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1 Introduction

In these lectures we will survey representation theory of the group GL(n) over
non-Archimedean local fields. Since in the short time devoted to this topic, it is
not possible to give all the proofs, all but the most elementary will be omitted.
There are several excellent sources where we can refer the reader for a fuller
treatment. We give these references at the end.

We denote by & a non-Archimedean local field. The maximal compact subring
of k will be denoted by O, and we will use 7 to denote a uniformising element
of O; O/ is a finite field, to be denoted by F,. The absolute value of k& will
be denoted by |z| with the normalisation |mg| = ¢~

In these notes we will be looking at complex representations of the group
GLn(k). These vector spaces will be treated in these notes as algebraic objects,
and not with any topology; hence the theory could as well be developed over any
algebraically closed field of characteristic zero.

We recall that inside G L,,(k), we have the open compact subgroup GL,(Ok) =
{X € M,(O,)|det X € O;}. In fact any open compact subgroup of GLy (k)
can be conjugated to be inside GL,(Oy). but we will not use this fact in these
notes.

The compact open subgroup GL,{Oy) has many other compact open sub-
groups such as the principal congruence subgroups defined for m > 1 by

Km = {9 € GL,(O)|(g — I.) € 7 Ma{Ox)} .
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It is easy to see that

GLa(Ok) /K = GLn(Or/7])
Km/Kmg1 = M, (Or/m).

We note that any neighbouhood of the identity element of GL,(k) contains
K,, for some m > 1.

Definition : A representation 7 of GL,(k) on a complex vector space V is
called smooth if for every vector v in V, there exists a compact open subgroup
K, of GL,(k) such that g-v =wv forall g € K.

In these notes we will be studying admissible representations defined as fol-
lows.

Definition : A representation 7 of GL,(k) on a complex vector space V is
called admissible if it is

1. smooth

2. If K is any compact open subgroup of G'L, (k) then the space of K fixed
vectors in V', to be denoted by VX is finite dimensional.

Exercise: A finite dimensional smooth irreducible representation of GL (k)
is 1 dimensional.

It may be noted that the condition of admissibility of a representation is
not strong enough to make the representation one of finite legth. For instance
the sum of all characters of k* on which =, (the uniformising parameter of k
fixed earlier) operates via a given scalar is an infinite dimensional admissible rep-
resentation of k*. (In these notes, by a character of a group, we mean a 1
dimensional smooth representation of the group.) To force representations to
have finite length (i.e., to have a finite Jordan-Holder sequence of GL,(k) sub-
representations with irreducible sub-quotients), the concept of finitely generated
representations seems useful.

Definition : A smooth representation 7 of GL, (k) is said to be finitely gener-
ated if there exists vectors vy, vy, - - - v; such that the smallest GL,, (k) submodule
of V generated by the vectors v; is V.



As an example, we note that a finitely generated admissible representation of
k* is finite dimensional. (An elementary exercise for the reader!) The following

is however a non-trivial theorem.

Theorem 1 A finitely generated admissible representation of GL, (k) is of finite
length.

The aim of these lectures is to classify irreducible admissible representations of
G Ly (k) in terms of what is called the Langlands quotient theorem. It was one of
the conjectures of Langlands formulated in the late 60's which related irreducible
admissible representations of GL,(k) to n-dimensional representations of the
Galois group Gal(k/k) of the separable closure & of k, or rather a variant of it in
which the Galois group is replaced by a closely related group which is called the
Weil-Deligne group which will be introduced later. The conjecture of Langlands
was proved by Jacquet and Langlans for n = 2 for non-Archimedean local fields
of residue characteristic not 2, by Kutzko in general for n = 2, and very recently
by Harris and Taylor for all n. The proof of Harris and Taylor has been simplified
by Henniart. These recent developments are the topic of the talks by Wedhorn,

We note that Schur's lemma holds for irreducible admissible representations.

Lemma 1 /fV is an irreducible admissible representation of GLy,(k), and A :
V —+ V is an endomorphism of V' such that A(gv) = gA(v) for allv € V, and
g € GL,(k), then A is multiplication by a scalar.

Proof : Since A is a GL,(k)-equivariant endomorphism, it takes the space
of K-fixed vectors V¥ to itself for any compact open subgroup K of GL,(k).
Choose a compact open subgroup K such that V¥ #£ 0. Since V¥ is a finite
dimensional complex vector space, there exists an eigenvector for the action of
Aon VK, say v € VX with Av = Xv. It follows that the kernel of (4 — X)
is a nonzero G L, (k)invariant subspace of V, and hence must be all of V, i.e,,
A=A\

Corollary 1 Any irreducible admissible representation of GLy(k) = k* is one
dimensional.



Corollary 2 On an irreducible admissible representation of GL,(k), the centre
of GL,(k), which can be identified to k*, operates via a character, called the
central character of the representation.

Twisting by characters. It is known that the commutator subgroup of
GLy(k) is SLy(k). It follows that any character of GL,(k) is obtained from a
character of k* by composition with the determinant map:

GL.(k) 8k 5 C .

Given any representation 7 of GL,(k) and a character k* %5 C*, one can
construct another representation of GL,(k), denoted by # ® x, and called #
twisted by x, which is #(z)x(det z) for z € GL, (k).

2 Parabolic Induction

Parabolic induction provides a very important means of constructing representa-
tions of bigger groups from representations of smaller groups. It takes irreducible
admissible representations of finite length to irreducible admissible representa-
tions of finite length. Usually it takes irreducible representations to irreducible
representations, but might also take irreducible representations to reducible rep-
resentations. The question about reducibility of these induced representations is
rather subtle, where there are even no general conjectures about the reduciblity
points, or the possible irreducible subquotients, but happily for GL(n), these
questions can be answered completely because of works of Bernstein-Zelevinsky,
and of Zelevinsky. We will however not be describing these works in any detail.

The process of parabolic induction induces representations of parabolic sub-
groups which are trivial on its unipotent radical to the full group. We define
these terms in some detail here.

Define a flag in &™ to be a strictly increasing sequence of subspaces

W={WCcW,C.- W, =k"}.

The subgroup of GL, (k) which stabilises the flag W, i.e. with the property that
gW; = W, for all i is defined to be a parabolic (associated to the flag W).



The stabiliser of the flags of the form
W. = (v1) C (v1,v2) C -+~ (vr, 02,77, 0n) = &7

is called a Borel subgroup. It can be seen that GL, (k) operates transitively on
the set of such flags, and hence the stabiliser of any two such (maximal) flags
are conjugate under G Ly, (k).
If
W={W,cW C- - Wy=k"},
then inside the associated parabolic subgroup P, there exists the normal subgroup
N consisting of those elements which operate trivially on Wi, /W, for 0 < i <
k — 1. The subgroup N is called the unipotent radical of P. It can be seen that
there is a semi-direct product decomposition P = M N with
k-1
M = [ GL(Wiy/W3).
i=0
The decomposition P = MN is called a Levi decomposition of P with IV the
unipotent radical, and M a Levi subgroup.
Since P sits in the exact sequence of groups,

{e} > N = P - M — {e},

any representation of M can also be considered to be a representation of I’ (said
to be obtained by extending trivially across N).

If p is a smooth representation of M on a vector space V, define a represen-
tation, Indgl’“(k) p. called the representation of GL,(k) obtained by parabolically
inducing the representation p of M as follows:

- f(mng) = p(m)6y7’f(g), and
Indpg ™% p=<f:G—=V| f(gh) = f(g) for all h € Ky,
a compact open subgroup of GL,(k)

Here 8y is a certain character of M, called the modulus function of M, which
is the character of M by which it operates (by the inner conjugation action) on
the 1 dimensional space of Haar measures on N. The group GL,(k) operates
on IndGL"(k)p by right translation. It is customary to put the character dps in

P
the definition of induced representations which has several simplifying aspects:
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1. Induction takes unitary representations to unitary representations.

2. The contragredient of an induced representation is the induction of the
contragredient. (The definition of the contragredient is recalled later.)

1 =n»-3 n—1i

.
. o .ngl e
Exercise : Prove that dg(z), 2, -+ ,2Zp) = |7,7 7,7 ---zp 2 |

Example : For any parabolic P, the space of locally constant functions on
G/P, denoted by S(G/P), is an induced representation (from the character
§5%). It contains S(G/Q), for Q any parabolic subgroup of G containing P,
as a G-invariant subspace.

It is clear from the definition that IndgL“(k)p, s a smooth representation of
GLy(k). To prove that if p is an admissible representation of M, then so is

Indg‘r‘"(k) p. we will need the lwasawa decomposition:
GLn(k) = GL,(O) - P,

where P is any parabolic subgroup of GL, (k).

It follows from the lwasawa decomposition that the action of any compact
open subgroup on any flag variety GL,(k)/P has only finitely many orbits from
which the admissibility of IndgL“(k)p comes out quite easily, and will be left as
an exercise to the reader.

The parabolic induction takes finitely generated representations to finitely
generated representations. We give a proof of this fact.

Proposition 1 /f p is a finitely generated representation of M, then IndgL“ (k) I
is also a finitely generated representation of G L, (k).

Proof : We give the argument to show that the space of locally constant
functions on GL,,(k)/P is a finitely generated representation of GL, (k). The
argument for general parabolically induced representations is similar. To prove
that the space of locally constant functions on GL,(k)/P is finitely generated,
it is sufficient to treat the case when P is the Borel subgroup B of the group of
upper triangular matrices.

The proof of the finite generation of the space of locally constant functions
on GL,(k)/B depends on what is called the lwahori factorisation which plays a



fundamental role in many questions in representation theory of p adic groups. It
says that certain maximal compact subgroups K of GL,(k), such as the principal
congruence subgroups K,,,, m > 1, can be written as a product

K=(KNN7). (KnA)-(KNN)

where B = AN is the Borel subgroup of upper triangular matrices with A as
the diagonal subgroup, and N (resp. N7) is the group of strictly upper (resp.
lower) triangular matrices.

We note that there are elements in A which shrink K_ = K N N~ to the
identity. For example if we take the matrix

,n.n—l

then the powers of u have the property that they shrink K_ = K N N~ to the
identity.

Let x(X) denote the characteristic function of a subset X of a certain am-
bient space. Look at the translates of x(B - K_.) by the powers u~*. This will
give us,

x(B-K_p™) = x(B-uWK_p™)
= x(B-pK_u")

Therefore translating x(BK_) by u~*, we get characteristic function of B-X
for K a compact open subgroup as small as we like. These characteristic func-
tions together with their GL, (k) translates clearly span all the locally constant
functions on GL,(k}/B, completing the proof of the proposition.

3 Jacquet Functors

Parabolic induction constructs representations of GL, (k) from representations
of its Levi subgroups. There is a dual procedure (or, more correctly, adjoint
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functor) which constructs representations of Levi subgroups from representations
of GL,(k). The importance and basic properties of this construction was noted

by Jacquet for the GL,(k) case, which was generalised to all reductive groups
by Harish-Chandra.

Definition :Let P = MN be the Levi decomposition of a parabolic P of
G Ly (k). For a smooth representation p of P on a vector space V, define py to
be the largest quotient of p on which N operates trivially, or

v
pN_p(N)z{n-'v—vlnEN,veV}'

Lemma 2 For a smooth representation V of N, V(N) = {n-v—vln € N,v €
V'} is exactly the space of vectors v € V' such that

/ n-vdn = 0,
Ky

where Ky is a compact open subgroup of N and dn is a Haar measure on N.
(The integral is actually a finite sum.)

Proof : Clearly the integral of the vectors of the form n - v — v on a compact
open subgroup of N containing n is zero.

We note that NV is a union of compact open subgroups. For instance, if u is
the element

then it is easy to see that

U #™N(©O)u™™ = N(k).

m>1
It follows that for any vector v in V, and n € N, there exists a compact
open subgroup Ky such that the integral of n-v— v on Ky is zero. Conversely,
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suppose

[ n-vdn = 0.
Ky

Since V is completely reducible as a Ky module, v lies in a finite dimensional
Ky subrepresentation of W of V. Write W = W, @ W, & - - - @ W, with W the
subspace of W on which K operates trivially and non-trivially on all the other

Wit > 1.

Since fK n-vdn = 0, the component of v in W) is zero. Vectors in W, 1 > 1
can be written as a sum of n;w; — w; for n; € Ky, w; € W;. This follows as the
largest quotient of W;,i > 1 on which Ky operates trivially is zero.

Lemma 3 The Jacquet functor V — Vy is an exact functor, i.e., if
0-VN—->V V=0
is an exact sequence of P modules, then
0= (Vin—=>V)n—> (Vo)y =0
is an exact sequence of M modules.

Proof : For the proof of the lemma it suffices to prove that ViNV (N} = Vi(N)
which is clear from the previous lemma.

The importance of the Jacquet functor stems from the following version of
the Frobenius reciprocity.

Lemma 4 For a smooth representation p of GL, (k) and p of a Levi subgroup
M of a parabolic P = MN, we have,

Homery, ) (p, Indgl‘“(k),u) = Homps(pon, udyz).

Proof: We first define a map from HomGLn(k)(p, IndGL“( ) ) to Homps (o, ,u61/2)

by sending ¢ € Homgy,,x)(p, Indp Ln{k) ) o the homomorphism from p to udy
which sends a vector v € p to ¢,(1) € pd % where ¢, € IndGL“(k’)p is the image
of the vector v under ¢. The mapping v — ¢,(1) from p to #5;3/ clearly factors
through px.



We next define 2 mapping from Hom (o, ,uciy N to Homgy,, (k) (p, IndgL“(k) )
by sending 1 € Hom s (pw, ,ut5113/ 2) to the homomorphism in Homgy,, i) (p, IndgL"(k) 1)
which sends a vector w in p to the function F, on G with values in the vector

space underlying u defined by F,(g) = ¥(g.v).
It can be checked that the two maps are inverse to each other, and hence

define an isomorphism from Homg;,,(x)(p, Indgf‘“(k)u) to Homps (pw, ,ué},/ )

3.1 Jacquet functor for principal series

Theorem 2 /f 7 = IndgL“(k) X. then
T = Z x" };f > (up to semi — simplification),

where for a character x of the torus, x* denotes the character of the torus
obtained by using the automorphism of the torus given by the action of w which
is an element in the Weyl group of the torus, i.e., in the group N(T)/T for N(T)
the normaliser of the torus.

Proof : The representation 7 can be thought of as a certain space of “functions
on GL,(k)/B twisted by the character x"; more precisely, as the space of locally
constant functions on GLy(k)/B with values in a sheaf &, obtained from the
character x of the Borel subgroup B.

If Y is a closed subspace of a topological space X “of the kind that we are
considering here”, e.g. locally closed subspaces of the flag variety, then there is
an exact sequence,

0= C°(X =Y, Elx-y) = CP(X,E) = C2(Y, & ly) = 0.
It follows that Mackey's theory (originally for finite groups) about restriction

of an induced representation to a subgroup holds good for p-adic groups too.
Hence,

RespIndS®y = Z indp, gy (xég Y (up to semi — simplification)
weW
= Z indf v (XJ};/ Y (up to semi — simplification)
wew
= Z CP(N/N,, (xdfg/ Yy (up to semi — simplification)
weWw
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We now note that the largest quotient of C°(N/N,) on which N operates
trivially is one dimensional (obtained by integrating a function with respect to a
Haar measure on N/N,) on which the action of the torus 7" is by the sum of
positive roots which are not in N, which can be seen to be [65+(08)~¥]M2. (Here
65" stands for the w translate of 63'!) This implies that the largest quotient
of C®°(N/Ny, (xégz)‘”) on which N operates trivially is the character x"’éyg.
Hence,

[IndgL"(k) X] N = Z xwéy > (up to semi — simplification),
weW

proving the theorem.

Corollary 3 If HomGLn(k)(IndgL"(k) X1, Indg‘r‘"(k)xg) is nonzero, then x1 = X5

for some w in the Weyl group.

Proof : This is a simple consequence of the Frobenius reciprocity combined
with the calculation of the Jacquet functor.

Example : Denote the principal series representation of G Lo (k) induced from
a character x of the diagonal torus by Ps(x). Then,

1. If x # x¥, then Ps(x)n = xé};ﬁ ® x'“’é_};/g.
2. If x = x*, then Ps(x)y is a non-trivial extension of k* modules:
0— ngZ — Ps(x)n — xc?}e/z — 0.

Exercise: With notation as in the previous exercise, prove that a principal series
representation of G L, (k) induced from a unitary character is irreducible.

Exercise : Let G be an abelian group with characters x; and x2. Prove that
if x1 # X2, then any exact sequence of G-modules,

D=1 =V —=2x2—20,

splits.
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4 Supercuspidal representations

A very important and novel feature of p-adic groups (compared to real groups)
is the existence of supercuspidal representations. These representations were
first noticed for GL, by Mautner in the early 60’s. We will see that these
representations are the building blocks of all irreducible admissible representations
of p-adic groups. A complete set of supercuspidals for GL,(k) was constructed
by Bushnell and Kutzko in their book. The local Langlands correspondence
proved by Harris-Taylor-Henniart interprets supercuspidals of GL,(k) in terms
of irreducible representations of the Galois group of k of dimension n. Before
we come to the definition of a cuspidal representation, we need to define matrix
coefficient of a representation.

For a smooth representation 7 of GL,(k), let 7* denote the space of all linear
forms on 7. Let 7V denote the subspace of 7* consisting of K-finite vectors,
i.e., vectors in 7* whose transiates by a (and hence any) compact open subgroup
of GLy (k) is contained in a finite dimensional subspace of 7*. It is easy to see
that 7V is a GLy(k) invariant subspace of 7*, and is an irreducible admissible
representation of GL,(k), if v is. Moreover, 7¥¥ 22 1. The representation 7V is
called the contragredient, or the smooth dual of «.

For a smooth representation 7 of GL,(k), vectors v in 7, v/ in 7V, define the
matrix coefficient f,, to be the function on GL,(k) given by f,.«(g) = v'(gv).

Definition : An irreducible admissible representation V of GL, (k) is called
supercuspidal if it satisfies one of the following equivalent conditions.

1. A matrix coefficient of V' is compactly supported modulo the center.
2. All the Jacquet functors (for all proper parabolics!) are zero.

3. The representation V does not occur as subquotient of any principal series
representation induced from a proper parabolic subgroup.

We will not prove that the various conditions occurring in the definition above
are equivalent.

We note that any 1 dimensional representation of GL,(k) = k* is supercus-
pidal. But since parabolic induction is of no use for constructing supercuspidal
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representation, a totally new approach is needed. One way to construct super-
cuspidal representations is via induction from certain finite dimensional represen-
tations of compact open subgroups. This has been a big programme in recent
times which has been completed for the case of GL, by Bushnell and Kutzko
in their book. They prove that any supercuspidal representation of GL,(K) is
obtained by induction from a finite dimensional representation of certain open

compact modulo center subgroup of GL, (k).
Here is a sample of such a construction in the simplest possible situation.

In this theorem, by a cuspidal representation of the finite group GLn(F,) we
mean an irreducible representation for which all the Jacquet functors are zero.
Cuspidal representations of G L, (F,) are completely known, and there is a simple
classification of them.

Proposition 2 Consider a representation of GL,(F,) to be a representation of
GL,(O) via the natural projection from GLy(Oy) to GL,(F,). If 7 is an
irreducible cuspidal representation of GL,(F,) thought of as a representation of
GL,(Oy), and x is a character of k* whose restriction to Oy is the same as
the central character of m (thought of as a character of O}), then x - is a
representation of k*GLn(Oy). This when induced to GL,(k) gives rise to an
irreducible admissible supercuspidal representation of GL, (k). Moreover,

. 1GLu(k GLa(k
mdk‘GI(m)(ok)(X ‘m) = Indk‘GIE,,){Ok}(X <),

where as is conventional, we are using ind to denote induction where the func-
tions are taken with compact support in GL,(k)/[k*GLy(Oy)], a restriction
which is not imposed for Ind.

We next have the following basic theorem.

Theorem 3 For any irreducible admissible representation = of GLy (k). there
exists a Levi subgroup M and a cuspidal representation p of M such that = is
contained in the representation of GL,(k) obtained from p by the process of
parabolic induction. For a given w, the pair (M, p) is unique up to conjugation
inside GL,(k).

Proof : Let P be the parabolic subgroup of GL,(k) smallest for the property
that the Jacquet functor with respect to P is non-zero. (So P = G is a possibility
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which occurs if and only if the representation is cuspidal.) If P = MN, it is clear
that the Jacquet functor 7y is a cuspidal representation of M of finite length. Let
p be an irreducible quotient of 7 as an M module. Since Homys(7y, p) # 0,
it follows from the Frobenius reciprocity that

HomGLn(k) (TT, IndgL“(k)p) ?é 0,

which gives a realisation of 7 inside a principal series induced from a cuspidal
representation.

5 Examples for GL,

In this section we summarise the broad classification of the representations of
GLs(k).

1. Characters of k* thought of as 1 dimensional representations of GL;(k)
via composition with the determinant map.

2. Principal series representations Ps(x1, x2) where x; and x are characters
of k*. This is irreducible if and only if x1x;' # |z[|*'.

3. Steinberg representation of GLy(k): The group GLy(k) operates on the
projective line P'(k) = GLy(k)/B, and hence on the space of locally
constant functions on P1(k). (This gives the reducible principal series rep-
resentation Ps{|z|*/2, |z|~1/2).) The constant functions form an invariant
subspace the quotient by which is an infinite dimensional irreducible repre-
sentation of GL(k), called the Steinberg representation, and denoted by
Sty. The twists of the Steinberg, St; ® x by characters x of k* are called
twisted Steinberg.

4. The rest which is exactly the set of supercuspidal representations of GLy (k).
When the characteristic of the residue field of k is not 2, then irreducible
admissible supercuspidal representations of GL,(k) are obtained from a
pair (K, x) where K is a separable quadratic extension of k and x is a
character of K* which does not factor through the norm mapping. It can
however happen that a cuspidal representation comes from more than 1
quadratic extension though this happens for a very small number of cases.
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6 The Steinberg representation

The following theorem due to Casselman defines the Steinberg representation.

Theorem 4 Let St, denote the virtual representation (in the Grothendieck
group of representations of GL, (k) of finite length)

Sta = D (-1)™PIS(GLa(k)/P),
BCP
where the sum runs over all the parabolics P which contain a fixed Borel subgroup
B of GL,(k); rank(P) denotes the semisimple rank of a Levi subgroup of P.
Then St,, is an irreducible admissible representation of GL,(k) of trivial central
character. This is a unitary square-integrable representation of GLyn(k)/k* in
the sense that each of its matrix coefficients is square-integrable on G Ly (k)/k".

This theorem of Casselman {proved for general quasi-split reductive groups)
was generalised to GL,(K) as follows by Bernstein and Zelevinsky.

Theorem 5 For a cuspidal representation pp of GLy,(k), and n = mr,7 > 1,
the principal series representation of GLy(k),

PS([_L| det |L}1-:ru’l det [L2__35 e ,[.L‘ det |_%)9

induced from the (m,m, - -+ ,m) parabolic subgroup is not irreducible, but has a
unique irreducible quotient, denoted by St,(u), and called the generalised Stein-
berg representation. The generalised Steinberg representation is a discrete series
representation of GLy,(k), and every irreducible discrete series representation of

GL, (k) arises in this way.

7 Representations of the Galois group

The Galois group G = Gal(k/k) has distinguished normal subgroups |, the Inertia
subgroup, and P the wild Inertia subgroup which is contained in 1.
The [nertia subgroup sits in the following exact sequence,

1 — I — Gal{k/k) — Gal(F,/F,) — 1.
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Here the mapping from Gal(k/k) to Gal(F, /F,) is given by the natural action
of the Galois group of a local field on its residue field.

The Inertia group can be thought of as the Galois group of k over the maximal
unramified extension k*" of k. Let k* = Uy =1 k*(7/%). The field k* is known
to be the maximal extension of k%" which is tamely ramified. (An extension is
called tamely ramified if the index of ramification is coprime to the characteristic
of the residue field.) We have,

14

Gal(k/k)/1 Z
/P = []z.

g

IR

One defines the Weil group Wy, of k to be the inverse image in Gal(k/k)
of the subgroup Z inside Gal(F, /F,) generated by the Frobenius automorphism
z — z7 on the residue field. One considers representations of the Weil group
which are continuous on the inertia subgroup which boils down to considering
only those representations of the Weil group for which the image of the Inertia
subgroup is finite.

The Weil group is a dense subgroup of the Galois group hence an irreducible
representation of the Galois group defines an irreducible representation of the
Weil group. It is easy to see that a representation of the Weil group can, after
twisting by a character, be extended to a representation of the Galois group.

The Local class field theory implies that the maximal abelian quotient of the
Weil group of & is naturally isomorphic to k*, and hence 1 dimensional represen-
tations of W}, are in bijective correspondence with characters of GL,(k) = k*.
It is this statement of abelian class field theory which is generalised by the local
Langlands correspondence. However, there is a slight amount of change one
needs to make, and instead of taking the Weil group, one needs to take what is
called the Weil-Deligne group whose representations are the same as represen-
tations of Wy on a vector space V together with a nilpotent endomorphism N
such that

wNw™! = |w|N

where |w| = ¢~ if the image of w in Gal(F,/F,) is the i power of the Frobenius.
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One can identify representations of the Weil-Deligne group to representations
of Wy, x SLy(C) via the Jacobson-Morozov theorem. It is usually much easier to
work with Wy x SL,(C) but the formulation with the nilpotent operators appears
more naturally in considerations of £-adic cohomology of Shimura varieties where
the nilpotent operator appears as the ‘monodromy’ operator.

Theorem 6 (Local Langlands Conjecture) There exists a bijective correspon-
dence between irreducible admissible representations of G L, (k) and n-dimensional
representations of the Weil-Deligne group.

We end with the following proposition for which we first note that any field
extension K of degree n of a local field & gives rise to an inclusion of the Weil
group Wi inside W} as a subgroup of index n. Since characters on Wy are, by
local class field theory, identified to characters of K*, a character of K* gives by

induction a representation of W;. of dimension n.

Proposition 3 If (n,q) = 1, then any irreducible representation of Wy, of di-
mension 1 is induced from a character x of K* for a field extension K of degree
n.

Proof : Since representations of the Weil group and Galois groups are the same,
perhaps after a twist, we will instead work with the Galois group. Let p be an
irreducible representation of the Galois group Gal(k/k) of dimension n > 1. We
will prove that there exists an extension L of & of degree greater than 1, and an
irreducible representation of Gal(k/L) which induces to p. This will complete
the proof of the proposition by induction on n.

The proof will be by contradiction. We will assume that p is not induced
from any proper subgroup.

We recall that there is a filtration on the Galois group P C I C G =
Gal(k/k). Since P is a pro-p group, all its irreducible representations of dimen-
sion greater than 1 are powers of p. Since n is prime to p, this implies that
there is a character of P which appears in p restricted to P. Since P is a nor-
mal subgroup of the Galois group, it implies that the restriction of p to P is a
sum of characters. All the characters must be the same by the Clifford theory.
(Otherwise, the representation p is induced from the stabiliser of any x-isotypical
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component.) So, under the hypothesis that p is not induced from any proper
subgroup, P acts via scalars on p. Since the exact sequence,

l1-P3I5I/P—1

is a split exact sequence, let M be a subgroup in I which goes isomorphically
to I/P. Take a character of M appearing in p. As P operates via scalars,
the corresponding 1 dimensional space is invariant under I. It follows that p
restricted to I contains a character. Again I being normal, p restricted to 7 is a
sum of characters which must be all the same under the assumption that p is not
induced from any proper subgroup. Since G/I is pro-cyclic, this is not possible.

References

[1] D. Bump, Automorphic Forms and Representations, Cambridge studies
in Advanced Mathematics 55, (1997).

[2] C. J. Bushnell and P. C. Kutzko, The admissible dual of GL(N) via
compact open subgroups, Princeton university press, Princeton, (1993).

[3] I. N. Bernshtein and A. V. Zelevinsky, Representation Theory of GL(n, F)
where F' is a non-Archimedea local field, Russian Math. Survey, 31:3, 1-
68, (1976).

[4] H. Carayol, Représentations cuspidales du groupe linéaire, Ann. Scient.
Ec. Norm. Sup., vol 17, 191-225 (1984).

[5] P. Cartier, Representations of p-adic groups: a survey, Proceedings Sym-
posia in Pure Maths of the AMS, vol. 33 (1}, 111-155(1979).

[6] P. Deligne, Formes modulaires et representations de GL(2), Modular
functions of one variable I, LNM 349, Springer Verglag, (1973).

[7] R. Godement, Notes on Jacquet-Langlands theory, Mimeographed notes,
Ins. for Adv. Study, Princeton, (1970).

[8] R. Godement and H. Jacquet, Zeta functions of simple algebras, LNM
260, Springer Verlag, (1972).

18



[9] R. E. Howe, Tamely ramified supercuspidal representations of GLy, Pa-
cific J. of Math., Vol. 73, No. 2, 437-460 (1977).

[10] H. Jacquet, Sur les representations des groupes reductifs p-adiques, C.
R. Acad. Sc., Paris., Series A, Vol 280, 1271-1272 (1975).

[11] H. Jacquet and R. Langlands. Automorphic Forms on GL», LNM 114,
Springer Verlag, (1970).

[12] P. C. Kutzko, On the supercuspidal representations of GLg, Amer. J. of
Math., 100(1), 43-60 (1978).

[13] J. -P. Serre, Linear Representations of finite groups, Springer Verlag,
New York, GTM No. 42, (1977).

[14] J. Tate, Number theoretic background, Automorphic forms, Representa-
tions and L-functions, Proc. of Symp. in Pure Math., AMS, vol 31, part
2, 3-26 (1979).

Dipendra Prasad
Mehta Research Insititute, Chhatnag Road, Jhusi, Allahabad, India-211019.

e-mail: dprasad@mri.ernet.in

19






