculations
{cf. Sec. VIIL.C). Calculations along these lines are only
beginning 1o appear.

This article is a self-contained introduction to the
LISA approach, which has only partly the character of a
review. It contains (a) a discussion of the general theo-
retical formalism and several derivations of the dynami-
cal mean-field equations, (b) a description of the algo-
rithms which are useful for their solution, (c) source
codes of computer programs implementing these algo-
rithms, (d) a thorough discussion of analytic techniques
developed to analyze the dynamical mean-field equa-
tions, and (e) several examples of physical problems to
which the LISA approach has been successfully applied.
Our hope is that making this package widely available
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will allow many workers to contribute in applying these
techniques to the countless number of open problems i1
the field of strongly correlated electrons. With this ide:
in mind, we have indicated some possible directions o
further research and pointed out the aspects of the for
malism which need further improvement.

Several authors contributed in recent years to the
emergence of the LISA approach in its present form
starting with the pioneering work of Metzner and Voli
hardt (1989). These authors pointed out the scaling o
the hopping amplitude that leads to a nontrivial limit o
infinite spatial dimensions for lattice models of corre
lated fermions. More importantly, they recognized the
potential usefulness of this limit by demonstrating the
local nature of perturbation theory in d=«. Miller
Hartmann (1989a, 1989b, 1989¢) also proved the localits
of many-body Green’s function perturbation theory anc
used it in order to derive self-consistent equations fo
the self-energy in terms of the (generally unknown
Luttinger-Ward functional, which he evaluated to vari
ous orders in weak-coupling perturbation theory. Fol
lowing this work, self-consistent functionat equation:
were derived and solved for the Falicov-Kimball mode
by Brandt and Mielsch (1989, 1990, 1991; see also, Janis
1991). These authors also peointed out how these equa
tions could be formally extended to the Hubbard model
A mean-field interpretation of these equations was giver
for the Falicov-Kimball model by van Dongen and Voll
hardt (1990). This interpretation is quite different fron

" the LISA ideas however. Functional equations for the

Green’s function and the self-energy of the Hubbarc
model in infinite dimensions were derived by Jant
(1991) following the dynamical coherent potential ap
proximation analogy, but, in this formulation, thes:
functional equations did not lend themselves to explici
calculations.

Further progress was made possible by the realizatior
{Ohkawa 1991a, 1991b; Georges and Kotliar, 1992) tha
the functional equations can be interpreted as an Ander
son impurity model subject to a self-consistent bath: thi
is the main content of the LISA approach [see also the
subsequent work of Jarrell (1992)]. In the work o
Georges and Kotliar (1992), a precise correspondence
with the classical mean-field theory, and the proper iden
tification of the quantum analog of the Weiss effectivt
field, was carried out. This allowed an immediate exten
sion of the LISA method to phases with broken symme
try and to a large number of models of strongly corre
lated electrons (Georges, Kotliar, and Si, 1992). Usiny
general properties on the single-impurity Andersol
model in conjunction with the self-consistency condition
Georges and Kotliar (1992) also established that the me
tallic phase of the d=c Hubbard model is a Fermi liquic
for arbitrary doping and interaction strength. An impor
tant lesson of that work is that reliable technigues fo
treating the Anderson impurity model can be used u
study correlated electrons in large dimensions. For ex
ample, the perturbative approach of Yosida and Yamad:
{1970, 1975) can be turned into an efficient “iterates
perturbation theory” scheme in the LISA contex
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(Georges and Kotliar, 1992). Another example is the
noncrossing approximation method first applied in the
LISA context by Jarrell and Pruschke (1993a, 1993b)
and Pruschke, Cox, and Jarrell (1993a, 1993b).

Many numerical methods have been recently imple-
mented for the solution of the dynamical mean-field
equations. The quantum Monte Carlo algorithm of
Hirsch and Fye (1986) was first applied to this problem
independently by Jarrell (1992), Rozenberg, Zhang, and
Kotliar (1992), and Georges and Krauth (1992). Two dif-
ferent exact diagonalization algorithms were later intro-
duced by Caffarel and Krauth (1994) and by Si et al.
(1994). The Wilson numerical renormalization group ap-
proach to the single-impurity problem has been recently
applied to the d=o Hubbard model by Sakai and Kura-
moto (1994) and Shimizu and Sakai (1995), and a pro-
jective renormalization method using in an essential way
the self-consistency condition has been recently intro-
duced by Moeller er al. (1995). One of the major appli-
cations of these methods and of the LISA approach has
been the study of the Mott transition in the half-filled
Hubbard model (Rozenberg, Zhang, and Kotliar, 1992;
Georges and Krauth, 1992, 1993; Pruschke, Cox, and
Jarrell, 1993a, 1993b; Zhang, Rozenberg, and Kotliar,
1993; Caffarel and Krauth, 1994; Laloux, Georges, and
Krauth, 1994; Rozenberg, Kotliar, and Zhang, 1994; Ro-
zenberg, Moeller and Kotliar, 1994; Moeller et al, 1995).
The important lesson learned from these studies is that
no single technique stands out as the most appropriate,
but a thorough understanding of the many-body phe-
nomena associated with this problem required a combi-
nation of various numerical methods and of analytical
approximations.

Having reviewed the recent history of the LISA ap-
proach, it is interesting to mention that early related
ideas can be traced back in the literature, starting with
the papers of Hubbard (1964, 1979) and Wang, Evenson,
and Schrieffer (1969). Impurity models (without a self-
consistent embedding) have been used to model the
photoemission spectra of correlated solids for a long
time (Zaanen and Sawatzky, 1987, 1990; Fujimori, Mi-
nami, and Sugano, 1984). The LISA method also has
some relationship with the dynamical coherent potential
approximation method for random alloys: indeed, a
functional integral approach reduces the quantum
many-body problem to averaging a free-particle prob-
lem over external fields with random variations in space
and time (for recent work along those lines, see Turov
and Grebenikov, 1988; Kakehashi, 1992). In this context,
Schwartz and Siggia (1972) first recognized the impor-
tance of the inverse coordination number as the small
paramelter justifying the coherent potential approxima-
tion. In fact, the LISA equations first appeared 1n the
literature as early as 1987, in the context of the periodic
Anderson model, in an interesting but little known pa-
per of Kuramoto and Watanabe (1987} that also empha-
sized the limit of large lattice coordination. Finally, the
assumption of local vertices has sometimes been used as
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a simplifying hypothesis in many-body perturbation
theory calculations (see, e.g., Treghia, Ducastelle, and
Spanjaard, 1980).

The LISA dynamical mean-field approach can be
compared and contrasted to other frequently used ap-
proximation schemes for lattice models of correlated fer-
mions. In the Hartree-Fock approximation, the starting
point is a mean-field theory in which all fluctuations,
both spatial and temporal, are frozen. Fluctuations can
then be treated by making random phase approximation
expansions around the static and uniform saddle point.
Local quantum fluctuations, however, are often nonper-
turbative in character (being associated, like in the
Kondo problem, with tunneling events between degen-
erate minima), so that such expansions do not capture
them correctly. The purpose of the dynamical mean-field
approach is to privilege these fluctuations, by treating
them from the beginning in a nonperturbative manner.
Another type of approximation is based on the con-
trolled limit of extending the spin symmetry from SU(2)
to SU(N) (or some other group) and considering the
large N limit (see, e.g., Newns and Read, 1987; Kotliar,
1993a, 1994 for reviews). These approaches make use of
some auxiliary degrees of freedom (e.g., slave bosons) to
describe the enlarged Hilbert space. The saddle point
which holds at N=w= generally replaces the problem with
a gas of renormalized quasiparticles. High-energy inco-
herent excitations are completely absent at the saddle-
point level, and must be reintroduced by expanding in
1/N. In contrast, the LISA dynamical mean-field theory
treats the local aspects of both quasiparticles and inco-
herent high-energy excitations on the same footing. This
is crucial for calculating thermodynamic properties or
when considering systems having no characteristic low-
energy scale. The limit of large lattice coordination is
also a natural playground where one can test the differ-
ent numerical techniques used in the treatment of the
many-body problem in finite dimensions, without deal-
ing with the additional complications of lattices of finite
size (the thermodynamic limit is built in from the begin-
ning in this approach).

The general organization of this article is as follows
(see the Table of Contents). Section II gives a general
overview of the method (without any formal justifica-
tion), and introduces the reader to the dynamical mean-
field equations, to the mapping onto a self-consistent im-
purity model, and to the connection with the limit of
infinite dimensions. Sections I1I to V set up the theoreti-
cal framework: various useful derivations are presented
in Sec. I1I, the calculation of response functions is con-
sidered in Sec. IV, and the extension of the formalism to
phases with long-range order is described in Sec. V. Sec-
tion VI reviews the various techniques available to solve
the self-consistent impurity problem, including a de-
tailed discussion and comparison of various numerical
methods. This section has a deliberately technical char-
acter: the goal here is to provide sufficient information
so that the reader can use these methods independently.
To this aim, FORTRAN programs are provided with this
article (accessible via the internet, see Appendix D).

-
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The numerous possible applications of the dynamical
mean-field approach to physical systems are only begin-
ning to be explored, and the field is currently very ac-
tive. We have chosen to discuss in detail only one of
these applications. This is the purpose of Sec. VII, which
reviews the recent progress made on the Hubbard
model and the Mott metal-insulator transition. The
LISA method has solved many open questions related
to this phenomenon, which had proven intractable by
previous techniques. Recently, concrete applications to
the physics of transition-metal oxides have also ap-
peared. Comparison to some experiments can be found
in this section. In Sec. VIII, several other strongly cor-
related models are considered and a much less exhaus-
tive approach is adopted. In each case, the associated
impurity model and the self-consistency equations are
given in order to illustrate the wide scope of the method,
and a short summary of recent results obtained for these
models is made. The purpose of this section is simply to
provide a guide to the literature and to stimulate further
work. ’

The dynamical mean-field method discussed in this
paper can be applied as an approximation scheme di-
rectly Lo three-dimensional lattice problems (this is also
true of the usual mean-field theory of classical spin sys-
tems). We have provided several derivations of the
mean-field equations which, besides showing that they
become exact in infinite dimensions, are aimed to give
them an intuitive content. This approach is advocated
throughout this article, and particularly in Sec. VIII.C.
For this reason, this article is restricted to those aspects
of the d=w= limit that are closely related to the idea of a
dynamical mean-field approach and omitted (or briefly
mentioned) other applications of this limit, such as the
studies of variational wave functions in the d-¢ limit.
Excellent expositions of these omitted topics already ex-
ist, and we refer the reader to the review articles of Voll-
hardt (1991, 1993, 1994). Earlier reviews of some of the
topics treated in the present paper can be found in Kot-
iar (1993b), Freericks and Jarrell (1994b), and Prus-
chke, Jarrell, and Freericks (1995).

Finally, Sec. IX stresses the limitations of the mean-
field approach in its present form and expiores possible
exlensions of the formalism to systems where the dy-
namical effects of intersite interactions, the influence of
long-wavelength collective modes, or certain forms of
short-range order are important. This is currently one of
the main theoretical challenges in the field, and the main
role of Sec. IX is to outline what we perceive to be {fruit-
ful directions for further research,

Il. THE LOCAL IMPURITY SELF-CONSISTENT
APPROXIMATION: AN OVERVIEW

This section is devoted to a survey of the LISA
method. We shall first describe the dynamical mean-field
equations but, for the sake of clarity, will postpone de-
tailed derivations to Sec. I1I. In order to stress the anal-
ogy with the familiar Weiss mean-field theory of classical
statistical mechanics, we shall review in parallel the clas-
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sical case and its quantum generalization. The connec-
tion with quantum impurity models will be explained in
Sec. IL.B. In Sec. I1.C, the limit of infinite spatial dimen-
sions of lattice fermion models will be presented. The
dynamical mean-field equations become exact in this
limit.

A. Dynamical mean-field equations

The goal of a mean-field theory is to approximate a
lattice problem with many degrees of freedom by a
single-site effective problem with less degrees of free-
dom. The underlying physical idea is that the dynamics
at a given site can be thought of as the interaction of the
degrees of freedom at this site with an external bath
created by all other degrees of freedom on other sites.

The simplest iltustration of this idea is the Ising model
with ferromagnetic couplings J;>0 between nearest-
neighbor sites of a lattice with coordination z:

U :

The Weiss mean-field theory views each given site (say,
¢) as governed by an effective Hamiltonian:

Hep=—heS, - (2)

All interactions with the other degrees of freedom are
lumped into the effective field A.q:

hog=h+ 2, Jomi=h+zIm, (3)

where m;=(S,) is the magnetization at site i, and trans-
lation invariance bas been assumed (J;=J for nearest-
neighbor sites, m;=m). Hence h . has been related to a
local quantity which can in turn be computed from the
single-site effective model H ;. For the simple case at
hand, this reads m=tanh(Bh.g), which can be combined
with (3) to yield the well-known mean-field equation for
the magnetization:

m=tanh{Bh+zBJIm). (4)

These mean-field equations are, in general, an approxi-
mation of the true solution of the Ising model. They
become exact however in the limit where the coordina-
tion of the lattice becomes large. It is quite intuitive in-
deed that the neighbors of a given site can be treated
globally as an external bath when their number becomes
large, and that the spatial fluctuations of the local field
become negligible. As is clear from Eq. (3), the coupling
J must be scaled as J=J*/z to yield a sensible limit
z—oo (this scaling is such that both the entropy and in-
ternal energy per site remain finite, 50 as to maintain a
finite 7).

These ideas can be directly extended to quantum
many-body systems. This will be illustrated here on the
example of the Hubbard model:

H:—(E} f]I(C:;_C]D,‘l"C;;_CEO.)‘F Uz n”nil. (S)
o !
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It will be assumed in this section, for simplicity, that no
symmetry breaking occurs, i.e., that one deals with the
{ranslation-invariant paramagnetic phase. Phases with
long-range order will be dealt with in Sec. V.

Again, the mean-field description associates with this
Hamiltonian a single-site effective dynamics, which is
conveniently described in terms of an imaginary-time ac-
tion for the fermionic degrees of freedom (Coq+C oo) At
that site:

B8 B
Sett=— L dTL d’T'E"‘: er (NG (71 )Coo(T')

B
+UJ1) dr not('r)nol('r). (6)

Zy(r-7) plays the role of the Weiss effective field
above. Its physical content is that of an effective ampli-
tude for a fermion to be created on the isolated site at
time r (coming from the «external bath”) and being de-
stroyed at time 7’ (going back to the bath). The main
difference with the classical case is that this generalized
“Weiss function” is a function of time instead of a single
number. This, of course, is required to take into account
local quantum fluctuations. Indeed, the mean-field
theory presented here freczes spatial fluctuations but
takes full account of local temporal flactuations (hence
the name “dynamical”). ¥, plays the role of a bare
Green's function for the local effective action S, but it
should not be confused with the noninteracting local
Green’s function of the original lattice model.

A closed set of mean-field equations is obtained by
supplementing Eq. (6) with the expression relating ¥ to
local quantities computable from S, itself, in complete
analogy with Eq. (3) above. As will be shown below, this
self-consistency condition reads

Foliw,) 1=iw,+ut G(iw,) '—R[Gliw,)]. (7N

In this expression, G(iw,) denotes the on-site interact-
ing Green’s function calculated from the effective action

Seff:
G(r— Y= —{(Te(ne (7' Vs p ®

B . 2n+1)w
Gliwy)= L dr G(n)e'™"’, w,= ——-————B

and R(G) is the reciprocal function of the Hilbert trans-
form of the density of states corresponding to the lattice
at hand. Explicitly, given the noninteracting density of
states D(e),

®

D(o=3 de-a), a=2 e (10
ij

the Hilbert transform D(¢) and its reciprocal function R
are defined by

N +o  D{e)
D(g)—f de o,

. —€

R[{D(D]=1. (11)

Since G can in principle be computed as a functional of
%, using the impurity action S, Eqs. (6)~(8) form a
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closed system of functional equations for the on-site

Green's function G and the Weiss function ¥;. These
are the basic equations of the LISA method. In practice,

the main difficulty lies in the sotution of Seg. These

equations can hardly be attributed to a single author, as
detailed in the Introduction. They appeared first in an
early work of Kuramoto and Watanabe (1987) for the
periodic Anderson model. Following the paper of
Metzner and Vollhardt (1989} that emphasized the mnter-
est of the d —o¢ limit, these equations were obtained by
several authors. Brandt and Mielsch (1989) derived and
solved them for the Falicov-Kimball model; the case of
the Hubbard model was considered by Janis (1991), Oh-
kawa (1991a, 1991b), Georges and Kotliar (1992), and
Jarrell (1992). The presentation followed here is closest
to those of Georges and Kotliar (1992) and Georges,
Kotliar, and Si (1992).

I is instructive to check these equations in two simple
limits:

(i) In the noninteracting limit U=0, solving (6) yields .
GQ'w,,)L-?n(iw,,) and hence, from (7), Gliw,)
=D(iw,+ u) reduces to the free on-site Green’s func-
tion. -

(ii) In the atomic limit t;;=0, one only has a collection
of disconnected sites and D{€) becomes a & function,
with D(£)=1/{. Then (7) implies Fo(iw,) l=jw,+p and *
the effective action S becomes essentially local in time '
and describes a four-state Hamiltonian yielding
Gliwy),=(1—ni2}(iw,+ wy+nl2iw,+p—U), with
nf2=(e§“+e5(2"_u))l(1 +2¢Pr 4 P10y,

Solving the coupled equations above not only yields
local quantities but also allows us to reconstruct all the
k-dependent correlation functions of the original lattice
Hubbard model. For example, the Fourier transform o

the one particle Green’s function G;(7— T
=—(T¢; (1) o(7')) can be shown 10 read
1
G(k,iw,)= 1z -

iw,+p—e— 2{iwy)’

where the self-energy can be computed from the solu
tion of the effective on-site problem as .

Sliwg)=F {iwy)— G~ (iw,)- (12

It is therefore k-independent in this approach ie., purel
Jocal in space: Z;{(iw,)= 8;2(iw,) (Metzner and Vol
hardt, 1989, Miiller-Hartmann, 1989a, 1989b, 198%
From this expression one sees that the “self-consistenc |
condition,” Eq. (7), relating G and %,, ensures that tF
on-site (local) component of the Green’s function, give
by G iw,) =2, Gkiw,), coincides with the Greer .
function G{iw,) calculated from the effective actic
Se. Indeed, summing Eq. (12) over k yiel
D(iw,¥ u—2(iw,)). Identifying this expression wi
G(iw,) and using Eq. (13) leads to Eq. - :
Thermodynamic quantities for the Hubbard mod
can all be simply related to their single-site mode] cou
terparts: the relevant expressions for the free energy &
internal energy are given by Eqs. (46) and (47) in Se
1IL.B. Two-particle Green's functions, dynamical 1 .
sponse functions, and transport properties for the latti ~
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model can also be related to vertex functions of the on-
site action S.g; this will be reviewed in Sec. IV.

B. Physical content and connection with impurity models

The structure of the dynamical mean-field theory is
that of a functional equation for the local Green’s func-
tion G(iw,) and the “Weiss function” ¥y(iw,). In con-
trast to mean-field theory for classical systems, the on-
site effective action S remains a many-body problem.
This is because the present approach freezes spatial fluc-
tuations but fully retains local quantum fluctuations. As
a function of imaginary time, each site undergoes tran-
sitions between the four possible quantum states [0), {1),
11}, 11,1 by exchanging electrons with the rest of the
lattice described as an external bath. The dynamics of
these processes is encoded in the Weiss function
So(r=—7).

For these reasons, no Hamiltonian form involving
only the on-site degrees of freedom (c,,,¢ 2») can be
found for the effective on-site model: once the bath has
been eliminated, S, necessarily includes retardation ef-
fects. In order to gain physical intuition and to make
some practical calculations with S, it is useful to have
such a Hamiltonian formulation. This is possible upon
reintroducing auxiliary degrees of freedom describing
the “bath.” For example, one can view (c,,.¢ ,) as an
“impurity orbital” and the bath as a “conduction band”
described by operators (a,,.a/,) and consider the
Hamiltonian

- =+ + +
HAM_!Z E!ala-ala_'_!z: Vi(alvcoa+coaala)
T o

—p €} Coet Unoing,, (14)
o

where the subscript AM denotes the Anderson mod-
¢l. This Hamiltonian is quadratic in a , ,q;,; integrat-
ing these out gives rise to an action of the form {(6), with

+oo Alw)
lc- AM.. ; -
F M lw,) Y =lw, T p J_mdwiwn—m’
A(w)st Vis(w—§). (15)

Hence Eq. (14) can be viewed as a Hamiltonian repre-
sentation of S.q provided A(w) (i.e., the parameters
V,,&,) is chosen such as to reproduce the actual solution
%, of the mean-field equations. The spectral representa-
tion Eq. (15) is general enough to permit this in all cases.
Note that the &s are effective parameters that should
not be confused with the single-particle energies & of
the original lattice model. The Hamiltonian (14) is the
familiar Anderson model of a magnetic impurity
coupled to a conduction bath (Anderson, 1961). Note
however that the shape of the conduction bath density
of states A(w) is not known a priori in the present con-
text but must be found by solving the self-consistent
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problem. The isolated site o plays the role of the impu-
rity orbital, and the conduction bath is built out of all
other sites.

There is of course a degree of arbitrariness in the
Hamilionian representation of the local action S . In-
stead of viewing it as an Anderson model, we can con-
sider the Wolff model (Wolff, 1961), in which the inter-
action term acts only at-a single-site of a conduction-
electron lattice representing the bath

Hw=§ gaja;,+ Unging, . (16)

If we adopt this point of view the Weiss function is given
by

e Alw) -
?;“%f dw -, A(w}EEI: Ho—¢&), (17)

fw,—
and it merely corresponds to a different spectral repre-
sentation of ¥,.

Hence, the LISA approach to the Hubbard model
maps the lattice problem onto that of an Anderson im-
purity embedded in a self-consistent medium (Ohkawa
1991a, 1991b; Georges and Kotliar, 1992; Georges, Kot-
lar, and Si, 1992; Jarrell, 1992). The solution of the
mean-field equations involves the determination of ¥,
such that, when inserted into the Anderson model, the
resulting impurity Green’s function obeys the self-
consistency condition (7).

The reduction of a lattice problem to a single-site
problem witheeffective parameters is a common feature
to both the classical and quantum mean-field construc-
tions. The two constructions parallel each other quite
precisely, as summarized in the “dictionary” displayed in
Table 1. The main difference is that the Weiss field is a
number in the classical case, and a function in the quan-
tum case. Physically, this reflects the existence of many
energy scales in strongly correlated fermion models. (We
note in passing that this also occurs in the mean-field
theory of some classical problems with many energy
scales, such as spin glasses.) This points to the limita-
tions of other “mean-field” approaches, such as the
Hartree-Fock approximation or slave bosons methods,
where one attempts to parametrize the whole mean-field
function by a single number (or a few of them). This in
effect amounts to freezing local quantum fluctuations by
replacing the problem with a purely classical one, and
can only be reasonable when a single low-energy scale is
important. This is the case, for instance, for a Fermi-
liquid phase. However, even in such cases, parametrizing
the Weiss field by a single number can only be satisfac-
tory at low energy, and misses the high-energy incoher-
ent features associated with the other energy scales in
the problem. When no characteristic low-energy scale is
present, a single number parametrization fails com-
pletely: this is the case, for example, when correlation
functions have power-law decays as a function of fre-
quency (as in x-ray edge problems). This occurs, e.g., in
the Falicov-Kimball model (Sec. VIILB).

4
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TABLE 1. Correspondence between the mean-field theory of a classical system and the {dynami-

cal) mean-field theory of 2 quantum system.

Quantum case

Classical case

—E(,-")UEUC :,}C’-a.'*' UZ,-?’II--IHII
t~ (1N
Gyliw,)=—{c (fwy)ciliwn)) (8.5,
Giliog)=—(c[ (imp)c{iw,)) m;=(S)

I UNF (-1 )e {7 )+ Unyn, :
Heﬂ:E’,EIa P“,ﬂ[a"_ zlavf(a IJ’CU+H'C')
~pZ o g Co+ Unyny

H=- Z(,I)JUS,S,—hE,S,
J,»j~(1/d)""j| (ferromagnet)  Scaling

H g=heitSo

Hamiltonian

Correlation function
Local observable

Single-site Hamiltonian

Foliwmy) b Weiss field/function
F M iw,) =wn+ ptGlinw,) ! hg=2 } m+h Relation between Weiss
—R[Gliw,)] field and local observable

Finally, besides its intuitive appeal, the mapping onto
impurity models has proven to be useful for practical
calculations. These models have been studied intensively
in the last 30 years by a variety of analytical and numeri-
cal techniques, and this knowledge can be put to good
use in order to understand strongly correlated lattice
models in large dimensions. The crucial step is to use
reliable tools to solve Sey. Recent progress in the field
came from an effort in exploiting the connection with
impurity models in a qualitative and quantitative man-
ner.

C. The limit of infinite dimensions

The above mean-field equations become exact in the
Jimit of infinite coordination on various lattices. In this
section, we discuss several such examples and in each
case we give the relation (7) between the local Green's
function and the Weiss function % in explicit form. No-
tice that, in the paramagnetic phase, the lattice enters
the mean-field equations only through the noninteract-
ing density of states D(e). Since many different lattices
give rise to the same density of states in the limit of large
coordination, one can construct models with the same
single-particle properties (i.e., the same Green’s func-
tion) in the paramagnetic phases but very different
properties regarding magnetic responses and transitions
to phases with long-range order (Miller-Hartmann,
1989a). We refer to Sec. IV and Appendix A for a more
detailed explanation of this point, and to Sec. VILD for
explicit examples.

The first case to be discussed is the d-dimensional cu-
bic lattice with nearest-neighbor hopping (with coordi-
nation z =2d). In order that the kinetic and interaction
energies remain of the same order of magnitude in the
d— limit, the hopping amplitude must be scaled ap-
propriately (Metzner and Vollhardt, 1989). The correct
scaling is easily found from the Fourier transform g, of
t;;» which for a generic vector k involves T¢_, cos(k,), a
sum of d numbers with essentially random signs. Heace
t;; must be scaled as
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TR T aiianiiat iaskiakbbaiis i e i o

. (18)

More precisely, this ensures that the density of states has
a well-defined d— limiting form, which reads (from
the central-limit theorem)

=l
D(e)—-mexp —572) (19)

This expression, and various useful properties of tight-
binding electrons on a d—® cubic lattice, is derived in
Appendix, A. The Hilbert transform of (19) reads (for
1=12):

D({) = —isvm exp(—{Perfe(—isl), (20)

where s=sgn[Im({)] and erfc denotes the complemen-
tary complex error function. There is no simple explicit
form for the reciprocal function R(G) in this case and
hence (7) must be used as an implicit relation between
%, and G. The Gaussian density of states (19) is also
obtained for the d—o cubic lattice with longer-range
hopping along the coordinate axis. As discussed by
Miiller-Hartmann (1989a) and reviewed in Appendix A,
next-nearest-neighbor hopping along the diagonals does
change the density of states and provides an interesting
d== model in which magnetic order is frustrated.

A second important example is the Bethe lattice
(Cayley tree) with coordination z—o and nearest-
neighbor hopping ¢;=¢/ Jz. A semicircular density of
states is obtained in this case (see, e.g., Economou,
1983):

1
D(e)= T Jarr— &, |el<2t. (21)

The Hilbert transform and its reciprocal function take
very simple forms

D=L -sNE—a)22, R(G)=£'G+ UG (22)

so that the self-consistency relation between the Weiss
function and the local Green’s function takes in this case
the explicit form
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%’i(iwn}:iw,,-i*p—tzG(iwn), 23)
The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance z;f’j: 2IN (see

Sec. VII). ) _ _
Finally, the Lorentzian density of states

t
D{e}= m (24)
can be realized with a 7; matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take §=t/dZ f=] tan(k;)sgn(k;) for the Fourier
transform of f;; on a d-dimensional lattice, with either
d=1 or d=». Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D({)=1/{+it sgn[Im({)]}. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G, and reads explicitly

Foliow,) '=iw,+ ptit sgno, . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving S with (25). It
turns out that (25) is precisely the form for which S
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d—o lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the

absence of a Mott transition). _
Other lattices can be considered, such as the d= gen-

eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
Interacting Green’s function of this single-site action co-
Mcides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations
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FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shail present is borrowed
from classical statistical mechanics, where it is known
under the name of “cavity method.” It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian H . for site o is defined from the
partial trace over all other spins:

2 e_‘sHEg_BHcﬂ{So]_
MYET

(26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H=—h,S,—2J;,5,5;+H®. H® is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a “cavity” surrounding ¢ has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects ¢ to other sites. In this term,
J:,S,=7; plays the role of a field acting on site :. Hence
summing over the ;s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H®) and a formal expression for F
can be obtained as

H =const+ E Z

n=1 iy ip

1
=y mASi S ) @)
For a ferromagnetic system, with J;;>0 scaled as /gl
(li—j| is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d —w limit. Hence H .y reduces to H g=—h.5,, where
the effective field reads
hetf"‘h+z T S (28)
i
($,)°) is the magnetization at site { once site o has been
removed. The limit of large coordination brings in a fur-
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ther simplification to this expression: because each site
has of the order of d neighbors, removing a single site
produces an effect of order 1/d in local quantities, which
can be neglected. Hence the magnetization (§,)(® calcu-
lated for the cavity Hamiltonian equals the magnetiza-
tion {S;) for the full Hamiltonian. Furthermore, transla-
tion invariance implies {S)=(S,)y=m, so that
hog=h+ zJm. On the other hand, the single-site effective
Hamiltonian H,g is easily solved to yield m=tanhBh .
Hence, a closed set of mean-field equations is found.

Let us mention that the relation between the magne-
tizations with and without the cavity is more involved
for Ising models with nonuniform signs of J;;. For spin-
glass models with J;;= + 1, -1 at random, one is forced to
scale the couplings as 1/4d so that a correction term
must be retained in the difference {(§;)—{S;}*} (Thou-
less, Anderson, and Palmer, 1977, see also Mezard, Pa-
risi, and Virasoro, 1987). This correction term, first dis-
covered by Onsager (1936) in his studies on dielectrics,
accounts for local-field effects created by the removal of
one site (“reaction terms”).

This derivation extends in a straightforward manner
to quantum many-body models. It is convenient to write
the partition function of the Hubbard model (5) as a
functional integrat over Grassmann variables:

Z=J H Dci*‘,Dci,e’s, 29)
# + + +

S=1 d 2 cioarcio_z tijcio—cja"_»u'z Ciglio
o io [ IR io

+UD n,—Tn,-l). (30)

We follow closely the Ising analogy: all fermions are
traced out except for site o in order to obtain an effec-
tive action:

+ 1
egseﬁ[com‘:oﬂ']E"‘Z‘"J ]__I DC:;,—DCjo'e-s‘ (31)

i#o,0

Z eff

Note that the knowledge of S allows us to calculate all
the local correlation functions of the original Hubbard
model, since we can couple sources to degrees of free-
dom at site ¢. This observation is valid in any number of
dimensions. In order to obtain a formal expression for
S, the original action is again split into three parts:
§=5+5,+AS, where $() js the lattice action in the
presence of the “cavity,” and

f2
S,= L dT(E et (3,— w)Coat Unottte) |, (32)

B
AS=- J AT, (€t ot ConCin)- (33)
4} i

Again, 7;=1;,¢,, plays the role of a source coupled to
¢}, and the integration over fermions for i#0 brings in
the generating functional of the connected Green’s func-

tions G of the cavity Hamiltonian:
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Ser= 21 _2}_ ﬂ:;(Til)“‘TI.':(T.‘R)U;'I(T‘,-I)
a=l 1y 'la
X"'njn(Tjn)GEfv)v-j"(Ti'l“'Ti"s'rjl"'Tjn)+Sn

+ const. (34)

As before, the large d limit (with a scaling 1/+/d" /! of
the hopping #;;) brings in a crucial simplification: the nth
order term is of order (1/d)" 2 so that only n=2 survives
the d—o limit. This is easily seen by considering the first
few terms. The scaling of f; ensures that GE}’)
~ (1/Jd)"7 and so the first term is of order 1. The
second-order term involves a connected four-point func-
tion G{5) which falls off as (1) a)iH
(1), When i,j,k,! are all different, there are four
sums which give d* and four factors of ¢ giving 1/d>. The
net result is, since |i—j|, |i—1}, and |i—k| are at least 2,
of order 1/d. Similarly, the terms where i=j (distinct
from k and ! with k#/) contain three sums, which give
d®, four factors of ¢ giving 1/d%, and a factor 1/d? from
G since |i—!| and |k —i| are at least two. The result is
again of order 1/d. The effective action therefore re-
duces to Eq. (6) as d~+e, with

Fo ' iwp)=iwn+ p= 2 1oitoi Gl (iwn)- (35)
J

Expression (35) is important because it relates the Weiss
function %, to the Green’s function & SJ") of a Hubbard
model with one site removed. In order to obtain a closed
set of equations, one still needs to relate the latter to the
Green’s function of the original lattice. Again, the d-»
limit makes this possible here, but this relation takes, in
general, a slightly more complicated form than for the
classical Ising case discussed above. On the Bethe lat-
tice, however, it remains very simple. In this case, the
summation in (35) can be restricted to i=j (since neigh-
bors of ¢ are completely disconnected on this lattice
once the cavity has been introduced), and again, in the
limit of infinite connectivity, removing one site does not
change the Green’s function so that G{P=G,;. Using
translation invariance, one finally obtains Eq. (23) for
the Weiss function on this lattice: %'=iw,
+u—1G(iw,).

For a general lattice, the relation between the cavity
and full Green’s functions reads

GioGoj
GOD )

This equation is most easily proven by using the expan-
sion of Green’s functions in the hopping matrix elements
147, which is described in Sec. II1.C. First, we note that
the additional paths contributing to G;; and not to G fj" y
are those which connect sites i and j through site 0.
Then, one observes that, in the d = « limit, only those |
paths that go once through site 0 need to be considered.
This is true provided we allow an arbitrary dressing of
each site in a path by the irreducible cumulant M, de-
fined in Sec. IILC. Because of this property, the contri-

GY'=Gy— (36)
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bution of these additional paths is obviously propor-
tional to G;,G,;, but this quantity has to be divided by
G,, in order to count only once the contribution of
paths leaving and returning to the intermediate site o.
Interestingly, Eq. (36), which is essential to the whole
formalism, already appears in early works of Hubbard
himself: this is Eq. (36) of the so-called “Hubbard 111"
paper (Hubbard, 1964).

Inserting (36) into (35) we have to compute
Eif!iotfoGij—(Zit,-oG,-o)zlGoa. To proceed, let us use
Fourier transforms and insert the form (12) of the lattice
Green’s function, assuming a local seif-energy (this has
to be justified independently by power counting in 1/d).
The above expression reads

J’j:d eD(€)

i—€

o € \? +o 1
_(J:m deD(€) {—e) /J“wdED(E)Z::
with {=iw,+ p—2(i®,). This can be simpiified further

using the following relations:

j+wzuen2_ f+mo(ae

w L—€ e L—€ ]
+te D(eg) += De)
f_w = 5——1+§f~w e (37)

We have used 1,,=3%, 0, =S D{€)e=0. Finally, inserting (36}

into (35) yields
FHl=3+1UD(iw,+u—32),
which coincides with (7) and (13).

(38)

B. Local nature of perturbation theory
in infinite dimensions

From a historical perspective, the notion that in infi-
nite dimensions the local Green's function obeys a
closed set of functional equations was derived by various
authors from considerations on perturbation theory in
the interaction strength U.

Indeed, remarkable simplifications in the many-body
diagrammatics occur in this limit, as first noticed by
Metzner and Vollhardt (1989; see also Metzner, 1989,
Miiller-Hartmann, 1989a). Consider a given diagram
(Fig. 2), in which the interaction term Unyn; is de-
picted as a four-leg vertex at site i, and in which each
line stands for a free-fermion propagator between two
sites (it is easier to proceed in real space). The crucial
observation is that whenever two internal vertices (i,j)
" can be connected by at least three paths, they must cor-
respond to identical sites { =j. This property is of course
only true for d=o, and can be shown by simple power
counting. Since the hopping has been scaled by 1/yd,
each path made of fermion propagators connecting i 10 §
will involve at least a factor (1/v/@)~/l. On the other
hand, / being held fixed, the eventual summation to be
performed on the internal vertex j will bring in a factor
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FIG. 2. Example of diagrams contributing to the self-energy at
second and fourth order which can be “collapsed” 1o a single-
site.

of order d®. Indeed, this is the number of sites j located
at a (Manhattan) distance |i—j|=R from i (R can be
summed over afterwards). Hence, one obtains an overall
factor of dR(1/Jd)??s where &7, is the number of (in-
dependent) paths joining { to j in the diagram. Thus, if
%,;>2, only those contributions with i=j (R=0) will sur-
vive the d-» limit. (Notice that this argument com-
pares the contribution with i=j to that with i#/, for a
given value of the external vertices of the Green’s func-
tion). Alternatively, in the perhaps more familiar
momentum-space formulation of perturbation theory,
this property means that whenever two vertices can be
“collapsed” according to the rule above, the fermion
propagators G (k,jiw,) connecting them can be
replaced by their local, k-independent counterpart
3G9 (k,iw,), ignoring momentum conservation at the
vertices. Frequency conservation is retained however as
d -+, Figure 2 illustrates these considerations with two
diagrams contributing to the self-energy at second and
fourth orders. :

This simplification of weak-coupling expansions is of
course very useful in practice, since evaluating momen-
tum sums is the main practical obstacle in going to high
orders. In fact, discarding momentum conservation at
some vertices has sometimes been used in perturbative
calculations as a simplifying “local approximation” (see,
e.g., Treglia, Ducastelle, and Spanjaard, 1980). The d=«
limit provides a framework in which this approximation
can be justified. Various authors have exploited this sim-
plification to perform weak-coupling studies of various
models much beyond what is commonly feasible if one
attempts to perform Brillouin-zone summations. Muller-
Hartmann (1989b, 1989c) and Menge and Muller-
Hartmann {1991) have studied self-consistent perturba-
tion theory schemes for the Hubbard model. Similar
schemes were applied to the periodic Anderson model
by Schweitzer and Czycholl (1989, 1990a, 1991b). Sch-
weitzer and Czycholl (1990b, 1991a) also used the d=«
simplifications in order to facilitate the weak-coupling
studies of finite-dimensional models. The main idea is to
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FIG. 3. Example of a diagram that cannot be “collapsed” to a
single-site, because only two independent paths connect site [
to site k (or j to I). Note that this is not a skeleton diagram,
since it contains a correction 0 the ij propagator.

perform a summation Over successive shells of neighbors
in real space, rather than momentum summations,

Besides this practical use, these properties of pertur-
bation theory in d== can also be used to formally derive
the dynamical mean-field equations. Consider the real-
space self-energy Siiwg)- It is clear that not all dia-
grams of a standard weak-coupling expansion for this
quantity can be fully coliapsed to a local form. An ex-
ample of a diagram which cannot be collapsed is pro-
vided by Fig. 3. We can consider making, however, a
agkeleton™ expansion of X rather than a direct expan-
sion: this amounts to grouping together all corrections to
internal propagators, so that all lines of a skeleton dia-
gram stand for the full interacting fermion propagator
Gi;- The diagrams in Fig. 2 are skeleton diagrams, but
the one in Fig. 3 is not. In this way, the self-energy can
be viewed as a functional of the interacting Green’s
functions:

= z?;d[{Gu}]- (3%

It is easily seen that two internal vertices of a skeleton
diagram can always be connected by more than two
paths, so that all diagrams contributing to T in a skel-
eton perturbation expansion can be fully collapsed to a
single-site. More generally, this is true of the Luttinger-
Ward free-energy functional ®[{G;}], which is the sum
of all vacuum-to-vacuum skeleton graphs (Fig. 4). This
functional is such that (see, .. Abrikoso_v et al., 1965):

5P

Lijliwn)= SGtion)’ _ (40)

Hence, as d—o, & and s depend only on the local
(site-diagonal) Green's functions G;:

o= ¢(Gil, == (#1)
in which ¢isa functional of the local Green’s function at

site i only. An obvious consequence is that the self-
energy is site diagonal:

®=8+©;...

FI1G. 4. First two contributions to the Luttinger-Ward func-
tional.
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Eij(iw,,)=5ij2(iw,,). (42)

Furthermore, it must be possible to generate the func-
tionals ¢{G] and E*[G] from a purely local theory. A
simple inspection of Feynman rules shows that the effec-
tive action S in Eq. (6) precisely achieves this goal.
From this point of view, the Weiss function &, just plays
the role of a dummy variable which never enters the
final forms of ¢, ssk¢! Once these functionals are known,
the actual value of Z is found by writing that the local
Jattice Green’s function is given by G (kiwy), namely:

Gliw,)= I+wde D(e) (43)
n —e iwn—e—zsm[G(iwn)]'

This should be viewed as a functional equation for
G(iw,), which is of course equivalent to the self-
consistency condition (7). This point of view is formally
useful to prove reduction to a single-site problem, but is
not practical because of the difficulty in handling skel-
eton functionals. In fact, it has been so far impossible to
obtain exact or even approximate expressions of skl for
the Hubbard model, which would give reasonable re-
sults when inserted in (43), except for very small U. A
remarkable case for which 3%} G] can be obtained in
closed form is the Falicov-Kimball model (Sec. VIILB),
which is exactly solvable as d—o (Brandt and Mielsch,
1989-1991). For most models, it is much more useful in
practice to think of all quantities as functionals of %
and to promote the latter to the rank of a fundamental
quantity which has a clear physical interpretation as a
«Weiss function” (Georges and Kotliar, 1992).

This formalism is also useful for establishing the rela-
tion between the lattice and the impurity model free-
energies, {1 and Qimp (Brandt and Mielsch, 1991). In-
deed, 1 is related to the Luttinger-Ward functional @ by °
(see, e.g., Abrikosov e al., 1965}

0=0+T 2, [InG o(K,iwy) ~ Zoliwn) G olksiwn)],
nko
(44)
while, for the impurity model (6), '

Vg SLG1+ T, [INGolion) ~ i) Goliwon)]
(45,

Eliminating the functional @ between these two equa .

tions [using Eq. (41)], and taking into account transla

tion invariance, one obtains the following expression fo
the free-energy: ‘

ﬂ +
ﬁ=9m'T§, ( __deD(e)
Xln[iw,,+,u—-2,(iw,,)-—e]+ln G,(iw,,)), (4¢

Note also that the internal energy can be expressed
terms of local quantities only (see, e.g., Fetter and W
lecka, 1971):

I
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+=d eD(e€)
_L e tw,tu~Z {iw,)—¢€

1

+
2

T2 S liw,)G lim,). (47)

C. Derivation based on an expansion
around the atomic limit

In this section we derive the LISA equations on the
basis of an expansion around the atomic lLimit. This is
more than an academic exercise since a successful re-
summation of the atomic expansion has long been
sought, starting with the pioneering work of Hubbard
(1964). It is reassuring to see that a systematic analysis
of this expansion leads one back to the LISA equations.

This section builds upon early work of Metzner (1991,
see also, Hiilsenbeck and Stephan, 1994). For any spatial
dimension, one can write a general expansion of the free
energy and the correlation functions in terms of hopping
matrix elements ¢;; and bare cumulants ¢ ? which are lo-
cal in space but nonlocal in time. The bare cumulants
are defined by ’

3 d InZ,,
Sn{m)- - n(r,)6n(ry)---n(1)’

in which Z, is the partition function in the atomic limit,

Oy, o)

Zal[ﬂ,ﬁ]=j dC+dC e_‘fﬂﬂzal+f€;]c+c+1’,

where %,=2,c,(d,—p)c,+Un;n| is the Lagrangian
in the atomic limit. The rules for the calculation of a
Green'’s function are given by Wortis (1974) and by
Metzner (1991). The basic idea is to carry out an expan-
sion of physical quantities in powers of the hopping ma-
trix element, and eliminate all disconnected graphs using
linked-cluster type arguments. The diagrammatic rules
for the one-particle Green’s function G ,(7—7') follow.

(i) Draw all topologically distinct connected diagrams
composed of point vertices, directed “internal” lines
connecting two vertices {(corresponding to hopping ma-
trix elements), and two “external” lines (one entering
and one leaving a vertex) such that at each vertex (bare
cumulant) the number of entering lines equals the num-
ber of exiting lines.

(i1} Label each line with a time and a spin variable.
The entering external line is labeled by 7,0, the exiting
one by 7,0. Label each vertex with a lattice site index;
the vertex with the entering external line is labeled by j,
the one with the exiting line by j {the external vertices
may coincide: in this case j=j").

(iii) Each line running from a vertex j to a vertex i
yields a factor t;; cach vertex j with m entering lines
(labeled by si,...,5.,) and m exiting lines (labeled by
$11-..,8,,) vields a factor ¢%(sy,....8,|5} ,....50)

(iv) Determine the sign of each diagram (plus/minus
for an even/odd number of loops).

(v) Determine the symmetry factor g{ D) for each dia-
&ram D j.e., the number of distinct permutations of (la-
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n=0 ——
n=1 ——————
N=2 | e .Q.
a b
n=3 0 0
a b 4
d
n=4 <>
a b
I3 d e f
0.0 0
g h i i

FI1G. 5. First few diagrams for the expansion around the
atomic limit for the Hubbard model {from Metzner (1991)].
The dots represent bare cumulants.

beled) vertices and lines which do not alter the topologi-
cal structure of the diagram.

(vi) For each diagram D, multiply the associated hop-
ping matrix elements and cumulants, integrate each time
variable from (} to B, sum each spin variable and lattice
vector on internal lines over the whole lattice, and mul-
tiply by the sign; the labels of external lines and vertices
are kept fixed.

Collecting all these factors, one obtains the weight
w(D) of a given diagram D. The one-particle Green’s
function is finally given by the sum of the weights w{D)
of all connected diagrams. The lowest-order diagrams
are shown in Fig. 5 from Metzner (1991).

The expansion around the atomic limit is quite com-
plex, and different truncations lead to the Hubbard 1
and Hubbard III (Hubbard, 1964) approximations
{Metzner, 1991). It is natural to define the notion of ir-
reducibility with respect to one line (representing ¢;,}.
This leads to the definition of an irreducible cumutant
M, as the sum of all graphs with two external legs, which
cannot be divided into two parts by cutting a single line.
Fourier transforming the spatial dependence, one ob-
tains the exact relation between the one-particle irreduc-
ible cumulant and the one-particle Green’s function,

1
(M7 (kiw,) — €]
in which g is the Fourier transform of the bopping ma-
trix element. An exact relation between the irreducible

one-particle cumulant and the self-energy is thus ob-
tained:

MYk iw)=io,+p—2(kiw,). (49)

Glkiw,)= (48)
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FIG. 6. Diagrammatic representation of the Dyson equation
defining the irreducible cumulant M, (crossed circle), and its
expansion in terms of bare cumulants.

Equation (48) is represented graphically in Fig. 6, in
which the first terms in the expansion of M, in terms of
bare 1;; lines and bare cumulants (¢%s) are also depicted.

The expansion described so far is completely general
and valid in arbitrary dimensions. The summation over
sites are totally unrestricted except for the external ver-
tices which are taken at the same site, say 0. In infinite
dimensions several important simplifications occur,
which are easily explained by means of an example.
Consider the diagram in Fig. 7. One shows, just as in the
discussion of the weak-coupling expansion in the previ-
ous section, that all the bare cumulants connected by
more than two lines give a nonzero contribution in d=
only when evaluated at the same site. In Fig. 7, i and [
have to be equal to 0. The contribution from sites i, {#0
are of higher order in 1/d. Notice that the index j in that
figure is free. Hence, the irreducible cumulant
M, (k,iw,) becomes local (k independent) in d=, and
so does the self-energy.

With this observation, we can identify all the graphs
that survive in the d—oe limit as originating from the
expansion of an Anderson impurity model (AIM) in
powers of the hybridization. For the model

+ A ' '
Z A= I de¥dc e-J’EUca('r)[&,—ef-—A('r-‘r Neglr' y+Unlnl

(50)
one can derive a diagram expansion in powers of A. The
elements of a diagram are the bare local cumulants
(which we still denote by a dot as in the lattice case), and
wavy lines corresponding to A(r7). One can introduce
the notion of irreducibility with respect t0 lines, and ex-
press the local Green's function in terms of irreducible
cumulants. The relation between the impurity orbital
Green’s function and the renormalized cumulant then
becomes

1
(M (iw)— Aliw)]

(51)

Gliw)=
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FIG. 7: Examples of the simplifications that take place in the
d=o limit. The upper plot is a typical graph for M,. The lower '
plot is the corresponding Anderson impurity model represen-
tation [the dotted lines stand for the hybridization function
A(=~7)}

This allows us to identify the renormalized cumulant as
Miiw)=iw—e—2(iw).

Finally, one can express M { V(iw) in terms of cumulanis
and A(# 7). The diagrammatic expansion is identical to
that in Fig. 6 for the Hubbard model, provided that one
identifies the dotted line representing A with the lines
beginning with ¢,; and ending with f;, as described in
Fig. 7. Thus, we conclude that the two expansions coin-
cide provided

,&(fw)=§',) 1ot oiG i w), (52)
W

where & f;’) denotes, as in Sec. IILA, the Green’s func-
tion between sites i and j in the absence of site 0 (and
bonds connected to it). This is because the contributions
from the site o to the hopping lines that originate from
the site labeled j in Fig. 7 vanish in the d — limit. Other
contributions from site o to the diagram described in
this figure (such as/ = o) have been included explicitly in
the diagram, thus they should not be included also in the
dotted line so as to avoid double counting. The corre-
spondence between the diagrams of the Andersor
model and of the d=« Hubbard model is illustrated ir
the case of a specific example in Fig. 7.

Equation (52) is precisely the self-consistency condi
tion (35) derived in the previous sections following dif *
ferent methods. It would be interesting to analyze th
effects of the leading order 1/d corrections in this frame

work, in conjunction with a high-temperature expansior «
D. Effective medium interpretation

The dynamical mean-field equations also have
simple interpretation as an effective medium (or “cohel
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ent potential”) approximation {Janis, 1991; Janis and
Volihardt, 1992a; see also Janis 1986, 1989). (For a re-
view of the coherent potential approximation in the
noninteracting case, see, e.g., Elliott, Krumhansl, and
Leath, 1974). In this approach, one envisions replacing
the interacting lattice model by a noninteracting medium
with a propagator specified by a local self-energy 2(iw,)
1o be determined self-consistently. The action of this ef-
fective medium thus reads

jﬁmd:—j d'rj dT’kE CIU(T)G[;éd(k,T— T )CkeA T'),
(53)

Gmcd(k,l'w,,)_I:imn+y—fk—2(iwn). (54)

One then imagines that the local interaction Un,n,, is
introduced ai a single site o of this effective medium, and
that the self-energy % has simultaneously been removed
at this single-site only. The action of this new lattice
model with a single-site embedding thus reads

-yemb=ymed+Uf dr Rotlo)

_fdff ar'S (DZ(r—)eu (7). (55)

This can be turned into an effective action for site o
only, by integrating out all other sites. Note that sites
i#o enter only quadratically in %, , and that this in-
tegration is thus performed exactly. This is to be con-
trasted with the cavity method which is rather different
in spirit. One obtains

S [ dr[ 47’3 AN 1= el )

+Uf d7nyng (56)

with
FoWiw,)=D(iw,+p—2) ' +2(iw,). (57)

One then requires that the interacting Green’s function
obtained from S for the embedded site coincides with
the on-site (local) Green’s function of the medium:

Gliwg,)=—(Tc* (iwy)e(iwy))s,,

= 2 Gued(kiwp)=Dl(iw,+p—3).  (58)
Hence, T is identified with the self-energy of the effec-
tive (impurity) model itself, and this set of self-
consistent equations is seen to be exactly identical to the
dynamical mean-field equations above.

IV. RESPONSE FUNCTIONS AND TRANSPORT

In this section, we show that the response functions
for the lattice can be obtained from the knowledge of
the self-energy and of two-particle Green’s functions of
the impurity model only (Brandt and Mielsch, 1989;
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Zlatic and Horvatié, 1990: Jarrell, 1992; Jarrell and
Pruschke, 1993a, 1993b; Pruschke, Cox, and Jarrell,
1993a, 1993b). Note that, in the d-—oe limit, no precuorsor
effect of the mstability of a given phase towards some
kind of symmetry breaking can, in general, be observed
at the level of one-particle properties (Muller-Hartmann,
1989b). Indeed, the self-energy only probes local prop-
erties in this limit, and is thus sensitive only to those
nstabilities arising simultaneously from all wave vectors
in the Brillouin zone. One such example is the Mott
transition discussed in Sec. VII Instabilities associated
with a specific wave vector (such as a ferromagnetic or
antiferromagnetic transition) will not be detectable from
the knowledge of Z(iw,)} in the high-temperature phase.
Hence it is very important to be able to evaluate re-
sponse functions within the LISA framework. Alterna-
tively, dynamical mean-field equations directly adapted
to the study of phases with some symmetry breaking can
also be established, as described in Sec. V.

A. General formalism

Consider the response function x{q,w,) associated
with some operator (Z(R,7), namely,

B , .
X(q,iw,,)=f dr e'onmY, e RUTAH(R,,7)E(0,0)).
o !
(59)

Some examples are the charge susceptibility, with
A(R)=3 ¢ c;, 5 spin susceptibilities ¥** (a,b=x,y.2),
with *(R;) = 1122 ,:¢;,0%,,¢jor ; and the frequency-
dependent conductivity tensor o*?(w) related to the
real-frequency ~current-current correlation function by
() =[x (w+i0*)—x(i0")/iw, with  the
x-component of the current on the hypercubic lattice
glve“bY]z(R;) = izac);*(cj+i,a'_ cja')-

All these expressions can be Fourier transformed to
yield

@(q!7)=k2 vlto'cl:ro'ck'i—q,cr? (60)

where the vertex factor vy, equals 1, sgn(e), 2 sin(k,) in
the three examples above, respectively.

Let us define the two-particle vertex function

I":f,’q(i v,iv';iw) appropriate to each of these cases and
irreducible in the particle-hole channel (Fig. 8). x(q,iw,,)
is obtained from the ladder sum depicted in Fig. &, in
which a thick line stands for the interacting fermion
propagator G (k,iw,). Explicitly,

x{qiw,)=— kz Ve GG (Kt qivtie)viigs

Jdva

+> X

v Gk iv)Gk+q,iv+im)
kiv.o &' i o'

szﬁq(iv,fv’;iw)G(k',iv')

(61)

A crucial simplification arises in the d —oo limit: I" can be
replaced in this equation by a purely local quantity

XGk'+qiv' +io)vyg yqot 0 -
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kK'+q, vV+o

k, v I kK, v'

{a)

e - O+ D>

(b)

FIG. 8. (a) Two-particle irreducible vertex function. (b) Lad-
der decomposition of the response function x{q.iw,); the mo-
mentum dependence of I can be ignored inside the ladder sum
in d=oo.

I (iv,iv';iw) depending on frequencies only (Zlatic
and Horvati¢, 1990). This results from the power-
counting rules stated in Sec. IILB, since any two sites
belonging to I in the real-space representation of the
ladder series are certainly connected by more than two
independent paths. If it were not so, the diagram could
be disconnected by cutting two internal propagators in
contradiction with the assumption that T is irreducible.
Note that this assumes that all vertices in ' can be con-
sidered internat (i.e., summed over) and thus T can be
collapsed to a fully local form only when inserted in the
ladder sum above. (When considered by itself, T does
have some momentum dependence, but only its local
component contributes to the ladder sum.) As a result of
this simplification, the summation over momenta can be
performed in each particle-hole bubble independently,
ignoring momentum conservation at the vertex I'. In
contrast, note that frequency conservation must be fully
taken into account.

For the sake of simplicity, we shall proceed with the
example of the spin susceptibility x**. All the other re-
sponse functions can be obtained in an analogous man-
ner. The special case of the frequency-dependent con-
ductivity will also be dealt with in detail below. Only the
spin-antisymmetric component T contributes to x**
(the superscript A will be omitted everywhere below).
We denote by x(i v,iv';iw) the result of the above lad-
der sum in which the summation over the first and last
frequencies »,»’ have been omitted [so that the dynami-
cal susceptibility is obtained by summing over frequen-
cies, x(qiow)=2Z,, Xq(iv.i v';iw)). ¥ satisfies an integral
equation:

Rev. Mod. Phys., Vol. 68, No. 1, January 1996

,{'q(z’v,iv';iw)=jg(iv;iw)a,,ly.
Y 1 .. .
+Xq(w;lw) E E Civ,iv"iw)

X xoiv",iv'iw) (62)
in which g3(iv;iw) is obtained by performing the sum-
mation over the internal momentum k in the elementary

particle-hole bubble,
[ PR . R .
iviw)= —2 G(k,iv)G(k+q,iv+io). (63)

It is clear from Eq. (62) that the q dependence of
¥(q,iw,) stems entirely from that of ,{f?l. We shall now
characterize more precisely this momentum depen-
dence, concentrating on the case where one really stud-
ies a d= lattice model (we choose for simplicity the
hypercubic lattice). Later in this section, we shall de-
scribe how dynamical mean-field approximations for
q-dependent response functions of a finite-dimensional
model can be generated in the general spirit of the LISA
approach.

For the d=e= hypercubic lattice, the momentum de-
pendence of the response functions simplifies drastically:
as shown in Appendix A, )}2 depends on q (for the hy-
percubic lattice) only through the following quantity
(Brandt and Mielsch, 1989; Miiller-Hartmann, 1989a):

1 &

X(q)=7 2, cosdqi (64)
Let us discuss in more detail the quite peculiar g depen-
dence of this quantity [and hence of x{q,iw,) in the
d—e limit]. For a “generic” q vector (i.e., for all g’s
except a set of measure zero), the summation in Eq. (64)
is over arguments that are random in sign, and hence is
of order \d, so that, as d—,

X(q)=0 (“generic” q). (65)

This implies that, for any generic q, x(q.iw,) coincides
with its local (on-site) component:

x(q,iwn)=2 x(Q,i0,)}= Xiocliwy) (“generic” q).
L §
(66)

X(q) may take arbitrary values -1=X=1 for specific
values of q, however. Important examples are the
uniform wave vector g=0 (appropriate for ferromagnetic
ordering) and the zome-corner —wave vectors
q=(x7,....=m) (appropriate for two-sublattice com-

mensurate antiferromagnetic ordering):
X(0)=+1, X(xm,..,tm=-1 &N

Intermediate values —1<X<1 correspond.to incommen-
surate orderings. It is important to realize that even
though these types of ordering are not very easy to vi-
sualize in real space in the d—ee limit, they can be stud-
ied through the X(q) dependence of x and indeed are

e O
. -
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known to occur in several models including the d==
Falicov-Kimball model (Freericks, 1993a, 1993b, 1993¢
cf. Sec. VIIL.B), Hubbard model (Freericks and Jarrell,
1993a, cf. Sec. VII.H), and Holstein model {Ciuchi et al.,
1993, cf. Sec. VIILE), away from half-filling.

Because of this specific q dependence, the calculation
of response functions for a d=o model can be reduced to
the evaluation of correlation functions of the effective
impurity model only. In order to see this, we apply Eq.
{62) 10 a “generic” wave vector q. This allows us to ex-
press the irreducible vertex function in terms of local
guantities:

I=[ %) "= [Xi0c] ™ (68)

in which the y’s are viewed as matrices in the two indices
v,v/ and [%¥]~! denotes matrix inversion. This equation
can be used to reexpress I' in Eq. (62), leading to the
important expression (Zlati¢ and Horvatic, 1990; Jarrell,
1992)

%3 =[x T LX) = [xhel ©(69)

The right-hand side of this equation involves impurity
model quantities only, since )"(2 requires only the knowl-
edge of the self-energy 3(iw,), and the local quantities
Xicliw,) and X (iv,iv';iw) are response functions of
the impurity model effective action S.4. For the ex-
ample of the spin susceptibility x*, we have explicitly

1 8 B B B
Xocliv,iv'iw)=— f d'rlj d'rzj d*r:;,j dry
4 Jo 0 0 0

xeiv(rl-“rz)eiv'('q—q)
Xl DE (- 1)~ 1)°
X{Tch{m)cd Tz)C;,(’T3)Co.r(T4)>Seﬂ_.

(70)

The numerical methods reviewed in Sec. VI for the cal-
culation of the impurity model Green’s function can be
used to evaluate such a local correlation function {cf.
Sec. VILA.5).

The other ingredients entering Eq. (69) are the uncor-
rected response functions )Z?]. These are obtained from
the knowledge of the one-particle Green’s function by
evaluating the momentum sum in Eq. (63). On the d=®
hypercubic lattice, this sum can be evaluated further in
order to show that )}2 only depends on q through X(q).
The relevant expressions for an arbitrary X(q) are given
in Appendix A. Here, we shall simply note the impor-
lant expressions for a generic q and for q=0, valid for an
arbitrary density of states:

Xq=Xoe=~D(L,)D(L,+,) (“generic” q),  (71)
~ D(gv)_ﬁ(gv+w)
X?|=0= B §v+w_£v (72)

with { =ip+ u—3(iv), as usual.
Hence, Eq. (69) is crucial in that it allows the deter-
Mination of any q dependent response function for a
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d= lattice model from the knowledge of the effective
impurity mode} self-energy and correlation functions. It
is instructive to have a closer look at this equation for
the case of a uniform and static response q=0, w=0, Us-
ing the above expressions of %° and Eq. (69), we obtain,
in that case,

1 1 )
= + =
D, D'(L.)

(73)
with D'=43D/a{. This expression simplifies in two spe-
cial cases. For a Lorentzian density of states,
D(&) "= {+it so that the second term in the right-hand
side of Eq. (73) vanishes and one obtains that uniform
and local response functions coincide for this model:
Xq=0 = Xioc- This parallels the observation made in Sec.
11.C that the self-consistency condition becomes trivial
for this model, which is really just an impurity model
without the interesting feedback effects from the lattice.
For all other cases however, the additional term on the
right-hand side of Eq. {73) reflects how a static field ap-
plied to the lattice induces a spin dependence of the
Weiss function ¥ (iw,) (see Sec. V). For the z=e
Bethe lattice (with our standard normalization), this
term simplifies to yield

falo(w=0)=Tpl(@=0)+1%5, . .

Xgool@=0)=xp(@=0)+ 50_,,(

(74)

This formula has a simple physical interpretation. Even
when the local susceptibility diverges, e.g., near the Mott
transition yj.=0 the uniform susceptibility may remain
finite due to the r* term. This term cuts off the diver-
gence in the frequency summation x{q=0,0=0)
:Exw’i;q=0(w = 0) = zvv’[l\-’l_;:l + (26v v’]_ls and gener-
ates the finite spin-exchange scale J=t/U.

Finally, we conclude this section by mentioning how
approximations of ¢ dependent response functions for a
finite-dimensional lattice can be obtained in the LISA
framework, in the spirit of a dynamical mean-field ap-
proximation. The idea is to neglect the momentum-
dependence of the irreducible vertex function I', and to
use again Eq. (62) in order to relate I to local quantities.
However, it is no longer strictly true that x, coincides
with xjoc for a “generic” value of g, so that using Eq. (68)
to calculate T is in fact a supplementary approximation.
Other choices could be made to define I', but Eq. (68) is
certainly a natural possibility. Thus, one can follow the
strategy of computing the self-energy and the local re-
sponse function X, from the self-consistent impurity
model, and to compute q-dependent response functions
from Eq. (69). For an arbitrary lattice, the guantities
Xy are obtained from their definition (63) and the
knowledge of the self-energy as

+w ta
;ﬁwm@=—f qu&ﬂj de;D(€))

A
(ng El)(§v+m_ E2) ’

(75)
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where {,=iv+u-2(iv), and Ay is the lattice-dependent
function:

Bgler ) =2 dlew e)8lenrq™ ) (76)
For a d== lattice, Ay only depends on g through X (q).
as mentioned above, and the distribution % #X - X(q))

is a delta function & X), so that the above approxima-
tion becomes exact.

B. Fregquency-dependent conductivity, thermopower and
Hall effect

We now deal in detail with the case of the frequency
dependent conductivity o{w,q=0). In this case, we have
seen that the current vertex vy is odd under parity
k—-k. Since all k dependence of T can be ignored and
& is even under parity, this implies that all vertex cor-
rections drop out of the current-current correlation
function at q=0 in the d—w limit. This observation was
first made by Khurana (1990). A more detailed proof

follows from the Ward identity
Qro(k+q.k) + -% A(Q)T!(k+qk)
=1y

=G lk+qo+Q)-Gl(kw), )]

where T° and TV denote the density and current vertex
respectively and A(q)*=2 sin[(g;)/2] on the hypercubic
lattice. Since in large dimensions the self-energy is inde-
pendent of momentum, and the density vertex is even in
q while the current vertex is odd in q, expanding Eq.
(77) to lowest order in A(q) proves that the current ver-
tex is unrenormalized. Notice that this conclusion is false
as soon as q is finite, because there are nontrivial can-
cellations between the density and the current vertex at
finite q so as to obey Eq. (77).

Hence, only the elementary particle-hole bubble sur-
vives in Eq. (62) for the current-current correlator at
q=0, and one obtains, for the paramagnetic contribution
to the optical conductivity (the diamagnetic term cancels
the 1/w divergence of the real part of the retarded
current-current correlator),

11 1<
oliv)= o 5.2, :21 4sin(k))G(k,iv,)
X G(Kk,iv,tiw). (78)

One could make use of this expression (inserting the
self-energy calculated from the impurity model) to gen-
erate approximations of the optical conductivity of a
finite-dimensional lattice, in the general spirit of the
LISA method. For a d=x model however, the sum over
momenta can be further simplified by expressing it
as an energy integration, and noting  that
5, S sin(k;) Ke-&)=dD{(e)2 for d—>. This leads to
the final form (Schweitzer and Czycholl, 1991b; Moeller,
Ruckenstein, and Schmidt-Rink, 1992; Pruschke, Cox,
and Jarrell, 1993a, 1993b):
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11 re
oliw)=7 5 > j de D(€)G(e,iv,)G (e ivytiw).
’ (19)

Using the spectral representation of the Green’s func-
tions, this is also conveniently expressed in terms of the

one-particle spectral density ple)=—(1/m)
ImG (e v+i0%):
1 4@ EX-- + o
O'(iw)=—~J’ deJ va dv'
© J—w —= —
f)=f(¥")

xD(e)ple,v)plev') —— 7o (80)

where f is the Fermi function. Performing the analytic
continuation yields (reintroducing dimensional prefac-
tors):

2 +o +®
Re a(w+i0+)=1rzf;—d— J_ deJ_ dv D(e)ple,v)
Xp(e,v'+w)ﬂ—vl——€§-lﬂ)")'. 81)

Finally, we conclude by noting that the absence of vertex
corrections to the current-current correlation function
for d= models is not restricted to that correlation func-
tion, but actually applies to the ¢=0 correlation function
of any operator such that the vertex factor 1, satisfies

(82)

2 Uk-_‘o.
k

One additional example is the thermopower 0, asso-
ciated with the heat current (&, — )V €. The following
d=% expression can be established (Schweitzer and Czy-
choll, 1991b; Pruschke, Jarrell, and Freericks, 1996):

)
Idwfde(w—/z);:,%p(e,w)z

Q= (83)

eT_l'cl'cuj'dej—({)p(.s,m)2

Notice, however, that this expression neglects the con-
tribution to the thermal current due to the transport of
doubly occupied sites, which has not been analyzed in
detail yet.

Vertex corrections can also be shown to drop out from
the Hall coefficient. The proof in this case is more in-
volved, since one needs to consider three-point correla-
tions at finite q, and the limit of small wave vector is
taken only at the end of the calculation. Following the
careful analysis of Kohno and Yamada (1988), it may be
shown that the diagrams neglected in their treatment on
the basis of being higher in the small damping constant
are in fact higher order in an expansion in 1/d relative to
the leading terms. This leads to the following expression
at finite temperature:

e
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af of 9€\?
axyocBJ- dw %z’(: plk,w) (5kx)
52€k }

asz (86]()2
ok ok,

)4 — | —
k2 \ ok,

(84)

Taking the zero-temperature limit of this expression,
one observes that the noninteracting result is recovered,
leading to the Hall number:

Jv Jv
_ - 2y _2r
&SN 2y o€ #0)(”;: ok, vyakx)
Ry=~— : =, (89)
(ﬁ}:k,a&fk“#—o)vi)

where v, =V €. It is quite remarkable that the Hall
coefficient is given by the bare band structure at 7=0
even when the correlations are strong. This has been
applied to the case of La; ., Sr, TiO; near the Mott tran-
sition by Kajueter, Kotliar, and Moeller (1995).

These expressions can all be simplified further if one
considers the special case of the d=o hypercubic lattice
Eq. (19), in which case summations over k can be re-
placed by averages weighted by the bare density of
states D'( ¢€), leading to (Pruschke, Jarrell, and Freericks,
1995; Kajueter, Kotliar, and Moeller, 1995; Majumdar
and Krishnamurthy, 1995b):

a
ny”‘_Bj_dE D(E)fj da p(e,w)3'&'£, (86)

> ug

RH(T=0)=;§—E~ m (87)

V. PHASES WITH LONG-RANGE ORDER

For simplicity, the dynamical mean-field equations
have been derived in Secs. II and IIT under the assump-
tion that no long-range order is present. In the previous
section, it was shown how response functions signalling
some symmetry breaking can be computed. In this sec-
tion, it will be shown that the dynamical mean-field
equations can be generalized to phases with broken
symmetry, and a description of the mapping onto an im-
purity model for these cases will be given (see, e.g.,
Brandi and Mielsch, 1990, 1991; Georges, Kotliar, and
Si, 1992).

A. Ferromagnetic long-range order

In the presence of a magnetic field & coupled to S, , or
if there is a spontaneous uniform magnetization, the
Green’s functions for up and down electrons are not
equivalent. Then one has to retain the spin dependence
flf the local Green’s functions and of the Weiss function
10 the derivations of Sec. HI. The local effective action
associated with the Hubbard model in a ferromagnetic
Phase or in the presence of a uniform field reads
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B B
Sefr= —L drjo dr'y, c (N Foalm— 1 )c,(7')

L2

8
+UJ'o drm,(7)n, (7). (88)
The self-consistent equations for the two functions Gy,
G| and their corresponding Weiss functions are straight-
forward generalizations of Eq. (7) to this spin-
dependent case. They read

G i -J‘Hod De)

oliwy)= e Eiw,,+,u,+h0'—2,,(iw,,)—€’ (89)
where

Goliw)=(c liwy)c (iwy))s

Sliw,)=%t-G, L. (90)

Note that the dependence of %5 on the external field h
is, in general, more complicated than just a linear term
Ao a uniform field coupling linearly to the lattice model
induces a nonlinear, frequency dependent term in the
impurity effective action.

From the solution of Eqgs. (88) and (89), one can re-
construct the lattice Green's functions:

1

Colkiwn)= o T ho—a—3.Ga) o1
. The magnetization as a function of the external field is
given by
T "o ger )
m=g eV [ G (iw,)~ G (iwy)]. (92)
n

A ferromagnetic phase is signalled by a non-zero spon-
taneous magnetization limy,_om (k) #0. It is a straight-
forward but lengthy exercise to check that Eq. (73) for
the uniform magnetic susceptibility can be recovered by
expanding Eqs. (88) and (89) for small k.

B. Antiferomagnetic long-range order

Similar considerations can be used to study commen-
surate antiferromagnetic long-range order in the Hub-
bard model. Note that the 1/y/d scaling of the hopping
amplitude is such that the exchange coupling obtained at
large U for a given pair of sites, J ij=t,2j/ U, scales as 1/d,
which is just the scaling to be performed on a spin model
to preserve a Néel transition at a finite temperature
Tn=0{1). For simplicity we shall again concentrate on
the Hubbard mode] and we shall add to the Hamiltonian

in Eq. (5) a staggered magnetic field:
he2 e CFiclic,,

with Q=(,..., 7).

Let us first derive the mean-field equations in the or-
dered phase using the cavity method on the 7= Bethe
lattice. There are two inequivalent sublattices, 4 and B
and a simple relation in the Néel phase between the

(93)
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local Green’s functions on each sublattice: Gy,
=G4 ..Gp, for ie A,B with

GAv(iwn)=GB,—u(iwn)- (94)
Let us focus on a site belonging to sublattice A, and
eliminate all other degrees of freedom. The resulting ef-
fective action is identical to Eq. (88), but in the present
case the Weiss functions read Fpu=iw,+p
—ho— 12G .- Using Eq. (94), we see that a single-site
description still holds, with (on the Bethe lattice)

%;=imn+p—IZG_,—ah,. (95)

This is easily generalized to an arbitrary lattice. The
d—o skeleton functional ® now depends on the two
local Green’s functions: ®=®[G4,,.Gp,].- The self-
energy is purely local and can take two values with
S aoliw,)=Zp _,{iw,). It is convenient to write the
Hamiltonian in terms of two sublattice operators in the
reduced Brillouin zone (RBZ):

. Hp= X,

okeRBZ

+ >

ckeRBZ

+ +
1€ AkoC Bt € BroC Aka)

oh (€ o€ Ake— € BroC Bia)- (96)

The Green’s functions are obtained by inverting the ma-
trix:

(gAa _Ek]
—é {Bo
with {up=iw,+u—oh,—2,, and [g,=iw,tp
+oh,—%g,. The impurity model to be considered is

still Eq. (88), but the self-consistency conditions now
read (Brandt and Mielsch, 1990, 1991):

G..= rd Die) 97
w=las| deTr 2 o7

with a=A ,B and a=B,A. When a semicircular density of
states is inserted in this equation, Eq. (95) is recovered.
The staggered magnetization and the free energy of the
antiferromagnetic phase are given by similar equations
as above.

It is instructive to notice that the simplest approxima-
tion to the self-energies, 2 4,= (U/2)(n 4, np,), repro-
duces the usual Hartree-Fock approximation for the
staggered magnetization. Also, as soon as Neéel order is
established and S 4 ,# 3 5, it is possible to open a gap in
the single particle spectrum, ie., ImG(w+i0%)=0 if
lotp+(Z g2 4) 2 € (4 +Zp)/2. This will always be
the case, particularly at half-filling for a nested, bipartite
lattice. Note that the effective conduction electron bath
entering the impurity model is then also gapped. These
are peculiarities of the d—o limit, in which long-
wavelength spin-wave excitations are absent. Neverthe-
less, the LISA method has proven useful for studying
the quantum transition between a strongly correlated
paramagnetic metal and a metal with spin-density wave
order, and some of the results are expected to hold in
finite dimensions as well (Sachdev and Georges, 1995;
see also Sec. VIL.D.3).
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In order to study the phase transitions between differ-
ent magnetic phases we have to compare the free ener-
gies of all possible magnetic states, using straightforward
generalizations of Egs. (46) and (47). Alternatively, one
can calculate directly the relevant divergent susceptibil-
ity, along the lines of Sec. [V (keeping in mind, however,
the possibility of first-order transitions). For incommen-
surate magnetic orderings, no simple set of mean-field

equations can be written inside the ordered phase inthe .

general case, and one must resort to the study of suscep-
tibilities.

C. Superconductivity and pairing

The LISA mean-field equations are easily extended to
take into account superconducting long-range order
(Georges, Kotliar, and Krauth, 1993). We illustrate this
on the one-band Hubbard model, but the equations are
easily generalized to other models, such as the multi-

band Hubbard model described in Sec. VIIL.C. One in-

troduces anomalous Green’s functions:

F(k,7)=—(Tex(7)c -k (0))- (98},
In the following, we shall consider only pure singlet pair-

ing, for which F(—k,—7)=F(k,7) and pure triplet pairing
with §,=0 for which F(-k,~D=-F(k7). Within the ~
. present d=» formalism, the k dependence of F will be

only through &, so that only pairing states having the
symmetry of the original lattice are possible in the limit .

of d=e. This can be shown using the absence of vertex
corrections to the pair susceptibility (Sec. I'V) for pairing

states with a different symmetry (Jarrell and Pruschke, *

1993a). Pairing with a different symmetry, such as d
wave, requires an extension of the LISA formalism to
self-consistent clusters, see Sec. IX). However, the time
dependence of F can be highly nontrivial, which is in fact

expected to be crucial for models with repulsive interac-
tions. The underlying physical idea is that on-site equal- -

time pairing is likely to be strongly suppressed in the
presence of a strong on-site repulsion, but that pairing

involving a time-lag between the members of a pair may *

occur. This idea dates back to Berezinskii’s proposal’
(Berezinskii, 1974) for triplet pairing in *He, a generali-
zation of which has been recently considered for cuprate ,
superconductors by Balatsky and Abrahams (1992).

In the presence of a nonzero F, it is convenient to
work with Nambu spinors ¥ ' =(¢ }} ,¢;;)—or, in Fourier
space, ¥ = (cy;,¢—x;)—and with the matrix formula-
tion of one-particle Green’s functions:

Ek,7)=— (T¥ (¥ (0)) -
G(k,7) F(k,7)
“\F(k,nN* -G(-k,—7)}

With these notations, the kinetic term of the Hubbard
Hamiltonian reads ~Z ;1 ¥ " o3¥;, where o3 denotes
the Pauli matrix. We shall first illustrate the derivation of.
the mean-field equations on the z= Bethe lattice. Fold
lowing the cavity method, we integrate out fermioniq

(99) &

i
i
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variables on all sites except a singie one. The impurity
action obtained in this way now reads

B
Seii= UJ’O drni(nn (1)

B B
- fo dffo dr' Ut (& (r— 'y (s'), (100)

where the self-consistency equation relating %5, to the
interacting (matrix) Green’s function of S.4 reads

(101)

We can account for an externally applied dynamic pair-
ing field on all sites in the original lattice problem by
adding a forcing term A(iw,) to the off-diagonal com-
ponents of the right-hand side of Eq. (101).

For an arbitrary lattice, the impurity action keeps the
same form, and we introduce a matrix self-energy:

et (iw,) S(iw,)

0 T\ SGiw,) —S(iw)*]
$(iw,) contains information on the time dependence of
the pairing. Here and in the following, we have assumed
that the symmetry of the pairing is such that the off-
diagonal self-energy obeys: S{iw,)=S(—iw,)*. The lat-
tice Green’s function reads, in matrix form,

Gk iw,)

.‘?ﬂ_l(iw,,)=iwn+p03—rzagf;(iwn)a3.

-(102)

—S{iw,)
fw,—p+e+EZ(imwy)*/]’
(103)
The self-consistency equation is obtained by requiring
that the impurity Green’s function coincides with the on-
site Green’s function of the lattice. This yields the rela-
tions

(im,,+,u,— g—2(iw,)
- = S(iw,)

+ o {*—E

G(iw,,)= de D(E) W*‘_Sz’

—to

+o 1
F(imn)=—S(fwn)f_w de D(E) IT_—GIW (104)
with {=iw,+ pu—2Z(iw,) as above,

The impurity action (100} describes an Anderson im-
purity in a superconducting medium. This model is thus
the effective local model associated with the supercon-
ducting state of a strongly correlated system. Since this
problem is known to be highly nontrivial, even with
static pairing, we may expect that the self-consistent so-
lution of Eqs. (104) will allow for very intricate densities
of states.

The existence of superconducting phases in concrete
models is only beginning to be explored. Odd and even
frequency pairing is absent in the single-band Hubbard
model (Jarrell and Pruschke, 1993a). Some hints that the
Wwo-band Hubbard model may have a stable supercon-
ducting phase were reported by Georges, Kotliar, and
Krauth (1993) and Caffarel and Krauth (1994).
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FIG. 9. Ali methods of solution of the coupled LISA equa-
tions involve going through the iteration schematically de-
picted here. Given %, a local interacting Green’s function G
is obtained by solving the impurity model. This function is
used in the self-consistency condition to produce a new bath
Green’s function 7. This loop is iterated until a converged set
(G, %) is reached.

V. METHODS OF SOLUTION

As explained in the previous sections, lattice models
of correlated fermions can be mapped, in the limit of
infinite coordination number, onto a single-impurity
model which has to satisty a self-consistency condition.
This condition specifies, for a given lattice, the relation
between the Weiss function ¥j (entering the impurity
model effective action) and the local Green’s function
G. On the other hand, G itself is obtained by solving the
effective impurity model. Hence, we have a coupled
probiem to solve for both G and %,. In practice, all
methods deal with this coupled problem in an irerative
manner: the local Green's function is obtained by solving
the impurity effective action given a & (in the first step
a guess for ¥y is used). Then, the calculated G (and the
self-energy 3) is used as an input into the seH-
consistency condition to produce a new Weiss function
¥y. The process is iterated until a converged solution
{G,¥F,) 1s reached (Fig. 9). Knowing this converged so-
Iution, all k-dependent response functions can be con-
structed from the impurity model response functions,
along the lines of Sec. TV.

To be definite, we concentrate in this section on the
case in which the impurity model effective action has the
form given by Eq. (6):

B B
seﬁ=~f d’l‘f dr' Y NG = 7)e (7)
a 0

&

+Uf:d'r n{7)n (1) (105)
that corresponds to the local site of the single-impurity
Anderson model. In the LISA framework, the {c,c*}
operators are associated with a local fermionic variable
of the lattice problem.

The most difficult step in the iterative procedure is the
repeated solution of the impurity model, for an essen-
tially arbitrary % (i.e., an arbitrary conduction electron
effective bath). Even though spatial degrees of freedom
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have been eliminated, the impurity model remains a true
many-body problem. It is crucial to use reliable methods
to handle it. Fortunately, quantum impurity models have
been studied for over thirty years, and several tech-
niques are available. In this section we review some of
these techniques along with some recently developed
ones. In particular, we describe in detail a general nu-
merical method which is based on the exact diagonaliza-
tion of small clusters. We then describe a projective
technique, inspired by the renormalization-group
method for impurity models, which can be applied to
problems with a separation of energy scales.

In contrast to the solution of the single-impurity prob-
lem, the implementation of the self-consistency condi-
tion in the numerical methods is relatively straightfor-
ward. Even though no rigorous proof exists concerning
the convergence of the iterative process, practice has
shown that it is usually not difficult to reach a self-
consistent solution of the LISA equations. Convergence
is usually attained after a few jterations. Close to transi-
tion points one encounters critical slowing down of the
convergence (in the broken symmetry phase) which can
however be easily overcome by standard accelerated
convergence methods.

This section is organized as follows: we first describe
in Sec. VLA two numerical techniques. These methods
are based on a guantum Monte Carlo method and an
exact diagonalization solution of the effective impurity
problem, and are discussed in full detail. Section VL.A4
is devoted to the discussion of the problem of the ana-
lytic continuation of data from the imaginary to the real
axis, which is relevant for some numerical techniques,
most notably, the quantum Monte Carlo method. In Sec.
VI.A.5, we discuss the calculation of susceptibilities and
vertex functions. In Sec. VLB we review various analyti-
cal approximate methods. Among these we devote spe-
cial attention to the iterated perturbation theory method
(Georges and Kotliar, 1992) that is based on the pertur-
bation theory for impurity problems of Yosida and Ya-
mada (1970, 1975). In Sec. VI1.C we describe a projective
method which allows the detailed solution of problems
with separation of energy scales.

The reader is not assumed to have any previous

knowledge of the algorithms, which will be thoroughly .

described in this section. Moreover, we provide with this
article a FORTRAN library of programs. The directions to
obtain these programs via the internet are explained in
Appendix D.

A. Numerical solutions

In this section we review two techniques, the quantum
Monte Carlo (QMC) and the exact diagonalization.
Both are fully numerical in the sense that the only ap-
proximation that is used is a discretization of the mean-
field equations. Both methods, when extrapolated to the
limit of vanishing discretization, give the exact answer to
the problem.

The numerical schemes applied to the LISA equations
involve a discrete parametrization of the Green’s func-

Rev. Mod. Phys., Vol. 68, No. 1, January 1996

tion, and the Weiss field ¥, through a finite number Np
of parameters. This reduces the system of functional
equations to a system of N p nonlinear equations in Np
unknowns. The hope is that as Np increases, physical
quantities converge relatively quickly to their physical
values so that the Np— value can be inferred by ex-
trapolating results obtained from a finite (and usually
small) number of parameters Np.

We quickly characterize the two numerical techniques
and then turn to a detailed description:

(i) The quantum Monte Carlo (QMC) method, and
more specifically, the Hirsch-Fye (1986) algorithm con-
siders the single-impurity problem in discretized imagi-
nary time. The effective bath only enters through ¥y,
and there is no need to discretize the conduction band.
The first numerical solutions of the LISA equations us-
ing this QMC method were obtained independently by
Jarrell (1992), Rozenberg, Zhang, and Kotliar (1992},
and Georges and Krauth (1992; see also Jarrell,
Akhlaghpour, and Pruschke, 1993b).

(ii) The exact diagonalization method (Caffarel and
Krauth, 1994; Rozenberg, Moeller, and Kotliar, 1994; Si
et al., 1994). In this method, the single-impurity problem
is solved exactly with an effective bath that is approxi-
mated by a few orbitals only. This introduces a param-
etrization of the effective bath. The parameters corre-
spond to the site energies and hopping amplitudes of the
fictitious electrons and to an appropriate choice of the
geometry of their connections. Obviously, many differ-
ent geometries of the electronic bath are possible {cf.
Fig. 10).It is the physical insight on a particular problem
that indicates the most appropriate choice, which allows
one to determine an appropriate parametrization. The
pumber of orbitals that one can effectively treat is se-
verely limited by the size of an exponentially growing
Hilbert space. In spite of this limitation, it turns out that
the freedom associated with the parametrization more
than makes up for the limitations. This freedom con-
cerns the geometry of the electronic bath, and the physi-
cal parameters of the orbitals—the site energies and
hopping amplitudes. As a consequence, the exact diago-
nalization algorithm has proven to be very powerful, and
in our opinion, clearly superior to the Monte Carlo
method.

1. Quantum Monte Carlo method

a. Introduction: A heuristic derivation

The most successful Quantum Monte Carlo method
for solving a general impurity problem is due to Hirsch
and Fye (1986). Before embarking on a rigorous and
self-contained derivation of their method, we describe ip
this section the algorithm taking a rather different, -
though less rigorous, approach for the sake of an intui- ~
tive understanding of the key ingredients of this method.
The method is concerned with the calculation of the lo-
cal Green’s function at finite temperature, which was .
first introduced in Eq. (8).
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FIG. 10. Various possible geometries used to represent the
effective conduction bath in the exact diagonalization algo-

rithm.

(i) The basic principle of the methed can be under-
stood as a discretization of the impurity model effective
action, Eq. (105):

Se— > c;(f)%]('r,r’)ca(fr’)+UE n(7)n(7),
7T O (106)

where the imaginary time is discretized in L “slices”
7=1,2,..., L. of size A7, and the timestep A7 is defined by
B=LA~™

(ii) The remaining quartic term can be decoupled us-
ing a discrete Hubbard-Stratonovich transformation
(Hirsch, 1983):

ekArUnTn£+(A1U.’2)(nl+nl)=}_ E ehstnp=ng}
F=*1

(107)

where A=arccosh (e2™) and the discrete field s is an
Ising-like variable taking the values *1. Performing this
transformation at every time slice, we are led to a qua-
dratic action, and the partition function becomes

TT

-3 | D{c,c+1expl—z HOERCRSERED
“\ET Sr[nT(T)_nl(T)]] (108)
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with

G, 7,70 = F o (1170 ) + GRS 18 pr 4 g (109)

the inverse propagator for a particular realization of the
Ising spins (s,,...,5; ). The antiperiodic delta function is
defined by 6{|['+1:1 if 1=[,+1,l=2,...,L“‘1, 5[_1!+1
= — 1iff=1,!"=L, and is zero otherwise. Its origin is in
the proper time ordering of the creation and destruction
operators (Blankenbecler, Scalapino, and Sugar, 1981).
In the actual implementation of the algorithm, Eq. (109)
is replaced by

Gl

0’,(.&'1 ’-

(= Ye v eV -1, (110)

where ¢V is the diagonal matrix with elements e¥(7,7)
= ¢+, This choice of discretization results from the rig-
orous derivation in Sec. VI.A.1.b following the original
Hamiltonian formulation of Hirsch and Fye (1986).

(iii) The replacement of a guartic term for an extra
summation on the auxiliary Ising variables (s5,,...,5;)
renders the action quadratic and allows us to apply
Wick’s theorem at each time slice. We can now perform
the Gaussian mtegration of the Grassmann variables, to
obtain

z= X

{51005 r

det[ G7'(s51,...,5.))det{ G (54,...,5 )]

(111)

In principle, the trace over the auxiliary field gives the
full interacting Green’s function:

det[G;l(S] ,...,SL)]

Xdet[Grl(S],...,SL)]GU(SI,..‘,SL); (112)

this requires the sum over 2* configurations. Each term
in the sum (112} involves the inversion of an L X L. ma-
trix as is clear from Eq. (110). In practice, the full trace
can only be performed for small values of L.

(1v) Usually, the interacting Green’s function is there-
fore calculated by stochastic Monte Carlo sampling: the
term det[G{l(sl,...,sL)]det[Gfl(s,,...,sL)] in Eq.
(112) is interpreted as a stochastic weight, and configu-
rations (sy,...,5;) are generated by a Markov process
with a probability corresponding to their statistical
weight.

(v) The Markov process visits configurations of Ising
variables (sq,...,5;) with a single spin-flip dynamic,
in which a possible movement consists in
(sl’52""!5](!"'?31.)_’(‘!"1 ,Sz,...,"Sk,...,SL). The for-
mulas given in Sec. VLLA.1.b will allow a rapid calcula-
tion of the change in statistical weight, and of the new
Green’s function for a single spin-flip change.

b. The Hirsch-Fye algorithm: Rigorous derivation

The above derivation leaves us with the impression
that there are two discretizations involved: the one of
the bath Green’s function, and the subsequent discreti-
zation of the functional integral. Using a Hamiltonian
description of the general Anderson impurity model one
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can show (Hirsch and Fye, 1986) that only a single well-
defined discretization of the partition function needs to
be performed (given by the Trotter breakup). Green's
functions corresponding to this discretized partition
function can be defined naturally (with the help of the
transfer operators). Then, the decoupling using the bi-
nary Ising field is performed, and Equation (110) ap-
pears as an (exact) Dyson equation relating different
discretized Green’s functions.

This section is intended mainly for the reader inter-
ested in a detailed understanding of the algorithm [this
reader should also realize that, in accordance with the
entire QMC literature, we define in this section temporal
Green’s functions without the minus sign in Eq. {8)]. In
order to make it self-contained, the section is accompa-
nied by Appendix B which contains mest derivations.

We temporarily introduce the Hamiltonian descrip-
tion of the local impurity problem, which permits a
local-in-time description of the partition function. In or-
der to preserve the standard notations for this model,
the impurity orbital (that is associated with a local de-
gree of freedom of the original lattice) will be taken as a
d orbital in this section. The conduction bath orbitals
are numbered from p=2,...,n,, and the impurity orbital
is equivalently denoted by a;,= d,, i.e., corresponds to
p=1. The Hamiltonian of a general Anderson impurity
model reads

#= 2

pEl,0

-+ + +
€p8polpe E Vp(apad,-kd,ap,)
p=1,0

+ edz‘ did,+Ungng . (113)

It is written as a sum of terms H=F+ F, where P is
quadratic in the fermion operators:

— -+ + +
%()=p§,a spa[map,-i-p;,z‘a Vp(apad0+do,apa)
+(eg+ U D N (114)
whereas % is the interaction term:
%= U[ndfndl—-%{nﬂ+ndl)]. (115)

As in Sec. VLA l.a, the imaginary time interval [0,81
is now discretized into L time slices, but on the level of
the original Hamiltonian S%. With 7=IA7, with
{=1,...,L and Ar=p/L, the partition function is written
as

L

Z=Tr e #¥=Tr [| e 813 +#] (116)
=1

Using the Trotter breakup: exp[-An(F+#"))

=exp(—Afr%’0)exp(-—Ar%‘), Z can be approximated by

the discretized partition function:

L
Zezbr=Tr [] e 2 e 87, (117)
=1
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Green’s functions corresponding to Z A7 can be defined
analogously, by using U s=exp(~AT#)exp(—A7H") as
an evolution operator between time slices:

3.311'.02(T’x’T’z)E(aPl(fﬁ)a;z(T’z))
TrUi:I‘apl(nl)U;‘:Iza;z('r,z)U'}T
B Tr UL,
(for 1,>1,) (118)

(and similarly for I;<[y). It 1s important to understand
that the object g” will be obtained essentially exactly:
The only systematic error of the QMC method will con-
sist in the replacement of exp(-A7#) by U,, as an evo-
lution operator between time slices. We are then ulti-
mately interested in the d-site Green’s function,
which we denote by a capital letter GA7( fr,l,nz)
Eg?,{(ﬂ,,ﬂz)-

After the decoupling of #' by the transformation Eq.
(102)

exp[As(ngr—ra))ls

s=x1
cosh{\)=exp(A7U/2) (119)

and after inserting Eg. (119) into Eq. (117), the partition
function Z7 is reduced to

[ TR

exp[ —ATH )=

1-
ZA1'= ZAT 120
ZT ;1,_,.§=11 SpveaSy ( )
with
A = Tre‘“ﬁsoew(”)
SeSL o i(=t1)
XerArﬁEOeVa(Sz).. .e“A"'ﬁneV"(sL). (121)

In Eq. (121), the n X n, matrix V9(s) is diagonal with

ehor | .. 0

eV =
0 .. ... 1
An important observation is that Zf‘lf,___JL can be writ-

Gy s
105L
1 0 0 B(sy)
_B(sy) 1 - e 0
= O "B(Sz) 1 L]
PP 1 0
—B(s;-1) 1
(123)

where B{os) =exp[-Ar#|exp[V7(s)], and & has been

written as an L XL matrix of ngXn, matrices i@

|

a22)

_~ e e
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= Gl iy With i=1,.,L and {;=1,..,n,]. &is re-
lated to the discretized Ising-spin dependent Green’s
function by the identity (cf. Appendix B)

(124)

The matrix &, Islarge (of size n,L X n L), but it
need not be manipulated explicitly, as will be shown be-
low.

The crucial fact noted by Hirsch and Fye is that the
Green’s functions for two different Ising spin configura-
tions, ($;,.-.,5,) and (s{,...,5;), are related to each
other by a Dyson equation (also derived in Appendix
B). Abbreviatingg = g;" ., andg’'= gf‘{"___’sl , etc, this

Dyson equation reads

=g+(g—1)(e" "V-1)g". (125)
This equation brings us back to the description of the
impurity problem given in paragraph (a). In fact, Eq.

(125) relates two Green's functions g and g’ via a pro-
jection operator on the d site, namely [exp(V' —V)—1]

[exp(V'=V)}—1]y, i34 ;,r} i Gi 100 (126)

The presence of this pro;ecnon operator comes from the
possibility of integrating out the conduction band. As a
consequence, the Dyson equation Eq. (125) directly re-
lates the Green’s functions on the d site one to another,
and this equation remains equally valid in the subspace
i,=1i] = 1. Hence, the d site Greens functions
G"‘” s, also satisfy

=GH(G-1){eV V-1)G", (127)

viewed as an L X L matrix equation. As a first applica-
tion of this Dyson equation, we use it to derive Eq.
(110), which follows by putting G' = G, _, . G=5%.
Notice that the Dyson equation allows arbitrary values
for the auxiliary spins s;.

Rearranging Eq. (125), it is straightforward to see that
Gy .5 for an Ising configuration (si,...,s;) can be
obtained from G PR by inversion of an L X L matrix
%, defined in the following equation

AG'=G, A=1+(1-G)e¥ V—1]
(any two configurations). (128)

In the special case in which (s1,...,5;) differs from
(51,...,57) by the value of a single spin, say s5;, .4 takes
on a special form

1 0 & O

0 1 4y
A= - 0 Ay (129)
1 0
Ay 0001

In that case, det.£ = ../‘g” =14 (1 — G)fexp(V]
~Vp-1). Expandmg !in minors, it can easily be seen

that (%71}, =0 for k#[ In that case Eq. (128) simplifies
to

Rev. Mod. Phys., Vol. 88, No. 1, January 1996

G, =G, (G- V() Gy,

(single flip), (130)

which is a special case of a Sherman-Morrison formula
(cf. Press et al., 1991). Equation (125) can also be used
to show that

det & * det G
det & det G’

=det A=1+(1-Gy)lexp(V]-V)—1] (131)

It is remarkable that all the Eq. (127)-{131) express ex-
act relations between discretized Green's functions G27.
The only error committed is related to the Trotter
breakup [cf. Eq. (121)]. Further comments on this dis-
cretization error can be found in Appendix B.

c. Implementation of the Hirsch-Fye algorithm

We can now assemble the essential ingredients of the
Hirsch-Fye algorithm:

(1) The calculation starts from the Green’s function
GBT (7,,*5) with all Ising spins formally set to

5= —»sL.-O In the LISA context, GA s =0(Ti = 7;)
is a discretized version %" of the WEISS functlon F,
which generally has been determined in the previous it-
eration by the self-consistency condition {(whose imple-
mentation will be discussed shortly). At the first step of
the iteration, an mitlal guess is made for ¥57.

('r, ,7pr) for an arbi-

.....

trary initial conﬁguratlon w1th sl— +l --s;==*1 is cal-
culated by explicit inversion of the matrix .4 in Eq.
(128).

(3) From then on, configurations are visited using
single spin flips. In that case, Green’s functions can be
updated using Eq. (130} (every so often, one checks that
the precision has not degraded by doing a complete up-
date as indicated above).

(4) Physical Green’s functions G2"(7,— 7,/) are deter-
mined as averages of the configuration-dependent func-
tions Gﬁtm‘sl_(ﬁ,ﬂr) with the Ising spin configurations
weighted according to Eq. (131).

The last point may benefit from some additional re-
marks. From Eqgs. (118) and (120), it is easily seen that
the physical Green’s function is given by

G4y, 7p0)
sLna=:1det@ta)s ...... SL@_I(TJ«)SI,..,,SL
S, 2 0o,

(vaTl’)

L

(132)
[in order to be explicit, we have reintroduced the depen-
dence on physical spin in Eq. (132)]. If a complete enu-
meration of Ising spin configurations is possible, the
Green’s function can be readily evaluated using this for-
mula. It is advisable in this case (Georges and Krauth,
1993) to perform this enumeration using the so-called
Gray code, which allows enumerating all the configura-
tions of the Ising spins via single spin flips (cf. Appendix
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B). The Gray code enumeration of Eq. (132) produces
numerically exact results for G bt

In a Monte Carlo simulation, Ising spin configurations
are generated with a probability proportional to
det@ det, and the physical Green’s function GO is
then given from Eq. (132) as an average of Gf‘l" with
this measure. As usual, there is some freedom in the
choice of the Monte Carlo dynamics, which must, how-
ever, satisfy the detailed balance property:

P(s—s') 1 detA o),
P(s'—s) Il det&a);’

Both the heat-bath and the Metropaolis dynamics satisfy
this condition:

(133)

p L l’[,det@(a),r
(5=5")= HI_detéo),, + 11, det 0}, ]

(Heat bath), (134)
1 if T det( o), >, det@ o),
,det@(a),
Tl det@ o),

P s')=
(s—s7) otherwise

(Metropolis). (135}

In both cases, the transition probability is a function of
the ratio of determinants, which can be computed easily
[¢f. Eq. (131)] with a computational effort of O(1). If the
move s—s’ is accepted, G,Al’p_“,L is updated with a com-

putational burden of O(L%Y), using Eq. (130). The com-
putational effort is thus large for each accepted move
only. This fact renders the simulation rather insensitive
to the problem of small acceptance probabilities. Notice
also that the physical Green's function G*” is translation
invariant in time G*7( ri,w'j)=GA’(f,-—'rj), a property
which the Ising spin dependent quantities Gf:...,L lack.
This property can be used to reduce statistical noise. We
also note that the fermionic sign problem plays no role
in any of the calculations. The determinants in Eq. (133)
generally have the same sign, and their ratio can be in-
terpreted as a ratio of probabilities.

d. The LISA-QMC algorithm and a practical example

The Hirsch-Fye algorithm is remarkably stable, and a
full-size program (such as the program LISAQMCF pro-
vided with this article) can be written relatively easily.
The only problem consists in reducing the statistical un-
certainties as much as possible, since G4 (7—7yp) s
needed as an input for the self-consistency condition at
the next iteration step.

The numerical implementation of this condition—the
second building block of the fuill QMC-LISA
algorithm—is contained in the program LISASELFF also
provided with this article. The self-consistency condition
is expressed in terms of the Fourier-transformed Green’s
functions G(iw,) and %Fyfiw,). The direct Fourier
transform (FT)—say, calculated by a standard fast Fou-
rier transform (FFT) algorithm—is not applicable here,
since the periodicity of G%7(7;) would imply that its FFT
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is a periodic function of iw,, rather than show the cor-
rect asymptotic behavior G(iw,)~ l/iw, for large argu-
ments. As detailed in Appendix B, it is more convenient
to calculate G(iw,) as the Fourier transform of a (linear
or spline) interpolation of G27(7;), with due care paid to
the discontinuity of the Green’s function at ==0. Finally,
we also need to perform inverse Fourier transforms
(IFT), from the Matsubara frequency to imaginary time.
Again, we do not use the FFT for this purpose, since L,
the number of 7 values, is usvally very much smaller
than the number n,, of frequencies (typical values are
L~64,128 and npa~2").

We have now described all the ingredients required to
set up the full QMC algorithm for the iterative solution
of the LISA equations. One loop of this iteration con-
sists in two steps. In the first step, the self-energy S(iw,)
is computed by performing the following operations:

Hirsch-Fye FT
% () —— G(1) —Gliw,) S(iw)
o m Fotion | "
=F(in,) '—Gliw,) ™" (136)

The self-energy determined in Eq. (136) is then used for
the computation of a “new” Green’s function by evalu-
ating the Hilbert transform:

D(e)
iw,+p—Z(iw,)—€

4o
G ™(iw,)= J de (137)
From G"™®"(iw,), the self-consistency loop is then closed
as follows:

yo- lonew_ G—l +
—_—

3 IFT
G™Miw,) FMiw,) —— FT(7).

(138)

The reader may find additional technical comments in
the programs LISAQMCF and LISASELFF implementing
these various steps. Directions to obtain the FORTRAN
codes may be found in Appendix D.

The self-consistency loop in Eqs. (136) and (138) is
iterated until a converged solution (G,¥%) is reached. It
is remarkable that the process actually converges in al-
most all cases that have been considered so far. Occa-
sionally, simple cycles appear. To avoid the cycles
it is generally sufficient to use {Fo(n)+F57 (1)]/2 instead
of F3°*(7) in Eq. (138). A direct implementation of the
self-consistency loop does however not always converge.
A counter example is the Hubbard model in a magnetic
field close to the Mott transition. The solution to the
convergence problem in this case is described in Laloux
et al. (1994).

As a practical illustration of the LISA-QMC algo-
rithm, we invite the reader to perform the computation
of Green’s functions for the half-filled Hubbard model
with a semicircular density of states for U =3{DIvZ)
and BDW2=68,...,16. As will be discussed in Sec. VII,
for this choice of parameters sotutions with and without
long range magnetic order may be obtained. To select
the paramagnetic solution it suffices to enforce the sym-

PPV

J.‘
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metry of spin by averaging the spin up and down
Green’s functions entering the self-consistency condi-
tion. On the other hand, to obtain solution with mag-
netic order one must include a small difference in the
initial guess for ¥,

Using the programs LISAQMCF and LISASELFF pro-
vided with this paper, it is a simple matter to reproduce
the results given in Fig. 11. Another simple calculation
consists in reproducing the results of Fig. 14, which will
be compared to the exact diagonalization results for the
same values of the parameters in Sec. VI.A.3.

e. Relationship with other QMC algorithrs

Historically, the first applications of Quantum Monte
Carlo methods to impurity models did not use the
Hirsch-Fye algorithm, but the original method for per-
forming QMC calculations for lattice fermions, which is

due to Blankenbecler, Scalapino, and Sugar (1981). The

two methods are very closely related: The Blankenbe-
cler, Scalapino, and Sugar algorithm simply computes
the determinant of &, , as follows: ’

----- L +

=H1

o=

det[1+ B{os,)B(os3)...Blos;_1)B(os;)]

=11 daw, (o). (139)

o=%1
which is further commented on in Appendix B. Simi-
larty, discretized Green’s functions can also be expressed
in terms of the matrices B;:

100 |- 4
095 - .
0.90 (~ -
0.85 i
0.80 |- —
e7s - _
0.70 |- ﬁ
068 _
0.60
0.55
G'(T) 050
043
0.40
035
0.30 —
0.5
0.20
0.15
0.1
005 |- —
0.00 -

1T 1T 1T 1T
J ]

T
|

FIG. 11. Self-consistent solution G'(7) of the LISA equations
for the half-filled Hubbard model (with a semicircular density
of states of half-width D) at U=3DH#Z and BDHWI
=16,14,12,10,8,6 (bottom to top) obtained by the QMC method
with L=16. The self-consistency condition used in this calcula-
tion allows for antiferromagnetic order, which does appear for
B=8 [GY(r)=G(B—7) has not been shown}. The paramag-
netic soiution can also be continued to larger values of 3, by
imposing G!'=G' and using the paramagnetic self-consistency
condition (the gorresponding resuit at 8D /H2=32 is displayed
in Fig. 14). ‘

1
(140)

s, {7, 70)= B(S;)B(Stkl)-“B(S"“)l+B(Sr')-

[cf. Blankenbecler, Scalapino, and Sugar, (1981) for
{<I'}. The matrices in Eqs. (139) and (140} are of size
n;xn,, independently of the number of time slices, and
the determinant of W, ., can be computed explicitly.
Notice that in this formulation W, s, 1san;Xn, ma-
trix, and the number of time slices is reflected solely by
the number of matrices appearing in the products of
Egs. (139) and (140). Unfortunately, the product of ma-
trices B(s;)B(s;)--B(sy_1)B(sy) is usually very
badly conditioned. This generates numerical instabilities
that render the calculation of det(W, ;) difficult in
Practice. As a result of the severe numerical instabilities,
the early attempts to treat the single impurity problem
with QMC methods (Gubernatis ef al. 1986), which used
the Blankenbecler, Scalapino, and Sugar algorithm, have
met with little success. Note, however, that the more
fecent “balancing schemes” for the Blankenbecler,
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LB(s)B(sp)...B(5+1) 11

(I=1")

Scalapino, and Sugar algorithm (Sugiyama and Koonin,
1986; White ¢r al., 1989) have to our knowledge not been
applied to impurity models, and could lead to an impor-

‘tant improvement.

In order to avoid misunderstandings, we clarify the
following: usual (finite-dimensional) QMC calculations,
which apply the Blankenbecler, Scalapino, and Sugar al-
gorithm, are haunted by two completely unrelated prob-
lems: the bad conditioning of the product of matrices
B(agsy)---B(osy), and the fermionic sign problem
[t:h’-:t(Tr’i»’s1 ..s;) may not always have the same sign}. In

impurity problems, one usually encounters neither of
these problems, since one is able to use a stable algo-
rithm (Hirsch-Fye), and since the fermionic sign prob-
lem is empirically found to play no role. There are
techniques—“balancing schemes”—which attempt to
solve the problem of the numerical instability.
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Rather than expand further on the relationship be-
tween the Hirsch-Fye and the Blankenbecler, Scalapino,
and Sugar algorithm, we illustrate the above consider-
ations on a toy example in which the Green’s function
Gflf__“,sL is calculated using different approaches. To this

aim, a purely pedagogical test program QMCEXAMPLEF
is provided with this paper (cf. Appendices B and D). In
this program, the case of an impurity coupled to a small
number of conduction electron orbitals (with given val-
ues of €,,V,) is solved by three possible routes (with
identical results):

(1) The original Blankenbecler, Scalapino, and Sugar
algorithm: In that case, the two different matrices B (o)
are calculated for o=%1 and the Green’s function is ob-
tained by direct matrix multiplication [cf. Eq. (140)].
The eigenvalue spectrum of the large product of matri-
ces appearing in Eq. (139) is computed, and the numeri-
cal instabilities can be tracked explicitly.

(2) The explicit calculation of the matrix ¢ Here
det® and @' are computed by standard matrix inver-
sion. What looks like a very awkward method in this
case, in which the conduction orbitals are retained, has
in fact been used for calculations in lattice models be-
cause of its larger inherent stability (cf. Hirsch, 1988;
White etal, 1988 for an application to the two-
dimensional Hubbard modei).

(3) The use of the Dyson equation, following Hirsch
and Fye.

Besides coritributing to the reader’s understanding of
the auxiliary-field QMC method, and helping in the ac-
tual implementation of the Hirsch-Fye algorithm, the
test can also be used in order to illustrate the numerical
instabilities encountered in the Blankenbecler, Scala-
pino, and Sugar algorithm, which the Hirsch-Fye algo-
rithm overcomes.

Compared to the Blankenbecler, Scalapino, and Sugar
algorithm, the method of Hirsch and Fye thus not only
yields a very natural numerical implementation of the
impurity problem that integrates out the conduction
band electrons from the beginning (i.e., allows a general
Weiss field &,). It also presents the enormous advantage
of being numerically stable at low temperature, and al-
lows the reaching of temperatures significantly lower
than the bandwidth. The remaining limitations of the
Hirsch-Fye algorithm can be described as follows:

(i) Only imaginary-time (or Matsubara frequency)
quantities can be obtained directly. Real-frequency cal-
culations require analytic continuation algorithms (cf.
Sec. VL.A4).

(ii) The lowest temperatures that can be reached are
limited by the number of time slices that one can handle,
because the matrices to be multiplied become prohibi-
tively large. On a present-day workstation, the compu-
tations with, let us say, 256 time slices already present a
considerable investment in computer time. If the prob-
lem at hand is not altogether trivial, we may expect (and
notice in fact) that the finite AT behavior is intricate,
which means that we have to choose A7 sensibly smaller
than 1 (cf. the discussion in Appendix B). Thus, even if
U is not too big, the range of accessible temperatures is
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limited to temperatures of the order of B=30 or smaller
(in the units of the half-bandwidth D). We shall see in
the next section that very accurate descriptions of the
relevant impurity models, which are much more eco-
nomical in the number of parameters used (256 in the
present example), are possible. The condition for this is
that one uses an adaptive discretization, which may
change with the problem at hand, instead of a fixed grid,
as is done in the QMC procedure, in which 7,=i-AT.

2. Exact diagonaiization method

In this section we review the implementation of meth-
ods that are based on the exact diagonalization of the
effective Anderson impurity Hamiltonian Eq. (113). In
this method, a rational approximation for %, is found.
This corresponds to approximating the Anderson impu-
rity Hamiltonian in Eq. (113) by a Hamiltonian made up
of a finite number of orbitals n; (in practice n,~5-12).
This Hamiltonian can then be diagonalized exactly using
standard algorithms. In order to avoid misunderstand-
ings, we emphasize from the beginning that the exact
diagonalization method reviewed here does not deal
with a finite-size lattice for the original lattice model: the
discretization concerns only the effective conduction
bath in the impurity-mode! formulation. As in all meth-
ods of solution of the LISA equations detailed in this
article, the infinite-size limit for the actual spatial lattice
is implemented from the start. For studies of d= mod-
els through a truncation of the physical lattice into sub-
clusters, se the work of Gros et al. (1994). We note that
analytical approximations involving a continuous frac-
tional expansion of the Green’s function, somewhat
close in spirit to the Lanczos method detailed below,
have recently been considered by Hong and Kee (19952,
1995b) and Kee and Hong (1995).

Al the exact diagonalization algorithms reviewed
here to solve the LISA equations adopt the following
three basic steps:

(i) The Weiss function

Alw")

+ m
?D(iwn)_1=iwn+p—J do' F (141)

Wy~ W
is approximated by a discretized version, for instance:
ng 2

Ve

i) = iont h 2

p=2 lwn—EP

(142)

corresponding to the Anderson impurity Hamiltonian
(113). It is also useful to think of this replacement as a |
projection onto a restricted functional subspace (Fig. 12)
containing all functions of the form (142) (for a given
fixed n,). The different algorithms that have been used
differ only in the choice of the projection operator. From
the mathematical point of view one is dealing with the
problem of rational approximation of functions. There
are many diiferent algorithms (Pade approximation,
Continuous fractions, minimization with respect to a
given norm) for carrying out the task, and for a small
number of approximants the quality of the results may
depend on the method used.
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|Exact Diagonalization|

{Self-Consistency/

FIG. 12. The exact diagonalization method involves a projec-
tion of the bath Green’s function ¥, onto the space of func-
tions {&;’} built out of n, orbitals. At sell-consistency &y
= %,". The quality of the approximation can be inferred
from the distance that separates 3™ and ¥*. This distance is
usually very small, and decreases approximately by a constant
factor as n, is incremented by one.

(ii) The n,-orbita] Hamiltonian (113) corresponding
to Eq. (142) is then diagonalized exactly, and the Green’s
function G(iw,) is computed.

(iii) The self-consistency tondition Eq. (137) then
leads to a new function ¥, which in turn is approxi-
mated by a function ¥ with a new set V,,€,. The
process is iterated until a converged set of parameters is
reached. Notice that the bath Green's function ¥ ob-
tained at the previous step of the iteration has no reason
1o belong to this subspace in general, but that it can be
projected onto this subspace.

Let us discuss in more detail the various steps of this
algorithm, starting with the diagonalization of #. In
contrast to the Monte Carlo method, the exact diagonal-
ization algorithm provides a numerically exact relation-
ship between ¥° and G, since G is the true Green’s
function of . (Note also that the QMC does not in fact
determine the Green'’s function of a specific Hamil-
tonian, but a related object G*7, which approaches a
Green’s function in the limit Ar—0). The states of the
finite-dimensional Hilbert space of .# are given by

|nd,nl ,...,Hl)ln% ni ,...,nf,s) (143)
with n7=0,1 and I np=n° % does not mix the dif-
ferent sectors (n',n'). In consequence, all sectors can be
diagonalized independently. The full diagonalization is
feasible for values of n, of the order of n,=6 [which
leads to the diagonalization of a 400400 matrix in the
sector (n'=3, n'=3)] or n,=7 (1225%1225). At finite tem-
perature, the Green’s function is calculated from the full
set of states |i) (with eigenvalues E;) according to
: 1 ((ild*1i)?
Gliv)=7 2} E—E,—iw,
X [exp{— BE,)+exp(— BEN]. (144)

Using the Lanczos algorithm (cf. Golub and Van Loan,
1983; Gagliano et al., 1986; Lin and Gubernatis, 1993),
the zero-temperature Green's function of much larger
Matrices can be computed (n,=12). The algorithm is
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used in a two-step procedure. In the first step, the

ground-state wave function |‘\I'D)"T'"l is determined in
each of the sectors (n',n*). This is done in the usual way
by picking an arbitrary vector |[py) [within the sector
(n',n')], and diagonalizing ¥ in the linear hull of
lp o) #p o). #" |po). In a subsequent application of the
Lanczos procedure, the initial vector is taken to be
ipo)=d"|g.s.) where |g.s.) is the overall ground state of
the Hamiltonian. This second Lanczos procedure allows
the computation of the ground-state Green’s function,
which is written in two continued-fraction expansions
that describe the “particle” (w>0) and “hole” (w<0) ex-
citations:

Glw)=G”(w)+ G (w) (145)
with
(g.s|dd'|gs.)
G>(w)= b>2 ’
> 1
w—ag ~ b2>2
— >—_—_.-.__p
R S
sld'd|gs.
G ()= — T dlES) (146)
1
w—dy —
" g b
1 w—ay—---

It is the parameters entering this parametrization that

are determined by the second Lanczos procedure, in a
way further detailed in Appendix C.

The most sibtle aspect of these methods is in the
implementation of the projection of ¥, onto . The
following methods for carrying out this projection have
been proposed.

(i) A distance d between ¥, and the finite-orbital
function ¥° is chosen (Caffarel and Krauth, 1994), e.g.:

1 P max

d=——— 3 |Folin,) 1= Fpiin,) 1

nmax+ 1=

(147)

(where 7, is a very large upper cutoff). For the runs at
finite temperatures, the w, are of course taken to be the
Matsubara frequencies. Even at zero temperature, they
are taken to be the Matsubara frequencies associated
with a “fictitious” temperature, which serves as a low-
energy cutoff. The precise functional form plays a mmor
role in this formula, but the crucial aspect of the defini-
tion is that the Green’s functions are compared with
each other at imaginary frequencies, and not on the real
axis. This is illustrated pictorially on Fig. 13. As a prac-
tical matter, the “projection” is performed using a mini-
mization algorithm. A modern conjugate gradient algo-
rithm has of course no trouble in locating the minimum
of the (2n,)-dimensional function in Eq. (147) for
n,=12. Using repeated projection operations, converged
solutions ¥,° within the subspace (142) can be found.
The quality of the solution can be assessed from the
“distance” between ¥, and the corresponding ¥*, and
from the behavior of this distance as a function of n;.
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FIG. 13. Schematic representation of the fitting procedure
used by Caffarel and Krauth (1994). The spectral density asso-
ciated with %! is represented by a finite set of poles (€,) and
weights (Vf;) on the real frequency axis, but the fitting proce-
dure involves a minimization of the distance between Fliw,)
and %’(i ®,) on the imaginary frequency axis.

This distance is an estimate of the distance between the
actual solution of the LISA equations (which is generi-
cally not part of the restricted subspace for a finite ;)
and the converged discretized $5° that has been found
within the restricted subspace. This state of affairs is no
different in principle from the QMC method (in which a
converged solution is found for a given discretization
A7). An illustration of this comparison will be given in
Appendix C.

A key to the success of this approximation lies in that
both the positions of the orbitals &, and the hybridiza-
tions V, are free 10 adjust themselves. The exact diago-
nalization method is thus formulated on an adaptive
“grid” in w, and shows the excellent convergence and
economy common to variable-grid methods. The power
of such methods is lost when d=« models are studied by
exact diagonalization of subclusters of the original lat-
tice itself (cf. Gros et al., 1994).

A second reason behind the fast convergence of this
algorithm is related to the fact that the poles of the func-
tion %, all lie on the real axis, i.e., far away from the
region in which we search to fit the functions. Neverthe-
less, we will show in Sec. VI.A.4 that the real-frequency
properties are very well represented.

(ii) An alternative projection method (Si et al., 1994),
which avoids the need for a minimization procedure in
several variables, is based on the continued-fraction rep-
resentation of a rational function (cf. Haydock, 1985).
The basic idea is to write the hybridization function of
the Anderson model as a sum of two continuous fraction
expansions (describing the positive and negative parts of
the spectral function) A” and A< and define the projec-
tion as the truncation of the continued fraction down to
a given level. Because of the well-known connection be-
tween the moments and the coefficients of the continued
fraction expansion this can be thought of as a “moment
by moment” systematic fitting on the real axis of the
one-particle spectral density:
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. b3’
A (w): b>2 3
1
Wy — b2>2
w—a -w-—az}—
byt
1
w—dg —
0 < b2<2
L S

The Hamiltonian that needs to be diagonalized now has
a natural representation in the form of two one-
dimensional chains, with parameters as shown in Fig. 10
(the b7’ are hopping elements between sites of the
chains, and the a 7= are atomic energies of the sites). It
is easy to see that the two chains generate the Weiss field
precisely in the truncated continued-fraction form (with
n, the length of the chain, 2n +1=n.):

n.—1
#=2 X (20 afchoch, T bf(chsd,+ He)

o p=>,< a=

n.—2
+
+ aZl (bochochiiot H.c.))

+Ulng =3 na— b (149)

This algorithm can be most easily programmed in the
case of the z=c Bethe lattice at zero temperature, be-
cause in this case the self-consistency condition reads
A’=12G”> and A=r>G=. Since the Green’s function is
obtained in a continued-fraction representation [cf. Eq.
(146)] the variables a and b are obtained without further
work. The self-consistency is thus translated into the
self-consistent determination of the parameters of a con-
tinued fraction representation of %,”\, or equivalently,
G.

In this case, the approximation consists in the trunca-
tion of the length of the continued fractions due to the
finite size of the effective electron bath that can be dealt
with. This approximation relies on the fact that the
continued-fraction representation captures exactly the
moments of the Hamiltonian, up to the order retained in
the continued fraction.

This method avoids the multidimensional fit of the
Green function but has the disadvantage of giving 2 high
weight to the high-frequency features. This is because
the low-energy features of the spectral function have a
very small contribution to the moments. For this reason,
this method is best adapted to the calculation of the
total energy (for which it gives very accurate results),
and particularly well suited for the study of insulating
phases.

(iii) A third implementation of the projection in the
LISA exact diagonalization procedure (which is a mix-
ture of the two previous ones) was introduced to de-
scribe a strongly correlated metal (Rozenberg, Moeller,
and Kotliar, 1994). An extra site at the Fermi energy is
added to the scheme (ii) in order to better represent the
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low-frequency region. The hopping amplitude to this ex-
tra site 16" is calculated by a (single-parameter) mini-
mization of the expression:

o=

ALy @@l
where now G is the full Green’s function and
G aliw,,8)=(8liw,)+{(1-8)G ,(iw,}). G, is the
truncated Green’s function to length n=n/2—1 and wy
and wy are low and high energy cutoffs that can be de-
fined, for instance, as the lowest poles of G and G,
respectively. & decreases as n, is increased and scales as
1/n, as n,—ee. This is the behavior expected from all the
residues in the spectral representation of the hybridiza-
tion function. For the half-filled Hubbard model with a
semicircular density of states of half-width D, the quasi-
particle residue as a function of U obtained with this
procedure vanishes at a value U,/ D=3, which is very
close to the more precise value obtained from the pro-
jective self-consistent method.

The projection via the moments captures most easily
the high-energy features, and is quite insensitive to the
Jow-energy features. Conversely, the X fit is most sensi-
tive to the low-energy behavior of the spectral features
but seems to capture the high-energy features reason-
ably well when n; is not too small. Combination of the
two approaches optimized for a specific problem are
worth exploring.

Working codes for the solution of the LISA equations
by exact diagonalization are provided with this article
(cf. Appendix D). Two versions of the code are avail-
able:

(1) The program LISADIAGF performs an explicit
(sector-by-sector) diagonalization of the Hamiltonian,
and constructs the Green’s function from the eigenval-
ues and eigenvectors according to Eq. (144). This is the
code that is used for calculations at finite temperature.
We will apply it in the next section for a detailed com-
parison with the QMC calculations. For n,=6, a single
loop of the program will take of the order of one minute
to run on a modern workstation (HP 735, or IBM
RS6000).

(2) The program LISALANCF uses the Lanczos algo-
rithm in a two-step procedure.

Naturally, the two completely independent programs
agree essentially to machine precision at zero tempera-
ture for the values of #, which can be handled by the full
diagonalization. There is also very good agreement be-
tween the different ways of choosing the projection op-
erator to compute ¥p°, given a &,

Both codes can more easily be written than explained,
and we refer for details to the well-documented
FORTRAN programs. Compared to the Monte Carlo pro-
grams, they are much faster, and easier to run, since the
difficult convergence problems of the stochastic QMC
algorithm are absent.

|GA(iwn ,5)_6(1:0)")'2, (150)

3. Comparison of exact diagonalization
and Monte Carlo methods

In this section we compare in detail the QMC and
exact diagonalization algorithms. The section serves two
purposes;
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FIG. 14. Comparison between the imaginary-lime Green’s
functions G(7) obtained by the OMC and the exact diagonal-
ization methods, for the half-filled Hubbard model with
U=3DN3, BDWI=32). From top 10 bottom: Ar=1,1/2,1/4. The
bottom curve is the exact diagonalization result for n =5
(which cannot be resolved from Ar=1/4 on the scale of the
figure). The inset shows the scaling of the QMC results for a
fixed value of 7=4 as a function of (A7)*: the result converges to
a value which is readily obtained within exact diagonahization.

(i) First, by actually comparing the methods, we lend
credibility to both. Both methods are able to produce
well-converged results which can be taken as they stand,
since the thermodynamic limit has been built in from the
start. This is~quite an exceptional situation in current
fermionic many-body simulations. In comparing the two
methods we will furthermore be able to clearly expose
the advantages of the exact diagonalization algorithm.

(ii) Secondly, we also judge it important to address the
wider issue of the confidence limits with which various
quantities can presently be computed. Given the impor-
tance of the numerical results in the field (in discussions
such as the Mott transition, for example), a critical dis-
cussion of the numerical methods is needed.

We will first consider three quantities in the context of
the d=w single-band Hubbard model: the calculation of
imaginary-time (or Matsubara frequency) Green’s func-
tions at finite temperature, the calculation of the quasi-
particle residue Z, and the computation of susceptibili-
ties. The more difficult question of real-frequency
quantities will be dealt with in Sec. VI.A.4, where a criti-
cal discussion of the results that can be obtained from
maximum-entropy analytic continuations of very high
precision Monte Carlo data will be given. These calcula-
tions will be compared to the discrete spectra obtained
from exact diagonalization and to results of analytic ap-
proximations.

The most instructive comparison between the QMC
and exact diagonalization methods is in imaginary time,
where the QMC result is guaranteed to converge qua-
dratically to the exact result [with an error O(A7), cf.
Appendix B]. In Fig. 14 we present results {Caffarel and
Krauth, 1994) for the Green’s function G(7) of the half-
filled Hubbard model with a semicircular density of
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FIG. 15. Finite-temperature self-energy as a function of Mat- .

subara frequency, computed by exact diagonalization
(n,=4,5,6) and QMC Ar=1,1/2,1/4 for the half-filled Hubbard
model, with parameters as in Fig. 14.

states of half-width D at U/D=32 and BD/V2=32. The
figure shows calculations at Ar=(1,1/2,1/4) for the Monte
Carlo algorithm, and n,=(3,4,5) for the exact diagonal-
ization (in the paramagnetic phase). The excellent
agreement between the numerical results is immediately
apparent. To see the differences between the methods,
we consider a single 7 value, as done for =4 in the inset
of the ﬁgure The Monte Cario results are plotted
against (A'r) It is evident from the figure that the exact
diagonalization results for n,=5 (which the reader can
himself reproduce within a few minutes on a regular
work station using the program LISADIAGF) are more
precise than the Monte Carlo data at A7=1/4 (L=128),
which necessitate a few days of computer time.

The comparison for imaginary frequencies gives a
very similar picture, of course with the additional ingre-
dient that, for w>1/(A7), the Monte Carlo data contain
no more information. An illustration of this is shown for
the self-energy at finite temperature in Fig. 15, which
compares again QMC and the exact diagonalization
data. The low-frequency behavior of the self-energy is
important in order to determine the nature of the physi-
cal state (insulating or metallic), and a good guantitative
knowledge is crucial in order to be able to calculate the
guasiparticle residue Z, a zero-temperature quantity
defined from the retarded self-energy as Z°'
=1-3 ReZ(w+i0*)/dw| .o A plot of this quantity for the
half-filled Hubbard model will be displayed in Sec. VII,
in connection with our discussion of the Mott transition.
The exact diagonalization method and the (much more
costly) QMC method converge to the same values of
S(iw,) down to the first Matsubara frequency at a given
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finite temperature. Therefore, these values are known
up to a precision of the order of 0.3%. Notice however
that the error on the quasiparticle residue Z may be
much larger, since this is a zero-temperature quantlty
More precisely, the estimate {(T)=[1- -ImZ(iw ) w] ™!
suffers from additional systematic errors because at
finite temperature the analytic continuation of Z(iw,)
has a branch cut at zero frequency. For the half-filled
Hubbard model, these systematic errors are very small
for small or intermediate U, but become larger as the
Mott transition is reached. Very close to the transition
point, more elaborate methods (Sec. VI.C) are needed
to access the true low-frequency regime.

In the process of an actual computation, it is very im-
portant to track the behavior of the exact diagonaliza-
tion algorithm. This is done by analyzing the effect of
the “projection” in going from & to ¥ at the self-
consistent solution (¢f. Fig. 12). The behavior of the mis-
match between these functions as a function of n, allows
us to evaluate whether we may trust the results (in the
QMC algorithm, we would check whether the data scale
properly with 1/A7). In general, ¥ and ¥* differ the
most at small imaginary frequencies, closest to the real
axis and very quickly agree to machine precision for
larger values of iw. An actual example for this compari-
son is displayed and discussed in Appendix C.

From the discussion of this section, the superiority of
the exact diagonalization method over the Monte Carlo
method is evident. We would, however, like to mention
the very costly scaling of the exact diagonalization algo-
rithm with the size n,, if we think, e.g., of the obvious
generalization to the self-consistent embedded clusters,
which are the subject of Sec. IX. Even a small cluster,
with a few surrounding orbitals per cluster site, could
not possibly be treated with the exact diagonalization
method. It seems to us that the QMC method still has a
lot of untapped potential: It seems very likely that such
systems would most easily be treated by a combination
of the Hirsch-Fye algorithm and the original BSS
method, suitably stabilized (cf. the detailed discussion of
Sec. V1.A.l.e).

4. Spectral densities and real frequency quantities:
Comparison of various methods

In this section, we provide some guidelines concerning
the calculation of real-frequency quantities, such as
the one-particle spectral function plw)
=—(1/m)} ImG(w+i0") [or the response functions x"(w)
=—(1/7) Imy(w+i0*)]. The determination of such quan-
tities faces some limitations in both numerical methods
treated in Secs. VI.LA.1 and VI.A 2. The most severe
ones are found in the case of the QMC method. There,
only imaginary time/frequency data are obtained di-
rectly, and one needs to perform an analytic continua-
tion from numerical data. In the exact diagonalization
method, p(w) is obtained directly, but in the form of an
approxnnatlon by a set of delta functions (since one is
using a finite number of orbitals in the effective bath).
Analytic approximation schemes are always best
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adapted to computing such quantities, but it is crucial to
be able to compare the results to the ones obtained nu-
merically. We present such a comparison here in the case
of the hali-filled Hubbard model.

The standard algorithm for the analytic continuation
of QMC data is the maximum entropy method [Guber-
natis et al., 1991; see also Jarrell and Gubernatis (1996)
for a recent review]. One is trying to retrieve by inverse
Laplace transform the spectral function p(w) from the
imaginary-time Green’s function G (7), such that

—TWw

® e
G{T)=j_mdw l—';_—eq;p(w). (151)
The problem is ill-posed and altogether hopeless if the
data for G(7) are not of extremely good quality, and if
the errors and the correlations between errors are not
carefully taken into account (Gubernatis et al, 1991).
The interplay between statistical errors and systematic
(Ar-dependent) errors has also been much discussed in
the literature. In addition, the “guess” of the correct
density of states p(w) using Bayesian logic usually brings
in an a priori choice of a “possible” p(w), which gener-
ally requires an independent.approximation method and
justification. In the LISA context, all these difficulties
are present, and also the additional one associated with
the self-consistency condition (& itself is only known up
to numerical errors). We will see that a consistent deter-
mination of the spectral density is nevertheless possible
at sufficiently high temperature. However, in spite of the
remendous effort which has been spent on maximum
entropy methods, it is still very difficult, if not impos-
sible, to predict—solely from Monte Carlo calcu-
lations—reliable densities of states at low temperature.

The difficulty arises from two different sources: (i)
analytic continuation to the real-axis of the exact
G(iw,) is a numerically “ill-posed” problem, which re-
quires a regularization (see, e.g., the discussion in Press

et al., 1991), and (ii) the numerical data for G(iw,) have

systematic and/or statistical errors. The first difficulty is
alleviated as the temperature decreases because more
information becomes available. Unfortunately, the er-
rors in the numerical data (for a given computation ef-
ficiency) increase as the temperature decreases.

It is very instructive to deal first with an example in
which the interplay between statistical and systematic
errors can be disentangled, and for which an exact de-
termination of p{w) can be achieved, up to discretization
errors only. This can be achieved by performing the
summation over Ising auxiliary spins using the full Gray-
code enumeration mentioned in the QMC section
above. In that case we are able to calculate the dis-
cretized Green’s function G27(7) for up to L=18 slices
exactly, and produce a self-consistent solution to ma-
chine precision (the reader can reproduce these calcula-
tions with the QMC programs provided). Because of the
complete absence of statistical errors we can in this spe-
cial case perform a Padé transformation (Vidberg and
Serene, 1977) in order to compute p(w), thus avoiding
the difficulties of the maximum entropy method. In Fig.
16, we show the results of such a calculation for the
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FIG. 16. Finite-temperature spectral densities for the half-
filled Hubbard model with a semicircular density of states of
half-width D, obtained by the QMC method with L=16 time
slices at BDW3=10 and Uv2/D=123.4,5 (top to bottom). An
exact enumeration of the 2% Ising spin configurations has been
used, so that these results correspond to the exact analytic con-
tinuation of the discretized G(1) (for the specific value of A7
=10/16).

hali-filled Hubbard model with =10 and L=16 (i.e., A7
=10/16) as a Jfunction of /=127345 (in the units of
DI). Without using any prior knowledge, the results
display correctly the buildup of the upper Hubbard band
associated with high-energy charge excitations at a scale
~=+U/2 (cf. Sec. VII). The narrowing of the quasiparti-
cle peak around w=0 is also apparent. At larger U, a gap
opens, indicative of the Mott transition.

It is very interesting to notice that the result of such a
simple calculation agrees very well with the resuits of a
full-fledged maximum entropy calculation [along the
lines of Gubernatis et al. (1991)], as displayed in Fig. 17
at the same values of the physical parameters. Just to
indicate the enormous investment needed for the maxi-
mum entropy calculation, we indicate that the data were
obtained with 100 samples of G*7(7), which were ob-
tained by performing each time 10° sweeps of the Monte
Carlo algorithm (with L=64). It would be quite incon-
ceivable to redo this calculation at much smaller tem-
perature. In the same figure, we also show the results of
the iterated perturbative theory approximation (at finite
temperature), which will be discussed in Sec. VL.B.2. It
agrees very well with both the maximum entropy and
the complete enumeration results. Similar agreement
{(between maximum entropy and iterated perturbation
theory) was obtained for the Hubbard model on a hy-
percubic lattice (Georges and Krauth, 1993; Jarrell,
1992}, again at the rather high temperature accessible 1o
maximum entropy.

Finally, we consider (Caffarel and Krauth, 1994) the
spectral densities obtained by the exact diagonalization

i e o s R S oot B G L N s G e
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FIG. 17. For the same temperature 8D2=10 as in Fig. 16,
and U=3DH3, this figure compares spectral densities ob-
tained by the iterated perturbation theory approximation {dot-
ted line), by the QMC method with L=64 supplemented by a
maximurn entropy analytic continuation (full line}, and by the
Padé interpolation of the exact enumeration data (Fig. 16)
with L=16 (dots).

method, which consists of a large number of discrete &
functions, directly obtained at T=0. The one-particle
spectral densities p(@)=—ImG (w+ie}/m as obtained
from the Lanczos calculation (n,=10) are displayed to-
gether with the iterated perturbation theory approxima-
tion solutions (cf. Sec. VL.B.2) in Fig. 18 for different
values of U. In the Fermi-liquid regime the spectrum of
the finite-size Anderson model consists of a large num-
ber of peaks, while in the insulating phase we systemati-
cally observe a simpler structure made of only a few
peaks. As U is increased we see that p{w) develops three
well-separated structures: a central quasiparticle feature
and two broad high-energy satellite features correspond-
ing to the formation of the upper Hubbard band. At
large U, a gap is observed in good agreement with the
approximate iterated perturbation theory solution. In
the insets of Fig. 18 we also present the integrated single
particle density of states corresponding to Lanczos and
iterated perturbation theory solutions. The agreement
between both curves is seen to be very good, provided
we average over a frequency interval of w~0.5. This in-
dicates that the calculated spectral density contains
coarse-grained information about the exact solution, as
it should be. Due to the discrete nature of the Anderson
model used, the fine details of the spectrum are poorly
reproduced, but the agreement of the coarse-grained re-
sults with those obtained by the other methods is re-

markable.

5. Numerical calculation of susceptibilities
and vertex functions

In this short section, we explain how susceptibilities
and vertex functions can be computed numerically
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FIG. 18. T=0 spectral density for the half-filled Hubbard
model at Uv3/D=2734.8 (top to bottom), as calculated by the
exact diagonalization method (Lanczos at n,=10). Also shown
are the corresponding results from the iterated perturbation
theory approximation (on a different, arbitrary, scale). For a
comparison between the two results, the inset contains the in-
tegrated density of states [“.p(w')do’ in each case.

within the various methods described above. The theo-
retical formalism relevant to this section is that of Sec.
IV. There, it was shown that q-dependent response func-
tions for the lattice model can be related, in the LISA
framework, to local response functions of the impurity
model through the formula [Eq. (69)]

=01

-0-1
~ Xloe »

~=1
=X|oc+Xq

%a (152)

in which ¥, is a local response function depending on -
three frequencies. In the case of the §7-S° response
function, it reads ‘
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A local correlator such as
(Tei(m)es{7) c;, (73)cr(7a))s,, can be calculated nu-
merically within both the QMC and exact diagonaliza-
tion algorithms.

In the QMC method, Wick’s theorem applies once the
interaction term has been decoupied through the auxil-
iary Ising variables 5,---s , so that:

(Te ( T])Co(Tz)C;f(Tz)Ca'(T4)>scﬂ

r
=g;',l---.\'L(72!Tl)ggl---s,_('r4173)

"5«6’3;']---.;!_(72173)8;71--4:‘[_(74’Tl)- (154)

The overlines denote an average over the Ising spin con-
figurations, with the measure given above. As in the case
of the calculation of Green’s functions from the QMC,
the physical four-point correlation function has symme-
tries that the Ising-spin dependent quantities lack. This
fact can again be used to reduce the importance of sta-
tistical noise.

In the exact diagonalization algorithm, a spectral rep-
resentation can be derived for such a correlator, by in-
serting a complete set of eigenstates. Since the full for-
mula is rather lengthy, we simply quote it for the local
spin correlator X {D=(S.(0)S (7)) [ie., Xxocliw)
=3, Xl iv,iviw)l:

L IS

Xiocl i) = fwtE—E, (e PEi—ePEi), (155)

4
In this expression, Z is the partition function Z
= 3.7 #%i_ At finite temperature in the exact diagonal-
ization algorithm, such an expression can be evaluated
explicitly,. At 7=0, the Lanczos procedure for the
Green’s function can be adapted to the calculation of
Xioc, by starting the (second) Lanczos iteration with the
vector §,|g.s.) instead of d*{g.s.) (cf. Appendix C).

In Fig. 19, we show a comparison of the QMC and
exact diagonalization results for the local correlator
Xioc(7) of the half-filled Hubbard model at U/D=3/2.
Again we notice the almost complete absence of
finite-n, effects, this time in a response function (at
lower temperature, however, these effects are more pro-
nounced for the susceptibility than for the Green’s func-
tions).

A word of cauticn is in order however. In the metallic
phase at T=0, the ground state of an impurity model
with a finite number of orbitals is a singlet, and there is a
finite gap to excited states, so that Eq. (155) should yield
a vanishing result at T=0 as long as n; is finite. The
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FIG. 19. Local spin correlation function xjoc(7)

=([n{(0)—n(0)}[n{(7)—n(7)]) obtained by the QMC and
exact diagonalization methods for the half-filled Hubbard
model with 8DWZ=16 and U=3DN2Z.

correct method for obtaining the asymptotic n,—c re-
sult is to work at a small but finite temperature
T>T*(n,), where T*(n,) is roughly of the order of the
finite-size gap of the Anderson chain. As n, becomes
large, T*(n,) does vanish, but the limits 7—0 and
n,— should not be interchanged.

Let us finally consider the calculation of the static,
uniform susceptibility x=Zx(q,0=0)=dm/dh|,-¢. This
quantity is chosen for illustrative purposes: similar con-
siderations would apply, e.g., to the staggered suscepti-
bility. There are essentially two ways to compute such a
quantity numericaily:

(i) Compute the Jocal response function
Xiocliv,iv';iw) as described above, and perform the ma-
trix inversion required in (152). The ¥° can be obtained
from the knowledge of the self-energy. A second matrix
inversion yields yq-o ¥,v",@ = 0), and finally x by sum-
ming this quantity over »,»'. This procedure has been
used, e.g., in the work of Jarrell (1992).

(ii) Solve the LISA equations in the presence of a
small uniform external field h, and compute the suscep-
tibility as a finite difference y==Am/Ah. The presence of
the field enters the self-consistency condition (Sec. V),
resulting in a spin-dependent Weiss function ¥, in the
impurity effective action.

The second method is probably the simplest if one is
interested only in the zero-frequency static susceptibility.

The same method can be used for the static suscepti-
bility at other values of g, such as the staggered suscep-
tibility obtained by including a small staggered field.
Note that a similar procedure can be used to obtain the
local static susceptibility xoc=Zqx(q), instead of the ex-
plicit evaluations described above. To do this, one has
first to compute the self-consistent solution G(h=0),
F(h=0) at zero external field. In a second step, one
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then calculatesthe Green's function G () while keeping
the Weiss field &,(h=0) (this means that the calculation
is done for a spin-dependent chemical potential pu—sp
~ha). The local susceptibility is then given by

Xioe™ lim[GT(r= O’h)l.‘fo(h=0)* G(r=0h =0)]/h,
h=0
(156)

which corresponds to putting a magnetic field solely
onto the impurity site.

The finite-field method for calculating both local and
uniform susceptibilities is perfectly practical, especially
in the exact diagonalization framework, where the com-
plete absence of statistical noise allows calculations at
arbitrarily small & (such as A~1.0x107, i.e., fully in the
linear regime). Equation (155) describes a linear-
response formula which is valid for any Hamiltonian. It
is numerically equivalent to the calculation at very small
magnetic field. This is of course only true if no further
approximations are introduced, as in the exact diagonal-
ization framework [where the sum over states in Eq.
(155) is actually computed]. In the Monte Carlo proce-
dure, an exact linear response formula to an external
field (at finite A7) can be derived by expanding the
Dyson equation in a field & with respect to h at h=0. The
method using four-point functions agrees with the finite-
field procedure only in the limit of Ar—0.

In phases with broken symmetry (where there is a
finite effective field), it is again evident that the two pro-
cedures result in the same determination of the critical
temperatures whenever we are able to write a self-
consistency condition for the broken-symmetry phase.
An illustration of this point is the calculation of the Néel
temperature of the Hubbard model for the hypercubic
lattice obtained by Jarrell (1992) by following the first
method, and reproduced by Georges and Krauth (1993)
following the second one, and on the Bethe lattice cal-
culated by Rozenberg, Kotliar, and Zhang (1994) using
the first method and by Ulmke, Janis, and Vollhardt
(1994) using both methods.

B. Analytic methods

This article is not the place for an exhaustive review
of the rather large variety of analytical methods de-
signed to handle quantum impurity models. These meth-
ods can rather generally be divided into two broad
classes. On one side, we find several analytical tools for
the study of low-energy universal properties of these
models. These are important in the LISA context since
they allow for a classification of the various low-energy
behaviors that are a priori possible, on a qualitative
level. In Sec. VI.B.1 we simply give a list of such meth-
ods, with appropriate references. A second class of ana-
lytical methods is designed for a full quantitative solu-
tion of impurity models, including the calculation of
dynamical quantities such as the impurity Green’s func-
tion. This is precisely what is needed for a full quantita-
tive solution of the LISA equations. Unfortunately,
these methods are less numerous and are most of the
time approximate methods (which may become exacl in
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some extreme limit of the model). We briefly describe in
the following three of these methods that have proven
useful in the LISA context, namely, weak-coupling per-
turbation theory (leading to the iterated perturbation
theory approximation in the LISA context), the non-
crossing approximation, and the (high-temperature)
equation of motion method. The description of these
methods will be short, and the reader is directed to the
original references for a detailed exposition. Two useful
general sources on gquantum impurity models are the re-
view article by Tsvelick and Wiegmann (1983), and the
recent book by Hewson (1993).

1. Exact methods at low energy

When faced with the LISA equations for a specific
problem, the first thing to attempt is a characterization
of the possible low-energy behaviors. In order to achieve
this, one starts by assuming a specific low-energy form
for the Weiss function Fy(iw,) [i.e., for the effective
conduction bath density of states A(w)]. Then, one uses
some of the various analytical tools listed below in order
to access the low-energy behavior of the impurity
Green’s function G(iw,) [i.e., of the spectral density

 p{w)]. This is subsequently inserted into the self-

consistency condition in order to decide whether the ini-
tial assumption made for ¥, and A is indeed compatible
with the coupled LISA equations. One may also proceed
in the reverse order, namely postulate a low-energy be-
havior of G(iw,), insert it into the seif-consistency con-
dition in order to find the corresponding behavior of &
and A, and then analyze the impurity problem at low-
energy in order to decide on the validity of the initial
ansatz for G. For a concrete illustration of this proce-
dure, the reader is directed to the qualitative analysis of
the LISA equations for the half-filled Hubbard model in

Sec. VIL.C, and for the doped case in Sec. VILH.1. Of
course, this analysis only results in a classification of the
low-energy behavior that is a priori possible, and does !

not allow for a quantitative determination of the regions
of parameter space of the original lattice model that lead
to a specific, allowed low-energy behavior. In order to
achieve this, these low-energy methods must be com-
bined with some information on the high-energy physics.
This information must be obtained either from the nu-
merical methods described above, or from some quanti-
tative analytic approximation technique, like the ones
described below in Secs. VI.B.2 and VI.B.3.

The method to be employed for the analysis of the

low-energy problem depends crucially on the low- ¢

energy behavior of the effective conduction bath density
of states A{w) parametrizing the Weiss function ¥5. Dif-

ferent fixed points (in the renormalization group sense) |
will generally control the low-energy behavior of the im-

purity model for different low-frequency behaviors of A.

St o 4B

R T R T

An important distinction is whether the effective bath
has states at low-energy {i.e., A(w) is nonzero in some .

gap-

finite range around w=0], or whether A(w) displays a ¢
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A. Periodic Anderson model and the Kendo lattice

1. The periodic Anderson model

The periodic Anderson model (PAM) consists of a
band of conduction electrons that hybridizes with local-
ized f-electron states at each lattice site. The double oc-
cupation of the f sites is disfavored by a repulsive local
term that corresponds to the screened Coulomb interac-
tion. With a local hybridization, the Hamiltonian is de-
fined by

H=t2 Ekc:acka+ V%: (C;’:y io'+.f;‘:rcia)+€f§ f:rfia

+U§‘_‘, (ng— Hng— ). (276)
This model Hamiltonian is widely considered to be rel-
evant for the description of a large class of strongly cor-
related systems, most notably the heavy fermion -com-
pounds and the so-called “Kondo insulators.”

Using the fact that in the d— limit the local interac-
tion gives rise to a local (i.e., k-independent) self-energy,
the various components of the Green’s functions are ob-
tained in the form:

VZ
. _1: . — _
G liw, k) fw,— € fon— =S iwy)’ (277)
2
Gliw, X)) '=iw,— e~ Idiw,)— fo.—e (278)

G Aiw, ,k)'l"—‘-‘[l? {[iw,— e)(iw,— e~ Zdiw,)] = V2
(279)

In these expressions, 2 {iw,) is the self-energy of the f
electrons, and the chemical potential x has been ab-
sorbed in the definitions of ¢ and ¢. Using the methods
of Secs. II and TII, the reduction to a self-consistent
single-site model is easily performed and the effective
action reads

8 B
Sa=—["ar[ar' S £ =)

8
+u [ Lartnp(n-$np(n-1 (280)
with the f self-energy obtained from
3=%"-G;', G=~Tff")s, (281)

Not surprisingly, the effective action is that of a single-
impurity Anderson model. The self-consistency condi-
tion requires that the local f Green’s function of the lat-
tice model coincides with the Green’s function of the
impurity problem, namely:

J‘m de D(e)
w10, — €~ Zfiw,) = VI (iw,~ €)

=Giw,),
(282)
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where D(e€) refers as usual to the noninteracting density
of states of the conduction electrons. It is often useful to
rewrite this self-consistency condition in terms of the
Hilbert transform D of the density of states [cf. Eq. (11)}
as

V2
Gliw,)=- + -
fliwn) iw,~€~%f [w,— €2
y 1%
XDliw,— ———<1.
iw, PP Ef (283)

Note that the Hilbert transform appearing in the right-
hand side of this equation coincides with the local con-
duction electron Green’s function G (iw,).

This description of the Anderson lattice as a self-
consistent single impurity Anderson model was origi-
nally introduced by Kuramoto and Watanabe (1987).
Generalizations of these equations to the description of
the ordered phases of this model can be easily con-
structed following the lines of Sec. V.

In the work of Georges, Kotliar, and Si (1992), these
dynamical mean-field equations were combined with
general theorems on the single-impurity Anderson
model (Langreth, 1966), along similar lines to those re-
viewed in Sec. VILH for the Hubbard model. This
analysis shows that the metallic phase of the d=x PAM
(in the absence of long-range order and in zero magnetic
field) is a Fermi liquid and has a Fermi surface which

. accommodates the total number n +n; of conduction

and f electrons.

Most quantitgtive studies of the d=co PAM that have
appeared in the literature have focused on the (insulat-
ing) half-filled case, which is reviewed in the next sec-
tion. A notable exception is the early work of Sch-
weitzer and Czycholl (1989, 1990a, 1991b) who make use
of second-order perturbation theory in the coupling U.
Both the direct weak-coupling expansion (in which the
free fermions Green’s function enters the second-order
self-energy) and the “self-consistent” one (in which the
full interacting propagator is used) were considered.
One-particle spectral densities, and the temperature de-
pendence of the resistivity p(7) and thermopower
Q(T), were calculated using these approximations. The
results for p(T) and Q(T) at various electron densities
are reproduced in Figs. 65 and 66. Schweitzer and Czy-
choll make the interesting observation that p(T) bhas a
monotonic behavior {characteristic of a normal metal) at
low electron fillings (i.e., when g is far below the effec-
tive f level), while a plateau develops for higher electron
densities, which turns into a resistivity maximum at the
Kondo scale (followed by a regime with a negative slope
op/aT) as one enters the mixed valence regime (ie.,
when u is close to the effective f level). A concomitant
change in behavior is observed for Q(T). Both types of
behavior are observed experimentally in heavy fermion
compounds.

A crucial issue in the field of heavy fermions is the
competition between Fermi-liquid coherence (the
Kondo effect) and magnetic (Ruderman-Kittel-Kasuya-
Yosida, or RKKY, and superexchange) interactions. The
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FIG. 65. Temperature dependence of the resistivity for the
periodic Anderson model on the hypercubic lattice with U=1
and V=04 (1; = ll\/?_.E), as obtained from “self-consistent™
second-order perturbation theory. (1) n=0.8, (2) n,=0.6, (3)
R =0.4, (4) R=0.2 (from Schweitzer and Czycholl, 1991b).

LISA (d=w) approach does have a bearing on this issue,

albeit a partial one (Georges, Kotliar, and Si, 1992; Jar-
rell, 1995). Namely, both the superexchange and the
RKKY couplings are indeed present: the RKKY cou-
pling scales as 1/d between nearest-neighbor sites, 1/d?
between next nearest neighbors, etc. which is precisely
the correct scaling such that a finite contribution to the
magnetic energy is obtained. [For a more detailed analy-
sis of the RKKY coupling in large dimensions, see Jar-
rell (1995).] Therefore, phases with long-range order do
appear. This makes the LISA approach more suitable to
capture these effects than the large-N methods (in which
magnetic effects only appear at order 1/N?, cf. Read,
Newns, and Doniach, 1984). These magnetic scales also
appear in two-particle response functions at a fixed
value of q above the ordering temperature. However,
they do not show up in single-particle properties such as
the self-energy, so that no precursor effect of the mag-
netic transitions exists, e.g., for the effective mass in this
approach. Also, collective excitations (e.g., spin waves)
are absent. The problem was already discussed in Sec.
VII in connection with the Mott transition, and is intrin-
sic to single-site descriptions. Extensions of the LISA
method are required to capture these effects (cf. Sec.
1X}.

FIG. 66. Temperature dependence of the thermopower Q(T)
for the same parameters as in Fig. 65 (from Schweitzer and
Czycholl, 1991b).
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120 Fead|

FIG. 67. Phase diagram of the periodic Anderson model on
the z=x Bethe lattice. The inset shows, in a log-log plot, that
the second-order critical line obeys U,~V2 as U becomes
large. The results are from exact diagonalization with n,=6.

2. Halffilled case: Kondo insulators

More recently, quantitative studies of the LISA equa-
tions for the periodic Anderson model going beyond
perturbative approximations have appeared in the lit-
erature, focusing particularly on the half-filled case
(n.)+{ng)=2 (¢=0 with the notations above). This case
is relevant for the so-called “Kondo insulators” such as
CeNiSn, Ce;Bi,Pt;, and SmBg (and perhaps also FeSi).
In the work of Jarrell, Akhlaghpour, and Pruschke
(1993a) and Jarrell (1995), the quantum Monte Carlo
method is used to solve the associated impurity problem
and calculate densities of states and various response
functions. It was also found that the half-filled solution
has an antiferromagnetic instability for some range of
parameters. '

The study of solutions with commensurate antiferro-
magpetic long-range order was considered by Sun, Yang,
and Hong (1993) within a slave-boson approximation for
the impurity problem, and in more detail by Rozenberg
(1995) using the exact diagonalization method. The re-
sulting phase diagram is depicted in Fig. 67. The para-
magnetic and antiferromagnetic phases are separated by
a second-order critical line that obeys V2/UD~J_/D,
with J ~=0.075D. Thus the large dimensional solution of
the PAM realizes early ideas of Doniach (1977), who
found that at the (static) mean field level J /D~ O(1),
and argued that dynamical fluctuations should strongly
reduce this ratio. It is also interesting to note that the
phase diagram is in good agreement with the recent re-
sults of Vekic et al. (1995) for the two-dimensional PAM
obtained from quantum Monte Carlo simulations on a
finite lattice, and to those of Moller and Wolfle (1993) in
the three-dimensional case.

A typical result for the spectral density of the half-
filled PAM in the paramagnetic phase is depicted in Fig.

i




A. Georges et al: Dynamical mean-field theory of ... 89

5.00F ‘ . i | [ =

4.00 -

§ 3 4
pla)

2.00 -

1.09

t
0.00 _
plow) 1.00] J [\Mﬂ
0.00—, - 1 r i I

-3.00 =200 -L00 0.00 1.0¢ 2.00 3.00

(5} ]

FIG. 68. Density of states for the ¢ and f electrons (bottom
and top) in the half-filled periodic Anderson model for U/D
=2.5 and V/D=04 at T/D=0.01.

68. The result was obtained by the iterated perturbation
theory method (Sec. VI.B.2), and compares favorably
with the results of exact diagonalizations or quantum
Monte Carlo [there are small: differences, though, as
noted in the work of Jarrell, Akhlaghpour, and Pruschke
(1993a)]. It is useful to note that the iterated perturba-
tion theory method, similarly to what happens in the
case of the Hubbard model, bases its success on the
property of capturing correctly the limit in which either
D—0 or V—0, and also (by construction) the weak-
coupling limit U —0. The spectral density displays a nar-
row insulating gap A;,4, with two sharp peaks on each
side. As discussed below, this gap corresponds to an in-
direct gap of the renormalized band structure. Further-
more, satellites at *U//2 are also found, as expected
from the study of the atomic limit. As already observed
for the Hubbard model in Sec. VI.B.2, these high-energy
satellites are not correctly captured by the “self-
consistent” weak-coupling expansions mentioned above:
a comparison with Figs. 3(a)-3(c) of Schweitzer and
Czycholl (1990a), in which these peaks are absent, illus-
trates the point. We believe that the sharp peaks on the
gap edges are related to the features observed by pho-
toemission on FeSi by Park, Shen, et al. (1994).

These results can be understood by performing a low-
frequency analysis of the dynamical mean-field equa-
tions. Let us make the assumption that the f-electron
spectral density displays a gap A;,q. This implies that the
low-frequency behavior of the f-electron Green’s func-
tions is Giw,)~iw,. A convenient parametrization of
this linear behavior is

P (). 3
ViGliw,)=~ 1+-72— fw,+O0{w,). (284)
F 3
In this expression, V, is an effective hybridization renor-
malized by the interaction (for U=0, it is easily checked
that V_ =V) and (&) simply denotes [de D(€)é . In-
serting this into the self-consistency condition (283), one
finds that the density of states of the effective bath en-
tering the impurity model take the form
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1 —

1
Aw)==—ImF; (w+i0*)

Vi

= Sw)+

VIS (0)+A,(w), (285)
in which 8,(w) denotes a nonsinguiar density of states
also displaying a gap. Hence, the effective bath density
of states has a single localized level at zero energy, in the
middle of the insulating gap. Solving the Anderson im-
purity model with this bath shows that (1) the assump-
tion of a gap is a self-consistent one and (ii) a local
Kondo effect does take place (despite the insulating
character of the lattice problem), involving the f orbital
and this localized level. The low-energy expansion of the
self-energy reads

VZ

Re Ef(w+i0+)=—(if-§--1)w+0(w3) (286)
*
while ImX {w+i0") vanishes inside the gap, and is ac-
tually zero within a wider interval of energies {(or “direct
gap”): ~Ay2<w<+Ay /2, as we will show. The “renor-
malized” (quasiparticle) bands E, are obtained by locat-
ing the poles of the conduction electron Green’s func-
tion G (k,w); i.e., the bands are solutions of

[Ex— allEx—ZAE)]-Vi=0. (287)

An approximation of the band structure and of Ajng and
Agir can be obtained by substituting the self-energy in
this equation by its low-frequency linear behavior (286).
This leads to

L1
E{=5a*g+aVl].

This expression is identical to the one for U=0, with the
replacement V—V_. The indirect gap corresponds to
the distance between renormalized band edges. Denot-
ing by D the half-width of the noninteracting density of
states, we obtain .

Aind= \}D2+4V* -D
while the smallest direct gap is for &=0 and reads
Adir= 2 V* .

Itisseen that A4 = ZVi/D <Ag whenV, <D.

The indirect gap appearing in the spectral density also
sets the low-energy scale appearing in the temperature
dependence of the uniform spin and charge susceptibili-
ties. Consistently with the existence of sharp peaks at
the gap-edges in the spectral density, the magnetic sus-
ceptibility raises sharply as.a function of temperature for
T>A;q, and reaches a maximum at a scale set by the gap
Aing itself. This behavior is in good qualitative agree-
ment with the experimental findings of Jaccarino er al.
(1967) for FeSi. The QMC result of Jarrell, Akhlagh-
pour, and Pruschke (1993a) for x(7) is displayed in Fig.
69. Jarrell (1995) reports a charge and spin gap compa-
rable to each other: A=A =2A, ;. but recent results of
Rozenberg, Kotliar, and Kajueter (1995) in the deep

(288)

(289)

(290)
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FIG. 69. Staggered (AF) and uniform (F) spin susceptibilities
of the symmetric PAM with U=2 on the hypercubic lattice
[t;;=1/2Vd, for various values of V (from Jarrell, Akhlagh-
pour, and Pruschke (1993a, 1993b)]. The inset of (a) shows the
Néel temperature T when V=0.4 as a function of ‘a frustrating
hopping 15/¢, . The inset of (b) shows the local spin susceptibil-
ity. ‘

Kondo regime may indicate deviation from this behav-
jor, and we regard this issue as yet unresolved. Note
that, in the one-dimensional case, A >4, (Nishino and
Ueda, 1993), while the Gutzwiller approximation (Rice
and Ueda, 1986) leads to A=A, . Jarreil (1995) has also
studied the behavior of the thermodynamic properties as
a function of temperature, and whether a scaling behav-
ior applies to each of them, as a function of T/A;,q. Re-
cent work by Saso and Itoh (1995) studies the effect of
an applied magnetic field on Kondo insulators using the
LISA.

We now briefly describe the results for the optical
conductivity. This was first investigated by Jarrell (1995)
using QMC, and recently by Rozenberg, Kotliar, and
Kajueter (1995) using exact diagonalization and the iter-
ated perturbation theory approximation to treat the
strong coupling regime. These results can be compared
to the recent experimental results of Bucher et al. (1994)
and Schlesinger et al. (1993) on the optical response of
Ce;Bi Pt; and FeSi respectively. A plot of the optical
conductivity o(w) for different values of U at T=0 is
shown in Fig. 70. These results show that the optical gap
is set by the direct gap Ay, of the renormalized band
structure. This is because ImZ, becomes nonzero at this
scale. Thus the emerging picture is consistent with the
usual interpretation of the hybridization band insulator,
with a renormalized hybridization as described above.
However, interesting effects are found as a function of
temperature. In Fig. 71 we show the optical conductivity
for different temperatures and the parameters U=3 and
V=025 fixed. The gap is essentially temperature inde-
pendent. It begins to form at 7*~Ay /5, and is fully de-
pleted only at temperatures of the order of T*/5, that is,
when T becomes comparable to the size of the gap in
the density of states. It is actually interesting to compare
how the process of filling of the optical gap is correlated
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FIG. 70. The optical conductivity spectra of the periodic
Anderson model, obtained by iterated perturbative theory for
values of the interaction U=0.5,1,2,3 (right to left), keeping the
hybridization ¥=0.25 fixed. The inset shows the gap from the
optical spectra A, ~Ag; and the indirect gap Ajyg from the locat
density of states for ¥=0.6. The slopes of these curves indicate
that V*2/D«A,,4 and V*xAy, in the strong correlation region.
Similar results have been obtained by Jarrell (1995) using the
QMC method.

with the filling of the gap in the coherent features of the
single-particle spectra and with their subsequent disap-
pearance at high temperature. This comparison makes
more evident the different energy scales associated with
the optical gap and the coherent gap in the density of
states. THe single-particle spectra for the ¢ and f elec-
trons is displayed in Fig. 72.

The behavior described above is qualitatively similar
1o the experimental observations in the Kondo insulator
systems mentioned above, which are reproduced in Figs.
73 and 74. Note that, while they correspond to different
compounds, the two specira have many common fea-
tures. A point worth mentioning is that the solution of
the model within the iterated perturbation theory

[
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FIG. 71. The optical conductivity for the Anderson model at
T=0.001 (bold), 0.005, 0.01, 0.02 (dotted}, 0.03 (thin). The in-
teraction U=3 and V=0.25. Inset: The same quantity at
T=0.001 (bold); 0.005, 0.01, 0.02, 0.03 (dotted); with Lorentz-

ian random site disorder of width I'=0.005.
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- FIG. 72. Low-frequency part of the density of
states for the f and ¢ electrons (top and bot-
. tom) obtained from iterative perturbation

theory at 7'=0.001 {(full), 0.005 (long-dashed),
0.01 (short-dashed}, 0.02 (dotted), 0.03 for
U=3 and V=0.25. Inset: The density of states
in the full frequency range at T=0.001.
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method predicts an interesting nonmonotonic behavior
of the total integrated optical spectral weight as a func-
tion of the temperature. It is observed that the inte-
grated weight initially increases with temperature, up to
temperatures of the order of the size of the optical gap.
A further increase of 7" leads to a decrease of the inte-
grated weight as the system turns metallic and correla-
tions become unimportant. The fact that in the low-
temperature range the integrated weight increases with
T may be relevant for the resolution of the problem of
the “missing spectral weight” experimentally observed
in the Kondo insulators compounds (Schlesinger e al.,
1993; Bucher et al., 1994).
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FIG. 73. Optical conductivity o{w) of Ce;Bi Pt; for different
temperatures (from below: 25, 50, 75, 100, and 300 K), from
Bucher et al. (1994). A gap is opening below 100 K; the promi-
nent feature at A. seems to be independent of temperature.
The inset presents the optical region of ¢.
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To end this section, we mention that an alternative
model for FeSi has been proposed and studied in the
d -~ limit by Fu and Doniach (1994). The model is that
of a strongly correlated semiconductor consisting of two
bands of dominantly iron character. The proposed
Hamiltonian redds

H=2 —t(choite—Chotiat He)

{ifye

+ 2 V(chotizo+He)
11 g

). (291)

+ 2 U(n‘-'urncn
i

1+nci21nci21
The opposite sign of the two hopping terms provides a
direct gap between the valence and conduction band.
The self-consistent perturbation theory was used by Fu
and Doniach to compute various quantities, among
which are the temperature dependence of the suscepti-
bility and the spectral functions. At this moment, we are

4000
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0

FIG. 74. Optical conductivity (e) of cubic FeSi for different
temperatures (from below: 20, 100, 159, 200, and 250 K), from
Schlesinger ef al. (1993). The symbols at w=0 show the mea-
sured values of o for the same temperature sequence.
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W= 1+exp(,8{£f—,u,)+g (In[ &5 (iw,)]

~1
—ln[ % 'iwg) — U]}e"“"°+)} , (303)
Differentiating the partition function with respect to &,
we see that w is the f particle number per site. The local
conduction electron self-energy is defined as usual
through

Gliw,) 1= %5 Hiw,)—Z(iwy,). (304)

When combined with the explicit form of the Green’s
function Eq. (302), this leads to the functional form of
the self-energy = (iw,)=2, in terms of the local Green’s
function G(iw,)=G,:

3,(G,)=UR-12G,+ (U2~ 172G ) +w,UIG,,
(305)
where the sign is to be chosen (depending on frequency)
in such a way that Z has the appropriate apalytic prop-
erties. Furthermore, the self-consistency equation reads,
as usual, '

G —r d Die)
n= ) Tt p— €= 24(Ga)’

where D(¢€) is the conduction electron bare density of
states. Equations (303), (305), and (306), first derived by
Brandt and Mielsch (1989), form a closed set of equa-
tions for the conduction electron Green’s function and
self-energy in phases without long-range order. An inter-
pretation of these equations as a mean-field theory,
rather different in spirit to the mapping onto an effective
impurity problem, has been given by van Dongen and
Voilhardt (1990) and van Dongen (19914, 1992).

Before turning to the description of possible long-
range order and of the phase diagram of the model, let
us mention some results on the behavior of the Green’s
function in phases without order (e-g., at high tempera-
ture). van Dongen (1991a, 1992) established that the
mode] displays a metal-insulator transition as a function
of U at half-filling n +n=1, at U.=D when D(e) is
semicircular with a half-bandwidth D. Si, Kotliar, and
Georges (1992) established that there are two regions, as
a function of the total density n=n_+n and U:

(i} For U larger than U,.(n), the number of f electrons
per site is either n,=0 or ng=1.In that region, the con-
duction electrons obviously behave as a free Fermi gas.

(ii) For U smaller than U.(n), there is a finite occu-
pancy O<ns<l, and the chemical potential remains
pinned at the effective f-electron level: u=E;, with E;
defined by w,={l+expME~w)} " In this regime, the
conduction electron self-energy has a finite imaginary
part at zero frequency, and the Fermi-liquid theory
breaks down. :

The f electron (ion) Green’s functions is more difficult
to obtain than the conduction electron one. To this aim,
it is useful to realize that the Hamiltonian form of the
impurity effective action (301) is the x-ray edge Hamil-
tonian:

(306)
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H=§k‘, Ewafayt(e—m)f T+ Uf*fg afaw (307)

with the spectral representation
1 1 -
%= — M
0 ‘ 2 iw,, - Ek ] B

It results from this mapping that, in the pinning region
mentioned above, the f-electron spectral function has an
x-ray edge singularity at low frequencies (Si, Kotliar, and
Georges, 1992). A numerical study of the heavy electron
Green’s function of this model {Brandt and Urbanek,
1992) is consistent with a thermal smearing of the x-ray
singularity. Further analytic work on this problem was
carried out by Janis (1993).

At low temperature, the d= Falicov-Kimball model
displays ordered phases in which both the conduction
electron and f-electron (ion) charge densities acquire
nonzero values, at a given ordering vector q. For the
symmetric half-filled case (e=0, n,;=ns= 1/2), the order-
ing is towards a commensurate [q=(,....m)] ordered
state, in which the particles order in a checkerboard pat-
tern: the conduction electrons occupy one sublattice,
and the ions the other one. (Viewing each electrons spe-
cies as a given spin species, this state can be called a
spin-density wave state, and is the direct analog of the
Néel state). This is true in any dimension on a bipartite
lattice, and has been established rigorously (Brandt and
Schimidt 1986, 1987; Kennedy and Lieb, 1986). For d=,
Brandt and Mielsch (1989, 1990, 1991) were able to es-
tablish eduations for the CDW susceptibility x(q), and
computed the critical temperature at half-filling as a
function of U. van Dongen and Volihardt (1990) showed
analytically that 7T,~1/U for large U, while
T,~U*In(1/U) for small U. The CDW transition is
second-order (Ising-like), but can be driven first-order in
the presence of a nearest-neighbor repulsion V' (van
Dongen, 1991a, 1992). For V>U72, a charge-density
wave transition is found instead, with doubly occupied
sites on one sublattice, and holes on the other (van Don-
gen, 1991a, 1992).

These results have been extended for arbitrary elec-
tron density n, (keeping n=1/2) by Freericks (1993a),
for the d= hypercubic lattice. He showed that, for a
given U, the ordering becomes incommensurate for a
range of electron concentrations. For still smaller densi-
ties, a segregated phase is found (in which ions and elec-
trons cluster in separate regions). As explained in Sec.
TV, the ordering wave vector can be characterized by
X(q)=1/d% 4_,cosq;. It varies continuously with U and
n. within the incommensurate phase. The phase dia-
gram established by Freericks (1993a) is displayed in
Fig. 76. Freericks (1993b) also used the LISA as a dy-
namical mean-field approximation to the finite-
dimensional Falicov-Kimball model, and concluded that
the approximation is inaccurate at strong coupling in
d=1, but is a very good description of the model in d=2.
The optical conductivity of the Falicov-Kimball model
on the hypercubic lattice was computed by Moeller,
Ruckenstein, and Schmitt-Rink (1992).

{308)
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F1G. 76. Phase diagram of the Falicov-Kimball model on the
hypercubic lattice for nf=1!2, ef=0, as a function of U and elec-
tron concentration n, . Contour lines of constant X (q) are in-
dicated. From Freericks (1993a).

Finally, let us mention that the Falicov-Kimball model
has been used by several authors to devise approxima-
tions to the solution of the d=oo Hubbard model. The
general idea behind these approaches is to treat one of
the spin species as moving in the background of the
other one, considered frozen and static (Janis and Voll-
hardt, 1992a; Li and d’Ambrumenil, 1992; Edwards,
1993; Laad, 1994).

C. Multiband models: Combining LISA and LDA

The models considered up to now in this article are
idealized models of strongly correlated electron systems
containing a single conduction electron band. In actual
materials, one is always faced with the issue of orbital
degeneracy. Even in relatively simple systems such as
the transition-metal monoxides (e.g., NiQ, FeO, etc.), a
minimal realistic description must take into account a
fivefold d band splitted by crystal field effects into, for
example, d,2_ 2, d3,2-,2, dxy, d;, dyz , and a threefold
oxygen band p, ,p,,p, . This also allows a classification
of transition-metal oxides into Mott insulators (for
Ujase,—€4) and  charge-transfer insulators (for
Uq42 €,— €45 see Zaanen, Sawatzky, and Allen, 1985).
In this section, we describe how the LISA approach can
be used as a dynamical mean-field approximation to deal
with the band degeneracy and lattice structure of actual
materials in a more realistic way. Quantitative calcula-
tions along these lines are only starting, but we expect it
to be a fruitful direction for further research.

The starting pomt of any such calculation is the band
structure of the matenial, as obtained e.g., by the LDA
method {or some other technique). This zeroth-order
starting point provides one with a Hamiltonian
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Ho=2k €,(K)Ch s Chon (309)

v

in which » denotes a band index. Band calculations are
an excellent description of many materiais, but are well-
known to fail to predict correctly the insulating charac-
ter of oxides such as CoO or FeO because of the neglect
of electron-electron interactions. Various schemes have
been proposed to include those in the LDA approach
(such as the “LDA+U” method of Anisimov, Zaanen,
and Andersen, 1991). These schemes do lead to signifi-
cant improvement, but obviously do not include all the
dynamical effects of the interaction. Capturing these ef-
fects is the main motivation of the LISA method.

Starting from H,, the most straightforward way of
impiementing the LISA method is to use a tight-binding
projection of the band structure. This consists in project-
ing the Bloch waves onto a set of orbitals d,,, localized
at the sites R; of a lattice appropriate to the material
considered:

o= 2 €A (K (310)

In this formula, the A, (k)=(a|v k) are the eigenvectors
of the single-particle Schrodinger equation and satisfy
the closure relations:

g A (KA, 4(K)*=8,4,

> AL (KFA o (K)* =6, (311)

In terms of the tight-binding orbitals, the free Hamil-
tonian Hy takes the form

Hg= ”2 tu ica }aﬁJ (312}
in which the hopping amplitudes t"‘ﬁ reads

(=20 e R 4,044k k), (313)
or, in reciprocal space,

§8=2 Ak e, (k)A,5(k)*. (314)

Electron-electron interactions must now be added to
H,. A word of caution is In order here, since the LDA
cigenstates €,{k)} already contain some of the effects of
these interactions. One of the main difficulties in this
context is thus to separate the static terms, taken into
account by LDA, from the additional terms, to be
treated dynamically, without double counting. Without
dealing further with this difficulty, we shall assume that
interactions can be introduced in the tight-binding rep-
resentation in the simplified form of Hubbard type local
interactions, and we shall consider the Hamillonian

H=Hy+ 2 EB Uopdit adirad gdiig- (315)
3 a4
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The Hubbard parameters U,g can in principle also be
calcutated in the framework of the LDA. Of course, a
more complete description of the interactions should in-
clude nonlocal terms coupling different sites, but the
treatment of the dynamical effects of such terms re-
quires an extension of the LISA method (cf. Sec. IX).
The LISA method maps this Hamiltonian onto the
solution of a self-consistent single-impurity problem.
The effective single-site action associated with H reads
(restricting ourselves to the paramagnetic phase)

S=— [[ar["ar'S 4t D15 Vuptr— 7 optr)

8
+> U,,EJ' drd},d.d]sd . (316)
af 4]

In order to obtain the self-consistency equation, we con-
sider the lattice Green’s function:

Gplk,7— 'r')E—(Tde(T)d:‘,ﬁ('r')) (317
and postulate a momentum-independent self—énergy ma-
trix:

- Z a'g( l w,,} .
(318)

The self-consistency condition requires that the local
(on-site} Green’s function coincides with the impurity
mode] one, with identical self-energies:

G aplksiw,) T = (i@, + p) 8,5~

Gaﬁ(iw,.>mp=§ Gap(k.i,), (319)
with
aﬁ(f 7 unp (Tda'ado-ﬂ)s i
Gaﬁ(imn)i:np=[?0_ ]aﬁ_zuﬂ' (320)

Note that not only the knowledge of the band energies
£,(k) and the associated partial density of states is re-
quired to implement this self-consistency condition, but
also that of the matrix elements A (k).

In this general context, the LISA, despite its local
character, leads to “renormalized bands” [ie., quasipar-
ticle poles of G ,(k,iw,)] that do not have, in general,
the same k dependence as the LDA ones €,(k), and the
self-energy does acquire k dependence when expressed
in the basis of Bloch states:

S (kiwn) =25 Aya(K)*Zaplion) Ay gk).  (321)
Obviously, the results will depend strongly on the choice
of the tight-binding basis onto which the LDA results
are projected. As a result, the procedure is expected to
apply better to those materials for which a set of well-

defined localized orbitals is unambiguously dictated by
physical considerations.

In order to illustrate this strategy on a simple concrete
example, let us consider the three-band model of the
CuO, layers in cuprate superconductors (Emery, 1987;
Varma, Schmitt-Rink, and Abrahams, 1987). The Hamil-

Rev. Mod. Phys., Vol. 68, No. 1, January 1996

tonian involves d,2_,2 and p,,p, orbitals in the hole
representation (so that the vacuum corresponds to the
Cu® configuration), Including correlations only on cop-
per sites as a first step, the Hamiltonian reads

H33=“‘pdl_2 df:r(PHx.c—Pi—x,a"’PHy.a"Pi—y,a)
41,,1,% 528 yPkroPryst Hot.
+€pz (P;gP:‘meP;aPiya)"‘de diydic
i io

+ UdZ nénd (322)
with s, =sin(k, ,/2}). In the LISA method, this model is
mapped onto a single-impurity Anderson model associ-
ated with copper sites:

B
Sefi= Udfo dr ng{T)ng (1)

_f"dffﬂdrfz d (D) Fy (r—1)d (')
0 0 o
(323)

and the self-consistency condition requests that the on-
site copper Green’s function 2, G 4(k,iw, } coincides with
the impurity Green’s function. Introducing a
momentum-independent copper self-energy 2 ,(iw,)
and expressing the matrix Green’s function in the
(di .Pix P iy) basis, this condition reads

Lo 248, —i2th,s, \ 7
2 ~i2tpasy  {p AlppS,S,
IledS), 4IPPS“SY {P dd

=Gliw)=[F =341,

where {,=iw,+u—€, and {;=iw,+p—e;~ 3 (iw,).
This equation takes a much simpler form in the absence
of direct oxygen-oxygen hopping 7,,=0. In this case, the
copper and oxygen Green’s functions read

(324)

_ £
Gikim,)= s
alkton) = 7

Lalp =410y,
gp(gp gd_ 7’(‘)

with y= 4rf,d(s§+s§). Hence the self-consistency con-
dition reads, in this case,

, gp gpgd
Giliw,)= T 2, D(2‘pd 2),

Gy, p,(Koi0,) = (325)

(326)

where D is the Hilbert transform of the square lattice
density of states:

1

(327)

D(Z) I(Zﬁ)zz cosk . — cosk,
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These equations are easily extended to allow for symme-
try breaking (e.g., antiferromagnetic or superconduct-
ing), along the lines of Sec. V. They can also be extended
to include an oxygen-oxygen repulsion U pp - I this case,
one has to solve rwo impurity models, one associated
with copper sites and the other with oxygen sites. This is
because the copper and oxygen orbitals live on two dif-
ferent sublattices in the above Hamiltonian. For the
same reason, the dynamical (excitonic) effects of the
nearest-neighbor  copper-oxygen repulsion (Varma,
Schmitt-Rink and Abrahams, 1987) cannot be captured
in the single-site LISA description. These effects, which
are considered in more detail in the next section (Sec.
VIIL.D), can only be addressed in the LISA framework
for multiband models in which the various orbitals live
on the same lattice sites. For models such as (322), only
an extension of the LISA framework to self-consistent
clusters (Sec. IX) would be able to capture these effects.

Finally, let us mention that it is possible to coastruct a
model very similar to Eq. (322) which has a well-defined
(and nontrivial) d=x limit such that the LISA equations
become exact (Georges, Kotliar, and Krauth, 1993). The
precise geometry of the CuQ; layer is not suitable for
this purpose; moreover, the CuQ, lattice with one OXy-
gen halfway between each copper site reduces to an
atomic problem as d —o0 [cf. Valenti and Gros, 1993; see,
however, the recent suggestion of Schmalian e al. (1995)
for a different scaling of the hopping in this model]. Al-
ternatively, one may consider a simplified model, which
is not quite realistic for the cuprates, but has the advan-
tage of having a nontrivial d= limit. The model is sim-
ply a two-band CuO lattice involving a correlated “cop-
per” orbital d, living on the A sublattice of a bipartite
lattice, and an “oxygen” orbital living on the B sublat-
tice. The copper-copper hopping is scaled as Lo vz, and
the direct hopping is scaled as t,,/2. In the limit z -,
this model can be solved by considering a single-
impurity Anderson model on copper sites (when only
U, is included), and the self-consistency condition reads
(on the Bethe lattice)

. . 2 .
Fo wgy=iw,+ pu— €4~ G p(iw,),

Gp(m,,)-1=iw,,+u—ep-zgdcd(m,,)—:;pcp(mn).

(328)
Some aspects of this model have been studied by
Georges, Kotliar, and Krauth (1993} and Caffarel and
Krauth (1994). It displays a metal to charge-transfer in-
sulator transition as a function of (e, — €)1y, for large
U, at half-filling, and a Mott insulator to meta! transi-
tion as a function of U,/t,, for large (e,—€4)/t,,. The
crossover diagram is very similar to the analysis of
Zaanen, Sawatzky, and Allen (1985). Finally, a super-
conducting instability has been suggested to exist in this
model for some range of parameters.

D. The extended Hubbard model and excitonic effects

In this section, we shall review some insights provided
by the LISA approach into the physics of excitonic ef-
fects, that is, the dynamical effects due to the interband
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Coulomb interaction. There has recently been a re-
newed theoretical interest in these effects, with the fol-
lowing motivations.

(i) There is new experimental evidence in favor of
Bose condensation of excitons (Lin and Wolfe, 1993;
Fortin, Fafard, and Mysyrowicz, 1993) and new experi-
mental tools for studying these effects in strongly illumi-
nated semiconductors. There is a strong need for an ap-
proach that can describe simultaneously collective and
single particle excitations, and the coherent and incoher-
ent parts of the excitation spectra going beyond the
Hartree-Fock approximation (Compte and Nozieres,
1982),

(i1} Interband Coulomb interactions may lead to mn-
portant physical effects in the context of the LISA de-
scription of real materials using multiband models re-
viewed in the previous section (Sec. VIIL.C). For cuprate
superconductors for example, the copper-oxygen repul-
sion has been proposed as playing a crucial role by
Varma, Schmitt-Rink, and Abrahams (1987; see also
Varma and Giamarchi, 1994, for a review). In the limit
of large connectivity z, intersite Coulomb interactions
must be scaled as 1/z, and thus produce only Hartree
renormalizations of the band. Hence, excitonic effects
must be studied in models where the various orbitals live
on the same sublattice sites, as done in the present sec-
tion. '

(iii} It has been shown by Si and Kotliar (1993) that
the Anderson impurity model, in the weak coupling
limit can lead to different type of phases when the posi-
tion of the impurity level is tuned to the Fermi level. In
the lattice (Si, Kotliar, and Georges 1992), this tuning of
the impurity level to the Fermi level occurs in a finite
range of densities when the hybridization renormalizes
to zero as in the Falicov-Kimball model (Sec. VIILB).
From this perspective, the interband interaction is a pa-
rameter that allows us to vary independently the rel-
evant variables of the local impurity model.

Si and Kotliar (1993) considered a model in which
localized (“copper”) orbitals d, and itinerant (“oxy-
gen”) orbitals p, live on the same lattice sites. The mo-
tivation is to retain the dynamical effects of the copper-
oxygen repulsion and a nontrivial off-diagonal self-
energy 3,,. The Hamiltonian of the model is in the
same general class as Eq. (315) and reads

N N
H=§k: ;:11 (er#)pfapxﬁg 2‘1 (eg—pu)did,,

U N
3 2 ; d5digd;, ;g
N
+20 3 Hdhpi,+He)
i o=1
v N
+ "ﬁl' 2 > pi‘:rpiod;,'dicr’
oo’ =1
v w
tN 2 D Pipidids,. (329)
! oga'=1
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model. Accordingly, a detailed study of the d=c limit
does not provide only a mean-field description of the
problem, but also determines the form of the leading
corrections resulting from fluctuations. Corrections to
physical quantities at the one-loop level have, however,
not been calculated to date. The transverse fluctuations
in these theories are the soft modes identified by
Finkhelstein (1987) in his pioneering work on the inter-
play of localization and interactions. A detailed study of
the effects of fluctuations still remains to be carried out.
The methods of Sec. VI.C may prove to be very useful
for the evaluation of the coefficients of the effective La-
grangian.

In the derivation presented in this section, the ran-
domness on the hopping matrix elements greatly facili-
tated the formulation of a path-integral approach. Nev-
ertheless it seems to us that it only played the role of a
technical trick, and in fact one should be able to formu-
late a simiiar loop expansion for the nonrandom models.
This is clearly an important problem for further re-
search. ' '

X. CONCLUSION '

This rather long article can only end with a brief con-
clusion. The main message that we have tried to convey
is that the local impurity self-consistent approximation
(LISA) provides a powerful framework for the quanti-
tative description of strongly correlated fermion sys-
tems. This approximation becomes exact in the limit of
infinite dimensions/infinite lattice coordination, but can
be viewed more generally as a dynamical mean-field
theory for these systems. As reviewed in this article, this
approach has led to significant progress on several prob-
lems in the physics of strongly correlated fermions.
Some favorable comparisons of the LISA results to ex-
perimental findings on various materials have already
been made.

In the hope of stimulating further work in this area,
we have tried to emphasize in this article the physical
content of the LISA method, and to review in detail the
derivation of the dynamical mean-field equations, and
the various analytical techniques and numerical algo-
rithms available to solve them. It seems to us that there
are at least three general directions in which further re-
search is needed and progress is possible:

(i) Improvements in the efficiency and flexibility of
the algorithms for the solution of the LISA dynamical
mean-field equations would be technically very heipful
{cf. Sec. VI).

(i1) In an attempt to push further the comparison with
experiments (particularly on transition metal oxides), an
effort could be made to include more realistic features
of the actual materials (such as band structure aspects
and orbital degeneracy) within the LISA method. It may
even be possible to incorporate ideas from the LISA
method into electronic structure calculations of real ma-
terials (cf. Sec. VIIL.C),

(iii) The LISA method is a mean-field approximation
in the sense that it freezes spatial fluctuations. It is
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clearly an outstanding theoretical problem in the feld to
go beyond the LISA, and treat these fluctuations in a
consistent manner (both from the point of view of short-
range correlations and of long wavelength collective
modes, cf. Sec. IX).

In our view, the field of strongly correlated electron
systems is ripe for new progress, and we expect the
LISA method to play a major role in the quantitative
description of these fascinating materials.
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APPENDIX A: FERMIOLOGY IN d'=

In this appendix, we collect various useful results on
the fermiology of tight-binding electrons on infinite-
dimensional lattices. A large part of this section follows
the paper of Miiller-Hartmann (1989a).

1. Density of states of some d=w= latlices

We start with the simplest case of free electrons on a
d-dimensional cubic lattice with nearest-neighbor hop-
ping. The lattice spacing a is set to a=1. The hopping is
normalized to

t
== (A1)

i m
so that the Fourier transform of the kinetic energy per
spin reads

2t &

€= — —-\E_-d- 2:1 cosk; . (A2)
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FIG. 8. Bethe lattice (depicted here with connectivity z=3).

with nearest-neighbor hopping ¢;=¢/ Vz, for arbitrary
connectivity z. We concentrate on site ¢ and perform
the Gaussian integration over all other sites (Fig. 86).
Setting {=iw,+u, this yields

Goold)= 4—; E G'=1-1GY. (A39)
In this equation : denotes a neighbor of 0 and G {¢) is
the Green’s function of site i once o has been removed.
Translation invariance has been used, all sites i being
identical. For finite connectmty however, G !¢’ does not
coincide with G, even in the limit of an infinite lattice.
This is because the local topology has been changed
when removing site o: each neighbor i now has only z-1
ncarest neighbors. For large connectivity, this is of
course a 1/z effect, and G {?) can be identified to G,
the equation above, yielding a closed formula. Even for
finite connectivity however, the elimination process can
be taken one step further, performing the Gaussian in-
tegration over the z-1 neighbors of each site ;. This
yields

(G 1=¢~ (zﬁl) - G(‘”’. (A40)
In this equation, G}j" ) denotes the Green’s function of a
neighbor j of i, in the truncated tree where both sites o
and [ have been removed. For an infinite lattice, j is
entirely similar to {, so that G (")—G (" 9. This yields a
closed equation for this quantity:

z-1

Z[G(")]‘— G +1=0, (A41)
from which the local Green’s function G=G,, [which is
also the Hilbert transform D () of the density of states}

is finally obtained as [for Im(¢)>0]

(z—2){— 2V —4(z— 1)z

2(zt* = %)

G=D({)= (A42)
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The density of states D (€)=~ImG(e+i0" )/ thus reads

VE=4(z- 1)z
2u(rf—€lz)
(One can check that the familiar d=1 expression can be

recovered for z=2.) Taking the z — limit yields the ex-
pressions often used in this article:

i— x}{z— I €“—4t

G= D(g‘,’)*—z—tz— D(e)=W. (A44)

D(e)= (A43)

It may also be useful to quote the expression of the

reciprocal function R(G) of the Hilbert transform D ({),
i.e., such that R(D(¢))=¢. For arbitrary connectivity, it is
the solution of the quadratic equation:

4 (z~1)(z—2) R

—1yR2
(z-1)R G
~(z-1 24 1) =0
(z-1)? —1[ 2] =0 (A45)
For z—w, one recovers (Sec. II)
1
R(G)=t2G+E. (A46)

APPENDIX B: DETAILS OF THE MONTE CARLO
ALGORITHM

In this Appendix, we first sketch the derivation of
some of the formulas in Sec. VI.A.1, and show the
equivalence of the Hirsch-Fye approach with the
Blanckenbeckler, Scalapino, and Sugar algorithm. We
also provide some guidance for the QMC programs pro-
vided with this article. Finally, details are given on the
numerical implementation of the self-consistency condi-
tion.

1. Some derivations

Equation (139) for the discretized partition function
can be established by making use of the following iden-
tity:

Zch

+
r o+ C,{e“zfi‘i Ajftip~ iCie ~Zjic; C c}
[

=det[1+e 42 e~ C], (B1)

and of its generalization to more than three matrices.
Equation (B1) is easily derived using the rules of Gauss-
ian integration for Grassmann variables, and a very in-
structive elementary derivation can be found in (Hirsch,
1985). The equivalence of det &, ....s; With the Blanck-
enbeckler, Scalapino, and Sugar formula Eq. (139) can
then be shown by Gaussian elimination (replacing suc-
cessively the first row of # by multiples of rows

L,L-1,..1, {Aier, . 1—=1@ =B By By iy
XEp _g+rili=1,...L for k=0,1,...,L—1).
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The identity g;” =g !

..... sy

is easily established in a similar way. It is quite useful to consider the simple

example of a 3%X3 matrix (of matrices B;), for which we explicitly write down the inverse.

1 0 B,
@: _Bl 1 0 ’
0 -8B, 1

{1+B;B,B,}”!
B{1+B3B,B;}"!
BzBl{l +B3B231}—1

&= {1+B,B;3B,}7!

The reader will easily be able to verify Eq. (B3) and to
generalize it for arbitrary L. Manifestly, Eq. (B3) repro-
duces Eq. (140).

To derive the Dyson equation it is useful to consider
the matrix & exp{-V) with the Ln X Ln, matrix

e_V(sl) . . 0
eLvuﬁ

(B4)
0 . . e Visg)

@exp(-V) is therefore a matrix which depends on
(sy,...,5;) only in the space- and time-diagonal ele-
ments

Y Y P 4 _ -V
@'1"""‘Lesl"""‘.£_é?yr s re z'—e-‘].---. €y b L'
(BS)

Abbreviating g = 85y, andg’ = 8s) .5} C1C. and us-

ing @=g7}, it is very easy to see that Eq. (B5) leads
to exp(V'—V)g'~g=glexp(V'-V)-1]g’, which is
equivalent to Eq. (125).

2. Numerical implementation of the GMC
and Gray code enumeration

As described in the main body of the paper, the
Monte Carlo procedure consists of two independent
parts (single impurity problem, self-consistency). This
structure is mirrored in the setup of our numerical pro-
gram, which consists of two parts: LISAOMCF and
LISASELFF. The programs communicate with each other
via files that contain the current values of G(;) and
Fo(m).

In the program LISAQMCEF, the different parts of the
algorithm are distributed over a few subroutines, in a
way explained in the following table:

function purpose Equation
DETRAT calculate determinant ratio Eq. (131)
INITIAL  initialize (F57(D—&p! o(n7))  —

RECORD  perform fast update Eg. (130)
UPDATE compute Gf:r-----ﬁ from 57 Eq. (128)
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—B3By{1+B;B3B,}"!

B,{1+B,B;B;}"!

(B2)

—B4{1+B,B,B;}!
~BB3{1+B,B,B;)"!
{1+ B3B,B;}"!

(B3)

Besides the Monte Carlo update, the program
LISAQMCF also allows one to compute physical Green’s
functions by complete enumeration using the Gray code.
In this method, all possible confignrations of Ising spins
are visited in an order in which every configuration of
spins (sy,...,5;) differs from the following one
(s1,...,5¢) in a single index only (s; = 5/, except for a
single value of i). More precisely, the configurations are
enumerated by flipping the spin s; with the largest pos-
sible value of {, provided that this flip does not yield a
previously visited configuration. As an example, let us
give the first steps of a Gray code enumeration for I.=5:

"+ + + + +7 P+ o+ o+ o+ 4T
+ + + + - + + + + -
ot + — - + + + - +
+ + + - + + + + - -
+ + - — + + + - + +
+ + - - - + 4+ - + - (B6)
+ + - + - + + - - +
+ + - + + + + - - -
Gray code standard |

“This algorithm can be simply programmed {cf. Press

et al., 1991). By doing this, we can again compute the
’ - AT AT
Green’s function Gﬁ i) sy from G;' ;.5 bythe

fast update RECORD fin O(L?) steps], rather than hav-

- ing to compute it from F57 in O(L?) steps (using

UPDATE). Naturally, the averages must now be com-
puted by including the determinant in the statistical
weight. Furthermore, the normalization needs also be
calculated. Further details can be found in the program
LISAQMCLPF.

Both the Monte Carlo and the exact enumeration in-
clude checks to avoid loss of precision. In the Monte
Carlo algorithm, this is done from time to time by con-
fronting the result of subroutine UPDATE with the single
spin-flip updates. In the exact enumeration calculation,
the precision can be evaluated simply by restarting the
Gray code with an initial spin configuration (s,...,5,)
different from (1,...,1).

Finally, we briefly discuss the discretization error in A7
which is introduced by the Trotter breakup. Let us first
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note the remarkable fact that besides this error—i.e., the
passage from Z [Eq. (116)] to Z2" [Eq. {120)]—ro other
systematic error is introduced. Due to the cyclic nature
of the fermion trace

Tr exp( ~ 7% )exp( — 7.#;)
=Tr exp( — 7.#y/2)exp( — 7.# Jexp( — .#%y/2), (B7)

Eq. (120) can be obtained from Eq. (116} using the
third-order approximation in Ar;
e—Af(.i‘0+_¥1)=e—Arj¥0Qe—Arﬂle—Afﬁf0f2+ O(A 73)’
(B8)

which results in an O(A#) discretization error for
Z47"=Z+ 0(A7*). An important point is that in order to
keep the systematic errors introduced by the Trotter
breakup under control, one should not use a value of the
argument that is too large for the exponential in Eq.
(119). As a working rule one may use A 7U/2<1, but this
depends of course on the quantity considered.

Regarding the Green’s function, it has been estab-
lished that the error committed when solving the Ander-
son impurity model with the Hirsch-Fye algorithm is
also of order A7 (Fye, 1986). In the LISA context (i.e.,
with the additional complication of the self-consistency
condition), this observation still appears to hold empiri-
cally (see, e.g., the inset of Fig, 14).

3. Numerical implementation
of the self-consistency condition

As indicated in the main text, the Fourier transform
of the discretized G37(7) is not calculated by a straight-
forward fast Fourier transform. Rather, it is an interpo-
lation of G(7) which is Fourier transformed. In the pro-
gram FOURIER, a (natural) spline interpolation

Ginlcrpo]( T) =a;+ ﬁ!( T— 1-!.) + ')"i( T Ti)2+ 5,~( T~ Ti)3:
7 <7<T41, (BY)

is computed. The coefficients «;,8;,7;,8; are analyti-
cally calculated from the G®7(«,) such that G™*"Po)(7) is
a twice continuously differentiable function (cf.
Stoer and Bulirsch, 1980). From G™*™%(7) it is a
simple matter to calculate the piecewise integral
JEd TGN (1) exp(irw,), which yields G(iw,). Ex-
plicit formulas can be found in the subroutine FOURIER.

APPENDIX C: DETAILS OF THE EXACT
DIAGONALIZATION ALGORITHM

In this appendix, we assembic a few details on the
exact diagonalization algorithms and make contact with
the programs LISADIAGF and LISALANCF. Both pro-
grams split up into three main parts, of which the first
and the third are identical.

(i) The construction of 5% (or of the nonzero elements
of the matrix) is achieved by the subroutine BUILDBASIS,
which constructs the vectors |i) defined in Eq. (143), for
each of the sectors (n',7!) at a time. After construction
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of the Hilbert space, the Hamiltonian is built with the
subroutines ADAG and A, which allow the computing of
the vectors a ;'1i) and a}i). In the exact diagonalization
program, the matrix # is then diagonalized exactly
(subroutine DIAG), using the QL algorithm (Stoer and
Bulirsch, 1980). For reasons of simplicity, the eigenvec-
tors (which are later needed for the calculation of
Green’s functions) are then dumped onto file storage.

In the Lanczos procedure, the ground-state eigenval-
ues for all sectors are calculated by diagonalizing .# in
an (approximately) invariant subspace spanned by vec-
tors #"|py), n=0,...,n; . The power of the Lanczos al-
gorithm stems from the fact that usually a small number
of vectors (n,~100, largely independent of the dimen-
sion of %) allows an extremely precise computation of
the ground-state eigenvalue and eigenvector—cf. Lin
and Gubemnatis (1993) for a practical introduction to the
Lanczos method, and Golub and Van Loan (1983) for a
thorough discussion. The diagonalization of %, re-
stricted to the indicated subspace, is again performed
using the QL algorithm. This first Lanczos procedure is
coded in the subroutine FINDGROUNDSTATEL. A simple
iterative scheme (vector iteration) then verifies (in the
routine FINDGROUNDSTATE), that the ground state has
indeed been found to machine precision.

(i) The calculation of the Green’s function is done in
a straightforward manner in the case of the exact diago-
nalization algorithm: to calculate (i|d*|j), the corre-
sponding vectors are fetched from disk storage and
computed. In. the case of the Lanczos procedure,
the vector 4*[gs.) is initially formed, where |g.s.) is
the overall ground state of the Hamiltonian (the lowest
of the sector-wise ground states computed being
FINDGROUNDSTATE1). The procedure has to be general-
ized in the case of a ground-state degeneracy (several
sectors with the same ground-state eigenvalue). The
Green’s function can then be calculated from a second
Lanczos procedure, with initial vector |pg)=d*|gs) (cf.
Haydock et al., 1975). It is straightforward to determine
the parameters of the continuous fractions Eq. (146):

(pilpi

al={pf|H|pf), bf=—ter—, C1

F=(p7|HIp{) T (C1)
where a=),( and [p7)=d'gs.), |p5)=d|gs.) and

lpfs ) =Hlpf) - aflp?) - bFIfFs) (€2)

and bg=0. The construction of the [p ) is done in the
subroutine LANCZOS. The evaluation of the continued
fractions is programmed in the subroutine
COMPUTEGREEN. Again, care has to be taken in the case
of a degenerate ground state.

(iii) After computing the Green’s function, we are
able to iterate once through the self-consistency loop.
The projection of the “new” bath Greens function
?ow?jol‘ can be easily assembled from a routine,
CALCGO, which evaluates .‘?’0’ for a given set of param-
eters V,é, another one, ENERGY, which calculates the
mismatch between ¥7° and %, and a minimization rou-
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— FIG. 87. Effective bath Green’s functions %
and ¥’ at self-consistency for the half-filled
. - Hubbard model at U=3D W2, BDW2=200 for
n,=4,....8. Curves labeled n,=4,...,6 are for
the exact diagonalization algorithm at finite
temperature 8. The curves at n1,=7 and 8 were

: obtained by the Lanczos algorithm, in which
8 B only serves as a discretization parameter
- defining the grid of imaginary frequencies.
The inset shows the maximum difference be-
tween ¥, and ¥,* as a function of n, (note

the semilogarithmic scale).
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tine, (conjugate-gradient routine MINIMIZE), which de-
termines the optimal function ¥7°.

In Fig. 87, we give an example of the comparison be-
tween ¥'(iw) and Fy(iw), again for the half-filled
Hubbard model at U/t=3 for n,=3,...8 and at
BD \[2’—=200. Naturally, the agreement between the two
quantities is the least acceptable at small frequencies,
closest to the real axis. However, at larger frequencies,
¥,¢ and % agree for all intents and purposes. For ex-
aangle, at @=0.1, the two solutions differ by less than
107,

and there is virtually no detectable dependence on

n; . The precision obtained is thus quite spectacular. The
mismatch between ¥, and |* decreases nicely by a
constant factor as n; is incremented by one, as shown in
the inset of the figure. This scaling of the “discretiza-
tion” error with the number of sites is an empirical fact,
but a highly plausible one: In increasing the number of
sites, the Hilbert space of the Hamiltonian increases ex-
ponentially, and there is a much larger number of basis
vectors, of which the function ?0’ can be constructed.
This scaling would not be observed if the positions of
the conduction electrons were taken fixed.

It is very interesting to compare the full diagonaliza-
tion algorithm with the Lanczos procedure, and the in-
teresting reader is invited to perform such a comparison.
The full diagonalization program contains an option
which allows computing zero-temperature Green’s func-
tions (and other response functions), which (should)
agree to machine precision with the ones of the Lanczos
algorithm. The zero-temperature Green’s functions, and
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other response functions may however appreciably dif-
fer from the (self-consistent) results at very small finite
temperatures. This is as it should be, and translates the
importance of low-temperature scales, for example, in
the vicinity of the Mott transition. Notice that most of
the low-temperature variability is brought in through the
self-consistency condition: at a given ¥.°, the calculated
Green’s functions almost coincide, but are driven apart
under repeated iterations. As was mentioned in several
places throughout the article, the impurity model is usu-
ally uncritical, and the critical effects are brought in by
the lattice, i.e., by the self-consistency condition.

APPENDIX D: ACCESS TO FORTRAN PROGRAMS

The programs described in this section may be ob-
tained by ANONYMOUS FTP, or in the WWW.

To access the programs by ftp, you should log on to
ftp.Ips.ens.fr. Register as “anonymous,” and give your
complete electronic address as the password. You should
first retrieve a file called HOW-TO-GET-SOFTWARE,
which will inform you about the availability of codes.
This file also points you to the necessary auxiliary files
and provides further information. Suppose your user-
name is username@usernode.univ.edu. To retrieve the
above file (and any other), you should proceed as fol-
lows:

:
%
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ftp fiplps.ens.fr

Username: anonymous

Password: username®@usernode.univ.edu
cd pub/users/lisa

get HOW-TO-GET-SOFTWARE
The WWW access is via http://'www.lps.ens.fr/~krauth
A short synopsis of the available programs is given in
the following table:

Is
Program Purpose Section
QMCEXAMPLEF small example by Blanckenbecler, Scalapino, and VIA.le
&1, Hirsch-Fye algorithm
LISAQMC.F Hirsch-Fye algorithm VI9A.lc
LISASELEF Fourier transforms 7—i w, self-consistency VIA.ld
LISADIAG.F exact diagonalization, finite temperature VILA2 C
LISALANC.F Lanczos algorithm (zero temperature) VLA2 C
LISAIPTO.F iterated perturbation theory approximation (zero tem- VIB.2
perature)
LISAIPTF iterated perturbation theory approximation (finite VIB.2
temperature)
[
REFERENCES Brandt, U, and M. P. Urbanek, 1992, Z. Phys. 89, 297,
Brinkman, W. F, and T. M. Rice, 1970, Phys. Rev. B 2, 4302.
[Preprint  numbers refer to the archives cond- Bucher, B., Z. Schlesinger, P. C. Canfield, and Z. Fisk, 1994,
mat@babbage sissa.it] Fhys. Rev. Lett. 72, 522.

Abramowitz, M., and L. A, Stegun, 1972, Handbook of Math-
ematical Functions (Dover, New York).

Abrikosov, A. A., L. P. Gorkov, and L E. Dzialoshinski, 1965,
Methods of Quantum Field Theory in Statistical Physics (Per-
gamon, Elmsford, New York).

Affleck, I, and A. W. W, Ludwig, 1991, Nuci. Phys. B 352, 849;
360, 641.

Anders, F. B., 1995, Preprint No. cond-mat/9502020 (unpub-
lished).

Anderson, P. W,, 1961, Phys. Rev. 124 41.

Anderson, P W, 1970, 1. Phys. C 3, 2439,

Anderson, P. W,, G. Yuval, and D. R. Hamann, 1970, Phys.
Rev. B 1, 4464,

Andrei, N., K. Furuya, and J. H. Lowenstein, 1983, Rev. Mod.
Phys. 85, 331,

Anisimov, V. I, J. Zaanen, and O. K. Andersen, 1991, Phys.
Rev. B 44, 943.

Appelbaum, J. A., and D. R. Penn, 1969, Phys. Rev. 188, 874.

Balatsky, A. V., and E. Abrahams, 1992, Phys. Rev. B 45,
13125,

Bang, Y., C. Castellani, M. Grilli, G. Kotliar, R. Raimondi, and
Z. Wang, 1992, Int. J. Mod. Phys. 6, 531.

Beni, G., P. Pincus, and J. Kanamori, 1974, Phys. Rev. B 10,
1896.

Berezinskii, V. L., 1974, JETP Lett. 20, 287.

Bhatt, R. N, and D. S. Fisher, 1992, Phys. Rev. Lett. 68, 3072.

Bickers, N. E., 1987, Rev. Mod. Phys. 59, 845.

Blankenbecler, R., D. J. Scalapino, and R. L. Sugar, 1981, Phys,
Rev D 24, 2278,

Brandt, U, and C. Mielsch, 1989, Z. Phys. 75, 365,

Brandt, U., and C. Mielsch, 1990, Z. Phys. 79, 295.

Brandt, U, and C. Mielsch, 1991, Z. Phys. 82, 37.

Brandt, U,, and R. Schmidt, 1986, Z. Phys. 63, 45.

Brandt, U., and R. Schmidt, 1987, Z. Phys. 67, 43.

Rev. Mod. Phys., Vol. 68, No. 1, January 1996

Burley, D. M., 1972, in Phase Transitions and Critical Phenom-
ena, edited by C. Domb and M. Green {Academic, New
York), Vol. II, -

Caffarel, M., and W. Krauth, 1994, Phys. Rev. Lett. 72, 1545,
and unpublished.

Cardy, J. L., 1981, J. Phys. A 14, 1407. ]

Carter, S. A, T E Rosenbaum, J. M. Honig, and J. Spalek,
1992, Phys. Rev. Lett. 67, 3440. .

Carter, §. A, T. F. Rosenbaum, P Metcalf, J. M. Honig, and J.
Spalek, 1993, Phys. Rev. B 48, 16841.

Castellani, C., C. DiCastro, D. Feinberg, and J. Ranninger,
1979, Phys. Rev. Lett. 43, 1957,

Castellant, C., M. Grilli, and G. Kotliar, 1991, Phys. Rev. B 43,
8000.

Castellani, C., G. Kotliar, R. Raimondi, M. Grilli, Z. Wang,
and M. Rozenberg, 1992, Phys. Rev. Lett. 69, 2009.

Castellani, C., C. R. Natoli, and J. Ranninger, 1978, Phys. Rev.
B 18, 4945,

Cava, R. ], B. Batlogg, J. J. Krajewski, R. Farrow, L. W. Rupp,
A. E. White, K. Short, W. E Peck, and T. Kometani, 1988,
Nature 332, 814.

Chakravarty, S., and J. Hirsch, 1982, Phys. Rev. B 25, 3273.

Chen, 1994, Phys. Rev. Lett. 73, 1982.

Ciuchi, 8., F. de Pasquale, and D. Feinberg, 1995, Europhys.
Lett. 30, 151. )

Ciuchi, S., F. de Pasquale, C. Masciovecchio, and D. Feinberg,
1993, Europhys. Lett. 24, 575.

Clarke D. G., T. Giamarchi, and B. Shraiman, 1993, Phys. Rev.
B 48, 7070.

Coleman, P, 1987, Phys. Rev. B 35, 5072.

Compte, C., and P. Nozieres, 1982, J. Phys. (Paris) 43, 1069.

Costi, T. A. and A. C. Hewson, 1990, Physica B 163, 179.

Cox, D. L., 1994, Physica B (to be published).




122 A. Georges et al. Dynamical mean-field theory of ...

Cox, D. L., and A. E. Ruckenstein, 1993, Phys. Rev. Lett. 71,
1613.

Cyrot, M., 1972, J. Phys. (Paris) 33, 125.

Cyrot, M., and C. Lyon-Caen, 1975, J. Phys. (Paris) 36, 253.

Dagotto, E., 1994, Rev. Mod. Phys. 66, 763.

de Dominicis, C., [. Kondor, and T. Temesvari, 1991, J. Phys. A
24, 1.301.

Dobrosavljevi¢, V., T. R. Kirkpatrick, and G. Kotliar, 1992,
Phys. Rev. Lett. 69, 1113.

Dobrosavljevié, V., and G. Kotliar, 1993, Phys. Rev. Lett. 71,
3218.

Dobrosavljevic, V., and G. Kotliar, 1994, Phys. Rev. B 50, 1430,
and Acta Physica Polonica 85, 21.

Doniach, S., 1977, Physica B 91, 231.

Dworin, L., and A. Narath, 1970, Phys. Rev. Lett. 25, 1287.

Economou, E. N., 1983, Green’s Functions in Quantum Physics
(Springer-Verlag, Berlin).

Edwards, D. M., 1993, J, Phys. Cond. Mat. 5, 161,

Elliott, R. 1., J. A. Krumhansl, and P. L. Leath, 1974, Rev.
Mod. Phys. 46, 465.

Emery, V., 1987, Phys. Rev. Lett. 58, 2794

Emery, V., and S. Kivelson, 1992, Phys. Rev. B 46, 10812.

Emery, V, and S. Kivelson, 1993a, Physica C 209, 597.

Emery, V., and S. Kivelson, 1993b, in Strongly Correlated Elec-
tronic Materials, edited by K. Bedell, Z. Wang, A. Balatzky
and E. Abrahams (Addison-Wesley, Reading, MA).

Emery V., and S. Kivelson, 1995, unpublished.

Emery, V., S. Kivelson, and Q. Lin, 1950, Phys. Rev. Lett. 64,
475.

Falicov, L. M., and J. C. Kimball, 1969, Phys. Rev. Lett. 22, 997.

Fetter, A. L., and J. D. Walecka, 1971, Quantum Theory of
Many-Particle Systems (McGraw-Hill, New York).

Finkelshtein, A. M., 1987, Sov. Phys. JETP 46, 407.

Fisher, D. §., GG. Kotliar, and G. Moeller, 1995, Phys. Rev. B 52,
17112

Fortin E., $. Fafard, and A. Mysyrowicz, 1993, Phys. Rev. Lett
70, 3951.

Freericks, J. K., 1993a, Phys. Rev. B 47, 9263.

Freericks, J. K., 1993b, Phys. Rev. B 48, 14797.

Freericks, J. K., 1993c, Phys. Rev. B 48, 3881.

Freericks, J. K., 1994, Phys. Rev. B 50, 403.

Freericks, J. K., and M. Jarrell, 1994a, Phys. Rev. B 50, 6939.

Freericks, J. K., and M. Jarrell, 1994b, in Computer Simula-
tions in Condensed Matter Physics, edited by D. P. Landau, K.
K. Mon, and H.-B. Schiittler (Springer, Berlin).

Freericks, J. K., and M. Jarrell, 1995a, Phys. Rev. Lett. 74, 186.

Freericks, J. K., and M. Jarrell, 1995b, Phys. Rev. Lett. 75,
2570.

Freericks, J. K., M. Jarrell, and D. J. Scalapino, 1993, Phys.
Rev. B 48, 6302.

Freericks, J. K., M. Jarrell, and D. J. Scalapino, 1994, Euro-
phys. Lett. 25, 37.

Freericks, J. K., and D. J. Scalapino, 1994, Phys. Rev. B 49,
6368.

Fresard, R., and P. Wolfle, 1992, Int. J. Mod. Phys. B 6, 685; 6,
3087(E).

Frota, H. O., and L. N. Oliveira, 1986, Phys. Rev. B 33, 7871.

Fu, C., and 8. Doniach, 1994, Phys. Rev. B 49, 2219.

Fu, C., and S. Doniach, 1995, Phys. Rev. B 51, 17 439.

Fujimori, A., I. Hase, H. Namatame, Y. Fujishima, Y. Tokura,
H. Eisaki, S. Uchida, K. Takegahara, and F. M. E de Groot,
1992, Phys. Rev. Lett. 69, 1796.

Rev. Mod. Phys., Vol. 68, No. 1, January 1996

Fujimori, A., F. Minami, and S. Sugano, 1984, Phys. Rev. B 29,
5225.

Fujimori, A, et al, 1992, Phys. Rev. B 46, 9841.

Furukawa, N., 1994, J. Phys. Soc. Jpn. 63, 3214.

Furukawa, N., 1995, unpublished.

Furukawa, N., 19952, J. Phys. Soc. Jpn. 64, 2754.

Furukawa, N., 1995b, in Proceedings of the 17th Taniguchi In-
ternational Conference, edited by (Springer Verlag, Berlin}.

Furukawa, N., 1995¢c, I. Phys. Soc. Jpn. 64, 2734,

Furukawa, N., 1995d, J. Phys. Soc. Jpn. 64, 3164.

Furukawa, N. and M. Imada, 1993, Physica B 186-188, 931.

Fye, R. M., 1986, Phys. Rev. B 33, 6271

Gagliano, E. R., E. Dagotto, A, Mereo, and F. C. Alcaraz,
1986, Phys. Rev. B 34, 1677.

Georges, A., and G. Kotliar, 1992, Phys. Rev. B 45, 6479.

Georges, A., G. Kotliar, and W. Krauth, 1993, Z. Phys. B 92,
313.

Georges, A., G. Kotliar, and Q. 8i, 1992, Int. J. Mod. Phys. B 6,
705.

Georges, A., and W. Krauth, 1992, Phys. Rev. Lett. 69, 1240.

Georges, A., and W. Krauth, 1993, Phys. Rev. B 48, 7167,

Georges, A. and A. Sengupta, 1995, Phys. Rev. Lett. 74, 2808.

Georges, A., and J. §. Yedidia, 1991, Phys. Rev. B 43, 3475.

Golub, G. H., and C. F. Van Loan, 1983, Matrix Computations
(Baitimore University Press, Baltimore, MD).

Goodencugh, J. B., 1968, Phys. Rev. 171, 466.

Grilli, M., and G. Kotliar, 1990, Phys. Rev. Lett. 64, 1170.

Gros, C., 1994, Phys. Rev. B 50, 7295.

Gros, C., W. Wenzel, R. Valenti, G. Hiilsenbeck, and J. Stolze,
1994, Europhys. Lett. 27, 299.

Gubernatis, J. E,, M. Jarrell, R. N. Silver, D. 8. Sivia, 1991,
Phys. Re\l.;. B 44, 6011.

Gubernatis, J. E., T. C. Olson, D. J. Scalapino, and R. L. Sugar,
1986, J. Stat. Phys. 43, 831.

Gunnarson, O., and K. Schonhammer, 1983a, Phys. Rev. Lett.
50, 604.

Gunnarson, O., and K. Schénhammer, 1983b, Phys. Rev. B 28,
4315.

Gutzwiller, M. C., 1965, Phys. Rev. 137, A1726.

Haldane, F. D, M., 1978a, Phys. Rev. Lett. 40, 416 (Ph.D thesis,
Univ. of Cambridge).

Haldane, F. D. M., 1978b, J Phys. C 11, 5015.

Halvorsen, E., G. 8. Uhrig, and G. Czycholl, 1994, Z.. Phys. B
94, 291.

Haydock, R., 1985, The Recursion Method and Its Applications
(Springer-Verlag, Heidelberg). '

Haydock, R., V. Heine, and M. I. Kelly, 1975, I. Phys. C 8,
2501.

Held, K., M. Ulmke, and D. Volhardt, 1993, Preprint No. cond-
mat/9505147.

Hewson, A. C., 1993, The Kondo Problem to Heavy Fermions,
Cambridge Studies in Magnetism Vol. 2 {Cambridge Univer-
sity Press, Cambridge, England).

Hirsch, J. E., 1983, Phys. Rev. B 28, 4059.

Hirsch, J. E., 1985, Phys. Rev. B 31, 4403,

Hirsch, J. E., 1988, Phys. Rev. B 38, 12 023,

Hirsch, J. E., and E. Fradkin, 1982, Phys. Rev. Lett. 49, 402

Hirsch, J. E., and E. Fradkin, 1983, Phys. Rev. B 27, 4302.

Hirsch, J. E., and R. M. Fye, 1986, Phys. Rev. Lett. 56, 2521.

Holstein, T., 1959, Ann. Phys. (N.Y.) 8, 325.

Hong, J., and H. Y. Kee, 1995a, Phys. Rev. B 52, 2415.

Hong, J., and H. Y. Kee, 1995b, Europhys. Lett. (to be pub-
lished).




A. Georges et ai: Dynamical mean-field theory of . .. 123

Hubbard, I., 1964, Proc. Roy. Soc. (London) A 281, 4(1.

Hubbard, J., 1979, Phys. Rev. B 19, 2626.

Hiifner, S., 1994, Adv, Phys. 43, 183.

Hilsenbeck, G., and F. Stephan, 1994, Z. Phys. B 94, 281.

Hwang, H Y., S. W. Cheong, P. G. Radaelli, M. Morezio, and
B. Batlogg, 1995, Phys. Rev. Lett. 75, 914,

Iga, F., T. Nishiguchi, N. Shirakawa, K. Murata, Y. Nishihara,
T. Ishii, Y. Uwatoko, and G. Gomi, 1995, Bull, Electrotechn.

Lab. 59, 459
Imada, M., 1994, 1. Phys. Soc. Jpn. 63, 3059.

Ingersent, K., B. A, Jones, and J. W. Wilkins, 1992, Phys. Rev.
Lett. 69, 2594,

Inoue, I. H, I Hase, Y. Aivra, A. Fujimori, Y. Haruyama, T,
Maruyama, and Y. Nishihara, 1995, Phys. Rev. Lett, 74, 2539,
and private communication.

Jaccarino, V. G., K. Wertheim, J. H. Wernick, L. R. Walker,
and 8. Arajs, 1967, Phys. Rev. 160, 476.

Janis, V,, 1986, Czech. I. Phys. B 36, 1107.

Janis, V., 1989, Phys. Rev. B 40, 11331,

Janis, V., 1991, 7., Phys. B 83, 227,

Jani$, V., 1993, J. Phys Cond. Matter 5, L425.

Janis, V,, 1994, Phys. Rev. B 49, 1612.

Janis, V., M. Ulmke, and D. Vollhardt, 1993, Europhys. Lett.
24, 287.

Janis, V, and D. Vollhardt, 1992a, Int. J. Mod. Phys. B 6, 731.

Janis, V., and D. Vollhardt, 1992h, Phys. Rev. B 46, 15712.

Jarrell, M., 1992, Phys. Rev. Lett. 69, 168.

Jarrell, M., 1995, Phys. Rev. B 51, 7429,

Jarrell, M., H. Akhlaghpour, and Th. Pruschke, 19933, Phys.
Rev. Lett. 70, 1670.

Jarrell, M., H. Akhlaghpour, and Th. Pruschke, 1993b, in
Quantum Monte Carlo Methods in Condensed Matter Physics,
edited by M. Suzuki (World Scientific, Singapore).

Jarrell, M., J. K. Freericks, and Th. Pruschke, 1995, Phys. Rev.

B 51, 11704.

Jarrell, M., and J. Gubernatis, 1996, Phys. Rep. (in press).

Jarreli, M., and T. Pruschke, 1993a, Z. Phys. B 90, 187.

Jarrell, M., and T. Pruschke, 1993b, Phys. Rev. B 49, 1458.

Jin, S, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R.
Ramesh, and L. H. Chen, 1994, Science 264, 413.

Jones, B., C. M. Varma, and J. W, Wilkins, 1988, Phys. Rev.
Lett. 61, 125,

Kajueter, H.,, and G. Kotliar, 1995, Preprint No. cond-mat/
9509152,

Kajueter, H., G. Kotliar, and G. Moeller, 1995, unpublished.

Kakehashi, Y., 1992, Phys. Rev. B 45, 7196.

Kanamori, J., 1959, 1. Phys. Chem. Solids 10, §7.

Kane, C. L., P A, Lee, and N. Read, 1989, Phys. Rev. B 39,
6880,

Kee, H. Y., and J. Hong, 1995, Preprint No. cond-mat/9508096.

Kennedy, T, and E. H. Lieb, 1986, Physica 138A, 320.

Khomskii, D., 1979, Sov. Phys. Usp. 22, §79.

Khurana, A., 1990, Phys. Rev. Lett. 64, 1990,

Kikuchi, R, 1951, Phys. Rev. 81, 988.

Kim, C. I, Y. Kuramoto, and T, Kasoya, 1990, J. Phys. Soc.
Jpn. 59, 2414

Kohn, W., 1964, Phys. Rev. 133, A171.

Kohno, H., and K. Yamada, 1988, Prog. Theor. Fiz. 80, 623.

Kopietz, P, 1994, J. Phys. Cond. Matter 6, 4885; Physica B
194-196, 271.

Kotliar, G., 1993a, in Correlated Electron Systems, edited by V.
J. Emery (World Scientific, Singapore).

Rev. Mod. Phys., Vol. 68, No. 1, January 1996

Kotliar, G., 1993b, in Strongly Correlated Electronic Materials.
edited by K. Bedell, Z. Wang, D. Meltzer, A. Balatzky, and E,
Abrahams (Adison-Wesley, Reading, MA).

Kotliar, G., 1994, in Strongly Interacting Fermions and High T,
Superconductivity, edited by B. Doucot and J. Zinn-Justin
(Elsevier Science, New York).

Kotliar, G., and J. Lin, 1988, Phys. Rev. Lett. 61, 1784.

Kotliar, G., and M. Rozenberg, 1995, in The Hubbard Model,
Proceedings of the Conference on the Mathematics and Phys-
ics of the Hubbard model (San Sebastian}, edited by D. Bare-
swyl, . Campbell, I. Carmelo, and F. Guinea {Plenum, New
York).

Kotliar, G., and A. Ruckenstein, 1986, Phys. Rev. Lett. 57,
1362.

Kotliar, GG., and Q. Si, 1993, Physica Scripta 49, 165.

Kotliar, G., and Q. Si, 1995, Preprint No. cond-mat/9508]112.

Krishnamurthy, H. R., J. W. Wilkins, and K. G. Wilson, 1980,
Phys. Rev. B 21, 1003, 1044.

Kugel, K., and D. Khomskii, 1973, Sov. Phys. JETP 37, 725.

Kugel, K., and D. Khomskii, 1982, Sov. Phys. Usp. 25, 231.

Kuramoto, Y., 1985, Springer Series in Sol. State, Science Vol.
62, pp. 152-162.

Kuramoto, Y. and T. Watanabe, 1987, Physica B 148, 80.

Kuwamoto, H,, J. M., Honig, and J. Appel, 1980, Phys. Rev. B
22, 2626.

Kutzelnigg, W., 1982, J. Chem. Phys. 77, 3081.

Kutzelnigg, W., and S. Koch, 1983, J. Chem. Phys. 79, 4315.

Laad, M., 1994, Phys. Rev. B 49, 2327,

Lacroix, C., 1981, J. Phys. F 11, 2389.

Laloux, L., 1995, private communication.

Laloux, L., A. Georges, and W. Krauth, 1994, Phys. Rev. B 50,
3092.

Langer, W., M. Plischke, and D. Mattis, 1969, Phys. Rev. Lett.
23, 1448.

Langreth, D., 1966, Phys. Rev. 150, 516.

Lelievre, F, G, Misguich, and A. Georges, 1995, unpublished.

Li, Y. M., and d’Ambrumenil, 1992, Mod. Phys. Lett. B 6, 1827.

Lieb, E. H., 1986, Physica 140A, 240.

Lin, J. L., and J. P. Wolfe, 1993, Phys. Rev. Leti. 71, 1222,

Lin, H. Q,, and J. E. Gubernatis 1993, Comput. Phys. 7, 400.

Luttinger, J. M., and J. C. Ward, 1960, Phys. Rev. 118, 1417.

Majumdar, P, and H. R. Krishnamurthy, 1994, Phys. Rev. Lett.
73, 1525.

Majumdar, P, and H. R. Krshnamurthy, 1995a, Phys. Rev. B
52, R5479.

Majumdar, P, and H. R. Krishnamurthy, 1995b, Preprint No.
cond-mat/9512151.

Maple, M. B., C. L. Seaman, D. A. Gajewski, Y. Dalichaouch,
V. B. Barbetta, M. C. de Andrade, H. A. Mook, H. G. Luke-
fahr, O. O. Bernal, and D. E. MacLaughlin, 1994, J. Low
Temp. Phys. 95, 225,

Matsuura, A., Z. X. Shen, D. S. Dessau, C. H. Park, T. Thio, J.
W. Bennett, and O. Jepsen, 1994, unpublished.

Mattheiss, L., F., 1994, J. Phys. Condens. Matter 6, 6477.

McWhan,D. B.,]. P Remeika, T. M. Rice, W. F, Brinkman, J.
P Maita, and A. Menth, 1971, Phys. Rev. Lett. 27, 941,

McWhan, D. B., A. Menth, J. P. Remeika, W. F, Brinkman, and
T. M. Rice, 1973, Phys. Rev. B 7, 1920.

Menge, B., and E. Miiller-Hartmann, 1991, Z. Phys. B 82, 237.

Metzner, W, 1989, Z. Phys. B 77, 253.

Metzner, W., 1991, Phys. Rev. B 43, 8549,

Metzner, W., and D. Vollhardt, 1989, Phys. Rev. Lett. 62, 324,




124 A. Georges ef al.: Dynamical mean-field theory of ...

Mezard, M., G. Parisi, and M. A. Virasoro, 1987, Spin Glass
Theory and Beyond {World Scientific, Singapore).

Micnas, R., J. Ranninger, and S. Robaszkiewicz, 1990, Rev.
Mod. Phys. 62, 113,

Millis, A., P. B, Littlewood, and B. I. Shraiman, 1993, Phys.
Rev, Lett. 74, 5144,

Millis, A., B. 1. Shraiman, and R. Mueller, 1995, Preprint No.
cond-mat/9507084.

Milovanovic, M., S. Sachdev, and R. N. Bhatt, 1989, Phys. Rev.
Lett. 63, 82.

Mobius A., 1989, Phys. Rev. B 40, 4194,

Mobius A., 1990, Z. Phys. B 80, 213.

Moeller, G., V. Dobrosavljevi¢, and A. Ruckenstein, 1995, un-
published. .

Moeller, G., A. Ruckenstein, and S. Schmitt-Rink, 1992, Phys.
Rev. B 46, 7427.

Moeller, G., Q. Si, G. Kotliar, M. J. Rozenberg, and D. §.
Fisher, 1995, Phys. Rev. Lett., 74, 2082.

Maller, B., and Wolfle, P., 1993, Phys. Rev. B 48, 10320.

Morita, T., 1990, J. Stat. Phys. 59, 819.

Mott, N. E, 1949, Proc. Phys. Soc. A 62, 416.

Mott, N. E, 1956, Can. J. Phys. 34, 1356.

Mott, N. E, 1961, Philos. Mag. 6, 287.

Mott, N. F., 1990, Metal Insulator Transitions {Taylor and Fran-
cis, London).

Miiller-Hartmann, E., 1984, Z Phys. B 57, 281.

Miiller-Hartmann, E., 1989a, Z Phys. B 74, 507.

Miiller-Hartmann, E., 1989b, Z. Phys. B 76, 211.

Miiller-Hartmann, E., 1989c, Int. J. Mod. Phys. B 3, 2169

Newns, D. M., and N. Read, 1987, Adv. Phys. 36, 799.

Nishino, T., and K. Ueda, 1993, Phys. Rev. B 47, 12451.

Nozieres P, and A. Blandin, 1980, J. Phys. (Paris} 41, 193.

Nozieres P, and $. Schmitt-Rink, 1985, J. Low. Temp. Phys. 59,
195.

Ohkawa, F. J., 19914, J. Phys. Soc. Jpn. 60, 3218.

Ohkawa, F. 1., 1991b, Prog. Theor. Phys. (Suppl.) 106, 95.

Okimoto, Y., T. Katsufuji, T. Ishikawa, A. Urushibara, T.
Arima, and Y. Tokura, 1995, Phys. Rev. Lett. 75, 109,

Onsager, L., 1936, J. Am. Chem. Soc. 58, 1486.

Park, C. H., Z. X. Shen, A. G. Loeser, D. S. Dessau, D. G.
Mandrus, A. Migliori, J. Sarrao, and Z. K. Fisk, 1994, unpub-
lished.

Park, J. H., L. H. Tjeng, J. W. Allen, P. Metcalf, and C. T
Chen, 1994, AT&T Bell Labs Report.

Pei, S., 1. D. Jorgensen, B. Dabrowski, D. G. Hinks, D. R.
Richards, A. W. Mitchell, J. M. Newsam, S. K. Sinha, D. Vak-
nin, and A. J. Jacobson, 1990, Phys. Rev. B 41, 4126.

Penn, D. R., 1966, Phys. Rev. 142, 350.

Press, W. H., 5. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery, 1991, Numerical Recipes, 2nd ed. (Cambridge Univer-
sity Press), Cambridge, England.

Pruschke, T., D. L. Cox, and M. Jarrell, 1993a, Europhys. Lett.
21, 593.

Pruschke, T., D. L. Cox, and M. Jarrell, 1993b, Phys. Rev. B 47,
3553.

Pruschke, T., and N. Grewe, 1989, Z. Phys. B 74, 439.

‘Pruschke, T., and M. Jarrell, 1994, Physica B 199, 217.

Pruschke, T., M. Jarrell, and J. K. Freericks, 1995, Adv. Phys,
44, 187.

Qin, Q., and G. Czycholl, 1994, Physica B 199-200, 219.

Quirt, I. D, and J. R. Marko, 1972, Phys, Rev. Lett. 26, 318.

Raimondi, R., and C. Castellani, 1993, Phys. Rev. B 48, 11453,

Rev. Mod. Phys., Vol. 88, No. 1, January 1996

Randeria, M., J. Duan, and L. Shieh, 1989, Phys. Rev. Lett. 62,
981.

Randeria, M., J. Duan, and L. Shieh, 1990, Phys. Rev. B 41,
327.

Randeria, M., N. Trivedi, A. Moreo, and R. T. Scalettar, 1992,
Phys. Rev. Lett. 69, 2001.

Read, N., D. M. Newns, and S. Doniach, 1984, Phys. Rev. B 30,
3841.

Rice, T. M., and K. Ueda, Phys. Rev. B 34, 6420.

Rozenberg, M. 1., 1995, Phys. Rev. B 52, 7369.

Rozenberg, M. 1, 1. H. Inoue, H. Makino, F. Iga, and Y. Nishi-
hara, 1996, Preprint No. cond-mat/9603051.

Rozenberg, M. I, G. Kotliar, and H. Kajueter, 1995, Preprint
No. cond-mat/9509182.

Rozenberg, M. J., G. Xotliar, H. Kajueter, G. A. Thomas, D.
H. Rapkine, J. M. Honig, and P. Melcalf, 1995, Phys. Rev.
Lett. 75, 105.

Rozenberg, M. I, G. Kotliar, and X. Y. Zhang, 1994, Phys.
Rev. B 49, 10181.

Rozenberg, M. J., G. Moeller, and G. Kotliar, 1994, Mod. Phys.
Lett. B 8, 535.

Rozenberg, M., X. Y. Zhang, and G. Kotliar, 1992, Phys. Rev.
Lett. 69, 1236.

Sachdev, S.; and A. Georges, 1995, Phys. Rev. B 52, 9520.

Sachdeyv, S., N. Read, and R. Oppermann, 1995, Phys. Rev. B
52, 10 286.

Saitoh, T., A. E. Bocquet, T. Mizokawa, H. Namatame, A.
Fujimori, M. Abbate, Y. Takeda, and M. Takano, 1995, Phys.
Rev. B 51, 13942,

Sakai, O. and Y. Kuramoto, 1994, Solid State Commun. 89,
307.

Sakai, O., Y. Shimizu, and T. Kasuya, 1989, J. Phys. Soc. Jpn.
58, 162.

Salomaa, M., 1981, Solid State Commun. 38, 815.

Sanchez, J. M., E Ducastelle, and D. Gratias, 1984, Physica
128A, 334, ‘

Santoro, G., M. Airoldi, S. Sorella, and E. Tosatti, 1993, Phys.
Rev. B 47, 16216.

Sarma, D. D., §. Barman, H. Kajueter, and G. Kotliar, 1995,
unpublished.

Saso, T., and M. Itoh, 1995, Preprint No. cond-mat/9512094,

Schilier, A., and Ingersent, K., 1995, unpublished. :

Schlesinger, Z., Z. Fisk, H. T. Zhang, M. B. Maple, 1. F. Di-
Tusa, and G. Aeppli, 1993, Phys. Rev. Lett. 71, 1748.

Schmalian, J., P. Lombardo, M. Avignon, and K. H. Benne-
mann, 1995, Physica B (to be published). ]

Schotte, K. D, and U. Schotte, 1969, Phys. Rev. 182, 479; Phys.
Rev. 185, 509.

Schrieffer, J. R., and P. A. Wolf, 1966, Phys. Rev. 149, 491.

Schwartz, L., and E. Siggia, 1972, Phys. Rev. B 5, 383.

Schweitzer, H., and G. Czycholl, 1989, Solid State Commun.
69, 171,

Schweitzer, H., and G. Czycholl, 1990a, Z. Phys B 79, 377.

Schweitzer, H., and G. Czycholl, 1990b, Solid State Commun.
74, 735.

Schweitzer, H., and G. Czycholl, 1991a, Z. Phys B 83, 93.

Schweitzer, H., and G. Czycholl, 1991b, Phys. Rev. Lett. 67,
3724.

Sengupta, A. M., and A. Georges, 1995, Phys. Rev. B 52,
10 295.

Shimizu, Y., and O. Sakai, 1995, J. Phys. Soc. Jpn. (to be pub-
lished).




A. Georges et al.. Dynamical mean-field theory of . . . 125

Si, Q., and G. Kotliar, 1993, Phys. Rev. Lett. 70, 3143; Phys.
Rev. B 48, 13 881.

Si, Q., K. Kotliar, and A. Georges, 1992, Phys. Rev. B 46, 1261.

§i, Q., M. J. Rozenberg, K. Kotliar, and A. E. Ruckenstein,
1994, Phys. Rev. Lett. 72, 2761.

Sire, C., C. M. Varma, and H. R. Krishnamurthy, 1993, Phys.
Rev. B 48, 13833,

Slater, . C., 1951, Phys. Rev. 82, 538

Spalek, J., A. Datta, and J. M. Honig, 1987, Phys. Rev. Lett. 59,
728.

Spalek, J., 1990, 1. Sol. St. Chem. 88, 70.

Strack, R., and D. Vollhardt, 1992, Phys. Rev. B 46, 13852,

Stoer, J., and Bulirsch, R., 1980, Introduction to Numerical
Analysis (Springer-Verlag, New York).

Sugiyama, G., 8. E. Koonin, 1986, Ann. Phys. 168, 1.

Sun, 8. J,, M. F Yang, and T. M. Hong, 1993, Phys. Rev. B 48,
16127,

Suzuki, M., 1988, J. Stat. Phys. 53, 483, and references therein.

Theumann, A., 1969, Phys. Rev. 178, 978.

Thomas, G. A., D. H. Rapkine, S. A, Carter, A. J. Millis, T. F
Rosenbaum, P. Metcalf, and D. F. Honig, 1994, Phys. Rev.
Lett. 73, 1529.

Thomas, G. A, D. H. Rapkine, S. A. Carter, T. . Rosenbaum,
P. Metcalf, and D. F. Honig, 1994, J. Low Temp. Phys. 95, 33.

Thouless, D. J., P. W. Anderson, and R. G. Palmer, 1977, Phi-
los. Mag. 35, 593.

Tokura, Y., Y. Taguchi, Y. Okada, Y. Fujishima, T, Arima, K.
Kumagai, and Y. 1ye, 1993, Phys. Rev. Lett. 70, 2126.

Tokura, Y., A. Urushibara, Y. Morimoto, T. Arima, A.
Asamitsu, G. Kido, and N. Furukawa, 1994, J. Phys. Soc. Jpn.
63, 3931.

Torrance, I. B., P. Lacorre, and A. L. Nazzal, 1992, Phys. Rev. B
45, 8209.

Toulouse, G., 1970, Phys. Rev. B 2, 270.

Treglia, G., F. Ducastelle, and D. Spanjaard, 1980, Phys. Rev. B
21, 3720.

Tsuda, N., K. Nasu, A. Yanase, and K. Siratori, 1991, Flec-
tronic Conduction in Oxides, Springer Series in Solid State
Sciences Vol. 94 (Springer-Verlag, Berlin).

Tsvelick, A. M., and P. B. Wiegmann, 1983, Adv. Phys. 32, 453.

Turov, E., and V. Grebenikov, 1988, Physica B 149, 150.

Ukrig, R. §., and R. Vlaming, 1993, Phys. Rev. Lett. 71, 271.

Ulmke, M., 1995, Preprint No. cond-mat/9512044.

Ulmke M., V. Jani§, and D. Voltbhardt, 1995, Phys. Rev. B 51,
10 411.

Urushibara, A., Y. Moritome, T. Arima, A. Asamitso, G. Kido,
and Y. Tokura, 1995, Phys. Rev. B 51, 14103,

Valenti, R., and C. Gros, 1993, Z. Phys. B 90, 161.

van Dongen, P. G. J., 1991a, Mod. Phys. Lett. B §, 861.

van Dongen, P. G. J,, 1991b, Phys. Rev. Lett. 67, 757.

van Dongen, P. G. J.,, 1992, Phys. Rev. B 45, 2267.

van Dongen, P. G. ], 1994, Phys. Rev. B 49, 7904.

van Dongen, P. G. J., 1995, Phys. Rev. Lett. 14, 182.

van Dongen, P. G. J, and D. Vollhardt, 1990, Phys. Rev. Lett.
65, 1663.

Rev. Mod. Phys., Vol. 68, No. 1, January 1996

Varma, C. M., 1976, Rev. Mod. Phys. 48, 219.

Varma, C. M., and T. Giamarchi, 1994, in “Strongly Interacting
Fermions and High-T,. Superconductivity,” edited by B. Dou-
cot and J. Zinn-Justin (Elsevier, New York).

Varma, C. M., 8. Schmitt-Rink, and E. Abrahams, 1987, Solid
State Commun, 62, 681. .

Vekic M., J. W. Cannon, D. J. Scalapino, R. T. Scaiettar, and R.
L. Sugar, 1995, Phys. Rev. Lett. 74, 2367.

Vidberg, H. ., and J. W. Serene, 1977, J. Low Temp. Phys. 29,
179,

Visscher, P. B., 1974, Phys. Rev. B 10, 943.

Vlaming, R., G. 8. Uhrig, and D. Vollhardt, 1992, J. Phys. C 4,
7773.

Vlaming, R., and D. Vollhardt, 1992, Phys. Rev. B 45, 4637.

Volthardt, D., 1984, Rev. Mod. Phys. 56, 99.

Vollhardt, D., 1991, Physica B 169, 277.

Vollhardt, D., 1993, in Correlated Electron Systems, edited by
V. 1. Emery {World Scientific, Singapore).

Volthardt, D., 1994, in Proceedings of the Enrico Fermi
School, Course CXXI, edited by Broglia and Schrieffer
{North-Holland, Amsterdam).

von Hehwolt, R., J. Wecker, B. Holzapfel, L. Schultz, and K.
Samwer, 1993, Phys. Rev. Lett. 71, 2331.

Wang, 8. Q., W. E. Evenson, and J. R. Schricffer, 1969, Phys.
Rev. Lett 23, 92,

Wegner, F., 1976, Z. Phys. B 25, 327.

White, J. A, 1992, Phys. Rev. B 45, 1100

White, S. R., D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E.
Gubernatis, R. T. Scalettar, 1989, Phys. Rev. B 40, 506.

White, S. R., R. L. Sugar, and R. T. Scalettar, 1988, Phys. Rev.
B 38, 11665.

Wiison, K. G., 1975, Rev. Mod. Phys. 47, 773.

Withoff, D., and E. Fradkin, 1990, Phys. Rev. Lett. 64, 1835.

Wolff, P A., 1961, Phys. Rev. 124, 1030.

Wortis, M., 1974, in Phase Transitions and Critical Phenomena,
edited by C. Domb and M. Green (Academic, London), Vol.
3.

Yamada, K., 1975, Prog. Theor. Phys. 53, 970.

Yokoyama, H., and H. Shiba, 1987, J. Phys. Soc. Jpn. 56, 3582.

Yosida, K., and K. Yamada, 1970, Prog. Theor. Phys. 46, 244.

Yosida, K., and K. Yamada, 1975, Prog. Theor. Phys. 53, 1286.

Yu, C. C,, and F. W. Anderson, 1984, Phys. Rev. B 29, 6165.

Zaapen, J., and G. A. Sawatzky, 1987, Can. J. Phys. 65, 1262.

Zaanen, J., and G. A. Sawatzky, 1990, Prog. Theor. Phys.
{Suppl.) 101, 231.

Zaanen, I, G. A. Sawatzky, and J. W. Allen, 1985, Phys. Rev.
Lett. 55, 418.

Zang, J., A. Bishop, and H. Roder, 1995, Preprint No. cond-
mat/9507097.

Zhang, X. Y., M. J. Rozenberg, and G. Kotliar, 1993, Phys.
Rev. Lett. 70, 1666.

Zlati¢, V., B. Horvati¢, and D. Sokcevi¢, 1985, Z. Phys. B 59,
151.

Zlati¢, V,, and B. Horvatié, 1990, Solid State Commun. 75, 263.







