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MODULARITY OF SOLVABLE ARTIN REPRESENTATIONS OF
GO(4)-TYPE

DINAKAR RAMAKRISHNAN

Introduction

Let I' be a number field, and (p, V) a continuous, n-ditmensional representation
of the absolute Galois group Gal(F/F) on a finite-dimensional C-vector space V.
Denote by L(s, p) the associated L-function, which is known to be mercomorphic
with a functional equation. Artin’s conjecture predicts that L{s, p) is holomorphic
everywhere except possibly at s = 1, where its order of pole is the multiplicity of
the trivial representation in V. The modularity conjecture of Langlands for such
representations, some times called the strong Artin conjecture, asserts that there
should be an associated (isobaric) automorphic form 7 = oo &y on GL(n)/F such
that L(s, p) = L(s, ns). Since L(s, 7;) possesses the requisite properties ({JS]}, the
modularity conjecture implies the Artin conjecture.

For any field k, let GO{4, k) denote the subgroup of GL{4,k} consisting of or-
thogonal similitudes, i.e., matrices g such that tgg = Agl, with Mg € k*.

We will say that a k-representation (p, V) with dim (V) = 4 is of GO{4)-type iff
it factors as

p = [Gal(F/F) °5 GO(4,k) C GL{V)).
In this article we prove

Theorem A Let F be a number field and let (p, V) be a conlinuous, 4-dimensional
C-representation of Gal(F/F) whose image is solvable and lies in GO(4,C). Then
p is modular, i.e., L(s, p) = L(s,n¢} for some isobaric automorphic representation
T =R @7f of GL(4,Ar). Moreover, 7 is cuspidal iff p is irreducible.

One can ask if this helps furnish new examples of Artin’s conjecture, and the
answer is yes.

Corollary B Let F' be a number field, and let p, p' be continuous C-representations
of Gal(F/F) of solvable GO(4)-type. Then Artin’s conjecture holds for p @ o

We will show that in fact there is, for each F', a doubly infinite family of such
examples where the representations p ® o/ are irreducible and primitive (i.e., not
induced) of dimension 16 (see section 6). Primitivity is important because Artin
L-functions are inductive, and one wants to make sure that these examples do not
come by induction from known (solvable) cases in low dimensions. One can also
show, given p, p" as in Corollary B with corresponding extnensions K , K7 respec-
tively of F', for any intermediate field E of K K'/F with [E : ') = p® withp € {2,3}
and a < 4, the ratio {g(s)/(r(s) is entire.

PARTIALLY SUPPORTED BY THE NSF GRANT DMS-9801328
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It has been known for a long time, thanks to the results of Artin and Hecke,
that monomial representations of Gal(F/F), i.e., those induced by one-dimensional
representations of Gal(F/K) with K/F finite, satisty Artin’s conjecture. But the
strong Artin conjecture is still open for these except when K/F is normal and
solvable ([AC]) and when [K : Q] = 3 ([JPSS]).

The odd dimensional orthogonal representations are simpler than the even di-
mensional ones. Indeed we have

Proposition C Let p be a continuous, irreducible C-representation of GO(n)-type
withn odd. Then p is monomial and hence satisfies the Artin conjecture. If p 15 in
addition self-dual, it must be induced by a quadratic character.

It may be helpful to recall the current status of the problem beyond the mono-
mial case. By the groundbreaking work of Langlands in the seventies ([Lal]), as
completed by Tunnell in 1980 ([Tu]), one knows that the strong Artin conjec-
ture holds for all two-dimensional representations with solvable image. For odd,
9-dimensionals of Gal(Q/Q) of As-type, a very recent result of Buzzard, Dickinson,
Sheppard-Barron and Taylor ([BDST]) establishes the modularity conjecture if cer-
tain ramification conditions are satisfied at 2,3 and 5. If o, o' are both solvable
and 2-dimensional, the Artin conjecture for o ®¢’, also for sym*(a)® sym?(¢’) and
sym?(c) ® o, follows by the Rankin-Selberg theory, while the strong Artin conjec-
ture for o ® o’ follows from the main theorem of [Ra]. Now let K/F be a quadratic
extension with non-trivial automorphism 8. Given any irreducible, non-monornial
2-dimensional representation ¢ of Gal(F/K) which is not isomorphic to any one-
dimensional twist of ¢!®) (see section 1), there is an irreducible 4-dimensional rep-
resentation As(c) of Gal(F/F) whose restriction to Gal(F/K) is isomorphic to
o ®c'%). When ¢ is of solvable type, one can combine Langlands-Tunnell with that
of Asai ({HLR]) to deduce the Artin conjecture for As(e).

One of the main steps in our proof of Theorem A is that even modularity can
be established for any Asai representation As(c) (in the solvable case). To begin,
there exists, by Langlands-Tunnell, a cusp form 7 on GL(2)/K such that L{s, o) =
L{s, 7). 1t follows that L(s, o ®ol?l) equals the Rankin-Selberg L-function L{s,mx
(mo8)). By [Ra], there exists an automorphic form rR(mod) on GL(4)/K such that
L{s,o®0l?l) = L{s,7®(x0#f)). Since 7 &i(wcf) is f-invariant, one can now deduce
the existence of a cusp form IT on GL(4)/F whose base change to K is 7 & (7 o 8),
and which is unique up to twisting by the quadratic character 8, say, of the idele
class group of F corresponding to K/F' by class field theory. But it is not at all clear
that II, or [1® &, should correspond to As(o), with an identity of the corresponding
L-functions. (It is easy to see that the local factors agree at half the places.) Put
another way, one can construct an irreducible admissible representation As(m) of
GL(4, Ar) which has the same local factors as does As(a). But the problem is that
there is no simple reason why As(m) should be automorphic, even when 7 is of CM
type, i.e., associated to a Hecke character of a quadratic extension. Anyhow we
manage to solve this problem and establish the following

Theorem D Let K/F be a quadratic eztension of number flelds with non-frivial
automorphism 8, and let & denote the quadratic idele class character of F corre-
sponding to K/F. Let © be a cuspidal automorphic representation of GL(2, AK)
such that @ ® x is not isomorphic to wo 8, for any idele class character X of K.
Then As(m) is automorphic, which is moreover cuspidal if w is non-dihedral.
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The proof of this is similar to, but a bit subtler at places than, the proof in
[Ra] of the existence of the Rankin-Selberg tensor product ® on GL(2)xGL(2).
The case when 7 is distinguished, le, when 7 o # is an abelian twist of , is
treated separately. In the remaining general type situation, we use the converse
theorem for GL(4) due to Cogdell and Piatetski-Shapiro (JCOPS|, which requires
knowledge of the twisted L-functions L(s, As(m} x 7') for automorphic forms 7’
of GL{2)/F. Many properties of such L-functions were established by Piatetski-
Shapiro and Rallis ([PSR]) and by Ikeda {[Ik1,2]), which we use. A thorny problem
arises however, with our inability to identify the bad and archimedean factors.
Luckily, things simplify quite a bit under suitable, solvable base changes K/F, and
after constructing the base-changed candidates As(m) g for an infinitude of such
K, we descend to F as in [Ra]. We also have to control the intersection of the
ramification loci of As(x) and #’. As a consequence of the existence of As(m) over
F', one gets (after the fact) the correctness of the local factors vis-a-vis the local
correspondence.

We would like to thank R.P. Langlands and the Institute for Advanced Study,
Princeton, for their hospitality during the year 1999-2000, and the American Insti-
tute of Mathematics, Palo Alto, for support during the month of August in 1999,
This project was partially funded by the NSF and AMIAS. We also want to ac-
knowledge some helpful conversations with Michael Aschbacher and David Wales
concerning representations of finite groups. Finally, we would like to thank Kevin
Buzzard, Jim cogdell, Jeff Lagarias, Freydoon Shahidi, and Joe Shalika for their
interest in Theorem A and for encouraging us to write it up.

1. Preliminaries on orthogonal similitude groups

Here we collect some basic facts, which we will need.

_ Let & be a field of characteristic different from 2, with separable algebraic closure
k. If V is a finite dimensional vector space with a non-degenerate, symmetric
bilinear form B, the associated orthogonal similitude group is

(1.1)

GO(V,B) := {g € GL(V)| B(gv, gw) = Mg)B(v,w), with Ag) € k*, Yo, w € V).
The character A : GO(V, B) — k*, g — Xg), is the similitude factor. The kernel
of A is the orthogonal group O(V, B), whose elements necessarily have determinant
+1, and the kernel of det is the special orthogonal group SO(V, B).

If V= k" with B the standard bilinear form By : (v,w) — ‘vw, then one
writes GO(n, k), O(n, k) and SO(n, k) instead of GO(V, B), O(V, B) and S0(V, B).
Denote by Z.(k) the center of GO(n, k) consisting of all the scalar matrices cln,
c € k*. Clearly, A(cl,) = ¢?, so that k*? is in the image of A. The odd dimensional
case is relatively simple. One has

Lemma 1.2 Ifn is odd and k = E, then we have the direct product decomposition
GO(n, k) = 80(n, k) x Z, (k).
Indeed, as k = k, AZn(k)) is all of k*, and since O(n, k) is by definition the

kernel of A, GO(n, k) is generated by the normal subgroups Oin, k) and Z,(k).
On the other hand, the intersection of these two groups is simply {1+7,,}. Since
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n is odd, the image of det : O(n, k) — {xl} is the same as that of {£I,}. The
assertion follows.

Note that GO(1,k) = Z;(k) = k*. There is a nseful description in the n = 3
case, which we will now recall. The adjoint representation

Ad: PGL(2, k) — GL(3,k)

is irreducible and self-dual with determinant 1. This identifies the image of Ad with
SO(3, k), thanks to the simplicity of the latter. By abuse of notation, we will also
write Ad for the composition with the canonical map from GL(2, k) onto PGL(2, k).
This gives rise to the short exact sequence

(1.3) 1— k" = GL(2,k) = SO@3,k) — 1,
where the maps in the middle are ¢ — ¢lz and g — Ad(g).

The even dimensional case n = 2m is more interesting. Since for any g in
GO(2m, k), the square of its determinant is Mg)?™, we can define a homomorphism,
called the similitude norm

(1.4) v: GO(2m, k) — {*l1},

by sending g to A(g) ™ det{g)-

The kernel of v, denoted SGO(2m, k), is called the special orthogonal simili-
tude group. (Some people write GSO(2m, k) instead.) The map v does not split.
Since v is just the determinant map on O(2m, k), the intersection of SGO{(2m, k)
with O(2m, k) is SO{2m, k). When k = C, SGO(2m, k) (resp. SO(2m, k)) is the
connected component of GO(2m, k) (resp. O(2m, k)). SGO(2, k) is abelian.

Note that v(clam) is 1, and that SGO(2m, k) is generated by SO(2m, k) and
Zom{k); but their intersection is {xlom}.

We will conclude this section by recalling a low dimesional isomorphism, which
we will need, between GSO(4, k) and a quotient of GL(2, k) x GL{(2, k).

Let W be k% with the standard symplectic form given by the determinant. Then
the induced bilinear form B on the tensor product W @ W is non-degenerate and
symmetric. There is an isometry between (W@W, B) and (k%, By). Since GL{(2,k)
is the symplectic similitude group of (W, det), we get an exact sequence

(1.5) 1 — k™ — GL{2, k) x GL(2,k) — GO(4, k),

where the map on k* is just given by ¢ — cla. The right map 3, say, can be
described explicitly as follows. The quadratic space (k*, By) is also isometric to
(My(k), B1), where B; is the symmetric bilinear map (X,Y) — *XY. Under this
identification, 3(g,¢') is, for all g,¢" in GL(Z, k), the automorphism of k* given
by X — tgXg'. Clearly the kernel of 3 consists of pairs {cIp,c o) with ¢ € k*,
proving the requisite exactness.

Note that A(3(g,g")) is det(g)det(g’), while the determinant of 3{g,g’') is its
square. Hence v is trivial on the image of . Tt is easy to see that Z4(k) lies in the
image of 8. Thus, by the simplicity of SO(4, k), we get

(1.6) B(GL(2, k) x GL(2,k)) = SGO(4, k).
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2. The reducible case

Suppose we are given a representation p as in the statement of Theorem A, which
is reducible, Thanks to Maschke’s theorem we may write p > @, p,, with each p,
irreducible of dimension ni, and 3 ; 1 = 4. Suppose we have found, for each 7
a cuspidal automorphic representation 7, = Tjco @ T;p of GL{n;, Ar) such that
L(s, p;) = L{s,7; ). Then we can consider the isobarie surn of Langlands ([La2],
(J8])

(21) m = B?ij:rrj,

which is automorphic and satisfies

L(s,7) = [] Lts, 7).
i

Since the L-functions of Artin are also additive, we get L{s, p) = L(s, 7¢) as desired.
So it remains to find the ;.

Note that cuspidal automorphic representations of GL{1, Ar) are just idele class
characters of F. So when n; =1, the existence of #; follows from class field theory.

Since the image of p is by hypothesis solvable, the same will be true for each
pj. So if nj = 2, we may apply the celebrated theorem of Langlands ({Lal]) and
Tunnell ([Tu]) to conclude the existence of Ty

It remains to consider the case when n; is 3 for some 7, say for § = 1. Then we
must have a decomposition

£~ p D ps,
with p; (resp. pp) irreducible of dimension 3 {resp. 1). Since by hypothesis, the

image of p lands is GO(4, C), and since there can be no intertwining between p,
and p;, we must have

im{p1) C GO(3,C).
Thanks to Lemma 1.2, GO(3,C) is S0(3,C) x C*. So we may write

(22) fo e PI ® X
where x is a character Bp — C*, and ¢’ is a 3-dimensional representation of &g
with image in SO(3, C).

Moreover, the exact sequence (1.3), which can be viewed as an exact sequence of
trivial modules under &5 = Gal(F/F ), furnishes the cohomology exact sequence

(2.3) Hom(&r, GL(2, C)} — Hom(®r, SO(3,C)) — HYSp, ),

with p" belonging to the middle group. On the other hand, a theorem of Tate (see
{Se], for a proof) asserts that the group on the right hand side of (2.3) is trivial as
Fis a number field. Thus we may lift p’ to an element of the left hand side group
of (2.3). In other words, we can find a (non-unique) 2-dimensional representation
71 of &g such that

(2.4) p1 = Ad{m) & x.

Since p; has solvable image, 7; is also forced to have the same property. Applying
Langlands-Tunnell once again, we get an isobaric automorphic representation 7;,
which must in fact be cuspidal as p; and hence 7 are irreducible, such that L(s, ;)
equals L{s,n f).
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By a theorem of Gelbart and Jacquet ({Gel]) one knows that, given any cuspidal
automorphic representation 71 of GL{2, A F), there exists a functorially associated
(isobaric) automorphic representation Ad(n) such that

(2.5) L(s, Ad(m) = [] L(s, Ad(ow(m)),

where the product is over all the places v of F, and o,(n) is the 3-dimensional
representation of the Weil group (resp. Weil-Deligne group) W, (resp. Wi ) when
v is archimedean (resp. non-archimedean), associated to 7, by the local Langlands
correspondence for GL(3){[Hel).

Then it follows that

L(S1 Pl) = L(Sl (Ad(nl) by X)f)
So we are done by setting mp = Ad(m) ® x. Done.

3. Modularity modulo Theorem D

In this section we will show how to prove Theorem A if we admit the truth of
Theorem D. Thanks to the discussion in the previous section, we may assume that
p is irreducible.

By hypothesis, the image of p lies in GO(4,C). Recall from section 1 the definion
of the subgroup SGO(4, C), which is the kernel of the similitude norm

v: GO(4,C) — {1}

Let K be the extension of F defined by the kernel of v o p. Then [K : Fl=2.
Write px for the restriction of p to &k = Gal(F/K). Thanks to (1.5) and (1.6),
one has the following short equence of trivial Galois modules:

(3.1) 1 - C* — GL(2,C) x GL(2,C) — SGO(4,C) — 1,

where the maps in the middle are ¢ — (cfz,¢™ 1) and (g,9") — (X — t9X4q').

The associated (continuous) cohomology exact sequence gives

(3.2)

Hom(®g,C") — Hom{® s, GL(2,C)xGL(2,C)) — Hom(® x, SGO(4,C)) — H* (65, CY,

with px belonging to the second group from the right. Recall Tate's theorem
which says that the first group on the right is trivial. So we may find ¢,0’ in
Hom(®x, GL{2,C)) such that

(3.3) pr=o®0o.

Note that this lifting is unique only up to changing (o, o'y by (c@p,0'® p~hy, for
any character 4 € Hom(®x,C").

Since the image of p was assumed to be solvable, we see easily that the images
of &, 0 should also be solvable. And since p is irreducible, the same should hold for
o and ¢’. So we may apply the theorem of Langlands and Tunnell to deduce the
existence of cuspidal automorphic representations m, 7' of GL(2, Ap), respectively
associated to ¢,0’.
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Now suppose the image of p lands in SGO(4, C) itself, in which case K = F.
Then by the main theorem of [Ra], we know the existence of an isobaric automorphic
representation m & n’ of GL{4, Ap) such that

(3.4) L{s,7n®7") = L(s,7 x =),

where the L-function on the right is the Rankin-Selberg L-function associated to
the pair {7, 7’). In addition, we have at any place v, the local factors of = & '
identify functorially with those of the tensor product o,(7} &% oy (n') of the local
Langlands parameters o(r), o(x’}) ([Ku]). Since = {resp. 7' is associated to o (resp.
o'}, the loeal representations ou(m) (resp. o,(n')) are isomorphic to the ones defined
by the restriction at v of ¢ (resp. ¢’}. Thus the automorphic representation IT of
GL{4, AFp), whose existence is predicted by Theorem A, is none other than n & 1.
The cuspidality criterion of [Raj shows easily that, since p is irreducible, IT must be
cuspidal. Indeed, the irreducibility of p implies that o, ¢’ cannot be dihedral, and
moreover, o' cannot be of the form o ® x for any character x of G consequently,
7, ' are non-dihedral and are not related by a character twist, which is precisely
what one needs to ensure the cuspidality of IT (see [Ra] for details). We are done
in this case.

We may henceforth assume that [K : F| = 2, which is the subtler case. De
note by @ the non-trivial automorphism of K over F. We can again find cuspidal
automorphic representations =, 7' of GL(2, Ag) such that

(3.5) L{s,pxc) = L(s,mp B7}),
which proves that the restriction pr of p to B g is modular.

We will now explain why this case is difficult. The identity {3.5) implies that
7®x’ is f-invariant, so by the base change theorem of Arthur and Clozel ([AC)), we
can find an isobaric automorphic representation I of GL({4, Ap) such that its base
change Ik is isomorphic to 7 X #’. One can also see easily that the local factors
of IT and p agree at all the places of F which split in K. But one is stuck at this
point and and cannot deduce the requisite identity at the inert places, except when
px s no longer simple.

Suppose px is reducible. Pick any irreducible summand + of pr. Then by
Frobenius reciprocity, p should intertwine with the induction Indﬂ(r) of 7 to Gp.
As p is irreducible, we are forced to have

p =~ Indf (),

with dim{7) = 2. The solvability of the image of p implies the same about that of
7, and so we may apply Langlands-Tunnell to get a cuspidal automorphic repre-
sentation 1 of GL(2, Ag) associated to 7, and we are done by taking II to be the
automorphically induced representation I (7) (sce [AC], and also [Ra], sec. 2).

So we may, and we will, assume that px is irreducible. Since it is the restriction
of p, we have

(3.6) (o0 ® a0 ~ p!:;] ~ p ~ o olfl

where @ is the nontrivial automorphism of K over F. The irreducibility of pgx
implies that o, ¢’ are non-dihedral and are not related by a character twist. So
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(3.3) forces the identities ol > o’ ® p and (o’ Y6l ~ g @ p~t, for some character pt
of &g . This gives

(3.7) o = (@ ~ (oW @ ~ oo (U /u).
Since ¢ is not dihedral, it does not admit any non-trivial self-twist by a character,
and so we must have g = u®. So there exists a character v of ® & such that u is the
restriction v of v to ®x. Thus we get (from (3.4},

(p@VIKk 0@ ®p) = o ® ol
It suffices to show that some character twist of p is modular. So we may, after
replacing p by its twist by ™', that
(3.8) P =0T ® o'
If § denotes the quadratic character of & corresponding to K/F, then p and p&Ré
are the only representations for which (3.8) holds.

It is easy to see that the induction (to Bp) of the exterior square, i.e., the
determinant, of o is a summand of the exterior square of the induction of . Thanks
to semisimplicity, we may then define the Asai representation of o, denoted As{o),
by the decomposition

(3.9) A2(Indf (o)) ~ As(o) @ Indk(det(a)).

Lemma 3.10 p is isomorphic to As(e) or As(o) ®86.

Proof of Lemma. Write § denote the tensor square representation of Indf{(a),
so that

(3.10) 3 = A(Indk (o)) @ Sym*(Indj(0)).
We can also write

{3.11) B ~ Indk(o ® Indi(o)x )
which implies that

(3.12) 8~ 3®8

So As(¢) & & must also occur in 3.
On the other hand, since the restriction to &g of Indi(a) is o @ o', we get
from (3.11),

(3.12) 3 ~ Tnd% (Sym*(0) & AX(0) @ (o ® ol’)).

Since px is (by (3.8)) isomorphic to o & o) it must occur in the induction of the
latter to ® p; ditto for the twist of p by 4. Hence, by the additivity of induction,
the representation on the right of (3.12) is forced to be

Ind5 (Sym?(0)) @ Indg (A* (o)) @ p @ {p ® ).

The lemma now follows in view of (3.9).

So we may, after possibly replacing p by p @ §, assume that
{(3.13) p =~ As(o),

for an irreducible 2-dimensional, continuous C-representation ¢ of @ g with solvable
image.
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For any cuspidal automorphic representation n of GL(2, Ax), one may associate
the following Asai L-function:

(3.14) L(s,n,r) = [] L(s, As(ou(m))),

where v runs over the set £p of all places of F v and As(o, ()} denotes the Asai
representation associated to ow(n); when v splits in K » Ky = Ky x Ky, and
As(oy(n)) simply means the tensor product T () & 0gu(n).

The L-function on the left of (3.14) looks like a Langlands L-function, and we
need to explain why we are justified in adopting such a notation. For this recall
that the L-group of the restriction of scalars of GL(2)/K to F is the semidirect
product
(3.15) L(RK/FGL(Z)/K) = (GL(2,C) x GL(2,C)) x Gel(K/F),
where 6 acts by interchanging the two factors. One defines a representation
(3.16) r: *(RipGL(2)/K) — GL(C? ® C?) ~ GL(4,C)
by setting, for all z,y in C2,

g5 Dz ®y) = g(z) ® gly)

and
(L, L8)zey) = y@ .
At any finite place w of K where 7 is unramified, there is a diagonal matrix [0, Buw]
in GL(2, C) such that
1

(1 - awgs®)(1 - Bugs®)’
where g,, is the norm of w. If v ig any finite place of F which is unramified for
(K/F,n), ie., if v is unramified in K and if 7 is unramified at any place w of X
above v, then one may associate, as in [HLR], a (Langlands) conjugacy class Ay ()
in “(R/rGL(2)/K). When composed with T, One gets
(318) T(Av (?7)} = [awaﬂw; Qw,@ﬂwa ﬁwa’fiw ’ ﬁ'zuaﬂw]
if v splits into (w,fw) in K, and

(3.17) Lis,my) =

a, 0 0 0

) =y g Yo

0 0 0 g,
if v remains prime. Since L(s,7,,} is L{s, a4 (n), we get easily the identity
(3.19) L{s, Asy{a(m)) = L{s,r(Au(n)))

at any finite place v unramified for (K/F,m). This shows the appropriateness of
the notation of (3.14). It is also important because the automorphic results we will
need later will use the Langlands formalism.

If we admit Theorem D), we then have a unique isobaric automorphic represen-
tation II of GL(4, Ag) such that

L(s, 1) = L{s,m,r).
In view of the discussion above, it is clear that

(3.201 L{s,I1,) = L{s, py)
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at almost all places v. By a standard argument comparing the functional equations
of L(s,II) and L(s, p), we also get such an equality of L-factors at every place v.
Since px is by construction associated to ™ ® (7 0 8), we get the identity

(3.21) L(s,TIg) = L{s, 7 ® (7m0 8)).

Since px =~ {o ® (o) is irreducible, the main result of [Ra] implies that m& (7o )
is cuspidal. Since II base changes to a cuspidal representation, it must itself be
cuspidal by [AC].
This finishes the proof of Theorem A modulo Theorem D.
O

4. Distinguished representations

Let K/ F be a quadratic extension of number fields with Gal(K/F) = {1,6}. The
object of this section is to establish Theorem E for the nice subclass of distinguished
cusp forms 7 ([HLR]) on GL{2)/K. It is necessary to treat this case separately as
character twists of the Asai L-function of = will in such a case admit poles, making
inoperative the argument using the converse theorem, which we utilize for 7 of
general type in the next section.

We will use the following notation. If x is an idele class character of K, we will
write xo for its restriction to F'. (This corrsponds to taking the transfer of the
corresponding Galois character.) Moreover, if p is a character of F, then we will
write p' to signify any character of K such that p = ph. (This corresponds to the
restriction of the corresponding Galois character.) If y] is another extension of u,
then there exists a character v of K such that

(4.1) Wy = W/ ob).
This is because any character of K whose restriction to F is trivial lies in Ker{(6—1).

Let 7 be a cuspidal automorphic representation of GL(2, Ax) with space Vr. If
41 is a unitary character of F, then 7 is said to be p-distinguished ((HLR]) iff the
following g-period integral is non-zero for some function f in Vi:

(1.2) P = [ u(det () F(n)dh,
H(F}Zu(Foo ) T\H(ArR}

where H denotes GL(2)/F with center Zg, and dh is the quotient measure induced
by the Haar measure on H(Ar). It may be useful to note for the uninitiated that
when F = Q, K real quadratic, f € m a holomorphic newform of weight (2, 2), Pu(f)
is the y-twisted integral of the (1,1} differential form (271)%f(z1, z2)dz1 A dzy on
the associated Hilbert modular surface over {(the homology class of} the modular
curve; so one is justified in calling this a period integral.

A basic result of [HLR], section 2, asserts that, once we have fixed an extension y’
of y, the necessary and sufficient condition for 7 to be u-distinguished is that there
exists a cuspidal automorphic representation g of H(AF) with central character
vd such that

{4.3) mox = @V,

for a suitable extension v’ of v.
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Fix such a y-distinguished = with {mo, v} as above. Since & (7 of) is f-invaraint,
it descends (by [AC)) to an isobaric automorphic representation of GL(4, Ap). We
can give an explicit candidate for this descent by setting

{4.5) IT := Sym*(m,) @ 8(u)™' @ p .

That the base change [y is 7 ® (7 o 8) is easily deduced from (4.3). There are at
least four possible descents, namely by leaving in or removing the character 4 at
the places where it appears in (4.5), and this is why we needed to make a specific
choice. Note also that the automorphic induction of 7 to F satisfies

(4.6) If(m) ~ mBIE((v")),

It suffices to prove that the local factors of L(s,I1) and L(s, ;) agree almost
everywhere, because the remaining factors must also agree by a standard argument
comparing their respective functional equations (91, [HLR)) and using & modest
estimate on the cefficients, which we have here. (See [Ra], page 14, for the details
of such an argument.)

Let v be a finite place where 7 and K /F are unramified. If v splits in K , the
desired identity is immediate. So assume 1 is inert, and denote the unique place of
K above it by w. Recall that the exterior square of a tensor product V & W is the
direct sum of Sym?(V) ® A2(W) and Sym®(W) ® A%(V). Using this conjunction
with (4.6), and by the compatibility of local and global automorphic induction, we
have
(4.7}

Ao (TE((7)) = Sym™(a(m0)) ® by (o) ™ @ Sym?(indl% (4!y00)1)) & v

We also have
(4.8) Symz(mdgn((u;u;)-l)) = Indfy ((ul,r],)"2) & (uv) 1.

Combining these two identities with the fact that the induced module on the right
of {4.8) is simply the induction of the determinant of o, (), we get, from the
definition of the Asai representation

(4.8) Asy(a(m)) = Sym*(ou(70)) @ 8y (tor) ™" & s 1.
Its L-factor, in view of (4.5), coincides with that of a,(I1). Done.

0. Asai L-functions and GL(4)

Fix K/F quadratic above with non-trivial automorphism 6 as above, and a
cuspidal automorphic representation  of GL(2,Ak). Let m € {1,2}. Then for any
cuspidal automorphic representation 77 of GL{m, Ar), one may define the n-twisted
Asai L-function of by setting

(5.1) Lissmran) = [[Lis.r(4s(m) ® 0u(n)),

which converges normally in a right half plane and defines a holomorphic function
there. It is also known (cf. [PS-R] for m=2, and [HLR] for m=1) that this Z-
function admits a meromorphic continuation to the whole s-plane, and satisfies a
standard functional equation relating it to L{1 - s,7¥;r @ 5Y). Of course, when
m =1, 1 is just an idele class character of F with Y =n 1,
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Suppose x is an idele class character of K with restriction Yp to F. Unwinding
the definition, one gets

(5.2) Ls,r@xr®n) = Lismr &0 ®xo)
It also follows from the definition that
(5.3) L(s,7R(r o) @nk) = Lis,mr@nL(s,mir®(n® 8)),

where again & denotes the quadratic character of F defined by K/F.

The first step in proving Theorem D is to analyze when the poles of these n-
twisted Asai L-functions could occur. This is easy for m = 1 {using (HLR]), while
for 1 = 2 we make use of Ikeda's work [Ik1], plus a supplementary local hypothesis.
Eventually, after we prove the existence of II, the best possible result will be a
conseqience.

Proposition 5.4 Let (m, K/F,0,68) be as above, and let n be a cusp form on
GL(m)/F, with m = 1,2, Suppose ™ is not distinguished, and that if m =2, T is
unramified at any finite place v which is ramified for (K/F,m). Then

(a) Ifm=1, L{s,mr® n) is entire;
(b) For m = 2, the same holds if m is either non-dihedral or automorphically
induced by o ramified character of a quadratic extension.

When we say that « is not distinguished, we mean that it is not p-distinguished
for any character u of F; so being distinguished is a property shared by all the
character twists. And when we say that v is ramified for (K/F, ), we mean that
either v ramifies in K or « is ramified at a place w above v; clearly, the set of such
“had” places is finite.

Proof. {a) Suppose L(s, ;7 ® ) has a pole for an idele class character [ of
F. Then, up to replacing = with 7 ® 1.j% for some s, We may assume the pole
to be at s = 1. Let S be the finite set of places containing the archimedean and
ramified places for m. Since the local factors have no zeros, the incomplete L-
function L3(s, m;r ® ) has also has a pole at s = 1. It is known that the pole
must be simple. Moreover, by Asai’s integral representation {[HLR}), the residue
at s = 1 of this incomplete L-function is a non-zero multiple of the p-period Pulf)
(see (4.2)), which means 7 is distinguished. Done.

{b) Let S be as in {a}, and 7 & cusp form on GL(2)/F whose conductor has no

intersection with the finite places v ramified for (K/F, 7). Again we may assume
that the pole is at s = 1. Denote by Ly(s, 7,7 @n) the L-function defined as the
gdc of the integral representation of Piatetski-Shapiro and Rallis ([PS-R!). Then it
is well known that
(5.5) L3(s,mr@p) = LY (s,m7 @ p)-
Applying Theorem 2.8 of [Ik1}, and taking note of the remarks in the proof of
Theorem 3.3.11 of [Ra] about Ikeda’s theorem, we see that the (incomplete) L-
function on the right, hence left, of (5.5) admits no pole only in the following
special case: There exists a quadratic extension E/F, and a character x of KE
such that

(i} 7 = IxE¥{x), and

(il) n = IE(x1), where x1 is the inverse of the restriction of x to the idele class
group of E.
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In particular, there is no pole when 7 is non-dihedral. Further, in the dihedral
case, since we assumed that 7 is induced by a ramified character, any pole here
will imply that there is a finite place where 7 and 7 are both ramified. But this
contradicts the choice of 17 and we are done.

a

Theorem 5.6 Let F be a lotally imaginary number field, and K o quadraiic
extension with non-trivial automorphism 8 over F. Let 7 be a non-distinguished,
cuspidal automorphic representation of GL(2, Ay} which is either non-dikedral or
automorphically induced by a ramified character of a quadratic extension of K,
and 1 a cuspidal automorphic representation of GL(m,Ar), m = 1,2, such that if
m = 2, the following are satisfied:

* the conductors of ™ and n have disjoint support;

» Ifuv is a finite place of F which is ramified for either & or 1, then v splits in

K.

Then L(s, 7;r®n) is entire and bounded in vertical strips, and moreover, it admits o
meromorphic continuation to the whole plane and satisfies the following functional
equation

(5.7) L -sn%r@n") = e(s,mronL(s,mr&n),
where the everywhere invertible z-factor is defined by

(5.8) es,mr®dn) = HE(S,AS(G‘,,(’E)) ® gu(n))-

The local factors on the right of (5.8) are the ones defined by the theory of
Langlands and Deligne.

Proof.  The hypotheses assure us, thanks to Proposition 5.4, that Lis,mr®
n) is entire. Since the L-function defined by the integral representation, namely
Ly(s,m;7 ® 1) satisfies the functional equation of the requisite type ([PS-R]}, it
suffices, for this part, to check the following

Lemma 5.9 Preserve the hypotheses of Theorem 5.6. Then for any character v
of F, the local factors of L(s,m;r @ 1 ® v) and Li(s, 77 @ 1 ® v) agree at every
place.

Proof of Lemma.  First consider the case when v is archimedean. Since F is
assumed to be totally imaginary, and this is important, the group of F-points of
(Ri/pGL(2)/ K x GL(2) identifies with GL{2,C)?, and the assertion of the Lemma
Is a consequence of Proposition 3.3.2 of {Ra), which relies in turn on Ikeda’s results
({Ik1,2]).

So we may assume that v is a finite place. Again, if v splits in K, say into w, 0,
then the group of F,-rational points of Ry, pGL(2)/K x GL(2)/F identifies with
GL(2, F,)xGL(2, F\,)xGL(2, F,,}. So we are done by the triple product result of
[Ra], Prop. 3.3.2. So assume that v is inert or ramified in X, and denote by w the
unique place above v. By hypothesis, both m,, and 7, are unramified, the two local
factors coincide by [PS-R]; in fact, this holds for any character twist. Hence the
lemma.

Proof of Theorem 5.6 (contd.): Let S be the (finite) set of places of F containing
the archimedean ones and those finite ones ramifiying in K or for = or . Then the
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integral representation of [PS-R} implies the following:

U( fu.s W)
5.10 Li{s,mr® ot ey
(5.10) 1 n)ng(s.wu;r®nv)

= (E(f:), ¢ ®¢")n,

where ¢ (resp. ¢') is a cusp form in the space of 7 (resp. n), E(f,) is the Sigel
Eisenstein series on GSP(6)/F (see [Ra], sec.3.4, and [Ik1]} associated to a good
section fy = ®ufu.er Y(fo.s; W) is, for each v, a local integral having L1 (s, ®u; T @
ne) as its ged for a suitable f, , and Whittaker function Wv,

H = {(g,9") € RiyrGL(2)/K x GL{2)/F | det(g) = det(g')}

with center C, and

(E(f) @)n = /

CARYH(FN\H(AFR)

E(h, fs)(p(h')dh) = H \I"(.fv,s} W’u)

Using Lemma 3.4.5 of [Ra] and the hypotheses of this Theorem, we get

Lemma 5.11.  For each v, the function % is entire and of bounded

order, for a suitable choice of fy s

By Proposition 3.4.6 of [Ra], we also know that E(f,) is a function of bounded
order. Since ¢ ® ¢' vanishes rapidly at infinity, we deduce, using (5.10), that
Li(s,7;7@n) is of bounded order in vertical strips of finite width. The same holds
then for L(s, 7;r ®7) by Lemma 5.9. On the other hand, since this L-function has
an Euler produet, is bounded for large positive R(s), and hence for large negative
R(s). Applying the Phragman-Lindeiof theorem, we then conclude the boundedness
in vertical strips of L{s,m;r ®n) as asserted.

Done with the proof of Theorem 5.6.

O

The next object is to establish the following

Proposition 5.12 Let K/F be a quadratic extension of number fields with K
totally imaginary, and let 7 be a cuspidal automorphic representation of GL(2, Ak)
such that the finite number of finite places w of K where 7y, is ramified are all of
degree 1 over F. Then there exists an irreducible, admissible, generic representation
Il = ®,0, of GL(4, Ar) such that, for any place v of F, we have

L(s,II, x 0y} = L(s, my;7 @ 1)

and
e(s, I, x 1) = e(s, Ty T ® M)

Proof. If v is an archimedean or a ramified place of F, or if v is split in K,
the ramification hypothesis allows us to reduce the definition of I1, to the Rankin-
Selberg product case, as was done on page 31 of [Ra]. So let v be finite and
unramified with unique divisor w in K. Then we may write m,, a8 the isobaric sum
o1 B o, so that oy (Tw) = 1 @ g2 and

(5.13) A (IndE {ow(mw)) = Indi (1) @ Indz (112) & pu1,080 & piz,000-

Here we have used the fact that the determinant of Indf(‘:v (1) is the product of the
restriction ;o of p; to Fy times the quadratic character 8, associated to Ky/Fy.
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Since the determinant of u; &y is pype, which occurs in Indf;';h (1) ® Indi‘; (1),
we get

As(ou(If (ny))) = Iﬂdi’;,(m (12 © 8)) © p1 060 B 12,08,
Consequently, if we set
(5.14) 0, = I (p1{u2 0 8)) B 1 06, B .06,
we will have the properties asserted in the Proposition.
O

Proposition 5.15 Let (K/F,m,n) be as in Theorem 5.6, and let II be as in
Proposition 5.12. Then Il is a cuspidal automorphic representation of GL(4, Ax ).

Proof. We may assume that = is not distinguished. We will need to appeal to
the following

Theorem 5.16 (Cogdell - Piatetski-Shapiro [CoPS)) Let T be a fired finite set of
finite places of F. Let 3 be an irreducible unitary, admissible, generic representation
of GL{4, Ar) which satisfies the following:

For every cuspidal 1 on GL(m)/F, m < 2, with 7w unramified at every v in T, we
have:

(MC) L{s, 3 x n) and L(s, 8¥ x 1"} converge absolutely in large R(s),

and they admit meromorphic continuations to the whole s-plane.

(E) L(s,3 x n)and L(s, 8¥ x 1) areentire.
There is a functional equation

(FE) L(1 ~ 58" x5¥) = e(s,8 x p)L(s,8 x n).

(BV) L(s,8 xn)is bounded in vertical strips.

Then 3 is nearly automorphic, i.e., there exists a generic, isobaric autormorphic
representation 3, of GL(4, Ar) such that 3, ~ B1,e for almost all v.

Thanks to our hypotheses, Theorem 5.6, Lemma 5.9 and Proposiion 5.12, our II
staisfies the (MC), (E), (FE) and (BV). So we may apply Theorem 5.16 to conclude
that there exists a generic, isobaric automorphic representation IT; which is almost
everywhere equivalent to II. Now II and II; are both generic and they both have
their own functional equations. Comparing L{s,II x 7} and L(s, I1} x n), for all
as above, we conclude that the local factors of pairs agree at every place. Since this
determines the local components by a result of Jeff Chen, we see that II is itself
automorphic.

[t remains to show that II is cuspidal. Suppose not, and pick a finite set § of
places containing the archimedean and ramified places. We can decompose I, for
some r > 1, as an isobaric sum:

I~ BHE,B,,
where 3; cuspidal on GL(n;)/F. Since 3my =4 and r > 1, at least one of the

indices, say n; must be < 2. Then we have

L¥s, I x 3Y) = [[L%s. 85 = 8Y).
3
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By the Rankin-Selberg theory ({JS]) one knows that L5(s, B x BY) has a simple
pole at s = 1, while for for any j, L3 (s, mj x m} } has no zero at s = 1. Cosequently,
L5(s,T1 x B) has a pole at s = 1. But this incomplete L-function is the same as
L§(s,I1 x B ), which is entire. So we get a contradiction, proving that II needed to

be cuspidal.
O

It remains to prove Theorem D in the general case. Let (K/F, ) be arbitrary,
but with 7 not distinguished. Note that we can always find, using Lemma 3.7.1
of [Ra], a finite, solvable, Galois extension E /F, disjoint from K/F such that E is
totally imaginary, with (EK/E, ng) satisfying the hypotheses of Theorem 5.6. So
by Proposition 5.15, the associated representation [1¥ is cuspidal, automorphic on
GL(4)/E. Now by using the descent argument of section 3.7 (and Propesition 6.1)
of [Ra], we get a unique descent II, which is cuspidal automorphic and satisfies

L{s,TI) = L{s,m;7),

as desired. Theorem D is now proved.

6. New cases of Artin’s conjecture

Let p, o' be continuous C-representations of solvable GO{4)-type. By Theorem
A, they are modular, associated to iscbaric automorphic representations , 7’ of
GL{4, Ap). Then

L(s,c ® 0’} = L{s,m; x ).
Since the Rankin-Selberg theory of Jacquet, Piatetski-Shapiro and Shalika, and of
Shahidi, says that the L-function on the right is entire (see [MW)] and the references
therein), Corollary B follows immediately.

Now we show how this gives new examples where Artin’s conjecture holds. Fix
any quadratic extension E/F with non-trivial automorphism #, and choose an
irreducible quartic polynomial f in Dg[X] whose discriminant Dy is square-free.
Then it is easy to see that the Galois group of the splitting field K, say, of f over E
is the symmetric group Ss. Since Sy is a subgroup of PGL{(2,C), we get a projective
representation & of Gal(F/F). Fix a lifting o into GL(2,C) (by using Tate, as in
section 2), and denote by I the quadratic extension of K corresponding to ker(c).
Then Gal{L/F) will be 54, a double cover of Ss. Now restrict the choice of f
so that the discriminant Dge of the conjugate polynomial f? is not a square in
E(,/Dy). Then the splitting field K 8 of f® is linearly disjoint from K over E.
The corresponding L? will also be linearly disjoint from L. There are clearly an
infinite number of choices for f satisfying these conditions. Note that the Galois
group of LL? over F is a non-trivial extension of Z/2 by 84 x 54, and the resulting
representation p of Gal(F/F) is irreducible and of GO(4)-type. Now choose a
disjoint quadratic extension E'/F and a quartic polynomial g satisfying analogous
properties over E'. We can arrange, in an infinite number of ways, for the resulting
extension of F to be linearly disjoint from LL?. Denoting by g’ the corresponding
representation of Gal(F/F), we see that p&® p' is irreducible and satisfies the Artin
counjecture by Corollary B. It remains to check that this is not covered by known
cases in lower dimensions. For this it suffices to show that p® ¢ is primitive, i.e., it
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is not induced from a proper subgroup. By construction, p and p are primitive, So
applying a result of Aschbacher ([A], Theorem 1), we see that the tensor product
remains primitive. (In fact this can be verified by direct computation, which is
what we did originally leading us to pose the general question to Aschbacher, but
now that this primitivity question has been solved in general, we can do no better
than to refer to [A].)

Now we will prove Proposition C,.

We are given a continuous irreducible representation of Gal(F/F) of GO(n)-type,
wth n odd. By Lemma 1.2, we may, up to replacing p by a one-dimensional twist,
which does not affect the conclusion of the Proposition, assume that the image of
p lies in O(n, C). Let K be the number field cut out by the kernel of p with (finite)
Galois group G over F, so that p can be viewed as a faithful representation of &',
From the derived series we may extract, by the solvability of G, an elementary
abelian p-group A which is characteristic in . Applying Clifford’s theorern, we see
that

Pla = mix: & - @ x,),

for some m,r > 0 with mr = n, and 1-dimesnional representations xi,- -, x, of
A such that x; # x; if i # j. Moreover, for every j there exists ¢; € G such that
xi{a) = Xl(gjﬁg;l) for all a € A; hence each x; has the same order, which must be
P as p is injective. If p is odd, then no x; is self-dual, while p is itself self-dual, giving
a contradiction as n is odd. So p = 2. Let p; = my, and G, =8tabg(p;). Then
p = indgl {p1) by Clifford. We are done if m = 1, so we may assume that m > 1.
Ifr=1, A~Z/2 (by the faithfuluess of p) and p(A) = £I. But by construction
A C (G, G), which forces det(p) to be trivial on A. On the other hand, since » is
odd, detp(A) = —1, a contradiction. So r > 1. Then G, is a proper subgroup of &
and (p1, Gy} satisfies the same hypotheses as (p, G), since p; is self-dual by virtue
of x1 being quadratic. Since induction is natural in stages, we are done by infinite
descent,

O
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