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Abstract

The theory of L-functions of automorphic forms {(or modular forms) via integral
representations has its origin in the paper of Riemann on the {-function. However the
theory was really developed in the classical context of L-functions of modular forms
for congruence subgroups of SLz(Z) by Hecke and his school. Much of our current
theory is a direct outgrowth of Hecke’s. L-functions of automorphic representations
were first developed by Jacquet and Langlands for GL,. Their approach followed Hecke
combined with the local-global techniques of Tate’s thesis. The theory for GL, was
the developed along the same lines in a long series of papers by various combinations
of Jacquet, Piatetski-Shapiro, and Shalika. In addition to associating an L-function
to an automorphic form, Hecke also gave a criterion for a Dirichlet series to come
from a modular form, the so called Converse Theorem of Hecke. In the context of
automorphic representations, the Converse Theorem for GL3 was developed by Jacquet
and Langlands, extended and significantly strengthened to GL3 by Jacquet, Piatetski-
Shapiro, and Shalika, and then extended to GL,,.

What we have attempted to present here is a synopsis of this work and in doing so
present the paradigm for the analysis of automorphic L-functions via integral represen-
tations. We begin with the Fourier expansion of a cusp form and results on Whittaker
models since these are essential for defining Eulerian integrals. We then develop inte-
gral representations for L-functions for GL,, x GL,, which have nice analytic properties
(meromorphic continuation, finite order of growth, functional equations} and have Eu-
lerian factorization into products of local integrals. We next turn to the local theory
of L-functions for GL,, in both the archimedean and non-archimedean local contexts,
which comes out of the Euler factors of the global integrals. We finally combine the
global Eulerian integrals with the definition and analysis of the local L-functions to
define the global L-function of an automorphic representation and derive their major
analytic properties. We next turn to the various Converse Theorems for GL,, and their
applications to Langlands liftings.
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Introduction

The purpose of these notes is to develop the analytic theory of L-functions for cuspidal
automorphic representations of GL, over a global field. There are two approaches to L-
functions of GL,: via integral representations or through analysis of Fourier coefficients of
Eisenstein series. In these notes we develop the theory via integral representations.

The theory of L-functions of automorphic forms (or modular forms} via integral repre-
sentations has its origin in the paper of Riemann on the {-function [52]). However the theory
was really developed in the classical context of L-functions of modular forms for congruence
subgroups of SLy(Z) by Hecke and his school [25]. Much of our current theory is a direct
outgrowth of Hecke’s. L-functions of automorphic representations were first developed by
Jacquet and Langlands for GL; [21,28,30]. Their approach followed Hecke combined with the
local-global techniques of Tate's thesis [62]. The theory for GL, was the developed along the
same lines in a long series of papers by various combinations of Jacquet, Piatetski-Shapiro,
and Shalika [31~38,46,47,60]. In addition to associating an L-function to an automorphic
form, Hecke also gave a criterion for a Dirichlet series to come from a modular form, the
so called Converse Theorem of Hecke [26]. In the context of automorphic representations,
the Converse Theorem for GL, was developed by Jacquet and Langlands [30], extended and
significantly strengthened to GLj3 by Jacquet, Piatetski-Shapiro, and Shalika [31], and then
extended to GL,, [7,9].

What we have attempted to present here is a synopsis of this work and in doing so
present the paradigm for the analysis of automorphic L-functions via integral representations.
Section 1 deals with the Fourier expansion of automorphic forms on GL, and the related
Muitiplicity One and Strong Multiplicity One theorems. Section 2 then develops the theory
of Eulerian integrals for GL,. In Section 3 we turn to the local theory of L-functions for GLy,
in both the archimedean and non-archimedean local contexts, which comes out of the Euler
factors of the global integrals. In Section 4 we finally combine the global Eulerian integrals
with the definition and analysis of the local L-functions to define the global L-function of
an automorphic representation and derive their major analytic properties. In Section 5 we
turn to the various Converse Theorems for GL,,.

We have tried to keep the tone of the notes informal for the most part. We have tried to
provide complete proofs where feasible, at least sketches of most major results, and references
for technical facts.

There is another body of work on integral representations of L-functions for GL, which
developed out of the classical work on zeta functions of algebras. This is the theory of
principal L-functions for GL,, as developed by Godement and Jacquet [22,28]. This approach
is related to the one pursued here, but we have not attempted to present it here.

The other approach to these L-functions is via the Fourier coefficients of Eisenstein series.
This approach also has a classical history. In the context of automorphic representations,
and in a broader context than GL,, this approach was originally laid out by Langlands [42]
but then most fruitfully pursued by Shahidi. Some of the major papers of Shahidi on this
subject are {54--59]. In particular, in [57] he shows that the two approaches give the same
L-functions for GL,. We will not pursue this approach in these notes.

For a balanced presentation of all three methods we recommend the book of Gelbart
and Shahidi {16]. They treat not only L-functions for GL, but L-functions of automorphic
representations of other groups as well.



2 L-functions for GL,

We have not discussed the arithmetic t'h'eory of automorphic representations and L-
functions. For the connections with motives, we recommend the surveys of Clozel [5] and
Ramakrishnan [49)].

1 Fourier expansions and multiplicity one theorems

In this section we let k denote a global field, A, its ring of adeles, and i/ will denote a
continuous additive character of A which is trivial on k. For the basics on adeles, characters,
etc. we refer the reader to Weil {66] or the book of Gelfand, Graev, and Piatetski-Shapiro [18].

We begin with a cuspidal automorphic representation (7, V) of GL,(A). For us, auto-
morphic forms are assumed to be smooth (of uniform moderate growth) but not necessarily
K, ~finite at the archimedean places. This is most suitable for the analytic theory. For
simplicity, we assume the central character w, of %= is unitary. Then V, is the space of
smooth vectors in an irreducible unitary representation of GL,(A). We will always use
cuspidal in this sense: the smooth vectors in an irreducible unitary cuspidal automorphic
representation. (Any other smooth cuspidal representation n of GL,(A) is necessarily of
the form m = m° ® | det |* with 7° unitary and ¢ real, so there is really no loss of generality
in the unitarity assumption. It merely provides us with a convenient normalization.) By
a cusp form on GL,(A) we will mean a function lying in a cuspidal representation. By a
cuspidal function we will simply mean a smooth function ¢ on GL,(k}\ GL,(A)} satisfying
fU(k)\U( " w(ug) du = 0 for every unipotent radical U of standard parabolic subgroups of

The basic references for this section are the papers of Piatetski-Shapiro [46,47] and
Shalika [60].

1.1 Fourier Expansions

Let ©(g) € Vi be a cusp form in the space of . For arithmetic applications, and particularly
for the theory of L-functions, we will need the Fourter ezpansion of ¢(g).

If f(7) is a holomorphic cusp form on the upper half plane §, say with respect to SLo(Z),
then f is invariant under integral translations, f(r + 1) = f(7) and thus has a Fourier
expansion of the form "

)
f(T) — Zane%rm-r_
n=1

If ©(g) is a smooth cusp form on GL;(A) then the translations correspond to the maximal
unipotent subgroup N, = {n = ({1) :15) } and ¢(ng) = ¢(g) for n € Na(k). So, if ) is any

continuous character of k\A we can define the 1-Fourier coefficient or ¥-Whittaker function

b .
y Woul(g) = fk\& ® (((1] T) 9) ¥ z) dx.



We have the corresponding Fourier expansion

olg) =D Woulg).
L1

(Actually from abelian Fourier theory, one has

o6 1)9) = SWestarvta

as a periodic function of z € A. Now set x = 0.)

If we fix a single non-trivial character ¢ of k\A, they by standard duality theory [18,66]
the additive characters of the compact group k\ A are isomorphic to k via the map v € k — ¢,
where ), is the character ¢,(z) = %(vyz). Now, an elementary calculation shows that

Wou,(9) = Wy ((7 1) g) if v # 0. If we set W, = W, for our fixed ¢, then the

Fourier expansion of ¢ becomes

o0) = Womla)+ LW (7))

YyeERX

Ww,wo(g)=fk\kw(((1) T) 9) dz =0

and the Fourier expansion for a cusp form ¢ becomes simply

=T (7 )s)

yEkX

Since ¢ is cuspidal

We will need a similar expansion for cusp forms ¢ on GL,(A). The translations still
correspond to the maximal unipotent subgroup

( 1 T1.2 *

2z
3
Il
3
Il

1 Tn—-1,n

| 0 1 )

but now this is non-abelian. This difficulty was solved independently by Piatetski-Shapiro
(46] and Shalika [60]. We fix our non-trivial continuous character v of k\A as above. Extend
it to a character of N, by setting 1(n) = ¥(z,2 + -+ + Ty.1») and define the associated
Fourier coefficient or Whittaker function by

Wolg) = Wyu(g) = / w(ng)y~(n) dn.
Na(k}\ Nn(4)

Since ¢ is continuous and the integration is over a compact set this integral is absolutely
convergent, uniformly on compact sets. The Fourier expansion takes the following form.
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Theorem 1.1 Let ¢ € V. be a cusp form on GL,(A) and W,, its associated - Whittaker

function. Then
= ¥ w((",)s)

7eNn— 1 (k)\GLn—-]. (k)

with convergence absolute and uniform on compact subsets.

The proof of this fact is an induction. It utilizes the mirabolic subgroup P, of GL, which
seems to be ubiquitous in the study of automorphic forms on GL,. Abstractly, a mirabolic
subgroup of GL, is simply the stabilizer of a non-zero vector in (either) standard representa-
tion of GL,, on k. We denote by P, the stabilizer of the row vector e, = (0,...,0,1) € &".
So

Pn = {p: (h ?) |h € GLﬂ_l,yE kn_l} = GLn—l D(Y'n

Yn = {y = (Iﬂﬁl :til) |y & kn——l} o~ knﬁl.

Simply by restriction of functions, a cusp form on GL,(A) restricts to a smooth cuspidal
function on P,(A) which remains left invariant under P,(k). (A smooth function ¢ on
P.(A) which is left invariant under P,(k) is called cuspidal if fU(k)\U( A) plup) du = 0 for
every standard unipotent subgroup U C P,.) Since P, D N, we may define a Whittaker
function attached to a cuspidal function ¢ on P,(A) by the same integral as on GL,(A),
namely

where

Woip) = [ olnp~(n) dn.
Nn(k)\ Na(4)
We will prove by induction that for a cuspidal function ¢ on P, (A) we have
p(p) = > wo ((7 Y)p
ZA\0 1
'TENn_ltk)\GLn_1(k)

with convergence absolute and uniform on compact subsets.
The function on Y, (A) given by y — ¢(yp) is invariant under Y (k) since Y, (k) C n(k)
and ¢ is automorphic on P, (A). Hence by standard abelain Fourier analysis for Y, ~ k*~

we have as before
)= > o)
AE(kn"T\AR~1)

where
oA(p) = f elyp) A H(y) dy.
Y (k)| Yo (4)

Now, by duality theory [66], (k“m‘—l) ~ k"1 In fact, if we let { , ) denote the
pairing k"' x k"' > k by (z,y) = Y_ z;y; we have

o(p) = D wu(p)

J:Ekn‘—]



where now we write

¢(p) = /km\AM oyp)y ™ ((z, ) dy.

GL,_1(k) acts on k™! with two orbits: {0} and &"' — {0} = GL,-1(k) ‘*e,_; where
én_1 = (0,...,0,1). The stabilizer of %,_; in GL,_;(k) is *P,_;. Therefore, we may write

o(p) = wolp) + > Drtens(P)-
YEGLn-1(k)/*Pn-1(k)

Since p(p) is cuspidal and Y,, is a standard unipotent subgroup of GL,, we see that

wo(p) = / ¢(yp) dy = 0.
Ya(E)\ Ya(4)

On the other hand an elementary calculation as before gives

Prten-s (P) = Pren, ((Z (1}) p) :

w(p) = 3 Don_s ((g 2) p)
YEPr—1(k}\ GLn—1(k)

and the convergence is still absolute and uniform on compact subsets.

Note that if n = 2 this is exactly the fact we used previously for GL,. This then begins
our induction.

Next, let us write the above in a form more suitable for induction. Structurally, we have
P, = GL,.1 XY, and N, = N,y x Y,,. Therefore, N,_y \ GLy..; ~ N, \ P,,. Furthermore,
if we let P,,_, = P,_, XY, C P,, then P,,_; \GL,_, ~ ﬁn_l\Pn. Next, note that the
function ¢, _, (p) satisfies, for y € Y,(A) =~ A" 1,

Hence we have

Pee,, _y (yp) = '%b(yn—l)‘P’en-l (p)
Since ¢ is trivial on &k we see that ¢+, _, (p) is left invariant under Y, (k). Hence

o= 3 go:e,._,((g S)p)= S D)

YEPn—1(k)\ GLn-1(k) 8€P._1 (k)\ Pn(k)

To proceed with the induction, fix p € P,(A) and consider the function ¢'(p') = ¢, (p')

on P,_1{A) given by
Vot p o
©'(p) = Pen_s ((0 1) p) -

' is a smooth function on P,_;(A) since ¢ was smooth. One checks that ¢' is left invariant
by Pn_.(k) and cuspidal on P,_;(A). Then we may apply our inductive assumption to

conclude that
e E : ¥ 0y

'T’ENn—2 \ GLn—2

= ) Wu@)

6’E'Nn—l \Pn—l

¥ -
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If we substitute this into the expansion for ¢(p) we see

e = ) ¢, (6p)

5€Pn_1{k)\ Pr(k)

= > )

6€Pn_1(E)\ Pa(k)

= 2 D W),

6P (k\Pn(k) ¥ENn-1\Pn-1

Now, as before, N,_; \ P,_; ~ N, \f’n_l and N, ~ N,,_; x Y,_;. Thus

Wy, 0) = | P (WS () dr

Nn-1(k)\Nn_1(4)

- / [ oy 5p) 6 (g ) (n) dy
Nu—l(k)\ Nn—l(A} Yn(k)\ YW(A)

= f o(nd'ép)y~t(n) dn
N (k)\ N ()
— W, (86p)

and so

o) = D Y. W(&'p)

8P 1 (k)\ Po (k) €Ny \Pr_y

= Z W, (6p)

deNn(k)\ Pn(k)

(6 2)?)

‘fGNn_;[(k)\ GLn_l(k‘)

which was what we wanted.

To obtain the Fourier expansion on GL, from this, if ¢ is a cusp form on GL,(A), then
for g € {2 a compact subset the functions ¢,(p) = ¢(pg) form a compact family of cuspidal
functions on P, (A). So we have

0
o= X w3 )
TENn_1{F}\ GLn_1(k)
with convergence absolute and uniform. Hence
ew= 5 w ({79
¢ 01
TEN - 1(k)\ GLn-1(k)

again with absolute convergence, uniform for g € Q).



1.2 Whittaker Models and the Multiplicity One Theorem

Consider now the functions W, appearing in the Fourier expansion of a cusp form . These
are all smooth functions W(g) on GL,,(A) which satisfy W(ng) = ¢¥(n)W(g) for n € N,(A).
If we let W(r,v) = {W, | ¢ € V,} then GL, (A} acts on this space by right translation and
the map ¢ — W, intertwines V, with W(r,¥). W(x, 1) is called the Whittaker model of =.

The notion of a Whittaker model of a representation makes perfect sense over a local
field or even a finite field. Much insight can be gained by pursuing these ideas over the finite
field [20,48], but that would take us too far afield. So let k, be a local field {a completion of
k for example [18,66]) and let (m,, V,,) be an irreducible admissible smooth representation of
GL,(k,). Fix a non-trivial continuous additive character 1, of k,. Let W(1,) be the space
of all smooth functions W(g) on GL,(k,) satisfying W (ng) = ¥(n)W (g) for all n € N(ky),
that is, the space of all smooth Whittaker functions on GL,(k,) with respect to v,. This
is also the space of the smooth induced representation Indﬁf’“ (ty). GLp(k,) acts on this
by right translation. If we have a non-trivial continuous intertwining Vx, — W(1,) we will
denote its image by W(m,,,) and call it a Whittaker model of m,.

Whittaker models for a representation (=, V,,) are equivalent to continuous Whittaker
functionals on V;,, that is, continuous functionals A, satisfying A, (m,(n)&) = ¥u(n)Au(&)
for all n € N, (k). To obtain a Whittaker functional from a model, set A,(&,) = W, (e),
and to obtain a model from a functional, set W, (9) = Au(7.(9)€,). This is a form of
Frobenius reciprocity, which in this context is the isomorphism between Homy, (V;,,Cy,)
and Homgy, (Va,, Ind§-" (¢,)) constructed above.

The fundamental theorem on the existence and uniqueness of Whittaker functionals and
models is the following.

Theorem 1.2 Let (m,,V,,) be a smooth irreducible admissible representation of GLn(k,).
Let ¢, be a non-trivial continuous additive character of k,. Then the space of continuous
1, —~Whittaker functionals on V,, is at most one dimensional. That is, Whittaker models, if
they exist, are unique.

This was first proven for non-archimedean fields by Gelfand and Kazhdan [19] and their
results were later extended to archimedean local fields by Shalika {60]. The method of proof
is roughly the following. It is enough to show that W(r,) = Ind§:"(¢,) is multiplicity
free, i.e., any irreducible representation of GL,(k,} occurs in W(%,) with multiplicity at
most one. This in turn is a consequence of the commutativity of the endomorphism algebra
End(Ind(,)). Any intertwining map from Ind(v,) to itself is given by convolution with
a so-called Bessel distribution, that is, a distribution B on GL,(k,) satisfying B(nign.) =
¥y(n1)B(g)W(ng) for ny,ny € Ny(k,). Such quasi-invariant distributions are analyzed via
Bruhat theory. By the Bruhbat decomposition for GL,, the double cosets N, \ GL, /N,
are parameterized by the monomial matrices. The only double cosets that can support

I,
Bessel distributions are associated to permutation matrices of the form and
I,
the resulting distributions are then stable under the involution g — ¢° = wj, ‘¢ w, with
1
Wy = the long Weyl element of GL,. Thus for the convolution of Bessel
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distributions we have By * By = (By * By)? = B + BY = By « B;. Hence the algebra of
intertwining Bessel distributions is commutative and hence W(4,) is multiplicity free.

An smooth irreducible admissible representation (m,, V) of GL,(k,) which possesses a
Whittaker model is called generic or non-degenerate. Gelfand and Kazhdan in addition show
that m, is generic iff its contragredient 7, is generic, in fact that © ~ 7* where . is the outer
automorphism g* = ‘9~!, and in this case the Whittaker model for 7, can be obtained as
W(my, 1/471) = {W(g) = W(wy tg_l) | W e W(ﬂ':wv)}'

As a consequence of the local uniqueness of the Whittaker model we can conclude a
global uniqueness. If (m, V;) is an irreducible smooth admissible representation of GL,(A)
then 7 factors as a restricted tensor product of local representations # o~ ®'n, taken over all
places v of k [14,18]. Consequently we have a continuous embedding V., < V, for each local
component. Hence any Whittaker functional A on V; determines a family of local Whittaker
functionals A, on each V; and conversely such that A = ®A,. Hence global uniqueness
follows from the local uniqueness. Moreover, once we fix the isomorphism of V, with ®'V,,
and define global and local Whittaker functions via A and the corresponding family A, we
have a factorization of global Whittaker functions

Welg) = [ [ We.(90)

for £ € V, which are factorizable in the sense that £ = ®'&, corresponds to a pure tensor.
As we will see, this factorization, which is a direct consequence of the uniqueness of the
Whittaker model, plays a most important role in the development of Eulerian integrals for
GL,.

Now let us see what this means for our cuspidal representations {7, V) of GL,(A). We
have seen that for any smooth cusp form ¢ € V, we have the Fourier expansion

oz ()

'TGNn—l (k)\GLn——l(k)

We can thus conclude that W(r, ) # 0 and that = is (globally) generic with Whittaker
functional

M) = Wole) = [ olng)s™'(n) dn.

Thus ¢ is completely determined by its associated Whittaker function W,,. From the unique-
ness of the global Whittaker model we can derive the Multiplicity One Theorem of Piatetski-
Shapiro [47} and Shalika [60].

Theorem (Multiplicity One) Let (7,V;) be an irreducible smooth admissible represen-
tation of GLn(A). The the multiplicity of = in the space of cusp forms on GL,(A) is at most
ane.

Proof: Suppose that 7 has two realizations {my, V,) and (mg, V,,) in the space of cusp forms
on GL,(A). Let ¢; € V., be the two cusp forms associated to the vector £ € V. Then we
have two nonzero Whittaker functionals on V;, namely A,(£) = W, (e). By the uniqueness



~t

of Whittaker models, there is a nonzero constant ¢ such that A; = cA;. But then we have
W, (9) = Ai(m(9)€) = cAz(n(g)€) = cWo,(g) for all g € GLn(A). Thus

o1(g) = > We, ((7 1) g)

YE€Nn-1(k]\GLn_1{k)

R A (DR

YENR—1(ENGLn-1(k)

But then V;, and V;, have a non-trivial intersection. Since they are irreducible representa-
tions, they must then coincide. ]

1.3 Kirillov models and the Strong Multiplicity One Theorem

The Multiplicity One Theorem can be significantly strengthened. The Strong Muitiplicity
One Theorem is the following.

Theorem (Strong Multiplicity One) Let (m1, Va,) and (72, Vy,) be two cuspidal repre-
sentations of GL,(A). Suppose there is a finite set of places S such that for all v ¢ S we
have 7, =~ my,. Then m = m,.

There are two proofs of this theorem. One is based on the theory of L-functions and
we will come to it in Section 4. The original proof of Piatetski-Shapiro [47] is based on the
Kirillov model of a local generic representation.

Let k, be a local field and let (m,,V,,) be an irreducible admissible smooth generic
representation of GL,(k,), such as a local component of a cuspidal representation 7. Since 7,
is generic it has its Whittaker model W(m,,4,). Each Whittaker function W € W(m,,¥,),
since it is a function on GL,(k,), can be restricted to the mirabolic subgroup P,(k,). A
fundamental result of Bernstein and Zelevinsky in the non-archimedean case [1j and Jacquet
and Shalika in the archimedean case [36] says that the map & — Wg [p.x,) IS injective.
Hence the representation has a realization on a space of functions on Py,{k,). This is the
Kirillov model

K(ma, o) = {W(p)IW € W(7y, %)}

P, (k,) acts naturally by right translation on X(m,,,) and the action of all of GL,(k,) can
be obtained by transport of structure. But for now, it is the structure of X(m,,1¢,) as a
representation of P, (k,) which is of interest.

For k, a non-archimedean field, let (7, V,,)} be the compactly induced representation
Ty = indg:((’;:))(zj),,). Then Bernstein and Zelevinsky have analyzed the representations of
P.(k,) and shown that whenever m, is an irreducible admissible generic representation of
GL,(k,) then X(m,,1,) contains V;, as a P,,(k,) sub-representation and if 7, is supercuspidal
then K(my, %) = V4, [1].

For k, archimedean, then we let (7, V7, ) be the smooth vectors in the irreducible smooth
unitarily induced representation IndE:((i:}}(w,,). Then Jacquet and Shalika have shown that

as long as m, is an irreducible admissible smooth unitary representation of GLy(k,) then in
fact K(m,,%,) = V;, as representations of P,(k,) [36, Remark 3.15].
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Therefore, for a given place v the local Kirilov models of any two irreducible admissible
generic smooth unitary representations have a certain P,(k,)-submodule in common, namely
V..

Let us now return to Piatetski-Shapiro’s proof of the Strong Multiplicity One Theorem
(47].

Proof: We begin with our cuspidal representations 7; and 5. Since m; and 7, are irreducible,
it suffices to find a cusp form ¢ € V, NV,,. If we let B,, denote the Borel subgroup of upper
triangular matrices in GL,, then B, (k)\ B,(A) is dense in GL,(k)\ GL,(A) and so it suffices
to find two cusp forms ¢; € V,, which agree on B, (A). But B, C P, Z,, with Z,, the center.
If we let w; be the central character of 7; then by assumption wy, = wy, for v ¢ S and the
weak approximation theorem then implies w; = ws. So it suffices to find two ; which agree
on P, (A). But as in the proof of the Multiplicity One Theorem, via the Fourier expansion,
to show that ¢(p) = w2(p) for p € P,(A) it suffices to show that W, (p) = W,,(p). Since
we can take each W, to be of the form [], W, , then this reduces to a question about the
local Kirillov models. For v ¢ S we have by assumption that KX(my,,1%,) = K(72.4,%,) and
for v € S we have seen that V,, C K(m 4, %,) N K(%20,4,). So we can construct a common
Whittaker function in the restriction of W(m;, ) to P,(A). This completes the proof. O

2 Eulerian integrals for GL,
Let f(7) again be a holomorphic cusp form of weight k on $ for the full modular group with
Fourier expansion

f(T) — Zane%rin'r.

Then Hecke [25] associated to f an L-function

L(S, f) = ZannAS

and analyzed its analytic properties, namely continuation, order of growth, and functional
equation, by writing it as the Mellin transform of f

As, ) = (2m)T(s)L(s, f) = / " fiydy.

An application of the modular transformation law for f(7} under the transformation 7 ~»
—1/7 gives the functional equation

Als, f) = (~1)¥2A(k — s, f).

Moreover, if f was an eigen function of all Hecke operators then L(s, f) had an Euler product
expansion

10,0y =TT s -7

P

We will present a similar theory for cuspidal automorphic representations (m, V) of
GL,(A). For applications to functoriality via the Converse Theorem (see Lecture 5) we
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will need not only the standard L-functions L(s,n) but the twisted L-functions L(s,m x ')
for (7', Vy+) a cuspidal automorphic representation of GL,(A) for m < n as well. One point
to notice from the outset is that we want to associate a single L-function to an infinite
dimensional representation {or pair of representations). The approach we will take will be
that of integral representations, but it will broadened in the sense of Tate’s thesis [62].

The basic references for this section are Jacquet-Langlands [30], Jacquet, Piatetski-
Shapiro, and Shalika [31], and Jacquet and Shalika [36].

2.1 Eulerian integrals for GL»

Let us first consider the L-functions for cuspidal automorphic representations (w,V;) of
GL2(A) with twists by an idele class character x, or what is the same, a (cuspidal) automor-
phic representation of GL;(A), as in Jacquet-Langlands [30].

Following Jacquet and Langlands, who were following Hecke, for each ¢ € V, we consider

the integral
a 3— x
oo = [ o(* ) x@lal ™ 0
EX\ A%

Since a cusp form on GL,(A) is rapidly decreasing upon restriction to A* as in the integral, it
follows that the integral is absolutely convergent for all s, uniformly for Re(s) in an interval.
Thus I(s;¢,x) is an entire function of s, bounded in any vertical strip @ < Re(s) < b.
Moreover, if we let @(g) = ¢(%g™!) = w(w, ‘¢7!) then ¢ € Vi and the simple change of
variables a — a~! in the integral shows that each integral satisfies a functional equation of

the form
I(s;0,x) = I(1 ~ 5;@,x71)-
So these integrals individually enjoy rather nice analytic properties.
If we replace ¢ by its Fourier expansion from Lecture 1 and unfold, we find

I(s;0,x :/ %% (’Yﬂ )Xa al*"1? d*a
= [ 2w ()@

yeEkX

= [ o (")) xtaale e

where we have used the fact that the function x(a)|e|*~'/? is invariant under k*. By stan-
dard gauge estimates on Whittaker functions {31] this converges for Re(s) >> 0 after the
unfolding. As we have seen in Lecture 1, if W,, € W(w, ) corresponds to a decomposable
vector ¢ € Vp o @'V, then the Whittaker function factors into a product of local Whittaker

functions
WW(g) = H W v(gu)'

Since the character x and the adelic absolute value factor into local components and the
domain of integration A* also factors we find that our global integral naturally factors into
a product of local integrals

Lo (")) x@lare ara =TT [ we (™) xlalanl™ .
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with the infinite product still convergent for Re(s) >> 0, or
I(5;0,%) = [ [ Wolsi Wer x0)
v
with the obvious definition of the local integrals

Mi a“U s— X
\Ijv(S; ‘,D:.-?XU) = / ”ﬁpu ( 1) xv(av)|av] 112 4 .
kS

Thus each of our global integrals is Eulerian.
In this way, to m and x we have associated a family of global Eulerian integrals with
nice analytic properties as well as for each place v a family of local integrals convergent for

Re(s) >> 0.

2.2 Eulerian integrals for GL, x GL,, with m < n

Now let (m, V) be a cuspidal representation of GL,(A) and (7', Vv) a cuspidal representation
of GL,,(A) with m < n. Take p € V; and ¢' € V.. At first blush, a natural analogue of the
integrals we considered for GL, with GL, twists would be

/ o(" 1)@m= an
GLn (k)\ GLom (4) n—m

This family of integrals would have all the nice analytic properties as before (entire functions
of finite order satisfying a functional equation), but they would not be Eulerian except in
the case m = n — 1, which proceeds exactly as in the GL; case.

The problem is that the restriction of the form ¢ to GL,, is too brutal to allow a nice
unfolding when the Fourier expansion of @ is inserted. Instead we will introduce projection
operators from cusp forms on GL,,(A) to cuspidal functions on on F,,;(A) which are given
by part of the unipotent integration through which the Whittaker function is defined.

2.2.1 The projection operator

In Gl.,, let Y, ,, be the unipotent radical of the standard parabolic subgroup attached to
the partition (m+1,1,...,1). If ¢ is our standard additive character of k\A, then 1 defines
a character of Y, ,(A) trivial on Y, (k) since Y, », C Ny. The group Y, ,, is normalized
by GL4+1 € GL, and the mirabolic subgroup P11 C GLp41 is the stabilizer in GLp4q of
the character 1.

Definition If ©(g) is a cusp form on GL,(A) define the projection operator P7., from cusp
forms on GL,(A) to cuspidal functions on Ppny1(A) by

Pre(p) = Idet(p)l_(k%ﬂ) fyn,m(k)\v,,,mm) @ (y (p In—m—l)) Y7 (y) dy

for p € Py (A).
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As the integration is over a compact domain, the integral is absolutely convergent. We
shall see that when we restrict this function to GL,,(A) embedded in GL,(A) in the corner,
this function is cuspidal on GL,,(A). We first analyze the behavior on Ppyy(A).

Lemma The function P* o(p) is a cuspidal function on Pryi(A).

Proof: Let us let ¢'(p) denote the non-normalized projection, i.e., for p € Ppyy1(A) set

¢'(p) = Idet(p)l(%—m__l)ﬂ’?ﬁw(p)-

It suffices to show this function is cuspidal. Since w(g) was a smooth function on GL,(A),
¢'(p) will remain smooth on P,,;;(A). To see that ¢'(p) is automorphic, let v € Pypi(k).

Then 0
- a? (G D D)0
¢ (vp) fy m(k)wmwso(y (0 o 1 (¥)

Since v € Ppy1(k) and Ppyy normalizes Y, ,,, and stabilizes 1) we may make the change of

-1
variable y — (g (1)) J (g ?) in this integral to obtain

¢'(vp) = /Y e ((g (1)) y (‘3 (1))) ¢ (y) dy.

Since ¢(g) is automorphic on GL,(A) it is left invariant under GL,(k) and we find that
¢'(yp) = ¢'(p) so that ¢’ is indeed automorphic on Py,41(4).

We next need to see that ¢’ is cuspidal on P, (A). To this end, let U C Pp,4y be the
standard unipotent subgroup associated to the partition (n;,...,n,) of m+1. Then we must

compute the integral
/ ' (up) du.
URNU(A)

Inserting the definition of ¢’ we find

uw 0 0 _
f ¢'(up) du =f / P (y (0 1) (ﬁ 1)) ¥ (y) dy du.
U(kN\ U(4) U(RI\ U(A) S ¥ im (B Y ()

The group U’ = Ux Y, ,, is the standard unipotent subgroup of GL, associated to the
partition (ny,..., 7., 1,...,1) of n. We may decompose this group in a second manner. If we
let U” be the standard unipotent subgroup of GL,, associated to the partition (n,,...,n,,n—

m — 1) of n and let Np—m-1 be the subgroup of GL, obtained by embedding N,,_,,_; into
GL, by
I'm+1 0
ns ( ; n)

then U’ = Np_m_y % U”. If we extend the character ¥ of Y, to U’ by making it trivial
on U, then in the decomposition U’ = Npmey X U”, v is dependent only on the Npomo1
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component and there it is the standard character ¥ on N,,_,,_;. Hence we may rearrange
the integration to give

/ ¢'(up) du
U(k)\ U(A)

wfl 0\{(p O wo—1
= v (u ( ) ( )) duy™ (n) dy.
ftv..m-:(k)\NMu(A) /U"(k)\U"(A) 0 n/\0 1

But since ¢ is cuspidal on GL,, and U” is a standard unipotent subgroup of GL, then

e (0 2) 5 3)) 0=
U”(k)\U”(A) 0 ﬂ 0 1

from which it follows that

©'(up) du =0
U(e)\ U(A)

so that ¢' is a cuspidal function on Py, (A). a

iFrom Lecture 1, we know that cuspidal functions on P,,,;{4A) have a Fourier expansion
summed over N,,(k)\ GL,,(A). Applying this expansion to our projected cusp form on
GL,(A) we are led to the following result.

Lemma Let ¢ be a cusp form on GL,(A). Then for h € GL,,(4), Pho (h ) has the

1
Fourier expansion

B (h 1) “lder) ) W, ((g Lﬂm) (h In-m))

YEN R {k)\ GLm(k}

with convergence absolute and uniform on compact subsets.

Proof: Once again let
n—m-1

() = | det(p)] 2 )P (p)

with p € P,,+1(A). Since we have verified that ¢'(p) is a cuspidal function on Pr,11(A) we
know that it has a Fourier expansion of the form

oy v 0
do= >, W ((0 1) p)
1ENm (k) G ()

where
Wy (p) = f @' (np)y~"(n) dn.
N1 (B)\ N1 (A)

To obtain our expansion for P ¢ we need to express the right hand side in terms of ¢ rather
than .
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We have

W (p) = [ & (n'p)y~ (') dr
Nt (k)\ Nemt1 (A)

n'p 0 _ -
=/ / ¢ (y( 7 1) g) ¥ (y) dy $7H(n) dn’.
Nt 1(k\ N 41 {A) Yo, m (K)\ Y, m (4)

It is elementary to see that the maximal unipotent subgroup N, of GL, can be factored
as N = Npj) X Yy n and if we write n = n'y with n’ € Ny and y € Yo, then ¢(n) =
1(n')y(y). Hence the above integral may be written as

0 _ P 0
W'P=f so(n(p ))d)lndn:W( )
» () Nn(k)\ N (A) 0 In_ma (n) YN0 I

Substituting this expression into the above we find that

ot o 2 () ()

YENm (k)\ GLm (k

and the convergence is absolute and uniform for h in compact subsets of GL,,(A). O

2.2.2 The global integrals

We now have the prerequisites for writing down a family of Eulerian integrals for cusp forms
@ on GL,, twisted by automorphic forms on GL,, for m < n. Let ¢ € V; be a cusp form on
GL,(A) and ¢’ € V;» a cusp form on GL,(A). (Actually, we could take ¢’ to be an arbitrary
automorphic form on GL,,(A).) Consider the integrals

' n h 0O , s—
I(s:0, ') = [ PR (0 l)so(hndet(hn 2 gy,
GLm (K}\ GLm (A)

The integral I(s; ¢, ¢') is absolutely convergent for all values of the complex parameter s,
uniformly in compact subsets, since the cusp forms are rapidly decreasing. Hence it is entire
and bounded in any vertical strip as before.

Let us now investigate the Eulerian properties of these integrals. We first replace F%
by its Fourier expansion.

! TL h’ 0 &5
Io6.) = | m(o , )w’(h)ldet(h)l 12 g
GLm (k)\ GLm{A) n—1n

=f 2 Ww((g I )(g I ))w’(h)ldet(h)P*(“-"')/2 dh.
GLm(k)\ GLm (A} Y ENm (KD, GLom (k) n-m n—m

Since ¢'(h) is automorphic on GL,,(A) and | det(v)| = 1 for ¥ € GL,,(k) we may interchange
the order of summation and integration for Re(s) >> 0 and then recombine to obtain

h 0 s—({n—m
I(s;0,¢") = f W, (0 r )(p’(h)ldet(h)l (n=m)/2 gh.
Nm (k)\ GLm (A) n—m
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This integral is absolutely convergent for Re(s) >> 0 by the gauge estimates of [31, Section
13] and this justifies the interchange.

Let us now integrate first over Ni,(k)\ N,(A). Recall that for n € N,,(A) C N,(A) we
have W,(ng) = ¥(n)W,(g). Hence we have

I{s;p,¢") =

/ / We ((g I ; ) (g I ’ )) ©'(nh) dn |det(h)|5~(n—m)/2 dh
N (AN GLrm (A) N (K)\ N (A) em .

_ f W, (" IO ) / W) (nk) dn | des(R)[=—m)/2 gp
Non (AN, GLom (A) O dnem) SN ()\ Nom)

= f W, (g‘ IO )W;,(h)ldet(h)ﬁ‘("‘m)/? dh
N (A)\ GLm(4) T
= W(s; W, W)
where W, (k) is the ¢/~!-Whittaker function on GL,,(A) associated to ¢, i.e.,

Wyt = | @ (nhy(n) dn,
Nen (k}\ N (4)

and we retain absolute convergence for Re(s) >> 0.

;From this point, the fact that the integrals are Eulerian is a consequence of the unique-
ness of the Whittaker model for GL,. Take ¢ a smooth cusp form in a cuspidal representation
7 of GL,(A). Assume in addition that ¢ is factorizable, i.e., in the decomposition T = ®',
of m into a restricted tensor product of local representations, ¢ = ®¢, is a pure tensor. Then
as we have seen there is a choice of local Whittaker models so that W,(g) = [[W.,, (g.)-
Similarly for decomposable ¢’ we have the factorization W, (h) = [T W, (h,).

If we substitute these factorizations into our integral expression, then since the domain of
integration factors N,,(A)\ GL,(A) = []Np(k,)\ GLn(k,) we see that our integral factors
into a product of local integrals

hy 0
U(s; W,, W) = / W, ( v ) W, (hy)l det(h,)[S~"—™)/2 gp,.
(8s W, We) H wnton Gincey E N0 L o, (Mol det(hy)|

If we denote the local integrals by

(5 W, W) = [ wo (0 YWyl denthol e a,
Nom (ko 1\ GLom (k0 n—m

which converges for Re(s) >> 0 by the gauge estimate of [31, Prop. 2.3.6], we see that we
now have a family of Eulerian integrals.

Now let us return to the question of a functional equation. As in the case of GL3, the
functional equation is essentially a consequence of the existence of the outer automorphism
g t(g) = ¢* =¢7! of GL,. If we define the action of this automorphism on auntomorphic
forms by setting @(g) = v(g*) = ¢{w,g') and let ?P'”m = 1o P? o then our integrals naturally
satisfy the functional equation

I(s;p,¢) =1(1 — 5,8, §)
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where

T 1] o h 3
Tisi) = [ Bro (")) w01 derl = an
GLm (k)\ GLm(A)

We have established the following result.

Theorem 2.1 Let ¢ € V; be a cusp form on GL,(A) and ¢’ € Vi a cusp form on GL(A)
with m < n. Then the family of integrals I(s; @, ') define entire functions of s, bounded in
vertical strips, and satisfy the functional equation

I(S;(,D,(P’) = ~(1 - S;{ﬁy {E’)

Moreover the integrals are Fulerian and if ¢ and ¢’ are factorizable, we have

1(s:0,9) = [T (5 W, Wy,

with convergence absolute and uniform for Re(s) >> 0.

The integrals occurring in the right hand side of our functional equation are again Eule-
rian. One can unfold the definitions to find first that

I{1—s;9, @) = ¥(1 = s; p(wnm)W,, W;;')
where the unfolded global integral is

h
U(s; W, W') = [ f Wz In.m- dz W'(R)| det(R)|*"(*~™/2 dp
1

with the A integral over N,,,(A)\ GL,,(A) and the z integral over M, _,,_1m(A), the space of
(n — m — 1) x m matrices, p denoting right translation, and wy . the Weyl element wy, ,, =
1
(Im w ) with wy_,, = the standard long Weyl element in GL,_,,. Also,
T ~TTL 1

for W € W(nm,¢) we set W(g) = W(wng') € W(7, v~ 1). The extra unipotent integration
is the remnant of F,. As before, ¥(s; W, W’) is absolutely convergent for Re(s) >> 0. For
p and ¢’ factorizable as before, these integrals U(s; W, W,) will factor as well. Hence we

have - ~
(s W,, W) = H Uy(s; Wo,, Wy,

where
. by
‘va(SEWmW;) ://Wv Ty In—m—l dmv W;(h”)ldet(hv)ls—(n—m)h dhv

1

where now with the h, integral is over N,,(k,)\ GL,,(k,) and the z, integral is over the
matrix space My,_m_1,m(ky). Thus, coming back to our functional equation, we find that the
right hand side is Eulerian and factors as

f(]- -5 ‘:51 (IB’) - \HI}(I -8 p(wn,m)wwswé;f) = H E’v(l - 3;p(wn,m)qu,Wét)-
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2.3 Eulerian integrals for GL, x GL,,

The paradigm for integral representations of L-functions for GL,, x GL,, is not Hecke but
rather the classical papers of Rankin [51] and Selberg [53]. These were first interpreted in the
framework of automorphic representations by Jacquet for GLy x GL; [28] and then Jacquet
and Shalika in general [36)].

Let (m,Vz) and (n',V,) be two cuspidal representations of GL,(A). Let ¢ € V, and
@' € Vv be two cusp forms. The analogue of the construction above would be simply

[ o)’ (g)l det(g)]® dg.
GLa(k)\ GLn(4&)

This integral is essentially the L2-inner product of ¢ and ¢' and is not suitable for defining
an L-function, although it will occur as a residue of our integral at a pole. Instead, follow-
ing Rankin and Selberg, we use an integral representation that involves a third function:
an Eisenstein series on GL,(A). This family of Eisenstein series is constructed using the
mirabolic subgroup once again.

2.3.1 The mirabolic Eisenstein series

To construct our Eisenstein series we return to the observation that P, \ GL, ~ k" — {0}.
If we let S{A") denote the Schwartz—-Bruhat functions on A", then each & € S defines a
smooth function on GL,(A), left invariant by P, (A), by g — ®((0,...,0,1)g) = ®(eng). Let
n be a unitary idele class character. (For our application 7 will be determined by the central
characters of 7 and 7’.) Consider the function

F(g,®;s,m) = Idet(g)l“f \ P(aeng)lal™n(a) d”a.
EX\AX
If we let P, = Z, P,, be the parabolic of GL, associated to the partition (n—1,1) then one

checks that for p = (‘8 g) € P, (A) with h € GL,_,(A) and d € A* we have,

F(p'g, ®;5,m) = | det(h)[*|d|~ " Von(d) "' F (g, ®; 5,m) = 6§ (p ) (d)F (g, ®; 5, 7),

with the integral absolutely convergent for Re(s) > 1/n, so that if we extend 7 to a character
of P}, by 7(p') = n(d) in the above notation we have that F(g, #;s,7) is a smooth section

of the normalized induced repiesentation Indg,L ("A(f ) (6;,_1/ %n). Since the inducing character

6;,,_1/ *n of P! (A) is invariant under P, (k) we may form Eisenstein series from this family of
sections by

E(g,%;s,m)= Y.  F(yg,®:5,7).
YEP, (k}\ GLn (k)
If we replace F"in this sum by its definition we can rewrite this Eisenstein series as

Blosn =gl [ 3 alatoelnla) da

£ekm—{0}

= | det(g)/" [ &% (a, g)lal™*n(a) d*a
EX\AX
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and this first expression is convergent absolutely for Re(s) > 1 [36].
The second expression essentially gives the Eisenstein series as the Mellin transform of

the Theta series
Oa(a,9) = Y, ®(aky),
fckn

where in the above we have written
Olag)= Y. (alg) = Oafa,g) — 2(0).
gek~—{0}

This allows us to obtain the analytic properties of the Eisenstein series from the Poisson
summation formula for ©4, namely

Osla,g) =Y (akg) = D Baylé)

L€k £ekm™
=37 8.,6) = la| ™| det(g)| " ®(a'E )
Eck™ £ckn

= ja|™"| det(g)| @3 (a""'g ")

where the Fourier transform ® on S(A™) is defined by

8() = [ St o
This allows us to write the Eisenstein series as

E{(g,®,s,m) = |det(g)|° 1 |>1®ip(a,g)|a|"’f7(a) d*a

+ | det(g)"™ 0} (a'g™)la" )07} (a) d*a + 6(s)
|aj>1 ¢

where
if 77 is ramified

0
6(8) = s -~ e .
(<) {—c<1>(0)1“‘si+ﬁ%},lL + cd(0) &A= if p(a) = |a|™ with o € R

s—1+io
with ¢ a non-zero constant. ;From this we derive easily the basic properties of our Eisenstein
series [36, Section 4].

Proposition 2.1 The Eisenstein series E(g, ®; s,n) has a meromorphic continuation to all
of C with at most simple poles at s = —io, 1 — ic when 7 is unramified of the form n{a) =
[a|"™®. As a function of g it is smooth of moderate growth and as a function of s il is
bounded in vertical strips (away from the two possible poles), uniformiy for g in compact
sets. Moreover, we have the funclional equation

E(g,®;s,n) = E(¢",$;1—5,77")
where gt = ‘471,

Note that under the center the Eisenstein series transforms by the central character L.
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2.3.2 The global integrals

Now let us return to our Eulerian integrals. Let 7 and 7’ be our irreducible cuspidal rep-
resentations. Let their central characters be w and w’. Set n = ww'. Then for each pair of
cusp forms ¢ € V; and ¢’ € V- and each Schwartz-Bruhat function ® € S(A") set

I(s;0,¢,®) = w(9)¢' (9)E(g, ®;5,7) dg.

/Z,‘(A) GLn(k)\ GLn (A)
Since the two cusp forms are rapidly decreasing on Z,(A) GL, (k)\ GL,(A) and the Eisenstein
is only of moderate growth, we see that the integral converges absolutely for all s away from

the poles of the Eisenstein series and is hence meromorphic. It will be bounded in vertical
strips away from the poles and satisfies the functional equation

—~ —~f ]

I(S;QD,QO’,@) = I(1 - S;SOuQOa@)a
coming from the functional equation of the Eisenstein series, where we still have $(g) =
¢(g") = p{wng*) € Vi and similarly for .
These integrals will be entire unless we have 5(a) = w(a)w'(a) = |a|
that case, the residue at s = —io will be

o i unramified. In

Res I(si9,¢', @) = ‘*C‘I’(O)f (9} ()| det(g)| ™ dg
s= Zn(A) GLo (A)\ GLn(A)

and at s = 1 — 10 we can write the residue as

Res I(s;0,¢/,®) = c&(0) / P(9)%'(9)] det(9)["" dg.
s=imwe Zu(A) GLn (k)\ GLy (A)

Therefore these residues define GL,(A) invariant pairings between 7 and 7’ ® |det | or
equivalently between 7 and ™ ® |det{*. Hence a residues can be non-zero only if 7w =
7' ® | det |*” and in this case we can find ¢, ¢, and @ such that indeed the residue does not
vanish.

We have yet to check that our integrals are Eulerian. To this end we take the integral,
replace the Eisenstein by its definition, and unfold:

I(s;0,¢,®) = v(9)¢'(g)E(g,®;5,m) dg

Ln (A) GLA(k)\ GLn (A)
el9)¢'(9)F (g, ®;8,m) dg

fzn (A) P}, (k)\ L. (4)

[ 2(9)¢(9)] det(g)I* / (aeng)lal™n(a) da dg
Zn (A) Pa (k)\ GL» (A) AX

- [ 206 (6)®(eng) | det(9)|* do.
Po{k)\ GLn(4)
We next replace ¢ by its Fourier expansion in the form

o= DY Wyl

YENA(K)\ Pn(k)
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and unfold to find

I(s; 0,0, ®)

i

f W, (9)¢'(9)®(eng)| det(q)]’ dg
Nn{k)\ GLn(A)

[ W,(9) & (ngy(n) dn (eng)| det(9)[* dg
Nn(A)\ GLn(4) Na(k)\ Na(A)

-/ Walg) W (6)8(ens)] deto)I do
n(A)\ GLA(A)

= \IJ(S, Wlpa W:pr, (D)

This expression converges for Re(s) >> 0 by the gauge estimates as before.

To continue, we assume that ¢, ¢’ and ® are decomposable tensors under the isomor-
phisms 7 ~ ®'m,, 7' ~ ®'m,, and S(A") ~ &'S(k}) so that we have W,(g) = T, W, (g.),
W (g} = 1, W (9,) and ®(g) = ], ®u(g.). Then, since the domain of integration also
naturally factors we can decompose this last integral into an Euler product and now write

W(s; W, WL, H Uy (55 W, Wi, ),
where
Vo(s; W, Wci:(,: $,) = / W, (QU)W;,L (90)Pv(engo)| det(gu)l® dgu,
Nu{ks)\ GEn(ky)

still with convergence for Re(s} >> 0 by the local gauge estimates. Once again we see that
the Euler factorization is a direct consequence of the uniqueness of the Whittaker models.

Theorem 2.2 Let ¢ € V; and ¢’ € Vv cusp forms on GL,(A) and let ® € S(A™). Then
the family of integrals I(s;, ', ®) define meromorphic functions of s, bounded in vertical
strips away from the poles. The only possible poles are simple and oceur iff m ~ 7 & | det |*°
with o real and are then at s = —ic and s = 1 — 10 with residues as above. They satisfy the
functional equation

I(s;0,¢,®) = I(1 ~ s; WW,W&,@).

Moreover, for v, ', and factorz'zable we have that the integrals are Fulerian and we have

I{(s;0,¢', ® H\p (5; Wo,, WL, , ®,)

with convergence absolute and uniform for Re(s) >> 0.

We remark in passing that the right hand side of the functional equation also unfolds as

I(1-537 &)= [ W, ()W, (9)B(eng)| det(q)]'~* dg
Ny (A)\ GLA(A)
=[] %0 - sW,,W,, &)

with convergence for Re(s) << 0.

We note again that if these integrals are not entire, then the residues give us invariant
pairings between the cuspidal representations and hence tell us structural facts about the
relation between these representations.
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3 Local L-functions

If (m, V) is a cuspidal representation of GL,(A) and (#',V,+) is a cuspidal representation of
GL,n(A) we have associated to the pair {r, ') a family of Eulerian integrals {I(s; @, ¢")} (or
{I(s;p,¢',®)} if m = n) and through the Euler factorization we have for each place v of
k a family of local integrals {¥,(s; W, W))} (or {¥,(s; W,,W,,®,)}) attached to the pair
of local components (7,,n.). In this lecture we would like to attach a local L-function (or
local Euler factor) L(s,, x m,) to such a pair of local representations through the family of
local integrals and analyze its basic properties, including the local functional equation. The
paradigm for such an analysis of local L-functions is Tate’s thesis [62]. The mechanics of
the archimedean and non-archimedean theories are slightly different so we will treat them
separately, beginning with the non-archimedean theory.

3.1 The non-archimedean local factors

For this section we will let k denote a non-archimedean local field. We will let o denote the
ring of integers of k and p the unique prime ideal of 0. Fix a generator @ of p. We let g be the
residue degree of k, so ¢ = |0/p| = |w|™!. We fix an non-trivial continuous additive character
¥ of k. (m, V) and (', V) will now be the smooth vectors in irreducible admissible unitary
generic representations of GL,(k) and GLn,(k) respectively, as is true for local components
of cuspidal representations. We will let w and «' denote their central characters.

The basic reference for this section is the paper of Jacquet, Piatetski-Shapiro, and Shalika

[33].

3.1.1 The local L-function

For each pair of Whittaker functions W € W(r,4) and W' € W(x',4"!) and in the case
n = m each Schwartz-Bruhat function ® € S(k™) we have defined local integrals

T(s; W, W) = / W (h I )W’(h){det(h)|s‘(”‘m)/2 dh
N (B)\ GL (k) n-—m

h
B(s; W, W) = f f W& fm | do WR)| det(r)=""/ dh
N (K} GLym (k) M 1,m (k) 1

in the case m < n and

U(s; W, W, @) = f W (g)W"(g)®(eng)] det(g)l* dg
No(k)\ GLn(k)

in the case n = m, both convergent for Re(s) >> 0. To make the notation more convenient
for what follows, in the case m < n for any 0 < j < n —m — 1 let us set

h
f Wz I dz W'(h)| det(h)]*~("~™)/2 dh,
M;,m (k) I

n—m-—j

T,(s: W, W) =f

N (E)\ GLm (k)
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so that U(s; W, W') = Wo(s; W, W') and ¥(s; W, W’') = V¥, _p_1(s; W, W'}, which is still
absolutely convergent for Re(s) >> 0.

We need to understand what type of functions of s these local integrals are. To this
end, we need to understand the local Whittaker functions. So let W € W(m,v) Since W
is smooth, there is a compact open subgroup K, of finite index in the maximal compact
subgroup K,, = GL,(0), so that W (gk) = W(g) for all k € K. If we let {k;} be a set of coset
representatives of GL,(0}/K, using that W transforms on the left under N, (k) via ¢ and the
Iwasawa decomposition on GL,(k) we see that W(g) is completely determined by the values
of W(ak;) = W;(a) for a € A,(k), the maximal split (diagonal) torus of GL,{k). So it suffices
to understand a general Whittaker function on the torus. Let ¢y, 2 = 1,...,n—1, denote the

a)
standard simple roots of GL,, so that if a = € A, (k) then a;(a) = aifait1.
Qn
By a finite function on A,(k) we mean a continuous function whose translates span a finite
dimensional vector space [30, 31, Sectopn 2.2]. (For the field k* itself the finite functions
are spanned by products of characters and powers of the valuation map.) The fundamental
result on the asymptotics of Whittaker functions is then the following [31, Prop. 2.2].

Proposition 3.1 Let 7 be a generic representation of GL,(k). Then there is a finite set of
finite functions X (n) = {xi} on Ap(k), depending only on «, so that for every W € W(r, %)
there are Schwartz —Bruhat functions ¢; € S(k™™') such that for all a € A, (k) with a, =1

we have
W(a) = Z Xi(a’)q’!’i(al(a)? s 70‘“*1(@))'

X(r)

The finite set of finite functions X (7) which occur in the asymptotics near 0 of the Whit-
taker functions come from analyzing the Jacquet module W(m, o) /(m(n)W — Win € N,)
which is naturally an A,(k)-module. Note that due to the Schwartz-Bruhat functions, the
Whittaker functions vanish whenever any simple root a;(a) becomes large. The gauge esti-
mates alluded to in Section 2 are a consequence of this expansion and the one in Proposition
3.6.

Several nice consequences follow from inserting these formulas for W and W' into the
local integrals U;(s; W, W’) or ¥(s; W, W', ®) [31,33].

Proposition 3.2 The local integrals W;(s; W, W') or ¥(s; W,W’' ®) satisfy the following
properties.

1. Each integral converges for Re(s) >> 0. For w and 7' unitary, as we have assumed,
they converge absolutely for Re(s) > 1. For m and 7' tempered, we have absolute
convergence for Re(s) > 0.

2. Each integral defines a rational function in ¢~° and hence meromorphically extends to

all of C.

3. Each such rational function can be written with a common denominator which depends
only on the finite functions X (7) and X (7') and hence only on w and n’.
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In deriving these when m < n — 1 note that one has that

h
wlz I £0

In—m—j—l

implies that x lies in a compact set independent of h € GL,(k) [33].

Let Z;(w, ') denote the complex linear span of the local integrals ¥;(s; W, W') if m <n
and Z(r, ') the complex linear span of the ¥(s; W, W’ ,®) if m = n. These are then all
subspaces of C(g~*) which have “bounded denominators” in the sense of (3). In fact, these
subspaces have more structure — they are modules for Clg®,¢=*] € C(¢™*). To see this, note
that for any A € GL,,(k) we have

v, (s;'fr (h In_m) W, ﬂ’(h)W') = | det(h)|"* I -M2Y  (5: W, W)

and
U(s; w(R)W, 7' (KW', p(R)®) = | det(h)| ¥ (s; W, W', ®).

So by varying k and multiplying by scalars, we see that each Z;(w,#’) and Z(w, 7") is closed
under multiplication by C[g®,¢*]. Since we have bounded denominators, we can conclude:

Proposition 3.3 Fach Z;(7,=') and Z(7,7') is a fractional Cl¢®, ¢~ *|~ideal of C(g™*).

Note that Cl¢®,¢ ] is a principal ideal domain, so that each fractional ideal Z;(m,7') has
a single generator, which we call Q; . (¢™%), as does Z(m,n’), which we call Qr (g~}
However, we can say more. In the case m < n recall that from what we have said about
the Kirillov model that when we restrict Whittaker functions in W(x, ) to the embedded
GLn(k) C Pn(k) we get all functions of compact support on GLn,(k) transforming by 1.
Using this freedom for our choice of W € W(x,4) one can show that in fact the constant
function 1 lies in Z;(x, 7). In the case m = n one can reduce to a sum of integrals over
P,(k) and then use the freedom one has in the Kirillov model, plus the complete freedom
in the choice of & to show that once again 1 € Z(w,#'). The consequence of this is that
our generator can be taken to be of the form Q; .. (¢7°) = Pjra (g, g %)t form < nor
Qrx(qg™®) = Prw(g®,q7°)"" for appropriate polynomials in Clg®,¢*]. Moreover, since g¢°
and ¢~ are units in C[¢*,¢™°] we can always normalize our generator to be of the form
Pjxn(q*)"" or Pra(g™*)~! where the polynomial P(X) satisfies P(0) = 1.

Finally, in the case m < n one can show by a rather elementary although somewhat
involved manipulation of the integrals that all of the ideals Z,(m, 7') are the same {33, Section
2.7). We will write this ideal as Z{m, ") and its generator as P (g%t

This gives us the definition of our local L-function.

Definition Let m and 7' be as above. Then L(s,m x m') = Prw(g™*)"" is the normalized
generator of the fractional ideal Z(m, ') formed by the famaly of local integrals. If n' =1 is
the trivial representation of GL, (k) then we write L(s,7) = L(s,7 x 1),



25

One can show easily that the ideal Z(, ') is independent of the character ¢ used in
defining the Whittaker models, so that L{s, 7 x =) is independent of the choice of ¥. So it
is not included in the notation. Also, note that for 7' = x an automorphic representation
(character) of GL;(A) we have the identity L{s,m X x} = L(s,7 @ x) where 7 ® x is the
representation of GL,(A) on V; given by 7 ® x(¢)€ = x(det(g))m(g)¢.

We summarize the above in the following Theorem.

Theorem 3.1 Let m and 7' be as above. The family of local integrals form a Clg®,q~%]~
fractional ideal I(n, 7'} in C(q™*) with generator the local L-function L(s,m x 7').

Another useful way of thinking of the local L-function is the following. L(s,7 x ') is
the minimal (in terms of degree) function of the form P(q~%)~!, with P(X) a polynomial
U(s;, W, W") U(s; W, W',fb))
L{s,n x m*) (res L(s,m x w)
all W € W(r,v) and W' € W(n',¢~1), and if necessary ® € S(k™). That is, L(s, 7 x 7') is
the standard Euler factor determined by the poles of the functions in Z(#, 7).

One should note that since the L-factor is a generator of the ideal Z(w,7'), then in
particular it lies in Z(w, «'). Since this ideal is spanned by our local integrals, we have the
following useful Corollary.

satisfying P(0) = 1, such that the ratios are entire for

Corollary There are a finite collection of W; € W(x,v), W! € W(z', %), and if neces-
sary ®; € S(k™) such that

L(s,wxw’):Z\IJ(s;Wi,W{) or L(s,m x ') Z\IISW W/, ®;).

For future reference, let us set

W(s; W, W) LsWW) V(s W, W)
. ! —_— et . . ! - h_l_.f._....’....._._ * f =
o(s; W, W') = L{s,n x n')’ (s W, W L(s,m x =)’ B W W) L(s,m x ')’
and
. ‘
E(S; W, W’, @) — \I’(S:WY’W:Q)

L(s,m x n')

Then all of these functions are Laurent polynomials in ¢*°, i.e., elements of Clg®,¢™*]. As
such they are entire and bounded in vertical strips. As above, there are choices of W;, W/,
and if necessary ®; such that }_e(s; W;, W)) =1 or 3_e(s; W;, W/, ®;) = 1. In particular we
have the following result.

Corollary The functions e(s; W, W') and e(s; W, W', ®) are entire function, bounded in
vertical strips, and for each sg € C there is a choice of W, W' and if necessary & such that
e(so; W, W') # 0 or e(so; W, W', @) # 0.



26 L-functions for GL,,

3.1.2 The local functional equation

Either by analogy with Tate’s thesis or from the corresponding global statement, we would
expect our local integrals to satisfy a local functional equation. From the functional equa-
tions for our global mtegrals we would expect these to relate the mtegrals ¥(s; W, W') and
T(1—s5; p(wn, )W, W') when m < n and ¥(s; W, W’ @) and ¥(1—s; W, W', &) when m = n.
This will indeed be the case. These functional equations will come from interpreting the lo-
cal integrals as families (in s) of quasi-invariant bilinear forms on W(m,v) x W(x', %) or
trilinear forms on W(w, %) x W(r',¢¥~1) x S(k") depending on the case.
First, consider the case when m < n. In this case we have seen that

v (3;71- (h I ) W, w’(h)W’) = | det(h)| > T2 (s; W, W)

and one checks that ¥(1 — s; p(wnm)W, W') has the same quasi-invariance as a bilinear form
on W(r,¥) x W(n',v~1). In addition, if we let Y,,, denote the unipotent radical of the
standard parabolic subgroup associated to the partition (m + 1,1,...,1) as before then we
have the quasi-invariance

U(s;m(y)W, W) = v(y)¥(s; W, W)
for all y € Y, m- One again checks that (1 — s p(wn,m)ﬁ, W ) satisfies the same quasi-

invariance as a bilinear form on W(mr, ) x W(z',¢~1).
For n = m we have seen that

W(s; m(W)W, 7' (W)W, p(h)®) = |det(h)| ¥ (s; W, W', @)
and it is elementary to check that ¥(1 — s; W, W', ®) satisfies the same quasi-invariance as

a trilinear form on W(r, %) x W(n',4~1) x §(k"). Our local functional equations will now
follow from the following result [33, Propositions 2.10 and 2.11].

Proposition 3.4 (i) If m < n, then except for a finite number of exceptional values of ¢~*
there is a unique bilinear form B, on W(m,¥) x W(x',¢¥™1) satisfying

5.(+ (" 1" R W) = det(h)|H B W, W)
and  By(n(w)W, W'} = y(u) By(W, W)
for all h € GL(k) and y € Y, m(k).
(i) If n = m, then exzcept for a finite number of exceptional values of ¢=° there is a
unique tmlmear form T, on W(m, ) x W(w',9~1) x S(k™) satisfying
Ty(n(R)W, 7' (W', p(h)®) = | det(h)|""T,(W, W', ®)

for all h € GLyp(k).
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Let us say a few words about the proof of this proposition, because it is another appli-
cation of the analysis of the restriction of representations of GL,, to the mirabolic subgroup
P, (33, Sections 2.10 and 2.11]. In the case where rn < m the local integrals involve the
restriction of the Whittaker functions in W(w, %) to GL, (k) C P,, that is, the Kirillov
model K(m, %) of m. In the case m = n one notes that Sp(k") = {® € S(k") | ®(0) = 0},
which has co-dimension one in §(k"), is isomorphic to the compactly induced represen-
tation indgi‘("k()k)(ép—:/ %) so that by Frobenius reciprocity a GL,(k) quasi-invariant trilinear
form on W(m,¢) x W(r',9%™') x 8 (k") reduces to a P,(k)-quasi-invariant bilinear form on
K(m, ) x K(n',4~1). So in both cases we are naturally working in the restriction to P, (k).
The restrictions of irreducible representations of GL,(k) to P, (k) are no longer irreducible,
but do have composition series of finite length. One of the tools for analyzing the restric-
tions of representations of GL, to Py, or analyzing the irreducible representations of P,,, are
the derivatives of Bernstein and Zelevinsky [2,11]. These derivatives 7"~ are naturally
representations of GL,(k) for r < n. 7® = 7 and since = is generic the highest derivative
7 corresponds to the irreducible common submodule (7, V;) of all Kirillov models, and is
hence the non-zero irreducible representation of GLy(k). The poles of our local integrals can
be interpreted as giving quasi-invariant pairings between derivatives of 7 and n’ [11]. The s
for which such pairings exist for all but the highest derivatives are the exceptional s of the
proposition. There is always a unique pairing between the highest derivatives #(™) and #'0™
which are necessarily non-zero since they since these correspond to the common irreducible
subspace (7, V;} of any Kirillov model, and this is the unique B, or T, of the proposition.

As a consequence of this Proposition, we can define the local v-factor which gives the
local functional equation for our integrals.

Theorem 3.2 There is a rational function y(s,m x n',1¢) € C(qg™*) such that we have
B(1 = 85 p(wnm)W, W) = ' (=1)" (s, x 7', ) U(s; W, W) if m<n

or
U(1—5; W, W,8) = (~1)"y(s, 7 x o', ) ¥(s; W, W, ®) ifm=n
for ol W € W(m, ), W € W(x', ¥}, and if necessary all ® € S{k™).
Again, if 7' = 1 is the trivial representation of GL, (k) we write y(s, 7, %) = (s, 7 x 1, ).
The fact that (s, 7 x 7', 4} is rational follows from the fact that it is a ratio of local integrals.

An equally important local factor, which occurs in the current formulations of the local
Langlands correspondence {23, 26], is the local e-factor.

Definition The local factor e(s,m x 7',v) is defined as the ratio

v(s,m x 7', ¢¥)L(s, 7 x ')
L(1 — 5,7 x ) )

e(s,m x 7', 9) =

With the local e-factor the local functional equation can be written in the form

1:Ivl(l — s;p(wn,m)W,W')
L(l1—s,7x7)

Y(s; W, W)
L(s,mx ')

=uw'(=1)""te(s,m x 7', 9) fm<n
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or o
V(1 —s; W, W, &)
L(l—s,7x7)

@(s; W, W, ®)

ifm=n.
Lsaxw)y 0"

= w'(=1)"Te(s,m x 7', )

This can also be expressed in terms of the e(s; W, W'}, etc.. In fact, since we know we can
choose a finite set of W;, W/, and if necessary ®; so that

U(s,; Wi, Wi)
L(s, ‘JTX'IT")

Z e(s; W, W/) =1

i

or

L(s,m x =)

3 s W, W, &) =5 e(s; Wi, W), ;) = 1

we see that we can write either

e(s,m x 7, ¢¥) = (— "12 l—spwnm)W;,W)

or

e(s,m x 7' ¥) = (-1 Z e(l — s W, ﬁf:-', ®,)

1

and hence (s, 7 x 7’,v) € Clg*,¢™*]. On the other hand, applying the functional equation
twice we get
e(s,m x 7, P)e(l — s, T x T, ") =1

so that e(s,m x 7', %) is a unit in Clg¢*, ¢~*]. This can be restated as:
Proposition 3.5 (s, 7 x 7',1) ts a monomial function of the form cq ',

Let us make a few remarks on the meaning of the number f occurring in the e-factor
is the case of a single representation. Assume that ¢ is unramified. In this case write
e(s, 7, %) = (0, 7,4)g~ /™. In [34] it is shown that f(r) is a non-negative integer, f(m) =0
iff 7 is unramified, that in general the space of vectors in V; which is fixed by the compact
open subgroup

K, (p/™) = { g € GLq(0)|g = ; * (mod p/™)
0 -~ 0 1

has dimension exactly 1, and that if ¢ < f(r) then the dimension of the space of fixed vectors
for K, (p*) is 0. Depending on the context, either the integer f(w) or the ideal f(m) = p/ (m)
is called the conductor of m. Note that the analytically defined e-factor carries structural
information about 7.
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3.1.3 The unramified calculation

Let us now turn to the calculation of the local L-functions. The first case to consider is
that where both = and 7' are unramified. Since they are assumed generic, they are both
full induced representations from unramified characters of the Borel subgroup [67]. So let
us write 7 ~ Indg-" () ® -+ ® pa) and 7' = Ind§i™ (4] ® - -+ ® i) with the p; and )
unramified characters of k. The Satake parameterization of unramified representations
associates to each of these representation the semi-simple conjugacy classes [A;] € GL,(C)
and [Ay] € GL,(C) given by

(@) pi(w)

in(0) ()

(Recall that w is a uniformizing parameter for &, that is, a generator of p.)

In the Whittaker models there will be unique normalized K = GL(0)}- fixed Whittaker
functions, W, € W(m, ) and W) € W(r',¢!), normalized by W (e) = W/(e) = 1. Let us
concentrate on W, for the moment. Since this function is right K,-invariant and transforms
on the left by ¥ under N, we have that its values are completely determined by its values
on diagonal matrices of the form

wjl
wj"

for J = (j1,...,9n) € Z" There is an explicit formula for W,(w”’) in terms of the Satake
parameter A, due to Shintani [61] for GL, and generalized to arbitrary reductive groups by
Casselman and Shalika [4].

Let T+ (n) be the set of n—tuples J = (j1,...,Jn) € Z" with j; > --- > jn. Let p; be the
rational representation of GL,(C) with dominant weight A; defined by

t
Ay '—'ﬁl“'tﬂ"-

Then the formula of Shintani says that

o if J ¢ T%(n)
Wele) = {5113/,,2(WJ) tr(ps(Ar)) i J €T*(n)

under the assumption that 3 is unramified. This is proved by analyzing the recursion
relations coming from the action of the unramified Hecke algebra on W..

We have a similar formula for W!(w”’) for J € Z™.
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If we use these formulas in our local integrals, we find [36, I, Prop. 2.3]

In—m

J
s W W)= Y. W (w )W;(wjndet(wJ)ls—<"-m>f26g;(wJ)

JeT+(m), jm>0

= > (e (An) tr(ps(Ar))g
J€T+(m), Jm >0

= > tr{pu(de) ® ps(An))g M

JET+(m), jm>0

where we let |J| = j; +--- + jm and we embed Z™ < Z" by J = (1, ,Jm) = (J,0) =
(71, yJm,0,-++,0). We now use the invariant theory facts that

Z tr(p(.l,ﬂ) (A‘JT) & pJ(Aﬂ")) = tr(Sr(‘A7r @ A"r’))’

J€T+(m)l JmZOI |J|=?‘

where S7(A) is the rt*-symmetric power of the matrix A, and

i tr(S7(A))2" = det(I — Az)™!

r=0

for any matrix A. Then we quickly arrive at

U(s; W, W,) = det(] — ¢°Ap @ Ap) ™' = [ [(1 — palw)pdy(w)g=*)
1,j
a standard Euler factor of degree mn. Since the L-function cancels all poles of the local
integrals, we know at least that det(/ — ¢=*A, ® A,) divides L{s,m x «’)~!. Either of the
methods discussed below for the general calculation of local factors then shows that in fact

these are equal.
There is a similar calculation when n = m and ® = @, is the characteristic function of the

lattice 0™ C k™. Also, since m unramified implies that its contragredient 7 is also unramified,
with W, as its normalized unramified Whittaker function, then from the functional equation
we can conclude that in this situation we have e(s, 7 x 7', ¢} = 1.

Theorem 3.3 If n, n', and ¥ are all unramified, then

Lis,mx7') =det(] — g A, @ Ap)" ! = {‘I’(S; W, Wo) m<n

U(s;Wo, W, ®,) m=n
and e(s,m x #',¢) = 1.

For future use, let us recall a consequence of this calculation due to Jacquet and Shalika
[36].

Corollary Suppose 7 is irreducible unitary generic admissible (our usual assumptions on
7} and unramified. The the eigenvalues p;(w) of A, all satisfy ¢~'/% < |u(w)| < ¢'/2.
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To see this, we apply the above calculation to the case where 7' = 7 the complex conjugate
representation. Then A, = A,, the complex conjugate matrix, and we have from the above

det‘(I - q_sAw @ A_W)\I’(S, WCH-I_VD) (I)o) =1

The local integral in this case is absolutely convergent for Re(s) > 1 and so the factor
det(] — ¢~°A, ® A,) cannot vanish for Re(s) > 1. If p;(w) is an eigenvalue of A, then we
have 1 — g~ |ps(w)|? # 0 for o > 1. Hence |u;(w)| < ¢"/2. Note that if we apply this to the
contragredient representation 7 as well we conclude that ¢~'/? < {u;(w)| < ¢'/2.

3.1.4 The supercuspidal calculation

The other basic case is when both 7 and 7' are supercuspidal. In this case the restriction of
W to P, or W' to P,, lies in the Kirillov model and is hence compactly supported mod N. In
the case of m < n we find that in our integral we have W evaluated along GLn (k) C Pa(k).
Since W is smooth, and hence stabilized by some compact open subgroup, we find that the
local integral always reduces to a finite sum and and hence lies in Cl¢®,¢~*]. In particular
it is always entire. Thus in this case L{s,m x ') = 1. In the case n = m the calculation
is a bit more involved and can be found in [11,15]. In essence, in the family of integrals
U(s; W, W', ®), if (0) = 0 then the integral will again reduce to a finite sum and hence be
entire. If ®(0) # 0 and if s; is a pole of ¥(s; W, W', @) then the residue of the pole at s = s
will be of the form

c®(0) [ W(g)W'(g)| det(g)|*® dg
Zn{k) Nn(k)\ GLn (k)

which is the Whittaker form of an invariant pairing between 7 and 7’ ® |det |*®. Thus we
must have sg is pure imaginary and 7 ~ 7' ® |det |* for the residue to be nonzero. This
condition is also sufficient.

Theorem 3.4 If m and ' are both (unitary) supercuspidal, then L(s,m x ') =1 ¢f m < n

and if m = n we have
L(s,m x ') = H(l —ag )™

with the product over all o = ¢*° with 7 ~ 7’ ® | det |%.

3.1.5 Remarks on the general calculation

In the other cases, we must rely on the Bernstein-Zelevinsky classification of generic represen-
tations of GL,(k) [67]. All generic representations can be realized as prescribed constituents
of representations parabolicly induced from supercuspidals. One can proceed by analyzing
the Whittaker functions of induced representations in terms of Whittaker functions of the
inducing data as in [33] or by analyzing the poles of the local integrals in terms of quasi
invariant pairings of derivatives of # and ' as in [11] to compute L(s,7 x 7’) in terms of
L-functions of pairs of supercuspidal representations. We refer you to those papers or [41]
for the explicit formulas.
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3.1.6 Multiplicativity and stability of v—factors

To conclude this section, let us mention two results on the y-factors. One is used in the
computations of L-factors in the general case. This is the multiplicativity of v-factors {33].
The second is the stability of v-factors [37]. Both of these results are necessary in applications
of the Converse Theorem to liftings, which we discuss in Section 5.

Proposition (Multiplicativity of y-factors) If m = Ind(m;®m,)}, with m; and irreducible
admissible representation of GL, (k), then

y(s,m x 7', ) = y(s,m x 7, ¢P)v(s, m X 7, 1))

and similarly for '. Moreover L(s,m x 7'}~ divides [L(s,m x 7')L(s,m x ®)}7L.

Proposition (Stability of y-factors) If my and my are two irreducible admissible generic
representations of GL,(k), having the same central character, then for every sufficiently
highly ramified character n of GLi(k) we have

(s, X M%) = (s, T2 X 1, 1)

and
L{s,m xn)=L{s,ma xn) =1

More generally, if in addition © is an irreducible generic representation of GLp (k) then for
all sufficiently highly ramified characters n of GL1(k) we have

’Y(S: (71—1 ® 7?) x W'ﬂ#’) = 7(5: (71—2 & "7) X ﬂJ! w)
and

Lis,(m®n) x ') = L(s,(m&n) x ') = 1.

3.2 The archimedean local factors

We now take k to be an archimedean local field, ie., K = R or C. We take (7, V;) to be
the space of smooth vectors in an irreducible admissible unitary generic representation of
GL, (k) and similarly for the representation (7', Vi) of GL,(k). We take ¢ a non-trivial
continuous additive character of k.

The treatment of the archimedean local factors parallels that of the non-archimedean
in many ways, but there are some significant differences. The major work on these factors
is that of Jacquet and Shalika in [38], which we follow for the most part without further
reference, and in the archimedean parts of [36].

One significant difference in the development of the archimedean theory is that the local
Langlands correspondence was already in place when the theory was developed [44]. The
correspondence is very explicit in terms of the usual Langlands classification. Thus to = is
associated an n dimensional semi-simple representation 7 = 7(x) of the Weil group Wy, of &
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and to 7’ an m-dimensional semi-simple representation 7' = 7(7') of Wi. Then 7(7) ® 7(7")
is an nm dimensional representation of W}, and to this representation of the Weil group is
attached Artin-Weil L- and e—factors [63}, denoted L(s, 7®7') and (s, 7®7’, ¢). In essence,
Jacquet and Shalika define

Lis,m x 7y =L(s,7(m}@7(r"})) and e(s,m x m',¢) = (s, 7(n) @ 7(n'), %)

and then set -
e(s,m x 7', ) L(1 — 5,7 x ')

L(s,m x 7"

(s, m x 7', ¢) =

For example, if 7 is unramified, and hence of thé form 7= ~ Ind(u; ® --- ® p,) with
unramified characters of the form p;{x) = |z|™ then

L(s,m) = L(s,7(r)) = H T.(s+7i)

is a standard archimedean Euler factor of degree n, where

_jmPr(E)  ifk, =R
Fu(s) = {2(27r)-sr(s) if k, =C’

They then proceed to show that these functions have the expected relation to the local
integrals. Their methods of analyzing the local integrals ¥;(s; W, W') and ¥(s; W, W', ®),
defined as in the non-archimedean case for W € W(xr, ¥}, W' € W(x',¥~1), and ® € S(k"),
are direct analogues of those used in {33] for the non-archimedean case. Once again, a most
important fact is [38, Proposition 2.2]

Proposition 3.6 Let m be a generic representation of GL, (k). Then there is a finite set of
finite functions X(n} = {x;} on An(k), depending only on «, so that for every W € W(m,v)
there are Schwartz functions ¢; € S(k"1 x K,,) such that for all a € A,(k) with a, = 1 we
have

W nak Z Xz ¢'1 al . :an—l(a)s k)

X(x)

Now the finite functions are related to the exponents of the representation 7 and through
the Langlands classification to the representation 7(r} of W;. We retain the same conver-
gence statements as in the non-archimedean case [36, I, Proposition 3.17; 1I, Proposition
2.6], [38, Proposition 5.3].

Proposition 3.7 The integrais ¥;(s; W, W’) and U(s; W, W’ &) converge absolutely in the
half plane Re(s) > 1 under the unitarity assumption and for Re(s) > 0 if m and «' are
tempered.

The meromorphic continuation and “bounded denominator” statement in the case of a
non-archimedean local field is now replaced by the following. Define M(7 x7’) to be the space
of all meromorphic functions ¢(s) with the property that if P(s} is a polynomial function
such that P(s)L(s, = x n') is holomorphic in a vertical strip S{a, b] = {5 a < Re(s) < b} then
P(s)¢(s) is bounded in Sfa,b]. Note in particular that if ¢ € M(7 x 7’) then the quotient
¢(s)L(s,m x ') is entire.
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Theorem 3.5 The integrals ¥;(s; W, W') or ¥(s; W, W', ®) extend to meromorphic func-
tions of 8 which lie in M(m x 7'). In particular, the ratios

U;(s; W, W)
L(s,m x 7')

Y(s; W, W' &)
L{s,n x «')

55 W, W) = or e(s;W, W', ®) =

are entire and in fact are bounded in vertical strips.

This statement has more content than just the continuation and “bounded denominator”
statements in the non-archimedean case. Since it prescribes the “denominator” to be the L
factor L(s, 7 x n')~! it is bound up with the actual computation of the poles of the local
integrals. In fact, a significant part of the paper of Jacquet and Shalika {38] is taken up with
the simultaneous proof of this and the local functional equations:

Theorem 3.6 We have the local functional equations
Unomejo1 (1= 8 p(wn m) W, W) = ' (=1)"My(s, m x 7', ) (53 W, W)

or

¥(1l —s; W, W, ®) = ' (-1)" M y(s, T x 7, P)U(s; W, W', D).

The one fact that we are missing is the statement of “minimality” of the L-factor. That
is, we know that L(s, = x ') is a standard archimedean Euler factor (i.e., a product of I'-
functions of the standard type) and has the property that the poles of all the local integrals
are contained in the poles of the L-factor, even with multiplicity. But we have not established
that the L-factor cannot have extraneous poles. In particular, we do know that we can achieve
the local L-function as a finite linear combination of local integrals.

Towards this end, Jacquet and Shalika enlarge the allowable space of local integrals.
Let A and A’ be the Whittaker functionals on V; and Vi associated with the Whittaker
models W(r, ) and W(r',¥"1). Then A = A® A’ defines a continuous linear functional on
the algebraic tensor product V,; ® V- which extends continuously to the topological tensor
product Vygr = Va®V,, viewed as representations of GL,(k) x GL,(k).

Before proceeding, let us make a few remarks on smooth representations. If {(#, V;) is the
space of smooth vectors in an irreducible admissible unitary representation, then the under-
lying Harish-Chandra module is the space of K,-finite vectors V. V; then corresponds to
the (Casselman-Wallach) canonical completion of V; i {64]. The category of Harish-Chandra
modules is appropriate for the algebraic theory of representations, but it is useful to work in
the category of smooth admissible representations for automorphic forms. If in our context
we take the underlying Harish-Chandra modules V; x and V k then their algebraic tensor
product is an admissible Harish-Chandra module for GL,(k) x GL, (k). The associated
smooth admissible representation is the canonical completion of this tensor product, which
is in fact Vyg., the topological tensor product of the smooth representations 7 and «'. It is
also the space of smooth vectors in the unitary tensor product of the unitary representations
associated to m and #'. So this completion is a natural place to work in the category of
smooth admissible representations.

Now let i

W(r @', ¢) = {W(g,h) = A(r(g) ® 7' (R)E)|€ € Vrgnr}-
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Then W(m ® 7', 1) contains the algebraic tensor product W(m, %) @ W(r',4!) and is again
equal to the topological tensor product. Now we can extend all out local integrals to the
space W(r @ 7', 1) by setting

h
‘Ilj(s; W) = //W T Ij ,h, dz ldet(h)ls—(n—m)/z dh
I

n—m—j

and
U(s; W, @) = [ W (g, 9)®(eag)| det(g)|* dh

for W € W(n ® ', ). Since the local integrals are continuous with respect to the topology
on the topological tensor product, all of the above facts remain true, in particular the
convergence statements, the local functional equations, and the fact that these integrals
extend to functions in M(w x 7).

At this point, let I;(m, 7"} = {¥;{s; W)W € W(r @ n’)} and let Z(m, ') be the span
of the local integrals {U(s; W, ®)|W € W(r @ 7',¢), ¢ € S(k™)}. Once again, in the case
m < n we have that the space Z;(, 7’) is independent of j and we denote it also by Z(7, 7').
These are still independent of 1. So we know from above that Z(r,#') C M(mw x 7'). The
remainder of [38] is then devoted to showing the following.

Theorem 3.7 Z(m,n') = M(m x #').
As a consequence of this, we draw the following useful Corollary.

Corollary There is o Whittaker function W in W(r ® n',¢) such that L(s,x7 x 7') =
W(s; W) if m < n or finite collectionof functions W; € W(r @ n',¢) and ®; € S(k™) such
that L(s,m x ©') = 3>, ¥(s; Wi, ®;) if m = n.

In the cases of m = n — 1 or m = n, Jacquet and Shalika can indeed get the local
L-function as a finite linear combination of integrals involving only K-finite functions in
W(m, ) and W(r',¢1), that is, without going to the completion of W(r, ) @ W(#', v~ 1),
but this has not been published.

As a final result, let us note that in [12] it is established that the linear functionals
e(s; W) = U(s; W)L(s,m x 7')"! and e(s; W, ®) = ¥(s; W, ®)L(s,m x 7')~! are continuous
on W(r®n’', ), uniformly for s in compact sets. Since there is a choice of W € W(r®@7', ¢)
such that e(s; W) =1or W; € W(n @', %) and ®; € S(k") such that > e(s; W,,®;) =1, asa
result of this continuity and the fact that the algebraic tensor product W(m, ¥) @ W(r', v 1)
is dense in W(r ® 7', 1) we have the following result.

Proposition 3.8 For any so € C there are choices of W € W(m,¢), W' € W(n', %) and
if necessary @ such that e(so; W, W’) # 0 or e(so; W, W', &) # 0.
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4 Global L-functions

Once again, we let k be a global field, A its ring of adeles, and fix a non-trivial continuous
additive character ¥ = ®1, of A trivial on &.

Let (m, V) be an cuspidal representation of GL,(A) (see Section 1 for all the implied as-
sumptions in this terminology) and (7', V;») a cuspidal representation of GL,,(A). Since they
are irreducible we have restricted tensor product decompositions 7 >~ ®'r, and 7’ ~ ®'n/
with (m,, V,,) and (7}, Vi, ) irreducible admissible smooth generic unitary representations of
GL,(k,) and GL,,(k,} [14,18]. Let w = ®w, and ' = ®'w! be their central characters.
These are both continuous characters of £*\A*.

Let S be the finite set of places of k, containing the archimedean places S,,, such that
for all v ¢ S we have that m,, 7}, and ¥, are unramified.

For each place v of £ we have defined the local factors L(s, m, x 7},) and (s, 7, x 7/, %,).
Then we can at least formally define

L(s,m x7') = :l_[L(.S','Jr,J xmy) and e(s,mx7)= HE(S,’H’v X T, Yy).
u v

We need to discuss convergence of these products. Let us first consider the convergence of
L{s,w xn'). For those v ¢ S, so m,, 7, and v, are unramified, we know that L(s,w, X 7},) =
det{l — ¢;*An, ® A )~! and that the eigenvalues of A,, and A, are all of absolute value

less than q,f/ ?. Thus the partial (or incomplete) L-function

L¥(s,m xn') = [ [ L(s,my x m) = [ | det(I = ¢ A, ® Ary) ™"
vgS vgSs

is absolutely convergent for Re(s) >> 0. Thus the same is true for L(s, 7w x 7).

For the e-factor, we have seen that e(s,m, x 7, 4,) =1 for v ¢ S so that the product is
in fact a finite product and there is no problem with convergence. The fact that (s, 7 x 7')
is independent of ¥ can either be checked by analyzing how the local e-factors vary as you
vary ¥, as is done in [7, Lemma 2.1], or it will follow from the global functional equation

presented below.

4.1 The basic analytic properties

Qur first goal is to show that these L-functions have nice analytic properties.

Theorem 4.1 The global L—functions L(s, 7 x ©') are nice in the sense that
1. L(s,m x ©') has a meromorphic continuation to all of C,
2. the extended function is bounded in vertical strips {away from its poles),
3. they satisfy the functional equation

Lis,m x ')y =¢g(s,m x 7'}L(1 — 8,7 x 7).
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To do so, we relate the L-functions to the global integrals.

Let us begin with continuation. In the case m < n for every ¢ € V; and ¢/ € V»r we
know the integral I(s;p, ') converges absolutely for all s. From the unfolding in Section
2 and the local calculation of Section 3 we know that for Re(s) >> 0 and for appropriate
choices of ¢ and ¢' we have

I(s;0,9 H\IJ (55 W, Wor )

(qu (8; W, W ))L (s, 7 x 7'

veES

=( SW‘P“’W ))L(s,ﬂ*XTr')
ws L(s,m xm)

= (Hev (s; W, W )) L(s,m x n')
vES

We know that each e,(s; W, W}) is entire. Hence L(s, 7 x n') has a meromorphic continua-
tion. If m = n then for appropriate ¢ € V;, ¢’ € V,», and ¢ € S(A™) we again have

I(s;0,¢, @) (He‘” (85 W, Wi , @ )) Lis,m x 7).

vES

Once again, since each e, (s; W,, W,, ®,) is entire, L(s, 7 x #’) has a meromorphic continua-
tion.

Let us next turn to the functional equation. This will follow from the functional equation
for the global integrals and the local functional equations. We will consider only the case
where m < n since the other case is entirely analogous. The functional equation for the
global integrals is simply

I{s;0,¢) =1(1~58,8).
Once again we have for appropriate ¢ and ¢’
I(s; ¢, ¢") (Heu(s We., W, )) L{s,nm x 7')
vES
while on the other side

I(1-s :(Hev - wnm)Wv,W'))L(l—s,%x%').

veS
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However, by the local functional equations, for each v € S we have

‘I’(l -85 p(wn,m)W‘uw Wé)
L(l - 8,% x %’)

év(l e s;p(wn,m)Wv)Wé) =

\Il(3§ an W;)
L(s,7 x ")
=W, (=1)"e(s,my x 7, ¥y )eu (s, Wa, W)

= WL(_I)H_IE(S: Ty X W:n ¢v)

Combining these, we have

L(s,m x «') (Hw (s ?TuXWv,%bu)) L(1 — 8,7 x 7).

veS

Now, for v ¢ S we know that m, is unramified, so w/,(—1) = 1, and also that &(s, 7, x 7, 1,) =
1. Therefore

Hw e(s,my X 1) Hw Ye(s, my x @l 4hy,)

ves
= w'(—1)"e(s, 7w x ')

=¢(s,m x 7')
and we indeed have
L(s,m xn') =¢e(s, 7 x #')L(1 — 5,7 x 7).

Note that this implies that e(s, 7 x 7'} is independent of v as well.

Let us now turn to the boundedness in vertical strips. For the global integrals I(s; ¢, ¢')
or I(s; v, p, ®) this simply follows from the absolute convergence. For the L-function itself,
the paradigm is the following. For every finite place v € S we know that there is a choice of
Wi W, ;, and @, ; if necessary such that

L{s,m, x 7,) Z\Il(s W,i,Wy,) or  L(s,m, x ) Z‘PSWM,WJI, i)-

If m =n—1or m = n then by the unpublished work of Jacquet and Shalika mentioned
toward the end of Section 3 we know that we have similar statements for v € S,,. Hence if
m = n — 1 or m = n there are global choices ¢;, ], and if necessary ®; such that

L(s,m x 7'} = ZI(S; wig) or L{s,mxn')= ZI(s;gai,ga;, ®;).

Then the boundedness in vertical strips for the L-functions follows from that of the global

integrals.

However, if m < n — 1 then all we know at those v € S, is that there is a function
Wy € W(m, @ m,,1b,) = W{my, ¢)®W(nl, ¥ 1) or a finite collection of such functions W, ;
and of ®,; such that

Lis,my xm,) = I{s;W,) or L(s,myx7)= ZI(S; Wy i, @)
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To make the above paradigm work for m < n — 1 we would need to rework the theory of
global Eulerian integrals for cusp forms in V.®V,:. This is naturally the space of smooth
vectors in an irreducible unitary cuspidal representation of GL,(A) x GLy,(A). So we would
need extend the global theory of integrals parallel to Jacquet and Shalika’s extension of the
local integrals in the archimedean theory. There seems to be no obstruction to carrying this
out, and then we obtain boundedness in vertical strips for L(s, 7 x n') in general.

We should point out that if one approaches these L-function by the method of constant
terms and Fourier coefficients of Eisenstein series, then Gelbart and Shahidi have shown a
wide class of automorphic L-functions, including ours, to be bounded in vertical strips {17].

4.2 Poles of L-functions

Let us determine where the global L-functions can have poles. The poles of the L-functions
will be related to the poles of the global integrals. Recall from Section 2 that in the case
of m < n we have that the global integrals I(s;p, ') are entire and that when m = n then
I(s;p,¢', ®) can have at most two simple poles and they occur at s = —ig and s = 1 — 40
for ¢ real when 7 =~ 7 @ |det |"”. As we have noted above, the global integrals and global
L-functions are related, for appropriate ¢, ¢', and @, by

I{s;0,¢") = (H eu(s; W%,W(;,u)) L(s,m x «)

veS

or

I{s; ¢, ¢, @) = (H ex{(8; Woy» W:o’v: (bv)) L(s,m x 7).

vES

On the other hand, we have seen that for any sy € C and any v there is a choice of local W,
W!, and @, such that the local factors e,(so; Wy, W)) # 0 or ey(so; Wy, Wy, ®,) # 0. So as
we vary ¢, ¢ and © at the places v € S we see that division by these factors can introduce
no extraneous poles in L{s, m x 1), that is, in keeping with the local characterization of the
L-factor in terms of poles of local integrals, globally the poles of L(s, m x #') are precisely the
poles of the family of global integrals {I(s; @, ¢')} or {I(s; ¢, ¢, ®)}. Hence from Theorems
2.1 and 2.2 we have.

Theorem 4.2 If m <n then L(s,m x ©') is entire. If m = n, then L{s,m x ©') has at most
two simple poles and they occur iff m ~ T @ | det [* with o real and are then at s = —ic and
s=1-1t0.

If we apply this with 7’ = 7 we obtain the following useful corollary.

Corollary L(s,7 x 7) has simple poles at s =0 and s = 1.
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4.3 Strong Multiplicity One

Let us return to the Strong Multiplicity One Theorem for cuspidal representations. First,
recall the statement:

Theorem (Strong Multiplicity One) Let (m, V;) and (x', Vv} be two cuspidal represen-
tations of GL,(A). Suppose there is a finite set of places S such that for all v ¢ S we have
Ty > M,. Thenm =m".

We will now present Jacquet and Shalika’s proof of this statement via L-functions {36]. First
note the following observation, which follows from our analysis of the location of the poles
of the L-functions.

Observation For 7 and #' cuspidal representations of GL,(A), L(s,m x 7') has a pole at
s=1ifw ==

Thus the L-function gives us an analytic method of testing when two cuspidal representations
are isomorphic, and so by the Multiplicity One Theorem, the same.

Proof: If we take 7 and #' as in the statement of Strong Multiplicity One, we have that
7y ~ 7, for v ¢ S and hence

LS(s,m x &) = [[ L(s,my x %) = [ [ L(s,my x 7}) = L¥(s,m x T
v S vgs

Since the local L-factors never vanish and for unitary representations they have no poles in
Re(s) > 1 (since the local integrals have no poles in this region) we see that for s = 1 that
L(s,m x @'} has a pole at s = 1 iff L5(s, 7 x 7) does. Hence we have that since L(s,m x 7)
has a pole at s = 1, so does L5(s,m x T). But L5(s,7m x T) = L%(s,m x &), so that both
L3(s,m x 7') and then L(s,7m x 7') have poles at s = 1. But then the L-function criterion
above gives that m ~ 7'. Now apply Multiplicity One. 01

In fact, Jacquet and Shalika push this method much further. If = is an irreducible
automorphic representation of GL, (A}, but not necessarily cuspidal, then it is a theorem
of Langlands [43] that there are cuspidal representations, say 7y,..., 7 of GLn,,...,GLy,
with n = ny + -+ + n,, such that 7 is a constituent of Ind(m; ® --- ® 7). Similarly, =’ is
a constituent of Ind(7] @ --- ® 75,). Then the generalized version of the Strong Multiplicity
One theorem that Jacquet and Shalika establish in [36] is the following.

Theorem (Generalized Strong Multiplicity One) Given 7 and 7' irreducible auto-
morphic representations of GL,(A) as above, suppose that there is a finite set of places
S such that m, ~ w, for allv ¢ S. Then r = 1’ and there is o permutation o of the set

{1,...,7} such that n; = nl, and 7; = T,

Note, the cuspidal representations 7; and 7] need not be unitary in this statement.
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4.4 Non-vanishing results

Of interest for questions from analytic number theory, for example questions of equidistribu-
tion, are results on the non-vanishing of L-functions. The fundamental non-vanishing result
for GL, is the following theorem of Jacquet and Shalika [35] and Shahidi [55, 56].

Theorem 4.3 Let © and n’ be cuspidal representations of GL,(A) and GLn(A). Then the
L-function L(s,m x 7'} is non-vanishing for Re(s) > 1.

The proof of non-vanishing for Re(s) > 1 is in keeping with the spirit of these notes [36, I,
Theorem 5.3]. Since the local L-functions are never zero, to establish the non-vanishing of
the Euler product for Re(s) > 1 it suffices to show that the Euler product is absolutely
convergent for Re(s) > 1, and for this it is sufficient to work with the incomplete L-function
L5(s,m x #') where S is as at the beginning of this Section. Then we can write

L3(s,m x ') = HL(s,ﬂv X m,) = H det(I — g7 *Ar, ® Ap )7}
vgs vgS
with absolute convergence for Re(s} >> 0.
Recall that an infinite product [](1+a,) is absolutely iff the associated series 3 log(1+a,)

is absolutely convergent.
Let us write

Hu,1 ru’v,l
Ay, = and Ap =

Hon Hym
We have seen that |p, | < ¢/* and |, il < @'*. Then
tr(Af,) tr(AZ, )

log L(S Ty X TT Z 10g(1 Huy :}'JU qu Z Z #v "‘uﬂj = Z Wudqu

1.7 i,7 d=1 d=1

with the sum absolutely convergent for Re(s) >> 0. Then, still for Re(s} >> 0,

log(L5(s, 7 x 7') ZZ

vg¢S d=1

tr(A¢ )tr(A 3}

If we apply this to 7' =T = 7 we find

log(L® (s, 7 x 7) ZZ [ tr(A ds

vgsS d=1

which is a Dirichlet series with non-negative coefficients. By Landau’s Lemma this will be
absolutely convergent up to the its first pole, which we know is at s = 1. Hence this series,
and the associated Euler product L(s,7 x 7), is absolutely convergent for Re(s) > 1.
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An application of the Cauchy-Schwatrz inequality then implies that the series

2. tr(A2 ) tr(AZ)

log(L5(s,m x 7') ZZ e

vgS$ d=1

is also absolutely convergent for Re(s) > 1. Thus L(s,# x «') is absolutely convergent and
hence non-vanishing for Re(s) > 1.

To obtain the non-vanishing on the line Re(s) = 1 requires the technique of analyzing
L-functions via their occurrence in the constant terms and Fourier coefficients of Eisenstein
series, which we have not discussed. They can be found in the references [35] and [55, 56]

mentioned above.

4.5 The Generalized Ramanujan Conjecture (GRC)
The current version of the GRC is a conjecture about the structure of cuspidal representa-

tions.

Conjecture (GRC) Let © be a (unitary) cuspidal representation of GL,(A) with decom-
position m ~ ®'w,. Then the local components m, are tempered representations.

However, it has an interesting interpretation in terms of L-functions which is more in keep-
ing with the origins of the conjecture. If 7 is cuspidal, then at every finite place v where 7,
JU'v,l
is unramified we have associated a semisimple conjugacy class, say A,, =

/J"u,n
s0 that

L{s,m,) = det(] — ¢;*4,,) [h1 TR
If v is an archimedean place where m, is unramified, then we can similarly write
1
L(s,m) = [ [ Tuls + pos)
=1

where

Do) = s 0(8)  ifk, >R
| 2@n)r(s) ik, xC

Then the statement of the GRC in these terms is
Conjecture (GRC for L-functions) If 7 is a cuspidal representation of GL,(A) and if

v is a place where m, is unramified, then |y, ;| = 1 for v non-archimedean and Re(y,;) =0
for v archimedean.
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Note that by including the archimedean places, this conjecture encompasses not only
the classical Ramanujan conjectures but also the various versions of the Selberg eigenvalue
conjecture [27].

Recall that by the Corollary to Theorem 3.3 we have the bounds g, 12 < |t 3] < qé/ % for
v non-archimedean, and a similar local analysis for v archimedean would give | Re(po)l < 3-
The best bound for general GL, is due to Luo, Rudnick, and Sarnak [45]. They are the
uniform bounds

—(l__t 1-4=
@ (2725 < il < ge ™*' if v is non-archimedean
and
| Re(un)| < 5 = == for v archimed
e i — or arc ean.
Pl =5 7 0711 ¢ o

Their techniques are global and rely on the theory of Rankin—Selberg L-functions as presented
here, a technique of persistence of zeros in families of L-functions, and a positivity argument.

For GL, there has been much recent progress via the Converse Theorem. The idea is to
take a cusp form on GL,(A) and lift it to a cusp form on a larger GL,(A), then apply the
bounds of Luo, Rudnick, and Sarnak there. The best bounds that I am aware of at present
are due to Henry Kim [39] who uses the Converse Theorem to construct the symmetric fourth
power lifting of a cusp form on GLy(A) to GLs(A) and thereby obtaining the estimates

_a K
go ® < |pyi| < g  fori=1,2, and v non-archimedean

and the analogous estimate for v archimedean.

For some applications, the notion of weakly Ramanujan [8] can replace knowing the full

GRC.

Definition A cuspidal representation © of GL,(A) is called weakly Ramanugjan if for every
€ > 0 there is a constant ¢, > 0 and an infinite sequence of places {vy,} with the property
that each m,,, is unramified and the Satake parameters p,  ; satisfy

-1, —¢ €
Ce o, < I:U"Um,i' < Cely, . -

For example, if we knew that all cuspidal representations on GL,(A) were weakly Ra-
manujan, then we would know that under Langlands liftings between general linear groups,
the property of occurrence in the spectral decomposition is preserved [8].

For n = 2,3 our techniques let us show the following.

Proposition 4.1 Forn =2 or n = 3 all cuspidal representations are weakly Ramanujan.

Proof: First, let m be a cuspidal representation or GL,(A). Recall that from the absolute
| tr(A47,)

convergence of the Euler product for L{s, 7 x 7) we know that the series Z Z g
v

vgsS d
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2
is absolutely convergent for Re(s) > 1, so that in particular we have that Z ltr(%")l
v¢s v
is absolutely convergent for Re(s} > 1. Thus, for a set of places of positivéGE density, we
have the estimate |tr(A,,}|* < gf for each e. Since A,, = A;! for components of cuspidal
representations, we have the same estimate for | tr(A4;1)}.

In the case of n = 2 and n = 3, these estimates and the fact that |det A, | = |wy(w,)| = 1
give us estimates on the coefficients of the characteristic polynomial for A,,. For example,
if n = 3 and the characteristic polynomial of A, is X2 4+ aX? + bX + c then we know
la| = |tr(An)| < @, Bl = | tr(A71) det(Ar,)| < ¢&'%, and |c| = |det(A,,)] = 1. Then an
application of Rouche’s theorem gives that the roots of this polynomial all lie in the circle
of radius ¢ as long as ¢, > 3. Applying this to both A, and A;Ul we find that for our set
primes of positive density above we have the estimate ¢;¢ < |u,,, ;| < ¢5. Thus we find that
for n = 2,3 cuspidal representations of GL,, are weakly Ramanujan. a

4.6 The Generalized Riemann Hypothesis (GRH)

This is one of the most important conjectures in the analytic theory of L-functions. Simply
stated, it is

Conjecture (GRH) For any cuspidal representation w, all the zeros of the L-function
L(s, ) lie on the line Re(s) = 3.

Even in the simplest case of n = 1 and #« = 1 the trivial representation this reduces to the
Riemann hypothesis for the Riemann zeta function!

For an interesting survey on these and other conjectures on L-functions and their relation
to number theoretic problems, we refer the reader to the survey of Iwaniec and Sarnak {27).

5 Converse Theorems

Let us return first to Hecke. Recall that to a modular form
(o]
f(T) — Zane2mn‘r
n—1

for say SL.(Z) Hecke attached an L function L(s, f) and they were related via the Mellin
transform

A(s, f) = (2m)~*T(s)L(s, f) = fo " )y dy

and derived the functional equation for L(s, f) from the modular transformation law for f{7)
under the modular transformation law for the transformation 7 +— —1/7. In his fundamental
paper [24] he inverted this process by taking a Dirichlet series

oo a
D(S) = E

n=1
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and assuming that it converged in a half plane, had an entire continuation to a function
of finite order, and satisfied the same functional equation as the L-function of a modular
form of weight k, then he could actually reconstruct a modular form from D(s) by Mellin
inversion

1 24100

y) = Zaﬂe—zmy = — (2m)"*T(s)D(s)y’ ds

211 Jomioo

and obtain the modular transformation law for f(+) under 7 — —1/7 from the functional
equation for D(s) under s+ k — s. This is Hecke’s Converse Theorem.

In this Section we will present some analogues of Hecke’s theorem in the context of L-
functions for GL,. Surprisingly, the technique is exactly the same as Hecke’s, i.e., inverting
the integral representation. This was first done in the context of automorphic representation
for GLy by Jacquet and Langlands [30] and then extended and significantly strengthened for
GL3 by Jacquet, Piatetski-Shapiro, and Shalika [31]. For a more extensive bibliography and
history, see [10].

This section is taken mainly from our survey [10]. Further details can be found in [7,9].

5.1 The results

Once again, let k be a global field, A its adele ring, and % a fixed non-trivial continuous
additive character of A which is trivial on k. We will take n > 3 to be an integer.

To state these Converse Theorems, we begin with an irreducible admissible representation
IT of GL,(A). In keeping with the conventions of these notes, we will assume that II is unitary
and generic, but this is not necessary. It has a decomposition I1 = &'Il,, where II, is an
irreducible admissible generic representation of GL,(k,). By the local theory of Section 3,
to each II, is associated a local L-function L(s,I1,) and a local e-factor £(s,I1,,4,). Hence
formally we can form

L{s,II) = HL(S,HU) and (8,11, %) He(s Ty, ).

We will always assume the following two things about II:
1. L(s,T1) converges in some half plane Re(s) >> 0,

2. the central character wp of Il is automorphic, that is, invariant under k.

Under these assumptions, £(s, I1, 1) = &(s, II) is independent of our choice of 3 [7].

Our Converse Theorems will involve twists by cuspidal automorphic representations
of GL,,(A) for certain m. For convenience, let us set A(m) to be the set of automor-
phic representations of GL.(A), Ag(m) the set of cuspidal representations of GL,(A), and

= laa

Let 71' = ®'n’, be a cuspidal representation of GL,,(A) with m < n. Then again we can
formally define

s, I x 7' HLs I, x 'y and e(s,wa’)=H€(S,Hu><7f'v,lbv)
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since again the local factors make sense whether I is automorphic or not. A consequence
of (1) and (2) above and the cuspidality of 7' is that both L(s,II x 7') and L{s, T x 7)
converge absolutely for Re(s) >> 0, where II and 7’ are the contragredient representations,
and that £(s, Il x #’) is independent of the choice of 1.

We say that L(s, I1 x 7') is nice if it satisfies the same analytic properties it would if 11
were cuspidal, i.e.,

1. L(s,T1 x 7') and L(s, II x 7?’) have analytic continuations to entire functions of s,
2. these entire continuations are bounded in vertical strips of finite width,

3. they satisfy the standard functional equation

L(s,TT x 7'y = e(s, T x a")L(1 — s, T x 7).

The basic Converse Theorem for GL,, is the following.

Theorem 5.1 Let Il be an irreducible admissible representation of GL,(A) as above. Sup-
pose that L(s,I1 x @') is nice for all 7" € T(n — 1). Then Il is a cuspidal automorphic
representation.

In this theorem we twist by the maximal amount and obtain the strongest possible
conclusion about II. The proof of this theorem essentially follows that of Hecke [24] and
Weil [65] and Jacquet-Langlands [30]. It is of course valid for n = 2 as well.

For applications, it is desirable to twist by as little as possible. There are essentially two
ways to restrict the twisting. One is to restrict the rank of the groups that the twisting
representations live on. The other is to restrict ramification.

When we restrict the rank of our twists, we can obtain the following result.

Theorem 5.2 Let Il be an irreducible admissible representation of GL,(A) as above. Sup-
pose that L(s,II x «') is nice for all # € T(n — 2). Then Il is a cuspidal automorphic
representation.

This result is stronger than Theorem 5.1, but its proof is a bit more delicate.

The theorem along these lines that is most useful for applications is one in which we also
restrict the ramification at a finite number of places. Let us fix a finite set of S of finite places
and let 75(m) denote the subset of 7(m) consisting of representations that are unramified
at all placesv € 5.

Theorem 5.3 Let I1 be an irreducible admissible representation of GL,(A) as above. Let S
be a finite set of finite places. Suppose that L(s,I1 x ©') is nice for all 7’ € T>(n—2). Then
IT is quasi-automorphic in the sense that there is an automorphic representation I' such that

I, ~1I, forallvgsS.

Note that as soon as we restrict the ramification of our twisting representations we lose
information about IT at those places. In applications we usually choose S to contain the set
of finite places v where [I, is ramified.
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The second way to restrict our twists is to restrict the ramification at all but a finite
number of places. Now fix a non-empty finite set of places S which in the case of a number
field contains the set S., of all archimedean places. Let Ts(m) denote the subset consisting
of all representations 7’ in 7 (m) which are unramified for allv ¢ S. Note that we are placing
a grave restriction on the ramification of these representations.

Theorem 5.4 Let IT be an irreducible admissible representation of GLn(A) as above. Let
S be a non-empty finite set of places, containing S, such that the class number of the ring
05 of S-integers is one. Suppose that L(s,I1 x 7') is nice for all 7' € Ts(n — 1). Then 11
is quasi-automorphic in the sense that there is an automorphic representation II’ such that
I, ~ I, for allv € S and allv ¢ S such that both 11, and IT, are unramified.

There are several things to note here. First, there is a class number restriction. However,
if k = Q then we may take S = S, and we have a Converse Theorem with “level 17 twists.
As a practical consideration, if we let Sy be the set of finite places v where I, is ramified,
then for applications we usually take S and Sy to be disjoint. Once again, we are losing all
information at those places v ¢ S where we have restricted the ramification unless II, was
already unramified there.

The proof of Theorem 5.1 essentially follows the lead of Hecke, Weil, and Jacquet—
Langlands. It is based on the integral representations of L-functions, Fourier expansions,
Mellin inversion, and finally a use of the weak form of Langlands spectral theory. For
Theorems 5.2, 5.3, and 5.4, where we have restricted our twists, we must impose certain
local conditions to compensate for our limited twists. For Theorem 5.2 and 5.3 there are a
finite number of local conditions and for Theorem 5.4 an infinite number of local conditions.
We must then work around these by using results on generation of congruence subgroups
and either weak or strong approximation.

5.2 Inverting the integral representation

Let II be as above and let £ € Vj be a decomposable vector in the space Viy of II. Since Il is
generic, then fixing local Whittaker models W(II,,,) at all places, compatibly normalized
at the unramified places, we can associate to & a non-zero function We(g) = [] We, (gv)
on GL,(A) which transforms by the global character ¢ under left translation by Nn(4),
i.e., We(ng) = ¥(n)We(g). Since ¥ is trivial on rational points, we see that W,(g) is left
invariant under N, (k). We would like to use W, to construct an embedding of Vg into the
space of (smooth) automorphic forms on GL,(A). The simplest idea is to average W over
N, (k)\ GL,(k), but this will not be convergent. However, if we average over the rational
points of the mirabolic P = P, then the sum

Ug) = > Welpg)

Np(£)\P(k)

is absolutely convergent. For the relevant growth properties of Ug see [7]. Since Il is assumed
to have automorphic central character, we see that Ug(g) is left invariant under both P(k)
and the center Z, (k).

Suppose now that we know that L(s,II x #’) is nice for all #' € T(m). Then we will
hope to obtain the remaining invariance of Uz from the GL, x GL,, functional equation by
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inverting the integral representation for L(s,Il x n'). With this in mind, let Q = Q,, be
the mirabolic subgroup of GL, which stabilizes the standard unit vector %, that is the
column vector all of whose entries are 0 except the (m + 1)**, which is 1. Note that if
m =n — 1 then Q is nothing more than the opposite mirabolic P =t*P~! to P. If we let o,
be the permutation matrix in GL, (k) given by

1
O = | I,

Inwm41

then Q,, = o;lan_1Pa;? o, is a conjugate of P and for any m we have that P(k) and Q(&)
generate all of GL, (k). So now set

Velg) = D Welomgg)
N'(E)\ Q(k)

where N' = ;! N;, o C Q. This sum is again absolutely convergent and is invariant on the
left by Q(k) and Z(k). Thus, to embed II into the space of automorphic forms it suffices to
show U = V¢, for then we get invariance of U; under all of GL,, (k). It is this that we will
attempt to do using the integral representations.

Now let (7', V,») be an irreducible subrepresentation of the space of automorphic forms
on GL,(A) and assume ¢’ € V;/ is also factorizable. Let

I(s;Ug, ¢’y = /

P U, (h ) & (h)| det(R) "~ /2 dh.
GLm (k)\ GLm (A) 1

This integral is always absolutely convergent for Re(s) >> 0, and for all s if 7’ is cuspidal.
As with the usual integral representation we have that this unfolds into the Euler product

15U = [ we (i 0 ) wldetar-ommr an
Nem(4)\ GLm (A) n—m

= Hf qu (hv 0 )W;, (hv)ldet(hv”:“(ﬂ—m}/z dh,.u
¥ Nom (ky )\ GLm (k) 0 Inim v

=[] wu(ss We. Wy ).
v

Note that unless 7' is generie, this integral vanishes.

Assume first that 7' is cuspidal. Then from the local theory of L-functions from Section
3, for almost all finite places we have W,(s; We,, W, ) = L(s,Il, x #'y) and for the other
places W, (s; We,, W, ) = ey(s; We,, W, )L(s,I1, x 7',) with the e,(s; We,, W, ) entire and
bounded in vertical strips. So in this case we have I(s; U, ¢') = e(s)L(s,II x 7’) with e(s)
entire and bounded in vertical strips. Since L{s;II x #') is assumed nice we may conclude
that 7(s;Ug, ¢') has an analytic continuation to an entire function which is bounded in
vertical strips. When 7’ is not cuspidal, it is a subrepresentation of a representation that
1s induced from (possibly non-unitary) cuspidal representations o; of GL,,(A) for r; < m
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with 3" r; = m and is in fact, if our integral doesn’t vanish, the unique generic constituent
of this induced representation. Then we can make a 51mllar argument using this induced
representation and the fact that the L(s,II x o;) are nice to again conclude that for all 7,
I(s;Ug, ') = e(s)L(s,IT x «') = €/(s) [] L(s, IT x 0}) is entire and bounded in vertical strips.
(See [7] for more details on this point.)

Similarly, consider I(s; V¢, ¢) for ¢’ € V;u with «’ an irreducible subrepresentation of the
space of automorphic forms on GL,,(4), still with

Hsives) = [ eave (")) ) e an
GLm(E)\ GLm(4)

Now this integral converges for Re(s) << 0. However Awhen we unfold, we find
I(5; Ve, @) = [[ 0ol = 55 plinm)We,, Wy, ) = 8(1 = 8)L(L - 5,11 x ')

as above. Thus [ (s; Vg, ¢') also has an analytic continuation to an entire function of s which
is bounded in vertical strips.

Now, utilizing the assumed global functional equation for L(s,II x 7') in the case where
7' is cuspidal, or for the L(s,I1 x o;) in the case =’ is not cuspidal, as well as the local
functional equations at v € Se U Sp U Spr U Sy as in Section 3 one finds

I{(s;Ue,¢') = e(s)L(s, I x ') = &(1 — s)L(1 ~ s, 11 x ) = I{s; V¢, ¢')
for all ¢’ in all irreducible subrepresentations 7' of GL,,(A), in the sense of analytic contin-
uation. This concludes our use of the L-function.
We now rewrite our integrals I(s;Ug, ¢’} and I{(s; Vg, ¢') as follows. We first stratify
GL,(A). For each a € A let GL%(A) = {g € GL,,(A) | det(g) = a}. We can, and will,

always take GL2 (A) = SL,,(4) - (a I ) Let
m~1

n n h
®rle )= | AAGRPOr
SLmn (k)\ GL% (&)
and similarly for (P2 V;, ¢'),. These are both absolutely convergent for all @ and define
continuous functions of @ on k*\A*. We now have that I(s; U, ') is the Mellin transform

of (P~U, ¢')a,
I(s;Ug, ¢') =f (PrUe, @) a|*™ ' d%a,
kX \AX

similarly for I(s; Vg, ¢'), and that these two Mellin transforms are equal in the sense of
analytic continuation. By Mellin inversion as in Lemma 11.3.1 of Jacquet-Langlands [30]
we have that (P?,Us, ¢")a = (PR, Ve, ¢')q for all a, and in particular for @ = 1. Since this is
true for all ¢ in all irreducible subrepresentations of automorphic forms on GL,(A), then
by the weak form of Langlands’ spectral theory for SL,, we may conclude that Pp,. U; = Py, V¢
as functions on P,,,;(A). More specifically, we have the following result.

Proposition 5.1 Let Il be an irreducible admissible representation of GLn(A) as above.
Suppose that L{s,II x «') is nice for all @ € T(m). Then for each £ € Vn we have
Pr U (Imt1) = PV (Imp).

This proposition is the key common ingredient for all our Converse Theorems.
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5.3 Remarks on the proofs

All of our Converse Theorems take Proposition 5.1 as their starting point. Theorem 5.1
follows almost immediately. In Theorems 5.2, 5.3, and 5.4 we must add local conditions to
compensate for the fact that we do not have the full family of twists from Theorem 5.1 and
then work around them. We will sketch these arguments here. Details for Theorems 5.1 and
5.4 can be found in [7] and for Theorems 5.2 and 5.3 can be found in [9].

5.3.1 Theorem 5.1

Let us first look at the proof of Theorem 5.1. So we now assume that IT is as above and that
L(s,II x 7') is nice for all 7' € T(n — 1). Then we have that for all £ € Vi, P*_ | U(1,) =
Pr_Ve(I,). But for m = n—1 the projection operator P?_, is nothing more than restriction
to P,. Hence we have Ug(l,,) = V(1) for all £ € V7. Then for each g € GL,(A), we have
Ue(9) = Unggie(In) = Vigye(In) = Ve(g). So the map € — Ug(g) gives our embedding of TI
into the space of automorphic forms on GL, (A), since now U is left invariant under P(k),
Q(k), and hence all of GL,(k). Since we still have

Ugy= Y. Welpg)

Nn(E)\ P(k)

we can compute that U is cuspidal along any parabolic subgroup of GL,. Hence II embeds
in the space of cusp forms on GL,(A)} as desired.

5.3.2 Theorem 5.2

Next consider Theorem 5.2, so now suppose that n > 3, and that L(s,IT x 7') is nice for all
7' € T(n~2). Then from Proposition 5.1 we may conclude that P} _,U(I,_1) = P?_,Vi(I,_;)
for all £ € Vp1. Since the projection operator P}_, now involves a non-trivial integration over
k""1\A™! we can no longer argue as in the proof of Theorem 5.1. To get to that point we
will have to impose a local condition on the vector £ at one place.

Before we place our local condition, let us write Fy = U — V;. Then F; is rapidly
decreasing as a function on P,_;. We have P, ,F¢(l,_;) = 0 and we would like to have
simply that F¢(l,) = 0. Let u = (u1,...,us—1) € A®! and consider the function

e =re ("3,

Now fe(u) is a function on k" "!1\A™"! and as such has a Fourier expansion

Z ff %(’u

ackn—1

Jela) = fk - Je(u)y_a(u) du.
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In this language, the statement P?_, F¢(I,—1) = 0 becomes fe{e,_;) = 0, where as always, ex
is the standard unit vector with 0’s in all places except the k** where there is a 1.

Note that Fe(g) = Ue(g) — Vi(g) is left invariant under (Z(k) P(k)) N (Z(k) Q(k)) where
Q = Q,,_,. This contains the subgroup

In—2
Rk)y=¢r=| ¢ an1 on 105’ ek™? a1 #0
1
Using this invariance of Fg, it is now elementary to compute that, with this notation,
fn(,)f(en_l) = ff(a) where o = (o, 0,_;) € k"1, Since fg(en-l) = 0 for all £, and in
particular for I1(r)£, we see that for every £ we have ff(a) = 0 whenever a,_; # 0. Thus

few)= D" fela)palw) = Y felo, 00w 0)(w).

agkn—} o' k=2

Hence fe(0,...,0,%n 1) = D ycpn—2 fg(a’,O) is constant as a function of u,_,. Moreover,
this constant is f¢(en-1) = Fe(I,), which we want to be 0. This is what our local condition
will guarantee.

If v is a finite place of k, let o, denote the ring of integers of k,, and let p, denote the
prime ideal of 0,. We may assume that we have chosen v so that the local additive character
1y is normalized, i.e., that 1, is trivial on o, and non-trivial on p;?. Given an integer n, > 1
we consider the open compact group

Koo,u(P5”) = {9 = (gi5) € GLa(0y) |() gin1 €0y for 1 <i<n—2;
(1) gnj€pyr for1<j<n—2
(114) gnno1 € P2}
(As usual, g; ; represents the entry of g in the i-th row and j-th column.)
Lemma Let v be a finite place of k as above and let (I1,, Vi) be en irreducible admissible

generic representation of GL,(k,). Then there is a vector £, € Vy, aend a non-negative
integer n, such that

1. for any g € Koo (p?) we have I1,(g)€, = wi, (gnn)E,

In—‘z
2. [ 1, 1 ul|é& du=0.
pa’ 1
The proof of this Lemma is simply an exercise in the Kirillov model of II, and can be
found in [9].
If we now fix such a place vy and assume that our vector £ is chosen so that &, =
then we have

!
ug?

Fé(Iﬂ) = fg(en_l) = \[01(]3;;'1)-1 fg(o, e ,0, 'U.vo) du,,o

In—2

= VOl(p;Ol -1 \/kl FE 1 Uy duvo =90
Pug 1
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for such £.

Hence we now have Ug(l,) = V¢(I,) for all £ € Vj; such that &, = &, at our fixed
place. If we let G’ = Koo v, (Pue®) G*, where we set G = [, 4vp GLn(k,), then we have this
group preserves the local component &, up to a constant factor so that for g € G’ we have
Ue(9) = Un(g)e(In) = Vauggye(In) = Velg)-

We now use a fact about generation of congruence type subgroups. Let I'; = (P(k) Z(k))N
G', I = (Q(k) Z(k)) NG, and I' = GL,(k) N G". Then U¢(g) is left invariant under I'; and
Ve(g) is left invariant under I';. It is essentially a matrix calculation that together I') and
', generate I'. So, as a function on G', Ug(g) = Vi(g) is left invariant under I'. So if we
let 11" = ®,,,, I, then the map £* +— Uy _gevo(g) embeds Vi into A(T\ G'), the space of
automorphic forms on G’ relative to I'. Now, by weak approximation, GL,(A) = GL,(k) -G’
and I' = GL,(k) " G, so we can extend II*® to an automorphic representation of GL,{A).
Let IIy be an irreducible component of the extended representation. Then Il is automorphic
and coincides with IT at all places except possible .

One now repeats the entire argument using a second place v; # vy. Then we have two
automorphic representations Iy and Iy of GL,(A) which agree at all places except possibly
vg and vy. By the generalized Strong Multiplicity One for GL,, we know that Iy and I1; are
both constituents of the same induced representation = = Ind(oy ® - - - ® 0,.} where each o; is
a cuspidal representation of some GLy, (A4), each m; > 1 and Y m; = n. We can write each
o; = 0f ® |det |% with o unitary cuspidal and ¢; € R and assume ¢t; > --- > {,. If r > 1,
then either my < n— 2 or m, < n — 2 (or both). For simplicity assume m, < n — 2. Let
S be a finite set of places containing all archimedean places, vo, v1, Sn, and S,, for each :.
Taking 7' = 7, € T{n — 2), we have the equality of partial L-functions

LS(s, X x ')y = L%(s, Iy x «') = L%(5,TT; x 7')
=[] L%, 00 xn')y = [[LE(s + t: — 1,07 x &)

Now L*(s, 0, x 7,} has a pole at s = 1 and all other terms are non-vanishing at s = 1. Hence
L(s,11 x ©') has a pole at s = 1 contradicting the fact that L(s, 1 x #'} is nice. If m; < 2,
then we can make a similar argument using L(s, II x o1). So in fact we must have r = 1 and
Iy = II; = = is cuspidal. Since Ily agrees with II at v; and I1; agrees with II at vy we see
that in fact IT = Iy = II; and II is indeed cuspidal automorphic.

5.3.3 Theorem 5.3

Now consider Theorem 5.3. Since we have restricted our ramification, we no longer know
that L(s,I1 x =’} is nice for all 7' € T(n—2) and so Proposition 5.1 above is not immediately
applicable. In this case, for each place v € S we fix a vector £ € Vp, as in the above
Lemma. {(So we must assume we have chosen v so it is unramified at the places in S.) Let
£ = [1,es&, € Ts. Consider now only vectors & of the form £° ® & with £5 arbitrary

h
1 and Pnn—-2vlvf ( 1)

are unramified at the places v € S, so that the integrals I(s; U, ') and I(s; Vg, ¢') vanish
unless ¢'(h) is also unramified at those places in S. In particular, if 7' € 7T(n — 2} but

. ) h
in Vps and £ fixed. For these vectors, the functions P;,_,Ue (
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m’ & T5(n — 2) these integrals will vanish for all ¢' € V. So now, for this fixed class of §
we actually have I(s; U, ¢') = I(s; Ve, ¢) for all ¢’ € Vo for all ' € T(n — 2). Hence, as
before, P _,Ue(In_1) = Ppi_,Ve(I,_1) for all such &.

Now we proceed as before. Qur Fourier expansion argument is a bit more subtle since
we have to work around our local conditions, which now have been imposed before this step,
but we do obtain that Ug(g) = V¢(g) for all g € G' = (I],c5 Koow(¥5*)) G®. The generation
of congruence subgroups goes as before. We then use weak approximation as above, but
then take for II' any constituent of the extension of IT1° to an automorphic representation of
GL,(A).There no use of strong multiplicity one nor any further use of the L-function in this
case. More details can be found in [9].

5.3.4 Theorem 5.4

Let us now sketch the proof of Theorem 5.4. We fix a non-empty finite set of places S,
containing all archimedean places, such that the ring og of S-integer has class number one.
Recall that we are now twisting by all cuspidal representations 7' € Tg{n — 1), that is, 7'
which are unramified at all places v ¢ S. Since we have not twisted by all of 7(n—1) we are
not in a position to apply Proposition 5.1. To be able to apply that, we will have to place
local conditions af all v ¢ S.

We begin by recalling the definition of the conductor of a representation II, of GLy (k)
and the conductor (or level) of IT itself. Let K, = GL,(0,) be the standard maximal compact
subgroup of GL,.(k,). Let p, C 0, be the unique prime ideal of o, and for each integer m, > 0

set
*

Kou(py*) = ¢ 9 € GLn(0,)}g = * ‘| (mod p™)

*
0 --- 0 =%

and K ,(pm™) = {g € Koow(pT™) | gnn = 1 (mod p*)}}. Note that for m, = 0 we have
K1(p%) = Ko (p°) = K,. Then for each local component II, of II there is a unique integer
my > 0 such that the space of K, ,(p™)-fixed vectors in II, is exactly one. For almost
all v, m, = 0. We take the ideal p™ = f(I[,) as the conductor of II,. Then the ideal
n = f(IT) = [[,pT™ C o is called the conductor of II. For each place v we fix a non-zero
vector £2 € I1, which is fixed by K;,(pi*), which at the unramified places is taken to be the
vector with respect to which the restricted tensor product IT = ®'II, is taken. Note that for

g 6 KO:”( Umu) we have Hv(g)g'g = wnu(gn,ﬂ)é-;'
Now fix a non-empty finite set of places S, containing the archimedean places if there are

any. As is standard, we will let Gs = [],cs GLa(k), G® = [[,¢s GLn(ky), s = @yeslly,
I1° = ®451L,, etc. The the compact subring n® =[], pi** C £° or the ideal it determines
ng = kN kgn® C og is called the S—conductor of TI. Let K{(n) = [Togs Kio(py™) and
similarly for K§(n). Let & = ®,¢5f € II°. Then this vector is fixed by K?(n) and
transforms by a character under K3 (n). In particular, since [T,¢s GLn-1(0s) embeds in K3 (n)

1
Now let us return to the proof of Theorem 5.4 and in particular the version of Proposition
5.1 we can salvage. For every vector £s € I1g consider the functions U geo and Veggee. When

. h . . .
via h — ) we see that when we restrict IT° to GL,_; the vector £° is unramified.
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we restrict these functions to GL,,_; they become unramified for all places v ¢ S. Hence
we see that the integrals /{s; Ug;geo, ¢') and I(s; Vesgeo, ') vanish identically if the function
@' € Vi is not unramified for v ¢ S, and in particular if ¢’ € Vi for 7' € T(n — 1)
but 7’ ¢ Ts(n — 1). Hence, for vectors of the form £ = £5 ® £° we do indeed have that
I(s;Ugsgee, ') = I(5; Vegoeo, @) for all ¢’ € Vi and all @ € 7(n — 1). Hence, as in
Proposition 5.1 we may conclude that Ug,geo (1) = Viggee(I,) for all €5 € V. Moreover,
since {5 was arbitrary in Vyi; and the fixed vector £° transforms by a character of K5 (n) we
may conclude that Ugyges(g) = Visgeo(g) for all &5 € Vi, and all g € Gg K3 (n).

What invariance properties of the function Ug,ge have we gained from our equality
with Vi geo. Let us let Ty(ng) = GLn(k) N GsK7(n) which we may view naturally as
congruence subgroups of GL,(0s). Now, as a function on GgKj(n), Us.geo(g) is naturally
left invariant under Ty p(ng) = Z(k) P(k)NGs K§ (n) while Vi gee(g) is naturally left invariant
under Tyq(ns) = Z(k}Q(k) N GsKg(n) where Q = Q,_,. Similarly we set T'|p(ng) =
Z(k)P(k)NGgsK$(n) and Ty g(ns) = Z(k) Q(k) NGs K¥(n). The crucial observation for this
Theorem 1is the following result.

Proposition The congruence subgroup I';(ng) is generated by U';p(ng) and [iqing) for
i=0,1.

This proposition is a consequence of results in the stable algebra of GL, due to Bass
which were crucial to the solution of the congruence subgroup problem for SL, by Bass,
Milnor, and Serre. This is reason for the restriction to n > 3 in the statement of Theorem
5.4.

i From this we get not an embedding of Il into a space of automorphic forms on GL,(A),
but rather an embedding of IIg into a space of classical automorphic forms on Gg. To this
end, for each {5 € Vp, let us set

Des(95) = Ugsaee ((95,17)) = Visoeo ((95,17))

for g € Gg. Then @, will be left invariant under I'1{ng) and transform by a Nebentypus
character xs under 'y(ng) determined by the central character wys of I1°. Furthermore, it
will transform by a character wg = wy, under the center Z(ks) of Gg. The requisite growth
properties are satisfied and hence the map s + @, defines an embedding of Il into the
space A(y(ns)\ Gs; ws, xs) of classical automorphic forms on Gg relative to the congruence
subgroup I'g(ng) with Nebentypus xs and central character ws.

We now need to lift our classical automorphic representation back to an adelic one and
hopefully recover the rest of II. By strong approximation for GL, and our class num-
ber assumption we have the isomorphism between the space of classical automorphic forms
A(To(ns)\ Gs;ws, xs) and the KJ(n) invariants in .A(GL,(k)\ GL,(A);w) where w is the
central character of II. Hence I[Ig will generate an automorphic subrepresentation of the
space of automorphic forms A(GL,(k)\ GL,(A);w). To compare this to our original IT, we
must check that, in the space of classical forms, the ®; ¢ are Hecke eigenforms for a clas-
sical Hecke algebra and that their Hecke eigenvalues agree with those from II. We do this
only for those v ¢ S which are unramified, where it is a rather standard calculation. As we
have not talked about Hecke algebras, we refer the reader to (7] for the details.

Now if we let I’ be any irreducible subrepresentation of the representation generated by
the image of s in A(GL,(k)\ GL,(A);w), then II' is automorphic and we have TI], =~ Ti,
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for all v € S by construction and IT,, ~ IT, for all v ¢ S’ by the Hecke algebra calculation.
Thus we have proven Theorem 5.4.

5.4 Converse Theorems and liftings

In this section we would like to make some general remarks on how to apply these Converse
Theorems to the problem of functorial liftings [3].

In order to apply these these theorems, you must be able to control the global properties
of the L-function. However, for the most part, the way we have of controlling global L-
functions is to associate them to automorphic forms or representations. A minute’s thought
will then lead one to the conclusion that the primary application of these results will be to
the lifting of automorphic representations from some group H to GL,,.

Suppose that H is a split classical group, 7 an automorphic representation of H, and p
a representation of the L-group of H. Then we should be able to associate an L-function
L(s,m, p) to this situation [3]. Let us assume that p :’H — GL,{C) so that to 7 should be
associated an automorphic representation II of GL,(A). What should IT be and why should
it be automorphic.

We can see what II, should be at almost all places. Since we have the (arithmetic)
Langlands (or Langlands-Satake) parameterization of representations for all archimedean
places and those finite places where the representations are unramified [3], we can use these
to associate to m, and the map p, :* H, - GL,(C) a representation II, of GL,(k,). If H
happens to be GL,, then we in principle know how to associate the representation II, at
all places now that the local Langlands conjecture has been solved for GL,, [23, 26}, but
in practice this is still not feasible. For other situations, we do not know what II, should
be at the ramified places. We will return to this difficulty momentarily. But for now, lets
assume we can finesse this local problem and arrive at a representation I1 = ®'Il, such that
L(s,, p) = L(s,11). II should then be the Langlands lifting of = to GL, associated to p.

For simplicity of exposition, let us now assume that p is simply the standard embedding
of 'H into GL,(C) and write L(s, m, p) = L(s,n) = L(s,II). We have our candidate II for
the lift of = to GL,,, but how to tell whether II is automorphic. This is what the Converse
Theorem lets us do. But to apply them we must first be able to define and control the
twisted L-functions L(s, 7 x 7') for 7’ € T with an appropriate twisting set 7 from one of
our Converse Theorems. This is one reason it is always crucial to define not only the standard
L-functions for H, but also the twisted versions. If we know, from the theory of L-functions
of H twisted by GL,, for appropriate «', that L{s, # x 7’} is niceand L{s, 7 x7') = L(s,Hx=')
for twists, then we can use Theorem 5.1 or 5.2 to conclude that IT is cuspidal automorphic
or Theorem 5.3 or 5.4 to conclude that II is quasi-automorphic and at least obtain a weak
automorphic lifting I1' which is verifiably the correct representation at almost all places. At
this point this relies on the state of our knowledge of the theory of twisted L-functions for
H.

Let us return now to the (local) problem of not knowing the appropriate local lifting
7, ++ Il, at the ramified places. We can circumvent this by a combination of global and
local means. The global tool is simply the following observation.

Observation Let II be as in Theorem 5.3 or 5.4. Suppose that 1 is a fized (highly ramified)
character of k*\A™ . Suppose that L(s,I1 x 7'} is nice for all 7' € T @1, where T is either of
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the twisting sets of Theorem 5.3 or 5.4. Then Il is quasi-automorphic as in those theorems.

The only thing to observe, say by looking at the local or global integrals, is that if #’ € T
then L(s,TI x (7' ® 1)) = L(3,(II ® ) x 7') so that applying the Converse Theorem for
11 with twisting set 7 ® n is equivalent to applying the Converse Theorem for II ® n with
the twisting set 7. So, by either Theorem 5.3 or 5.4, whichever is appropriate, Il ® 1 is
quasi-automorphic and hence II is as well.

Now, if we begin with = automorphic on H{A), we will take T to be the set of finite
places where m, is ramified. For applying Theorem 5.3 we want S = T and for Theorem 5.4
we want SNT = . We will now take 1 to be highly ramified at all placesv € T. Soatv €T
our twisting representations are all locally of the form (unramified principal series)®(highly
ramified character).

We now need to know the following two local facts about the local theory of L-functions
for H.

1. Multiplicativity of v-factors: If n', = Ind(n’y, ® 7'2,), with 7’;, and irreducible ad-
missible representation of GL,, (k,), then

Y8,y X Ty, hy) = (8, Ty X T 0y Y }Y(8, Ty X T2y, ty)

and L(s, 7, x 7,)7? should divide [L(s, 7, x 7'y, )L(s, m x 7'5,)] 7

If m, = Ind(o, ® 7} with o, an irreducible admissible representation of GL,(k,) and
7! an irreducible admissible representation of H'(k,) with H' C H such that GL, x H'
is the Levi of a parabolic subgroup of H, then

(8, Ty X Ty ) = V(8,05 X Ty, W)y (8, T, % Ty, W )Y(8, Ty X Ty, 1),

2. Stability of v-factors: If m,, and m,, are two irreducible admissible representations of
H(k,), then for every sufficiently highly ramified character n, of GL,(k,) we have

Y(8, M1 0 X My Wy) = V(8, T20 X Ty, Vo)

and
L(s, M4 X ny) = L(s, M, X 1) = 1.

Once again, for these applications it is crucial that the local theory of L-functions is
sufficiently developed to establish these results on the local y-factors. As we have seen in
Section 3, both of these facts are known for GL,.

To utilize these local results, what one now does is the following. At the places where m,
is ramified, choose I, to be arbitrary, except that it should have the same central character
as 7,. This is both to guarantee that the central character of II is the same as that of 7
and hence automorphic and to guarantee that the stable forms of the y—factors for 7, and
I1, agree. Now form II = ®'I1,. Choose our character n so that at the places v € T we have
that the L- and y—factors for both m, ® 5, and II, & 7, are in their stable form and agree.
We then twist by 7 ® 7 for this fized character n. If 7’ € T ®n, then for v € T, 7', is of the
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form n', = Ind(py,; @ -+ @ Yhym) ® My with each p,; an unramified character of £¥. So at
the places v € T we have

Y(s, Ty X 7'y) = y(8, My X (Ind(pty) ® -+ ® tom) @ Ny))
= H Y(s, To ® (7)) (by multiplicativity)

= H (s, I, @ (pyimy)) (by stability)
= v(5, I, x (Ind{tts) ® - - @ ptym) ® M) (by multiplicativity)
= (s, I, x 7,)

and similarly for the L-factors. ;From this it follows that globally we will have L{s, 7 x 7') =
L{s,IT1 x 7') for all 7' € T @ n and the global functional equation for L(s, 7 x 7'} will yield
the global functional equation for L(s,II x 7"). So L(s,II x ©') is nice and we may proceed
as before. We have, in essence, twisted all information about 7 and II at those v € T away.
The price we pay is that we also lose this information in our conclusion since we only know
that IT is quasi-automorphic. In essence, the Converse Theorem fills in a correct set of data
at those places in T to make the resulting global representation automorphic.

5.5 Some liftings

To conclude, let us make a list of some of the liftings that have been accomplished using
these Converse Theorems. Some have used the above trick of multiplicativity and stability
of y—factors to handle the ramified places. Others, principally those that involve GL,, have
adopted a technique of Ramakrishnan [50] involving a sequence of base changes and descents
to get a more complete handle on the ramified places.

1. The symmetric square lifting from GL; to GL3 by Gelbart and Jacquet [15].
2. Non-normal cubic base change for GL, by Jacquet, Piatetski-Shapiro, and Shalika [32].
3. The tensor product lifting from GL; X GL; to GL,4 by Ramakrishnan [50].

4. The lifting of generic cusp forms from SOy, ,; to GL,, with Kim, Piatetski-Shapiro,
and Shahidi [6).

5. The tensor product lifting from GL, x GL3 to GLg and the symmetric cube lifting from
GL; to GL4 by Kim and Shahidi [40].

6. The exterior square lifting from GL, to GLg and the symmetric fourth power lift from
GL2 to GL5 by Kim [39]

For the most part, it was Theorem 5.3 that was used in each case, with the exception of (4),
where a simpler variant was used requiring twists by 7°(n — 1). For the non-normal cubic
base change both Theorem 5.3 with n = 3 and Theorem 5.1 with n = 2 were used.
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