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These class notes were prepared to help the students in the course. Most
of this material can be found in the references in the end. The next sec-
tion contains some background material. Section 2 discusses term structure
models. There are surely many misprints.

1 Background material

In what follows (£, F, P) is a probability space, W a d-dimensional Brownian
motion and F;, the standard filtration generated by the Brownian motion
(i.e. the filtration generated by the union of o(Wy : u < t), with all the
sets in {2, with P measure 0}. All processes indexed by t will be adapted
to F;. All equalities and inequalities hold except perhaps for a set F with
P(F} =0. We write E for the expected value using the measure P.

1.1 1lto processes, Ito’s lemma

An R" valued process x; is called an to Process, if it can be witten as:
£ ¢
Ty = Tp +/ #sd8+/ osdWs, (1)
0 0

where g is an (adapted)}R™ valued process with fé |us|ds < o0 (a.s.) and,
gt is an n x d matrix valued process with fot [los||?ds < oo {a.s.). If z; is an
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Ito process we write
dxy = pedt + o dW; (2)

If z is an Ito process given by (2) let £(z) denote the set of R™ valued
adapted processes 8 such that f§ [fsus|ds < oo (w.p.1) and J{ ||8.05|[%ds <
oo {w.p.1). For such processes one can construct a stochastic integral

t ¢ ¢
/ O.dxs :f 6_,,u_qu+/ o0 dW5.
0 0 0

Let Ay =ow! . fV:RxR"—> Ris C' ont and C? on z let:
LV(t,z) = Vi(t,z) + Ve (t, o)ult, z) + ,21, trace(A(t, z)Vez (8, 2)).  (3)

Tto’s Lemma states that the process 3 = V(t, ;) is also an Ito process

and
dys = LV(t, :z:t)dt + Vz(t, It)dtdwt (4)

1.2 Martingale equivalent measures

There are n + 1 assets. The zero-th asset is a “money market account,”
that is its price satisfies: X} = elfo 7s85] where r is a process {the short or
instantaneous rate of interest) that is bounded bellow. Associated with each
of the other n assets there is a Gains process

Gi= X} + Di. (5)

The Di are to be interpreted as the cumulative dividends paid up to, and
including, #, and the X} as the ez dividend price process. We choose a
normalization such that D} = 0, for each i. In general one can treat D’s
such that:

D=2+ Vi - Uy, (6)
where Z is an Ito process and V and U are non-decreasing and right contin-
uous. In what follows we will be mostly interested in the case where U = 0
and there exists a tg such that V, = 0 for s < #g and V; =1 for s > ;.

If ¥ = z+wv—u, where z is an Ito process, and u and v are non-decreasing
and right continuous, we will say that 6 € L{z) if # € L(2), and if fg fdv
and fot Odu are well defined as Stieltjes integrals.

A self financing trading strategy @ is a process in £(G) such that:

14
st(Xt + AD;) = 90X0 +f GsdGs (7)
0
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A self financing strategy ¢ is an arbitrage if 60Xg < 0 and 87 X7 > 0, or
6oXo <0 and dr Xy > 0. B
We will consider the deflated gains process G; = -)% + Dy where dD, =

—f We write X, = —& for the deflated price process. It is easy to show that
t

self financing and arbitrage are properties that that preserved by deflating.

A measure € is a martingale equivalent measure (also called a risk-
neutral measure) if Q ~ P (that is P and @Q have exactly the same measure
zero sets) and Q is a martingale measure for Gy, that is:

1. G, is an F; martingale in (£}, F,Q), that is, E?|G,| < co,and
EQ[ét | Fs] = G‘sa
if s <t < oo,
2. % has finite variance.

In particular, under the risk neutral measure all assets have a zero (deflated)
expected rate of return.
If  is a martingale equivalent measure, and ¢ > s, then:

X, =E[X,+ Dy — D | . (8)

Suppose now that D; = fg dsds + x =73 Ar, Then it is a consequence of
{8) that:

XS_EQX0+fX0dsiFS]—EQX0+ XU -

That is the price of an asset equal the expected (under Q) dividend flow,
where each dividend is discounted by the value of the money market account
{(which is also a random variable).

The existence of a martingale equivalent measure is “equivalen
the absence of arbitrage. In fact, the existence of a martingale equivalent
measure is equivalent to the absence of an "approximate arbitrage” (see
Duffie[1996], Chapter 6 section M.)

» to

1.3 Martingale representation and Girsanov’s theory

As we just seen martingales, under appropriately transformed measures,
have an important role in asset pricing. In this subsection we summarize
some results concerning martingales and characterizing equivalent measures.



Recall that the filtration F; is the tsndard filtration generated by a Brow-
nian motion. It can be shown that every F;-martingale is an [to process with
zero drift. In other words if M; is a martingale, there exists a d dimensional
vector of adapted processes 6; with fot [|8s|%dt < co for each ¢ > 0, and such
that for each t:

t
M; = My +/ 0:dWs.
o]

Precise statements can be found in e.g. Karatzas and Shreve, theorem 4.15
in section 3.4 and problem 4.16.

Girsanov's theory treats the set of equivalent measures to P. One way
to construct such an equivalent measure is to start with a d-vector of mea-
surable processes A such that

T
f | M 2 dt < o0
0

Let: t aadW,—1 [F|A2dt
£ = el= fo AedWa—g [y |M%at] (9)

Note that £§g = 1. Suppose that £ is an Fi-martingale for 0 < ¢ < T
Then @, defined, for each f € Fr by
P = [ erar, (10)

is a probability measure in Fp. Furthermore, Girsanov’s theorem (e.g.
Karatzas and Shreve section 3.5) states that the process

i
Wt = Wg +/ )\Sds (11)
0

is a d-dimensional F;-Brownian motion in ({1, Fr, @)}, that is, W; starts
at zero, has increments between s and t that are independent of F,, and
normally distributed with mean zero and variance ¢ — s.

There is also a “converse”. If Q ~ P, then @ can be constructed using
a function A via equations (9) and (10), and the process W; given by (11) is
a Brownian motion.

As a consequence suppose that X is an n-dimensional Ito process:

d.Xt = p.tdt + O'tth,
and that @ ~ P. Then:

dX; = [,ut — O'tAt]dt + ngWt,
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where W, is constructed using (9), (10}, and (11). In particular, there exits
a ¢} under which X is a martingale, then there must exist a solution to the
equations:

oA = it
Also, if ¢ has rank d, there exists at most one such martingale measure for
X.

1.4 S.D.E.s

Let p'!: RxR" - R,i=1,...,n and oY RxR*" > Ri=1,...,n,
J = 1,...,d be Borel measurable functions. A process X; is a (strong)
solution to

dX; Zu(t,Xt)dt*FO'(t, Xt)dW,t, (12)
with initial condition £ if:
1. Xo=¢,

2.
Pi/ﬂ | 1, Xs) | 4+ 1] o5, Xa) [P ds < o0] = 1,

t

¢
X: = Xg-f—] ,LL(S,XS)ds+f (s, X )dWs,
0 0
for each 0 <t < 00

Remark 1 The solution X; is a Markov process. More precisely write
X(t,z) for the solution of (12) with initial condition x. Given a bounded
Borel measurable function g : R™ — R, and s <1 then:

Elg(X(t,2)) | Fs] = Elg(X(t,2)) | X(s,z}]

Conditions for the existence and uniqueness of solutions can be found in e.g.
Karatzas and Shreve page 289.



1.4.1 Feynman-Kac

Consider functions 7 : [0, T}xR* — R, £ : [0,T]xR" — R, u: [0,T|xR* —
R, ¢ :[0,T] x R* — M(n x d)and g : R* — R. Consider the stochastic
differential equation

dXt = ‘LL(t,Xg)dt-f- O'(t,Xg)th, (13)

W a d-dimensional Brownian. Let:

o = e 57 r{3.Xs)ds
and consider the function
flt,z) = E[ftT $ih(s, Xs)ds + ¢ 9(X7) | X = 1] (14)
Notice that
f(t,z)eh + fot B&h(s, Xs)ds = E[Z7 | X; = ], (15)

where Zr = fOT dih(s, Xs)ds + ¢gg(XT). Since conditioning Zr on X; is
the same as conditioning on F;, the right hand side of equation (15) is a
martingale. If f satisfies the assumptions of Ito's lemina, then, using the
notation defined in expression (3} above,

Lf(t,z)dh — f(t,z)r(t,z)eh + h(t,z)¢h = 0, 0r,

Lf(t,z) — f{t,z)r(t, ) + h(t,z) = 0, with f(T,z) = g(x) (16)

Equation (16) defines a Cauchy problem. It turns out that under some
regularity conditions (see Karatzas and Shreve page 366, for example), the
only solution to (16) that satisfies some growth conditions is the one given
by (14).

2 Term structure of interest rates

2.1 Interest rate contracts

A zero-coupon bond pays one unit at the maturity date T and pays no other
dividends. The discount function at ¢ is the function B(t,T) of prices of
zero-coupon bonds as a function of the maturity.



The (continuously compounded) yield to maturity is {all logs are on the
natural basis):

Yip = ————. (17)

The yield curve at time ¢ is defined by y;(r) = Y; 4., that is it expresses
the yields of zero-coupon bond that as a function of the time to maturity.

A forward contract struck at ¢t for delivery of an asset at time s > ¢
involves the payment of an amount F; ¢ at s in exchange for the asset. No
other payments are received. The amount F, ; is called the forward price at
t for delivery of the asset at s (it is not the price of an asset.)

A forward rate agreement written at t for the period [s,T], s > t, is an
agreement in which, during the period [s,7T] one party pays a rate fixed at
t (the forward rate) and the other party pays the rate prevailing at s for a
loan that matures at T'. No other cash flows occur.

2.2 Pricing zero-coupon bonds

We will assume that P Is a martingale equivalent measure. In particular
there is no arbitrage. Given a short rate process ry, t > 0, the price at s of
a zero-coupon bond maturing at T is:

Byr = Ele=d % | 7). (18)

No arbitrage implies that the forward price at ¢ for delivery at time s > ¢
of a zero coupon bond with maturity 7 > s must be given by:

By r
Fr = —h 19
t.g Bt,s d ( )

and the associated forward rate is given by:

lOg Bt,s - lOg Bt,T
T-—5s ’

The instantaneous forward-rate, if it exists is defined for each ¢t and delivery

date s > t, by:

(20)

T _
q)t,s -

f(t,s) = lim a7, (21)

This instantaneous forward rate is the forward rate that prevails at ¢ for a
loan in the interval [s, s+ As]. From equations (20) and (21), we see that the
instantaneous forward rate equals minus the derivative of log bond prices
with respect to maturity. Hence:

Byt =¢" I fteayds, (22)
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Hence we can compute all bond prices if we know the instantaneous forward
rates.
2.3 One factor models

We start by taking d = 1 and assuming that r solves the following SDE:
dry = p(t,r)dt + o(t, ) dW (23)

We further assume that the bond prices defined by equation (18) are finite.
We already know that under certain technical conditions the bond prices
Bt = hy(t,r;), where hr solves the PDE,

Lhr(t,z) — zhr(t,z) =0, (24)

and hr(T,z) = 1. Here L is the second order operator associated with (23).

2.3.1 Time homogeneous models

The Vasicek model specifies:
d'f‘t = (G. — th)dt -+ O’th (25)

The solutions to this linear SDE are Gaussian, that is, given any collection
of times £1,%2, ..., %, the joint distribution of the short rates ry,,r,,.. .. 71,
is normal. Also, By 1 = hr(t, 1}, where:

Bhr, ) 1 »8h
at 2" or?
One can show that this PDE and boundary condition A7(T, 7} = 1 has
a solution of the form:

(t,7) + {t,r)+ (a — br)—a(r_;LTT(t,r) —rhy(t,v) =0. (26)

hr(t,ry) = mED =T (27)

where, £(t,T) = $(1 - exp(—b(T — t))) and,
o2 (T T
m(t,T) = +2~[ 02 (u, T)du — a/ u, T)du.
t t

To demonstrate this fact, you should try a solution of the form (27) on
equation (26). Notice that, after cancelling the exponential and collecting
terms, you are left with a term in r and a constant. Hence the coefficient
of r and the constant must each be zero. This will give a linear differential



equation for £ and, after solving the differential equation using the fact that
¢(T,T) = 0, you can obtain m. Notice that, in particular, the yield is an
affine function of the short rate.

The Cox-Ingersoll-Ross model specifies:

dry = (a — bry)dt + o+ /redW; (28)

Again, it can be shown that the bond prices satisfy equation (27), but with
different functions £ and m. In any case the yield is an affine function of
interest rates.

2.3.2 Time inhomogeneous models

There are many ways to introduce time explicitly in the SDE governing the
short rate. A natural generalization of the Vasicek and CIR modles is to
assume that: u(t,r) = o) (t)+az(t)r and, o2(t,r) = Bi () + F2(t)r. We want
to show that equation (24), has a solution

hT(t,'f‘) — ea{TVt)er(th)'r’ (29)

with a(0) = 5(0) = 0. To do this, try a solution of the form given by equation
(29} to the PDE that bond prices must satisfy. It is easy to show, that a
solution of this form exists, if and only if:

—d(t) = B (t)r + %(ﬁl + B + (o +asr)b—r=0.  (30)

Hence the terms in 7 must add up to zero, and the same must happen to
terms independent of . Hence

1
b = aob+ "Z"ﬁgb? -1, (31)

and a(t) = ftT[al(s)b(s) + 181(s)b*(s)]ds. Except for technical assumptions
to guarantee that the ODE (31), has a solution with (T} = 0 that is well
defined for each t < T and that yields a finite value for a, we would obtain
a term structure with yields that are affine on the short rate (an affine term
structure).

Remark 2 It can also be shown that an affine term structure implies affine
drift and variance



2.4 Multi factor models

You will show in an exercise that in a one factor model any claim can be
hedged by any other “invertible” claim. To avoid this result one must use
multi factor models. Many of these models are written as:

dX} = (@ (X{)dt + o' (X])dW; (32)

where i = 1,....,n, W is an n-dimensional Brownian motion, and r =
3%, X}. Since the W*s are independent, so are the X"’s, and hence:

Bt,T = E[e_ ftT rudu } ',r't] == E[e_ ftT 2?=1 Xidu | 'rt] =
= B[ e J X | ) = p Elem X4 | ]

In particular, if each factor X! generates an affine yield curve, this last
expression equals:

ot . ea*’(T—t)+c*‘(T—:)xg — AT-t+C(T-1)X,
1=

1

where A = Y a; and C = (c!,...,c?}). As we observed before, the factors
generate affine yield curves if either the coefficients of (32) are linear, or if
each p is linear and ¢*(X§) = /X}. For these affine models it is typically

possible to choose n maturity dates 7,..., ™, such that
X =h+TY,
where Y = (Yy,,..., Yy, }. In this case we can use the yields ¥, i=1,...,n,

as the factors. Such models are called yield-factor models.

Remark 3 Suppose that we do not assume that P is a martingale equiva-
lent measure, but instead we assume that there is no arbitrage. Hence there
exists @ @ ~ P, which is an equivalent martingale measure. It is o conse-
quence of Girsanov’s theorem that there exists an adapted process A such that
dQ/dP = exp(— fi AdWs — 1/2(J3 | As |2 ds) and W = W + [J Adt is an
n-dimensional Brownian under Q. Further since My = EQ[e‘fOT reds | £
is a martingale it is an Ito process in (£, F, Q) with zero drift. Hence,
Byr= elo A5 AL, is an fto process and,

dBiy = Byr(rydt + ol dW}) (33)

Hence:
dByr = Byt [(re = heo™)dt + ]’ Aaw] (34)

In particular, ¢7* is independent of A. The n-vector Ay is referred to as the
market price of risk.
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2.5 Forward rate models (Heath-Jarrow-Morton)

For each s <1, t < s suppose, the evolution of the forward rate satisfies

t t
£(t,9) = 10,8 + [ty )du+ [ ot sy, (35)
0 0

In this equation for fixed s, the processes u(-, s} and o{-, ) are adapted and

such that the relevant integrals are well defined. If this is an equation for

the evolution of forward rates, and P is a martingale equivalent measure,
then

Mt = E[egfos rudu E .ﬁ} =e fot ruduBt,s:

is a non-negative martingale. From equation (22), logM; = — fot rudu —
f: f(t,u)du. Here log M is being written as an integral of Ito processes,
and except for technicalities, it can be shown that the drift of log M is
— f7 ult, u)du and the volatility is — [ o(t,u)du

Since My is a martingale,

t
M= Mo+ [ nufu)aW
1]

From Ito’s, log M, is an Ito process with volatility vector H(¢, s) and drift
—1H(t, s)H'(L, s), where H{t,s) = ns(t)/M.

We have thus obtained two formulas for the drift and volatility of log M;.
In particular,

3
Ht,s) = —/ o(t, u)du.
¢
Differentiating with respect to s, we obtain:

OH(t,s)
Os

Equating the two formulae for the drift and differentiating w.r.t. s, we get

= ot s). (36)

e, )T 2 ), (37)

Combining equations (36) and (37), we obtain that:

p(t, s} = alt, s) /ts ol (t, u)du. (38)
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Remark 4 If we had instead assumed that P is the actual measure, but
there is no arbitrage, we could deduct a more general relationship between the
drift and volatilities of the forward rates.(See e.g. Musiela and Rutkowsky
p. 308)

Using the fact that r; = f(t,£) and equation (38), we obtain:

re = f(0,4) + /: o(v,t) /t ol (v, u)dudv + fota(v,t)de. (39)

k4

2.6 Maodels of random fields

In snalogy to a stochastic progress we define a random field as a set of
random variables on a common (2, F, P), indexed by an index set T. In the
example we are interested in T° C R%_. In addition we will assume that X is a
Gaussian random field: the joint distribution of any finite set (X},..., X'} is
normal. A Gaussian random field is characterized by its first two moments.

Example 1 The Standard Brownian sheet Wy, (u,v) € Ri is the centered
(that is, mean zero) Gaussian random field with

Cov( Wiy vy Wag vy) = min(uy, ug) min(uvy, va).

In what follows we will always take our field to be defined in {{u,v) € R*:
v 2 u > 0}, have mean zero and with Cov(Xy, v, Xuzve) = c(min(uy, ug), v1,v2},
where ¢(0,v;,v2) = 0, and ¢ is symmetric on (v1,v2) and nonnegative defi-
nite in (u1,v1) and (u2, v2). The fact that the covariance function is specified
as a function of min(wuy,uz2), implies that, for any 0 < » € %' < v, the ran-
dom variable X, , — Xy, is indevendent of the o— field Fy, = o{Xp g :p <
u, p < q}. To show this notice that, since the variables are centered and
min{v/,p) = min{u,p) =p:

Cov( Xyt v — Xuw, Xpq) = c(min{e’, p), v, q) — c(min(u, p),v,¢) = 0.

Since the random variables are Gaussian, independence follows. Notice that
this independence says that X has independent increments in the u direction.

In addition let u : Rﬁ_ — R be a deterministic function, and let the
instantaneous forward rate for s as of ¢, be given by

Ft,s = prs + Xt,s (40)

In Kennedy [1994] it is shown that the following restriction is necessary
and sufficient for P to be a martingale equivalent measure.
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5
bt = s + f c{min(t, v}, v, s)dv, (41)
4]

what shows that, once we specify the initial yield curve pp s and the co-
variance structure of forward rates, the full distribution of the forward rate
surface, and hence of bond-prices, via (22} is determined.

Example 2 Suppose that ¢ and 7 are differentiable functions from R, into
Ry, witho >0,7 <0, and ¢(0) = 0. Set: ¢(r,t,s) = o(r)r{max(t, s)).
Then:
Xt = Woie),r(sy

a time-changed Brownian sheet. The forward rates are the sum of the deter-
ministic drift end this time changed Brownian sheet. The assumption that
T 18 decreasing amounts to assuming that the velatility of forward rates de-
creases with the maturity time. One useful parametrization is 7(s) = e~ .
In this example, if we set o(t) = o°t, then from (41) we get a typically
non-linear formula for u.

2.7 Foreign exchange

Let Wg, 0 <t < T be a standard 2-dimensional Brownian motion on a
probability space (2, F, P), and F;, 0 < ¢t < T, be the (completed) filtration
generated by the Brownian motion. Consider two currencies dollars (8) and
euros (€). The short rate in dollars (the instantaneous interest rate paid
ou a dollar money market account) is given by a process r¢, while the short
rate in euros (the instantaneous interest rate paid on an euro money market
account) is given by a process rf. The exchange rate, the price of an euro
in dollars, is a positive Ito process X, satisfying dX;/X, = uXdt + o dW,.
We assume that no {approximate) arbitrage exists, and hence that there
exists an equivalent martingale measure ¢}, and a two dimensional vector
of processes A; such that W, = Wt + fot Asds is a Brownian motion under
(). Notice that the value in dollars of an euro money market account, with
initial value of €Y is given by:

Yelarids x,.

This is a dollar asset, that has to have an expected rate of return (under Q)
that equals ry. Hence from Tto's we get that:

dX:/X; = (ry — r{)dt + 0¥ dW,. (42)

In particular, the expected change of the exchange rate under the risk-
neutral measure is the difference between the two short rates.
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