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1 Introduction

The simplest kind of automorphic forms (apart from Grossencharacters,
which will also be discussed in this conference) are the “elliptic modular
forms”. We will study modular forms and their connection with automorphic
forms on GL(2) , in the sense of representation theory.

Modular forms arise in many contexts in number theory , e.g. in questions
involving representations of integers by quadratic forms, and in expressing
elliptic curves over Q as quotients of Jacobians of modular curves , etc.

The simplest modular forms are those on the modular group SL(2,Z) We
will first define modular forms on SL(2,Z). In section 2, we will describe
a fundamental domain for the action of SL(2,Z) on the upper half plane
b . In section 3, we will define modular forms for SL(2,Z) and construct
some modular forms. In section 4, a representation theoretic interpretation
of modular forms will be given, which will enable us to think of them as
automorphic forms on GL(2,R). In section 5, we will give an adelic version
of modular forms, define Hecke operators and show the commutativity of the
Hecke operators.



2 A Fundamental domain for SL(2,Z)

Notation 2.1 Denote by h the “Poincare’ upper half-plane” i.e. the space
of complex numbers whose imaginary part is positive :

hb={z€Cz=z+1iy, z, y€ R, y >0}

If z € C, denote respectively by Re(z) and Im(z) the real and imaginary

parts of z.
On the upper half plane §, the group GL(2,R)* of real 2 x 2 matrices

with positive determinant operates as follows: let ¢ = ((CI 2) € GL(2,R)*,

and let z € h. Set g(z) = (az + b)/(cz + d) . Notice that if cz+d =0

and ¢ # 0 then, 2 = —d/c is real, which is impossible since z has positive
imaginary part. Thus, the formula for g(z) makes sense. Observe that
Im(g(2)) = Im(2)(det(g))/ | cz +d [*. (1)

The equation (1) shows that the map (g, z) — g(z) takes GL(2,R)* x b into
h. One checks immediately that this map gives an action of GL(2,R)* on
the upper half plane . Note also that
| ez + d [*= c*y® + (cz + d)>. (2)
Therefore, | cz + d [*> y? or 1 according as | ¢ |= 0 or nonzero. Therefore,
Im(y(z)) < y/min{1,y*} Vv ey C SL(2,2Z), (3)

where min{1, 3°} denotes the minimum of 1 and y? and [y C SL(2, Z) is the
group generated by the elements 7 = (}1) and S = (_1§). Later we will
see that I'g is actually SL(2, Z). The element T acts on the upper half plane
b by translation by 1:

T(z) = ((1) }) (z)=z+1 Vzeb. (4)
Similarly, the element S acts by inversion :
S(z) = (_‘IJ é) (z) = —1/z Vz€b. (5)

Consider the set (see diagram 1)

F={zeh;—-1/2 < Re(z) <1/2, |z|>1, and 0 < Re(z)} if |z |=1.



Theorem 2.2 Given z € b there is a unique point zg € F' and an element
v € SL(2,Z) such that y(z) = 29 . Moreover, given v € SL(2,Z), we have
Y(FYN F = ¢ unless v lies in a finite set { of elements of SL(2,Z} which
fir the point w = 1/2 +i3Y2/2 € b or i € b). [one then says that F is a
fundamental domain for the action of SL(2,Z) on the upper half plane b].

Proof : We will first show that any point z on the upper half plane can
be translated by an element of the subgroup 'y of SL(2,Z) (generated by
T(}1)and S =( Q1)) into a point in the “fundamental domain” F.

Now, given a real number z, there exists an integer k¥ such that —1 /2 <
= + k < 1/2. Therefore, the equation (4) shows that given z € } there exists
an integer k such that the real part z' of T%(z) satisfies the inequalities
~1/2< 2 <1/2.

Let y denote the imaginary part of z and denote by S, the set

S, = {v(2);v € Lo, Im(y(2)) 2y ,-1/2 < R(7(2)) <1/2}.

We will first show that S, is nonempty and finite. Let & be as in the previous
paragraph. Then —1/2 < Re(T*(z)) < 1/2 and Im(T*(z) = Im(2); therefore,
T*(z) lies in S, and S, is nonempty.

Now, the equation (3) shows that the imaginary parts of elements of
the set S, are all bounded from above by y/minl,y?. By definition, the
imaginary parts of points on S, are bounded from below by y . The definition
of S, shows that S, is a relatively compact subset of h . We get from (3)
that | ez +d [2< 1 ; now (2) shows that | ¢ |< 1/y% Suppose vy € 1o = 2}
is such that v(z) € S, then, c is bounded by 1/y* and is in a finite set. The
fact that cz + d is bounded now shows that d also lies in a finite set. Since S5,
is relatively compact in b, it follows that v(z) = (az + b)/(cz + d) is bounded
for all v(z) € S,; therefore, az + b is bounded as well, and hence a and b run
through a finite set. We have therefore proved that S, is finite.

Let yo be the supremum of the imaginary parts of the elements of the
finite set S,; let S| = {2’ € S,;Im(2') = yo} and let zy € S; be an element
whose real part is maximal among elements of S;. We claim that z € F.
First observe that if 2 € S, then S(2') = —1/2' has imaginary part yo/ |
z [*)= Im(2')/ | 2 |*< yo whence | 2’ |*> 1. If | 2o |> 1, then it is immediate
from the definitions of F and S, that 2, € F. Suppose that | 29 |= 1. Then,
S(z) = —1/2p also has absolute value 1 , its imaginary part is yo and its real
part is the negative of Re(z); hence S(z) € S1. The maximality of the real
part of zy among elements of S; now implies that He(z) > 0. Therefore,
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zp € F. We have proved that every element z; may be translated by an
element, of [y into a point in the fundamental domain F.

Suppose now that z € Y"1 (F)NF for somey € SL(2,Z). Writey = (2})
with a,b,¢,d € Z and ad — bc = 1. Suppose that Im(y(z)) > Im(z) = y
(otherwise, replace z by v(z)). Then, by (3) one gets

(cz+d)?+ 2y < 1. (6)
Since z € F, we have 224+ 4? > 1 and 0 < z < 1/2. therefore y* > 3/4 and
(1 2)c*y® > c*4/3. (7)

This shows that ¢ < 1 since ¢ is an integer.

Suppose ¢ = 0. Then, ad = 1, a,d € Z and we may assume (by
multiplying by the matrix —Id [minus identity] if necessary) that d = 1.
Hence v = (}¢). Then, v(z) = z+ b € D which means that 0 < z+b < 1/2
and 0 < z < 1/2. Thus, —1/2 < b < 1/2,i.e. b =0 and -y is the identity
matrix.

The other possibility is ¢ = 1, and by multiplying by the matrix —Id
(minus identity) we may assume that ¢ = 1. Suppose first that d = 0. Then
, bc = —1 whence b = —1. Now, (7) shows that z? + y? < 1. Moreover,

¥(z) =az+blz=a+bz/|z|*=a~-%

whence its real part is ¢ — z which lies between 0 and 1/2. Since 0 <z <1

it follows that 0 < a < 1. If a = 0 then v = (10 _01) and lies in the isotropy

of the point : € h. If a = 1 then, v = (11 "01) which lies in the isotropy of the

point w = 1/2 +i3%/2/2,

We now examine the remaining case of ¢ = 1 and d # 0. From (6) we
get (z +d)? +y? < 1. If d > 1 then the inequality 0 < z < 1/2 shows that
1 < d < z + d which contradicts the inequality (z + d)? + y* < 1, which is
impossible. Thus, d < —1 ; then the inequality 0 < z < 1/2 implies that
z+d < 1/2+(-1) = —-1/2 whence (z + d)? > 1/4. Since y* > 3/4 the
inequality {(z+d)2+y? < 1 implies that equalities hold everywhere: y? = 3/4,
z=1/2andd = —1. Thus, 2 =wand z—1 = 2% Since 1 = ad—bc = —a~b
(d=—1and ¢ = 1), and

v(z) = (az+b)/(2—1) = (az+b}/2* = —~(az+b)z = a+(—a—b)z = a+2z € D,

the real part of ¥(z) is a + z = a + 1/2 and is between 0 and 1/2, i.e.
~1/2<a<0ie a=0andb=—1. Therefore, v = § 7] lies in the isotropy
of w. This completes the proof of Theorem (2.2}.
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Corollary 2.3 The group SL(2,Z) is generated by the matrices T = ({1)
and S = (9 §).

Proof In the proof of Theorem (2.2), a point on the upper half plane is
brought into the fundamental domain F by applying only the transformations
generated by S and T'. The fact that the points oin the fundamental domain
are inequivalent under the action of SL(2,Z) now implies that SL(2,Z) is

generated by S and T .
(the Corollary can also be proved directly by observing that ST-1571 =

10} . Now, the usual row-column reduction of matrices with integral entries

implies that 7" and STS~! generates SL(2, Z)).

Notation 2.4 Elliptic Functions. We recall briefly some facts on elliptic
functions (for a reference to this subsection, see Ahlfors’ book on Complex
Analysis). Given a point 7 on the upper half plane b, the space I'; = Z® Z7
of integral linear combinations of 1 and 7 forms a discrete subgroup of C
with compact quotient. The quotient

E, = C/T,

may be realised as the curve in P*(C) whose intersection with the comple-
ment of the plane at infinity is given by

y? =4z — gox ~ g3 (8)

The curve E, = C/T'; is called an “elliptic curve”.
The map of C/T; to P?is given by z — (g'(2), p(2), 1) for z € C. Recall
the definition of p: if z € C and does not lie in the lattice I';, then write

p(2) = 1/28 + Y _(1/(z +w)* = 1/w?),

where E' is the sum over all the non-zero points w in the lattice I';. The
derivative g'(z) of p(z) is then given by

f(z) =Y 1/(z+w),

where the sum is over all the points of the lattice I';. One has the equation
(cf. equation (8))

' (2)° = 4p(2)® — g2(7)p(2) — ga(T) (9)



a b

Ify= (c d
is isomorphic as an algebraic group (which is also a projective variety) to the
elliptic curve E;. The explicit isomorphism on C is given by z + z/(c7 +d).
It is also possible to show that if F\. and E,. are isomorphic elliptic curves,
then 7' is a translate of 7 by an element of SL(2,Z).

Thus the fundamental domain F which was constructed in Theorem (2.2)
parametrises isomorphism classes of elliptic curves .

In equation (9) , recall that the coefficients g, and g3 are given by

€ SL(2,Z) and 7 € SL(2, Z), then the elliptic curve E,,

92(7) = 60G4(7) = 60 Z(mT 4+ )
and |
93(7) = 140Gs(r) = 1403 _(m7 +n)~*

where 5 is the sum over all the pairs of integers (m,n) such that not both
m and n are zero. The discriminant of the cubic equation in (9) is given by
1/(16)A(7) where

A(r) = g5 — 27g3. (10)
It is well known and easily proved that g'(z) has a simple zero at all the 2-
division points 1/2,7/2 and (1 + 7)/2 and that p(1/2),p(7/2) and p((1 +
7)/2) are all distinct. Thus the discriminant of the cubic in equation (9) is
non-zero and so we obtain that

A(T) #0 (11)

for all 7 € h.



3 Modular forms; Definition and examples

Notation 3.1 Given z € § (b is the upper half plane) and an element g =
(a5), write

jlg,z) = cz +d.
Note that if j(g, z) = 0, then by comparing the real part and imaginary parts
we get ¢ = 0 and d = 0 which is impossible since ad — bc # 0. Thus, j(g, 2)
is never zero.

Definition 3.2 A function f : § — C is weakly modular of weight w if
the following two conditions hold.

(1) f is holomorphic on the upper half plane.

(2) for all vy € SL(2,Z), with v = (2}) , we have the equation

fllaz +b)/(cz + d)) = (cz + d)¥ f(z). (12)
Given g = (¢%) and a function f on the upper half plane b, define
gt *f(z) = (cz+d)™ f(g(2)) Vz€D.

Then, it is easily checked that the map (g, f) — ¢~! * f defines an action
of GL(2,R) on the space of functions on h. Thus, the condition (2) above
is that the function f there is invariant under this action by SL(2,Z). Now
by Corollary (2.3) , SL(2,Z) is generated by the matrices § = (% g) and
T = (}1!). Thus condition (2) is equivalent to saying that y~' * f = f for
v = 8,T. This amounts to saying that

f(~1/z) = z¥f(z) (13)
and
f(z+1) = f(z). (14)

Note that the invariance of f under the action of —1 where 1 is the identity
matrix in SL(2, Z) implies that f is zero of w is odd: f(z) = (—=1)*f(=2).
Therefore, we assume from now on (while considering modular forms for the
group SL(2,Z) ) that w = 2k where k is an integer.



Definition 3.3 The map exp : h — D* given by z — €2"#*) = ¢ is easily seen
to be a covering map of the upper half plane h onto the set D* of non-zero
complex numbers of modulus less than one. The covering transformations
are generated by T(z) = 2z + 1. A weakly modular function f is invariant
under T' and therefore yields a holomorphic map f* : D* — C given by
f*(g) = f(2) for all z € h. We say that a weakly modular function of weight
w is a modular function of weight w if f* extends to a holomorphic
function of D (the set of complex numbers of modulus less than one ) i.e. f*
extends to 0 € D.

Let f be a weakly modular function on h. Then, f is a modular func-
tion if and only if the function f* has the “Fourier expansion” (or the “q-
expansion”)

f*(Q) = Zanqﬂ: (15)

n>¢

where a,, are complex numbers and the summation is over all non-negative
integers n. Observe that a weakly modular function is modular if and only
if it is bounded in the fundamental domain F.

We will say that a modular form is a cusp form if the constant term of
its g-expansion is zero: i.e. ag = 0 in the notation of equation (15).

Notation 3.4 Examples of modular forms.

First we note that if f and g are modular forms of weights w and w' then,
the product function fg is a modular form of weight ww'.

We will first prove that for the modular group SL(2,Z), there are no
non-constant “weight zero” modular forms. First note that if f is a weight
zero modular form, then the function f* extends to 0 and hence is bounded
in a disc of radius r < 1. Its inverse image under exp : F — D* is precisely
the set A = {z =z +14y € F;y > —logr} and f is bounded on the set A.
The complement of the set A in the fundamental domain F is compact, and
f is bounded there as well, whence f is bounded on all of the fundamental
domain F as well as at “infinity”. By the maximum principle, f is constant.

We will now show that there are no modular forms of weight two on
SL(2,Z). Suppose f is one and F(z) be its integral from zg to z for some fixed
zp € h . The modularity of f shows that v — F(+v(z) gives a homomorphism
from SL(2,Z) to C. But, SL(2,Z) is generated by the finite order elements
S and ST whence, this homomorphism is identically zero. This and the
modularity of f shows that the integral ' is invariant under SL(2,Z). It is
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easy to show that F* is holomorphic at 0 (integrate both sides of equation
(15)), and use the invariance of F under T'). Hence F is a modular form of
weight zero. By the foregoing paragraph, f is a constant , i.e.f = 0.

Fix an even positive integer 2k, with & > 2. We will construct a modular
form of degree k& as follows. Let 7 € h and write (compare the definition of
g2 and g4 in section (2.4))

’

Gae(r) =Y (mr +n)7%, (16)

where E’ is the sum over all the pairs of integers (m, n) not both of which are
zero. Then, Gy is easily shown to be a weakly modular function of weight
2k on the upper-half plane. If 7 is varying in the fundamental domain and
its imaginary part tends to infinity, then it is clear from the formula for Gy

that Gox(7) tends to 3 n=2 = 2¢(2k) where

() =) n°

is the Riemann zeta function (the sum is over all the positive integers n and
in the sum, the real part of s exceeds 1). Consequently, G is a modular
form of weight 2k. We will now outline a derivation of the g-expansion of
Gy Start with the partial fraction expansion

meot(mz) = 271 + Z(z +n) 4+ (z —n)7! (17)

where the sum is over all positive integers n. This series converges uniformly
on compact subsets of the complement of Z in C.

Write ¢ = €2™# (where i € h and i2 = —1). Then one has the q-expansion
neot(mz) = ni(g+1)/(¢— 1) = —7i ~ 271 Zq" (18)
n=>1

Differentiate 2k- times , the right-hand sides of equations (17) and (18)
with respect to z. We then get the equality

Sz +n)7H = ((2k — 1)) 2wy Y pklgn (19)
nez n>1
Fix m and in equation (19) take for z the complex number mr. Then sum
over all . We obtain by equations (16) and (18), the g-expansion

Gar(r) = 2C(2k) + ((2k — D)7 2mi)* > oa_1q™ (20)

n>1



where for an integer r and n > 1, o,.(n) is defined to be the sum >~ d" where
d runs over the positive divisors of n.
By using the power series expansion

(1+z)” Zm; -1

n>1

and equation (17) one has the power series identity

neot(mz) = 27 +222n2-’ -l = "1+22C(2j)z2j_1 (21)

a>1 j>1 j>1

By comparing the power series expansions cos(z) = Y, .,((2m)!)~1z*™
and sin(z) = 3, 5,((2m +1)1)~1z?™*! with the right hand side of equation

(21) one obtains

¢(2) = 7%/6, ¢(4) = 7*/90 and((6) = °/(3%.5.7). (22)
Using (20) and (22) we get
g2 = 60G,4 = (4/3)7* + 1607* (g +--+) (23)

where the expression ¢ + --- is a power series in ¢ with tntegral coefficients
with the coefficient of ¢ being 1. Similarly, we get (again from (20) and (22))

g3 = 140G = (8/27)7% — 2°.72%/3(g + - - +) (24)
Therefore, we get, after some calculation, that for all z € b,
A(2) = gao(2)® — 27g3(2)? = 2 (g + > _ T(n)q") (25)
n>2

where 7(n) are integers. We recall that A(z) is never zero on the upper-half
plane (section (2.4)). The equation (26) shows that the coefficient of ¢ in
g-expansion of A is non-zero, (and that its constant term is zero).

Lemma 3.5 There are no modular forms of negative degree.

Proof . Suppose that f is a modular form of degree —I with { > 0. Form
the product g = f12A!. Since f and A are modular forms , so is the product.
Since its degree is zero, g is a constant (see the beginning of this subsection).
But, (26) shows that the g-expansion of g has no constant term. Hence g =0
whence, f = 0.
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Lemma 3.6 Suppose that f is a cusp form. Then A divides f i.e., there is
a modular form g such that f = Ag. In particular, the weight of f is at least
12,

Proof Consider the quotient g = f/A. Since A has no zero in b, it follows
that g is holomorphic in h. Clearly, ¢ is weakly modular of weight =weight
of f -12. Now the g-expansion of f (and also A), has no constant term; and
the coefficient of g in the g-expansion of A is non-zero. Therefore, g*extends
to a holomorphic function in a neighbourhood of 0. That is, g is a modular
function.Since the weight of g is non-negative (by Lemma (3. )), it follows
that the weight of f must be at least that of A, namely, 12.

Corollary 3.7 The space of cusp forms of weight 12 (for SL(2,Z) , Jis one
dimensional.

Proof If f is a cusp form of weight 12, then f/A is a modular form of
weight zero, hence is a constant. That is, the space of cusp forms of weight
12 is spanned by A.

Theorem 3.8 The space of modular forms of weight 2k with k > 0 s
spanned by the modular forms GJGg with 4m + 6n = 2k.

Proof Argue by induction on k. We have already excluded the possibilities
k<Oand k=0and k = 1.

Suppose that k > 2 and that f is modular of weight 2k. First observe
that any integer k£ > 2 may be written as 2m + 3n for non-negative integers
m and n. Now, the g-expansion of G4 and G have non-zero constant term.
Hence h = f — AGT'GE) for a suitable constant A, has no constant term in its
q-expansion, and is a cusp form. Now, Lemma (3. ) shows that g =h/Aisa
modular form of weight 2k —12. By induction, g is a linear combination of the
modular forms G¢G with & — 6 = 2a + 3b whence, h is a sum of monomials
of the form GEGY with 2p 4+ 3¢ = k (recall that A is (60G4)® — 27(140Gs)?)
. Therefore, so is f.
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4 Modular Forms and Representation The-
ory

Notation 4.1 We will begin with some calculations on the Lie algebra g of
the group GL(2,R). Write,

X:(g (1))1/=((1] 8),2:((1] {1)),a,ndH=(_(1J [1}) (26)

The complexified Lie algebra of GL(2,R) is M3(C) the space of 2 x 2
matrices with complex entries ; the Lie algebra structure is given by (a, b) —
(a,b] = ab—ba; M3(C) is spanned by X,Y, Z and A. Write A = —iH (where
i € b is the unique element whose square is -1). Then, 4 acts semisimply
(under the adjoint action) on g with real eigenvalues. Write

g=CE*oCE ¢ CZaCA (27)
where
E- =X+ - (i/2)A—- (i/2)Z and Et = X — Y — (i/2)A+ (i/2)Z.
(28)

Then E~ and E* are eigenvectors for A with eigenvalues —2 and 2 respec-
tively. Of course, on A and Z, A acts by 0. Thus, the complex Lie algebra
spanned by E+, E~ and A is isomorphic to sly(C).

Definition 4.2 Fix the subgroup K, = O(2) of GL(2,R) . This is the
group generated by

o= - (8 N vem o

and

L= (—é (1)) (30)

Then, O(2) is a maximal compact subgroup of GL(2,R). Suppose that (7, V)
is a module for g as well as for O(2) such that the module structures are
compatible. That is, suppose that v € V and £ € g, and ¢ € O(2). Then,

m(a)m(€)(v) = 7 ((a(£))(v)
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where o(£) is the inner conjugation action of O(2) on the Lie algebra g. One
then says that (7, V) is a (g, Koo )-module. If , as a K-module, (7,V) is a
direct sum of irreducible representations of K, with each irreducible repre-
sentation occurring only finitely many times, then one says that the (g, K )-
module is admissible. One then sees at once that a (g, K, )-submodule (or
a quotient module) of an admissible module is also admissible. One says
that a vector v € V generates (m,V) as a (g, O{2))-module, if the smallest
submodule of V' containing v is all of V.

We will now prove the basic fact from representation theory which we
will use.

Theorem 4.3 Let (7, V) be a (g, K )-module. Suppose that v € V has the
following properties:

(1) v generates V.

(2) The connected component SO(2) of O(2) acts by the character deter-
mined by Rg(v) = e*™®™y | for some positive integer m (i.e. A acts by

the eigenvalue m) .
(8) E~(v) =0 and Z{v) = 0.

Then the (7, V) is admissible and irreducible.

Proof Let u(g) denote the universal enveloping algebra of the Lie-algebra
g. One has the decomposition (the Poincare’-Birkhoff-Witt Theorem)

u(g) = u(g).[E7] + u(g) {Z] ® C[E¥] ® C[4] (31)

where C[£] denotes the algebra generated by the operator £. Therefore, if (as

in 30)
. (—1 O)
01

then by assumptions (1) and (2) of the Lemma ,
V = CIE*](v) & lCIE*(v), (32)

On E7 the element A acts by the eigenvalue 2. Therefore, for an integer
p > 0, the element (E*)?(v) is an eigenvector for A with eigenvalue (2p+m),
and ¢(E*)?(v) is an eigenvector with eigenvalue (—2p — m) (note that under
the conjugation action of ¢, the element A goes to —A , hence : takes an
r-eigenspace for A into the —r-eigenspace ). Since all these weights are
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different, equation 32 shows that V is admissible as an SO(2) module (A
generates the complexified Lie algebra of SO(2)}. In fact, equation 32 shows
that the multiplicity of an irreducible representation of SO(2) in V is at most
one, i.e. V is admissible.

Suppose that W C V is a submodule. In the last paragraph, we saw that
the action of A on V is completely reducible; hence the same holds for W.
Suppose that w is a weight vector in W of weight j, say. By replacing w
by ¢(w) if necessary, we may assume that 7 > 0. The last paragraph shows
that j = 2p + m for some p > 0 and also that (E*)?(v) = w (upto scalar
multiples). We may assume that p is the smallest non-negative integer such
that W contains the eigenvector (E*)?(v) = w with eigenvalue 2p + m. The
minimality of p implies that E~(w) = 0. Let W' be the submodule of W
generated by the vector w. To prove the irreducibility, it is enough to show
that W/ = V. We may assume then that W = W".

Since v generates V and Z annihilates v, it follows that Z acts by zero
on all of V. Therefore, the vector w satisfies all the properties that v does
in the assumptions of the Theorem (except that in (2) the eigencharacter is
2p + m). Therefore, cf. equation 32 , we have

W = ClE*|(w) @ «C[ET|(w) = CIE¥|(E¥)P(v) @ (LEF](ET)(v).  (33)

Now the equations 32 and 33 show that the codimension of W in V is finite:
dim(V/W) < co. Hence V/W also satisfies the assumptions of the Theorem,
but is finite dimensional. This is impossible by the finite dimensional repre-
sentation theory of si(2,C): a lowest weight vector (i.e. one killed by E~ of
sl(2) ) cannot have positive weight for A. This shows that V/W = 0 i.e.
W=V.

Proposition 4.4 Given m > 0, there is ¢ unique trreducible (g, Koo)-
module p,, which satisfies the properties of 4.5. The uniqueness follows easily
from the above proof.

Proof Let x,, denote the one dimensional complex vector space on which
the group SO(2) acts by the character Ry — e>™™¥ (where Ry is, as in 29,
the rotation by # in 2-space). Consider the space

u(g) ® Xm-

This is a representation for SO(2) (as well as for the universal enveloping
algebra u(g)). Let p, be the O(2)-module induced from this SO(2)-module.
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Then, p,, satisfies the properties of Theorem (4. )} and is therefore irre-
ducible. Moreover, it is clear that any module V' of the type considered in
4.3 is a quotient of p,. By irreducibility, V = pp,.

We are now in a position to state the precise relationship of modular
forms with representation theory.

Notation 4.5 Let f be a modular form of weight 2k with £ > 0. We will
now construct a function on the group G+ = GL(2,R}* as follows. Set

Fy(g) = j(9,9) ™" f(g(s))det(g)*

where i € b is the point whose isotropy is the group SO(2) as in equation
29. As before, j(g,i) = cz + d , where

g=(%5).

By using the modularity of f and the equation j(gh, 2z} = j(g, h(z))i(h, z)
for the “automorphy factor” j(g,z) , it is easy to see that Fy is invariant
under left translation by elements of SL(2,Z) and also under the centre Z

of GL(2,R}.
We will now check that the (g, O(2)-module generated by Fy is isomorphic
to por, with pox as in 4.4. Note that Fy is contained in the space

C® (2o GL(2, Z\GL(2, R),

the space of smooth functions on the relevant space and that the latter is a
(g, O(2))-module under right translation by elements of G L(2, R).Moreover,
for all y > 0 and =z € R we have

A} 3) = (34)

The function g — f(g(i)) is right invariant under the action of SO(2)
since 1 is the isotropy of SO(2). Using the fact that j(Rg,1) = e~ (where
Rg is as in 29) one checks that j(gRy, ) = j(g,%){e"*?). Therefore, it follows
that

Fy(gRe) = Fy(g)e*™. (35)
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This equation implies that under the action of the element A = 1( % §) (4
generates the Lie algebra of SO(2)), Fy is an eigenvector with eigenvalue 4k.
Compute the action of E~ (E~ as in 28) on Fy. Using the invariance of
of Fy under Z and that it is an eigenvector of A with eigenvalue 4k, one
sees that
E_(Ff) = (X + iY)Ff —tkFy.

Now use equation 34 to conclude that E~F; = y?*(8f/9z). Since f is holo-
morphic, we obtain that E~Fy = 0.
The (g, 0(2)) module generated by Fy satisfies the conditions of 4.3.
Consider now the growth properties of F;. We have the quotient map

GL(2,R}* : > bhD

where F'is the fundamental domain constructed in section 2. Let S be the
preimage of this quotient map. Then,

SCZWO(Z){(({%; f)) y® > 3/dand — 1/2 < x < 1/2}

and the latter is a “Siegel set”. Now,
z .
Ay 1) =,

From the modularity property of f, it follows that f is “bounded at infinity” ,
which means that there exists a constant C' > 0 such that on the fundamental
domain F' of SL(2,Z), the function 2 — f(z) = f(z + ¢y} is bounded by C:

| f(2)|<C Yze F

Therefore, on the Siegel set S, we have
vy k
Ff( (0 1) ) <Cy !

, L.e. F¢ has moderate growth on the Siegel Set.
The last three paragraphs imply the following

Theorem 4.6 Let f be a modular form of weight 2k. Let Fy be the associ-
ated function on GL(2,Z)\GL(2,R). Then, Fy is an automorphic form.
Moreover, the (g, 0(2) module generated by Fy is isomorphic to pox with py

as in 4.4
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Proof We need only check that an ideal [ of finite codimension in the
centre 3 of the universal enveloping algebra of g annihilates Fy. But, the
module generated by Fy is pa by 4.3 (and 4.4). Now, the 2k eigenspace of
the operator A in the representation po is one dimensional (and is generated
by Fy), and 3 commutes with the action of A (and in fact with all of u(g) as
well). Therefore, the annihilator of Fy in 3 is an ideal I of codimention one.

From 4.6, the following Theorem can be deduced.

Theorem 4.7 The space of modular forms of weight 2k is isomorphic to the
space Hom(py, A(SL(2,Z\\GL(2,R)") (the hom is the space of (g,0(2)-
module maps and A) is the space of automorphic forms.

Given a modular form f of weight 2k, consider the (g, O(2)-module gen-
erated by the automorphic form Fy. This is irreducible and isomorphic to
pax by Theorem 5. Thus we get a homomorphism of py; into the space A of
automorphic forms. Conversely, given a homomorphism ¢ of py into A, let
F denote a nonzero vector in the image of ¢ on which is the group SO(2)
with character Ry — ¢2™(%)?  This vector is unique upto scalar multiples.
Define a function f on the upper half plane b by setting ' = F. Then , it
is clear that f is a modular form of weight 2k.
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5 Modular Forms and Hecke Operators

Notation 5.1 Let A; be the ring of finite adeles over @ . Recall that this
is the direct limit (the maps are inclusion maps) as the finite set .S of primes

varies, of the product
As =[] @ x [] 2,
peSs r¢
The group of units of Ay is the group A} of ideles and is the direct limit as

S varies, of
Ay =[] <]z,
peS pe

(where * denotes the group of units of the ring under consideration).

There is a natural inclusion of Q in A; (and hence of Q* in A} and
of GL(2,Q) in GL(2,A;)). Denote by P the set of primes. The Strong
Approximation Theorem (Chinese Remainder Theorem) implies that

Ar=Q+ ][]z, (36)

peEP

This, and the fact that Z is a principal ideal domain imply that

=[]z (37)

peP

From this it is not difficult to deduce that

GL(2, A7) = GL(2,Q). [| GL(2,2,) (38)

pEP

Note that the intersection of GL(2,Q) with K; = [[GL(2,Z,) is precisely
GL(2,Z).

Let A = R x Ay be the ring of adeles over . Then, Q is diago-
nally imbedded in A . Hence there is a diagonal imbedding of GL(2,Q)
in GL(2,A) = GL(2,R) x GL(2, Ay). Then, GL(2,Q) is a discrete subgroup
of GL(2,A). Now 38 ( a consequence of strong approximation) implies that

GL(2,A) = GL(2,Q)(GL(2,R) x [ [ GL(2,Z,)). (39)

peP
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Now, the equation 39 and the last sentence of the previous paragraph imply
that the quotient

GL(2,Q\GL(2,A) = GL(2,Z)\(GL(2, B) x [] GL(2,2,)). (40)

peP

Note that GL(2,A) acts by right translations on the left hand side of the
equation 40.

Notation 5.2 A representation (7, W) of GL(2, A;) is said to be smooth
if the isotropy of any vector in W is an open subgroup of GL(2, Af). Define
the “Hecke algebra” H of GL(2, Ay) as the space of compactly supported
locally constant functions on GL(2,Ay). If W is a smooth representation of
GL(2,Ay), then the Hecke Algebra H also operates on W by “convolutions”:
if p is a Haar measure on GL(2,Af) , ¢ € H , and w € W is a vector, then the
W valued function g — ¢(g)m(g)w is a locally constant compactly supported
function and hence can be integrated with respect to the Haar measure p.
Define

6% w=m(¢)(w) = f $(g)(g) (w)dpu(o) (41)

This gives the GL(2, Ay)-module 7, the structure of an H-module As is well
known, the category of smooth representations of GL(2, Af) is isomorphic
to the category of representations of the Hecke algebra 7, the isomorphism
arising from the foregoing action of the Hecke algebra on the smooth module

.

Notation 5.3 The group Ky = GL(2,i) is an open compact subgroup of
GL(2,As) and is the product opver all primes p of the groups GL(2,Z,).
Given g € GL(2, As), consider the characterisic function x, of the double
coset set KggKy. Then x, is an element of the Hecke algebra and elements
of # which are bi-invariant under X are finite linear combinations of the
functions x, as g varies. We will refer to the subalgebra generated by these
elements as the ‘unramified Hecke algebra and denote it by H,.

Under convolution, H is an algebra and H; is a commutative subalgebra.

Fix a prime p. Let Hy(p) be the subalgebra generated by the elements xy,
and xn, where M, = (5’10) and N, = (g’;’) . It is easily proved that for
varying p, the algebras Hy(p) generate the unramified Hecke algebra #,.
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Notation 5.4 The equation 40 implies that the space of smooth functions
on ZxSL(2,Z)\GL(2,R)* is isomorphic to the space V; of Ky-invariant
smooth functions on the quotient GL(2,Q)Z(A\GL(2,A). On V; the un-
ramified Hecke algebra operates . Suppose S denotes the image of F' x Ko
in Z(A)\GL(2,A). Then, S is contained in a Siegel Set S;x whose elements

are of the form (
T

where 2o € Zoo, ko € Ko, |  |< 1/2 and y? > 3/4. Suppose that f is a
cusp form for SL(2,Z) and F; be as in section (4. ). Given g € GL(2,A) =
GL(2,R) x GL(2, Ay), write ¢ = (g, g¢) accordingly. Define the function ®;
on GL(2,Q\GL(2,A) as follows. Set ®;(go,9s) = Fy(9) if g5 € Ko and
extend to G{A) by demanding that ®; be GL(2, Q)-invariant. The SL(2,Z)-
invariance of F; implies that ®; is well defined. Now, 4.6 shows that ®; is
an automorphic form on GL(2, A).

By 4.7, Fy is rapidly decreasing on Sp; moreover, Fy is a cuspidal au-
tomorphic form in the sense that for all g € G(A) , the following holds.

f ®;(ng)dn =0 (42)
UQN\U(4)

where U is the group of unipotent upper triangular matrices in GL{2) with
ones on the diagonal and dn is the Haar measure on U(A). This can be
shown to imply that the function ®; is square summable on the quotient
Z(AYGL(2,Q)\GL(2,A) with respect to the Haar measure. Further, one has
the L?-metric < , > on the space of cuspidal automorphic forms which
translates to the “Petersson” metric

< fg>= fF F(2)a@? (vdady)

for cusp forms f and g of weight k. As before, F is the fundamental domain
for SL(2,Z).

From now on, we will fix our attention on cusp forms. we have the
natural inclusion of GL(2,Q) in GL(2,As). Let n > 0 be an integer and
let g, = (2 9) be thought of as an element in GL(2, A;) under the foregoing
inclusion. Let X, denote the characteristic function of the double coset of
Ky through the element g,.

If x» denotes the characteristic function X,, and f is a cuspidal mod-
ular form of weight 2k, then ® = ®; * R(xn) (where R(¢) denotes the
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right convolution by the function ¢) is a smooth function on the quotient
GL(2,Q)Z(A)\GL(2,A) whose “infinite” component is still py; (since x,
commutes with the right action of GL(2,R) on the above quotient). Since
Yn 1 K invariant, it follows that &’ is also right K, invariant. Therefore,
it corresponds to a modular form g i.e. ® = &,. It is easy to show that
&’ is cuspidal. Therefore, ¢ is a cusp form of weight 2k as well. Denote
g =T(n)(f). Then, T(n) is called the Hecke operator corresponding to n.
By noting that convolution by X is self adjoint for the L? metric on cuspidal
automorphic functions on GL(2) one immediately sees that T'(n) are self ad-
joint for the Petersson metric on the space of cusp forms of weight 2k. The
commutativity of the unramified Hecke algebra implies that the operators
T'(n) commute as well.

Notation 5.5 We will now state without proof the computation of T'(p) for
a prime p. Note that by strong approximation, the K, invariant function
®; on the quotient Z(A)GL(2,Q)\GL(2, A) is completely determined by its
values on elements of the form (} 7 ) with ¥ > 0, in the quotient. We compute

®;+ ROG) (0 1)
and find that this is equal, to
PO, (ET)
where
9(z) = (1/p) Y f((z+m)/p) +p™* " f(p2) = T(0){(f)(2).
0<m<p—1

The Fourier coefficients of ¢ at infinity are given by
g(m) = a(mp)

if m is coprime to p and

2kw1a(

g{(m) = a{mp) +p m/p)

if p divides m.

We write down the relations among the operators T'(n). If m and n are
coprime, then T(mn) = T(m)T'(n). if p is a prime and /m > 1 is an integer,
then

T(p)T(p™) = TE™) +p* ' T(E™)
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. Thus, the T(n} can be computed easily.

As we have observed before, the operators T'(n) are self adjoint for the
Peterson metric and commute with each other. Therefore, they can be si-
multaneously diagonalised. In other words, every cusp form can be written
as a sum of cusp forms each of which is a simultaneous eigenfunction for the
Hecke operators T'(n).

Suppose now that f is a cusp form which is an eigenfunction of the Hecke
operators. The associated function ®; is a function on GL(2,A) and gen-
erates a unitary representation m of GL(2, A). Its infinite component is iso-
morphic to py. Its finite component 7, is generated by a Ky invariant vector
which is an eigenfunction for the unramified Hecke algebra H, (recall that
the T'(n)’s were defined in terms of elements of Hy).Moreover, 7; is unitary.
Therefore, « is irreducible.

Conversely if  is an irreducible unitary cuspidal automorphic represen-
tation of GL(2, A), whose infinite component is py, and whose finite part is
generated by a K invariant vector, then, 7 is generated by a function ®;
, where f is a cusp form which is an eigenfunction of the Hecke operators
T (n).
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