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The Langlands Program (An overview)

The Langlands program predicts a correspondence between two types of objects. On
the one side we have automorphic representations 7= and on the other side we have some
arithmetic objects M which may be called motives or even objects of a more general nature.
Both these objects produce L-functions and the correspondence should be defined by the
equality of these L-functions. A special case is the Weil-Taniyama conjecture which has
been proved by Wiles-Taylor and others.

I A simple example

On his home-page under www.mat.ias.edu Langlands considers a couple of very explicit
and simple examples of this correspondence and here I reproduce one of these examples
together with some further explanation. This example is so simple that the statement of
the theorem can be explained to everybody who has some basic education in mathematics.

The first object is a pair of integral, positive definite, quaternary quadratic forms

P(l',yaua"b‘):$2+$y+3y2+u2+uv+3yz
Q(:E?yaus’u) :2($2+y2+’u2+vz)+2:1:u+:1:v+yu—2y'u

These forms have discriminant 11? and 1 mention that these two quadratic forms Q, P
are the only integral, positive definite quaternary forms with discriminant 112. This may
not be so easy to verify but it is true. This pair will give us automorphic forms, we come
to this point later.

The second object is an elliptic curve E, for us this is simply a polynomial
G(z,y) =y +y — 2® + 22 + 10z + 20.

This object is a diophantine equation, for any commutative ring R with identitity we can
consider the set of solutions

{(a,b) € R*|G(a,b) = 0}

In the case where R is a field ¥ we add a point at infinity ( we should consider the
homogenizised poloynomial G(z,y, z) = y?z + y2% — 2% + 222 4 10z2? + 202z® ) and define

E(k) = {(a,b) € k*|G(a,b) = 0} U {00} = {(a,b,¢) € k*\ {(0,0,0)} | G(a, b,c) = 0} /k".
We come back to the first object. For any integer n we can define the numbers

r(P,n) = #{v € Z*}P(y) = n}
r(Q,n) = #{y € Z*|Q(y) = n}’
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in classical terms: We consider the number of representations of n by the two forms.

We can encode these numbers in generating series

OP,t) = r(Pn)t" = > PO
T qezﬁ

Q. t) = Zr(Q,n)t" = Z £

yeZ4

Of course it is not so difficult to write a few terms of these series
O(P,t) = 1+ 4f +4£2+8¢3 +2084 41645+ 3268 +16¢7 +36¢5 +281° + 406104+ 4¢1 +-64¢1 %+ 40t +

64¢14 + 56415 + 68¢16 + 4017 + 100¢18 + 48¢1% + 104420 + . ..

O(Q, 1) = 14122 + 123 + 12t* + 1265 + 24¢% + 24¢7 + 36¢° + 36t° + 48t + 72612 + 247+

481 + 60¢15 + 8426 + 48t17 + 84t + 4849 + 96¢%°

Now we return to our second object. For any prime p we can reduce our polynomial
G(z,y) mod p and we can look at the solutions of our equation G(z, y) = 0 in the field
F, with p elements. Actually this equation defines what is called a curve over F, and if
we add the point at infinity we get a projective curve. We say that this curve is smooth
over F, ( or we say that we have good reduction) if for any point in the algebraic closure
(a,b) € E(F,) the vector of partial derivatives

oG oG
(_3“;(0'1 b), gy—(a,b)) # 0.

A simple calculation shows that we get a smooth curve over F, except for p = 11. For any
p we may ask:

What is the number of solutions of our equation over ¥, and this means we want to know
what #E(Fy) 1s. ‘

To get a rough idea of what will happen we do the following: We choose an a € I,
and to find a point (a,b) € E(F,) we have to solve the quadratic equation y2 +y =
a® —a? —10a — 20 in F,,. If p # 2 then this equation has a solution in ¥y, if and only if the
element a® — a2 — 10a ~ 20 + 1/4 is a square in F,. Now we know that exactly half the

elements in I, are squares and hence our chance to hit a square is roughly 1/2. But if we
hit a square then we get two solutions for our equation- unless the number above is zero-

therefore we can expect that the number of solutions is roughly p. For p # 11 we define

the number a, by
#E(F,) =p+1—ap

so this number a, measures the deviation from our expectation.
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We have the celebrated theorem by Hasse

For p # 11 we have the estimate | a, | < 2,/p

Again we can produce a list with small primes

2 3 5 7 13 17 19
-2 -1 1 -2 4 -2 0

Now we can formulate a theorem which is a special case of the Langlands correspondence
but which was certainly known to Eichler:

Theorem For all p # 11 we have

@ = 3(r(P,p) ~ (@)

This is a surprising statement which is formulated in completely elementary terms.
We have two diophantine problems of rather different nature, why are they related by the
theorem above? I would like to say that the theorem in the form as it stands looks like a
miracle.

One possible interpretation is that it provides a elementary formula for the numbers a,.
But from the computational side it seems to me that the a, are easier to compute than
the representation numbers. I come back to this further down.

The theorem becomes comprehensible if we establish the connection to modular forms.
The following considerations go back into the 19-th century. We consider the two gene-
rating functions for our two quadratic forms. We make a substitution £ — €27%* and we

observe that the functions
2= (P z),z— ©(Q, z)

are holomorphic functions on the upper half plane H = {z | Im(z) > 0}. It is a classical
result that these two functions are in fact modular forms of weight 2 for the congruence

subgroup

To(11) = {(Z’ 2) [a,b,e,d€ Z,c=0mod11},

this means that they satisty(? = P, Q)

az + b
‘ez +d

v = (‘Zj 3) € To(11)

3

o(? ) = (cz + d)?6(?, 2)
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and in addition a certain growth condition is satisfied. [This can be verified by a classical
calculation. First of all it is easy to see that in both cases the forms are invariant under
2z — z+ 1 and then the Poisson summation formula implies the rule

1 1
6(2,2) = 7300 =)

(I skip the computation, it is based on the observation that for £ € R* the function

I — Z eZTriZQ(:c+w)
weZd

is periodic with period Z*. Hence it has a Fourier expansion, writing down this expansion,
putting z = 0 and another small manipulation yields the assertion). Now the modularity
follows. ]

Hence we get two modular forms of weight 2 for the group I'p{11) and by classical
dimension formulae we know that they span the vector space of these modular forms. We
know that this space of modular forms is also spanned by two other specific forms: One of
them is the Eisenstein series

1 1 1
B(z) = Z (cz+d)? 11 Z (cz +d)?

+,e=0mod 11 ¥,c20mod 11

[this is difference of two divergent series and this difference makes sense (this is Hecke so
we are in the 20-th century)] and the other one is a cusp form, which in this case is

f(z) = 2Tz H((l _ ezﬂ-niz)2((1 - e21r11m€z)2)

(also classical we have the Dedekind #-function n(z) = ™*/12 [T2, (1~ e2mmiz))

It is now a classical theorem ( it may be interesting to find an actual reference but in
any case this was in the reach of people like Fricke ...) that

f(2) = 7(O(P.2) — 0@, 2).

Of course we would have information on the individual Theta series. In this context we
still have another theorem of Siegel. Qur two quadratic forms are in fact in the same
genus, that means over any p-adic ring Z, they become equivalent ( but of course they are
not equivalent over Z) and they are actually all the classes in the genus. Then we have a
very general theorem by C.L. Siegel which asserts that the sum over the Theta series over
a genus where the summands are multiplied by suitable weight factors (densities) gives us
an Eisenstein series. In our special situation we find

%@(P, )+ %@(Q,z) = B(z) = 3 one?

n=0



where the coefficients o,, are given rather explicitly, for instance for a prime p # 11 we
have

ocp=p+ 1.

I will say more about the other coefficients in a minute (See A below).

At this point I want to meditate a second. Here are two important points to observe.

A) If we look at the problem to understand the representation numbers we want to know
the r( P, n) for all integers n. If we go back to our elliptic curve we get only numbers for each
prime p, (p # 11). Here the theory of automorphic forms provides another remarquabie and

fundamental fact. The coeflicients in the two series

00

£(2) = (O(P,e¥™) — ©(Q,¢™) = Y remins

and

E( )_ _B(P 2w1z)+ e Q, 21r‘lz Zo_ e21'rm.z

behave multiplicatively and I explain what this means: If we have any series F(z) =
>~ A.e®™"% then we build formally the Mellin transform. This is a Dirichlet series, it is
defined by

(Let us ignore convergence problems, this construction has also been discussed in J.
Cogdell’s lecture). Now multiplicativity means in our case that the two Mellin transforms
have an Euler product expansion

1 1
Lf(S) = ( H —8 1-2 ) —8
Al P2 11l

1

1
LE(S) = ( I | — 1_28) s
g 17 (P )pme 4 pim2 1 - 11

and this is equivalent to some recursion formulae namely
Tnm = TnTm; Tnm = On0y if n, m are coprime
and for p # 11

Tpr+l = TprTp + PTpr=1,Tpr41 = OprOp + popr—1 if 7 > 1

p
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and hence we know the ¢, T if we know them for prime indices.

This follows from the theory of the Hecke operators which was actually designed for
proving such multiplicativity formulae. The two functions are eigenfunctions for this Hecke
algebra and this is equivalent to the multiplcativity of the coefficients. This makes it also
clear that our two functions are the only ones which have multiplicative coefficients.

B) Now we have the formula

%WRM+%WQ@=W+1

and together with our theorem we can say that we can express the representation numbers
in terms of p,a,. Combined with the theorem of Hasse we get a consequence for the
asymptotic behavior of the representation numbers and this was an application Eichler
which had in mind. From |7p| = |3(r(P,p) — r(Q,p))| £ 2,/p we get the asymptotic
formulae

12
NRM=EW+M#W

HQ,p) = Zp+ O@2).

5

Now we return to our elliptic curve and I want to give a very scetchy outline of the proof
of the theorem. We consider the Riemann surface I'g(11)\ . It was known to Fricke that
this is a curve of genus 1 over C from which two points are removed. These two points
are the cusps of the action of ['g(11) on # they can be represented by 0,ic0. The curve of
genus one can also be interpreted as ['o(11)\H* where H* = HUQU {oo} = H U PLH{Q)
where this space is endowed with a suitable topology. Fricke found an equation for this
curve which after some manipulation can be transformed into

y? +y=zx>—2%— 10z - 20

and in modern language this means that that we have a model Xo(11)/ Spec(Z) of our
complex curve which has good reduction at all primes p # 11.

The Hecke operators T, are so called correspondences, they can be interpreted as curves
T, C T(11)\H* x Fp(11)\H* which consist of the following points: If a first coordinate
is represented by z € H then the second coordinate is represented by one of the points
{pz,z/p,(z + 1)/p,..., {2 + p— 1)/p} so in general there are p + 1 second coordinates
corresponding to a first coordinate and vice versa.(Of course one has to check that replacing
z by another representative gives the same set of corresponding points). These Hecke
operators extend to correspondences also called 7, on the model Xo(11). To see that this
is 50 one has to go to the modular interpetation of Xo(11), this means roughly that Xo(11)
is the parameter space for the elliptic curves with a cyclic subgroup of order 11. Then
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Eichler showed that these correspondences have a reduction modp and this reduction is
given by the congruence formula

Tymodp = F, +' F,.

Here F, is given by the graph {(z,zP) € E(F,) x E(F,)} and 'F, is given by {(z?, z) €
E(F,) x E »)}. Using the trace formula the coefficient 'rp can by expressed in terms of
ﬁxed point of T,. But modp the fixed points of F, and *F}, are the points in E(F,) and
this gives a very rough indication how the theorem can be proved

Converse theorems

I come back to the L function. I introduced the Mellin transform very formally but as
explained in Cogdell’s lecture we can also define it by the integral

s y
M9 = o ag = [ sy
From this integral representation we can derive that (I;L:)%L( f, 3) has an analytic continu-
ation into the entire plane and that we have a functional equation

A2 —5) = A(s).

Already Hecke observed that that under certai circumstance we can go the other way
round. If we have a Dirichlet series

which defines a holomorphic function and satisfies a suitable functional equation then it
comes from a modular form. Hecke considered the case of Si3(Z) and Weil generalized
it but he had to assume that these properties remained true if the series as twisted by
Dirichlet characters ( See Venkataramas’s and Cogdell’s lectures.) Such a theorem is

called a converse theorem.

IT The General Picture

Now I want to give some vague idea of the general Langlands program. I must confess
that my own understanding is very limited. But on the other hand the entire picture is
so vast and a precise formulation requires an explanation of so many subtle notions that I
believe that a very rough approximation may be more helpful than a precise presentation.

During this summer school we have seen that automorphic cusp forms should be under-
stood as irreducible subrepresentations occuring in the space of cusp forms on a reductive
group G/Q, we may very well think that G = G1,. So this is an irreducible submodule

Hr C Li(G(QN\G(A))

7
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where the subscript n stands for the isomorphism class of our module. Several lecturers
told us that such a « is in fact a restricted tensor product of local representations 7, of
G(Q,) and we write

!
=@

These local representations have to satisfy some constraints. For instance for almost all
finite primes m, has to be in the unramified principal series (See Prasad’s notes and below)
and they must be unitary.

In Ragunathan’s lecture it was explained that

LY(G(Q\G(A)) = P m(n)H

and it is a fundamental problem to find out

Let us assume that there is a restricted product # = @ ' m,. given to us which fulfills
the above constraints. When does a m occur in the space of automorphic forms and what
is m(mw)?

Of course this question is rather vague because we should know how 7 is given to us, i.e.
what is the rule which produces the local data {m,}.

The classical case again

We come back briefly the special case Gls. In our example a modular form was a
holomorphic function f on the upper half plane which satisfied

f(v(2)) = (cz + d)?f(z) for -y in some congruence subgroup I" C Sl2(Z).

In addition we required that it should be an eigenform for the so called Hecke opera-
tors and I explained briefly that this was equivalent to the requirement that the Mellin
transform of the Fourier expansion has an Euler-product expansion. Actually the Hecke
operators T}, are only defined for primes p not dividing the so called level N of our form.
In or example we had N = 11. Hence we see that f provides a collection of local data
{7p}p pyn the eigenvalues of Tp. In our example we had in fact a rather simple rule which
provided the local data, we took the difference of the representantion numbers.

If we want to translate from the classical language to the modern language then we have
to assign a representation 7 (f) of Gl2(A) to our classical modular form: This representation
should occur in the space of cusp forms L3(Gl2(Q)\Gl2(A)). I do not construct it but a
make a list of its properties which define it uniquely. If we write

W(f)=®’7r'u

then



i)At the finite primes p not dividing the level the representation 7 (f)p is in the unramified
principal series and hence a unitarily induced representation

G(Q,
IndBEng Ap

where A, 45 a quasicharacter )\p((tol tu)) = [t1]|°t[t2]°2. It gives two numbers
2

a,,=,\,,((g f))andﬁpz,\p((l 0)).

0 p

Then these numbers are related to the p-th Fourier coefficient of f by the formula

Tp = VPlap + Bp) and a,f, = w(p).

Here w is the so called central character this is the restriction of w{f) to the centre.

1)In our special situation where f is holomorphic of weight two the representation ([ oo
of Gl (R} will be the first discrete series representation.

If we have holomorphic modular form of weight k£ we get the k — 1-th representation of
the discrete series a infinity and in the formula for the ap the ,/p gets changed into p¥.

The second player in the game is our elliptic curve E/Q. This elliptic curve yields an
object h'(E), this is a motive. Tt is not entirely clear what this means but it creates some
other objects

A) A compatible system of £-adic representations of the Galois group Gal(Q/Q)

B) The Betti cohomolgy H!(E(C),Z) together with a so called Hodge filtration on
HY(E(C),C).

I want to say a word about A). For any prime £ we can look om the £ division points
Elt"] = {z € BE(Q) | {"z = 0}

and at this point I assume that we know that E(Q) is an abelian group and that this group
is isomorphic to Z/¢"Z x Z/£"Z. Of course these division points will have coordinates in
larger and larger extensions of Q if n goes to infinity. This means that we have a natural
action of Gal(Q/Q) on all these groups and if we form the projective limit

T, = lim E[¢"]
—n

the result is a free Z, module of rank 2 together with a continous action of the Galois
group.

[ explained what it means that E has good reduction at a prime p. It is not so difficult to
see that for a prime £ which is different from p the action of the Galois group is unramified

9
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at this prime p in other words the inertia group acts trivially. Hence we can define a
conjugacy class [Fy] defined by the action of the Frobenius at p and the characteristic
polynomial

det(Id —Fpp~® |Te(E)) € Ze[p~”)

is a well defined quantity. Now it follows from the Lefschetz fixed point formula that in
fact
det(Id _Fpp—s ITg(E)) =1 app—s _|_p1—25

This has important consequences
1) det(Id —Fpp~* |T¢(E)) € Z[p™°]
2) det(1d — Fpp~* |Ty(E)) not depend on ¢

Finally we have that
3) det(Id —F,p~* |To(E)) is defined outside a finite set of primes U{¢}

These three properties of our different Galois modules (£ varies } are the defining pro-
perties for compatible systems of Galois modules.

Hence we can reformulate the specific result in the first section:

In our example the modular form of weight two and the elliptic curve provide a collection
of local data

00)A representation T and o real Hodge structure on H YE(C),Z)®C

For almost all primes an unramified local representation m, of Gl2(Qp) and an unramified
two dimensional representation p(mp) of the Galois group Gal{Qp /Qp) such that (in the
notation used in the example )

p)the automorphic Euler factor L(mp,s) = (1 — 7pp™° + p'™2%) is equal to the
arithmetic L- factor det(1d —Fpp~* |T:(E})).

This means that in our example we have a second rule which produces the local compo-
nents of a cusp form. This rule is provided by the elliptic curve. In this particular case it
is also possible to establish the local correspondence also for the ramified primes, this has
been show by Langlands, Deligne and Carayol.

It is now Langlands’ idea that such a correspondence between automorphic representa-
tions = () 'm, and some kind of arithmetic objects M(m) should always exist. The
ideas of what nature of these objects is, are are also conjectural. If I want to be a little
bit more precise I have to explain

10



Satakes theorem

Let us assume that we picked a prime p such that G x Qp is split. If G = GI,, this
can be any prime. Let K, = G(Z,) be the maximal compact subgroup defined by some
Chevalley scheme structure G/Z,, if G = G, this could be Gin(Zp). To these data we
attach the Hecke algebra #, = C(K,\G(Qp)/K,) and this are the C valued functions on
G(Qp) which are compactly supported and biinvariant under K,.

We choose a Borel subgroup B ¢ G of T(Qp). and a maximal torus T C B such that
T(Qy) N K = T{(Zp) is the maximal compact subgroup our torus T(Q,). Let X,(T) =
Hom(Gp, T') be the module of cocharacters, let W be the Weyl group. We introduce the
module of unramified characters on the torus, this is

Homyprame(T(Qp ), C*) = Hom(T(Q,)/T(Z,),C*) = Hom(X,(T),C*) = A(T)

We also view A as a character A : B(Q,) — C*, A — A(b) = b*,

We will consider group of characters Hom(T xg Qp,Gm) = X*(T)q, as a subgroup of
A(T). An element v € X*(T) defines a homomorphism T(Qp) — Q; and this gives us the
following element = — |y(z)|, € A(T) which we denote by |v].

Since we have the Iwasawa decompsition G(Q,) = B(Q,)K, we can attach to any A €
A(T) a spherical function

#a(g) = ¢A(bpkp) =(A+ |P|)(bp)

where p € A(T’) is the half sum of positive roots. This spherical function is of course an
eigenfunction for #, under convolution, i.e. for k, € H,

[ 8oz h(z)de = by (N2 (o)
and hy, — hp()) is a homomorphism from Hp to C.
The theorem of Satake asserts that this provides an identification
Hom(H,, C)-3A(T)/W.
To such a character we can attach an induced representation

Ind3(@7) (0) = {f : G(@,) — C| F(bg) = (A + |ol) (6)f(9)}

where in addition f|K is locally constant. These representations are called the principal
series representations we denote these irreducible modules by m, = m,(},) and ), is the
so called Satake parameter of 7.

Let us now asume for simplicity that our group G/Q is split, for instance G = Gl /Q.
In this case we may choose a split torus T'/Q. We have the canonical isomorphism

Hom(X.(T),C*)SX*(T) ® C*

11
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and the character module X*(T) can be interpreted as the cocharacter module of te the
dual torus 7. If we intercange the roots and the coroots then T becomes the maximal split
torus of the dual group G which is now a reductive group over C. If our group G = Gi,/Q
then the dual group is GI,,(C).

A general philosophy

Now we come back to our automomorphic form 7. If we write it as a restricted tensor
product then almost all the components are in the unramified princial series and now we
can view the collection of unramified components {7,(A,)} as a collection of semi simple
conjugacy classes in the dual group.

Now Langlands philosophy assumes the existence of a very big group £ and I can not
say exactly what properis this group should have. It certainly should somehow have the
Weil group W(Q/Q) in it. This Weilgroup is some kind of complicated modification of
the Galois group. We have also the local Weil groups W(Q,/Q;) and these are easier to
explain: The group W(Q,/Qp) € Gal(Q,/ Q) and consists of those elements whose image
in Gal(F, /F,) is an integral power of the Frobenius.

The aritmetic object M(w) attached to 7 should be a representation

p(m): L —= G

which at least fulfills the following requirement:

At any prime p at which 7 is unramified the representation p(m) is also “unramified”.
The structure of L should be such that for an unramified m, it provides an unramified
representation

p{7p) : W(@p/Qp) —* G(C)

such that the image of the Frobenius F, under p(mp) is in the conjugacy class of the
Satake parameter of m,

Representations with cohomology and motives

I want to discuss a special case in which I feel a bit happier. Among the representations
of G(R) there is a certain class consisting of representations #o which have non trivial
cohomology. This means that there is a finite dimensional, irreducible rational G module
£ such that

H* (9, Koo, Too ®RE)# {O}

Then £ is determined by 7o and for any choice of £ the number of such 7 is finite.

We say that 7 is cohomological if the component 7., has cohomology in some module
£. In this case one might speculate whether we can attach a motive our better a family fo
motives to it. A motive is still a conjectural object but certainly simpler in nature than L.

12



First of all I refer to De_lignes theorem that for a smooth projective scheme X /Q the ¢ adic
cohomology groups H*(X, Q) provide a compatible system of Galois modules. A motive M
is a piece in the cohomology which defined by a projector obtained from correspondences.
( In the classical case these corrspondences are provided by Hecke operators).

Then it is clear that M also provides a compatible system of Galois representations

p(M) : Gal(Q/Q) — GI(H (M, Q))

and the Euler factor at an unramified prime is defined as before by

det(1d —Fpp~* | H(M,Qp)) € Z[p™].

If we have an unramified principal series representation mp{Ap) and we choose in addition

a finite dimensional irreducible representation 7 : G(C) — Gl,(C) then we define the Euler

factor
L(mp(Ap), 7, s) = det(Id —r(mp(Ap))p™").

If we know all these Euler factors for all choices of 7 then we know the conjugacy class of
Tp{Ap) viewed as an element in G(C). Now we can speculate

To any m which has cohomology and which»occu’rs in the space of { cuspidal ) eutornorphic
forms on G and to any representation r : G(C) — Gl,(C) we can find a motive M(rm,r)
such that for all unramified primes p we have an equality of local Euler factors

L(r(mp(Ap), 7, 8) = det(Id —p(M)(Ey)p~)

There should also be a matching between mo, and the Hodge structure on the Betti coho-
mology of the motive.

This system of £ representations ( now r varies ) should have the property that is com-
patible with the operations in linear algebra: If we decompose a tensor product 1| ® ro into
irredcibles then the Galois representations should decompose accordingly, at least if we pass
to a subgroup of finite index in the Galois group.

Already in the formulation we need the properties of compatible system. The right
hand side has a property which we a priori can not expect from the left hand side: Why
should the automorphic Euler factors be in Z[p~*]?? Can such a statement ever be true?
Here the assumption that 7, has cohomology helps. Using the rational {or even the
integral structure ) on the cohomology we can show that in fact that L(m,,r, s) viewed as
polynomial in p~¢% has coeflicients which are algebraic integers and which all lie in a finite
extension of QQ which depends on 7y. We say that a cohomological form 7 is rational if
these coefficients are in Z { this was so in our example). Otherwise we say that = is defined
over F' if F' C C is generated by the coefficients of all our Euler factors.

Then we can to add to our assumption in our statement above that 7 should be rational.
Otherwise we have to invent the notion of a motive with coefficients in F this notion
has been introduced by Delinge and then we can formulate the above assertion using this

concept.

13
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Of course one can ask the question in the opposite direction: Given a motive is there
somewhere an automorphic cohomological representation 7 such that M = M (m,r) for
some r. Can we find such a representation even in the space of automorphic forms on
Gl,..7 1t was proved by Wiles and others that this is in fact true for elliptic curves over Q.

Functoriality

If we believe in this kind of correspondence between automrphic forms and some sort of
arithmetic objects then we get remargnable consequences for automorphic forms. Let us
just stick to the cohomological case. If we have two such motives we can form their product,
which for the Galois modules amounts to take their tensor product. Going backwards we
should be able to construct an automorphic form m; x 73 on some bigger group. This is
the principle of functoriality which is suggested by the philosophy.

Let me give an example. We consider holomorphic modular forms of weight 2, we can
even go ack to our example. We have seen that our modular form provides a compatible
systemn of two dimensional £-adic representations

p(H'(E)) : Gal(Q/Q) :~ GI(H' (E, Q)

Now we take symmetric powers of these representations, this means that we take the k-
fold tensor product of these representations first and this amounts to taking the k-fold
product of h}(E) by itself. Then we have an action of the symmetric group and we can
take the symmetric part. I terms of the Galois representations this means that we get an
representation on the symmetric tensors

p(Sym*(HY(E))) : Gal(Q/Q) :— GI(Sym"(H'(E,Q)))

and it is cetainly a legitimate question whether comes from an automorphic form.

In this particular case we can look at our problem from a different point of view. We
look at the L function (let us stick to our example)

1 1
Lg(s) =
E( ) (pgl 1— Tpp—s _|_p1-2s)1 —11-5
and we rewrite the Euler factors
1 1

L(mp, s) = 1 )

— Tpp~° + pt~2s B (1- O‘pp_s)(l — &pp~*°)

and we mention that it follows from Hasse’ s theorem that &, is in fact the complex
conjugate of ap.
Now we form a new L-funcion, we pick a k > 1 and write a local L factor at p

1
(1-— a’;p—s)(l — a’,ﬁ_l&pp—s) {1 - &‘ij—")

L(np,7,8) =

14



We can form a globlal L-function attached to the k-th symmetric power

1
(I —okp=9)(1- afé—ldpp—s) {1 = akp=s)

L(ﬂ','f‘, 5) = H LN(T!", T, S)a

iplN
where 1 do not say anything about the factors at the ramified primes. In our case where
N = 11 the Euler factor at 11 should not depend on k.

Of course we can ask whether this is again an L-function attached to an automorphic
cusp form on Glg,,. This has been shown by Gelbart and Jacquet for k = 2. Here we
are again in the situation where we could try to apply converse theorems, but we do not
have methods to verify the necessary analytic properties of the L-Functions { See Cogdell’s
Notes}). But the cases k = 3,4 have been treated sucessfully by Shahidi and Kim.

We come the the concept of base change. Let us assume we have a (cuspidal) automorpic
form 7 on some reductive group over Q. Let us assume we attached to it a representation

p(r): £ = G(C)

of our group £. Let us assume that we have a field extension K /Q, then it should be
possible to restrict the group £ to X and we would get a restricted representation

p(m) i : Lx — G(C).

{This is another of the requirements one should put on L, if we work with motives then
we would just extend the motive or restrict the Galois representations to Gal(Q/K)).

Hence we should expect that this restriction of the representation p(w)g would provide
an automorphic form on the group G x K which then would be the lift of 7 to G x K .

The existence of such a lifting has indeed been proved for solvable extensions by Lang-
lands in the case G = Gly/F and by Arthur and Clozel for G = Gl,/F. This result plays
a fundamental role in the proof of the Taniyama Weil conjecture for elliptic curves and the
local Langlands correspondence for G, by Harris and Taylor.
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