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Image iterative smoothing and P.D.E.’s

Frédéric Guichard and Jean-Michel Morel

Abstract.

It is well known that o conveniently rescaled iterated convolution of a linear positive kernel converges
to a gaussian. As a consequence, all iterative linear smoothing methods of a signal or an imege boil down
to the application to the signal of the heat equation. This survey ezplains how a similar analysis can be
performed for image iterative smoothing by a wide class of nonlinear operators, the contrast invariant op-
erators. These monotone operators have o property which makes them suitable for image analysis: they
commute with contrast changes of the images. Among them, the median operator which computes a local
“mean value” independent of constrast changes. We prove that all monotene end contrast invariant op-
erators, are asymptotically equivalent (when they become more and more local) to o motion of the image
by its curvature. The iteration of these filters is equivalent to the application to the image of a nonlinear
heat equation. We give in parallel a classification of all image multiseale smoothing methods (the so called
“seale space” methods in Computer Vision). It is shown that both epprocches (classification of iterative
filtering methods or of “scale spaces”) yield the same, recently discovered, partial differential equations. Ex-
periments are presented with both classical and new, contrast invariant and momnolone numerical schemes.

Figure 1: Zoom on Naise.
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Chapter 1

Introduction

This book adresses a possible theory of image low level analysis. Image “low level” analysis aims at ex-
tracting reliable, local geometric informations from a digital image. Such informations are often called
“features” and they are used in order to compare an image to other images. For instance, these features
can be used for motion estimation, or to retrieve shapes, or to build the still hypothetic “high level” vision.
The observed image is the result of a smoothing of the original photon flux and is therefore continuous.
It is nontheless well admitted that the subjacent “real image”, namely the focused photon flux, is either
a measure or, for more optimistic authors, a function which presents strong discontinuities. Rudin and
de Giorgi proposed independently in 1984 the space BV of functions with bounded variation as the right
function space for “real” images. More recently (1999), however, Gousseau and Alvarez used a statistical
device on digital images to estimate how their real subjacent images oscillate. They deduced, by geometric
measure arguments, that the “real” physical images have in fact unbounded variation. We may therefore
accept the idea that the subjacent high resolution image behaves in a strongly oscillatory way. Although
the digital images present a averaging of this oscillatory phenomenon, common sense tells us that they
must have anyway strong discontinuities at transitions between different observed objects, i.e. on the
apparent contours of physical objects. The BV space looked at first well adapted to that aim because it
contains functions having step discontinuities.

One of the goals of image analysis has ever been to find such discontinuities in an image. This search
is called “edge detection” because early vision research played with images of cubes. Along the edges of
the cubes, the light intensity behaved, in a first approximation, as a step function. Unfortunately, the
early research in vision led to the sad discovery that one could find edges “everywhere” in a digital image
{Marr, Vision), due to the oscillations remaining in the digital image after the digitization problem. As
a consequence, the image analysis process was conceived as a smoothing process, permitting to decluster
the true “edges” from the inherent noise. As in Distribution theory, a smoothing was necessary before
computing any derivative. This is why the heat equation was proposed and a new doctrine proposed :
the “scale space”. Scale space means that, instead of talking of features of an image at a given location,
we talk of them at a given location and at a given scale. The scale quantifies the amount of smoothing
performed on the image before computing the feature. We shall therefore see in experiments “edges at
scale 47 and “edges at scale 7" as different outcomes of an edge detector.

Which kind of smoothing should be performed ? Three terms associated with image analysis opera-

F. Guichard, J-M. Morel, Image iterative smaothing and PDE’s 7



CHAPTER i. INTRODUCTION

tors arise here, to which we will give a more and more precise meaning.

The first one, “locality”, is related to the occlusion problem : Most optical images are made of a super-
position of different objects partly hiding each other. It is plain that we must avold mixing them in the
analysis, as would do e.g. a wide convolution. Thus, the analysis must be made as local as possible. As
we shall see, the heat equation is the worst candidate to the task, since it makes a wide-range mélange of
grey levels.

The second key word is “iteration”. Indeed, we shall see that it is generally better, from the locality
viewpoint, to iterate a very local smoothing operator than to apply it directly at a large scale. This is
precisely not true for the heat equation ! Iterating the convolution of small gaussian kernels is stricly the
same as convolving directly the image with a big gaussian. Now, iteration of very local filters will bring
a significant improvement for some of the most relevant nonlinear filters which we shall consider, namely
the median filter and the affine erosion-dilations. At this point, it must be immediately announced that
the combination of smoothing, locality and iteration implies that we are talking about parabolic partial
differential equations. This announcement is heuristic and the object of the book is precisely to formalize
the necessity and the role of several P.D.E.’s in image analysis.

Our last key word is “invariance”. The invariance requirements play a central role in image analysis be-
cause the objects to be recognized have to be recognized under varying conditions of illumination (contrast
invariance) and from different points of view (projective invariance). Contrast invariance is one of the key
requirements of a famous image analysis theory, the Mathematical Morphology (Matheron, Serra). This
theory proposed a list of contrast invartant image analysis operators (dilations, erosions, median filters,
openings, closings,...) We shall involve this theory, as we shall attempt to localize as much as possible the
“morphomath” operators to extract their behaviour at small scale, and then iterate them. As an outcome,
we shall prove that several geometric partial differential equations, namely the curvature motions, can be
considered as the common asymptotic denominators to many “morphomath” operators. These P.D.E’s
permit therefore to fuse the Scale Space doctrine and Mathematical Morphology. In particular, affine
invariant morphomath operators, which locked unpractical, turn out to yield in their local iterated version
a very affordable P.D.E., the so called “affine morphological scale space” {A.M.5.5.).

In the next section, we shall make a survey of most P.D.E.’s which have been proposed for image analysis
(Section 1) and thereafter give a detailed mathematical account of how this book is organized.

We would like to end this short foreword with a light warning to the reader. We do not claim that
what will be developped here is a necessary future for image analysis. What the mathematical analysis
can provide is more hypothetical, as noticed Von Neumann and Morgenstern in their book on game theory.
We would say, by imitation : “If Image Analysis requires a smoothing theory, then here is how it should
be done, and here is the proof that there is no other way to do it.” This statement does not exclude the
possibility of other theories, based on different principles, or even the impossibility of making any theory.
We have tried to prove every single mathematical statements, assuming only a two or three years mathe-
matical training. Thus, most of the P.D.E's adressed, and all of the relevant ones, will be proved existence,
uniqueress and given invariant monotone approximation schemes. This has been technically possible by
combining tools from the recent and remarkbly simple theory of viscosity solutions on the one side, and of
the Matheron formalism for monotone set and function operators. Thus, the really necessary mathematical

knowledge amounts to elementary differential caleulus, linear algebra, and some notions of integration in
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1.4, THE WHEN, WHY AND HOW OF P.3.E. MODELS IN IMAGE PROCESSING

the chapter on the heat equation. We nether put mathematical statements pour Uamour de art ; all of
them are directed at proving the rightfulness of a model, of its properties and of the associated numerical
schemes. Many experiments are spread out in the text, with detailed comments. They can provide an
independent, parallel, reading to the mainstream of the text. There are no direct industrial applications
treated. Now, many of the image representation tools commented in the text are being used in the pub-
lic software MegaWave (http://www.cmla.ens-cachan fr) developped jointly by several university research
groups in France and Spain. They are also extensively used in the industrial video and image processing
software Investigator, sold by Cognitech, Inc., Pasadena, California.

1.1 The when, why and how of P.D.E. models in image process-
ing
Image processing is divided in three parts, corresponding to as many different goals. The first one derives

from the discrete nature of images and the search of their minimal representation in terms of digital mem-
ory. This discipline is called image compression (see Figure 1.1). The second goal is the restoration of

Figure 1.1: Compression. From left to right : An original image and its more and more compressed versions : compression
factor 7, 10 and 25 respectively. One of the first goals of image processing is the definition of aigorithms permitting high
compression factors without visible alteration. Compression may, however alter the imagme.

a hetter version of an image, given a generation model with noise and blur, or other perturbations. This

is illustrated in Figure 1.2. The image on the right is apparently destroyed: more than 75% of its pixels

Figure 1.2: Denoising. A second goal of image processing : the restoration. Left: original noisy image (simulated salt and
pepper nolse up to 75%), right: denoised version

have been put at a random vajue. We can nontheless restore it significantly: here is, on the right, such

a restored version. The third goal is analysis , which means in Greek “breaking into parts”. Loek at the

F. Guichard, J-M. Morel, Fmage itergtive smoothing ond PDE’s 2



CHAPTER 1. INFRODUCTION

level curve of Figure 1.3, extracted from a hand image: it is full with a mix of details and noise. What
if we ask for a sketchy version, where, however, all essential details are kept ? The curve on the right
is such a sketchy version, where most of the spurious details have disappeared, but the main structures
are maintained. This is what we shall call image analysis . The aim is not denoising or compression : it
is to construct an invariant code putting in evidence the main parts (here, for instance, the fingers) and
permitting a fast recognition in a large database of shapes.

* ¥ X ¥

Figure 1.3: Analysis of a shape. Left : Original scanned shape, then some simplified versions : the aim here is not
restoration, but analysis, that is, to define more and more sketchy versions of the shape. Those sketchy versions may pertnit
a very short and imvariant encoding of the shape. Notice how the number of inflexion points of the shape has decreased in
the simplification process {Chapter 22).

The heat equation arises naturally in the image generation process. Indeed, according to Shannon’s
theory, an image can be correctly represented by a discrete set of values, the “sarnples”, only if it has been
previously smoothed. This is illustrated in Figure 1.4 : Let us call the original baby image “Victor". If
we attempt to reduce the size of Victor by a mere subsampling, that is by taking a point of each sixteen,
we obtain a new and smaller image, in which the subsampling has created new and unstable patterns :
see how new stripes have been created, with a frequency an direction which has nothing to do with the
original ! If, instead of being steady, the camera moved, those newly created patterns would move and
flicker in a totally uncontrolled way. This kind of moving pattern appears often in recent commercial
DVD’s. They have simply been subssampled against the Shannon rule. Let us now comment briefly how
the subsampling should be done. According to Shannon’s theory, a previous smoothing must to be done
before the subsampling. We start with up, the original image. Then a blur kernel & is applied, i.e. we
convolve ug with & to obtain a new image k » ug. A subsequent subsampling is thereafter possible, where
the distance between samples is related to the band-width of the blur kernel by the Nyquist rule. Stability
of the image representation is maintained.

This simple remark, that smoothing is a necessary part of image formation, leads us to our first PDE's,
Gaber remarked in 1960 that the difference between the original and the blurred image is roughly propor-
tional to its laplacian. In order to formalize this remark, we have to notice that k is spatially concentrated,
and that we may introduce a scale parameter for k, namely ky(x) = %k{f‘;). Then

up * kp(x) — up(x)
h
so that when h gets smaller, the blur process locks more and more like the heat equation

du
i Ay, u(l) = uo-

Conversely, Gaber deduced that we can, in some extent, deblur an image by reversing time in the heat

- AUQ(X),

Working version subject to errors, only for personal use, No diffusion authorized. All right reserved. (Version: 15/07/2000)
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1.1. THE WHEN, WHY AND HOW OF P.D.E. MODELS IN IMAGE PROCESSING

Figure 1.4: Shannon theory and subsampling. From left to right: original image, smoothed image, subsampiing of the
original image and subsampiing of the smoothed image. In the subsampling, one point of each 4 is taken in the horizental
and vertical directions. In order to make the reduced image still visible, we have zoomed back the subsampled versions by a
zo0m factor 4. We clearly see that subsampling an image without previous smoocthing creates aliasing : high frequencies are
projected onto lower frequencies and therefore generate new patterns. Shannon theory tells us how o remove those potentially
parasite high frequencies before subsampling. This results in the necessity of smoothing the image before subsampling.

Figure 1.5: Heat equation and blur. Left : original image, right : the heat equation has been applied 1o some scale and
the resulting image is blurred (Chapter 2).

equation :
du

at
Numerically, this amounts to substracting its laplacian from the observed image :

= —A’M,H(U) = Ugbserved-

Urestored = Uobserved — PAUohgerved.

This operation can be repeated several times with some small vatues of h, until it... blows up. Indeed,
the reverse heat equation is extremely ill-posed. All the same, this Gabor method is efficient and can he
applied with some success to most digital images obtained from an optical device. Let us examine what
happens with Victor (Figure 1.6). We see that the method yields some improvement at the beginning
and then blows up. We can also simulate a blur on Victor and try to go back : again, the process blows

up but yields a significant improvement at some scale.

We therefore see two directions. One is to improve, to stabilize, the reverse heat equation. We shall
see that this is doable by nonlinear models. The second direction is to go on with the heat equation :
we can numerically simulate a further blurring of the image. Why should we do so 7 Because, first, this

leads to the wavelet theory and its applications to optimal multiscale sampling and compression. Second,

F. Guichard, J-M. Morel, Image sterative smoothing and PDE’s 1!
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Figure 1.6: Gabor’s deblurring. Gaber proposed in 1960 to deblur an image by substracting its laplacian : this means
inverting the heat equation ! Left : original image, middle : three iterations of Gabor’s algorithm, right : ten iterations. As
is well known, and can be observed in the right image, the inverse heat equation blows up. A few iterations can, as we see
in the middle, nicely enhance the image.

Figure 1.7: Gabor's deblurring again. Same deblurring experiment as in Figure 1.6, but applied en a much more blurred
image

iterated linear and nonlinear smoothing (that is, nonlinear PDE’s) will be relevant to our main goal :
image analysis.

We can indeed improve the time-reverse heat equation. The first example, due to Rudin and Osher
in 87 and 92 proposes an pseudoinverse, where the propagation term —Du-— is tuned by the sign of the
laplacian.

%% = —gignAu|Dul.

The equation is called “shock filter”. As we shall see, this equation propagates, with a constant speed, the
level lines of the image in the same direction as the reverse heat equation would do. It therefore enhances
the image. The equation is more or less equivalent to a good old nonlinear filter due to Kramer in the
seventies. Kramer’s filter can be interpreted as a partial differentia] equation, by the same kind of heuristic

arguments which Gabor developed to derive the heat equation. This equation is

7]
8_1: = —signD*u(Du, Du)|Dul.

Thus, the laplacian is replaced by a directional second derivative of the image, D2u(Du, Du). We shall
later on interpret this differential operator as an “edge detector”. Kramer’s equation yields a slightly
hetter version of shock filter as is illustrated in Figure 1.8. Both deblurring equations work... to some
extent. They experimentally do not blow up and attain steady states ! The third deblurring method we

Working version subject to errors, only for personal use. No diffusion authorized. All right reserved. (Version: 15/07/2000)



1.1. THE WHEN, WHY AND HOW OF P.D.E. MODELS IN IMAGE PROCESSING

Figure 1.8: Image deblurring by shock filters and by a variational method. From left to right : blurred image, Rudin-Osher
shock filter which is a pseudoinverse of the heat equation attaining a steady state, Kramer's improved shock filter, also
attaining a steady state and the Rudin, Osher, Fatemi restoration method, obtained by deblurring with a controlled image
total variation. This last method is very efficient when the noise and blur models are known. It is currently being used by
the French Space Agency (CNES) for satellite image restoration (Chapter 16).

can mention here is, to our knowledge, the best version. It poses the deblurring problem as an inverse
problem. Given the observed image g, we try to find a restored version u such that & = u is as close as
possible to ug and the oscillation of u is nontheless bounded :

Urestored = Argmm(/ | Dl + A(k *u-— 'U.g)2.

The parameter A tunes the oscillation we allow for the restored version. If A is large, the restored version
will satisfy accurately the equation k * » = ug, but may be very oscillatory. If instead A is small, we get a
smooth but unaccurate solution. This parameter can be computed in principle as a Lagrange multiplier.
The obtained restoration can be remarkable. We display the best result we can obtain with the blurred
Victor in Figure 1.8-right. This total variation restoration method also has fast wavelet packets versions.
It recently won a benchmark in satellite image deblurring organised by the French Space Agency (CNES).

The original remark of Gabor, about image generation being related to the Laplacian of the image,
leads to the wavelet theory as well. Here is how it works : if we convolve the image with some smoothing
kernel and thereafter make the difference, we obtain a new image, actually a laplacian, which turns out
to be faded with respect to the original. In Figure 1.9, the last image on the right shows in black the
values of this laplacian image of Victor which differ significantly from zero : In most natural images,
as here, this representation is sparse and adapted to compression. This is why one of the first wavelet
representations, due to Burt and Adelson in 83, was called “Laplacian pyramid”. It boils down to the
iteration of a convolution followed by subsampling. We only keep the differences between images smoothed
at different scales, i.e. their laplacians. The objective is a compressed representation, but to the price of
a loss of invariance due to the multiscale subsampling.

In image analysis, the heat equation has had a very different use: Marr, Hildreth, Canny, Witkin,
Koenderink proposed in the eighties to analyse an image by applying the heat equation. As Rudin and
Florack noticed, this is related to distribution theory. Indeed, details of the images, like boundaries, corners
and other singularities cannot be computed without some previous smoothing because they are derivatives
of a nonsmooth function. And this smoothing has to be multiscale because the image is multiscale !
The heat equation is easily proved to be the only good candidate to the task if image analysis has to

be linear. What derivatives should be computed in an image ? The early research in computer vision
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Figure 1.9: The “laplacian pyramid” of Burt and Adelson. From left, to right ; original image, image blurred by gaussian
convolution, ther difference between the original image and the blurred version, which simulates the laplacian of the original
image. In black in the last image, points where this laplacian image is large. This experiment simulates the first step of
the laplacian pyramid. The laplacian image is, for most digital images. a sparse representation, therefore well adapted to
compression.

proposed “edge detection” as a main tool : it is assumed that the apparent contours of the objects and
also the boundaries of the facets of objects, result in step discontinuities in the image, while, inside those
boundaries, the image oscillates mildly. The apparent contour points, or “edges points” will be computed
as points where the gradient is is some sense largest. Two ways to doso: Hildreth and Marr proposed the
points where Au crosses zero. A significant improvement was done by Canny, who proposed to compute
the points where Du is maximal on the gradient lines. Such points satisfy D?u(Du,Du) = 0. Figure
1.10 displays what happens when we smooth the image with the heat equation and compute the points
where D?u(Pu, Du) = 0 and |Du| is large enough. At first, everything in the image is boundary : the
image, being a very oscillatory function, has inflexion points everywhere ! After some evolution of the heat
equation, we can see what happens : we are able to extract some structure.

Figure 1.10: Heat equation and Canny's edge detector, Boundaries, or “edges” of the image can be defined as points where
the gradient atiains a maximal and large value along the gradient lines. This amounts to say that edge points are points
where D?u(Du, Du) crosses zero and [Dul is Jarge. Canny’s edge detector computes those points. On the left, the original
image, followed by the edge points found. They make a very dense set, because of the oscillatory character of the image.
Next, the image blurred by the Gauss kernel {heat equation) and the Canny edges found. The heat equation has removed
the “irrelevant” edges (Chapter 3)

If the heat equation is, under sound invariance requirements, the only good linear smoother, there are
instead many nonlinear ways to smooth an image. The first one was proposed by Perona and Malik in
87. The idea is roughly to smooth out what has to be smoothed, the irrelevant, homogeneous, regions and
to enhance instead the boundaries. Thus, the diffusion should look like the heat equation when Dl is
small and an inverse heat equation should instead be applied when |Duf is large. Here is the equation in
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divergence form.

% — dintg(1Dul)

g
where g{s) = TIA.;'I decreases when s increases. It is easily checked that we have a diffusion equation when
IDu| < X and an inverse diffusion equation when |Dul > A. In order to do so, we rewrite the equation in

the following way. We consider the second derivative of u in the direction of D,

Du  Du
= Dy (2 B2
Hn u( [Du]’ |Du|)

and the second derivative in the orthogonal direction,

- Qu(DuJ_ Dut
wr 1Dyl [Du|”

where Du = (u;,u,) and Dut = {—ty,uz). The laplacian can be rewritten in the intrinsic coordinates

(€,1) as Au = uge + upy. The Perona-Malik equation rewrites

Ou _ Ugg (1 — 22| Du)®)ug,
8t~ 1+ A Duf? (1 + A?|Duf?)? -

So the first term always appears as a one-dimensional heat equation in the direction orthogonal to the

Figure 1.11: Perona-Malik equation and edge detection : same experiment as in Figure 77, but the heat equation has been
replaced by the Perona-Malik equation. Notice that the edge map looks slightly better localized as with the heat equation.

gradient, tuned by the size of the gradient though. The second term can be a directional heat equation, or
reverse heat equation in the direction of the gradient. So we indeed mix in this model the heat equation
and the reverse heat equation ! We compare in Figure 1.11 the Perona-Malik with the classical heat equa-
tion in terms of accuracy on the boundaries obtained by Canny’s edge detector : at a comparable scale of
smoothing, we clearly gain some accuracy in the boundaries and get rid of more “spurious™ boundaries.

The representation is both more sparse and more accurate.

Now, this ambitious model attempts to put in a single operator two very different goals which we
already mentionned, namely restoration and analysis. This has a cost : the model contains a “constrast
threshold” which can only be fixed manually. Mathematical existence and uniqueness are net guaranteed,
despite some attempts by Kichenassamy and Weickert, Let us summarize the involved parameters ; we
need to fix both A and the smoothing scale(s) ¢ and the threshold on the gradient in Canny’s detector as
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CHAPTER 1. INTRODUCTION

well. We obviously must take the same gradient threshold A in Canny’s detector and in the Perona-Malik
equation. All the same, we have a two parameters game : how will this be dealt with in automatic image
analysis 7 This question seems to have no general answer for the time being. An interesting attempt based
on statistical arguments is made, however, in Black, Sapiro.

If any nonlinear diffusion can be an image analysis model, why not trying them all 7 This is exactly
what has happened in the past ten years. We can claim that almost all possible nonlinear parabolic
equations have been proposed. The logic in this proliferation of models is this : each attempt fixes one
intrinsic diffusion direction and tunes the diffusion by the size of the gradient or by the size of a nonlinear
estimate of the gradient. Sometimes, the proposed models are even systems of PDE’s, but in order not
to blow up this preface, we shall focus on the simplest proposed examples. We can start with Rudin-
Osher-Fatemi’s model, which consists, for the smoothing term, of minimizing the total variation of u. The
gradient descent for [ |Du| writes

Su ., Du 1

i dw(m) = W'HEE.
Written in that way, the method appears as diffusion in the direction orthogonal to the gradient, tuned
by the magnitude of the gradient. Caselles, 7 7 and 7 ? proved that this equation is indeed well posed in
the space of bounded variation. A variant was proposed independently by Alvarez and al.,

fu {Dul . Du 1

3~ ox Du " Du)) T [Ex Dujtee

where the tuning of the gradient is nonlocal. Kimia, Tannenbaum and Zucker proposed, endowed in a
more general shape analysis framework, the simplest equation of the list,

du Du Du 1l Dut
— = |Duldiv{——) = (T )= .
5t = 1Puldiv(ry) = DT Tpay) = ¢

This equation had been proposed some time before in another context by Sethian as a tool for front
propagation algorithms. This equation, which we call in continuation “curvature equation”, is a “pure”
diffusion in the direction orthogonal to the gradient. The Weickert equation is a variant of the curvature
equation, with nonlocal estimate of the direction orthogonal to the gradient : the diffusion direction
d = SEigen{k * (Du ® Du)) is computed as the eigenvector of the least eigenvalue of k * {Du® Du) : if
the convolution kernel is removed, this eigenvector simply is Dut. The three mentionned models can be
interpreted as diffusions in a direction orthogonal to (an estimate of) the gradient, tuned by the magnitude
of the gradient (Figure 1.14).  Other diffusions have been considered as well : For interpolation goals,
Caselles et al. proposed a diffusion which may be interpreted as the strongest possible image smoothing,

Ou 2
T D*u(Du, Du).

This equation is not used as the other ones as a preprocessing of the image, but a way to interpolate
between the level lines an image with sparse level lines (Figure 1.13). Zhong and Carmona proposed
a diffusion in the direction d = SEigen(Du) of the eigenvector with least eigenvalue of D*u (Figure

1.12). Sochen, Kimmel and Malladi propose instead a nondegenerate diffusion, associated with a minimal
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Figure 1.12: A proliferation of diffusion models. From left to right: Original image, Perona and Malik equation 1987,
Zhong, Carmona 1998 (diffusion along the least eigenvector of D%u) and Sochen, Kimmel and Malladi, 1998 (minimization
of the image graph area.

Figure 1.13: A proliferation of diffusion models {III) Here, the diffusion is made in the direction of the gradient and the
model is applied for image interpotation when level lines are sparse. From left to right : original image, quantized image
(only 10 levels are kept - 3.32 bits/pixel) and reinterpolated image by the Caselles and Sbert (1998)algorithm. They apply a
diffusion on the quantized image, with values on the remaining level lines as boundary counditions.

Figure 1.14: A proliferation of diffusion models (II). From left to right: Osher, Sethian 1988: curvature equation, Rudin,
Osher and Fatemi 19%2: minimization of the image total variation, Alvarez, Lions et al. : nonlocal variant of the preceding,
1992, Weickert 1994 - nonlocal variant of the curvature equation. All of these models oniy diffuse in the direction orthogonal
to the gradient, with a more or less local estimate of this direction.

surface variational formulation : their idea was to make a gradient descent for the area of the graph of u,
/1 +[Dul?, which leads to the diffusion equation (Figure 1,12).

du . Du
— = div(———=).
ot 1+ | Dul?
Among the mentionned models, only the curvature motion was explicitly proposed by Kimia, Tannen-

baum and Zucker as shape analysis tool. We shall now explain why.

In order to do so, we have to give a definition of image analysis. There might be as many ways to define
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this discipline as they are applicational goals involving digital images. Now, the range of applications is
as wide as the human activity, since most of the scientific and technical human activity, including even
sound analysis (visual sonagrams), involves the perceptual analysis of Images. Fortunately, we have at
hand a mathematical shortcut to avoid an endless list of partial and specific requirements : This shortcut,
well known in Mechanics, consists of stating invariance requirements. Invariance requirements will be 2
short list and they will, as we shall see, give a possible classification of models and point out the ones
which are the most adequate for all purposes image analysis tools. The first invariance requirement is the
Wertheimer principle according to which visual perception (and therefore, may we add, image analysis)

should be independent of the image contrast. We state this in the following way :

Contrast invariant classes
w and v are said to be {perceptually) equivalent if there is a continuous increasing function g such that

v = glu).

Contrast invariance requirement : An image analysis operator T must act directly on the equiva-
lence class. As a consequence, we may ask that T(g(u)) = g(Tu}, i.e. a commutation of the image analysis
operator with contrast changes.
newline

The contrast invariance requirement rules out the heat equation and all models stated before, except
the curvature motion. Contrast invariance led Matheron in seventy-five to reduce image analysis to a set
analysis, namely the analysis of level sets. We call upper level set with level A of an image u the set

Ayu = {x,u(x) > A}

We can define in exactly the same way the lower level sets, by changing “>" into “<”. The main point
to retain here is the global invariance of level sets under contrast changes, namely, if g is a continuous
increasing contrast change, then,

Xg(,\)g(u) = X;\u.

According to Mathematical Morphology, this image analysis doctrine founded by Matheron, all of the
image shape information is therefore contained in the level sets : it can be proved that an image can be
reconstructed, up to a contrast change, from its set of level sets (Figure 1.15 : an image and some of its
level sets).

The contrast invariance requirement yields powerful and simple denoising operators as the so called
“Extremna killer” defined by Vincent and Serra in 1993. This image operator simply removes all connected
components of upper and lower level sets with area smaller than some fixed scale. This is not a FDE,
actually it’s much simpler ! Now, its effect is amazingly good for impulse noise i.e. local destructions of the
image, spots. In Figure 1.16, we see a image degraded up to 75%. Below, its restoration by the extrema
killer. Left, result of the same operator applied to the original.

Caselles and Coll localized farther in 1996 the contrast invariance requirement in image analysis. They
proposed as the main object of analysis the level lines of the images, that is, the boundaries of level sets.
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Figure 1.15: An image and one of its level sets. Right : level set 140 of the left image. This experiment illustrates Matheron's

thesis that the main shape information is contained in the level sets of the image. Level sets are contrast invariant (Chapter
4).

Figure 1.16: The "extrema killer” filter : all connected compenents of the upper or lower level sets with small area are
removed from the image. From left to right : original image, extrema killer applied with area B0 pixels, then 75% salt and
pepper noise added to the original image and the same filter applied (Chapter 7).

This proposition makes sense for a digital image, which is assumed to be a sampling of a very smooth func-
tion as the result of the optical smoothing. We can therefore define the level lines if, e.g., the interpolated
image is C'' as is guaranteed by the canonical Shannon interpolation. There may be other interpolation
methods, and even interpolations into a discontinuous functions : this is the case if, e.g., we consider the
digital image as constant on each pixel. We must then for each interpolation method make clear how the
level lines are computed and what their structure is. Two properties are desirable : that the level curves
indeed are curves in some affordable sense (Jordan rectifiable curves) and that they are nested, i.e. never
cross, so that they make an inclusion tree. A study of Kronrod (1950) shows that if the function u is
continuous, then the isolevels sets {x,u(x) = A} are nested : they build a tree ordered by inclusion. Now,
these isolevel sets need not be really curves. Monasse (2000} generalized recently the preceding result to
lower semicontinuous or upper semicontinous functions. His result implies that the simplest, piecewise
constant, interpolation of an image yields a nested set of Jordan curves bounding the pixels. Thus, we
have two good ways to associate with the digital image a set of nested Jordan curves. We call this set
“topographic map”. ! We display in Figure 1.17 the level lines of a digital image at some fixed level. By
the introduction of the topographic map, the search for image smoothing, which we had already reduced

to set smoothing, is further reduced to curve smoothing, provided of course this smoothing preserves curve

YT'his point of view also is coherent with the “BV assumption” which we mentionned at the beginning of the introduction,
according to which the right functicn space for images should be the space BV of functicns with bounded variation. By
coarea formula, we can then describe the image by a bunch of Jordan level curves (see Ambrosio et al.) Now, it is in general
faise for BV functions that boundaries of lower and upper level sets make a nested set of curves : these curves may cross.
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Figure 1.17: Level lines of an image. Level lines, defined as the boundaries of level sets, can be defined to be a nested set
of Jordan curves. They give a contrast invariant representation of the image. Right : level lines with level 183 of the left
image (Chapter 5).

Chen, Giga and Goto and Alvarez, et al. proved that, under the usual invanance requirements for ima-
ge processing, including the contrast invariance, all image multiscale analyses should have the form of a

curvature motion, namely

Bu = F(curv(u), t)|Dul,

at
where F is increasing with respect to its first argument. This equation can be interpreted as this : we
consider a point x on a given level curve of u(t), at time £. We call n(x) the normal vector to the level
curve and curv(x) its curvature. Then the preceding equation turns out to be associated with the curve
motion equation

ox = F(curv{x))n(x},

8t
which describes how the point x moves in the direction of the normal. Not much more can be said at
this level of generality on F. Now, two particular cases happen to play a prominent role. First, the case
Fleuru(u),t) = curn(u), the so called curvature equation which we already met, and second the case

Fleurviu), t) = curv(u)%.

This particular form for the curvature dependence, the power one third, permits to get a very relevant ad-
ditional invariance, the affine invariance. We would like to have a full projective invariance, but a theorem
proved by Alvarez et al. shows that this is impossible. The best we can have is invariance with respect
to the so called chinese perspective, which preserves parallelism. Most of the mentionned equations, par-
ticularly when F is a power of curvature, have a viscosity solution in the sense of Crandall and Lions, as
shown by recent works of Ishii and Souganidis.

As we already mentionned, contrast invariant processing boils down to level set, and finally level curve
processing. The above mentionned equations indeed are equivalent to curve evolution models, provided
strong existence results are at hand. This is the case for the most important cases, namely the power 1, the
so called “curve shortening” and the power 1/3, known as “affine shortening”. Grayson proved existence,

uniqueness and analycity for the first equation,

% = curv(x}n(x)
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and Angenent, Sapiro and Tannenbaum for the affine shortening

— = curv(x) §n(x).

ot

Those results are very relevant to image analysis as they ensure that the diffusion process indeed reduces

Figure 1.18: The Affine and Morphological Scale Space (AMSS model). From left to right : original image, level lines of
the images (16 levels only), smoothed image by using the affine and morphelogical scale space, and its level lines (Chapter
6).

the curve to a more and more sketchy version. We check the affine invariance in Figure 1.19 . The numer-
ical test we shall make here is as follows : we apply a very fast and fully affine invariant numerical scheme
designed by Lionel Moisan. In the middle, the initial shape is an affine transform of the first one ; the
shape on the right will be an inverse affine transform of the middle shape. If everything is correct, we can
expect that, after processing, the shape on the right will be identical to the shape on the left. We make
the experiment with both the the curve shortening and the affine shortening. So, it works !

Evans-Spruck and Chen-Giga-Goto proved in 1991 that a continucus function moves by curvature mo-

Figure 1.19%: Experimental check of the affine invariance of the affine shortening (AMSS). We display on the left image
three shapes. The second one is an affine transform AS of the first shape 5. The third one is obtained from the second by
the inverse affine transform. It therefore initially is A7'AS = S. On the right image : result after application of AMSS to
the two first shapes : are viewed S(t),, (AS){¢) and A~'((AS)(£)). If the numerical scheme is affine invariant, this third
shape must coincide with §{t), which is indeed the case. Middle : the same procedure applied with the curvature equation,
which proves not to be affine invariant, as expected (Chapter 24).

tion if and enly almost all of its level curves move by curve shortening. This yields, in that case, a
mathematical justification of the now classical Osher-Sethian numerical method for moving fronts by mov-
ing a distance function to the front. The same result is true for the affine invariant curve evolution. The

Osher-Sethian point of view is just converse to the point of view adopted here : they associate with some
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curve C or surface its signed distance function u , so that the curve or surface is handled indirectly as the
zero isolevel set of u. Then u is evolved by, say, the curvature motion with a classical numerical difference
scheme. In that way, the curve evolution is dealt with efficiently and accurately. From our point view, the
image can be viewed as a distance function to all and each of its level sets, since we are interested in all
of them.

W. - ow in Figure 1.18 an applic.ation of this numerical method, with both curvature and affine invariant

Figure 1.20: Computation of the curvature of the original sea bird image after it has been smoothed by curvature motion
at calibrated scale 1. The first image displays the smoothed version of the sea bird at a small scale. The second image
displays the absolute value of the curvature, with the convention that the darkest points have the largest curvature. We
have displayed the curvature only at points where the gradient of the image was larger than 6. (The image grey levels range
from 0 to 255). In continuation, we display on separate images the positive part of the curvature and the negative part. The
curvature motion can be used as a nonlinear means to compute a "multiscale” curvature of the original image. Compare with
Figure 1.21, where the calibrated scale of smoothing is 4. (A calibrated scale t means that at this scale a disk with radius ¢
disappears)

curvature motions. In oreder to gain visibility, we do not display all level curves, but only for about eigh-
teen levels. Notice that the aim is not here subsampling ; we keep the same resolution. It is not either
restoration : the processed image is clearly worse than the original. The aim is invariant simplification
leading to shape recognition.

Before proceeding to shape recognition, let us mention that a well adapted variant of curvature equation
can be used for shape detection. It's a by now famous method of contour detection in an image, initially
proposed by Kass, Witkin and Terzopoulos. This method was very unstable and the winning method
turns out to be a variant of curvature motion proposed by Caselles, Catt, Coll, Dibos and improved
simultaneously by Caselles, Kimmel, Sapiro, and Malladi, Sethian. Here is how it works. The user draws
roughly what are the contours he wants in the image and the algorithm then finds the best possible contour
in terms of some variational criterion. This turns out to be very useful in medical imaging. The motion of
the contour is a tuned curvature motion which tends to minimize the energy £ which we will now explain.
Given an original image ugy containing some circular contours which we wish to approximate, we start with
an “edge map”

1

P T Dt
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Figure 1.21: Computation of the curvature of the original sea bird image after it has been smoothed by curvature motion.
The first image displays the smoothed version of the sea bird at calibrated scale 4. The second image displays the absolute
value of the curvature, with the convention that the darkest points have the largest curvature, We have displayed the
curvature only at points where the gradient of the image was larger than 6. (The image grey levels range from 0 1o 255). In
continuation, we display on separate images the positive part of the curvature and the negative part. The curvature motion
can be used as a nonlinear means to compute a "multiscale” curvature of the original image. Compare with Figure 1.20,
where the calibrated acale of smoothing is 1.

that is, a function which vanished on the edges of the image. The user then points out the contour he
is interested in, by drawing a polygon o surrounding roughly the desired contour. The “geodesic snake”
algorithm then builds a distance function v to this initial contour, so that -y is the zero level set of vp.
The energy to be minimized is

E(y) = [ a(x(s))ds,

where g is the edge map associated with the original image ug and s denotes the length parameter on +.

The motion of the “analysing image” v is governed by
a
8_;) = g|Dv|eurv{v) — Dv.Dg.

We display an example in Figure 1.22.

Figure 1.22: Active contour, or "snake™ From left to right : original image, initial contour, evolved distance function, final
contour (Chapter 19).
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The main obvious application of invariant PDE’s seems to be shape retrieval in large databases. There are
thousands of different definitions of shapes, and of shape recognition algorithms. Now, the real bottleneck
has ever been extraction of the relevant shapes. The discussion above points to a brute force strategy
- all contrast invariant local elements, are are the level lines of the image, are candidates to be “shape
elements”. Of course, this name of shape element suggests the contours of some object, but there is no way
to give a simple geometric definition of objects. We must give up the hope of jumping from the geometry
to the common sense world. We may instead simply ask the question : given two images, can we retrieve
all level lines similar in both 7 This would give a factual, a posteriori definition of shapes : they would
be defined as pieces of level lines common to two different images, no matter what their relationships to

real physical objects are. Of course, this brute force strategy would be imposgsible without the previous

Figure 1.23: Level lines based shape parser. Shape extraction has ever been the bottleneck of shape recognition algerithms.
With the presented algorithm, this problem is solved by a brute force method : it compares all level lines of the images to
be compared. Left pair of images : two images of a desk taken from different angles. In the left hand desk image, one level
line has been put in white. We display, also in white, in the right image of the pair, the matching level lines. The match is
ambiguous, as must be expected when the same objecs is repeated twice in the scene ! In the right pair of images, we display
in white all matching pairs of level lines. {Experiment : J.-L. Lisani).

invariant filtering (AMSS). It is instead doable if the level lines have been significantly simplified. This
simplification entails the possibility of compressed invariant encoding. In Figure 1.23, we present an exper-
iment due to Lisani et al.. Two images of a desk are taken from different angles, and then, in white, all of
the pieces of level lines in Image 1 and in Image 2 which found a match in the other image. In continuation,
we present some of the matches. We notice that several of these matches are doubled : indeed, there are
two similar chairs in each images ! A Gestalt law comes immediately to mind. This law states that human
perception tends to group similar shapes. We now see the numerical necessity of this perceptual grouping
. a previous self-matching of each image, with grouping of similar shapes, must be performed before we
can compare it to other images !

1.2 The mathematical organisation

The mathematical organisation of this book derives from the above discussion of PDE models. We chose
to focus on image analysis models, so that invariance requirements will lead the mathematical analysis.

Most chapters include numerical experiments and indications on the right way to make them.

Chapter 2 We extensively analyse the heat equation, because it is a useful mathematical and algorithmic
tool throughout the book. We first prove existence and uniqueness results for the heat equation and
then prove that iterated linear smoothing filters are asymptotically equivalent to the heat equation.

This is a first way to show its uniqueness as a linear smoothing filter.

Chapter 3 We then use the heat equaticn as a tool to :
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s edge detection (Hildreth-Marr, Witkin}
e set smoothing (Koenderink-Van Dorn, Bence-Merriman-Osher)

e curve smoothing (Mackworth-Mokhtarian)

Chapter 4 We prove one of the main principles of mathematical morphology : a rontrast invariant class
ol images is completely described by its set of level sets. Lhus, contrast invariance reduces image
analysis to set analysis.

Chapter 5 Level lines and level surfaces are introduced and the definitions and main formulae of curvature
of level lines and, in higher dimension, of the principal curvatures of an isolevel surface given and
proved. We also give a definition of level lines for discontinuous digital images and adress their
visualization.

Chapter 7 We prove that monotone image operators that are contrast invariant boil down to set monotone
operators. We explain how to define the set operator from the image operator and, conversely, how
to construct a contrast invariant image operator from a set operator. Commutation of the monotone
contrast invariant operators with thresholds is proved. As a first application, the Vincent-Serra
“extrema killer” is formally defined.

Chapter 8 An analytic form is given to monotone contrast invariant and translation invariant image

operators : If T is such an operator, it has a canonical “sup-inf’ form,
Tu(x) = sup inf u(x +y),
BemYeB

where B is a set of subsets of R? called “set of structuring elements”. Conversely, every image
operator in the sup-inf form is monotone and contrast invariant. This theorem is a nonlinear version
of the Riesz theorem, according to which a linear, continunus, translation invariant operator can he

as=ociated a convelution kernel k. so that

Tu(x) = [ kyuix - yidy.

The kernel & is called “impulse response”. In the same way, B is an impulse response for the

nonlinear operator.

Chapter 9 The simplest sup-inf operators of mathematical morphology, the so called “dilations (only
sup)” and “erosions (only inf)” are presented and analysed. Their subjacent PDE are identified as

propagation equations

%—? = ¢} Dul,

where ¢ = 1 for dilations and ¢ = —1 for erosions.

Chapter 10 The median filter is one of the most emblematic and efficient contrast invariant monotone
operator. It is defined and its numerical implementation discussed.
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Chapter 11 This chapter focuses on the asymptotic expansion of contrast invariant operators when their
scale tends to zero. We associate with each operator T its scaled version T} associated with the
shrinked set of structuring elements By = {hB, B € IB}. It is then proved roughly that

Thu(x) — u{x) = ch|Du| + hH (heurv(u))| Dul,

where ¢ is a constant and H a nondecreasing function, both associated with T by simple formulas.
In the case of the median filter it is proved that ¢ = 0 and H(s} = s. We therefore have two main

classes of contrast invariant operators :

e ¢ # 0 :the operator has the same asymptotic behaviour as a dilation if ¢ > © and an erosion if
c< 0

e ¢ = 0 : the operator corresponds to a curvature dependent motion. The overall conclusion of
this chapter is that all contrast invariant monotone operators boil down to erosions, dilations,

and curvature motions.
Chapter 12 : performs the same analysis in arbitrary dimension.

Chapter 13 Because of the affine invariance requirement, a special attention is paid to affine invariant
operators : an affine invariant distance of a point to a set is defined. In continuation, affine dilation
and erosion operators are deduced and their set of structuring elements identified.

Chapter 14 Affine invariant families of structuring elements are not bounded, since by an affine map
with determinant 1 we can arbitrarily stretch any set of the family. It is shown that the asymptotic
behaviour of the affine invariant operator is not altered if we impose adequate bounds on the affine

structuring elements.

Chapter 15 It is shown that if ' is an affine invariant operator such that T(—u) = —T(u), then its
asymptotic behaviour is

Thu(x) —u(x} = eht {Du]curu(u)g.

In summary, all affine invariant contrast invariant operators are asymptotically equivalent to the

affine PDE,
Au 1
— = |Dulcurviu)s.
o = 1Duleurv(u)
Chapter 16 : adresses the extension of the preceding theory to the so called “nonflat” mathematical
morphology, i.e. when the operators are no more contrast invariant, but only monotone. It is shown
that an asymptotic expansion of a monotone operator can lead either to any of the Hamilton-Jacobi

equations

du

— = H{Du

ot (Du)
or to parabolic equations (e.g. the heat equation). Actually, all of the intrinsic parabolic equations
can derived from the Mathematical Morphology framework ! As applications, we analyse Rudin-

Osher and Kramer’s shock filters.
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Chapter 17 The curvature equations are not smooth enough to be given classical solutions : we have
a need for a concept of solutions compatible with contrast changes. Now, if u is a solution of the
curvature equation and g a continuous increasing nondifferentiable contrast change, g{u) should be
another solution and is clearly not more than continucus ! The concept of viscosity solutions in the
framework of Crandall-Lions, permits to solve this difficulty. We define this concept of solution and
prove the main needed properties. In particular, we check that the erosions are dilations are viscosity

solutions of the propagation equations

du

— =¢|Du

3 = olPul
. We also prove a theorem, due to Barles and Souganidis, which permits to prove that the iteration of
a contrast invariant operators T), yields a discrete approximation of the subjacent curvature equation.

We also give a brief account of the uniqueness theory for viscosity solutions.

Chapter 18 is devoted to the application of the mathematical techniques developped in the former chap-
ter. We consider the main relevant contrast invariant operators, namely the median filter and the
affine invariant erosion-dilation. We consider adequate rescaled versions of both, which we denote
generically by Th. Then we prove that (73)™uo — u(f) when nh — ¢ and u(¢) is a viscosity solution
of the associated PDE, %‘f = |Duleurv(u)} with u(0) = ugy, when T is an affine contrast invariant
operator and ‘e’)—t‘ = |Dujeurv(u) when T is a median filter. Since the viscosity solution of these
equations has been proved to be unique, we have both constructed this unique solution and proved

that the considered iterated filter converges towards this unique solution !

Chapter 19 is an application of the results and techniques of the former chapters to the classical “active
contour” or “geodesic snakes” method. We explain this method, show its structural properties and

prove existence, uniqueness and contrast invariance of the motion of the analysing function ».

Chapters 20 and 21 : image scale space theory introduces a different point of view on image analysis,
namely the Scale Space theory. A scale space is family of smoothing operators T;, depending upon
a scale parameter ¢, which associate with the original image up more and more sketchy images u(t).
The original scale space theory proposes to compute w{t) as the solution of the heat equation with
up as initial condition. Clearly, the viscosity solutions u{t) of curvature equations give other scale
space theories, more invariant. Now, aren’t we missing other possibilities ? The axiomatic analysis
performed in Chapters 18 and 19 permits first to explain which requirements (locality, invariance,
comparison principle...} lead to a parabolic P.D.E. and then to classify all possible P.D.E.’s according
to their invariance properties. The affine invariant eguations are given in any dimension ; in dimension
2, the AMSS model (power 1/3 is proved to be the only possibility.

Chapter 22 A similar axiomatics analysis is performed on shape Scale Spaces. Here are also stated
{without proof for once) the existence, uniqueness and regularity results for the curve evolutions to
the powers 1 and 1/3. This shape analysis axiomatics turns out to be simpler than the general image
scale space axiomatics, because it is based on the shape inclusion principle. It gives also a formal
justification of the algorithm which, instead of moving the image by a curvature P.D.E., moves all
level lines by the corresponding curve evelution eguation. It is shown that the viscosity solution for

the first equation indeed is obtained by moving all level lines with the second
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Chapter 23 : Scale Space of movies. Here, a new axiom is introduced, the galilean invariance, which

permits to single out a single most invariant P.D.E. for movies.

Chapter 24 is devoted to several different numerical strategies with finite difference schemes to implement

image evolution by a curvature motion.
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Chapter 2

The Heat Equation

2.1 Image linear smoothing and the Laplacian

We note x = (z1,...,25) apointof RY, x=(r,y) f N =2and x| = {23+ ...+ 23} . F x,y ¢ RY,
we denote by x.¥ = z1y1 + ... + zyyn their scalar product. Consider a bounded function ug(x), which
we interpret as an image : wuo{x) is the observed “grey level” at x. We write, when u(z,y) is a smooth

enough function,
Su Au 8u

um:};ﬂ;’ u'y:a: ﬂ:y=mj‘
and, in the same way, if uo(x) = uo(zy,....,2n),

du &u
A Wi = s
61’;‘ 7 aﬂ:,‘a:r}'

u; = ete.

We denote the gradient of v by
Du = (ug,uy)

when u(x} = u(r,y) and
Du = (uy, ..., un)

when u(x) = u(z),...,zx). The Laplacian of u is denoted by
AU = Upy + Uyy

if N =2 and

Au=un + ... +uwy

in general.

Assume we wish to establish a more reliable value Myup(x) of up(x) as a mean value of ug over a
neighborhood of x with size h. As for an obvicus (but useful} example, let us mention the case where
Tup(x) = (Mpug)(x) is obtained as the mean value of ¥y in a neighborhood of x and iet us take N = 2.
We set

1
Mpug(x) = e ./u(x " uy(y)dy, (2.1)
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In this case, the locality means that only values of ug inside a disk D (x, h) around x matter. When £ tends
to zero, we get a more and more local estimate of the value of uo at x. The parameter h characterizes
the “locality” of the considered operator, that is, the size of the neighborhood involved in the filtering
operation. The question arises of whether such an operation can be made independent of 2. A first answer
is to analyze the asymptotic expansion of Myug(x) as i tends to zero. Clearly, if up 15 continuous at x,
we have Myup(x) = ug(x}. If we assume that ug is twice continuously differentiable (C?) at x, then it is

easily seen that in fact !

Figure 2.1: Local averaging algorithm. Left : original image, right : result of replacing the grey level at each pixel by the
average grey level over the neighboring pixels. The shape of the neighborhood is defined by the black spot displayed up-right.

Mhuo(x) - ug(x)
h2
In order to prove this formula, let us set, without loss of generality, x = 0. Then for y = (z,y) in D(0, h),

we have by Taylor formula

uo(y) = ug{O) + Duo(O}.y + %((’U.o):mxg + (LLo)yyy2 -+ Z(uo)zyxy) + O(hz).

Taking the mean value over D(0, ), that is, applying Ay, we obtain

1 3
(Muuo}(0) = u0(0) + ;55 ((20) 2= (0) e’ dzdy + (uo}yy(o)f yPdzdy) + o(h?).
2rh D{a.h) D{0. k)
Since
1 / P drdy 1 (z* + y*)dzd
= 5 I i
2mh? D(D,h) dmh? 2(0,h) v v

1 [ 4 hZ
_47rh2j(; 27T drgg,

we obtain the announced formula (2.2). This formula suggests the following result : consider for any ¢ a

sequence of real numbers h and integers n such that nh? = t. Set u® = MPup. Then it is to he expected
that u?(x) — u{t,x) where u(t,x) satisfies the heat equation associated with (2.2),

1We always denote in this text by o{h) a function of h which tends to zero faster than h, by O(h) a function such that,
for some constant C, |O(k)| < C|A], and by e(h) a function tending 1o zero as h tends to zerc. Thus an o{h) function can
also be written : he(h).
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2.2. EXISTENCE AND UNIQUENESS OF SOLUTIONS OF THE HEAT EQUATION

8 1
a—?(t, x) = ZAu(t,x), u(0) = uo. (2.3}

This convergence result will be obtained in Section 3.1. We need some preliminaries on the heat equation.
In Section 2.2 below, we shall prove that the heat equation has a unique solution for a given initial datum
ug and is equivalent to the convolution of up with Gaussian kernels of increasing width.

Figure 2.2: The Gauss kernel in two dimensions.

2.2 Existence and uniqueness of solutions of the heat equation

Define an image ug(x), x € R", as a real function which is primarily defined en the hypercube [0, 1]%, and
subsequently extended to ¢ = [-1,1]" by symmetry across the coordinate hyper-planes. This extension
satisfies for every X = (&,,...,zn) in ,

wle1zy, .., enzN) = u(T1, - TN) {2.4)

where (£),...,en} takes all possible values in {—1,1}¥. We then extend u(x) by periodization into a
function on all of R™ which is 2-periodic with respect to all variables, so that

ulzy + 2ny, . oy + 2ny) = u{z), ., an) {2.5)

for all (ny,...,nn) € A2V,

The aim of these successive extensions is first to preserve the continuity properties of u across the
boundary of [0, 1] and second to have u defined on all of R¥, so that {e.g.) convolutions of 1 with
another function can be defined easily. This way of extending » is classical in image processing and used
in most compression and transmission standards. It is easily checked that if u is continuous on [0, 1], its
extension to ¥ defined in the preceding way also is continuous. Whenever a function ug defined on R
satisfies the symmetry and periodicity conditions (2.4-2.5), we shall say that uo belongs to Le.  Ifit is
bounded, we say that it belongs to L. If it is integrable, that is, f,, jup(x}|dx < oo, we say that ug
belongs to L{. . We endow theses spaces with norms, which we shall use alternatively in the statements
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Figure 2.3: Image extension by symmetry and then periodization.

to come.
e The L¥ norm :

[ullew = sup [u(x)!
XeC

and
¢ The L} norm :

Nullprey = f( [u(x)ex.

When ||u — ¢{|oo — 0, We say that u converges to v uniformly. When |ju — v||g1ge) — 0, we say that
u converges to v in Lf. When we assume that a function « € L is continuous, or C™, or €%,
this means that « has such properties on all of R" and not only on C. If u is continuous, then it is
uniformly continuous. Indeed, by periodicity, supye gy [u(x + h) — u(x)] = supxee |u{x + h) — u{x)| and
by the compactness of C, supygec [u{x + h) — u{x)| = o{1}. In the same way, if u Is C!, notice that
supxe gy |Dul(X) = supxe [Dul(x), ete.

We shall also consider functions g integrable on all of RY ; in such a case, we write

llles = llolusaaey = | ot
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2.2. EXISTENCE AND UNIQUENESS OF SOLUTIONS OF THE HEAT EQUATION

We recall a classical density result in L! : {See e.g. [7])

Proposition 2.1 If g € L!(R"), then there exists a sequence g, of continuous functions which ere zero
outside a compact set such that go =+ g in L'(R"), that is, [ lga(x) — g(xX)|dx = 0 as n = +oo.
Ifu € L}, there exists a sequence of continuous functions u, € L} such that ||u, — ullgiey = 0.

Figure 2.4: Convolution by gaussian kernels {heat equation). From top-left to bottom-right, we display the original image,
and the results of the convolutions with gaussians of increasing variance. A grey level representation of the convolution kernel
is put on the right of each convolved image ; it gives an idea of the size of the involved neighberhood. The resulting image
is more and more blurry.

A consequence of the density result, also classical is :

Proposition 2.2 Ifu e L., then
[ wtx=3) = udx = (9.
&
Ifue LIRY), thenu € L}, then

/ lu(x - y) — u(x)|dx = <(y]).
RN

Proof Fix ¢ > 0. By Proposition 2.1, we can find v € L, continuous, such that |ju—v||p1c) € €. Since
v 1s uniformly continuous, we have supye pv [U{x — ¥y} — v{x)| < & for |y| < 5 small enough. Thus

[( Ju(x — y) = u(x)idx <

[ Jluix —y) — v(x — ¥}|dx +] [v(x — ¥) — v{x)|dx + / [r{x) — u{x}|dx < 3e.
o C o

The proof of the second statement is an obvicus adaptation of the first, 0
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We shall use multi-indices for derivation, which we denote by a = {(m,..,on) € NY¥, or 8 =
(B1,....8n) € WY, We write x* and |x|* for

280 2% and [z, |ea|? |z n i

respectively. We shall abbreviate the partial derivatives of a function g by setting
aﬂrl+---+0:v
0= —5——==a9
9= 5 oz ?
We write g € C* if g is differentiable of any order.

Definition 2.3 We say that a function g defined on RY belongs to the Schwartz class S if g € C and
for each pair of multi-indices , 8 there is a constant C' such that

Ix|?18°g(x)| < C.

Proposition 2.4 If g € S, then ¢ is integrable on RN : IRN lg(x}dx < oo. For all multi-indices o, 3
the function x®8%g also belongs to S. In addition, for all a, 8%g is uniformly continuous on RV,

Proof The second statement immediately follows from the Leibnitz rule for differentiating a product.
The first one follows from the fact that we can write jg{z)] < ; +|,ﬁ , which is an integrable function on
RN . Finally, every continuous function on " tending to zero at infinity also is uniformly continuous, so
that the last statement is valid. a

Proposition 2.5 (The Gaussian and the heat equation )
2

x
For all t > 0, the function x — G,(x) = me' 7 belongs to S and satisfies the heat equation
ks

G,

E'—AGt:O.

Proof It is encugh to prove the first statement for the function g(x) = e~ XI* An easy induction ar-
gument shows that 8%g(x) = P.(x)e~1*" where P, is a n-variable polynomial. Using the fact that for
every k, z%¢™*" — 0 as  — oo concludes the argument. An easy calculation shows that G, satisfies the
heat equation. m]

The main operation in linear image filtering is the convolution of the image with positive integrable
functions. {The prototype of such a “convolution kernel”, is the Gauss function).

Proposition 2.6 (and definition of the convolution) Let u be a function in L, and g € L'(RV).
Set (g*u)(x) = fp~ u(x —¥)g(y)dy. Then (g* u)(x) is defined for almost every x € C. The convolution
Function g « u belongs te L. and we have

Hg*ullprey < Ngliermrayllelleie- (2.6)
If in addition v is bounded, then g u is alse bounded and

Hg * wllpee (ery < Hglloregem el Lo (mvy- {2.7}
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2.2, EXISTENCE AND UNIQUENESS OF SOLUTIONS OF THE HEAT EQUATION

Proof Let us start by proving that g * u is well defined and belongs to L?® and that (2.6) holds. This is
an direct consequence of Fubini Theorem ([?]), which vields

g+ uiluer < [ ([ wx=yawlanax= [ ([ jux-viatlaniay.

Using the periodicity of u, this last integral is equal to
[ [ eialoidy = el lgllosgms:
HY JC

Relation (2.7) is an obvious consequence of the definition of g * u. m]

We shall also be led to consider the convolution of a function in L!. with an integrable function
g € L'(IRY). The next lemma gives a useful general condition on g in order that the convolution of a
function u in L. with g € L'(/R") be bounded.

Lemma 2.7 Let g € L'(R") be an integrable and locally bounded function such that for any R > 0,
gfx) = SUPyepx,ry GU¥) alse belongs to LY RN). Then there exists a constant C(g) such that for any
€ L, g*uis in LF and

llg * uilL=(c) £ ClghlullLrc)- (2.8)

Proof Weset z = (z1,...,z2n5) € (242)". The hypercubes z + € cover IRY and for every y € 2 + €, we
have |y — z| < diam{C), where

diam(C) = sup |y —z| = 2v'N.
¥, ZeC

Thus, using the 2-periodicity of u,

[{g*u)(x}] < ./w-‘ fu{x — y)g(y)idy = Z /+c hul(x — y)g(¥)idy <
’ ze(zay)y I EHC

<(f lutylidy) Y sup gty
o4 zelzmny YETHC
which implies

g *w)(0)] < ( /( utldy) [ 1685 sidy = Clo)ullzigen

B’y
&
Let us now focus on the case where the convolution kernel, like the Gauss function, belongs to 5.
Proposition 2.8 Ifu € L}, and g € 8, then gxu € C®(RY)NLE and
Igxu)= (%) +u (2.9)

for every multi-indez .
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Proof By Proposition 2.4, [|glit = [g~ lg(x)idx < co. Thus by Proposition 2.6, g * u belongs to Lt
In order to prove (2.9), we notice that it is enough to prove it for o = (1,0, ...0}. Indeed, we know by
Proposition 2.4 that 8%g is in S if g is, so that the general case for (2.9) follows from the case o = (1,0,...0}
by an obvious induction. Using the Taylor expansion formula and setting e; = (1,0,..,0},

(g u)(x + her) = (o)) = [ (a(x+ hes =) = g0~ y))uly)ay =

dg h? &g
=h ox - - —= - o
/m azl(x yiu(y)dy + 2 Jon 722 {x + 6hey — y)u(yMy,

where 0 <9 =8{y) < 1. Sinceg € S, Ig—z-i(x}t < WlTC(Tm and therefore, for [k] <1:
1

: 0%g K? Cluly)ldy .
S S tne -yl < G [ e e = o8

{We note r+ = sup(r,0).) Indeed, the last integral is finite, being the convolution of v € L}, with an
integrable function satisfying the assumptions of Lemma 2.7. So we deduce that g * u is differentiable in

Ylg*u} _ (89
ey and S5 = (5L) v ]

Proposition 2.9 Let g€ S, g > 0, [p~ g(x)dx =1 and set g = I%g(%) fort > 0.
i) If ug € LY is continuous, g = up converges uniformly to up, when ¢ = 0. In addition, we have a
mazimum principle :

inf wug(x) < g¢ * ug < sup up(x) (2.10)
xed Xel
i) If we only know wp € L}, then
[ o+ ua)0) = waldx = N » o~ alaricy 0 as ¢0.

Proof of i) We remark that
f gi{y)dy =1 (2.11}
RN

and
¥ > 0, / g:(y)dy =+ 0 ast — 0. (2.12)
YeRY, |¥|za

Using (2.11}, we have
ge * uo(x) — up(x) = ] 2 uo(x — y) - ua(x)}dy-

Now, as already mentionned, since up is continuous on the compact C and periodic, it is in fact uniformly
continuous, so that for |y| € n{e) we have |ug(x — ¥} — up{x)}] < . Using this inequality and (2.12) we
obtain

Lge + uo(x) — uo(x)| < [W Lo+ (3) (o (x — ¥) = uo(x))ldy + ]iw () (uo(x = ¥) — uo(x))dy
=n ~7

<e+ 2\|uollbmw)f g:{y)dy < 2¢ for ¢ small enough.
1¥1>n
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2.2. EXISTENCE AND UNIQUENESS OF SOLUTIONS OF THE HEAT EQUATION

Relation (2.10) immediately follows from the assumptions g; > 0, [ g, = 1.
Proof of ii) By Proposition 2.2, if u € L!(C), then we can find for every ¢ a real number n{e) such that

jc Ju(x — ¥} — u(x)ldx < & for |y| < n(e).

Thus, by Fubini Theorem again, using fRN ge(y)dy =1 and (2.12):
[ (] ) utx = ) — uidy)es <
¢ Jm~

[‘m(a) 2 fc fu(x - y) — u(x)|dx)dy + flyws)gt(y)(z fc lu(x)|dx)dy < 2

for ¢ small enough. a

We now have all tools at hand to prove the main theorem of this section.

Theorem 2.10 (Existence and Uniqueness of solutions for the heat equation)
Let ug € Lé—,. Then
i) u(t) = Gy = up satisfies, for all t > 0 and x € R™, the heat equation with initial value ug, that is

o

b-% = Au and / [aet, x) — ua(x)|dx — 0 as t — 0. (2.13)
84

In addition, u(t,x) is C® fort > 0 and x € RN it belongs for every t > 0 to LY, and is uniformly bounded

for t € [t;, +oo[ where ty is any positive real number:

sup  [u(t,x)! < C{t1)||uol|21(cy- (2.14)
Xe RN 1>,

i} Conversely, given up as above, there is a unigue solution u(t,x) of (£.13) belonging to LY for each
t > 0, bounded on [t1, +oc| for each t, > 0 and C? on |0, +oo[x R",

Proof i) By Propositions 2.4 and 2.5, Gy and its derivatives belong to S§. By Proposition 2.8, we have

Bu _ an ;
a—_\u—u*(—ét——AGt),

which is zero by Proposition 2.5. Relation (2.14) follows from Lemma 2.7 applied to w and g = Gy. It is
easily seen that C'(Gy) < C'(ty) is a bounded function for ¢ > ;.

ii) Let us now show the uniqueness. Let v and w be two solutions of the heat equation (2.13) with the same
initial datum wug € Lé, and bounded for ¢t > ¢} > 0. Thus ©v = v — w satisfies the heat equation with initial
datum up = 0 and is bounded again on each interval [, +o0of, ) > 0. Let us assume by contradiction that
u(t,x) # 0, denote by u(¢} the partial function x —» u(t,x) and set up{t,x) = (G * w{t)){(x). Then, by
Propositions 2.6 and 2.8, u, satisfies the same properties as u, is again solution of the heat equation and
we have by Lemma 2.7 the additional property that u,(¢, x) — 0 uniformly as ¢ — 0. Indeed, using the
initial value condition in (2.13},

N (8| L= oy = 1Gh * u(8)|| g o) < C(GRIul{tH| 1y = 0 as t = 0.
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Figure 2.5: Level lines and the heat equation. On the first row, we display on the left a 410x270 grey level image,
photograph of a sea bird and on the right : its levet lines for levels multiple of 12. On the second row, the heat equation, i.e.
a convelution with a gaussian, has been applied to the original image. The standard deviation of the gaussian is 4, which
means that its spatial range is comparable to a disk with radius 4. The image gets blurred by the convolution, which mixes
grey level values and removes all sharp edges. This can be appreciated on the right, where we have displayed all level lines
for levels multiple of 12. We can see how the level lines on the boundaries of the image have split into parallel level lines
which have gone away from each other. The image has become smooth, but is losing its structure.

In addition, ug(t,x) is bounded. Choosing h small enough and changing u into —u if necessary, we
can assume by Proposition 2.9 that u,(t,x) > 0 at some {t,x). We now consider the new function
u(¢,x) = e “tu,(t,x). This continuous and periodic (in x) function belongs for every t > 0 to L¥ and
tends uniformly to zero as ¢ — oo or 0. Thus, its supremum is attained at a point (¢, %p) such that tg >0
and xo € C. At (¢g,%o0), we must have %(to,xg) = () and Auc(tg,xo) = e ' Au, < 0. Since up s a
solution of the heat equation, we have

B 8
0= 6_‘1@0,,(0) = (—suf + e‘“% (t0,%o)

= —EHE(tO,XD) + e_“Auh(tU,xo) < —Eus(to,){()) < 0.

This yields a contradiction and we conclude that the solution of the heat equation is unique. ]
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Chapter 3

Applications of the heat equation to
image analysis.

3.1 Convergence of iterated smoothing filters to the heat equa-
tion

In this section, we prove roughly that the heat equation {or the convolution by a Gauss kernel at different
scales) is the asymptotic state of any iterative linear isotropic smoothing.

Definition 3.1 Let g(x) € L*(R") be a real function, which we understand as a smoothing kernel with
which we intend to convolve images. We say that g is radial if g(x) = g{|x|) only depends on the norm of
x. We say that g is pseudo-radial if it satisfies the following relations :

/ gix)dx =1 (3.1)
mny
and, for every i,j = 1,.., N, such that ¢ # j,
[ x;g{x) :f xix;g(x)dx = 0, (3.2)
Ry ny
[ o
R.\'

Notice

Exercise 3.1 Skow that if g s a rodial function, then an adequate rescaling ag{%} of g satisfies the
relations (8.1) and (8.3) and preserves the zero moment relations (8.2). Thus, there is no loss of generality
in assurning that these relations are true for g.

We consider rescalings of g,
1 X
xX) = ——g(—-), 5.4
which concentrate g and maintain (3.1) and (3.2). In the following, we note g™ = g*g=* ...+ g , the
n-times convolution of a function g. Our main concern is the hehavior of gf* as n — oo and b — 0. Let

us first see what happens with the convolution by g, as h — 0.

¥. Guichard, J-M. Morel, fmage iterative smoothing and PDE’s Nid



CHAPTER 3. APPLICATIONS OF THE HEAT EQUATION TO IMAGE ANALYSIS.

Figure 3.1:
A kerpel ¢ and its rescalings g; = El-;g(z/t). for t=2, 3, 4.

Theorem 3.2 Let g{x) € L'(IRY) be a radial or pseudo-radial function satisfying the conditions (3.1) to
{3.8). Assume further that

f lg(z)|iz)¥dz = C < +oo. (3.5)
Ry
Then for every C° function u € L3,

(gn = W)(x) - u(x) = hAu(x) + O(h¥), (3.6)

where |O(h3)(x}| € ChY maxxec |[D3u{x)]].
Proof Using (3.1), a rescaling inside the integrals and a Taylor expansion of u,

or w0 —ut = [ i Fadpute=y) -ty = [ ola)utx ~ ) - u(x)da

= [ o(2) (= h¥ Du(x).3 + ED2u(x)(z,2))dz — +h¥ / o(z) D*u(x — h}02)(z, 7, 2)dz,
RN 2 6

ny
where 6 = 8(x,z, k) belongs to [0,1]. Using the moment information (3.2-3.3} and the bound (3.5), we
obtain
l(gn + w)(x) — u(x) ~ hau(x)| < Ch% max ID*u(x)l,

where C' is defined in (3.5). O
The former theorem shows a direct relation between the convolution with a smoothing kernel and the
heat equation. This link will be completed by the next theorem : It essentially states that if we set
{Thuq) = gn * to, then iterates of Ty, ((Tw)™up}(x), tend to u(t,x), where ult,x) is solution of the heat

equation.

Theorem 3.3 Let g(x) € LY{RY) be a radia! or pseudo-rudial nonnegative function satisfying the moment
conditions (8.1 to 3.8}, (3.5) and set gn(x) = Iﬁ—g(ﬁ-) and Thu = gn * u. Then
2

((Tw) u0)(x) = ult,x) in L'(C) as n - +oo, nh = ¢, (3.7
where u(t,x) = Gy *ug € LT is the solution of the heat equation (2.13) with initial value ug,

%—1: = Au and / |u(t, x) — ug{x)|dx — 0 as t — 0.
p
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3.1. CONVERGENCE OF ITERATED SMOQTHING FILTERS TQ THE HEAT EQUATION

2.5
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Figure 3.2: Iterated linear smoothing converges towards the heat equation. In this experiment on one-dimensional functions,
it can be appreciated how fast an iterated convolution of a positive kernel converges 16 a gassian. On the left, we display
nine iterations of the convolution of the characteristic function of an interval with itself, with the adequate rescaling. On the
right, the same experiment is repeated with a by far more irregular kernel. Convergence to the gaussian is almost equally
fast. (See Theorem 3.3).

The preceding theorem means that from the asymptotic, scale independent viewpeint, ali local linear
isotropic “low pass” iterated filters are equivalent to the heat equation {and to the convolution with
Gaussian kernels with increasing width).

Proof In this proof, O(h*) denotes any function of t and x such that |G{h®)| < Ch® where C does not
depend upon x and ¢ € [t;, 2], a fixed interval of J0, +cof. Using Formula (3.6) in Theorem 3.2, we have

Thult,x) — ult,x) = gp *u(t,x) — u(t,x) = hAu(t, x) + O(h%), {3.8)

because ||D3u(t, x)|| can be bounded independently of (t,x) on the compact set [t;,ts] x C. Sinee u(t, %)

is a solution of the heat equation, we also have
w(t + h,x) — u(t,x) = hAu(t,x) + O(A?), (3.9)

and the behavior of O(h?) is again uniform on the compact set [t1,12] x C. By substracting (3.9} from
{3.8), we obtain

Thult, x) — u{t + h,x) = O(h?). (3.10)

We notice that if u € C, then Tpu € C. As a consequence, T, (O{h%)} also is an O(h®), uniformly in
t € fty, ta[,x € R™. Thus, applving T to both sides of {3.10), we obtain

(T)2u(t, x) — Thult + h,x) = O(h3). (3.11)
We can use Relation {3.10) with ¢ + h instead of ¢ and we then get
Thu(t + b, x) — ult + 2h, x) = O(h?). (3.12)
By adding (3.11} to (3.12) we obtain
T2u(t, x) — ult + 2k, x) = 20(h}). (3.13)
We can iterate this process and get

TP ult, x) — u{t + nh, x) = nO{AT), (3.14)

F. Guichard, J-M. Morel, fmage sterative smoothing and PDE’s i1
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CHAPTER 3. APPLICATIONS OF THE HEAT EQUATION TO IMAGE ANALYSIS.

provided ¢; <t + nh < t,. Letting n — oo and setting h = T yields
T
Tru(t,x) - u(t +7,%) = O((-)}), (3.15)

provided t; <t + T < t». This would end the proof, could we take t = ¢, = 0. Now, we can’t, but we can
have it very small. Fix £ > 0 and ¢; small enough to have

lutt) — ollaiey = | fu(ts, ) = oGl < (3.16)
By Proposition 2.6, we have for every u € LL
llgn * uliziiey < llgalles () lluller ey
Since [ gn = 1, we deduce from (3.16) and this relation applied to u = u(t;) — ug that
[1Tults, ) — TRuollprey <& (3.17)
By integrating Relation {3.153) on C with t = t,, we also have
TRty ) —ults + 1, )My = O((%)%) <& (3.18)
for n large enough. Combining (3.17) and (3.18) yields
[iToue — u{ty + 7|y <€

for t; small enough and hn =T, =

3.2 Directional diffusions

The aim of this section is to show how to approximate directional diffusions by the use of the mean value.
We consider a C? function  from RY into R, and normalized vector z of RV,
We define T2 the operator which computes the mean value on a straith segrent oriented as =.

TFug(x) = i/ ug{x + hz)dh
2k frel-1,1)

Using the same technique than the ones used in the preceding chapter, it is easy to prove the following
property:

Proposition 3.4
1.
lim TPug(x) — ug{x) = —=h?Du(z,z) + o(h”)
h—0 12

As consequence, the iteration of the operator TZ yields the diffusion in the direction of z.

Interesting point is to tune the vector z adequatly at each point depending on the values of the function
around. The operator is then no more linear but same asymptotic analysis applied. Using this, we can
approximate different anisotropic diffusion term:
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3.3, EDGE DETECTION AND LINEAR SCALE SPACE

Diffusion in the direction of the gradient We choose z(x) = Du(x)/|Du(x)|, so that

1

u T DuflDu)
WD (Du, Du) = 111_% T, u

Diffusion in one direction orthegonal to the gradient We choose z{x) so that {Du(x)z(x}} = 0.

Exercise 3.2 We consider @ C? function u, from R? into IR. Prove that 3C > 0,

D?u(Du, Dud(x) = C lim l( min  u(y) u(y))

+ max
h—=0 2 'YeB(X,h) YeB{X.M

Prove also, denoting by £ a vector orthogonal to Du and with norm I, that D?u(€, £)(x) can be asymptoticaly
obtained by the mean value minus the mean of the min and the max values on a disk.

3.3 Edge detection and linear scale space

3.3.1 The edge detection doctrine

One of the uses of the linear theory is, in dimension 2, “edge detection”. The assumption of the edge
detection doctrine is that relevant information in an image is contained in the trace left in the image by
the apparent contours of physical objects which have been photographed. If an object with some constant
color, say, black, is photographed on a bright background, then it is expected that its silhouette in the
image is a closed curve across which the light intensity ug(x) varies strongly. Let us call this curve an
“edge”. The local detection of an edge can a priori be done by computing the gradient Dug(x). This
gradient should have a large intensity |Dug(x)| and a direction lwg;‘u—g% which indicates the direction
normal to the silhouette curve. It therefore locks sound to simply compute the gradient of ue and choose
the points where this gradient is large. This conclusion is a bit irrealistic for two reasons.
a) The points where the gradient is larger than a given threshold are likely to form regions, and not curves.
b} Many points may have a large gradient because of tiny oscillations of the image, not related to the
real objects. In fact, the digital images being always noisy , there is no reason to assume the existence or
computability of any gradient at all.
Objection b) is solved by defining a smoothing process : we associate with the image a smoothed version
u(t), depending of course upon a scale parameter ¢ measuring the amount of smoothing. In the classical
linear doctrine, this smoothing is made by convolving the image with gaussians of increasing widths.
Objection a) is solved by defining edge points not as points where the gradient is large only, but as points
where some maximality property of the gradient is observed. Let us take an example in dimension one. Let
u(x) be a (2 real function on IR and consider points where |u'(z)| is maximal. At these points, the second
derivative u"(x) changes sign because extrema of the gradient correspond to a change from concave to
convex or conversely. Thus we can look for the “edge points” of the smooth signal among the peints where
u"{z) crosses zero. Generalizing this in dimension 2 leads to the Hildreth-Marr edge detection theory, or
alternatively to the Canny edge detection theory. The only difference is that Hildreth and Marr replace,
in dimension 2, u"(z) by Au(x) = %‘;(x) + %’;(x), which is the only isotropic linear differential operator
of order 2 generalizing u”.

Canny ([63]) instead, gives up the linearity and defines edge points as edges where the gradient is
maximal in the direction of gradient. In other terms, an edge point satisfies g'{0) == 0, where g(¢) =
|[Dul(x + t;B—t:I) This implies Dgu(ﬁ)’%, IBZ[) =0
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Figure 3.3: Three-dimensional representation of the laplacian of the Gauss kernel. This convolution kernel, actually 2
wavelet, is used to estimate the laplacian of the image at different scales of linear smocthing. (See Proposition 2.8, and
Section 3.3).

Exercise 3.3 Compute g'{0) and check the mentionned implication.

So the algorithms of Hildreth-Marr and Canny are as follows.

Edge detection algorithm 1 (Hildreth-Marr)

s Convolve ug with gaussians G, of increasing widths. We obtain a multiscale image u(t,x).

e At each scale ¢ compute all points where Du # 0 and Au changes sign. Such points are called “zero-
crossings of the Laplacian”, or shortly ”zero-crossings”.

+ (Optional) Eliminate the zero-crossings at which the gradient is small.

In practice, the found “edges” are displayed for a series of dyadic scales, t = 2, 4, 8, 16, etc.

Edge detection algorithm 2 (Canny’s edge detector) e Here again, convolve up with gaussians
G of increasing widths. We obtain a multiscale image u{t, x}.

* At each scale ¢, find all points x where Du(x) # 0 and Dzu(ﬁ, ]%[)(x) crosses zero. At such points,
the function ¢ — u(x + t]%[) changes, when ¢ crosses 0, from concave to convex or conversely.

e At each scale £ : fix a threshold #(¢) and retain as “edge points at scale t” only the points which satisfy
the preceding conditions and in addition |Du(x)| > 8(2).

3.3.2 Discussion and objections

The Canny edge detector is generally preferred for its accuracy to the Marr-Hildreth theory. Their use and
characteristics are, however, essentially the same. There are many variants and tentative improvements to
the edge detection theory. Now, the discussion which follows adapts easily to the variants. The first thing
to be noticed is that, thanks to Theorem 2.10 in the former section, we know that u(¢,x) = Gy * up is a
C* function provided g is bounded. Thus we can indeed compute second order differential operators of
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3.3. EDGE DETECTION AND LINEAR SCALE SPACE

Figure 3.4: “Zero-crossings of the laplacian” at different scales. In this display, we illustrate the original Scale Space theory,
as it is for instance developed in the founding book by David Marr, Vision. In order to extract more global structure, the
image is convolved with gaussians whose variances are powers of 2. One computes the laplacian of the resulting smooth images
and displays the lines aleng which this laplacian changes sign : the so called “zero-crossings of the faplacian”. According to
David Marr, those zero-crossings represent the “raw primal sketch” of the image, that is, the information on which further
vision algorithms should be based.

Above : from left to right, we display the results of the smoothing, and the associated gaussian kernels, of scales 1,2 and 4
respectively. Below : we display the zero-crossings of the laplacian, and the corresponding kernels, i.e. the laplacians of the
gaussians used above.

Figure 3.5: Zero crossings of the laplacian of a synthetic image. From left to right : the original image, the image linearly
smoothed by a convolution with a Gauss function, the sign of the laplacian of the filtered image {the gray color corresponds to
values close to 0, black to clearcut negative values, white to clearcut positive values) and the zero-crossings of the Laplacian.
This experiment clearly shows the drawbacks of the Laplacian as edge detector.

u(t,x) for t > 0. In the case of linear operators like the Laplacian or the gradient, the task is facilitated by
the formula proved in Proposition 2.8. We have Au(¢, x) = A(G; * ug) = (AG:) * ug, where (in dimension
2)
x| — 4t _xe2
.‘_\le(x} = WE a
In the same way, the Canny edge detector makes sense because u is €™ at all points where Du(x) # 0.

Such points cannot be edge points.
Thus, we can doubtless compute edge points thanks to those filters. Let us now list the drawbacks of
such methods. They are in fact well explained in the Secale Space theory developed by Witkin and Koen-

derink.

* The Scale Space theory. A [first severe problem is the addition of an extra dimension : the s-
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Figure 3.6: Canny's edge detector. These images illustrate the Canny edge detector, which attempts to find boundaries in
an image. The Canny filter involves the following operations :

. Convolution of the image by a gaussian kernel (from top to bottom, scale = 0.1, 0.5, 1.0).

. Estimation of D?u{Du, Du) (we use here a finite difference scheme).

. Convoluticn of P?u(Du, Du) with a small Gauss kernel (sigma = 0.001).

. Thresholding of the gradient of the result of Step 1.

. Zero-crossings of the result of Step 3, only displayed when the threshold of Step 4 is achieved.

[T e

Left Column : result of the Canny filter without the threshold on the gradient, {Step 4 removed)

Middle column : result with a visually  optimal” scale and an image depending threshold. (from top to bottom : 15, 0.5,
0.6)

Right column : result with a fixed gradient threshold equal to 0.5.

Notice that this edge detection ”theory” depends upon not less than three parameters which have to be fixed by the user.
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3.3, EDGE DETECTION AND LINEAR SCALE SPACE

Figure 3.7: Violation of the inclusion by the linear scale-space. The linear scale-space does not maintain the inclusion
between objects. Top-left: an image that contains a black disk enclosed by a white disk. At a certain scale, the black and
white circles mix together (top-right). The level lines (middle) show that the inclusion is no longer preserved. Bottom :
three-dimensional representation of both images, where the vertical coordinate corresponds to the pray-level. For the shape
inclusion principle, see Chapter 22.

cale ¢ in computations and image understanding. We get no absolute definition of edges. We only can
talk about “edges at a certain scale”. An answer to this problem would be to try to track the edges
across scales. Indeed, as is noticeable in experiments, the “main edges” resist a convolution with a wide
fitter, but loose much of their spatial accuracy. On the opposite side, if one makes a sharp low filtering,
with a gaussian with small variance, these edges keep their correct location. Now, the “main” edges are
then lost in a crowd of “spurious” edges due to noise, texture, etc... The “scale space” theory of Witkin
[410] proposes therefore to identify the main edges at a low scale, and then to “follow them backward” by
making the scale decrease again. This method could in theory give the exact location of all “main edges”.
However, its implementation is rather heavy from the computational viewpoint and unstable, because of
the following-up of edges across scales and the multiple thresholdings involved in the edge detection at

each scale.

The tracking of edges across scales excludes any thresholding of the gradient. Indeed, such a thresh-
olding may remove edges at certain scales and not at other ones. So one should trace across scales all
“zero-crossings”, without consideration to their [ikeliness to be edges or not. This makes the edge matching

across scales very difficult : indeed, the experimental sparseness of zero-crossings associated with sharp
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edges is no more true for zero-crossings at large. Small fluctuations of the image may generate “spurious”
zero-crossing edges. The same is equally true for Canny's detector, as is again quite obvious in experi-
ments.

In conclusion, the “edge detection theory” is more an attempt than an established theory. After more than
30 years of existence, it has also become clear that no robust technology can be based on it. Since the
edge detection devices depend upon multiple thresholdings on the gradient, followed by “filling the holes”
algorithms, there can be no scientific agreement on the identity of “edge points” in a given image.

Contrast invariance

As we shall see in the next chapters, the assumption of contrast invariance for image operators will solve
most of the technical problems associated with linear operators. We say that an image operator u - Tu

is contrast invariant if it commutes with all increasing functions g, i.e.,
g(Tu) = T(g(u)) (3.19)

In image processing, most images are known up to a contrast change because we ignore both the lightning
conditions and the nonlinear response of the sensors. The commutation relation (3.19) ensures that the
filtered image Tw = g~ (T{g{u))) does not depend upon g. Convolutions are not contrast invariant, ie.

we have in general
g(k *u) # k x g(u).

Exercise 3.4 Construct two simple functions v and g such that the above commutation indeed fails.

In the same way, the operator Tt : up — 4(f) associated with the heat equation s not contrast invariant :
one has o 5

g{u)) u

rat 9'(”)5
and

Alg(u)) = ¢'(w)Bu + g (w)| Dul?

if g is C2. Thus g(u) is not necessarily a solution of the heat equation if u is. (See Figure 20.5).

Figure 3.8: The heat equation creates structure. This experiment shows that the linear scale-space can create structure, i.e.
increase the complexity of the image. On the left : original synthetic image, three grey levels, two black regional minima, cne
grey regional maximum, one white regional maximum. Middle : result when applying the heat equation : the grey regional
minimum is split into three regional minima. Compare with the application of a contrast invariant local filter, the iterated
rnedian filter introduced in Chapter 0.
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3.4. DYNAMIC SHAPE

3.4 Dynamic Shape

In [221}, Koenderink and Van Dorn define a “shape” in R, a closed subset X of RV, They propose
to smooth the shape by applying directly the heat equation % — Au = 0 to the characteristic function
1x of X. (Weset 1x(x) =1if x € X, = 0 otherwise). Of course, the solution Gy * lx is no more a
characteristic function. The authors define the evolved shape at scale ¢ by

X = {xlu(t’x) z

B3

}

The value % is chosen by an obvious requirement. Let X = {(z,y} € JH?,x > 0}, then we ask that
X ={G+X > A =X

which is only true if A = §.

& &
C K- N

Figure 3.9: Nonlocal behaviour of shapes with the Dynamic Shape method. This image displays the smoothing of two
irregular shapes by the Dynamic Shape method (Koenderink and Van Dorn). Top left : initial image, made of two irregular
shapes. Top to bottom and left to right: smoothing with increasing scales. Notice how, the convolution being made with
gaussians of increasing variance, the shapes merge more and more. We do not have a separate analyis of both shapes but a
“joint analysis” of both. This joint analysis depends of course a lot upon the initial distance between both shapes.

Let us mention some drawbacks of this shape evolution.

The non-local interactions: Take two close disks D{xq,1) and D(x1, 1), with {xq — x;| = 1 + e. Then the
evolution of the union of both disks, considered as a single shape, is quite different from the evolution

of each disk separately, (see figures 3.9 and 3.10).

Creation of singularities. As another consequence, singularities of the orientation and curvature of the
boundary of the shape may appear with the evolution. Thus, the smoothing creates new salient

features!

F. Guichard, J-M. Morel, Image tterative smoothing and PDE’s 18
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CHAPTER 3. APPLICATIONS OF THE HEAT EQUATION TO IMAGE ANALYSIS.

Figure 3.10: Non local interactions in the Dynamic Shape method. Two close disks (top-left) interact as scale grows and
create a qualitatively different and new shape. The change of topology, at the scale where both shapes merge into one, entails
the appearance of a singularity (a cusp) on the shape(s) boundaries. Top right : Dynamic Shape evolution at the small
critical scale where the cusp appears. Bottom : further evolution when scale grows : creation of a new global shape.

3.5 Curve evolution by the heat equation.

Let. us go back to shapes whose boundary can be described by a finite set of rectifiable Jordan curves. We
call rectifiable Jordan curve a simple closed curve of the plane, i.e. a curve without self-crossings and with
finite length. We also assume that these Jordan curves do not meet, so that the Jordan curve structure is
uniquely defined. Let us then focus on the smoothing of a single Jordan eurve, with finite length.

We parameterize the curve by length

s € [0, L] = x{3),

where s is the curve length between x{0) and x(s). We have x(s) = (z{s),y(s)) € R®. A first obvious
idea in order to smooth the curve is to convolve z(s) and y(s) by a smoothing kernel. The kernel must be
as local as possible in order to ensure the analysis of local curve features. Thus, we are naturally led to
iterate a smoothing kernel My, with h — 0. By Theorem 3.3, we know that all such processes boil down
to the application of the heat equation.

fx x
E(t,s) = E)}?(t’s)’ s€[0,L], t€l0,+oal. {3.20)
x(0, s} = xq(s)
Here, we must notice two very important facts which advocate against the method.

1. When ¢ > 0, s is no more a length parameter of the evolved curve x(t).

2. Maximum principle holds for z(¢, s) and y(2,s) as scalar solutions of the heat equation. In addition,
x(t,s) and y(t, 3) are, as proved in chapter 2, C™ functions of (¢,s), for t > 0. Now, this does not
imply that the curve x(t,s) behaves smoothly! In fact, it can easily be seen {see Figure 3.5)
that a smooth curve may generate by this evolution self-crossings which by further smoathing entail

the appearance of singularities,

Exercise 3.5 Construct a C* map : o € [0,1] = x(0) € R? such that the curve {x{c), o € [0,1}} is a
square. Deduce that a curve can have o C™ parameterization without being smooth.
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Figure 3.11: Curve evolution by the heat equation. The coordinates of the curves are parameterized by the arc length,
and then smoothed as real functions of the length, by applying to them the heat equation. From A to D, the coordinates are
smoothed with an increasing scale. Each coordinate function therefore is €' ; the evolving curve can, all the same, generate
self-crossings {C) or singularities (D).

3.6 How to restore locality and causality ?

3.6.1 Localization of the “Dynamic Shape” method.

The main objective of this treatise is to redefine the preceding smoothing processes in such a way that
they are local and do not create new singularities. This can be done, as we shall prove further on, by

alternatinga small scale linear convolution with a natural normalization process.

In the case of the Dynamic Shape analysis, we define an alternate Dynamic Shape algorithm in the
following way.
Algorithm. Iterated local Dynamic Shape algorithm, or Bence- Merriman-Osher algorithm.

1. Convolve the initial shape 1y, with Gy, k small.

2. Define X; = {x, G * Lx,(x} > 1}.

3. Set Xy = X and go back to 1.

In fact the Dynamic Shape methed is a median filter (see Chapter 10) and the preceding Bence-
Merriman-Osher algorithm an iterated median filter. We can anticipate that the application of an alternate
median filter yields, as b — @ and then number of iterations tends to infinity, a “motion by mean curvature”
which will be one of the main objects of the Chapters 11 and following.
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Figure 3.12: The Bence-Merriman-Osher shape smoothing method is a localized and iterated version of the Dynamic Shape
method. A convolution of the binary image with smatl-sized gaussians is alternated with mid-level thresholding. It uses {top,
left) as initial data the same shapes as in Figure 3.4, From top to bottom and left to right: smoothing with increasing scales.
Notice that the shapes keep separate. In fact, their is no interaction between their evolutions. Each one evolves as it would
do alone.

3.6.2 Renormalized heat equation for curves.

In [237] Mackworth-Mokhtarian noticed the loss of causality of the heat equations applied to curves. Their
solution, at least formally, looks like the solution given to the nonlocality of the Dynamic Shape method.
Instead of applying the heat equation for long times (or, equivalently, to convolve the curve x(s) with
Gaussians G,{s) of arbitrary width, they do the following. Algorithm: Renormalized heat equation

for curves.

1. Convolve the initial curve xy(sg), parameterized by its length parameter so € [0, Lg}, with a Gaussian

Gy i his small.

2. Let L, be the length of the curve x, obtained after n iterations and s, € [0, Ly] its arc length
parameter. Set, for n > 1, Zp41(sn} = (Gh * X,)}{85). Then reparameterize Zny1(8n) by its arc
length parameter 8,41 € [0, Lny1], which yields a curve xp41(sn41)-

3. Iterate.

Theorem 3.5 Let xo(sq) be a C? curve parameterized by length. When h tends to zero, there is a constant

¢ such that \
{Gr * x0)(s0) — %o(s0) = Ch?a ng
asg

+ o(h?) (3.21)

Proof Direct application of Theorem 3.2. o

Exercise 3.6 Compute the constant ¢ of Theorem 2.5.

Waorking version subject to errors, only for personal use. No diffusion authorized. All right reserved. (Version: 15/07,/2000)



3.6, HOW TO RESTORE LOCALITY AND CAUSALITY ¢

We notice that (3.21) is consistent with the following evolution equation(as h — zero):

ox_ O _ Curv(x)(s (3.22)
B s s '

Now, this equation is not the heat equation (3.20). Indeed, in (3.22), we assume that s denotes the length
parameter of evolved curve x(¢) at time ¢ {and not the initial parameterization). We shall consider this

last, nonlinear, curve evolution in chapter 6.

N

Figure 3.13: Curve evolution by the “ renormalized heat equation” (Mackworth-Mokhtarian). At each smoothing step, the
coordinates of the curves are reparameterized by the arc length of the smoothed curve. From A to D, the curve is smoothed
with an increasing scale. Note that, in contrast with the linear heat equation (Figure 3.5), the evolving curve shows no
singularities and does not cross itself.
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CHAPTER 3. APPLICATIONS OF THE HEAT EQUATION TO IMAGE ANALYSIS.

Figure 3.14: Muttiscale histogram modes by using the linear scale space (heat equation). Histograms are strongly oscillatory
functions, presenting many peaks due to fat image regions and quantization effects. We call modesof the histogram all the
intervals whose endpoints are two successive local minima. We call central point of the mode the unique maximal point
between them. In order to get a more and more global analysis of the histogram, the heat equation may be applied. We
then talk about "modes at scale t*. On the left, we display the original histogram (scale 0) and the histogram ab scale
100, corresponding to a convolution with the gaussian of standard deviation 50. Only three modes are left. On the right,
we display the so-called "fingerprints" of the histogram, a scale-space representation where scale increases downwards. The
white curves display the minima of the smoothed histogram and the black curves the maxima of the histogram. By a classical
property of the heat equation, maxima and minima collapse by pairs, thus yielding the observed "fingerprint” organization
of multiscale modes : each mode at scale ¢ can be followed upwards to the fine scales and contains more and more submodes.
Modes are therefore organized in a tree. No new mode is ever created when the scale increases. This is an instance where
the Witkin linear scale space works nicely !
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Chapter 4

Contrast invariant classes of
functions and their level sets

Let u(x) a real function, which we interpret agein as an image. Define the level set of u with level A by
Au = {x,u(x} > A}, for A € R. {We denote by IR the set IRU {00, +00}). Obviously,

X ou=RY, X ou=4§.

The level sets of o function have two striking properties. The first one is that they give a complete account
of the function. Indeed, we can reconstruct u from its level sets Xyu by the formula

u(x) = sup{A, x € Yhu}.
Egzercise 4.1 Show this last formula, which is true for any real function u.

The second one is their global inveriance by contrast change. We say that fwo functions u and v have
globally the same level sets if for every A there is p such that X,v = Xyu, and conversely. If we apply to u
a contrast change understood as a continuous tncreasing function g, then it is easily checked that v = g{u)

and u have globally the same level sets. (Every level set of u is a level set of v and conversely/.
Ezercise 4.2 Check this fact, for any real valued fonction u and any increasing continuous function g.

We shall investigate more genergl contrast changes, which are nondecreasing, but neither continuous nor
increasing. This is justified by the technology where such contrast changes are used systematically for imuge
digitization. In that cese, we shall see that the level sets of g{u) are either level sets of u or strict level
sets of u, that is, sets of the form {x,u(x) > \}. We shall prove a converse statement . assume that a
function v has the same level sets as another function u in the preceding sense. Then v is obtained from

u by a contrust change v = g(u).

4.1 From an image to its level sets, and conversely.

In the following proposition, we give structure properties of the family of level sets X\u of a function u.

Conversely, given a family of sets (X))1c g satisfving the structure properties, we construct a function



CHAPTER. 4. CONTRAST INVARIANT CLASSES OF FUNCTIONS AND THEIR LEVEL SETS

such that Xyu = X, for every A. This explains a main technique of mathematical morphology, consisting
in handling directly the level sets of a function and ensuring reconstruction ([257]).
In the whole book, we take the conventions on infima and suprema. of subsets of TR that

inf(#) = +o0, sup(d) = —occ.

. Proposition 4.1 Ifu: RY = R is a function and X, = Xsu denote its level sets, then
- (4-14) XaC X, ifA>p Xow=R"Y.

(4.1.48) X\ = Nuer Xy for every A > —oo.
Conversely, if (X \)xem is o family of subsets of RY satisfying (4.1i) and (§.1.i), then the function with
values in IR,

(4. 1.4i1) u(x) = sup{p,x € X} satisfies Xyu = Xy for every A € R

i
Fl
1
——
Figure 4.1: Level sets of a digital image. In this figure, we first show a grey level image, which has a range of grey levels
4‘ from 0 to 255, and then eight level sets, in decreasing order from 225 to 50, the grey scale step being 25, Notice how essential
features of the shapes are contained in the boundaries of level sets, the level lines. Each level set (in gray) is contained in the
' next, (Formula 4.1.i).
|
* e - - - -
" Proof of Proposition 4.1  Relation {4.1.i) is obvious and so is Relation {4.1.ii), since u{x) > X if and
! only if u(x) > p for every p < A, Conversely, we define a function u from the set of sets (Xx)aem by
|
“ u(x) =sup{d € R, x € X,} (4.1)
Working version subject to errors, only for personal use. No diffusion authorized. All right reserved. {Version: 13/07/2000)
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4.1. FROM AN IMAGE TO IT5 LEVEL SETS, AND CONVERSELY.

Figure 4.2: A simple synthetic image and alt of its level-sets (in gray) with decreasing levels from top to bottom and from
left to right.

Let us prove that for every A € IR,
X,\u = XA (42)

Indeed, if x belongs to X, then from (4.1) we deduce that u{x) > A, so that x belongs to X, u.
Thus, X, C Xyu. Conversely, if x belongs to Xyu with A > —oo, then u(x) > A and therefore
sup{p.x € X.} = A. Thus for any ¢ < A, there exists p' such that A > ' > pand x € X,. By
(4.1.1) we then have x € X,,. Thus, x belongs to X, for every p < A. From (4.1.ii), we conclude that x
belongs to Xx. The case A = —co is easily checked : Since X_,, =~ R", we obviously have X_..u C X_...
O

Remark 4.2 Notice ihat if u(x) < oo for cvery x, then Xou = 0. Conversely, if Xoo = 9, the recon-
structed function u from the X, satisfies u(x) < +oo for every x. In the same way, u(x) > —oo for every
x if and only if

U x5 =m"

A>—oo

Exercise 4.3 Show that if Xy = BY for A < Ay, then uw > Ay and if X5 =0 for A > Xg, then u < Ag.

Proposition 4.3 Let u(x) be a real function and Xyu = {x, u(x) > A} its level sets for A € R U {+00}.

Fpa /A then Xyu =[], u, (4.3)
{x, u(x) > A} = U Xy {4.4)
a0
Proof Relation (4.4) follows from the obvious equivalence u(x) > A & (Fu > A, u(x) > p). 0
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CHAPTER 4. CONTRAST INVARIANT CLASSES OF FUNCTIONS AND THEIR LEVEL SETS

Figure 4.3: Image reconstruction from its level sets. Illustration of Proposition 4.1. We reconstruct an image from its level
sets. We used top-left : all level sets, top-right : all level sets whose grey level is a multiple of 8, bottom-left : multiple of 16
and bottom-right : multiple of 32, Notice the relative stability of the image shape content under these drastic quantizations
of the grey levels.

4.1.1 Functions and level sets defined almost everywhere

Let us give a statement simpler than Proposition 4.1, provided we consider functions and sets defined
almost everywhere. We say that a set X is contained in a set ¥ almost everywhere if meas{X \Y) =0,
where meas denotes the usual Lebesgue measure in JR (length in dimension 1, area in dimension 2, volume
in dimension 3...). We say that X = ¥ almost everywhere if X CY and Y C X almost everywhere. We
say that two functions u and v are almost everywhere equal if meas({x, u(x) # v(x)}) = 0. More generally,
we say that a property P(1), A € RY, is true “ almost everywhere” or “for almost every A” if it is true
for every A, with the exception of a set with zero N-dimensional Lebesgue measure.

Lemma 4.4 Let (X3)acm be a nonincreasing family of sets, i.e. Xy C X, if X > p. Then, for almost
every A in IR,
Xy = ﬂ Xy, elmost everywhere (4.5)
p<A

Proof Let us consider an integrable strictly positive continuous function A € LYRN). Set m(X) =
J h(x)dx. We notice that m(X) = 0 if and only if meas(X) = 0. The function A = m(X,) is nonin-
creasing. Thus, it has a countable set of jumps. Since every countable set has zero Lebesgue measure, we
deduce that for almost every A,

i X, = .

fim m(X,.) = m(Xa)

As a consequence, for those X's, m([, ., X, \ X1} = 0, which implies (4.5).

Exercise 4.4 Show the property used in the former proof : if h is a positive continuous integrable function
on R and if we set m{X) = [p~ h(x)dX, then for every measurable set X, m(X) = 0 if and only if
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4.2, CONTRAST CHANGES AND LEVEL SETS.

meas{X) = 0.

Corollary 4.5 Let (X)), 5 o family of subsets of R™ such that X_o, = BY, X, C X,, for A > p. Then
the function u defined by
u(x) = sup{A, x € X,)}

satisfies for almost every A\, X, = X\u almost everywhere. This function has values in .
Proof We proceed as in the proof of Proposition 4.1. We have
Ayu = {x,sup{u,x € -X;.l} = A}

Now, if x € X,, we have sup{p,x € X,} > A which implies x € Xyu. Thus, X5 C Xyu everywhere.
Conversely, let A be chosen such that X, = N <X, almost everywhere, which by Lemma 4.4 is true
for almost every A € JR. Then if x € X)u, we have by definition of u, x € X, for every u < A. Thus
X € [, cx Xu- We conclude that Xyu C (i< X and therefore Xyu C Xy almost everywhere. a
We end this subsection with a last useful lemma ensuring that if we know almost everywhere the level sets
of a function for almost all levels, then the function itself can he retrieved, up to a set with measure zero.

Lemma 4.6 Let v be a function and (Y, ) em be a family of sets such that
Xov =Yy, ae in A ae inx,

Then v(z) = sup{A, x€Yy,} ae inx.

Proof let NV be the negligible subset of & such that A u = ¥, almost everywhere and for all A € R\ N.
We choose A C R\ ¥, a countable, dense subset of JR. We then still have

v(x) = sup{) € A, u{x) € X,v}.

Let now Ny = (Xyu\ Ya) b (Ya \ Aau) for A € A and M = |J,., Na. We have meas(M) = 0 and, for
x e R\ M, v(x)=sup{A€ A, xe Xhv, j=sup{A€A, x€ Y.}
0

Exercise 4.5 Construct a simple example of family X, C IR2, A € IR for which u attains the values +oo

and —co on subsets of IR with positive measure.

4.2 Contrast changes and level sets.

Definition 4.7 We call contrast chenge any nondecreasing function g : IR — R. We also consider its
naturel extension from IR into JR obtained by setting

g{+oo) = supg, g(—oo}=infg.
F.a I

Without risk of confusion, we systematically adopt this extension.
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CHAPTER 4. CONTRAST INVARIANT CLASSES OF FUNCTIONS AND THEIR LEVEL SETS
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Figure 4.4: Histogram of an image : for each i € {0, I, ..., 255}, we display (above, right) the function h{i) = Card{x,u(x) =
i}. The function below is the repartition function of », g(z) = Card{x,n(x) £ i}, that is, a primitive of h. It gives ar indication
on the overall contrast of the image and on the contrast change imposed by the sensor. The inverse function g~! can be used
as inverse contrast change, in order to restore an image g~ () with flat histogram. On the left column, original image and,
below, the result of this "histogram equalization”.

The next lemma defines a pseudoinverse gt~ to any nondecreasing function g.
Lemma 4.8 Let g : IR — T be a real nondecreasing function and set for every A € R,
g7 () =inf{r, ¢(r) 2 A},

Then
i# A< gl (2), then g(s) > A & s 2 g7V (M) (4.6)

i A > (g™, then g(s) > A s > gl (M), 4.7

Proof Assume first that A < g(gt="(\)}). If g(s) > A, then s > g{="(A) by the definition of g(~*/(A).
Conversely, if s > gt=1 (1), we obtain

g(s) > g(g"" " (A)) > X and therefore g{s) > A

This yields (4.6).

Assume now that A > g(gl=U(A)). Then g(s) > X implies g(s) > g(g'~"'(A)). Thus, g being nonde-
creasing, s > g'~!(A). Conversely, assume that s > g'~')(3). Then there exists by definition of gi—1
some r < g such that g(r) > A and therefore g(s) > g{r} = A. O

Exercise 4.6 Compute g1 for the following functions :
* g(s} = max{0, s)
e g(s) =1 if s >0, s otherwise.
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{.2. CONTRAST CHANGES AND LEVEI SETS.

Figure 4.5: Contrast changes, and an equivalence class of images. A grey level image with different contrasts. The three
displayed images have exactly the same level sets and level lines, but are associated with three different scales of grey levels.
The graphs on the right are the graphs of the functions u —+ g{u) which have been applied to the initial grey levels. The first
one is convex and enhances the brighter parts of the image. The second one is the identity, leaving thus the image unaltered.
The third one is concave and enhances the darker parts of the image. When we dispose of a digital image, we spontaneously
arrange the constrast in order to see better such or such shape information. Thus, from the image analysis viewpoint, the
image data should be considered as an equivalence class under all possible contrast changes.

The next thecrem explains in which sense level sets are conserved by a nondecreasing contrast change g.

Theorem 4.9 Let g be a real nondecreasing funetion and u(x) a real function defined on RY . Then every
level set of g(u), A, (g(u)), satisfies one of the following properties

Jp, Aalg(w)) = {x,ulx) = g7 (A)} = Ao v, (4.8)
s, Xalglu)) = {x,u(x) > g 1{N)}. {4.9)
Proof Following Lemma 4.8, we have for each A the alternative (4.6-4.7), that is
(9(s) 2 A& s> g7 or (g(s) 2 x e (s> ¢V V).
This vields the alternative

Xalglu)) = {x, glulx)) > A} = {x,ulx) 2 g7V} = Ay,
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or
Aalg(w)) = {x,g(u(x)) 2 A} = {x,u(x) > g " (N)}

Exercise 4.7 Let g : R — IR be a nondecreasing function and u : RN = R a real function. Show that

YA€ R, Ve > 0, A, such that Xx(g(u)) O Xuu and meas(Xy{g{u)}\ Auu) <e.

Remark 4.10 Let us give a very simple example of functions u et g where both cases (4.8) et (4.9) occur.
Let us set for x € R, u(z) = z and g{z) = z if x <0, g(z) = = + 1 if 2 > 0. Then the level set &1 (g{u))
is not a level set of « but we have

A1 (g(w)) =10, +ool= {x,u{x) > 0}.
Exercise 4.8 Compute in that case all level sets of u and g{u) and compare them.
Let us state a converse statement to Theorem 4.9 : it states roughly that if the level sets of v are level

sets of u, then v = g(u)} for some contrast change.

i ga

Figure 4.6: The two images {lefi) have the same set of level sets. The contrast change function that makes the upper
image become the lower image is displayed on the right. It corresponds to one of the possible g functions whose existence is
stated in Corollary 4.12. The function g may be locally constant on intervals where the histogram of the upper image is D
(see top-middle graph). Indeed, on such grey level intervals, the level-sets are sieady.

Wi
&

Theorem 4.11 Let u and v be two real functions on IRY such that the following alternative holds for
every u € R :
3, Xv = Xu, or {4.10)

Working version subject to errors, only for personal use. No diffusion authorized. All right reserved. (Version: 15/07/2000)



4.2, CONTRAST CHANGES AND LEVEL SETS.

3A, A, = {x,u(x) > A} (4.11)

Then, there exzists a real nondecreasing function g : R — IR such that v = g(u). In addition, g can be
defined by the simple formula

9(A) = sup{p, X,v D Hru). (4.12)

Proof
Step 1. We first show that »(x) > g(u(x)). By applying {4.1.ii) with A replaced by g(A}, we see that the
“sup” in the definition of g, (4.12) is in fact a “max”, so that

Ayv D Ay (4.13)
Let us apply Relation (4.13) with A = u(x). We obtain
Aguixn? D Xyt 3 %
and therefore v(x) > g(u{x)).

Step 2. Let us now show that »(x) < g{u(x)}. We apply the assumption (4.10-4.11) to g = v{x) and
call A(x) the corresponding value of X. Thus

Xv(x)v = A:’Mx)u, or (414)

Ayt = {1, u(x) > A(x)}. {4.15)
Assume first that (4.14) holds. Since Ayxyv 3 x, we deduce from (4.14) that Xyxyu 2 x and therefore

w(x) > A{x). Thus

Auxyv = Aoy O Aygyu,

which, by definition of g, yields v(x) < g({u(x}).

Assume now that {4.15) holds. Since X xv = {x,u{x) > AMx)} = U.\>,\(x) Au and x € Ayx)v, we
deduce the existence of A > A{x) such that x € Xyu and therefore u(x) > A. Thus

Moot 2 Aau D Ay,

which, again hy definition of g, implies that v(x) < g{u(x)). 0

We conclude this section with a simple to remember statement : il all level sets of v are level sets of of

u, then v = g(u) for some g. The precise statement is

Corotlary 4.12 If v and u are fwo real functions such that all level sets of v are level sets of u, then there

is a nondecrensing function g I — I such that v = g(u). An instanee of such a function ¢ is

g(A} = sup{u, X, v > Yiul {4.16)
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CHAPTER 4. CONTRAST INVARIANT CLASSES OF FUNCTIONS AND THEIR LEVEL SETS

4.3 Semicontinuous contrast changes

In this section, we adress the case where the considered contrast changes are upper semicontinuous (or
lower semicontinucus), which makes sense for digital image processing because threshold functions and
quantization functions usually are u.s.c. or Ls.c.. The results of this section are not used in the next

chapters.

Definition 4.13 We say that a real nondecreasing function g : R — IR is upper semi-continuous if for
all r < 400,

g(ry = lim g(p)=lim_ g(p)

—»r,pr

Corollary 4.14 Assume ¢ is o nondecreasing upper semi-continuous function. Then for every A € R and
every 5 < +0¢,
g(s) = A& s> g A (4.17)

Exercise 4.9 Show that the condition 5 < +oco is necessary : Teke g(s) = 0 for all 5 and XA =1. Then
check that g~1(1) = +oc, while g(s) > 1 is impossible.

Proof Assume first that g{-1/(\) < +o0. If g is upper semi-continuous, then the “inf” defining g ()
also is a minimum. Indeed, let 7, N, g{"1{A). Then by definition of g!~!)(X), we have g(rn) > A. Since g

is upper semi-continuous, we also have
glg" V(W) 2 limg(ra) > A

By Lemma 4.8, we therefore have
o(s) = A e s 2 gV, (4.18)

If now g{—1) (A} = 400, we have g(s) > X only if s = +oo, which is excluded by the condition s < +oo we
have put on {4.17). Thus A < g(g=1(\)) and the conclusion of {4.6) holds. m]
The next corollary shows that upper semicontinuous contrast changes preserve level sets.

Corollary 4.15 Let g be o real nondecreasing upper semi-continuous function and u(x) a real function
defined on RN . Then every level set of glu), X(g(u)) satisfies

Ju, Xalglu)) = Yuu, (4.19)
where p = gl=V{A).
Proof Set, asin Lemma 4.8,
g™l = inf{r, g(r) > A}-

According to Corollary 4.14, g(u(x)) > A & u(x) > g1, which proves (4.19). (Notice that u(x) < +o0
for all x, so that (4.17) holds for s = u(x).) O
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crtted oorganal T . g

Figure 4.7: The crigirat image (top-left} has a strictly positive histogram (all grey levels between 0 and 255 are represented).
Therefore. if any nen strictly increasing contrast change g i3 applied, some data will be lost. Every level set of the transformed
image g(u) is & level set of the original image. Now, the original image has more level sets than the iransformed one.
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Chapter 5

Level lines and level surfaces.

5.1 The level line structure (topographic map) of an image.

In view of the applications to shape analysis (see Sections 3.4, 3.5), it is quite useful to have a description
of an image in terms of Jordan curves. If the image is assumed to be C!, the implicit function theorem
yields such a description. We therefore begin with the case of dimension 2 and then will also define level
surfaces of u in higher dimension.

Theorem 5.1 Let u(x) = u(z,y) be a C* function in a neighborhood of a point xo such that Du(xg) # 0.
Seti= Du/|Dul(xg) and x = xg+xi+y], where J is a unit vector orthogonal to Du(xq). Then, there exists
a disk D(xq,n) and o C* function ¢(z): = € [-n,4] = &{x) € R such that if x = xg + 2 +y] € D(xq,7),
then

u(z,y} =0 &y = ¢(x).

The preceding theorem ensures that if u is C* and Du(xg) # 0, then around xy, the set {u(x) = u(xy)}
is a C! graph. The next corollary permits to globalize this result.

Definition 5.2 We call planar curve and denote by C the range of a continuous map x{s) : s € [a,b] =
R®. If the restriction of x to |a, b[ is one to one, we say that C is a Jordan curve. If in addition x(a) = x(b),
we say that C is a closed Jordan curve. We call the map x(s) “a porameterization of the curve C'”. We
say that a curve C' is C™ (m € IN, m > 1) if it admits ¢ C™ parameterization x(s) : s € [a,b] = R?

such that Vs, |x'(s)| = 1. We call such a parameterization euclidean.
Corollary 5.3 Let u be 2 C! function on R?, and A € IR o level such that:
o (A is compact.
o Wx € u(A), Du{x) # 0.
Then u™Y{}) is u finite union of C* Jordan curves.
Proof Indeed by the implicit function theorem, u=!()) is a C! graph around each of its points. Since
u~'(X) is compact, it can be covered by a finite number of disks inside each of which, by Theorem 5.1,

u~'(A) is a C graph. It is easily deduced by elementary differential geometry that »=1{A} is a finite union
of (' Jordan curves. In fact, Sard’s Theorem ensures that the preceding situation is generic in A.
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Theorem 5.4 (Sard [[} Let u be a real C! function on o rectangle R of RN, Then for almost every X in
R, the set u='(\) is nonsingular, that is Vx € u=}{}), Du(x) # 0.

Corollary 5.5 Let u be a (2,2) periodic C' real function on a rectangle R of IRN. Then for almost every
X € R, the set u='()\) is a union of C! Jordan curves which are either closed or end on the boundary of
R.

Figure 5.1: Level lines as a complete representation of the shapes present in an image. All level lines of the image of a sea
bird for levels which are muitiples of 12. Notice that we do not need a previous smoothing in order to visualize the shape
structures in an image : a quantization of the displayed levels is enough. The extrema killer is aiso very efficient to that
visualization aim.

5.2 The topographic map as a complete image representation.

Definition 5.6 Let u be a C! function on a rectangle. We call topographic map of u the map which
associates with every nonsingular X (that is, every A such that Du # 0 on u~L(X)}, the finite set of the
oriented Jordan curves of u=1()). By orientation, we mean that we keep the information of whether
uw(x) > A or u(x} < X inside or outside the Jordan curve. These are either closed, or meet the boundary
of the rectangle ot their endpoints.

Theorem 5.7 [7] The image of @ Jordan curve ¢ divides the plane in two connected components, a bounded
one and an unbounded one. In other terms, denoting by a slight abuse by ¢ C IR? the range of c, the set
IR?\ ¢ has ezactly two connected component. We denote by Int(c) bounded one.

Proposition 5.8 Let u be a ¢! function on a rectangle. Then u can be recovered from its topographic
map.

Proof Indeed, u can be recovered from a set of level sets associated with a dense set of A’s. Now, the
set of singular {ambda's has zero measure. Thus, its complementary set of nonsingular values is dense.
For each nomsingular value A, the boundary of Xyu is described by a finite set of oriented Jordan curves.
We consider the filling operator Interior which associates with each Jordan curve ¢ the set Interior(c)
the unique bounded connected component of H?\ ¢ (Theorem5.7.) Then, calling ¢; the positively oriented
Jordan curve, understood as those which surround points of X, and ¢;,7 € J; the negatively oriented
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curves which are contained in Interior(c;) and therefore surround a hole of X u, we have the reconstruction
formula
X,\u = n(Int(ci) - n Int(c,-,j)).
i Jjed;

In computational terms, we “fill” the curves c; and then remave their holes to reconstruct X [m]

Remark 5.9 In practice, u can be recovered in the following way: we keep the Jordan curves as arrays of
vertices and we use a filling algorithm to reconstruct each Xyu. Then u is obtained by the classical

u(x) = sup{A, x € Xhul,

which is a finite sup to perform, since A assumes a finite number of values in a digital image.

5.3 Generalized level lines and topographic map

The preceding definition of level lines is slightly restrictive and may be generalized. In view of our definition
of level sets, it may be advantageous to consider cases where the level set is smooth enough, so that its
boundary is {(e.g.) a union of Jordan curves. By boundary, we mean here the topological boundary. Let
us give some examples. If c is a Jordan curve, then we may consider the function u(x) which is equal to
1if x is surrounded by the curve, 0 otherwise. We see that the implicit function theorem does not apply,

and that the set {x,u(x) = 1} is not a level line. The next definition, however, is adapted to this case :

Definition 5.10 Let u be upper semicontinous, so that its level sets are closed. Consider the connected
components of X¢, where X is a level set, and assume that the boundary of each is a finite union of Jordan
curves meeting each other at & finite number of points. Then, we say that these Jordan curves are level
lines of u.

This definition may seem and is restrictive ; it has, however, the advantage of applying to a main
example we will consider in the sequel : u.s.c. piecewise constant images, in particular images constant on
pixels. In that case, each level set is a union of closed squares on a grid and it is easily checked that our
definition applies and uniquely defines a set of Jordan curves which we call the level lines of the image.
Conversely, these level lines uniquely define the associated level set and we can reconstruct from them the
image.

As an example, let us consider a checkerboard image, where pixels have alternate values 255 (white)
and 0 (black}. If we decide that the function is u.s.c., then the white pixels include their own boundaries
and are connected. The black pixels instead are disconnected. Thus, the level lines of u are simply all
boundaries of all black pixels.

5.4 The curvature of the level lines

In this section, we assume again that the dimension N is 2. Consider a rea! function u which is twice

differentiable (C?) in a neighborhood of x € B3, Without loss of generality, we choose the origin to stand

at x so that in the following we set x = 0 and we assume that {0} = 0. In order to simplify the notation,
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Figure 5.2: Level lines as representatives of the shapes present in an image. Left: noisy binary image with two apparent
shapes, right: its two longest level lines.

x=q(y)

Dw/|Dul =1

Figure 5.3: Intrinsic coordinates

we shall omit the mention that computations are done at 0 and write Du instead of Du(0), etc.. We
denote by Du = (u,,t,) the gradient of u at 0, by |Du| = {(u + ui}é its euclidean norm. If Du # 0,
we call “orientation of the gradient” the normalized vector i= TB“ET‘ We set Dut = {—uy,u;}, a vector
orthogonal to Du and i= %‘5{. Taking into account that 7 and 7 are orthogonal and with norm equal to
1, we use them to define the Cartesian coordinates of points x = (z,y) in a neighborhood of 0. Thus, we
set x = xi + yj. If Du =0, we simply choose for i and j = (i)* two arbitrary orthogonal unit vectors.

Since u is C?, we can by Taylor formula write
u(x) = pz + ez’ + by +czy + O(|x[%), (5.1)
where p = |Du|(0) > 0 and, if p > 0,
b=} 5(0) = D5, fep)
a= 1 24(0) = LD*u( /8%, ) (5.2)
= 22 (0) = D*u(fr. 15)

The Implicit Function Theorem 5.1 implies that in a neighborhcod of 0, the set {x,u(x)} is a C* graph
whose equation we can write = = p{y), where p is a (? function in a neighborhood of 0. In order to see

how ¢ is related to u, we rewrite (5.1} as

1
=y} = —I—)(av,:r:2 + by? + cxy) + olz® + 7).
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From this equation we draw z* = o{y?) and zy = o(y?), so that finally
b . 7
x=yplyl= i +o{y”) (5.3)

Equation (5.3) is the equation in intrinsic coordinates of the levef line {x,u(x) = u(0)} of u at 0. We
deduce that |1:Tb| = % is the inverse of the radius of the osculatory circle to this curve, which we call

ahbsolute curvature. This and Relation (5.2) justify the next definition.

Definition 5.11 Let u be a reel C? function defined around a point x € IR? such that Du{x) # 0. Then
we call curvature of u at x the real number defined by

curviu)(x) = fD—tFDﬂu(DuJ', Dul)(x) = u“u; _(?;ziu:;yg-i- tyy¥s (x). {5.4)
Returning to the notations (5.2), we obtain
b= —;-IDulcurv(u)(O). (5.5)
Exercise 5.1 Show that Formula (5.4) can also be written in o compact way as
curv(u)(x) = div{%)(x), {5.6)

where we define, as usual, div{u) = %u + diyu = uz + uy,. Show that curv(u) does not depend upon any
C? inereasing or decreasing contrast change. (Just substitute 9(u) to u in the formula (5.4} defining the

curvature. )

Exercise 5.2 Let us make a useful verification. Our definition of curvature must match the infuitive

notion that the curvature of a circle is the inverse of its radius. Define u{x) = [x|?. Then level lines are

circles and the normal vector to level lines is A(x) = _ITXCT' The level line passing by X is a circle with
radius {x| = R, We parameterize this circle by length : € = {(Rcos £, Rsin %)} Then the tangent vector
to the level line is 7(s) = (—sin §, cos §) and a;:) = —4(cos &,sin £} = £i(y(s)). Thus, the curvature

of the level line (defined as the modulus of the acceleration along the curve) is +- Check that with Formula
5.4, one has curv{u)(x) = .

Exercise 5.3 Curvature and local comparaison of functions.

We say that a function f is rediel and increasing if there evists an increasing function g : RY - R
and x € IR? such that f{y) = gl{x — ¥y}). Let u(x) be a C? function from IR? into . Assume that
Dulxg) # 0. Our gim is to show that there ezist for every € > 0 two C? radial end increasing functions
[T and f7 such that

£

fo (x0) = ulxa) = £ (x0),
D7 (x0) = Du(xg) = D f}(x0),
curv{ {7 HXo) + € = curv{u){xp) = eurv{ {7 1(xq) — ¢,

Fo () + ol{x — x0)) < u(x) < fH(x) +o((x — x0)%).
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1. Choose, without loss of generality, xo = (0,0), Du(xo) = (p,0), with p > 0. Then for some a,b,c we
have by Taplor expansion
u(x) = px + ax® + by® + czy + o(z® +v7)

Show that for every e > 0,

lef tel

~ +a)z? +olz? +y?) <ulz,y) <pr+(b+ Ay + (5 +e)r’ + olz? + 7).

pz+ (b~ )y’ + (- -

2. Let f(z,y) = g{(z - 70)? +¥?) be a rudial function, show by an asymtotic ezpansion at (0,0) that
1
f(z,) = 9(@3) — 2z0g(xd)x + 5 (4" (20)=5 + 2¢'(z))x* + 29’ (23)y”)-

3. Conclude.

5.5 The principal curvatures of a level surface

Following the same line as in the preceding section, we shall now define differential operators of u invariant
with respect to contrast changes, which we later on shall interpret as the “principal curvatures” of the
level surface of u. In the following, when z is a vector of RY, we denote by z+ the hyperplane orthogonal
to z, 2zt = {y,z.y =0}.

Proposition 5.12 Let u(x) be a C? function in a neighborhood of a point xy. Assume that Du(xg) #0
and consider the symmetric matriz D u(x,), which we write for simplicity D®u. Then the eigenvectors and
eigenvalues of the restriction of D?u to Dut are not altered by a C* contrast chenge u — g(u) satisfying
g'(s) > 0.

Proof Ify € R™, we denote by y ® y the linear map x — (y @ y)(x) = (x.y)y whose range is Ry. Its
matrix on the canonical basis of BY is {y;)1<i;<n. An easy application of the chain rule shows that

D(g(u)) = ¢g'(u)Du and

D*(g(w)) = g"(u)Du® Du + ¢ (u)D*u.

This implies first that Du®t = D{g(x)}* (we have assumed ¥s, g'(s) # 0). lfy € Du*, then {Du@ Du)(y) =
0 and therefore D2 (g(u))(y,¥y) = ¢ () D?u(y,y). Thus, the matrices D?u and D*{g{u}) are proportional
on Dut = D(g(u))* and their eigenvectors and eigenvalues are equal. 0

Exercise 5.4 By computing explicitly the coordinates fr—(g{u)) of D(g(u}), check that D{g(u)) = ¢'(v)Du.
By computing explictly the values g;f}:E(g(u)}, check the formula used in the preceding proof, D*g{w)) =
g (W) Du® Du + ¢'(u) D?u.

We now proceed to define locally the level surface of a smooth function u.

Theorem 5.13 (Implicit function theorem)/]
Let u{x) = u(z,,s,..,zn) be a C* function in a neighborhood @ point xp. Assume that Du(xp) # 0. Set
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iv = l%[(xo) and X = Xg + Tnin + Y, where y € Du(xg)t. Then there ezists a ball B(xq,n) and a C*
function () ¥y € B{xo.g)N{x,zn =0} = @(y) € R such that for every x = %o +y+zNin € B(xq,n),

u(x) = 04> 2n = p(y)

In other terms, the equation zn = p(y) describes the set {u(x) = 0} N B(xq,n) es the graph of a C>
Junction . Thus, we obtair a surface which we call “level surface of v around xo”. If u is C%, then so is
.

As in Sections 5.1, 5.2, we can define a topographic map for C* images on a compact hyperrectangle.
We begin by eliminating all A's which are singular (i.e. Du{x) = 0 for some x € u™!(})), and then
decompose v '{}) into a finite set of C'! embedded oriented manifelds. The topographic map is thus
uniquely defined and gives a complete representation of u, from which u can be reconstructed.

By combining Proposition 5.12 and Theorem 5.13, we can do two useful things : First, to give a
simple intrinsic form to the level surface around x¢ and second to interpret the eigenvalues introduced in
Proposition 5.12 as curvatures of lines drawn the level surface of u.

Proposition 5.14 Let u be a C? function around a point xo € RY. Assume that p = |Du(xq)| # 0
and denote by ki1, ..., kn_) the eigenvalues of the restriction of D?u(xg) to Du(xg)t. Then, setting iy =
]%[(xu) end choosing T1, ey in—1 to be an orthonormal basis of eigenvectors of the restriction of D*u(xg)
to Dulxg)t, we have for x = %o + Eyiy 4o Tnin = Xg + vy small enough :

N-1
ux) =0y = -—-2—1;-)- Z r:x? + o|y]?).

=1

Proof Fixing the origin at xq, assuming without loss of generality that #(0) = 0 and using the Taylor
expansion formula, we obtain

1
u(x) = Du(f).x + ED“u(U)(x,x} + o([x|?).
Setting x = xxiy + ¥, where y € Du(0}+, this can be written
1 ] 2l - 1 2 9 . . 2
u(x) = pen + 5 D7)y, y) + 2 D7u(0)(in, ¥) + e D ul0) (i, in) + ofx[%).

If x belongs to the level surface {u{x) = 0} and |x| < 7, we deduce that z%, = o{|x|?) and by Theorem
5.13 that

1.1 5 . 2
an =wly) = —5(5132”(0)(%)’) + zn D uD)(in, ¥)) + ol|x[*).
This implies that x5 = o(]y|®) and therefore by substitution o(|x|*) = o(}¥{®}, so that
—1 2 .
TN = EDQU(U)(Y,Y) + oll¥i*)- (5.7)

We have y € {zn =0} N B{0,5) = B(0,7) N Du(0)*. Thus, using an orthonormal basis of eigenvectors of
the restriction of D2u(0) to Du{0)*, and calling x;, i = 1,..., N — 1 the coordinates on this orthonormal

basis of Du{0)t,
Nl

-1 2 2
=— T+ ~
o = g5 2wt < ollyl)

Let us now use our two-dimensional analysis and interpret the &; as curvatures.
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Proposition 5.15 and definition of the principal curvatures. ILetu bea C? function around X
such that Du(xq) # . Set again in = I%—:‘;[(xg). Then for every unit vector ¥ orthogonal to Du(xo), the
intersection of the level surface {u(x) = 0} with the plane {znin + t7, (zn,t) € R?}, is 6 C? curve for
|[(zn,t)] < 7. The curvature of this curve at Xg is

1
Ky = ——— Du(F, 5.
*= a7
In the case where & = i; is an eigenvector of D?u(xo) restricted to Du(xo)*, this curvature £ is called a

principal curvature of the level surface of u at xq.

Proof We apply Formula (5.7) with x = &xin + t7 = @{t¥)in +t7. Thus

TN D2ulxo) (7, ) + o(t?).

-1
~ 2{Du(xo)|
The curvature at 0 of this two-dimensional curve is

1

mﬂ u(xo)(fi, 17)

slu) =

5.6 Visualization of the topographic map.

In pratice, the digital image is described by a matrix of values u(i, j),0 £ ¢ < n,0 < j < m. Those values
are assumed to be a sampling of a continucus image i(x,y) such that (i, j} = w{i,j), at each location.
The function & is generally given by Shannon theory ({242]). Now, since this Shannon interpretation can
be heavy to implement and since we do not need such precision for a visualization, we shall in this book
just display level lines as concatenations of vertical and horizontal lines bounding the pixels. This involves
a zoom of factor 2 of the image size.
Defining a function ¢, : R x I — {0,255} by
¢ala,b)y =0 fa<iandb> X

éx(a,b) =0 ife>Xdand b< A,
¢ala,b) = 255 otherwise

and, given A and a digital image u(i, ), we define the image of the level lines at level A of u by:

w(2i,2j) = 255

w(2i +1,2j) = daluli + 1,5, ui, §))

w(2i+1,25 + 1) = dp(uli + 1,5 + 1), u(5, 7))

w(2i,25 + 1) = ¢ (uli,j + 1), uli, 1))
Using the code 0 =black and 255 —white, the level line A of u will appear as a black line on a white
background in image w. Of course, we can superpose several levels in order to obtain a joint map of
several level lines, i.e. a topographic map. In order to be visually readable, this topographic map must not
show too many levels ; in practice not more than about twenty. The removal of small level lines can be very
usefu! in order to improve the readability of the topographic map and we shall discuss filters performing
this task in the last section about the “extrema killer” in Chapter 7.
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Chapter 6

The main contrast invariant
equations.

6.1 The normal and curvature of a shape as cues to recognition

In this section, we shall link shape recognition and scale space theory. Let us define a “shape” as a
closed bounded subset of R?. Without loss of generality, we shall assume that this subset, X, has a
boundary made of a finite set of simple closed curves (Jordan curves) with finite length. This finiteness
assumption is computationally realistic and implies that X is a Cacciopoli set. The mathematician Renato
Cacciopoli [?] proposed a theory for sets whose boundary has finite length, from which it can be deduced
that the boundary of a Cacciopoli set is made of an enumerable set of Jordan curves. We restrict this
assumption to finiteness for obvious quantization reasons. The main consequence of this model for shapes
is that they are fully described by the finite list of their boundary Jordan curves. The shape recognition
problem can therefore be reduced to the problem of recognition of the shape building elements : the
Jordan curves. Thus, we shall in the following assume that the shape undergoing a recognition process is
described by a single Jordan curve. In photographs of a natural environment, most observed shapes are
partially occluded (hidden) and distorted by perspective deformations. The shape recognition technology
has therefore focused on local methods, that is, methods which will work even if the shape is not fully in
view and if the visible parts are distorted. When we observe a Jordan curve, we can therefore not be sure
whether is belongs to one and the same object ; it may be the concatenation of several objects oceluding
each other. Thus, recognition has to be based on local features of the Jordan curve and not on global one. If
the shape boundary is in some degree smooth, those local features simply are derivatives of the curve, that
is ;. orientation, curvature, etc.. Before starting with formal definitions of these geometric quantities, let
us mention that most local recognition methods indeed involve the “salient™ points of the shapes, identified
with inflexion points (where the eurvature is zero} and extrema of curvatures (the “corners” of the shape).
In such local recognition methods, a shape is reduced to a finite code, namely the coordinates of a set
of charecteristic points, corners and inflexion point mainly. The shape recognition is then reduced to a
comparison between finite shape codes by “voting methods” like geemetric hashing. Let us now return 1o
what will be our main concern here, the definition and effective computation of the normal and curvature
to a shape.
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Definition 6.1 {and Proposition.)

Let C be a simple C? curve and xo a point of C.

{i) C admits in a neighborhood of xy exactly two euclidean parameterizations such that x(0) = xo. If
x(s) :[—a,a] = R? is one such parameterization of C, then x{—s) is the other one. In addition, ell other
euclidean parameterizations of C have the form x(s + a) or x{—s + o) for some ¢ € K.

(i) We call tangent vector at x( to C (parameterized by an euclidean parameterization x(s)} the unit
vector 7(s) = %—’:. As a consequence of (i), if T and T2 are twe tangent vectors at Xo, then either 1y = T
orT = —Ta.

(i) The wector %3_%‘-(0) is independent by (i} of the choice of the euclidean parameterization and it is
orthogonal to T(Xo). [t is called curvature vector of the curve C' at Xo and denoted by Curv(xg)-

{iv) We call generalized normal the vector n{xg} = y%i—ﬁﬁ if Curvi{xo) # 0 and egual to 0 otherwise.

Proof. (i) Let x,p € [e,5] =+ x(p) € C be a C' parameterization of C such that ¥p, x'(p) # 0 and
x{po) = xo. We seek for a new C'! parameterization x(s) = x(p(p)} (with ¢ ¢! and one to one) such that
|%'(5)| =1, that is, |x'(p(p))]l¢'(p)| = 1. Taking into account that this relation implies @' (p) # 0, we have
two choices, namely

RIS SV PR S
Y0 = e P TR

Since x' is a Lipschitz function which never vanishes, so is -5‘1—,- By Cauchy-Lipschitz Theorem, ¢ is
uniquely defined on R by each one of both ordinary differential equations (6.1) and we get exactly two

and p{0) = pg. {6.1)

euclidean parameterizations %(s) such that %(0) = x¢. If x(s) is another euclidean parametrization, let
x{o) = xg. Then x;{s) = x(s — o) also is an euclidean parameterization and satisfies x(0) = Xo. Thus
either x{s) = (s + ¢) or x{s) = X(—9 + o).

(i) The statements of (ii} follow immediately from (i) by differentiation.
(iii} Since |7(5){? = 1, we have by differentiation T(s).gféfl =0, that is T(s).%’f- = 0. Changing s into —s
does not alter the value of ‘(3,—?,5 at s = 0. a

6.2 Multiscale features and scale space

The above mentionned methods (and, as a matter of fact, all nonglebal computational shape recognition
methods) make two basic assumptions, none of which is in practice true for the analyzed shapes (identified

from now on with Jordan curves) :
e The shape has a smooth boundary
» The shape has a finite set of inflexion points and extrema of curvature.

The fact that this assumption can however become a reality has been mathematically proved in 1986-87
by Gage-Hamilton [142] and Graysen [154] who proved the possibility of smoothing a Jordan curve into a

Jordan curve by the so called “intrinsic heat equation”.
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Definjtion 6.2 Let x(t,s) be a family of Jordan C? curves and assume for each t that s = x{t,5) is an
euclidean parameterization. We say that x(f, s) satisfies the intrinsic heat equation if

Ix 8%x
E(t’ s) = g(t,s) = Curvx(t, s). (6.2)

Theorem 6.3 (Grayson) The intrinsic heat equation lets any Jordan curve x(s) with finite length evolve
into e fomily of Jordan curves x(t,s) such that x{0, s} = xo(s), the curve x(t, s} being for every positive
scale t a C°° Jordan curve, with a finite set of inflexion points and extrema curvature. The number of
these “characteristic points” is nonincreasing with t. In addition, there is for every initial Jordan curve a
scale ty such that the curve s — x(fy, s) becomes convez and another scale t, for which the curve shrinks

to a point.

Of course, the initial shape x4(s) may well have infinitely many characteristic and may even have
unbounded curvature everywhere. The point is, that anyway x(¢, 5) has derivatives of any order for t > 0
and the curvature has finitely many zero-crossings and extrema for every fixed ¢ > 0. Still better : the
number of characteristic points cannot but decrease when the “time parameter” t increases, so that the scale
space is ceusal according to the Vision theory terminology. The discovery of Gage-Hamilten and Grayson
has found a significant response in the Vision Research, where several attempts to define scale spaces for
shapes had come very close to the equation studied by Gage-Hamilton and Grayson. We call shape scale
space any method allowing to smooth a shape, the degree of smoothing being measured by a positive
real parameter ¢, the scale. Thus scale space associates with every initial Jordan curve x(0, s) = xo(s) a
series of smoothed shapes, x(t,s). It is expected that the intrinsic heat equation acts as a selective way
of eliminating spurious details of the shape, keeping a rougher but more reliable version of the shape and
a shorter code as well. The matching of two instances Xg(s) and x;(38) of a given shape should be done
by comparing the characteristic points of xq(¢,3) and x,(¢, s) for a value of ¢ large enough. Comparing
the originals xg and x; is simply impossible : They are expected to depend highly upon the conditions of
observation. Observation noise and distorsions of the initial Jordan curve make it impossible to single out

directly on xp(s) the significant corners and inflexion points.

Definition 6.4 Let x{t,s) be a family of Jordan C? curves and assume for each t that s — X(t,5) is an
euclidean parameterization. We say that x(¢,3) satisfles @ curvature equation if it 48 C7 and for some
function g{t, k), nondecreasing with respect to k satisfies

T t,5) = gtt, [Curex(t, ) nit, ). )

ox
5‘;{“7 S) )

6.3 From image motion to curve motion.

6.3.1 Level lines as curves

Let u be a real function which is twice differentiable {(C?) in a neighborhood of x. We denote by Du(x) =
{2z, 1,)(x) the gradient of u at x, by |Du(x}| = (v + ui)%(x) its euclidean norm. We consider the level

curve of u passing by x , defined as the set

{y,u(y) = u(x)}
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If we assume that Du(x) # 0, by the Implicit Function Theorem, we know that the level curve indeed is
a curve, which inherits the smoothness of v in a neighborhood of x. We set Du’ = {—uy,u;), a vector
orthogonal to Du. The next lemma links the intrinsic curvature of the level curve Curv(x) introduced in
Definition 6.1 and the curvature differential operator curv{u}(x) of Definition 5.11.

Lemma 6.5 Let u(x) be a C? real function : R? — R and x & peint such that Du(x) # 0. Call C the

level line passing by x. Then

B ) (6.4)

Curv(x) = —curv{u)

Proof Consider a level curve {y, u{y) = u(x)}. We notice that ?Dl%ulf is a unit vector tangent to the curve
at . Then there is by Lemma 6.1 a single euclidean parameterization y(s) of the level curve such that

3
2 0= (65
Differentiating the relation u(y(s)) = 0 we have Du(y(s)).g{% = ( and differentiating again at s = 0 and
using (6.5),
ut Dul oy
D2y oY o
(fD R lDu! +Du(x}.as2 0

Using the definitions 5.11 and 6.1 of curv({x) and Curv(x), this becomes
curviu)| Du|(x) + Du{x).Curv{x) = 0.

Noticing that Curv(x) is colinear to Du(x), we deduce that

Curv(x) = —curv{u)

Du
{Du|’

6.3.2 Curvature equations for curves and real functions

Definition 6.6 Let u(1,x) be C? function around a point (tg,xp} such that Du(tg,xo) # 0. Then there
erists £) > tg and for t € [, t1] a unigue C! vector function x(t) satisfying u(t, x(t)) = u(to,Xo) and such
that %ﬁ is colinear to Du(t,x(t)). We call x(t} the “normal flow starting from (ts,%¢)”. The normal
flow satisfies the ordinary differential equalion

dx Ou Du
% = (G e x(0). (6.6)

Proof Differentiating the relation u(t,x(t)) = 0 with respect to ¢ yields & 5+ Du. X = {. Thus %—)f is

colinear to Du if and only if
Ox du Du

Bt _(_é-tv | Dul?

This relation defines x(¢) as the solution of an ordinary differential equation, with initial condition

)t x(2)). {6.7)

x(0) = xg. Since v is C?, the second member of (6.7) appears to be a Lipschitz function of (¢, x) provided
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Duft,x} # 0, which is ensured for (¢, x} close enough to {tg, x). Thus, by Cauchy-Lipschitz Theorem, the
O.D.E. (6.7} has a unique solution x(¢). G

Proposition 6.7 Let u(t,x) be a O function such that Du(tg,xg) # 0. Then u satisfies the curvature

motion equation

Ju
Tl curv{u)|Du| (6.8)
in e neighborhood of (tg,xp) if and only if the normal flow x(t) satisfies the inirinsic heat equation (6.3),
Ox 8

St = %(t, s) = Curv(x(t, ).

Proof If {6.3) holds, by (6.6), we get

du Du
L(E%FEIZ—Q)(t,x(t)) = Curv(x(t)).
By (6.4), this yields
Ou —Du Du
"(E [Dul? e, x(t)) = Curv(u)mx

which implies the curvature motion equation (6.8). Conversely, substituting in (6.6} the value of 5’(# given
by (6.8) yields
dx Du
ET —(curv(u)|Du|W

and using (6.4) we obtain the heat intrinsic equation (6.3}, %—’t‘(t, 8) = Curv(x(t)).

)

6.3.3 The Afline Scale Space as an intrinsic heat equation

Denote by x{t, o) a curve at scale ¢, parametrized by a parameter o. In this paragraph, we shall show a
formal equivalence between the Affine Scale Space,

dx

B iCurv(x)ﬁn(x) = |k|§n(x) {6.9)
(where k = |Curv(x)|(x) is an abbreviation for the curvature), and an “intrinsic heat equation”,
dx  *x
= = 6.10
gt g2 (6:10)

where ¢ i5 a special parameterization of the curve called affine length. Let us give some elements of affine
differential geometry. We define an affine length parameter, or g of a Jordan curve as a parameterization
x(o) satisfying

(%, Xoe] = 1 (6.11)
where [,] stands for the determinant of two vectors. Here and in the following, we write for clarity of
the formulas x, for ‘-% and X4, for %% If we denote by s the arc length, and by k = |Curv(x)|(x) the

curvature, then a tangent vector and the intrinsic normal vectors to the curve are given by

t=x, n=k"lx,, (6.12)
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Moreover 3
Xo = Xsoo  and (6.13)
da
s 4 d%s
Xog = xu('a_;) + xl‘é;E (6.14)
Now (6.11) implies
ds 3s ., &s
[xsguxsa(a) + Xam} =1
ds .3 _
= [xa)xaa](a_o) =1
Since by (6.12), (x4, Xs4) = k, we conclude that
33 —1
Lm = kT3 1
B k (6.15)
Let us now deal with x,,. Using (6.15) and (6.12} in {6.14) we obtain
i 8%
Xoe = kin+ (W}t
We deduce that equation (6.10) is equivalent to
ox 1 323

Now, Epstein and Gage [116] have proved that the tangential component of such an equation does not
matter as far as the geometric evolution of the curve is concerned. Indeed, the tangential component
produces a motion of the point along the curve itself and the whole curve evolution is characterized
defined by the normal velocity. As a consequence, (6.10) is equivalent to Equation {6.9) on non-inflection
points. Thus, we have the following equivalence in terms of curve evolution :

9X — kin if and only if
x _ { 0 x inflection point
at Xgss X non-inflection point
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Chapter 7

Monotone and contrast invariant
operators. The threshold

decomposition principle

7.1 Contrast invariant function operators

In the following, we denote by F a space of functions defined on IR™ with values in IR and denote by T
the set of all level sets of functions of F. If (e.g.) F is the set of continuous real functions on RY, then
T is the set of closed subsets of R™. If F is the set of Borel-Lebesgue measurable functions then 7 is the
set of Borel subsets of IRY, etc. We assume that F is stable by continuous nondecreasing contrast changes
u = g(u), i.e. g{u) € F whenever u € F. We consider function operators on F,

T:-vue€F = Tu,
where Tu is a real function, Tu{x) € IR, and set operators on 7,
T:XeT->TX.

Our main interest here is in monetone operators, because they are nonlinear generalizations of the linear

smoothing by a nonnegative convolution kernel .
Definition 7.1 We say that o function operator T' is monotone if
w>v=Tu>Tv (7.1
We say that a set operator T is monotone if
XCY=17X)CT1(Y) (7.2}

Definition 7.2 We call continuous contrast change any nondecreasing confinuous function g : |R — IR.

Definition 7.3 We say that T' s contrast invariant on F if for every continuous contrast change g : R —
IR, one has g(u} € F whenever u € F and

Yu € F, g{Tu) = T{g{u)). (7.3)



CHAPTER 7. MONOTONE AND CONTRAST INVARIANT OPERATCORS. THE THRESHOLD
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The next proposition puts into evidence one of the main properties yielded by contrast invariance :
the conservation of grey levels. This conservation property implies that, in contrast to linear operators,
contrast invariant operators do not create new grey levels in an image. This means in practice that images
filtered by a contrast invariant operator remain well contrasted. Fronts of u, which correspond to gaps in
the range of u, are preserved. In particular, binary images remain binary.

We denote by R{z)} C IR the range of a function v, that is, R(u) = {s € R, 3x,u(x) = 5.}

Proposition 7.4 Let T be a contrast invariant operator. Then for every function u, R(Tv) C Ru. In
particular, if u attains o finite number of values, then Tu aténins a subset of them.

Proof We consider a continuous increasing function g such that g(s} = s when s € Ru, g(s) > s
otherwise. As an example of such function using the distance to the set Ru, we can take

g(s}y=s+ %d(s,Ru),

where d{s, X) denotes the distance of s to X. We have d(s,Ru) =0 if and only s € (Ru). Thus g(s) = s
if and only s € {Ru). In particular, g(u) = u. Using this and the contrast invariance of T' we have

Tu = T{g{u)) = g(Tu).

Thus {T'u)(x) is for every x a fixed point of g and therefore (Tu)(x) belongs to ‘Ru, as announced.
[m]

Another interesting property of contrast invariant and translation invariant operators : they do not increase
the Lipschitz constant of functions. In fact, the property is much more general, being true for all translation
invariant operators commuting with the addition of constants : T(u + C) = Tu +C.

Lemma 7.5 Let T be a monotone translation invariant operator commuting with the addition of constants.
Ifu(x) is a Lipschitz function on IR? then the function T,u(x) is Lipschitz, with a lower or equal Lipschitz
constant.

Proof of lemma 7.5. Assume u has a Lipschitz constant equal to K. For any x, ¥, and z, we have
uly +2) - Kjx —y| <ulx +2z) Suly +2) + K|x -yl (7.4)
Since T is monotone, considering the above functions as functions of z, we have
T{u(y +z) — K|x —y|) € Tu(x+2z) < T{u(y +2) + Klx - y[)).

Notice that by the translation invariance, T(u(y + z)) = (Tu}(y), ete. Using the commutation of T with
the additions of constants and the translation invariance, we therefore obtain

Tuly) — K|x - y| € Tu(x) £ Tu(y) + Klx - y|.
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7.2. FROM CONSTRAST INVARIANT OPERATORS TO SET OPERATORS.

E E
Y?\. Yl

A-g A s A A+e S

Figure 7.1: Approximation of the threshold function vy from above and from below

7.2 From constrast invariant operators to set operators.

Assume that F contains the characteristic functions 1 x of elements of X. We can associate with T a set
operator T, defined on the set T of all level sets of all functions in F by

T(X) = A1 (T(lx))- (7.3)

where Ix(x) = 1if x € X and 1 x(x) = 0 otherwise . Note that if T is monotone, then T is a set monotone
operator. Indeed,
XCY ey <ly.

Exercise 7.1 In order to justify the definition of T when T is contrast inverient, we shall show that T{1 x}
is a characteristic function, i.e. only attains the values 0 and 1. In order to do so, consider a contrust
change g such that g(0) = 0, g(1) = 1 and g(s8) # s for s # 0 or 1. Show that T(Rx) = T'(g(1x)) =
g(T(1x)). Deduce that T(Lx) has the only values 0 and 1 and conclude that Uy xy) = T(1x). Notice that
this result also follows from Proposition 7.4.

In order to explore the relationships between T' and T, we shall first show roughly that T" commutes
with thresholds.

Lemma 7.6 Let T be a contrast invariant monotone operator. Consider the threshold functions v\ (s) =1
if s > X and 7,(s) = 0 otherwise. Then T commutes almost everywhere with almost every threshold, i.e.

Fa(Tu) = T{ys(u)) ae. n A, ae inx

Proof Let
vi{8)=0if s € A —¢,

() = s—(A-¢)

HfAx—e<s <A,
~5(s) = 1 otherwise .
Then ~§(s) is a contrast change and v§ > v.. Thus

Tlyalu)) < T(vi(w) =v5{Tu) = va(Tu), ase— 0.

Using in the same way tontinuous nondecreasing functions 4§ < ., we also prove that T(y\(u)) >
¥y (I'u), where v (s) = 1if s > A and y(s) = 0 otherwise. We therefore obtain

Yo {Tu} < T{yalu)) < val(Tu}
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Let us consider the countable, and therefore negligible, subset A C IR of all A such that meas({x, Tu(x} =
A} > 0. For A € R\ A, we have v (Tu) = 7 (Tu} almost everywhere. Thus, for almost every A, we
obtain

T(a(u)) = va(Tu) almost everywhere.

m]

In a converse way to Relation (7.5) defining a set operator from a function operator, we can define a
function operator T from a set operator T thanks to the threshold superposition principle.
Definition 7.7 We say that T 1s obtained from T by the threshold superposition principle almost every-
where if

Tu(x) = sup{A, x € T(Xhu)}, se inx. (7.6)
If the preceding relation holds for every A and X, we say that the threshold superposition holds everywhere.
Proposition 7.8 Let T be a monotone contrast invarient operator on e set of functions J containing

the charucteristic functions 1x of the elements X of T. Define its associated set operator by T(X) =
X1 (T(1x)). Then T is monotone, we have for every u € F

T(Xu) = X(T(u)}), a.e. in A, ae iInx (7.7}
and the threshold superposition principle holds almost everywhere :
Tu(x) = sup{A, x € T(X)u)}, a.e. inx. (7.8)

In addition,
T(@) = G ae., TIRY) = RY a.e.

Proof Using the definition of T, the obvious relations Ly,, = 7 (), X1{7:{v)) = A)v, and the commu-
tation almost everywhere of T with v,, obtained in Lemma 7.6, we get

T(Au) = X (T(Lx,w)) = X (T{w)) = X (7 (Tw)) = A (Twu), ae in ), ae inx

Let us show the superposition principle { 7.6). It follows immediately from (7.7} and Lemma 4.6, applied to
Yy = T(X\u) and v = T'u. We now prove the last statement. We take for v a constant function, say, equal
to 0. Then Xyu =@ for A > 0. By the refation (7.7) just proved, we deduce that X (Tu) = T(X\u} = T(B)
almost everywhere and for almost every A > (. Thus the equality holds for many A’s. On the other
hand, by contrast invariance, T commutates with the constant function 0. Thus Tu = 0 and therefore
X (Tu) = B for A > 0. We finally obtain T{#) = @ almost everywhere. The other announced relation
follows in the same way. m]

Relation (7.6) means that we can compute all level sets of Tu separately, by applying T to each
characteristic function of the level set Xyu. We then have the following “stack filter” algorithm:

Ay — T(XATL)
W 3 Tu(n) = sup{A, x € T(Hw)-
Ao = T(Xeu)
As developped in Chapter 24, the stack filter method will be used to maintain a very accurate contrast

invariance in numerical schemes for several contrast invariant P.D.E.’s.
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7.3 From set operators to contrast invariant function operators.

Can we extend a set monotone operator into a contrast invariant and moenotone operator defined on an
adequate set of functions 7 We start from a set operator T, defined on a subset 7 of P(RY) and with
values in 7. We assume that T is a monotone operator, that is, X C Y = T({X) C T(Y). We define
as the set of all real functions defined on R" whose level sets X, u belong to 7. As a consequence, F
contains the characteristie functions of elements of 7.
A natural definition for the function operator T associated with T is given by the threshold superposition
principle,
Tulx) = sup{A, x € T(Xyu)} (7.9)

We have now to check whether T is contrast invariant.
Proposition 7.9 Let T, 7 — 7 be a monotone operator satisfying
T(0) =0, T(RY) = R
Then the operator T defined on F by
Tu{x} = sup{A,x € T{X\u)}
satisfies, for almost every A € R,
Xy (Tu) = T(A5(u)} almost everywhere in x (7.10)
and for any nondecreasing continuous contrast change g,
g(Tu) =T(g(u)). (7.11)
Proof By Corollary 4.5, we have for almost every A
X5 (Tu) = T(A\u) almost everywhere (7.12)

that is for all A in a subset A of R such that meas(JR\ A) = 0. We notice that u < v if and onty if
Xyu C Ayv for all A in a dense countable subset of IR. We deduce immediately that T is monotone, ie
u>v =>Tu>Tv

Let us now show that T commutes with contrast changes. Assume first that g is strictly increasing
and set g(+oc) = liMsoq00 g{8) and g{—oo0) = limg, s g{s).

For A > g{+00), we have X, g(x) = § and therefore T{A»g(u)) = §.

For A < g{—o0), we have Xyg(u) = R™ and therefore T(Xyg(u}) = RY.

As a consequence, we can restrict the range of A in the definition of T{g{u(x))) :

T(g{u{x))) = sup{A, g(—o0) € A < g(+ox), x € T{Xng(u))}

= sup{g(n), x € T(Xyp09(u)}
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= sup{g(n), x € T(X,u)} = g{Tu(x)).
Let us now check that T' commutes with general nondecreasing contrast changes g. We can find strictly
increasing continuous functions g,, and f,, such that g.(s) = g(s), hn(s) = g(s) for all s and g, < g < hn.
Thus, by using the just proven commutation of T with increasing contrast changes, we have

T(g(u)) 2 T{ga(t)) = gn{Tu) — g{Tu) and

T(g{u)) £ T(ha(u)) = hn(Tu) — g(Tu),
which yields T(g(u)} = g(Tu). o

Exercise 7.2 Let g be a continuous nondecreasing function. Construct increasing continuous functions
gn and b, such that gn(s) — g{(s), ha(s) =+ g(s) for all 3 and gn < g < ha.

Exercise 7.3 We ezplain the necessity of the assumptions T(9) = 0 in Proposition 7.9, T(R"™) = R" in
order to get a contrast invariant operator T from T.

1) Set T{X) = X for ali X € T, where Xo # B is a fired set. Check that Tu(x) = +co if x € Xo,
Tu(x) = —00 otherwise. Let now g be a continous nondecrensing bounded function. Show that T{g(u)) #
g{Tu).

2) Let B # X; C Xo # RBY and set TURY) = Xo, T(X) = X, if X # RY, 7(0) = 9. Show that
Tu(x) = —co on X and deduce again that T(g(u)) # g(Tu) if g 45 bounded.

9) Let T be a monotone set operator, without further assumption. Show that its funetion operator T,
associated by the threshold superposition principle, commautes with eny continuous nondecreasing function
g such that g(+o0) = +o0 and g{—o0) = —oo.

We shall now examine stronger conditions on T, which ensure commutation of T with all thresholds X,
(and not only with almost all of them}.

Definition 7.10 We say that a set operator T is upper semicontinuous if for every nonincreasing sequence
of sets X, € T, we have
() Xn) = [ T{Xa)- (7.13)
n n

Exercise 7.4 Show that o monotone operator T is upper semicontinuous if and only if it satisfies for every
nenincreasing family of sets {Xa)aem, T(Ny Xa) =My T(Xa)-
Theorem 7.11 Let T: T — T be a monotone upper semicontinuous set operator satisfying T(0) = 0 and
T{R™) = R"Y. Then the function operator defined by

Tu(x) = sup{A,x € T(Xau)}. (7.14)

is contrast invariant and satisfies, for every A,

X5 (Tt) = T(X (u)). (7.15)
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Proof of Theorem 7.11 Let us check that {7.15) holds. By Propesition 4.1, this is true if and only if the
family of sets T(Xxu) satisfies (4.1.i) and (4.1.ii). Now, (4.1.i) is true by monotonicity of T and the inclusion
relations between the X, «. Relation (4.1.ii) follows immediately from (7.13) and Ayu =} X, u, which
is (4.1.ii) applied to u. The monotonicity of T is obvious : one has

B

u < v (VA, XyuC X
Since T is set monotone, we deduce that
¥, T(Au) C T(Av)

and therefore VA, Xa(T'u) ¢ A (Tv), that is Tu < Tu. In order to show that T is contrast invariant, i.e.

commutes with all continuous nondecreasing functions, we can now directly apply Proposition 7.9. ]

Remark 7.12 The upper semicontinuity is necessary to ensure that ¢ monotone set operator defines e
function operator such that the commutation with thresholds X (Tu) = T(X\(u)) holds for every \. Let us
choose for ezample the following set operator T,

T(X)= X if meas{X)} > a and T(X) = otherwise .
Let u be the function from R into R defined by u(z) = —|z|. Then
T(u)(z) = sup{ ),z € T(Xaw)} = min -zl ~a/2)

Therefore
A 2T () = [—af2,af2].

Now, X_,0u = {—0af2,a/2] ; its measure is a. Thus
T(-"{Ca/z”) =## Aoy T (u),

which means that T' is not contrast invariant.

7.4 Application : The “Extrema Killer”.

We study in this section operators which remove peaks in an image. Such peaks are often created by
impulse noise, The extrema killer operators show outstanding denoising properties for such kinds of noise,
We shall use the method developped in Section 7.3 which permits to define these operators on sets and

then extend them to images.

Definition 7.13 Let X C BV be a closed set. We say that X is connected if it is not the union of two
disjoint nonempty open sets. We call connected component of x in X, ce{x, X), the marimal connected

subset of X containing x. It is a closed set.
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Figure 7.2: Extrema Killer : maxima killer followed by minima kilier. The extrema killer removes all connected components
of upper and lower level sets with area less than some threshold, here equal to 20 pixels.

Fix a scale parameter a > 0. We define a set denoising operator on T, the set of all compact sets of RN
in the following way: Let X € 7 be a compact set. Then X is the union of all of its connected components,
X =J; X; and this decomposition is uniquely defined. We then remove from X all connected components
of measure strictly less than a : We therefore define a “small component killer”

T(X)= |J X (7.16)
meas(X;1>a
Lemma 7.14 Let Y, be a nonincreasing sequence of subsets of R”Y and set Y =\, Y. Then, if ¥, are

compact, so is Y. If ¥, are compact and connected, so is Y.

Proof These are classical topological arguments and we just check the proof of the second statement. It
Y were not connected, then ¥ = Z; U Z; where Z, and Z, are compact and disjoint. Thus, d(Z,,2:) =
inf.,ez, spez: |lz1 — 22]] > 0. We then remark that if ¥, ¥ and Y, are compact, then the Hausdorff
semi-distance of ¥, to ¥ tends to 0: 8(Y,,¥) — 0. (We set §(Y, Z) = supyey infzezlly — z||.) We choose
no such that ¥n > ng, e = (Y, ¥} < %d{21,22). 1t is then easily checked that Y5, is split into two disjoint
open nonempty sets:

Yo=(¥YanZHU(Y,n Z3)
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Figure 7.3: Extrema Killer : maxima killer followed by minima killer. Above, right: extrema killer of the above, left image,
20 pixels area. Below : level lines (for levels multiple of 4) of the image before and afier the application of the extrema
killer. Notice the strong simplification of the topographic map : most digital images have many small oscillations generating
extrema.

where we note Z° = {z,d(z, Z) < €}. m]

Lemma 7.15 The small component killer T, is monotone and upper semicontinuous in the sense of Def-
inition 7.10 on the set T of all compact subsets of RY .

Proof If X C Y, then for every x, ec(x, X) C cc{x,Y). Thus, if we assume that meas(cc(x, X)) > a,
then we also have meas(ce(x,¥Y)) > a. We conclude that T,(X) C T,(Y), that is, T, is monotone.
Let (X, )aesv be a nonincreasing sequence of compact sets and let X = ﬂn X,. We wish to show that
Ta{X) = {1, Ta{Xn). By Lemma 7.14, N,X,, is compact. Let now ¥ = ¢c(x, X) be a connected compo-
nent of X and denote by ¥, = cc(x,X,). Since X C X, we have ¥ C Y, for all n. Let us show that
Y =, Ya. Obviously, ¥ C, ¥, and (), Y. €, X, = X. We therefore just have to check that [, ¥,
is connected, which follows from Lemma 7.14. 0

Theorem and Definition 7.16 One can associate with T, & “mazima killer”, defined on all continuous
functions u, defined on o fired compact domain. This operator T, is defined by the threshold decomposition
principle,

Tau(x) = sup{A,x € T, (X )},

we also have
X(Tyu) = To(Au) (7.17)

and, as a consequence, no connected mazimum set of Tou has area less than a. In addition, T,u is
continuous.
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Proof By Theorem 7.11 and Lemma 7.15, we deduce immediately the announced commutation (7.17).
Let us check that Tau is continuous. First of all, by (7.17) we know that all upper level sets of T,u are
closed. Let us show that so are the lower level sets, {x, Tou(x) < A}.

We notice that by (7.17},

{x, Tau(x} < A} = {x,ufx) < AYU( U ce{z, u(x) 2 A}) = Yo u ([ ¥0)
meas{ce{z,u(X)>A})<a ied
Consider a sequence (X, }nepv in {x, Tau{x) < A} which tends to a limit x. We want to show that x stays
in the same lower level set. We have the following alternative:

Either there exists a finite J subset of I U {0} such that all x,, belong to [ J;c; ¥:. Then obviously x
belongs to this closed set and therefore to {x, Tou(x) < A}.

Otherwise, we can assert, up to the extraction of a subsequence, that x, € Y, all i,, being distinct.
The domain being bounded, 3, meas(Y;,) < oo and we have meas(Y;,) —+ 0. Thus we can find points
z, in the boundaries of ¥;, such that |y, — z,| = 0. Since u{2,} = X and since u is continuous, we finally
have u(x} = lim, u(z,) = A. Thus x € {y, u(y) < A}, which ends the proof. ]

We have defined a “maxima killer” and we could define in the same way a “minima killer”. A faster
way to define it is to simply set
Tou=—T,(-u)
A good denoiser can be obtained by alternating T, and T, . This alternance is licit since each one of both

extrema killers maintains the continuity of the image. Note, however, that T, and T, do not necessarily

commute as is shown by the next exercise.

Exercise 7.5 Take N = 1, u{x) = sin(z). Let a € R*. Compute Tou and T u and show that they
commute on u if @ < 7 and do not commute if a > w. Following the same kind of idea, construct an

ezample in dimension 2 of function u{x,y) such that T.T, v # T, Tsu.

Remark 7.17 The operators T, do not constitute a scale-space in the sense which we will consider in

Chapter 20. In particular, they do not satisfy e local comparison principle. See Exercise 20.1.
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Chapter 8

Monotone contrast invariant
operators as sup-inf operators.

In this chapter, we mainly state two theorems which give an analytic form to set monotone operators
and to contrast invariant and monotone operators. Before starting with the statements, let us introduce
a further useful invariance property. In practice, image analysis operators are translation invariant. We
denote by 7x X = x+ X the result of an x-translation. We also consider translations of a function u, which
we define by (rx)u(y) = uly — x).

Exercise 8.1 Show that these definitions are made tn suck a way that
Tx(Xau) = Xa(mxu).

Definition 8.1 We say that a set operator T is translation invariant if
x(T(X)) = T(rx X).

We say that a function operator T is translation invarient if

mx{T(w)) = T{mxu).

8.1 Monotone set operators.

Theorem 8.2 (Matheron) Let T be a translation invariant monotone operator acting on a set of subsets
of RY. Then, there erists a family of sets B C P{IRY), which can be defined as B = {X,0 € T(X)},
such that

X)=|J (X -yi={x, IBeB, x+BCX} (8.1)
BeBYyeH

Conuersely, (8.1) defines a monotone, translation invariant operator on P{RY).

Proof Let us first explain Formula (8.1). In fact,

X)=|J (1(X-y={x, IBeB, ¥yeBxec X -y} (8.2)
BeBycn
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This last set is obviously equal to {x, 3B e B, x+ BC X}.
Using the monotonicity and the translation invariance, we have the following chain of equivalent prop-

erties :
XxETX) L 0eT(X)-x20eTX-x}eX-—xcBelBecB, X=x+B&

JBe B, x+BCX&3dBeB, Vye Bixe X —y.

The fifth equivalence comes from the obvious remark that if B € X and B € B then X € B. Thus
T(X) = Ugen ﬂyeB(X —y) and Relation (8.1) holds. Conversely, if an operator is defined by (8.1), it is

obviously monotone and translation invariant. o

Exercise 8.2 Show that the set B is not unigue.

8.2 Sup-inf operators

Theorem 8.3 Let F a set of functions, T the set of all level sets of functions of F. Assume that F
is stable under contrast changes and contains the chargcteristic functions 1x of elements of T. Let T
be the set operator associated with T, T(X) = X(T{1x)). Define for any x € RN the family of sets
Byx ={X,x € T{X)}}. Then for every u in F,

Tu(x) = sup inf u(y), ae inx 83
(%)= sup _inf u(y) (83)

If, in addition, T is translation invariant, then setting B = By = {X,0 € T(X)} we have

Tu(x) = Bes;gﬁggfyu(y), a.e inX (8.4}

Conversely, if an operator is defined by (8.4) or (8.3), then it is monotone and contrast invariant, and is

translation invariant in the first case.

Remark 8.4 The set B is called in Mathematical Morpholagy set of structuring elements. It corresponds

to an “impulse response” of the nonlinear operator T.

Proof of Theorem 8.3. Set Tu(x) = SUPpe py infyes uly), where Bx = {X,x € T(X)}. Let us show
that Tu(x) = Tu(x) almost everywhere. We argue as in Lemma 4.6 : We choose a countable dense set
A € IR such that for every A € A, XaTu(x) = T{Xyu}(x) for x € RN \ N, where meas(N,) = 0. We set
N =|J, N, and we still have meas(/¥) = 0. In order to prove that Tu = Tu almost everywhere, we show
that for all A € A and all x € RY \ N, we have

Tu(x) > A& Tulx) > A
and we apply Lemma 4.6. In what follows, A and g denote elements of A. We have
Tu(x) 2 AeVu<h TuX)>p e Ve <h xe X, (Tu) &V <A, x € T(X,u)

& Vu <A, Aue Bx & Vu<d, 3B(= A u) € Bx,);ré%u(y) >
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& sup inf uly) > X & Tulx) > A
b o, (v} = (x) 2

The fifth equivalence is true because if B C X and B € By, then X ¢ Bx. Thus, if for some B €
Bx, infyepu(y) > p, then the set X,u contains B and therefore also belongs to Byx. We conclude
that Tu(x) = Tu(x) almost everywhere. If, in addition, T is translation invariant, we obviously have
EBx = x+ By. By the preceding result, we obtain Tu(x) = supgey.m infye s u{y) almost everywhere,
which is (8.4).

Let us now show the converse statement of the theorem. If T is a “sup-inf” operator, the monotonicity
of T" is obvious and the commutation of T with continuous nondecreasing functions follows from the fact
that if g is continuous nondecreasing and I a subset of R, then g{inf I) = inf g(J) and sup g{I) = g(sup I).
The translation invariance is easily checked. O

Corollary 8.5 Let T and T be translation invariené function and set operators such that
AT (u) = T(Au), (8.5)

the relation being true for every A and x. A simplified version of the proof of Theorem 8.8 shows that for
all u € F and x, Tu(x) = supgex, p infyep u(y), the relation being true everywhere.

It will be useful to state a converse statement to Theorem 8.3. It states that given a sup—inf operater,
we can keep the same set of structuring elements for its associated set operator T.

Proposition 8.6 Let F be o set of functions containing the characteristic functions of sets belonging to
T and T' a function operator having a sup-inf form (8.3}, namely

Tu(x) = su inf u{y).
(x) BEXS—BYEB )

Then its associated set operator T can be defined by (8.1), that is

TX)=|J ((X-y)={x,3Be B, x+Bc X}.
BeBYESB

Proof Notice that T, satisfying (8.4), is extended to all level sets of functions of F. It is easy to deduce
(8.1) from (8.4) : We apply this relation to the characteristic function of X, 1x. Then,

innyx+B 1y =0ifx+B¢gX
=1lifx+BCX.

Thus supge g infyexsp Lx(y) = 1 if and only if there is 5 in BB such that x + B C X and (8.1) follows.
a

Exercise 8.3 Apply Corollary 8.5 to the extrema killer T, and show that the associated set of structuring
elements is

B ={Bc RY, compact, connected, meas(B) > a)}.
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Exercise 8.4 It is not true that Relations (8.8) or (8.4) define in general an operator commuting with
all thresholds X.. This needs some restriction, either on B, or on the domain of definition of T. As
an easy counterezample, let us set B = {{x},x € D(0,1)} where D(0,1} is the ball with center { and
radius 1 and therefore Tu{x) = sUPyex+p u(y). We consider a dense sequence of RY, (gn)nen and we
set u{x) =1~ 1/n if x = g, for some n, u(x) = 0 otherwise. Show that T(Xu) =@ # X\Tu= RN. We
shall see in Ezercise 8.5 that T, which we define later on as a “dilation”, yields an operator commuting

with all thresholds when it is restricted to u.s.c. functions.

Exercise 8.5 .
A first classical ezample for F is the set of all upper semi-continuous (u.5.c.) functions, that is,

Ffunctions which satisfy at every x,
u(x) > lim sup u(y).
¥yX

Check that T is the set of all closed subsets of RY . A classical operator on this set is the so-called dilation,
Tru{x) = suppx -y u(¥). Show that i corresponds to the set operator TX = {x,d(x,X)<r}=X".

The Matheron-Maragos theorem 8.3 and its “everywhere” version (Corollary 8.5) yield a supinf for-
mulation to contrast invariant operators. It is easy to deduce that those operators also have an inf sup
form.

Corollary 8.7 Let T be a supinf operator. Then it also has an inf sup form

Tu(x) = i i 8.6
(x) a&‘fn';‘é%"(y) (8.6)

Proof This follows from elementary Boolean algebra. Let us call “ selection function” any map ¢: B —
Uper B amap ¢(B) € B. Let us call Sp the set of all selection functions. We then have

sup inf u = inf sup u(¢(B
sup inf, {y) onf sup (¢{B))

= inf sup u(y}
*€Sm yeo(8)

Let us note D= {¢(/B),» € Sp}. We obtain

sup inf u(y) = inof sup  u(y)
BeBYEH o(BED yeo )

which indeed is an inf-sup operator. Of course the structuring set D thus obtained for the inf sup form is

not the same as in the supinf form ! o

8.3 From contrast invariant function operators to set operators :
the Evans-Spruck extension

In this section, we consider monotone contrast invariant function operators T which are only defined on
a set of continuous functions. Thus, we cannot associate with them a set operator by the formerly used
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8.3. FROM CONTRAST INVARIANT FUNCTION OPERATORS TO SET OPERATORS : THE EVANS-SPRUCK
EXTENSION

formula, T(X) = T(A1{1x)). Indeed, T is no longer defined on characteristic functions of sets | We shall
see, however, that we can associate with T a set operator T in such a way that ¥, (Tu) = T{X)u) for all A
The method, introduced by Osher and Sethian, has shown to be very powerful in the numerical analysis
of front propagation. We shall need a slightly restrictive assumption, that all level sets of the processed
functions u are compact. In image analysis, images are anyway defined in a compact set ' {in general a
square, a rectangle, a cube, etc.} so that this compactness assumption is no real restriction. Thus, in the
following, we consider a space of bounded continuous functions F defined on a compact set C. The level
sets of functions in F are compact and we can always assume that functions in F are defined in all of
RY : we just make a continuous extension of u preserving compactness of level sets. A standard way to
do that is the periodization proposed in Section 2.2, in which case the level sets become periodic sets and
remain compact provided we endow them with the natural periedic topology.

Let us now explain the Osher-Sethian method. Let X be a compact subset of R” and let us associate
with X a continuous bounded function u(x) such that X be its zero level set :

X ={x, u(x) >0} = Xou (8.7)

Using a distance function to X, that is d(x, X} = inf{|x — y|,y € X}, we can easily build many such
functions, as for example u(x) = — min{1,d{x, X}). We can define T(X), by using (8.7), in the following
way.

Lemma 8.8 and definition (Evans-Spruck). Let F C C°(R™) be a set of real continuous functions.
Assume that all level sets of all functions of F are compact. Let T be o monotone and contrast invariant
operator defined on F. Let X be any compact set of RY and u € F any continuous function having X as
zero level set : X = {x,u(x) > 0} = Xpu. Define

T(X) = {x,Tu(x) > 0} = X(Tw). (8.8)
Then the set T{X) does not depend upon the particular choice of u.

Corollary 8.9 Let ¥ ¢ CY{RY) be a set of real continuous functions. Assume that the level sets of
functions of F are compact. Let T be a monotone and conirast invariant operator defined on F, then the
set operator T defined by (8.8) satisfies

T(Xu) = Xy (Tu)
Proof We can rewrite Relation (8.8) as

T{Apu} = Ao(Tu)
and, replacing u by u — A and using that T{x — A) = Tu — A, we in fact have

T{Xau) = A (Tu) (8.9)

for every continuous bounded function with compact level sets. 0

Remark 8.10 If u > 0, then Tu > 0. Indeed, by commutation with the function g{z) = 0,¥x, we have
T(0) = 0 and by monotonicity, we obtain Ty > 0.
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Remark 8.11 Without the compactness assumption on X, the result of Lemma 8.8 can be false. Take
for instance X = @. Define F = C'(RN) and Tu(x) = supg~ u{x). Take e.g. v(x) = ~1. Then Xov =10
and Xp(Tv) = 0. On the other side, choosing u(x) = _1_+lﬁff we have Tu(x) = 0, so that Apu = @ and
Xo(Tu) = RY. Thus Lemma 8.8 does not work.

Lemma 8.8 is easily deduced from the following comparison result.

Lemma 8.12 Let X be @ compact set and u and @t two non-positive bounded continuous functions satisfying
X = {x,u(x) > 0} = {x,@(x) > 0}. Assume that the level sets of v and U are compact. Then there exists
a continuous nondecreasing function v : IR~ — R~ such that ¥(0) = 0 and u > ${#).

Proof of Lemma 8.8

First reduction :

Without loss of generality, we may assume that u is bounded. Indeed, choosing a bounded increasing
continuous function g such that ¢(0) = 0, we see that v > 0 if and only if g{x) > 0, so that glu) is a
bounded distance function to X. Since T{g(x)) = ¢(Tu), T(g(u)} also is bounded and T{g{u}) > 0 if and
only if T'u > 0.

Second reduction :

Without loss of generality again, we may assume that u(x) < 0 and X = {x,u{x) = 0}. It is enough to
replace # by ©~ = min(, 0). Since T commutes with the nondecreasing continuous function gls) =35, we
have T(u~) = (Tu)~, so that Tu > 0 if and only if T{u~) > 0. We then consider another function & satis-
fying (8.7), which we also assume without loss of generality to be nonpositive. Qur aim is to prove that the
sets {x, Tu(x) > 0} and {x, T'ii(x) > 0} are equal. By Lemma 8.12, there exists a continuous nondecreas-
ing function ¥ such that ¢(0) = 0 and +(i) < u. Since T is monotone and contrast invariant, we deduce
that Tu > T(#{a)) = ¥(Ta). Using ¥(0) = 0, we get Ti(x) = 0 = Tu(x) = 0. The converse implication
is also true by exchanging the roles of u and @ and we conclude that {x, Tu(x) = 0} = {x, T'&(x) = 0}. O

Proof of Lemma 8.12 Since the level sets {x,#(x) > r},r < 0 are compact, it is tempting to simply
set

5 — i .
w(r) ﬁgy)gru(X)

By the definition of ¢,

(y) = Bla(x)).

u(x) > min
a(y)>a(X)
Notice that Tfj(O) = 0. Let us show that ¢ is continuous at 0. Let r, — 0 be an increasing sequence and
x; such that @(xz) > ry and W(re) = u(xy). Then x, belongs to {x,i{x) > n} for every k > . By
compactness of these level sets, a subsequence of x; converges to some X such that (x) > r for every .
Thus #{x) = 0, x € X and therefore u(x) = 0. We conclude that W(re) = u(xy) = u(x) =0, so that ¢ is
continuous at 0. Thus 1 matches all requirements of Lemma 8.12 except one : it is not always continuous
at all points ! This is easily fixed by choosing a continuous nendecreasing function ¢ such that ¥ > 1 and
¢(0) = 0. As an example, 1(r) = T%[ f;r V{s)ds, for r < 0 answers the question, so that we finally have

u(x) 2 $la(x)) > Pla(x)). o

Working version subject to errors, only for personal use. No diffusion authorized. All right reserved. (Version: 15/07/2060)



8.4 THE EXTENSION TO U.5.C. FUNCTIONS

Exercise 8.6 Shot that the function o/ defined in the proof of Lemma 8.12 indeed is continuous. Find

examples of functions u and @ such that ¥ is not continuous {such examples can be found in dimension
.L’V = 1)

Corollary 8.13 (Evans-Spruck extension from periodic functions to periodic sets). Let ¥ C CO(RY)
be a set of real continuous (1, ..., 1)-periodic functions, i.e. functions satisfying u(x + z) = u(x) whenever
z€ EN. Let T be « monulone und contrast invariant opecocor Jifined on F. Then there exists a unique
sef operator T defined on periodic sets by

T(AXu) = X (Tu) {(8.10)

Proof We proceed exactly as the proof of Lemma 8.8, Indeed, the level sets of the considered functions
being periodic, we can define their points modulo ¥, which ensures compactness of sequences of points
in a level set. Thus, Corollary 8.9 also holds and T and T are associated by Relation {8.10). 0

8.4 The extension to u.s.c. functions

Digital images should in principle be continuous, by Shannon’s digitization theory. Now, Shannon's theory
does not take into account the quantization of grey levels, which gives us only a finite set of level sets of
the image (about 2535 in all day technology). If we process each level separately, as is askable if we do
contrast invariant processing, then we consider de facto the image as discontinuous along its quantized
level lines. Assume that we have defined a contrast invariant monotone operator on continuocus functions.
We have just proved that such an operator has an extension to compact sets. It is therefore natural to
extend, by the threshold superposition principle, this operator to upper semicontinuous functions. This
extension will be in practice necessary for digital image processing and we shall use it to extend (e.g.) the
curvature motion to u.s.c. functions.

Definition 8.14 We say that a function u : RY — IR is upper semicontinuous {u.s.c.) if one of the
following equivalent items is true.

(i) the upper level sets XTu = {x,u(x} > X} are all closed.

(i) ot every x € RY, u(x) > limsupy_,x u(y}.

We say that u is lower semicontinuous (Ls.c.) if —u is u.s.c. A renl function u is continuous if and only

if #t is both lower and upper semicontinuous.

Exercise 8.7 Show that the equivalence of (i) and (i) in Definition 8.14 is indeed true. Deduce that every

u.5.c. function attains its mazima and every Ls.c. function attains its minima.

Theorem 8.15 Let F C CY(RN) be a set of continuous functions whose level sets are compact (or
(1,...,1)-periodic} and T a contrast inverignt monotone operator on F. Then T can be extended into a
contrast tnvariant operator, defined for all upper semi-continuous functions whose level sets are compact
{periodic) and commuting with all thresholds :

rY/\(Tu) = T(r'f)'u)

for all &, where T is the set operator associated with T by the Fvans-Spruck method.
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Remark 8.16 As a consequence of the preceding theorem, let F be a set of continuous functions defined
on & compact C (or periodic and defined on R™) and T a contrast invariant monotone operator on F.
Then T can receive two contrast invariant ezfensions : one to u.s.c. functions, T+, commuting with
bounded u.s.c. nondecreasing functions and one to Ls.c. functions, T~, commuting with oll bounded L.s.c.
nondecreasing functions. This last extension built by applying the preceding theorem to T'u = —T{—u}.
Those extensions can be quite different, as shown by the checkerboard ezperiment (Figure 24.9).

Figure 8.1 The chessboard dilemna. Left: chessboard image. Next: result with the finite difference scheme (FDS, Chapter
24) of the curvature motion, applied up to a fixed scate. The creation of a new gray level proves that the scheme is not
fully contrast invariant. Indeed, by Proposition 7.4, a contrast invariant operator does not create new levels. The new
observed gray level corresponds to an average of the existing onea, black and white. The next two images are obtained by the
Evans-Spruck extension of the curvature motion, first under the assumption that the image is u.s.c. and second under the
l.s.c. assumption. Thus, the schemes are in both cases fully contrast invariant and are extensions of the curvature motion as
specified in Theorem 8.15.

Proof of Theorem 8.15 Let F be a set of continuous functions whose level sets are compact and T a
contrast invariant monotone operator on F. By Corollary 8.9, we can define T on compact sets X in such
a way that for any u € F and A € R,

T(Xau) = Xa(T' () (8.11)
For any u.s.c function (with compact level sets) u we define 7" by the threshold superposition principle,

T'(u)(x) = sup{X, x € T(Xau)}

Let us now prove that

(i) T'(x) = T(u) for any continuous function with compact level sets.

(ii) T' is monotone and contrast invariant on the u.s.c functions and commutes with all thresholds,
Ay (Tu) = T{X\u}.
For any continuous function u, we have, by {8.11),

T'(u)(x) = sup{A, x € T(Xau)} = sup{),x € XpT(u)} = T(u),

which proves (1). Let us prove (ii). By Theorem 7.11, 7" is contrast invariant on the us.c. functions if
and only if T is upper semicontinuous. It is easily seen {see Exercise 8.9) that this is true if and only if T
satisfies, for every nonincreasing family of compact sets X, the implication

(= [ X = (T(Xx) = () T(X,)).

JTL9 Y [
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Let us set u(x) = sup{A,x € X} and assume that u is continuous. Then we obtain

T(Xx) = T(Xu) = MT(u) = [ 4,T{(w) = [| T(Xuu) = (] T(X,).
B H<A H<h

Now, u may well be discontinuous. In order to extend the preceding argument, we set, for some fixed A
and g < A,

Y, = {x, dist(x, X,) < A—pn}.
Consider the function v defined by v(x} = sup{g,x € Y,}. Let us show that v is a Lipschitz function

and therefore continuous. For any X and y, such that »(y,) > v(xq), we have y,; € Yy, and xg &
Yooy, )+vixo)ysz- Thus, by the definition of Y, again,

%o & {x, 3y € B(x, (v{¥yo) — v(x0})/2), uly) = (v{ys) + v{x0})/2}

This implies that
dist(xo, Yu(y,y) 2 (v(yo) — v(xo)}/2
and therefore
o = ol 2 3l(30) = (xo)l

Thus v is continuous and we obtain
T(¥3) = ) 1%,
B<A

Now, Vu < A, X, CY,, and by the monotonicity of T on compact sets, T(X ) C T(Y,). We then have

m T(Xu) C ﬂ T(Y,) = T(Ya) = T(Xa).

B A BN
Conversely, T{X1) C [, T(X,) by monotonicity of T. We conclude that T is contrast invariant on the
w.s.c function with compact level sets. 77 also is monotone by the monotonicity of T. a

Remark 8.17 B may change with the extension ! Let us start with a set of structuring elements IB

and its associated operator

Tulx) = 525.9 ;LEI% u(x +y).

Then T is contrast invarient and can receive the contrast invariant extension of Theorem §.15. Now,

contrast invariant eperators have an inf sup form, so that we can assert the existence of a set B’ such that
Tu(x) = inf sup u(x+y).
(x) = inf sup x+y)

It is easily seen that IB' must be in some cases different from B. As an example, if Tu(x) = SUPye pi0,1) u{x+
y) is o dilation by an open ball B(U, 1}, then the extension T' to w.s.c. functions is associated with (e.g.)
B’ = {B(0,1)}, the closure of the ball. The original B cannot work, since T' must transform « closed
level set into a closed level set, while the dilation by an open ball transforms any set into an open set.
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8.5 The who’s who of monotone and contrast invariant opera-
tors.

Let us summarize what we have proved in the preceding section.
First case : F is a set of functions whose level sets are 7 and F contains all characteristic

functions of elements of 7.

Consider monotone set operators T {with T(@8) = @, T(R") = R") and monotone contrast invariant
function operators T. Then, we can either define T from T, by the threshold superposition principle,

Tu(x) = sup{A, x € T(Xyu)} (8.12)
or define T from T, provided the domain F of T contains the characteristic functions, by threshoiding :
T(X) = A (T(Lx)) (8.13)
The relation between T and T is also characterized by the commutation with thresholds,
T(Xyu) = X5 (Tw). (8.14)

This relation being true almost everywhere in X and x. Every contrast invariant operator T' has a sup inf
formulation,

Tu{x) = sup inf u(y}. (8.15
(0 = sup_int u(y) )

where IB is defined from T by the “impulse response” formula,
B={B, 0eT(B))}. (8.16)

For the same B, we also have, by Proposition 8.6, the analytic form (8.1}, that is

x)= |J &~

BeBYeH

We can summarize the full equivalences proved in one sentence.

It is equivalent to define : a set monotone operator T with T(B) = @, o conirast invariant operator T
or an inf sup operator. Each one of the forms of the operator is deduced from each other one with the help
of Formulas (8.12-8.16; above. This equivalence between the three modes of definition is summarized in
the first column of Figure 8.2. It is sometimes easier and more intuitive to define an image operator as a
set operator: we have seen or shall see several examples : the “extrema killer”, the median filter and the

classical mathematical morphology operators {erosions, dilations, etc.).

The case of contrast invariant operators defined on a set of continous functions.

Now, we shall also have cases, namely the case of solutions of partial differential equations, where
the operator is much easier to define as an operator on a set of continuous functions. This will be the
case for the solutions of the curvature motion and the affine morphological scale space. In such cases,
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8.5. THE WHO’S WHO OF MONOTONE AND CONTRAST INVARIANT OPERATORS.

(1) T monotone, T(X) = UBGJB nyeB(X —y).

il
T(Xaw) = Xx(Tu) ae. in A and x
U .
A Tu = T(Xu)
(2) T monotone contrast invariant = for w u.cs = (5) T defined on compact sets
T=TfraiuveC?

f
B = {B.0eT(8)} () = Xa(Tu)
y I

(3) Tu = supgzinfp(u) = {4} T contrast invariant on "

Figure 8.2: Relations between set and function operators. (All operators are monotone and translation invariant - See text
for exact asumptions}.

{1) ¢ (2): Propositions 7.8 and 7.9, (2) = (3): Theorems 8.2 and 8.3, {3) = (4): Theorem 8.3, {4) = (5): Lemma
8.8, Corollary 8.9, (5) = (2): Theorem 8.15.

the Evans-Spruck method applies and we directly define an extension of the operator T as a compact set
operator by Relation (8.14), the relation being then true everywhere (for all A and all x). Then, the opera-
tor T receives an extension T to upper semicontinuous functions, which still satisfies (8.14). In one sentence,

Given a contrast invariant operator T defined on continuous functions, we can define an extension T
which satisfies all of equivalence properties of the first column of Figure 8.2 This situation is again
summarized in the second and third column of the mentionned figure : from the contrast invariance on
continuous functions, we go up to define a set operator on compact sets by thresholding and then a function

operator on u.s.c. functions.

Exercise 8.8 Let T and T be respectively a contrast invarient monotene operutor and a set operator such
that for all A,
X (Tu) = T(Xx{u)).

Show that T is upper semicontinuous. Show that T commutes with all u.s.c. nondecreasing functions g,
i.e. T{g{u)) = g(Tuw).

Exercise 8.9 Let T be set operator such that T(D) = @, T(R™) = RY. Show that T is upper semicontinuous
if and only if, for any family of sets {X\)rem such that X, = Nper Xus one has T(Xy) = Myen TEXL).

F. Guichard, J-M. Morel., fmage iterative smoothing and PDE’s 1o
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Chapter 9

Erosions and dilations

9.1 Erosions and dilations as multiscale contrast invariant oper-
ators

In this chapter, we study with some detail the simplest operators of mathematical morphology. We have
seen in the previous chapter that we can associate with every contrast invariant and monotone operator an
“inf-sup” or a “sup-inf” form. It is natural to study first the operators whose set of structuring elements,
B, is a singleton. In that case, the operators, if they are translation invariant, are simply written as
Tu{x)= sup uly) or Tu(x)= inf wu(y).
YEB+X YeB+X
In the first case, we call the operator a “dilation” and in the second one, an “erosion”. These operators
can be defined on subsets of RY as well. Since we do not wish to be dependent upon a particular choice

as for the size of B, we shall introduce a scale parameter ¢ and consider the family of erosions or dilations
by ¢B.

Definition 9.1 Let B be a subset of RY. Lett > O be a scale parameter. We call dilation with structuring
element B and scele t of a subset X of R™ the set

DX =X+tB={x+y,xe X, yetB} = U(X+y) (9.1}
yeth

We call erosion with structuring element B and scale t of a set X the set

EX ={xx+tBCX}= ] (X -y} (9.2
N

‘This definition is made in such a way that F, and D, be somehow inverse of each other. This is the case
if, e.g., B = {xg} is reduced to a point. Then D, is the translation by tx¢ and E; by —txo. When B is
an open ball centered at 0, we notice that the dilation of X at scale ¢ is nothing but its {—neighborhood,
the set of points which lie at a distance less than ¢ fromm X. When B is a syimmetric set with respecto
to (), ene also defines an cperator called “opening at scale 7, by composing D and E; and a “closing at
scale t” operator by £;D;. These names have the following origin. If B is (e.g.) an open ball centered at
0 with radius 1, then the opening at scale t of a set X is the union of all balls with radius ¢ contained in
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CHAPTER 9. EROSIONS AND DILATIONS

X. Now, the classical, topological, opening of X is the union of all open balls contained in X. Thus, the
opening at scale t appears as a quantified opening. Besides, the classical statement that “the closing of the
complementary is equal to the complementary of the opening” remains true, as shows the next exercise.
Exercise 9.1 1) Let B = B(0,1) the unit open ball. Show that D, E; is the union of all open balls wnth
radius t contained in X,

2} We note X¢ = RN\ X . Show that for any structuring element B, symmetric with respect to 0,
DX = (B X)".

we have Dy (X ) = (B, X)°.

%>

Figure 9.1: Dilation of a set. A set X (in black), its dilation by a ball of radiug 20, and the difference set.

¥+

Figure 9.2: Erosion of a set. A set X (in black}, its erosion by a ball of radius 20, and the difference set.

Definition 9.2 The dilation at scale t of a function uo with structuring element B is defined by

Diug(x) = sup wg{x—y),
Yets

Similarly, the eresion at scale t of function f with structuring element B is defined by
Eiug(x) = yéIlf:BuO(x - ¥)

Exercise 9.2 Show that if B is symmetric with respect to 0, then F(—u} = Dy(u).

Working version subject to errors, only for personal use. No diffusion authorized. All right reserved. (Version: 15/07/2000)



8.1. EROSIONS AND DILATIONS AS MULTISCALE CONTRAST INVARIANT OPERATORS

Figure 9.3: Distance image.

Dilations and erosions as level sets of the signed distance function. Left : a set X, middle :
the signed distance to X, u{x) = d{x, X) if x € X°, u{x} = —d{x, X), if x € X, right : by
quantizing the grey levels of u, as done on the right, one can easily check that the level sets
of u are dilated or eroded of X. Compare with Figures 9.1 and 9.2.

We have defined independently set or function erosions and dilations. Let us now see under which
conditions the definitions coincide. We can use the equivalence scheme described in Figure 8.2 : for the
dilation, we obviously take /B = {—tb, b€ B}. We get

Duufx) = sup uwx+y) o DX = U X-y)= U X+vy,
ye-th ye_ti YetB
where the double arrow + means that the set operator on the right and the function operator on the left

are in a T-T relation, i.e. the threshold superposition principle applies and we have
Dy yu) = A (Dyu) {9.3)

for every real function x, this relation being true x-almost everywhere for almost every A € IR. In the same

way, we take for the erosion B = {—tB}, a single structuring element, and we obtain

Eiu{x) = (x+y)o EX=[](X-y)

inf u
Lt
y YetH

by applying the equivalence scheme. Thus, we have proved the following theorem.

Theorem 9.3 The pair : set dilation, function dilation and the pair set eroston, function erosion, dencted

respectively by D, and £, satisfy the threshold superposition principle and we have
Dy Au) = X (Dw) and E(Au) = X (Fyu), ae inx, a.e in A (9.4)

Exercise 9.3 Let u be a real continvous function on RY™ and consider the dilation Dy associated with
open unit ball. From Formula 9.4, we have Dy(Xyu) = X5 (Dru) for almost every A and almost everywhere
in X. Prove that the set on the left is open and that the set on the right is closed. Deduce that the relation
will be true for every X only if both sets are empty, or equal to RY.

The preceding exercise shows that we cannot expect perfect commutation of dilations with thresholds.
The next proposition gives, however, a framework where that property is true.

F. Guichard, J-M. Morel, fmage iterative smoothing and PDE’s 165
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CHAPTER 9. EROSIONS AND DILATIONS

Proposition 9.4 Let B be a compact (bounded and closed) subset of RN . Let T be the set of closed parts
of RN and F+ be the set of upper semi-continuous functions, that is the set of functions whose upper
level sets Xyu = {x,u(x) > A} are in T. Let F be the set of lower semi-continuous functions, that i,
functions whose lower level sets Xy u = {X,u(x) < A} are in 7. Then for any function u in Ft one has
Dy X,u) = X\ (D;u) and for any function in F~, E\ (X u) = X, (Esu). In other terms, if is equivalent to
directly dilate (resp. erode) u or to dilate (resp. erode) first each level set of v and then define as dilation
(resp. erosion) of u the function which has these level sets.

Proof of Proposition 9.4. We have x € Xy(D((u)) if and only if supyc,pu(x - y) > A. Since u is
u.s.c and therefore attains its maxima on compact sets, this is equivalent to Jy € tB,u(x — ¥} > A and,
setting z = x — y, to Jz € Xy{u) and y € tB, x = z + y, which means x € Xs(u) + tB and is therefore
equivalent to x € Dy (X (u))- a

We now look for a property which is desirable for a family of scaled operators, the recursivity. We
say that the erosions (or the dilations) associated with a structuring element B are a recursive family of
operators if Ey,, = Ey o E, (resp. Dyyy = Dy o D,.) This property is also called “semigroup” property. It
implies that Dy = (D'.)", a very useful computational property.

Proposition 9.5 The erosions and dilations are recursive if and only if their structuring element B is

CONVET.

Lemma 9.6 One has (t + s}B = tB + 8B for any s > 0 and t > 0 if and only if B is convez.

Proof of Lemma 9.6 : If B is convex, then by definition of the convexity, for any s and t,sB +tB is
included in {s + ¢) B, and the reverse inclusion is obvious. Conversely, assume that sB + ¢B is contained
in {s + t)B. Then, for any x and y in B one can find z in B such that (s + ¢}z = sx + ty. This means

2
s+

and ¢, we deduce that B is convex. O

that the barycenter of x and y with weights and ;—i; also is in B. Since this is true for any positive s

Proof of Proposition 9.5 : We do the proof for the dilation. We have
DiDX =(X+sBY+tB=X+sB+tB

and

DiptX =X+ {s+1)B

Since we can take X = {0}, we deduce that the dilation is recursive if and only if {¢t + s)B = tB + sB. By
Lemma 9.6, this is true if and only if B is convex. 0
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9.2. P.D.E.'S ASSOCIATED WITH EROSIONS AND DILATIONS

| S

Figure 9.4: Opening of a set as curvature threshold from above. A set X, its opening by a ball of radius 20, and the
difference between criginal and processed. This opening transforms X into the union of all halls of radius 20 contained in it.
The resulting operation can be understood as a threshold from above of the curvature of the set boundary.

-y

Figure 9.5: Closing of a set as a curvature threshold, from below. A set X, its closing by a ball of radius 20, and the
difference between original and processed. The closing of X is nothing but the opening of X°. It can be viewed as a threshold
from below of the curvature of the set boundary.

9.2 P.D.E.’s associated with erosions and dilations

We pursue the exploration of multiscale dilations and erosions by showing that they are canonically as-
sociated a partial differential equation. We denote by |[|x||s the gauge associated with a convex set B
containing 0, that is

[l¥llg = sup y.z,
Zcl3

where y.Z denotes the Euclidean scalar product of y and z. When B is a ball centered at 0 and with radius
1, l|.llg is the usual Euclidean norm.

Proposition 9.7 (Laz formula [226]) Set u(t.x) = Diug(x) {resp. Eruo(x)). Then u(t,x) satisfies
Hu/ot = [|Dul|.. 4.
(resp. Oufdt = —||Dul|_p) at each point (t,x) where u is C* with respect to x.

Proof. Let us first show the property at t = 0. Assume that up is C? at x. We have u{t, x} = Dug{x)
and u{0,x) = ug{x). Thus

u(h,x) — w{0,x) = sup (ue(x — ¥) — wp{x))
yYehe

¥. Guichard, J-M. Morel, fmage iterative smosthing and PDE’s [ixd



CHAPTER 9. EROSIONS AND DILATIONS

N

.
r(:'f.*?.

Figure 9.6: Erosion and dilation of a real image. On the first Tow, a sea bird image, and its level lines for all levels multiple
of §2. On the second row, an erosion with radius 4 has been applied. On the right, the resulting level lines where the circular
shape of the structuring element {a disk with radius 4) appears around each local minimum of the original image. Erosion
removes local maxima (in particular, all small white spots), but expands minima. Thus, all dark spots, like here the eye of
the bird, are expanded. The third row displays the effect of a dilation with radius 4, and the resulting level lines. We gee
how local minima are removed (see e.g. the eye of the bird) and how white spots on the tail expand. Here, in turn, circular
level lines appear around all local maxima of the original image.

Since up(x} is differentiable at x, we get

u(h,x} — u{0,x) = sup (—Dug(x).y) + o(h)
yehB

= h sup {Dug{x).2) + o(h).
Ze—H

By dividing by h and passing to the limit as h tends to zero, we get

2 0,%) = 1Duo(xl-s (9.5)

which is the announced equation in the particular case where ¢ = 0. Let us prove the same relation at an
arbitrary scale t. Since Dyyp = DDy = Dy, we can write

u(t + h,x) — ult,x) = Dy (u(t)){x) — u{t){x).
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9.2. P.D.E’S ASSOCIATED WITH EROSIONS AND DILATIONS

Figure 9.7: Opening and closing of a real image. On the first row, the original image and its level lines for all ievels multiple
of 12. On the second row (resp. third row), an opening (resp. closing) with radius 4 has been applied. In the level-lines
displayed on the right, we can recognize the circular shape of the structuring element.

We divide by h, let h tend to zero and apply the preceding result with »(t) instead of up. This yields the
general equation. O

Figure 9.8: Opening and closing based dencising. On the first row : scanned picture of the word “operator” with black
dots and a black line added, a dilation with a 2 x 5 rectangle {middle), then an erosion with the same structuaring element.
The resulting operator is a closing. Small black structures are removed by a such process. In the second row : the word
“operator” with a white line and white dots inside the letters, erosion with a rectangle 2 x 5, followed by a dilation. The
resulting operator is a opening. Small white structures are removed.

F. Guichard, J-M. Morel, Image iterative smoothing and PDE’s 188



CHAPTER 9. EROSIONS AND DILATIONS

Figure 9.9: Examples of dencising based on opening or closing, as in Figure 9.8. Here are added on the “operatot” image
some perturbations made of both black and white lines or dots. In the first column, up-down : originai picture, erosion with a
1 x 3 rectangle, then dilation with the same structuring element. In other terms opening with this rectangle. In continuation,
a dilation is applied with a rectangle 3 x 1, and finalty an erosion with the same rectangle. In the second column, the same
process is applied, but with erosions and dilations exchanging their roles. It does not work so well because closing expands
white perturbations and opening expands black perturbations : those operators do not commute. See Figure ?7, where the
median filter applies with more success.
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Chapter 10

Median filters and mathematical
morphology

In the whole chapter, we consider real functions denoted by u(x) and defined for x € #". We make no
assumption at all about their regularity, except for one thing : we shall use the Lebesgue measure of the
level sets of u. Thus, we need to assume that the level sets of u are measurable, which is equivalent to say
that v is Lebesgue measurable. For the mathematical treatment of measurability, we refer to classic books
like (e.g.) ([?]). The Lebesgue measure is the simplest mathematically correct definition of the intuitive
concept of length in dimension 1, area in dimension 2 or volume in dimension 3. Thus all that will be
said will remain thoroughly understandable. We refer to Appendix ?7? for the statement of the Lebesgue
dominated convergence theorem.

In the whole chapter, we consider a “weight function” k(y) defined on R with values in [0, +oo[ and
satisfying

jﬂN k(y)ydy =1.

We call k-measure of a subset B of R" and denote by | B|; the integral

Bl = fB k(y)dy.

Of course, 0 < |B|; € 1. We shall also write, when there is no risk of ambiguity, |B| instead of |B|g. As
a main example for k, let us mention k{x) = CEIXB(D’P), where ¢y is the Lebesgue measure of the ball
B(0,r) and Xgq,,) the characteristic function of the ball B(0,r). The median value (weighted by k) of
a function u« is the result of an attempt to define a sinoothed version of « which does not depend upon
contrast changes. This is done by “averaging” the level sets of «, so that our final definition will be better

understood if we start by defining a median operator on sets.

Definition 10.1 Let X be a measurable subset of BN and k o weight function. We call median set of X
{weighted by k ) and denote by med, X (or medX, since there is no risk of ambiguity) the set

medX = {x,|X —xj; > %} (10.1}

Example 10.2 As a first ezample, let k(x) = ;_];:XB(DJ)(X) in R, Then x helongs to med; X if and
only if the Lebesgue measure of X 1 B(0,r) is larger or equal to the half measure of B(0,r). In intuitive
terms. X belongs to med, X if points of X are in majority around x.
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Example 10.3 The Koenderink-Van Dorn “ dynamic shape” (Section 24). Take k{x) = Gx) =
2
4—'1'—19‘]35-‘]". Then, since fg. Gi(x)dx = 1, we immediately see that the dynamic shape is nothing but a

gaussian weighted median filter.

Let us now extend the set median operator med into a contrast invariant operator acting on measurable

functions.

Lemma 10.4 The operator medy : T = T is a monotone operator satisfying the set continuily property
(7.13), that is : If (Xa)ac R is @ non-increasing family of measurable sets such that Yae R, X» =0parnXy,
then

medg (X)) = Necamedi(X,). (10.2)

Proof Since med; is monotone, we already have medi(Xa) C Nu<amede(X,). Conversely, let x €
NuexmedgX,. Then, by (10.1}, we have for every p, | X, — x[x 2 3. Since X, is a nondecreasing sequence
of sets, all with finite measure, we have by Lebesgue theorem {Appendix 77} | X, — x| — | X5 —xlg. Thus
|X5 — x[x > % and, by (10.1) again, x € medi(Xx}. o

Definition 10.5 and Proposition The median set operator defined on measurable sets has o unique
contrast invariant eztension to measurable functions, obtained by the threshold superposition principle.
This extension has the supinf form
med;(u)(x) = sup _ inf u(y) {10.3}
B>} ¥ebB+X

and satisfies
Xy (med; (u)) = med; (A5 (u)).

Proof By Lemma 10.4 and Theorem 7.11, the median operator medy, defined on measurable sets, has a

unique contrast inva:iv.s ~wrension to measurab’~ functions such that
medg (Xyu) = Xy{medzu)

for every measurable function u. In addition, by Corollary 8.5, the median operator thus defined on
functions has the “supinf” form

(medpu)(x) = sup 1
HER

£
ye%+3 uly),

where B = {B,0 € med;(B).} This immediately yields (10.3).

Example 10.6 In order to understand the consequences of the definition of the median operator in case
of functions whick have “flat” paris and jumps, it is useful to consider the following examples of functions
defined on R with k = 31,15 -

eu(z) =z ifz <0, u(z) =0 iz >0 medeu{0) = 0. In that cose, the median velue coincides with the

supremum.
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eu(r)= -1z <0, u(x)=1i >0 medpu(0) = 1. Notice the symmetry breaking : +1 and -1 are
equally good condidates to define a median value, but our definition of the medien operator gives a privilege
to the larger value,

su(r)=0r<-tux=1if-t<z<} ulz)=2ifz >} medeu(0)=1

Notice that the median velue s, in all of the three cases, different from the mean velue on the same
netghborhood.

Exercise 10.1 Prove that if u attains a fintte number of values, then med(u) takes its values in the range

of u.

Remark 10.7 Upper and lower median operators The median operator, as we have defined it, is not
tnvarient by reverse conirast : we do not have med{—-u} = —med(u) as és clear from the second example

above. Thus, we can consider an alternative definition of for the median operator, as

med, (u}) = inf sup u(y) (10.4}
1Ble>4 B+X
Obuviously,
med; v = —med(—u},

so that both definitions yield the same formalism and properties. In particular, we have
med, X = {x{X — x|z > %}, (10.5)
which is easily deduced from the remark that
med, X = (med; X)",

where X € is the complementary set of X, RY \ X. The choice of med; is more adapted to closed sets and
w.s.c. functions, since, as we shall now see, medy X is closed if X is closed and medu 5 u.s.c. if w is. In

the same way, med, is adapted to open sets and Ls.c. functions.

Theorem 10.8 Let u be a measurable function. Then medyu is an upper semi-continuous function {and

med; u a lower semi-continuous function).

Lemma 10.9 For every subset X of R™, med,X is 2 closed sei (and med, X is an open set.)

Proof If x, € medeX, then [ X — xnle > 3, that is [, k(y — x,)dy > i I xn -+ x, the last integral
converges to [, k(y — x)dy by Proposition 2.2. We obtain [X — x| > %, that is, x € med,(X). 0

Proof of Theorem 10.8 Let u be a measurable function on IRY. By Definition-Proposition 10.5, the
level sets of medu are obtained by applying med to the level sets of u. By Lemma 10.9, the level sets of
med{u) are therefore closed, so that med(u) is upper semi-continuous. One also deduces that med™ {u) is

a lower semi-continuous function from the relation med™ (u) = —med(—u}. ]

We shall now give a very general sufficient condition ensuring first that medgu is continuous if u is and
second that both possible definitions of the median operator, med and med™, coincide on continuous
functions.

F. Guichard, I-M. Morel, Image iterative smoothing and PDE's i3
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O”/é’.“"a.}'ﬁ\" OFCI"OJ'OT

Figure 10.1: Example of denoising with the median filter : scanned picture of the word “operator” with perturbations and
noise made of black or white lines and dots. Middle : first iteration of the median filter with a circular neighborhood of
radius 2, right second iteration. Compare with the denoising by opening-closing experiment (Figure 9.9).

Proposition 10.10 (i) For every measurable function u,
medg (1) > med, (x) {(10.6)
(i) Assume that k satisfies the following property :

VB, B’ such that meas;(B) > % and meas,(B') > %, then BNB #0,

where B denotes the topological closing of B. Then, for every continuous function u, medy (u) is continuous

and
medg (u) = med, {u) (10.7)

Exercise 10.2 Condition (ii) in Proposition 10.10 is very weak and grossly corresponds to the assumption
that the support of k cannot be split into two connected components with measure % Check that if (e.g.)
k is continuous and its support connected, then Condition (ii} holds.

Proof (i) Set A = medy{u}(x) = sup|p), >} infyep4x u(y). Forevery e > 0, we then have meas; (Xar.u) <
3. Thus mease((Xay.c4)°) > § and therefore supy,, . % < A+ ¢ Hence

Ve>0, inf supuly)<Ai+e
|1B|x>3 B+X

Letting € tends to zero yields (i}.
(i1} The assumption on k implies that for all B and B’ with k-measure larger or equal than 1/2 we
have

inf (u) < sup ()
B+X B+X

and since u is continuous,

inf (u) < .
Jof (u) < ;&px(u)

Taking the inf over all B’ and the sup over all B yields

¥x, sup inf u(y) < inf sup uly)
’|31,,3%B+x Bl § B +X

From this tast relation and (i), we deduce the equality of the med and med™ operators on continuous
functions. Now, by Theorem 10.8, the operator med transforms any measurable function into an upper

semi-continuous one, and med™ into a lower semi-continuous one. Thus med(u) is continuous if uis. O
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Exercise 10.3 Show that

sup inf u(y) > sup iInf u{y)> inf sup u(y),
>4 B+X

(8l.> 4 B+X iBl>} B+X P> 4

sup inf u(y) > inf supu(y)> inf sup ul(y).
L BHX [Hl>% B+X [Ble>} B+X

Remark 10.11 Discrete median filters and the “usual” median value.

We define a discrete median filter by considering e measure made of a finite number of Dirac masses J;,
i € {1,.N}, centered at points x;. The locations of the Dirac masses represent the discrete neighborhood on
which the median value will be computed around each point. (Notice that such a measure is not associated
with an integruble function k, so thet Theorem 10.8 does not hold enymore.)
The formula of the median filter can be simplified in that case. We hove

med u(x) = inf sup u(x — x;),
PEP(N), card(P)2N/2 icp
med” u(x) = sup inf u{x — x;)

PeP(N), card(P)>N/21EF

where IP(N) denotes the set of all parts of {1, ..., N}. Let us now denote by M = E(N/2)+1, the smallest
integer larger or egual than N/2. For any set P containing strictly more than M elements, we cun construct
a smaller set P/, with still a number of elements larger than M, by simply removing an element from P.
The sup on P’ is therefore smaller than the sup on P, and since the med operator chooses the smallest
value over IP(N), we can remove such P’s from IP{N) without changing the value of med. We therefore
have, with M = E(N/2) + 1,

ed = inf — X
AU = e Taraerma 0B VT

med u(x) = sup inf w(x —x;)
PEP{N), card(F)=n 1€F
Is it now easy to see that medu(x) (resp. med u(x)} corresponds to the M smallest {resp. M largest)
value out of the real numbers u(x — x1),...u(x — xn) which are the values of u in the discrete neighborhood
of x.

The operators med and med™ are identical if and only if N is odd. Indeed, in that case, M = (N+1)/2
and the M smallest value out of N real numbers is also the M largest value. This is compatible with
Proposition 10.10 ; indeed, if N is odd, then any two sets of cardinality M = (N + 1)/2 made out of N
points must intersect, (Take e.g. N=7, therefore M=4. Two sets of { pizels out of a set of 7 pizels have
necessarily at least one pizel in common.) This is not irue anymore if N is even, and therefore in that case
med and med™ can differ. This is why in general a median velue on an odd number of pizels is preferred.

Now, the discrete median filter can be also defined by putting o weight on each Dirac mass, which is
equivalent to say that neighboring pizels will weigh differently in the computation of the median value. A
simple example is given in Figure 10.2, where the weight is set according to the area of the intersection

between each pizel and a 2 x 2 mask.
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=0
7 2 5 2 o
1 t 6 [ 6
025 o5 10
=0 5 0 4 6 1 0.5 1 o5
0251 03 | g2y
5 4 2 5 5 S
6 3 4 2 7 The musk associuted
10 usel B (2x2 square).
(weight lor cach pixel).
An image u.
Hu, B(ey
[
The histogram of & &1 the poin

Gray levels

Median value,

Figure 10.2: Discretization of a median filter. The digital image (above,left) is considered a8 constant on each square pixel.
The support, of the illustrated median filter is a square centered at zero. The subfigure above, left, shows the intersections of
the nine neighboring pixels with the mask. The values correspond to the areas of those intergections. These values are used
as weights to the pixel values around zero. They permit to build the weighted histogram of the neighborhood of the central
pixel. In this histogram (below), the values 0 and 2 appear once with weight 0.5, the value | appears once with weight 0.25,
the value 2 does not appear, the value 4 appears once with weight 1 and once with weight 0.25, resulting in a histogram value
of 1.25, etc. The obtained median value is 4.
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Exercise 10.4 By arginf,, f(m), we denote a value of m (if any) at which f attains its infimum. Consider
N real numbers z;.

(i) Show that their mean value satisfies

1N N
~ Z x; = arginf Z(Ii -m)
. i=1

i=1

Show that

N
med™ (zx;) < arginf,, Z l#; — m} < med(x;).
i=1
{ii) Set k = N, where B is a set with Lebesgue measure equal to [, Denote by medgu the “median value
of u in B” defined by medgu = mediu(}). Consider a bounded and measurable function u on B. Show

that
/ u= arginfm/ {m — u(x)) dx
B XeH

medzu + medpu
2

and

med (u) < arginfmf | — u{x)|dx = < medg(u).
XeH

(#1i) Conclude that the mean (resp. median) value is the “best” constant epprorimation with respect to the
L? fresp. L'} norm.

Figure 10.3: Denoising properties of the median filter. Left : image altered by a 40% salt and pepper noise. Right : Three
iterations of the median filter on a 3 x 3 square mask.
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CHAPTER 10. MEDIAN FILTERS AND MATHEMATICAL MORPHOLOGY

Figure 10.4: Smoothing effect of the median filter on level lines. Above : original image, then all of its level lines (boundaries
of level sets) with levels multiple of 12, then level lines of level 100. Below : result of two iterations of a median filter on a
disk with radius 2, then corresponding level lines (levels multiple of 12), then level lines with level 100.
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Chapter 11

Asymptotic behavior of contrast
invariant isotropic operators
(Dimension 2).

In this chapter, we consider the “inf-sup” operators introduced in Section 8.2,

Tu—= inf sup uly). 111
HEByexS—H (¥) (1.1}

Since T'{u) = —T(—u), every statement about T will be easily adapted to “sup-inf” operators
T'u(x) = sup inf u(y) (11.2)

Bep YeX+8B

By Theorem 8.3, we know that all monotone contrast invariant and translation invariant operators have
an “inf sup” (or supinf) form. Conversely, we know by Theorem 8.15 that all operators in the form (11.2}
or (11.1), being contrast invariant, can be extended into contrast invariant operators defined on a space
of u.s.c. functions. Thus, our asymptotic anaiysis of contrast invariant operators will be fully general if
we adopt the “inf sup” formalism. In order to simplify the analysis, we shall, in addition, assume that the
considered operators are isotropic, that is, JB is invariant under all linear isometries R of R?> : RB = B.
In this chapter, we also assume that B is bounded, that is, B C D{0, M) for every [ in /B and some disk
D(0, M). The action of such operators seems a priori to open a wide range of possibilities, as many as
possible sets of structuring elements. We shall see that this freedom of choice is rather an illusion. Let
us introduce a scale parameter i > 0. We associate with /8 and T the scaled family By, = hJB and the
scaled operator Tj, defined by

Thu(x) = sup inf u(y).
) Behm YEX+8B Y)

In fact, we shall prove that when h tends to zero, the action of T), on smooth functions u is described by
a fairly small set of possibilities.

We shall prove a theorem which plays the same role for isotropic contrast invariant filters as Theorem
3.2 plaved for linear filters. As a main example, we shall prove that if T is a shrinked median operator,

then

Thtt — 1 = Chcurv(n)|Dul + o(R%).



CHAPTER 11. ASYMPTOTIC BEHAVIOR OF CONTRAST INVARIANT I1SOTROPIC OPERATORS
(DIMENSION 2).

Thus, the operator |Du|curv(u) = D%(ﬁ,l:r, -ﬁ)—“:‘-} plays the same role for contrast invariant operators as
the laplacian Awu for linear ones.

11.1 Asymptotic behavior theorem.

In the following, we set
H{a) = Tiz + ay®)(0), (11.3)

where T[z + ey?] stands for “T'(u) with u(z,y) = r + ay®”. Since T is monotone, H is a nondecreasing
function, which is, in addition, Lipschitz. Indeed, by the monotonicity of T and the boundedness of 1B,

T[CC+ a1y2](0) — |as — (11ng < Hiap) < T[I-l“ a;yz](ﬂ) + | — Ctlsz

and therefore
|H{an) — H(ay)| < M*|az — e, (11.4)

where we have used the fact that all elements of BB are contained in a disk D(0, M).
Let us also note the following relations :

Th[z] = hT[z] = hH (D) {11.5)
Tz + ay®)(0) = ATz + hay®|(0) = hH{ah) {11.6)

Theorem 11.1 Let B be a family of structuring elements in IR? which is bounded ( VB € B, B C
D0, M)) and isotropic (if B € B, then RB € BB for every linear isometry R of R?}. Let Tu(x) =
infpem supyexypuly) (or Tu(x) = supge p infyextp u(y)) and define the rescaled operator

Thu(x} = Bg&y:;ﬂﬂﬂ(y) ( resp. Thu(x) = Bseuhpﬂyelgisu(y) )-

Then for every C? function u on IRZ,

(Thu}{x) = u(x) + AT [z](0)| Dul(x) + O(h*).

Proof. Since T(u — u{x)) = Tu — u(x), we can impose without loss of generality u(x) = 0. T being
translation and isometry invariant, we can choose the origin 0 at x, and orthogonal axes (f, f) satisfying
i= ,%[(0) and § = (Dut/|Du|)(0) when Du # 0. Since u is C?, we can by Tayler formula write for
¥y = (z,y) in a neighborhood of 0,

u(y) = pz + O{yl*), (11.7)

where p = |Dul|((} > 0. From (11.7) we deduce that for every ¥ = (z,y) in AD(0, M}, we have
pr — O(h*) < uly) < pz+ O(h?).

Let us apply Ty to both members of this relation. By the monotenicity of Th, and since every hB is
contained in D(0, M k), we deduce that

Thu() = Ta[p2](®) + O(A?). {11.8)
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11.1. ASYMPTOTIC BEHAVIOR THEOREM.

Using (11.5), we have Thu(0) = hT[pz](0) + O(h?} = ph({T|z}(0)) + O(h?), which proves the theorem, since
p=Du(0). o
Let us state an informal but meaningful conclusion yielded by the preceding theorem. Let T be a contrast
invariant and monotone operator. The first “test” to which T must be submitted is simply to compute
its action on u(x} = u(x,y) = z. If T[z](0) # 0, then when the scale h of a scaled operator T, tends
to zero, Tj behaves like a dilation if T[x]{0) > 0 and like an erosion otherwise (See Propositicn 9.7).
Thus, if T[x](0) # 0, there is no use to define it with complicated sets of structuring elements : they all
vield asymptotically an erosion or a dilation which can be performed with a single and simple structuring

element : the disk.

Exercise 11.1 An analogous statement when T is no more isotropic : show that under the same assump-

tions as in Theoremi1.], except the isotropy of T, one has
(Thu}(0) — u(0) = RT{Du(0) X[(0) + OLh?).

We now consider the case where T[x]{0) = 0. In such a case, the operator T' has a desirable symmetry : If
we understand Tu{x) as a kind of average value of u in a neighborhood of x, the assumption T'[z](0} = 0
is of very sound. It means that all isotropic averages of u{z,y) = = around {0,0) should be 0.

Theorem 11.2 [et B be a family of structuring elements in R® which is bounded ( VB € B, B C
D0, M)} and isotropic (if B € B, then RB € B for every linear isometry R of R?).

Let Tu{x) = infgep SWPyexyn (Y} (or Tu(X) = suppepinfyexsu(y)) and define the rescaled
operator

Thu(x) = St yé;ﬁs u(y) {resp. Thui{x) = Sup yégiBu(y) 2

Set H(h) = T{z + hy*}(0} and assume that H{0) = T[z](0) = 0. Then for every C° function v on R :
(1) On every compact set K contained in {x, Du(x) # 0},

Thu{x) = u(x) + h}Du(x)\H(%h curv(u}) + Ox (h3),

where |Ox(h®)| < Cih® for some constant Cy depending only on u and K.
(i} On every compact set K of R?,

Trulx) — u(x)] < M| D2uix)]] + Ox (h%),

where [Ox (RP) < Cih® for some constant Cyx depending only on v and K.

In (ii}, we notice that D?u{x} is a 2 x 2 matrix and we take ||4|| = fa| + b + |¢| + |d| as a norm for such
a matrix 4 = Z 3 ) . As a canonical application of the preceding theorem which we will develop later

in this chapter, the reader may think of the median filter. Indeed, the median filter does not alter linear
functions and we therefore have H(A) = med(px)(0) = 0.

Proof. We adopt the same notation as in the proof of Theorem 11.1, take again and without loss of

generality x = 0, u{0) = {} and set again, for (z,y) in a neighborhood of 0,

u(z,y) = pr +ax’ + by® + exy + O(2% + 47|} (11.9)
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CHAPTER 11. ASYMPTOTIC BEHAVIOR OF CONTRAST INVARIANT ISOTROPIC OPERATORS
(DIMENSION 2).

We refer to Section 5.4 for a detailed account of the notation and the differential interpretation of p, a, b,

¢. Note that by Taylor formula,
O(l=* + 2} < 1D%u(0)lli=® + ¥*|%. (11.10)
The same reasoning as in Theorem 11.1 and an obvious rescaling yield
Thu(0) = hT[pz + ahz? + bhy’ + chay)(0) + O(h*) = hT(ux(z,3))(0) + O(h*), (11.11)

where we set u(z,y) = px + ahx® + bhy? + chay. In order to prove the theorem, we have to show that ¢
¥ P Y ¥ p

and a play no role in the asymptotic behavior of Tun(0} = infpem supp ua.

Step 1 : An estimate. If (z,y) € B € BB, then
pz — hja| + |b] +1c)M? < un(z,y) < pe + h(lal + [b] + |e))M>.
By assumption, T'(pz) = 0, and we obtain, by applying T} to the inequalities,
[Tun(0)| < h{lal + [b] + |e[}M*. (11.12)

Returning to the definitions of @, b, ¢, using Relations (11.9) to (11.11) and remarking that D3u{x) is
continuous and therefore bounded on each compact set K, we deduce the assertion (i) from (11.12).
From now on, we focus on {i) and assume that p # 0. We set

C = (la| + [bl + ]y M2

Step 2 : First reduction. By Step 1, for every B € IB, we have
Slép up > érengﬁ sgp up = Tup(0) > —Ch.
Now, if {(z,y) € B and & < —2Ch/p, then
un(z,y) = pz + ahz? + bhy? + chzy < —2Ch + A(la| + |b] + e M* = -Ch.
Let us set C" = % We obtain
VB € B supuy = sup up,.
B Br{(z.yhe>—C'h}
Step 3 : Second reduction. Since T'up(0) < Ch (Step 1), one does not need to consider the sets B
for which supguy, > Ch. If supy up < Ch, then

Y(x,y) € B, pr + ahz® + bhy® + chay < Ch

and therefore

2Ch
P

r< %(Ch + (ja| + |l + e M3R) < =C'h.
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11.2. MEDIAN FILTERS AND CURVATURE MOTION.

Hence,

Tup(0) = up up (11.13}

inf s
BeB.BC{{z.y). 2<"h) g
and by Step 2,

Tun(0) sup up(z, ). {11.14)

= inf

BeB B {(z.y). <C"h} Brf(z.y), x> —C"h}
Now, for those (z,y}, belonging to B C {{x,y},x < C'h} and satisfying z > —C"h, we have |ahz® +chay| <
C"h? and therefore us(z,y) = pz + bhy® + O(A?). Thus (11.14) implies

T(un)(0) = Tlpx + bhy*|(0) + O(A?). (11.15)

Conclusion. Using the definition of H, H(A) = T[z + hy®]{0}, we obtain
bh
Tru(l) = T (up)(0) = th(;) + O(R®). (11.16)

Since, by Formula (5.5),
b= %curv(u)}Du[(U)
and p = |Du|(0), we obtain the relation announced in (i), at x = 0. Now, all computations have been
done with the origin fixed at x = 0. If we let vary x in a compact set K on which p = |Du(x}] # 0 (so
that p = |Du{x)|, a, b, ¢ now depend on x), then we have for some positive constants cx and Cg only
depending on K and u,
Pk, lal, |b, Jef € Ck.

Indeed, x = D?u(x) is continuous and therefore a, b, ¢ are bounded on each compact set K. By compact-
ness again, the lower bound ¢x of p on A is attained and therefore positive. It then easy to check that
the constants C{x) and C'(x) involved in the preceding proof also are bounded independently of x on K.
Thus the O(h*) involved in (11.16) is uniform on K. The same argument applies to the statement (ii),

which we have proven above at x = (). u}

11.2 Median filters and curvature motion.

We recall that the median filter, med, defined in Chapter 10, can be written, as in Formula (10.3) :

medgu(x) = su inf  u(y}. 11.17
k(x) |B:£%Y€B+X {¥) ( )

In the following, we take as a first example for & the uniform measure on a disk D2(0, 1}, so that

and we shall examine only continuous functions. This entails by Proposition 10.10 that med and med™
are simply equal. So we shall simply write “med” and talk about “the” median filter. The “infsup” form
of the median filter on continuous function is given by

med pep pyu(x) = inf sup  u(y).
measB>1 BCL{O.A) YeEX+B
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CHAPTER 11. ASYMPTOTIC BEHAVIOR OF CONTRAST INVARIANT ISOTROPIC OPERATORS
(DIMENSION 2).

The main result of this section gives an infinitesimal interpretation of the median filter. This theorem will
be generalized in the next chapter to much more general weighted median filters {Theorem 12.1).

Theorem 11.3 Let u be @ C* function in R*. Then
(i) medpo pyu(x) = u(x) + scurv(u) Dul(x)h? + Ox(h),
where Ox (h3) < cxh® on every compaet subset of {x, Du(x) # 0} and
(i6) tmed o nyu(x) — u(x)| < ||Du(x)||h* + Ox(h*)

where Ox(h®} < cxh® on every compact subset of R”.

Figure 11.1: The erosion does a smoothing independent of the curvature of the level lines. Left : image of a simple shape.
Right : difference of this image with its eroded by a ball with radius 6. We see in black the points which have changed. The
width of the difference is constant.

1
|

A .
" -
e

A

g

Figure 11.2: Median filter and the curvature of level lines. The median filter does a smoothing linked to the curvature of
the leve! lines. Left : image of a simple shape. Right : difference of this image with itsell after it has been smeothed by one
iteration of the median filter. We see, in black, the points which have changed. The width of the difference is proportional
to the curvature, according to Theorem 11.3.

Lemma 11.4 b
medD(Dsl)[:r + hyz]([)) = 5 + O(hs)
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11.2. MEDIAN FILTERS AND CURVATURE MOTION.

P(h)

y=1

D01y

0 m(h) I3

y=-1

Figure 11.3: When & is small, the parabola P(h) with equation z +hky? = m divides D(0, 1} into two connected components.
The median value m{k) of  + ky? on D(0, 1) simply is the value m for which these two connected components have equal
area.

Proof. When h is small, the parabola P(h) with equation z+ hy® = m divides D(0), 1) into two connected
components. By Definition 10.1, the median value m(h) of x + hy® on D(0, 1) is defined as the value m
for which these two connected components have equal area. The whole geometric situation is shown in
Figure 11.3. The algebraic area between the Oy axis and the parabola is (for |y| < 1)

! ) 2h
/ (m(h) — hy”)dy = 2m(h) - —‘?
—1 3
Thus m{h) is the median value if and only if
2m(h) — 2h/3 = 2area{ ABE) (11.18)

where ABE denotes the curved triangle bounded by the parabola, the circle and the line y = 1. This area

could be explicitly computed, but we prefer to give it the simple bound : w. Now, the length

of (AB) is |m(h) — h] and the length of (BC) is less than (m(h) — 4)?, so that {11.18) implies
[2m(h) — 221 < m{#) — hf*.

We conclude that m(h) = h/3 + O(h®), as announced. O

Proof of Theorem 11.3. The operator

Tu(x) = med g,y 1(x)
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{DIMENSION 2).

Figure 11.4: Fixed point property of the median filter, proving its grid-dependence. On the left, original image. On the
right, result of 46 iterations of the median filter with a radius of 2. The resulting image turns out to be a fixed point of the
median filter with radiug 2. This is not in agreement with Theorem 11.3 showing the median filter moving images by their
curvature : the image on the right clearly has non zero curvatures ! Now, ihe discrete, pixelized median filter which we have
applied here is grid-dependent and blind to small curvatures.

satisfies the conditions of Theorem 11.2. By Lemma 11.4, the function H associated with T satisfies
H(0) = 0, so that the conclusions (i) and (ii) of Theorem 11.2 are satisfied. From Theorem 11.2 and

Lemma 11.4 we obtain "
Hh) = 3+ OR*)

Thus Relation (i) in Theorem 11.2 yields
1
med po,nyu(x) = u{x) + h|Du(x)|(Ehcurv(u)) + O(R%)

on compact subsets of {x, |Du(x)| # 0}. o

Figure 11.5: Comparison between iterated median filter and median filter : Top-middle : 16 iterations of the median
filter with a radius 2, top-right : one iteration of the same median filter with a radius 8. Below : for each image, the
level-lines for grey levels multiple of L6, To iterate a small size median Elter results in more accuracy and less shape-mixing
than to apply a large size median one. See the comparison besween the Koenderink-Van Dorn shape smoothing and the
Bence-Merriman-Osher iterated filter in Chapter 3, in particular Figures 3,10, 3.9, 3.12 .
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11.2. MEDIAN FILTERS AND CURVATURE MOTION.

Second application : the Catté-Dibos scheme

Theorem 11.5 Let IB be the set of all segments of the plane with length 2 and centered at zero. Set

ST = inf 4
) = b g )

and, similarly,

T500) = 38, 1)

Let u be a C® function in IR?. Then

%(ISh + SIp)ulxe) = u(xp) + A® icurv(u){DuK)cg) + O(hY)

if Du(xq) # 0.

Figure 11.6: Consistency of the median filter and of the Catté-Dibos scheme with curvature motion. On the first row, the
sea bird image and its level lines for all levels multiple of 12. On the second row, a median filter on a disk with radius 2 has
been iterated twice. On the third row, an inf-sup and then a sup-inf filter based on sepments have been applied. On the
right : the corresponding level lines of the results, which, according to the theoretical results, must have moved at a normal
speed proporticnal to their curvature, (Theorems 11.3 and ?77). The results are very close. This vields a cross-validaticn of
vwo very different numerical schemes implementing the curvature motion.
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CHAPTER 11. ASYMPTOTIC BEHAVIOR OF CONTRAST INVARIANT ISOTROPIC OPERATORS
(DIMENSION 2).

Proof. Let us compute the function Hy(h) = ISy{z + hy®](0) associated with [S,. Writing (r.y) =
(r cos @, rsin#) in polar coordinates, we have

H (h)= _inf sup {rcosf + hrisin’6).
-F<8<E 1<r1

Since, for & > 0, the function r — rcosf + hr?sin’8 is increasing when r > 0, we obtain

Hi(h)= inf (cosh + hsin®6) =h
~3<ecy
if k> 0 is small enough {e.g. h < §). If h < 0, we have Hi(h) = 0 because rcosd + hrisin®f < cosf.
By doing exactly the same computations for SIi, we get in that second case for the associated function
Ha(h) = h~. We notice that in both cases, H;(0) = 0, so that the conclusions (i) and (ii) of Theorem 11.2
apply. Adding the relations (i) thus obtained for IS, and SI yields the announced result. ]
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Chapter 12

Asymptotic behavior of contrast
invariant operators (Dimension N)

We now consider a generalization of the asymptotic results of the preceding chapter to arbitrary dimensions.
Our aim is to show that all inf-sup filters, when rescaled, are equivalent to a motion of the volumic image
by its principal curvatures. We refer to Section 5.5 for the definition of principal curvatures of a level
surface. We shall then, as in the preceding chapter, analyse several multidimensional filters. We shall in
particular relate the median filter to the mean curvature of the level surface.

12.1 Asymptotic behavior theorem in arbitrary dimension.

Qur main asymptotic theorem will be a simple adaptation to arbitrary dimensions of Theorems 11.1 and
11.2 ; the proof will be basically the same. We just need to fix some notations. We consider the Euclidean
space RY, and if x € RY weset x = (2,42, .., yn) = {2, y), so that y € RV 1. We also set b = (be, ..., by)
and for any h > 0,

H(b) = T(zy + bayd + ... + byyd ) 0) {12.1)
where

Tu(x) = ;161[; YEL’I%erBu(y)

In this chapter, IB is assumed to be a set of parts of J#® which is invariant by linear isometries of R
and such that all elements of IB are contained in a ball B(0, M). As in the preceding section,

Tlx1 + h(bay3 + - + byl

is a short notation for

“T{u) with u(x) = u(z,y) = =) + h(bays + ... + byyd)".

Since T is monotone, & is a nondecreasing function with respect to each b;. It s, in addition, Lipschitz,
by the same argument yielding (11.4) :

|H{b) ~ H(b"Y < M2[b—¥l. (12.2)

If u(x) is a €3 function, we dencte, as in Definition 5.15, by &{u) = (ka2,...,xn) the N — 1 eigenvalues of
the restriction of D?u(x)} to the hyperplane (Du}* orthogonal to Du (provided Dwu # 0.) The &, are the
principal curvatures of the level surface of u, {y¥, v{y) = u{(x}} passing by x.
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CHAPTER 12. ASYMPTOTIC BEHAVIOR OF CONTRAST INVARIANT OPERATORS
(DIMENSION N)

Theorem 12.1 Let B be a family of structuring elements in RY which is bounded ( VB € B, B C
B(0, M)) and isotropic (if B € B, then RB € IB for every isometry R of RN).

Let Tu(x) = infge i SuPycxp uly) or Tu(x) = supgepinfyex+s uly) and define the rescaled oper-
ator

Tru(x)= inf sup wu(y) { resp. Thu{x}= sup
BehB

inf
BehBycx+B X+ uly) )

¥Ye

Then, setting H(b) = T{z1 + bay? + ... + byy%](0) and assuming that u is a C* function on RV,
(i) if H{0) # 0, then
(Thu)(x) = u(x) + hH (0)| Dul(x) + O(h®);

(i) if H(0) =0, then on every compact set K contained in {x, Du(x) # 0},
Thu(x) = u(x) + kI DuGx) | H (i 3m(w) + Ox(h);

where [Ox(h®)| < Cih? for some constent Cx depending only on u end K;
(iii) if H(0) = 0, then on every compact K of RV,

[Tau(x) — u(x)| < h*M*| D*u(x)]| + Ox(h*),

where |[Ox{h?)| < Cxh® for some constant Cx depending only on u and K.

Proof. This proof follows exactly the proofs of Theorems 11.1 and 11.2 ; we simply have to adjust the
preliminaries of the proof of Theorem 11.1. We notice that T{u — u{x)) = Tu — u(x) and that, T being
transiation and isometry invariant, we can choose the origin 0 at x, and the orthogonal axes (T1,.nin) 50
that i = T%EI(O) if Du # 0 and 72, ...,in are the eigenvectors of the restriction of D?u(x) to the hyperplane
Du(x)*.

Since u is C%, we can therefore write
u(X) = pz + az® + boy? + ... + bayk + (cy)z + O(x[®), (12.3)

where p = {Du|(0) > 0, ¢ = {ca, ..., £n), .y denotes the scalar product in RV~ and for { = 2,..., N,

b= §5£(0) = $D%u(@R)
a = 14(0) = 1D%u(i1, 1)) (12.4)

o2 o *
G = Tg"yi(o) = D?uliy,u).

In addition, if p # 0, we have
1
b = §|D”l?€i{“)(0)~ (12.5)

From this point, the proof of Theorem 12.1 is identical to the proof of Theorem 11.2. We simply have to

replace in formulas (11.9) to {11.15) the expressions “cxy” by “z(c.y)”, “by®” by “bayi + ... + bayh
“curvin)? by “s{u)”. Of course, “|¢|” denotes the Euclidean norm of ¢ in RN-L, 0

and
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12.2. ASYMPTOTIC BEHAVIOR OF WEIGHTED MEDIAN FILTERS IN ARBITRARY DIMENSION.

Figure 12.1: Three dimensional median filter. The original three dimensional image is made of 20 cuts of a vertebra. We
display on the left column three succesives cuts, and on the next column their level-lines with levels multiple of 20. The
next colurun shows these three cuts after one iteration of the median filter done with a 3D ball of radius 2, and the resulting
level-lines.

12.2 Asymptotic behavior of weighted median filters in arbitrary
dimension.

in this section, we consider C? real functions u defined in B" and a radial, nonnegative, continuons
function k{x} = k{|x|} satisfying [~ k(x)dx = 1. We have defined the measure with density k by

lE|k:/Ek(x)dx

and the median operator, weighted by &k by Formula (10.3), that is

d = inf 12.6
medg (u){x) ;;ﬁ:gyégﬁ u(y) {12.6)

We assume also that k satisfies the assumption of Proposition 10.1¢, so that for continuous functions x,
med, u and med,u coincide. This is true, e.g., if k is continuous and if the set {x, k(x) > 0} is connected.
We now give an infinitesimal interpretation of the median filters. In order to do so, we “shrink” k(x) into
kp(x) = h*Nk(f—‘), which corresponds to the scaling of the structuring elements by a factor h. Without
risk of confusion, we write med,, for med,,. We have analysed in the preceding chapter the asymptotic
behaviour of the median filter in two dimensions when k is the characteristic function of a disk. The aim
of the next theorem i3 to adress, in arbitrary dimension, more general forms of &. We shall not make the
analysis in full generality, because this would be uselessly heavy. We shall just treat the case where k is

smooth and compactiy supported. We shall also adress the case where k is no more compactly supported,
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but in that case we won’t be in a position to apply Theorem 12.1 because the set of structuring elements
is then no more bounded. We shall adress and solve later this difficulty, in Chapter 77. As a canonical
example of application of the next theorem we can think of the case where k is the Gauss function.

Theorem 12.2 Let k be a radial nonnegative function with integral I in the Schwartz class S. We assume
that the support of k is compact, connected, and contains 0. Then, there ezists a constant c(k) such that
ifu is a C° Lipschitz function in BN, then

(i) On every compact set K contained in {x, Du(x) # 0},

(mednu)(x) = ulx) + A2 Dul)letk) B pxi(w) + Oxe(A):

where |Ox(h*)| < Cxh® for some constant Cg depending only on u and K.
(i) On every compact K of RY,

imedau(x) — u(x)] < A*M2[ID%u(x)|| + Ox(h*),
where [Ox(h?)| < Cgh? for some constant Cy depending only on u and K.

Lemma 12.3 Let k be a radial nonnegative function witk integral 1 in the Schwartz cless 5. We assume
that the support of k is connected, and contains 0. (We do not assume that the support of k is compact, so
that the Gauss function is a valid ezample). Then the function H{hb) = medy[z + h(bay3 +... + baya ) {0
associated with the weighted median filter by Relation (12.1) satisfies

H(hb) = c(k)(Z{Labi)h + ofh),

where R
SRy yak(y)dy

IRN—I k{y)dy .
and y= (y"’ -~-:.UN) € BN_I, b= (62; "-vbN) € RN

clk) =

Proof. Repeating1 L ma i .4, we notice that the median value m(h) = med, {:c+h(bgy§+
o+ by )](0) is defined by

m(h)—h(bays+...+bryd) .
f dyf E({z? +y*)T)dr = 0. (12.7)
mN—‘l

H

This formula uniquely defines m(h) because its first member is a strictly increasing, continuous function
of m{h) in a neighborhood of (. Formally differentiating (12.7) with respect to A ylelds

) [+ () = b =+ )y =

[m_‘wey% v+ bABRR((Y? - (mlR) = A(b2y] + . + by )y

In order to reduce the size of formulas, we set

wla,h) = [wl(bzyé o+ by R R + (2 — R(boys + o+ bayi )y, {12.8)

Working version subject to errors, only for personal use. No diffusion authorized. All right reserved. (Version: 15/07/2000)



12.2. ASYMPTOTIC BEHAVIOR OF WEICHTED MEDIAN FILTERS IN ARBITRARY DIMENSION.

wah) = [k (0= b 4+ b)) (12.9)

These functions are well defined, €™ and positive for small a and A because of the assumptions on k. So
we obtain
m' ()i (m(h), h) — @(m(h), h} = 0,

and formally again,

ey P00} ,
m'(0) = (0.0) - (Eilabs)

Jrvo1 vik@dy
Srwos Ky)dy

This formal computation is easy to justify. We simply introduce the ordinary differential equation
Y{m(h), h)
wlr(k}, k)’
which has, by Peano Theorem ([7]), a solution on some interval [0, ho[. Indeed, the second member of

(12.11) is C*° with respect to h and m{h). Multiplying both members of {12.11) by w(fm{h), h) and
integrating between ( and A yields

Al =hibayd+.. +bnyd) L
/ dy[ k{{z* + 4*)3)dz = 0. {12.12)
RN 0

e(k) (57 5b:). (12.10)

' (k) = m(0) =0, (12.11)

Thus m{k) satisfies {12.7} and therefore m(h) = Mm(h) on [0, hq]. As a consequence, (12.10) is true. We
can also differentiate {12.11) as many times as we wish with respect to A and we therefore obtain by Taylor
formula

H(hb) = m(h) = c(k)(EN b))k + O(R?).
In addition, since ¢ and 1) and their derivatives with respect to a and k are continucus functions of ¥ at

any order of derivation, the obtained O{h?) is obviously uniform if b = (bs, ..., by) stays in an arbitrary
compact set of RY-1, |

Proof of Theorem 12.2. The operator Tu(x) = medex has a “supinf” form and his set of structuring
elements .
B ={B, |B|x > 5, B C Support{(k)}

i5 1sotropic and bounded. Thus, 7" satisfies the conditions of Theorem 12.1. By Lemna 12.3, the function
H associated with T satisfies H(0Q) = 0, and we obtain the conclusions (i1} and (iii) of Theorem 12.1. Using
Lemma 12.3 yields

H{hb) = clk)(Ziob: 30 + O(R)

and therefore, by Theorem 12.1(ii),
3 1
(medpu)(x) = u(x) + h‘\Du(x)lc(k)(iz?zgm(u))) + Ox(h?)

with |Ox(h*)| < Ok (h*) on compact sets K where |Du(x)| # 0. The assertion (i) follows immediately
from Theorem 12.1{11). a
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Exercise 12,1 Adapt the proof of Theorem 12.2 and of Lemma 2.3 to the case where k only is C° and
compactly supported, with connected support containing 0 in its interior. (As an ezample, we can take k
proportional to the charucteristic function of the unit ball).

12.2.1 The three-dimensional case

The third dim r:<isn opens many degrees of freedom in rhe synthesis of contrast invariaut operators with
respect to dimension 2 ; indeed, we can now play with two variables instead of one, the principal curvatures
of the level surface, which we order so that &3 < x. We list a series of examples which are easy applications
of Theorem 12.1. We shall in the following formulas consider a two-dimensional set B and we set B =
{RB, R € 50{3)}. The set of struciuring elements BB is ocbtained by rotating in IR? a single subset of
IR? in all possible ways. We set, as usual,

Shu(x} = Bseufﬁ yel’rét;au(y)

and

IS\ u(x) = BIEI;fB )'GS;RB u{y).

We then have the following formulas.

o If B is a segment with length 2 centered at 0:

1
IStu=u+ ﬁhznﬁDu[ + O(h?),
IS (ST =u+ %hQ(sign(m(u)) + sign(ko(u))min(jrt|, [k2]) + O(R?).

o If B is made of two symmetric points, (1,0,0} and (-1, 0, 0),

IShu=u+ %hzli)u\min(m(u), Ka(u)) + O,

Shyu=u+ %h‘zwmmax(m(u), ko () + O(AY),
ISW(ST)u = 1+ L R1Dul(sa () + () + O(RY).
The last formula yields the mean curvature of the level surface of u at x.
o If B is made of two orthogonal segments with length 2 each and centered at 0,
IShu =+ h2|Du|%(m(u) + ra(u)t + O(RY),

Slwu=u+ hg\Dm%(m(u) + ralu))” + O(BY).

Of course, one can get directly the mean curvature by simply taking for B the endpoints of both orthogonal
segments. Another pessibility to obtain the mean curvature is to alternate the preceding schemes, or to
add them.
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12.2. ASYMPTOTIC BEHAVIOR OF WEIGHTED MEDIAN FILTERS IN ARBITRARY DIMENSION.

Sketch of proof. In order to prove the preceding formulas, we simply compute for all considered oper-
ators 1" the function
H(b) = Tz + b2y} + b3p3}(0),

where x = (z1,y2,ys). In all cases, we have H(0) = 0 so that, by Theorem 12.1,
1 1
Tru(x) = u(x) + h|Du(x)|H(h§m, ha.ﬁg} + Oh?). (12.13)

Let us for instance compute H (b} in the first case, when T' = I'S and B is a segment with length 2 centered
at 0. By a symmetry argument, it is easily seen that the “inf-sup” is attained for a segment contained in
the plane z; = 0, so that
H(b) = inf sup bay3 + bay; = inf sup r?(by cos® @ + bysin® 4).

B pep 8 per<t
If by < 0 or by < 0, this yields H(b} = 0. If 0 < by < by, we get H(b) = b». Thus H (b} = b and we obtain
from {12.13) :

1
Thulx) = u(x} + B [Du(x)| 55 + O(A®)

as announced. The other formulas are computed in a totally similar way and are left as exercises.

Figure 12.2: Median filtering of a three-dimensional image. Firsi image : representation of the horizontal slices of a
3D level-surface of the 3-D image of a vertebra. Righs-lefs and up-down : 1, 2, 5, 10, 20, 30, 60, 100 iteraticns of a
three-dimensional median filter, supported by a ball with radius 3. We have just proved that this scheme is a possible
implementation of the rmean curvature motion, originally proposed as such by Bence, Merriman and Osher.
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Chapter 13

Affine invariant mathematical
morphology

In this chapter, we consider ways to erode or dilate a shape in an affine invariant way. The affine invariance
requirement is a further extension of the obvious translation invariance and the isotropy (rotation invarian-
ce) which we already considered for convolutions, erosions and dilations. Let us mention that a translation
is characterized as a transform which preserves distances between points and the angle of each vector
with a fixed direction. Isometries (rotations-translations) preserve distances between peoints and angles
between vectors. Similarities (i.e. isometries followed by a zoom) preserve angles between points. Then,
affine transforms are characterized as transforms of an image which preserve parallelism and projective
transforms as transforms which preserve alignments. This is the classical hierarchy of *anamorphoses”, or
image deformations, we can face in image processing.

When we take a photograph of a plane image, like a painting, we perform a transform which preserves
alignments, that is, a projective transform. When we take a photograph of a plane image from a long
enough distanee, however, the transform tends to preserve paratlelism. We then perform an affine transform
and a rectangle looks like a parallelogram. This rule is used in the paintings of the traditional chinese
painting, which tends to always display scenes seen from some distance. (See Exercise 13.3 at the end of
this chapter.) To take a more up to date example, most photocopy machines perform an affine transform
and so do fax machines and even scanners. Thus, the analysis of scanned or copied ptane documents must
be affine invariant in order to get rid of this artefactual deformation. We shall here explore with much
detail set operators which are affine invariant. We shall prove further in this book {Chapter 21 that it is
impossible to perform a shape smoothing with more invariance than the affine one.

Definition 13.1 Let A = ( fC‘ Z

such matrices is the so called “special linear group”, SL(R?). We say that an operator T is special affine
invariant if T commutes with 4 for every 4 in SL{R?) : AT = TA.

) be an arbitrary matriz such that det A = ad — ¢cb = 1. The set of

We first define an “affine invariant distance” of a point x to a set X which will be a substitute to the
classical euclidean one. We consider shapes X, that is, in whole generality, subsets of B?, Let x € R?
and A an arbitrary straight line passing by x. We consider all connected components of R?\ ((X}U A).
If x ¢ X, two and only two of them contain x in their boundary. We denote them by A, (x, A.X),
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CAs(x,A,X), we call them the “chord-arc sets” defined by x, A and X, and we order them so that
area(CA,{x, A, X)) < area(CAx(x, A, X})).

Definition 13.2 Let X be a subset of IR? and x € R?,x ¢ X. We call affine distance of x to X the real
number 5(x, X) = infa area(CA, {3, A, X))/? if x ¢ (X), 8(x,X)=0ifx€ x).

Remark 13.3 Obviously, we take the power 1/2 in order that the affine distance be homogeneous to a
length. The affine distance can be infinite :

Tuke e.g. @ closed conver set X and x outside X. Then it is easily seen that d(x, X} = +oo because
all chord-arc sets defined by all straight lines A are infinite.

Ch(x. X. A)

Figure 13.1: Affine distance to a set.

Definition 13.4 Let X be a shape, i.e. a subset of R?. We call affine a-dilate of a set X the set b.X =
{x,6(x,X) < a'/?}. We call affine a-eroded of set X the set E X = {x,8(x, X% > al/?} = (D.X%).

Exercise 13.1 Show that E, X = (DB(XC))". This relation shows that it is equivalent to erode a set or to
dilate its complementary set : a useful symmetry, since the same shape may appear @s an upper level set
or as the complementary set of an upper level set, depending on whether it is darker or brighter than the
background.

Remark 13.5 The denominations “erosion” and “dilation” for the preceding operators do not correspond
to the standard terminology in Mathematical Morphology. Indeed, o dilation must commute with the set
union and an erosion with the set intersection. It s ensily checked that the offine erosions and dilations
as defined above do not satisfy this requirement. 1. All the seme, we shall maintain these names, becouse

affine erosions and diletions as we have just defined are clearly sound generalizations of the euclidean ones.

Proposition 13.6 The affine invariant erosions and dilations E, and D, are special affine inveriant

monotone operators.

1\We thank Michel Schmitt for pointing us out this fact
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Proof It is easily seen that if X C Y, then for every x, §(x, X) > 4(x,Y). From this, we deduce that
XcVY=DXcDY. The monotonicity of E, follows by the duality relation E, X = (D, X). The
special affine invariance of D, and E, follows from the fact that if detA = 1, then area(X) = area{AX). O

Exercise 13.2 Show that E, and D, ere affine invariant in a sense similar to Definition 20.19, namely
that for every linear map A = ( : 3 ) with detd4 > 0, AE’(de,A)qpu =E,A

We shall now use Matheron Theorem 8.2 in order to give a standard form to E, and D,. According
to this theorem, we can associate withh any translation invariant monotone operator acting on a set of
subsets of RY a family of sets B C P(IRY), defined by B = {X,0 € T(X)} and such that

TX)=|J [ X-y={x3BeB,x+BcCX}.
BeBYeH

We can apply this theorem to E,, provided we identify its associated structuring elements.

Definition 13.7 We say that B is an affine structuring element if B is a set whose interior contains 0,
and if there is some b > 1 such that for every line A passing by 0, both connected components of B\ A
containing O in their boundary have an area larger or equal to b. We denote the set of affine structuring
elements by B .

Figure 13.2: An affine structuring element : all lines passing by 0 divide B into several connected compo-
nents. The two of them which contain 0 in their boundary have area larger or equal to B.

Proposition 13.8 For every set X,

Ex= ) (] X-y={x1B¢Bugx+a/?BcC X}
BEBur ¥eal/2B
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A

Figure 13.3: Illustration of the Corollary 13.10.

Proof We simply apply Matheron Theorem 8.2. The set of structuring elements associated with E, is
B ={X, E,X 30}. Now,

E,X 30 & 8(0,X°) > a"/? & infaarea(CA; (0, A, X))'/? > o'/?,

Let us call 5 the value of the preceding infimum. This las relation means that for every A, both connected
components of X \ A containing 0 have area larger than b > a. Thus, X belongs to a2 B¢ by definition
of B.g. O

By Proposition 13.8, x belongs to E, X if and only if for every straight line A, chord-arc sets containing
x have an area strictly larger than a. Let us now characterize the points which belong to X but not to
E.X.

Definition 13.9 We call chord-arc set of X any connected component of X \ A, where & 1s an arbitrary
straight line.

Corollary 13.10 E, X can be obtained from X by removing, for every straight line A, all chord-arc sets
contained in X which heve an area smaller or equal than a.

Proof ATTEXNTION DEMONSTRATION A CONTROLER Let € be a chord-arc set of X, with area

less or equal to a, and bounded by a straightline &. Then, we claim that for every x € €, d(x, X°) £ a?,

Indeed, consider A', the straight line paraflel to A and passing by x. One of CA;(x, A, X¢) or

€ As(x, A, X} is contained in € and therefore has area less or equal to a. Thus d(x, X¢) < a? and x does

not belong to £, X. Conversely, if x € X \ E, X, then by definition there is some A passing by x such that

area(CA;(x, A, X)) < a Thus € = CA;{x, A, X¢) is a chord-are set with area less or equal to ¢ and x
belongs to C.

a

Corollary 13.10 has a huge numerical relevance : it gives an easy way to perform affine dilations and affine

erosions. In the next section, we shall make a firt hint on how those operators are related to the (AMSS)

model.

Working version subject to errors, only for personal use. No diffusion authorized. All right reserved. (Version: 15/07/2000)



13.1. APPLICATION TO AFFINE ALTERNATE CURVE FILTERS

13.1 Application to affine alternate curve filters

One of the main difficulties of mathematical morphology is the non commutation of erosions and dilations,
which entails the non commutation of opening and closing. Why is it a problem 7 By performing an
opening (with a ball} of a shape, we simply remove its external peaks. More precisely, if we do an opening
by a ball with radius h, then the radius of curvature of the external peaks becomes larger than h and if
we perform an opening of the shape, the radius of curvature of the peaks pointing inside becores larger
than k. Thus, the aim of opening and closing is to smooth out the peaks in exactly the same way and
it would be quite desirable to have both operations made simultaneously. In order terms, they should
commute, and we could talk about a “curvature thresholding” operator. This type of commutation is
roughly asymptotically attained by performing alternate filters [348]. The idea is to chose a very small
scale h, and to alternate the openings O and closings F in the following way :

b1

OtFy0y Fy .0y Fo ..

Since O; and F; are idempotent, the growth in scale is necessary in order to perform a progressive smooth-
ing, up to the scale ¢.

In the same way, affine erosions and dilations do not commute and should alternate. Now, they are
not idempotent and the situation is stmpler : we only need to choose an incremental scale A small enough
and to alternate Ej and Dy, that is, to compute {E,D})". In Chapter 24 we describe how to implement
such an alternate filter. Its relevance will be demonstrated in Chapter 77, where we prove that there is
only one way to smooth out shapes in an affine invariant way, the “affine shortening” or AMSS model.
In Section 18.5, we shall prove that when h -+ 0, the iterated alternate affine erosion (Ehf),,)" converges,
when n — +oco and & — 0 in an adequate way, to the solution of the affine shortening equation. More
precisely, let ¢y be a Jordan curve, which is the boundary of a simply connected set X. Iterating affine
erosions and dilations on X gives a numerical scheme that computes the affine shortening cr of ¢y at a
given scale T If ¢y is the curve represented by the function s = C(s,T'), then

ac
E(s, t) = |Curv(s, t)|V/3a(s, t) {13.1)
where Curv(s,t) and 7i{s,t) are the curvature and the normal vector at the point with abscissa s of the

curve ¢; = C(-,T).

Exercise 13.3 The aim of this erercise is to prove that if an application A ; R® — R? preserves par-
allelism between pairs of points. then there is a linear map A and « vector b such that Aix) = Ax + b,
The preservation of parallelism will be stated in the following way. If any four points x|, Xo. X3 und
xq satisfy X3 — X2 = A(xz — x4) for some real number ), then there exzists a real number p such that
j.x; — Ax, = [J.(;’ix;] - ;:1)(4}.

1) Consider a basis (1,]) of the plane, set 0 = {0,0) and x = 71 + yj. Set Ax = Ax — 40 and prove that
there exist real functions u,(z) and uo(y) such that Alzi) = 1 (x)i and A(y]) = s ()7

2) Notice that A preserves parallelism and satisfies AQ = 0.

%) Show that A(x) = ;al(z)f+ ug(y)f.

4) By using Thales' Theorem, show that pi{x) = aus(x) for some real constant .

5) Replace i by 87 and apply the preceding results : deduce that 3y (37 ') = ¢ is a constant and conclude.
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Chapter 14

Localizing a family of structuring
elements

When the set of structuring elements IB is affine invariant, the associated rescaled operators
ISyu(x) = inf sup u{x+
nu(x) o 2p S0P (x+y}

commute with a lot of plane transforms : with space translations, u(x) -+ u{x + y;), with grey level
translations u(x) — u(x) + C, with linear maps with determinant 1, u(x} — u(Ax) where A € SL{R?)
and with contrast changes u — g o u when g is continuous and nondecreasing. Now, the affine invariance
entails a loss of locality. The value at x of ISyu may depend upon values of u{y) at points which are

arbitrarily far from x, no matter how small A is. Indeed, the linear invariance permits to stretch an element

of B in any direction. Indeed, if B € BB, then A.B € B, where 4, = E g

Thus IS, looks like an ¢ priori non local operator. We shall see that this is not the case for a very
general class of families 1B, for which ISy, behaves like a local operator, though involving arbitrarily
elongated sets. The locality property which we wish for 1S, (in fact, a local comparison principle) will be
deduced from a corresponding “localizability” property for IB. The same problematic applies to median
filters when their weight function is not compactly supported. So we shall also treat the case of gaussian
weighted median filters and show that they in fact like local filters, their set of structuring elements i3

being “localizable”.

14.1 Localizable families of structuring elements

Proposition 14.1 and definition Let « >> 0 be a positive constant which will play the role of an “eTpo-

nent of localizabdity”. We shall say that a set of structuring elements IB is a-localizable if there exists o

! we can assert thot

constant ¢ > 0 such that for every p > ¢~
vYB e B,38' € B, B' C DD, p)

and B' C D¢ (B) = {z,d(z, B) < &}, where d denotes the euclidean distance, d(z, B) = infyep d{z,y).

As a consequence, by rescaling by o scale factor h, we have the equivalent property :
Je>0,¥r >0, Yh<er, VBe By, 3B € By, B' < D(0.r)
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and B' C D41 (B).

Proof In order to deduce the second relation from the first, we simply set r = ph. We have B ¢ B if
and only if RB € B}. We therefore replace B by hB and B' by hB' and we get for the new B and B' in
B -

B'C Dg(B) = Dyus1 (B),

provided p > ¢!, ie. 7 > ¢ lh,ie A <or. m|
Let us give a first criterion for the 1-localizability, which will apply to affine invariant families of structuring

elements.

Proposition 14.2 Let B be made of subsets of R? containing 0. Assume that there exists c > 0 such that
if B € IB and r > c, then the connected component of D< (B)N D(0,r) containing 0 is in IB (resp. contains
an element of B). Then 1B is I-localizable. (We denote by D: (B) the dilate of B, {z,d(z, B) < £}).

Proof For any B in IB, we consider B’, the connected component of D¢ (B} N D(0,r) containing 0. In
the second case, we consider an element B’ of /B contained in this connected component. m}

Proposition 14.3 If IB = B.g is the set of all affine siructuring elements, then 1B is localizable.

Figure 14.1: Proof of Proposition 14.3.

Proof We want to apply proposition 14.2. Let B € B.x and bg > 1 such that for every A passing
by 0, the areas of the connected components of X \ A containing 0 are larger than bg. Let B’ be the
connected component of D'a (B} N D(0, p) containing 0. We shall show that B' belongs to Bag. Let us
consider C’, one of the two c:onnected components of B\ A containing 0 in its boundary. Consider also C,
the connected component of (B '\ A} N D(0, p) containing 0 in its boundary and on the same side of A as
C'. Notice that C C C'.
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14.2. LOCALIZABILITY OF THE GAUSSIAN MEDIAN FILTER

Two cases : If  does not meet 3D(0,p), then C is the one of the connected components of B\ A
containing 0 and, in addition, C' contains C. Thus area(C' > by and we are done.

Let A be a line passing by 0. We consider one of the two connected components ¢’ of B'\ A containing
0 in their boundary. We also consider € the connected component of B\ A containing 0 in their boundary
and such that C N D{,7) C B'.
Two cases : if C is contained in D(0,r}, then by definition of chord-arc sets, the area of C is targer than b.

Therefore, the area of £ is larger than b.

Second case : if C is not contained in D(0, r), we consider the connected component C; of C\8D(0, r - 27")

which contains 0. €, ¢ € meets 3D(0,r — %) at some points, then, by connectedness, each line orthogonal
to [0, x] and passing by tx, with 0 <t < 1, meets (} at at least one point z(#) € D(0,r — ). Noting

L

¥ = i & unit vector orthogonal to x, we notice that the interval [x(t) — 2£,x(f) + 2] is contained in
Du(C)) C D2 (C) C B'. In addition, one half at least of this interval is contained in ', Thus, provided
r>2b, arealC’) > (r — 2)2 = 2p - 3 > p. )

We can roughly say that all affine invariant families made of connected sets containing @ are localizable,
provided the shape of the elements is not too much distorted. The next example gives another example,

where the “not too much distorted” condition is given by convexity.

Exercise 14.1 Fzamples of localizable families.
1) Let B be an affine invariant family of conver sets containing 0, all with aren less than 1. Show that
BB is localizable. Here is o way to prove it : Let B € B. If B C D{0,p), we are done. Otherwise, let x

be the element of B with largest norm. Consider the special linear symmetric map A with eigenvectors x

and x*

and respective eigenvalues T%T and l%l Then check that if p is larger then some universal constant
C, then AB C D{0,p). Set B' = AB, which belongs by assumption te B, and prove that for some other
universal constant ¢, B' C D:(B). Conclude.

2) Let B be a bounded connected set whose interior contains 0 end define an affine invariant family B =
{AB, A € SL(R*)}, where SL(IR?) denotes the special linear group of all linear maps with determinant

1. Show, by using the same method as in 1}, that B is localizable.

14.2 Localizability of the gaussian median filter

We shall now give another relevant instance of localizable family, associated with the weighted median
filter. Although one can state much more general results, we shall restrict ourselves to the case where

X o
the weight function k of the median filter is the Gauss function G(x) = —‘ve‘J_J‘. We then have

{4m T
Jan G(x)dx = 1 and we can consider in the following the family of structuring elements B associated

with G. Tor brievety, we write | B, for [, G(x}dx. Then
1
B={BcR" |Blc 23}

Proposition 14.4 The set B associated with the gaussian median filter is a-localizable for every a > 0.

Mare precisely,

Ya >0, de=cla), Vp > c, VB B, AB' € B, B' C B{0, p) such that B' C D (B).
P
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Corollary 14.5 As an immediate consequence of Definition-propesition 14.1, we ebtain by scaling IB into
]Bh =hiB :

¥r >0, Yh<cr, VB e By, 3B € By, B C B(0,r) and B' C Db:;_:(B).
Proof of Proposition 14.4 We begin by choosing pg such that
3
IBO, e = §-
We then call py the value gy > pp for which
1
|B{0, 1}l = 3

and we assume in the following g > pi.

Two cases :

« If B € IB satisfies 1
|Bla 2 5 +1B(0, p)’le.

we simply set B' = BN B(0, p} and we get
1
|8l > Bla - 1BO,p¥ls 2 3
which proves that B’ € B, B’ ¢ B answers the question.

e If B € B satisfies

1 1 1
< = er < — g
1Ble < 5 +1B0:p)%lc < 5+ 3
then 101 i
1B N B(0, po)le > |Ble = 1B(0,p)*lc 2 5 - 7= 3 (14.1)
¢ 3 1 1
1B B{0, polla 2 1B(0, po)le — |Ble 2 7 — {5+ 5 (14.2)
Since G < 1, we have for every measurable set 4, |Al; < meas(A). Thus, from (14.1-14.2},
1 1
meas(B N B(0, po)) = 1 and meas(B° N B(0,p)) > 3 {14.3)

By Lemma 14.6, which we state in continuation, and Relation (14.3), we obtain, for a universal constant
C’
C
meas(B{0, po) N Dy (BN B0, po)) \ B)) 2 p—a
and therefore

(14.4)

|B(0,p) N D (BN B{&,p)\ Ble 2 Po (47) ¥

for some universal constant €. We finally set

B' = B(0.) N Dy (BN B, p),
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so that d{B’', B) < p%, B' ¢ B(0,p). We then have by (14.4)

- C
|B'le = |Blg - |B(0, p) e + ek

that is
; C 1
{B'le = |Blg + — — G>|Blg > ;.
P Jixize 2
for p > ¢(a), where ¢(a) only depends on a. Indeed,
f G < chN_le_PTz
[X[2p
for a universal constant ey . a

Lemma 14.6 Let B{0,pg be a ball and B « subset of R™ satisfying for some constant & > 0,
meas{B N B{0, pg)} > § and meas(B° N B0, py)) = 4.
Then there are constants Cpy, 8) and ng(py,8) such that

¥ < g, meas{B{0,po) N Dta(BN B0, pe)\ B) > Cn.

Proof This is an easy consequence of the isoperimetric inequality ([?]). D

14.3 A local comparison principle.

We shall now prove that our definition of “localizable family” for BB indeed yields locality properties for
the associated operator

ISpu(x) = BiEnth ;Lé}; u(x +y).

Intuitively, an operator T}, depending on a scale parameter h is local if its value (Thu){x) at a point x
primarily depends upon the values of u(y) in a neighborhood of x whose size tend to zero as h tends to
zero. This can be stated in many ways. Thanks to the monotonicity of the considered operators, we can
formulate it as a local comparison principle.

Lemma 14.7 [local maximum principle] Let B be an a-localizable set of plane closed nonempty sets. Let
u and v be twe Lipschitz functions in e disk D(xg,r) satisfying u(x) < v(x) in D(xq,r). Let K be the
Lapschitz constant of u. Then if h < er,

'i_u+l

{({Snu)(x0) < (IS)v)(x0) + K&

P
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Proof of Lemma 14.7.

IS ) (xgy= inf supuv{y)> inf U v
USi)0e0) =, o supo() >, dnf swp o)
> inf sup u(y)

T BeBn+Xo yeBND(Xq,r)
By Definition 14.1, for all B € By + Xq, there exists B' in By + xq, B' C D(xq,7), such that (B, B} <

hu+l

¢ . Thus, since u is K-Lipschitz,

o
hn+l

sup  uly) > sup uly) - Kc
YeBND(Xo,r) yeB re

The two preceding relations yield

(ISnv)(xp) >  inf sup uly) (14.5)
BeBr+Xo yeBnp(Xg,r) ]
hcr+l o+l
> inf sup ul(y) — Ke > inf  sup u(y)— K¢
B'EBat+Xo, B'CD(Xo.r) ye B re BeBn+Xoyen e
We obtain et
= i f < K .
(ISnu}(xo) seilf o ;1;1; u{y) < (ISpv)(xo} + Ke e

a

The next lemma permits to fix an optimal relationship between the localization scale r and the operator’s
scale A.

Lemma 14.8 (Locality) Let B be an o-localizable set of subsets of IRY., Let u,v be two K-Lipschitz
functions such that

lu(x) — v(x)| < Clxf’
in a neighborhood of 0. Then

S{atl)

118pu(0) — ISpe(0)] < (C' + Ke)h ¥

Proof. Applying the local maximum principle (Lemma 14.7), we deduce from the relation
wix) — Crd < ulx) < o(x)+Cr°

on D(x,r) that

+1 hotl
< (ISpu)(0) < (IS} + Cr® + Ke

re

(ISyv)(0) — Cr® — Kch

@
rQ‘
We choose r in such a way that both infinitesimals appearing in the second member of the former inequality

be of the same order : r* = "‘:#, which yields

+1
atl he Sla41
r=h¥e 7 = = h o,

3
ra

We obtain

3la 1) 34 3(atl}

(IS,u}(0) — CREE" — Keh™550 < (ISuu)(0) < (ISyv)(0) + CA™S¥" + Kok 55e
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[}

The main interest of lemma 14.8 is to reduce the asymptotic analysis of the operator IS, as h — D to
the case where it is applied to second order polynomials. In ali that follows, we adopt the rule of scale
r = h#¥ . This choice will be justified in Lemmal4.8 to follow.

In the following, it will be useful to associate with the operators IS, new operators
(ISfud(xo) = _inf sup  uly),
" BeBy+Xo ye Brb(Xo,r)
whose locality has been enforced : we truncate all elements in /B by removing their parts outside {0, r).
We shall now estimate the asymptotic difference between /S, and [S].

Lemma 14.9 (Localization Lemma)
Let B be an a-localizable set of structuring elements in RY and u a K-lipschitz function on D(xg,1}. Let
us set r = hi¥s . Then

3(at1)

)] ISu(xp) < ISpu(xg) < IS[u(xp) + Kech™5vs .

for r small enough. As a consequence,
(i) |SITu(xo) — SThu(xo)| < Keh .
(i5)  |[IS[u(xo) — ISnul(xo)| < Keh 5557
(v)  |SITISTu(xe) — SInISyu(xe)| < 2K ch 5¥a
Proof : The inequality (i) follows from the inequalities (14.5}, in the proof of Lemma 14.7, by taking

u = v. The inequalities (ii} and (iii} are deduced by using IS,(—u) = —SI,(u). In order to obtain {iv}),
we notice that if u is globally K-Lipschitz, then so is ISpu by Lemma 7.5. We have by {ii) and (iii)

{ot1) .
SIiu < SIyu < Keh' 5va + STTu (14.6)
ISTu < IShu < Keh ™57 + IS[u (14.7)

Taking in (14.6) © = I5,u and using {14.7), we obtain
Bl +1
Sta

SITIS[u < SIyISyu < 2Kch 50 + SITISu,

which proves (iv). m]
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Chapter 15

Asymptotic behavior of affine and
contrast invariant filters.

In this chapter, we analyze, in dimension 2, the asymptotic behaviour of contrast invariant affine invariant
monotone operators. By affine invariance, we mean that the operators commute with all linear maps of
the plane with determinant 1. We know that such operaters have an inf sup (or supinf) form,

Tulx) = inf yg;gﬂ uly}

We denote by SL(IR?) the special linear group, that is, the group of all linear transforms A = ( (;' 3 )

such that |det(A)| = |ad— be| = 1. If the operator T is affine invariant, its set /B of structuring elements is
obviously also invariant under special linear transforms of the plane : AB € B if B € B and det(A) = 1.
Conversely, if AIB = {AB, B € B} is equal to B, then the associated infsup or supinf operators T are
affine invariant : Denoting by Au(x) = u{Ax), we obviously have T'(Au) = AT (u). Since, in addition, T
commutes with translations,; it indeed commutes with all affine maps of the plane. By abuse, we shall
sometimes say that BB is affine invariant. An obvious example of affine invariant set 1B is the family of
ellipses with area 1 centered at 0. More generally, we can consider the set {AB, A € SL(R?)} where B is
an arbitrary bounded set of the plane.

In what follows, we write as usual x,y,z for elements of R? and x = (z,y). We consider a scaling
parameter h > ), and we set BB, = {h8, B € B}.

We set, for every real function w({x) defined on the plane,

SThu(x) = Hseu‘gh yelgg-ﬁ u(y),

18, = inf u(y).
nu(x) ngnmy;;hu(y)

SIyu is understood as an “affine erosion” of u and 7.5, u as an “affine dilation”. Since SI,u = —IS,(—u),
we choose to study in the following one of these operators, namely IS,. All theorems will be trivially
adapted to SIy. Our main concern is the behavior of [S,u{z) when w(z) is a smooth {C?) functicn and
h — 0. We prove in this chapter that if B is afline invariant and 1-localizable (as shown in the preceding
chapter, affine invariance entails easily the the 1- localizability},

lim (IS, STyu){xo) — ulxg)
h—0 hi

= cMDu\curv(u)%,
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CHAPTER 15. ASYMPTOTIC BEHAVIOR OF AFFINE AND CONTRAST INVARIANT FILTERS.

where ¢ is a suitable constant and rt is meant for ﬁlrlla‘. This main result extends to affine invariant
Matheron operators the asymptotic analysis performed in the preceding chapter for euclidean invariant
local operators.

Lemma 14.8 shows that if IB is localizable, then the behaviour of a C? function is very close to the

behaviour of its Taylor expansion of order 2. If u is C?, let us write
u(x) = wlz, y) = u(0,0) + az’ + by® + czy + O(Ix[*) = v(x) + O(|x|*).
If BB is 1-localizable, then by Lemmal4.8 we have
118,u(0) — ISpo(0)] < (C + Kc)h¥.

Thus we have to compute the action of ISy on polynomials of degree 2. We shall consider in the series
of lemmas to follow more and more general such polynomials. In the following, because of the translation
invariance of the operators ISy, we can assume without loss of generality for the asymptotic analysis of
ISu(x) that x = 0 and u(0) = 0. Thus, we take “ISi(z + az® + by? 4+ exy)” as an abbreviation for
“ISh(z + az? + by® + cay)(0)". As we shall see, the casesa =c¢ = 0,b=+l and b= —1play a canonical

role, so that we set

+ = inf 2 o = inf - ).
cp= jpl sy, cp dof, sup (= —v7)

Since our main results involve these constants, it is worth noticing that they can be different from zero.

Lemma 15.1 (i) If B is a set of convex sets, invariant by SL*(IR?) (or a set of boundaries of convez
sets), all with area ! and symmetric with respect to 0, then c}; >0andcy =0.
(ii) If By is the set of all affine structuring elements defined in Definition 13.7, then ek > 1, e = 0.

Proof. Proof of (i). Consider the disk D = D(0, ﬁ), with area 1. All elements B in /B have area 1 and
therefore meet the boundary 80 of D. Thus, taking into account that z > z? forx = (z,y) € D,

1
+ . 9 - 2 2
eh > mf  sup (r+yP)> inf  sup (2f+yT) > =
= BeB ; yennp BEW (p yye BN ™

Indeed, since the sets B are symmetric with tespect to 0, supgnp(x + y?) is always attained for some
{z,y) with = > 0. In order to prove that ¢ = (), we first remark that since every B € B surrounds i, it
contains at least one point where £ > 0 and y = 0. Thus ¢ > {. We then fix a set B in B and consider

the new sets obtained by squeezing B onto the line x = 0:
B.={ez,Y) .(zyeB)
Then B. € IB and therefore

cp < sup(z —y’) < SEP(I) < Ce.

Thus, ¢ = 0.

Proof of (ii). Let B be an affine structuring element. Then its intersection with every half plane whose
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boundary contains (0 has measure larger than 1. Let us choose as half plane H = {(z,y), =z > .} We
deduce that

{sup z){sup |y}) = L.

BnH  BrH
Let us estimate

cp > sup(z + y°) > sup (z + y7) > inf(sup z, sup y°).
B BnH HNH  BNH

Setting £ = suppny =, we deduce that

. 1
ey > EHZIE(‘E,E;) =1

Exercise 15.1 As shown in this exercice, on can have cp < 0 for an even simple affine inveriant family
of structuring elements.
1) Let B = {AC, A € SL(R?)}, where C is a truncated square with center 0, half side 2 and one of the
sides missing, (eg (z,y) EC ifr=2and -2 <y<2o0r-2<r<2andy=+2o0ry=-2) Show
that ¢k, > 0 and ¢ < 0.

2) Show that this family of structuring elements is localizable.

There is one case of simple function, which turns out to be canonic, where we can compute by invariance

argument the action of an affine invariant operator 15,

Lemma 15.2 Let IB be o set of structuring elements invariant by the special linear group and let 15, its
associated inf sup operator. Let p > 0. Then

ISp{pe + by?) = cg(g)%ph% if b>0,

b 4 4
ISy (pr + by*) = c;;{—;)gphi if b<O.

Proof. We note that if b # 0,

Ribl3 0

BEB@( 0 R

%)BEBh

Thus
1 4 2 4 -
inf  sup (z+by")= inf sup (b|3ASz + b{|b| ch3y?))
BEH (2, y)e B BEH (2 e

1.4 b,
= |b]Fh% inf sup (z+ —u°)
BEB (; nen |&]

=chbshd if b>0,
= cp{—b)FRE i b<O.
Since p >}, we deduce that
ISu(ps + ) = pTSufa + 1)
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b
= c;;(;)%ph% if b>0,

= c;g(-%)%phﬁ if b<0.

Let us now consider the case where b = 0. We fix a set B in IB and denote by R its diameter. Then B is

2
contained in [—- R, R} x [- R, R] and therefore the set ( hOE 59‘ ) B, which belongs to B, is contained
in [—Reh?, Reh?] x {~£ 8] Thus
0 < ISu(pz) < sup pz < pRek?

[~ Reh? Rek?]x[— & 4]

We can take ¢ arbitrarily small and conclude that IS, (pz) = 0. o

The next lemma deals with the case where the function to which we apply ISy has a zero gradient at zero.

Lemma 15.3 Let B be an affine invariant set of structuring elements, one of which is bounded and all
of which contain Q. Then there is a continuous function G{Du, D?u) satisfying G(0,0) = 0 such that for
every C® function u, the scaled operators I5;, and SI;, associated with IB satisfy

0 < [Snu{xo) — ulxo)| < G(D*u{xe), Dulxo))h¥ + ox, (h¥),
where oxo(hﬁ) is uniform on compact sets of IR®. In the same way, by the relation IS, (u) = —SI,{—u),

0> |SThu(xo) — u(xe)| 2 —~G(D%u(x0), Du(xo))h¥ + ox, (h).

Proof. Since all elements of I3 contain 0, we always have supyex,p u{y) > u(x). Let B be a bounded
element of /B and let B = supxcp |x|. Then B is contained in [—R, R] x [—R, R] and therefore the set

hi o
( 0 At ) &

which belongs to By, is contained in [~Rhi, Rh3] x (—Rh, Rh¥). By making a Taylor expansion of
¢ in a neighborhood of x4, we have for the usual local coordinates (z,y),

u(x) — u{xp) = px + azx® + by* + cay + ox, {|x — xo)?).

Thus

0 < ISpu(xo)—~u(xo) < sup pr-+az’+by’ +ezy+Ox, (1x[%) < (Ipl+ial+[b] +ic) B2 A +ox, (A%).
warel-ahE k¥ x[-nnd nnd)

We obtain

0 < ISku(xo) — u(xo) < A3 ([|Dulxo)|| + ||D*u(xo)l}) B? + ox, (h3).

m]
We are now in a position to state and prove the first main result of this chapter. We consider affine erosions
and affine dilations.
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Theorem 15.4 Let B be o 1-localizable set of plane sets which is invariant by the special linear group
SL{RY). Assume u(x) is a Lipschitz function and C3 in a neighborhood of xy. Then

{(IShu){xg) — u{xe)
hA/3

= |Dulg(curv(w))(xo) + ox (b)),

where ox(h?) < ox (k) on every compact set K of R? where Du(x) does not vanish and

ch(5)} i r>0
cp(=5HY i r<o

where g(r)

il

il

Proof of Theorem 15.4. SI; being translation and isometry invariant, we can choose the origin 0 at
xo, and orthogonat axes (7, ) so that § = (Z%(0} if Du # 0. In addition since ISx{u~u(0)) = ISpu—u{0},
we assume without loss of generality that u{0) = 0. With these conventions, since « is C3, we can write
again the relation (5.1) :

u(x) = pz + ax® + by® + cay + O(IxH), (15.1)

where p = [Du|(0) > 0, x = (z,y) = zi + yj and, if p > 0,
b= '2[‘%%(0) = %Dzu(if) = %|Du|Curv(u)(D)

a=4154(0) = 1D%(id) (15.2)

o= 425(0) = D2u(7, D).

In the following, we consider a radius r = h% and the truncated operator 15} already considered in
Localization Lemma 14.9. From (15.1) we deduce that for every x in D{0,r},

pr + azx® + by? + czy — O0) < ulx) € pr + az® + by? + cxy + O3},

Therefore,

(IS5u)(0} = IS] (px + ax® + by” + czy) + O(?) (15.3)
(Recall that, by an anterior convention, IS5 (pr + az® + by® + czy) means I5](pz + az® + by* + cxy)(0).)
# The case p = |Du(0)| = 0.
In this case we have, by the preceding lemma 15.3, S, (az® +by? +czy) = O(h*) and therefore RTF(ISpud{0y =
O(h%), which proves the assertion in the case |Du(rg)| = 0.
e The case p = [Du(0)} # 0.

Setting £ = AY, where # > 0 is a very small real number, we have

Ic] el -

_le 2 _ 12 < < e 2 gt
lelsy p r <exy < |cley” + " x
Thus
{ISHHu(M) < ISp(pz+(a+ lele™ha? + (b + glelyy®) + O, (15.4)

(I8)u(0) > 1S5 (px + (@ — lcle )z + (b —ele)y®) + OF?) (15.5)
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We are led to study expressions of the type
I35 {px + ale)z? + b(e)y?),

where a{e) = O(h~?) and b(e) = O(1). (We shall only examine the case where b # 0, the case b = 0
leading to the same calculations and conclusion.) We now use the contrast invariance property of T
goT =T og, where we fix g{s) = 5 ~ B%;sz. This function is increasing in a neighborhood of zero. Thus,
since IS7(pr + az® + by?) tends to zero as r and h tend to zero, using goT =T opg,

I5;(pz + ax® + by*) =
o ISk {pT + by? — }%((m’:z + by®)? + 2pzlaz? + by?)))
We then use the following relations (Lemma 15.2 and Localization Lemma 14.9 (iii)}
g7He) = t+ O(e™'t?), ISi(pz +by?) = O(hY),
ISh(pz + by®) = 1S, (pz + by?) + O(h) = O(h3),
ale) = O(e™Y), be)=0(1), re=ht
to deduce that
IS} (pz + az® + by?) = g (IS5 (px + by?) + Ole*h1)) = g1 (ISu(px + by®) + O(e7?A1))
= ISh(px + by?) + O{e~2h% + e~ 1p}),
and finally
IS:(px + ax® + by?) = IS, (px + by?) + O(e~2h1).
Using Relations 15.4 and 15.5 and Localization Lemma 14.9, we obtain
1Su{pz + b_ey?) — O(he™?) < 18x(u)(0) < ISa(p + bey?) + O(hEe™?),
where b, = (b + |cle) and b_. = (b — |c|g). Using £ = h?, Lemma 15.2 and the inequalities
(@+B) <ot +p%, of -4 <(a-p)3
for a,8 > 0, we get
%

15, (w)(0) = c;;(p iphd Ot —20) + O(R3TE) i B>,

b
= c@(_g)%ph% + ORI L O3S i b<D.

In order to conclude the proof, we simply replace p by |Du| and b by %|Du|curv(u) in the above relations

and choose (e.g.) @ such that § — 26 = 4 + &, ie 8 = L. We finally argue that all of the asymptotic

behaviours involved in the proof are uniform in a, b, ¢, p, provided p does not approach 0 and a, b, ¢
rematn bounded. Thus, we can write

(ISpu){x0) — u(xg)
h1/3

= | Dulg(eurv(u)) (xo) + ox(h),

where @x(hg) < oK(h%) on every compact set K of B? where Du(x) does not vanish. Indeed, on such a
compact set, Du, D?u and D3y remain bounded and so does % = Tﬁ[’ which is present in the estimates
of the proof. a
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15.1 Alternate schemes

In this section, we extend the preceding results to “alternate schemes”, that is, products of the kind
IS5, 5T We shall obtain for such alternate schemes a convergence theorem extending Theorem 15.4. The
alternate schemes are easier to implement and numerically more efficient if we want to get the following
natural property for a contrast invariant operator T : T(—u} = —T (). Recall that, precisely because this
property is not satisfied by erosion and dilation operators, it has been proposed with some experimental
success to build alternate operators like T = 15,51, {those alternate operators could be called “openings”
or “closings™). It is, in that case, not true that T'(—u) = —T'(u). We shall prove, however, that if we let
h — 0 and consider iterates (15551, )" with n — co, then the limit operators do satisfy this property. It is
not possible to obtain directly an asymptotic result for 15,51, by applying twice Theorem 15.4. Indeed,
there is no guarantee (and it is in general false) that IS,u is C* whenever » is 3. The next lemma
explains how we can, however, extend to alternate operators convergence results like the ones given in
Theorem 15.4.

Lemma 15.5 Let T, and Si be two infsup operators. Let Fi(A,p,x) and Fa(A,p,x) be two functions
which are continuous fer (4, p,x) in every compact set on which p # 0. Assume that for a suitable exponent
3 we have

Thu(x) — u(x) = k¥ Fy {(D%u, Du, %) + ox (b9),

Spu(x) — u(x) = B Fa (D%, Du, x) + ox (h®).
Assume that S), is localisable, i.e. for a suitable exponent v,
|Shu(x) — Spu ulx)| < ox(h?)

for every Lipschitz function u. In these assumptions, ox(h®) denotes any function of x and h° such that
ox(h?) € ok (AP} for x in a compact set K on which Du(x) # 0. Then the alternate operator satisfies

ThShuix) — ulx) = K (F (DPu, Du,x) + Fa{D%u, Du, X)) + ox (k%)

and ox (h?) € ox(h?) on every compact set K on which Du{x) # 0.

Proof Fix a compact K on which Du # 0. Let xo € K and B(Xo,r) a ball with r small enough
to ensure that we still have Du{x) # 0 on B(xq,r). Let ft{r) = SUPxemixo . | FL{D7 1, Du, x)| and
Firy = infxepix, ) | F1 (D%, Du, x)|. We have

Tpu(x) — w(x) = B FL (D%, Du, x) + ox (W),
Let ox,.-(h) = supx gx, - ox(h?). Thus, for x € B(xo,r},
u(x) + R F7(r) — ox, - (FP) < Thu(x) < wl(x) + b7 fF(r) + ox, (B7).

By applying §)'7 at %o to the members of this inequality, using the comparisen principle, provided we set
hY = r, and the commutation of §; with the addition of constants :

Siulx) + k2 F () —ox, o (BF) < SE Thu(x) < 81 u(x) + A9 () + ox,, o (R7) (15.6)
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Now, F' being continuous,

% = Fi(D*u(xp), Du(x0),%o) + o(1) (15.7)

and, from the assumptions,
S8 u(x0) — uixe) = K3 Fy(D%u, Du, xo) + ox, (h%), {15.8)
(I Thu)(x0) = ShThu(xo) + ox, (k). (15.9)

From (15.6)- (15.9), we obtain
SnThu(xo) = R (F1 (D, Du, xg) + F2(D%u, Du, X)) +of”n(hﬁ).

It is noticeable that we can fix r independtly of %o on K, in such a way that Du(x) does not vanish on
the dilated compact K7. Thus, all convergences in the preceding proof are in fact uniform for xo on K
and we can bound ox, (h¥) by some ox (k7). O
By repeating word for word the above proof, we can also prove the following, which will prove of use.

Lemma 15.6 Let T}, and Sy, be two inf sup operators. Let G (A, p,x) and G2(A, p,x) be two continuous
functions. Assume that for suitable ezponents v and 3 we have

0 < Thulx) — u(x) < AFG) (D%u, Du,x) + ox(h?),
0 > Spu(x) — w(x) > RPGa(D%u, Du,x} + ox(h°).
Assume that S, is localisable, i.e.
|Shu(x) — Spu u(x)| < ox(h”)

for every Lipschitz function u. In these assumptions, ox(h”) denotes eny function of x and h® such that
ox(h?) < ox (h?) for X in a compact set K. Then the alternate operator satisfies

W3 (G (D, Du, %) + ox (h¥) < ThShu(x) — u(x) < B°G2{D*u, Du,x)) + ox (h”)
and ox(h?) < ox (h%) on every compact set K.

We are now in a position to state an asymptotic behaviour theorem for the main affine invariant alternate

filter, obtained by alternating affine erosions and dilations.

Theorem 15.7 Let B,y the set of “affine structuring elements” and respectively ISy and 51y, the asso-
ciated affine erosions and dilations as defined in Definition 77. Then for every Lipschitz function u which
is C* in a neighborhood of Xp, we have

m (Thu}(xo) — u(xo)

PN HAS = cw| Duf(curv(u))(xo) (15.10)

where g(r) = (r) i T =8I,
= (r7)S i Th=15,
(r)% if T =SIx ISy
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This convergence is uniform on all compact sets of R? on which Du(x) does not vanish. In addition, there
are continuous functions G (D%u, Du) such that G£(0,0) = 0 and

R3G™(Du, Du) + ox(h?) < Thu(x) — u(x) < A3 G2(D%, Du)) + ox(h®) (15.11)

and ox (h1) < oK(hi) on every compact set K of 2.

Proof By Theorem 154, we know that (15.10) holds for T}, = IS, or Ty = SI,. Indeed, B,y isa
1-localizable affine invariant family of structuring elements, as requested by Theorem 15.4. By Lemma
.rs = 0. We then apply Lemma 15.5, with cbviously
8 =% and v = 1, to obtain {15.10) for the alternate operator.

15.1, we know in addition that '3}:‘,,” > 1land eg

In order to prove (15.11), we simply apply Lemma 77 to ISy and 51, which holds because B,y is
affine invariant and all of its elements contain 0 and some are bounded. We apply in continuation Lemma
15.6 to extend (15.11) to the alternate operator I5,51;. [
By way of principle, all affine invariant families of connected sets which contain all 0, some of which are
bounded, and whose area is bounded from above, are localizable and permit to define alternate schemes
with the same properties as above. The next exercise examines some examples. Now, we have seen that
affine invariant dilations and erosions have magnificent numerical and structural properties and are the

natural best candidates for affine invariant shape analysis.

Exercise 15.2 Check that the preceding proof and results apply to the affine invariant locelizable families
considered in Etercice 14.1.
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Chapter 16

Monotone image operators:
“nonflat” morphology

16.1 General form of monotone operator.

Theorem 16.1 Let T be ¢ monotone function operator defined of F, invariant by transiation and com-
muting with the addition of constant. There exists a family JF of functions of F such that

Tu(x) = ?'é}'i }}gfnu(y) - f{x-y)

Proof We choose F = {f € F,Tf(0} > 0} Then,
Tu(x) > Ao Ve> 0, Tu(x) > A—¢
SVe> 0, Tox(T{u—A+e))(0) >0
S V¥e> 0, Tir_x(u-A+e))(0) >0
SVe>0, Tx{(u—-A+e) e F
S Ve>0,Fve F, igfu(y) ~Ate—uv(y—x)=0

(= is true by simply choosing v = u — A+ €. The converse implication is true due to the monotony of the
operator T" and definition of ' which impiy that if u > v and v € F then u € IF.)

¥ >0, supinfu(y) - A+e—v{y—x}>0
vel Y

< supinfu(y) —vly —x) > A
v Y
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16.2 Asymptotic behavior of monotone operators

The aim of this section is to study the asymptotic behavior of 2 monotone operator. More precisely we
assume to have a base of functions I and an operator T defined by

T{u)(x} = figg‘ yf;u'g” uly +x) — f(¥)-

We want first to define a local version of it T, and then to estimate T (u) — u when h tends to 0.

16.2.1 The rescaling issue

As we have seen until now, the scale is related to the space by the following consideration: assume that u
and v are two functions such that v{x} = u(2x). (u corresponds somehow to a zoom of v). i we want to
smooth the two images similarly we have to change the scale of the filter. For contrast invariant filter, this
is quite straightforward, the scale is directly and uniquely linked to the size of the structuring elements.
E.g if the filter is the median filter on & disk. The size of the disk (the scale) has to be chosen two
times bigger for u than for v. For such filters, the down-scaling corresponds to a spatial shrinkage of the
structuring elements.

For linear filter, (think the mean value to be simpler) the scaling was also straightforward. Indeed, the
mean value on u has to performed on a neighborhood two times larger than for v. But in that case, this
does not only mean a spatial shrinkage ! Indeed the kernel of the mean value on a disk of radius h centered
in 0 is given by

"—:‘g for [x{ < h

0 otherwise

That is that the structuring element is scaled also in amplitude. Here the amplitude-scaling factor R7% s
so that [ gn = 1 which was a assumption made for a linear smoothing.

As for the linear filter, at this point we can guess that an amplitude-scaling factor might be needed
for a general menotone filter. So that the structuring elements, that is the functions of F will be scaled
as f(x) = hf f(x), where § is a real number which will be discussed later. (To be noted that is all that
follow h® could be replace by a function of 3).

We therefore define the scaled operator Ty, associated to T by

Ti(u}(x) = inf S, u(x +y) — K F(y/h). (16.1)

16.2.2 Legendre Fenchel transform

Definition 16.2 Let f be a function from RY into R, we denote the Legendre conjugate of f by f* :
RN — R defined by

£ (p) = sup(p.x — f(x))
XeR

Let us note that if f is convex then the legendre transform is finite for every p.
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16.2.3 Asymptotic theorem, first order case

Lemma 16.3 Let f be a function satisfying the following conditions:

f(x)

3C > 0 and a > max(8, 1} such that hmmf T > and f(0) < (16.2)
Then, for any €' and bounded function u, if 3 < 2:
sup (u(x +y) = h® fly/h)) — u(x) = h® f*(h' 2 Du(x)) + O(r2~550))

YeR¥
A interesting particular case is when 8 = 1:

sup (u(x +¥) — hf(y/h)) — u(x) = Af* (Du(x)} + O(K°)
Ve

Proof Without loss of generality we can choose x = 0 and u(x) = 0 so that we are looking for an estimate
of

sup (u(z) — hdf(z/h))
ZeRY

when h tends to 0. Setting y = z/h, we have,

sup (u{z) — h°f(z/h)) = sup {u(hy)—h"f(¥))
ZE RN YcRY

Let us first prove that we can discard from the preceding sup the y that goes too fast toward co as h tends

to 0. We consider the subset 5y of RY of the y such that

u(hy) — b7 fly) > u(0) - k7 £{0) > 0.

We obviously have

sup (u(hy) — ¥ f(y)} = sup (u(hy) — 7 f{y)}.
yeR~ Yebu

Since u is bounded, we have ¥y € Sy, f(y) € C1h~? for some constant C; depending only on ||u|ee-
Assume that there exists y, € S, tending to oo as A tends 10 zero. For h small enough, condition {16.2)
gives f(y,) > C|y,|®, which combined with the preceding inequality yields ly,| < Coh=%/%. Such a bound
holds if y; € S is bounded, so that we have

Yy € Silyl < Cyh=9/=
As consequence, Yy € Sy, we have |hy| = o(1) and we can do an expansion of 4 around 0, so that

sup (ulhy) — h®f(y)} = sup (hDu(0).y — A7 f(y) + O(R*|y|*))
YeERY Yes,

We can now find finer bound for the set S, repeating the same argument. Yy € 5, we have,
hpy — b7 f{y) + O(h*y*) 2 0

which vields
[ 2 hHf(yd v | + O(hly)
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Assume that y, € Sp, satisfying the preceding inequation, tends to co when # tends to 0, then by (16.2),
we obtain |y,| = O(h‘%). Once again, if y,, is bounded this estimate holds. So we have

sup (u(hy) — ° f(y)) = ( sup (h'~Sp.y — f(y) + O3~ 5505y
yenrN YES,

= % sup (H'piy = f(y)) + O™ 50 = W (b ™7p) + )

It is easily checked that O(h2(1~ 551} = o(h%) for all § < 2. o

Theorem 16.4 Let IF be a family of functions, all satisfying the condition (16.2) with a constant C' non

dependant on the choice of a function within the family. Let Ty be the rescaled operator associated with the

family F' and with o rescaling parameter 3 equal to 1. Then for all C! and bounded function v we have:
Thiu)—u
Lh_()_h_)@ = Hy(Du(x)) + o(1)

where

Hi(p) = jnf f"(p)

16.2.4 Second order case - some heuristics.

Theorem 16.4 gives the first order possible behavior of a non-flat monotone operator. Question occurs on
what happens if this first order term is @, that is if H;(p) = 0 for all p. In that case, it is necessary to
push the expansion to the second order:

‘We have with p = Du(0) and 4 = D?u(0)/2,

sup ulhy) ~h%f(y) = sup hpy +h*Ay.y — P f(y) + O(lhy[*)
yeR~ yeRy

Since this last expression is increasing with respect to A it is then expected that the left side of the equality
converges when A tends to 0, to some function F(A,p) where F is non decreasing with respect to A. As
consequence, among second order operator only elliptic operator can be obtained as the asymptotical limit
of a general monotone operator.

16.3 Application to image enhancement: Kramer’s operators
and the Rudin-Osher shock filter

In [224], Kramer defines a filter for sharpening blurred images. The filter replaces the gray level value at
a point by either the minimum or the maximum of the gray level values in a neighborhood. This choice
depending on which is the closiest to the current value.

In [?}, Rudin and Osher proposes to shapen blurred images by applying the following equation:

o]
3_1: = sgn{Au)|Du|
As, we will see in the following section, this two filters are asymptotically the same in 1D, but differs in
2D, The first one yields to the Canny differential operator for edge detection (sign of D*{Du, Du)), while

the second explicitely uses the sign of the laplacian.
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FILTER

16.3.1 The Kramer operator.

This filter can be seen as a conditicnal erosion or dilation and an easy link can be made with the “shock
filters” [?]. A finer version of it, is proposed in [345] and proceed as follow: Let g(x) = x*/2, and F* = {q}.
Set T} the rescaled, {with 3 = 1), non-flat operator associated with the structuring elements set ' and
T, its dual operator. We have

X — 2

(Tru)(x) = sup uly) - hqllx— y)/h) = sup u(y) — =3
YERN YERY 2h

(x—y)?

(7)) = ok uly) ~ ha(lx = y)/h) = inf uiy) + F 3
The Shock filter T}, is then defined by
(TFu)(x) i (TFu)(x) - u(x) < ulx) - (T u)(x)
(Trw)(x} = ¢ (Tru)(x) i (T u)(x) - w(x) > u(x) — (T ud(x) (16.3)

u(x) otherwise

The figure 77 illustrates the action of such an operator. In order to understand mathematically the
action of Ty, let us examine its asymptotical behaviour. The following exercise proposes to apply Theorem
16.4 to get the asymptotic of T,j' and T,". Tt will however not permit to conclude for T}, this is done in
the next proposition.

Exercise 16.1 !. Check that Vu and Vx:
Ty ulx) < ulx) < T)fu(x)
2. Using Lemma 16.3 Show that q*(p} = q(p) and that Vx where u is O :
(T u)(x) — uix) = A{Du(x)* /2 + O(R?) and

(T w)(x) — ulx) = —R|Du(x}*/2 + O(K*)

So that

Mﬂ = £[Du(x)[*/2

lim
h—0

At this step, we remark that the differences (T, u)(x) — u(x) and wix) — (T u} are equal at the first

order, and therefore the choice will be made based on second order estimates on u.

Proposition 16.5 Let T, be the “Kramer” operator (given by 16.3), one has for any function u € C¥,

lim @F = %sgn(D?u(Du..Du)) |Du{x)|?

h—0

F. Guichard, 3-M. Morel, Image iterative smonthing end PDE’s 165



vy

s

-

CHAPTER 16. MONOTONE IMAGE OPERATORS: “NONFLAT" MORPHOLOGY

Figure 16.1: Shock Filter implemented by using non fiat morphogical filters. Top, left toriginal image, right: blurred image
using Heat Equation, Middle-left: two iterations of the kramer filter, Middle-right: two iterations of the Rudin-Osher flter.
The scale parameter is chosen such that the parabola passes the range of the image at a distance of 6 pixels. Down: zoom
version of a detail, left: original image, middle: kramer filter, right: Rudin-Osher filter. We see a tendancy of this last to
smooth shapes toward circles.

Proof According to Exercise 16.1, one has to push the asymptotic of T, and T} to the second order.
We have

—y)? X —v)?
Ty (u){x) = yzuEN uly) - % and T (u)(x) = yier}gy uly) + (Wy')—

Since T,;" and T, are translation invariant, we can limit our study at x = 0. Moreover, since u is bounded,
we can limit the sup to the y € B(0, k). If u is € at point 0, we can set u(y} = u(0)+p.y + A(y, ¥} +oly)?
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FILTER

So that,

2 2
TH@O -u0) = sip wy) -2 —w0)=_ s (py+ Aly,y) - D opn?
YEB{0.k} YeB(0,k)

Set @n{y) = 2hp.y + (2hA — Id){y,y), so that we have

Th = sup (Qn(y)/(2R)) + o(h)?
YEB(0,h)

For h small enough By, = I'd — 2hA is positive and inversible. Therefore, the sup of (}; over the y exists,
and is achieved for y, such that

2hp + 2By, =0 =y, = —hB~Y{p)

Thus,
T 0)(0) — (0) = 5(1d — 2h4) ™ (p, ) + ofh?) = 2 (1d + 2h4)(p, p) + o{2)

We conclude that "
T,F(u)(0) — u{0) = 5Ipl2 + h*A(p, p) + ofh?) (16.4)

Similarly, .
T, (u)(0) —u{t} = Ellﬂ2 - k2 A(p,p) + o(h?) (16.5)

From these two last equalities we deduce that
(T u)(x) — ulx)) — (u(x) — (T, w)x)) = h*(D*u(x))(Du(x}, Du(x)) + o(h’) (16.6)
We therefore have
Th(u)(x) — u(x) = [Du(x)]* sgn( D*u(x) (Du(x), Du(x)) ) + o(h)

n}

Let us remark that if « is a 1D function, then sgn{D*(Du, Du)) coincides with the sign of the laplacian.
That is that the Kramer operator corresponds, in 1D}, asymptoticaly the Rudin Osher shock filter.

16.3.2 The Rudin Osher Shock Filter.

Let us simply define a scheme that vields asymptoticaly the Rudin Osher shock filter equation.
Let By be a disk of radius A centered at §. Let Mear be the mean value on the disk B,. We define
the operator T}, by:

Thu(x) = minyep,ulx+y) if Mean(u)(x) > u(x)
= maryep,ul{x+y) if Mean{u){x) < u(x)
= u{x) otherwise

Exercise 16.2 Prove that
lim: Thu — u = sgn{Au)| Dul

=0
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16.4 Can we approximate a parabolic PDE by the iterations of
a monotone image operator ?
16.4.1 Approximation of first order equation.

Let us address the converse of theorem 16.4: being given the function G is it possible to construct a scaled
familly of structuring elements such that the associated scale space T satisfies

Thu — u = RG{Du) + O(h*)?

As we shall see, the main difficulty stands in the localization of the structuring elements when the scale
tends to 0. In all the following, we work with the scaling parameter 3 equal to 1.

Theorem 16.6 Let G be o conver function, such that G satisfies condition 16.2, then choosing Fn =
{hG*{x/h)} one has for the operator Ty associated to I, and for any function v € C?, (Thu — u}(x) =
hG(Du{x)) + O(h)

Proof This is a imediat consequence of Lemma 16.3 and of the fact that if a function ( is convex then
G** = (. An example of such function G is G(x) = jx|. O

When ( is non convex, then exhibiting a function M such that M* = G is non straighforward, It is

better to consider G as the infimum of a familly of convex functions {gg},-

Theorem 16.7 Let G be o function being the infimum of a familly of convex functions {gg}y, such that
for ull g, g; satisfies the condition 16.2, then choosing F) = {hg;(x/h)} one has for the operator T
associated to Iy and for any function © € CF, (Thu — u)(x) = hG(Du(x)) + O(h?)

Note also that for negative function G, the same result work by switching the sup and the inf in the
definition of the operator T}.

Proof The proof of Theorem 16.7 is a straighforward consequence of Theorem 16.4. W]

Examples of functions ( that fit the hypothesis of the theorem 16.7 are the positive and Lipschitz functions.
Indeed, if G is K-Lipschitz then setting for g € RV,

94(x) = Glg) + K|x — q|
We obviously have G(X) = inf,c v gqe{x). And,

[ pa-Glo) iflf <K
9:(p) = { +o0 otherwise

So that g;(p) satisfies the condition 16.2.

Remark 16.8 However, the hypotheses of Theorem 16.7 do not permail to construct any funetion G. The
main issue is in fact the condition 16.2, which localizes the filter when kh > 0 tends to 0, in the theorem
16.4.
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16.4. CAN WE APPROXIMATE A PARABOLIC PDE BY THE ITERATIONS OF A MONOTONE IMAGE
OPERATQOR ¢

Frédéric Cao proposes in [65] a way to avoid such an issue for any pesitive l.s.c funclion G. His idea
is to define a two scales family of structuring elements. He first set
_J| Gla) ifp=g¢q
94lp) = { +oo  otherwise
It is then obvious that G(p) = inf,c g golp). He then set fi(x) = (g;)(x) = —Glg) + ¢x ond F), =
{Forry € RY) where, for a e €]1/2,1],

—hG{q) +gx ifx € B(0,h*)
+00 elsewhere

Faon(x) = {

The familly ', is not a rescaling of the familly IFy. There is indeed, two scales: the explicit one h, and
an implicit one, h* since the functions of Iy, are truncated outside a ball of radius h™. This truncature
localizes the corresponding operator Ty, and makes the result of theorem 16.4 true, even if the functions of
Iy, do not satisfy the condition 16.2.

16.4.2 Approximation of some second order equation.

Let us start with a simple remark. Set fi(x) = gx, ¥x in B(0,A) and f,{(x) = +oco otherwise. By an
imediat consequence of the Taylor expansion we have
g=Du(0) & sup ulx) - f,(x) = O(h?)
Xemr™

g # Du(0) & sup u(x) — fo(x} > Clgq,u)h

XeRN
This indicates that a way to get second order operator is to choose the familly of functions #' so that
Yf e FF and Vg € B one has f +gx € FF.

The Heat Equation as the asymptotic of a non-flat morphological operator.
Lemma 16.9 Let A be in SM{IR™) (set of the N x N symmetric matrices). Then,

Tr(d)=N sup (A4 —Q)(x,x) (16.7)

inf
QESM{RN VT r(Q)=0 X 1X|=1

Proof We know that, since A and @ are symmetric, supy x=1 (A — @)(x,%) is the largest eigenvalue of
A — . As consequence Y@ € SM(R"), Nsupy jxj=1 (A = @)(x,x) > Tr{d — Q) = I'r(A4). Thus

in sup (4 — Q){x,x) > Tr(4).
QESMURE),Ir{Q)=0 x |x| =1

Choosing @ diagonalizable in the same base that diagonalizes A, and denoting by Ay < ... € Ay (resp. a1,
...y gn ) the eigenvatues of A, {resp. of @), we have
sup {4 — Q)x,x) =max{d +q1, -, An +qn}
X4X|=1
So that
inf sup (d— x,X) < inf max{A +q1, ., Anv+on} = (A1 +..+AN)/N
er'M(-'RE).'I‘r'(Q)=0x‘lx}):1( Qxx) < {onegn bgit g =0 Pt i f !

O
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CHAPTER 16. MONOTONE IMAGE OPERATORS: “NONFLAT” MORPHOLOGY

Lemma 16.10 We set forpe RY, Q € SM(RY}, and h > 0, .
fooa(x) =px+Qx,x) ifxe B0k}
= —00 otherwise

We then set F, = {foquniwith@Q € SM{RY);Tr(Q) = 0 andp € R"} which is to say that Fy
is made of the truncature around zero of oll quadratic forms whose trace is zero. With Th{u)(x) =
infjep, SUpyepy WX +y) — f(y), one has for any v € C°,

Th(u){x) — u(x) = %\;hzm‘(x) + o(h?)

Proof We make the proof at point x = 0, we set A = 1D%u(0). We have

Ty{u}(0) — u(0) = _inf sup  uly) —u(0) — py ~ Q(y,¥) .
PERY QESMRY)THR)=0ye B(0.h)
=inf sup u(hy) —u(0) — hpy — h*Q(y,¥) .
rQyeBo1) .
=inf sup A(Du(0) - py — h*(A - Q)(y,¥) + o(h®)
P@ yes(o,1)
1 i
- h2 inf su A- , - _hQTr A
QES}H(RN);T"(Q)=0 yEB(I(J),l)( Q)(y y) JV ( )

Other second order equations.
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Chapter 17

Viscosity solutions.

17.1 Definition and main properties.

In what follows, we always consider functions u{t, x} which are continuous on [0, co[ x RY. We shall also
consider first and second derivatives of real functions. We recall that if % is €2, then we denote by Du
and D?u the first and second partial derivatives of u with respect to x. D?u(t,x) is a bilinear form, or, if
we choose an euclidean basis, a symmetric matrix. Symmetric matrices {or bilinear forms) can be ordered

in the following way. We say that a symmetric matrix 4 = {Aii)1<ij<n 15 nonnegative if for all p € RV,

N
Alp,p) =" pAp = Z Aypip; 2 0.
=1
We say that A > B if A— B > 0. The parabolic equations we shall consider in this chapter are associated
with a differential operator F(D%u, Du,x,t) where F is assumed to be continuous with respect to all of

its arguments (except, in some case, at Du = 0) and nondecreasing with respect to the first argument, :

VA, Bpt A>B= F(Apxt) > FB pxt). (17.1)

It will be convenient to consider the case where F(A, p,x,t) is not continuous at p = 0. This ocours

for one of the most relevant equations considered in this book, the curvature equation ‘?,—'t"‘ = |{Dulcurv(u).

This equation corresponds to F{4,p,x,1) = A("l:—l, fl’p—j) which is not continucus at p = 0, but admits an

continuous bound.

Definition 17.1 and assumption. We call admissible function F a function F satisfying (17.1), which
is continuous for all A, p # 0,x,t and such that there exists two continuous functions Gt(4,p,x,t) and
G (A, p,x,t), with
GY(0,0,%,8) = G7{0,0,x,8) = 0,
VA > 0,G7A,0,x,8) >0 and G (-4,0,x,8) < 0 and

YA, 0, X, t, we have G (A, p,x,t) < F(A,p,x,t) G (A, p,x,t). (17.2)

Remark 17.2 Let us first note thet if I is continuous everywhere and F{0,0,x, 1) = 0, then F is admis-
sihle. (Choose, e.g. G= = F ).
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CHAPTER 17. VISCOSITY SCLUTIONS.

Remark 17.3 (Main example : the curvature equation) We remark that in the case of the curvature
equation that F is admissible, with e.g. G*(A,p,x,t) (resp. (™) equal to the largest (resp. smallest) of
the eigenvalues of A.

Returning to some examples which are of main interest for us, let us list

e F(A,p) = |p| or —|pl, which is the case of dilation and erosion with scale ¢, associated with %—‘; = |Du|
or —|Dul,

e F(A,p) = trace(A), which is the case of the heat equation % = Au,

2 _ 2 . . . 3
» F(A,p) = btes 2”‘;’;2‘"“*‘"?"‘" , which corresponds to the curvature equation in dimension 2,
o F{A,p) = (P 422 —2p1pad1 2 +p§A1,1)§ which corresponds to an affine invariant and contrast invariant

smoothing which we call later on “Affine Morphological Scale Space (AMSS)”. The associated equation is

%"E‘ = | Duf{curv(u)) . (17.3)

In this later case, notice that F is continuous at all points (4, p).

Remark 17.4 [t would be comfortable to define a solution of the preceding equations by stating that u is
C? in x, C! in t and satisfies the equation % = F(D%u, Du,x,t) at all points (t,x). In this case, we say
that u is ¢ “classical” solution of the equation. Such o definition works (e.g.) for the hent equation, for
which we have shown the existence of classical solutions. There are however, equations among the omes
considered above for which a C2, or even a C1 solution is not to be expected. Let us give an ezample
where a seemingly “classical” solution is not the right one and violates the comparison principle.  Set
up(x) = —|xi. Then one is tempted to propese, 63 o solution for % = |Dul, the function a(t,x) =t — |x|.
For all t and all x # 0, we indeed have 42 = 1 = |Di{x)|. Now, this “solution” violates the comparison
principle. This can be checked by comparing this solution with the C®° solution of the same eguation with
initial datum po{x) = 0, which obviously is p(t,x) = 0. The right, comparison preserving, solution is
in fact u{t,x) = min{0,t — |x|). Notice that this last solution is not 1, so that it cannot be defined as
e classical solution. The difficulty of defining a right concept of solution is still more challenging in the
case of equations like the mean curvature equation. A fast way to capt the difficulty is to use the contrast
invariance : let g{r) be a nondecreasing continuous, but not C? real function and ug(X) an initial datum in
RN . Assume that we have been able to define o “classical” solution u for a curvature equation like (17.3}
or the mean curvature motion with initial datum ug. By contrast invaeriance, it is to be expected that g(u)
will be a solution for the same equation with initial datum gluo). Since g is not C', it eannot, however,

be ezpected that this solution will be even C'. We only can asser! that it is continuous.

Although we cannot write properly the equation for an expected sofution because of its lack of regularity,
we can instead compare it with smooth, classical solutions. To this aim, we denote by C’,‘,")(RN) the set of

continuous, infinitely differentiable bounded functions on R" .

Definition 17.5 Let us first assume that F' is admissible. We shall say that u is ¢ viscosity subsolution

at point xg and scale ty of

%;f(t,x) — F(D*u{t,x), Du{t,x),x,t) =0 (17.4)
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17.1. DEFINITION AND MAIN PROPERTIES.

if u is a continuous function and if for all o in C2 ([0, T]x IRY) such thet (ty, xg) is a local strict mazimum
point of v — p, we have if Dy(ty, Xe) # 0

s
a—f(tu,xD) — F(D*p(to, xo}, D(to, Xa), Xo, to) < 0, (17.5)
and if Dplty, xp) = 0 and D?p(ty,x0) = 0
N
S (to, %) S0. (17.6)

Stmilarly, u is a viscosity supersolution at point Xg and seale ty if for all  in Co([0, T} x BN such that
(t0,%0) s a local strict mazimum point of p — u, we have if Dp(ty, Xo) # 0

a -
= (to,xa) = F(D*(to,xa), Diplto, Xo), Xo, to) 2 0. (17.7)
and lf D(,O(to,)(o) =0 and D2ip(i(],X()) =10
3,
S (t0,%0) 2 0. (17:8)

We call u a viscosity solution at point xo and scale ty if it is both a viscosity subsolution end a
supersolution.
If u(t,x) is a viscosity solution of (17.4) at each point of R** x RY and if u(0,x) = ug(x), we say that
u is a viscosity solution of equation (17.4) with initial condition ug.

106.9

78.0

100,12 100.¢ 50,%

50.0 50,0 5.0

.0 .0 0.0
S0 100 150 200 o 50 100 150 200 0 50 100 150 200

Figure 17.1: Erosions and dilations can create singularities. Top-left : criginal €'°° image, and below : representation cf
the intensity along the horizontal axis. Middle : dilation with a circle of 30 pixels : at the central point, the image is no
more € or even C. Right : ercsion with the same circle ; we also see some loss of regularity : the solution is no more C%.

Of course, this definition makes sense only if we prove that “classical” solutions of (17.4) also are
viscosity solutions ! This will be done in Proposition 17.10 below. The next lemmas vield a significant
simplification of the calculations when we check that a function is a viscesity solution. Of course, all
statements on subseolutions are also valid for supersolutions with the adequate changes.

Lemma 17.6 If u s a viscosity subsolution and v —  has a (not necessarily strict) locel mazimum af
{to,Xq), then the saine conclusion holds for (17.5 or 17.6).
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CHAPTER 17. VISCOSITY SOLUTIONS.

Figure 17.2: Erosion and dilation can generate singularities within the level-lines. Left : original image where the only
level-line, corresponding to the bouadary of the biack shape, is C?. Right : erosion with a circle of radius 10 : the resulting
level-lines have angles.

Proof Just replace (t, x) by 9(2,x) = p{t,x)+(t~tp)" +(x—xg)*. Then the first and second derivatives
of v are equal to those of y and (£, xe) is now a strict local maximum of u—1. ad

Remark 17.7 Let us note that the relations (17.5 - 17.8) do not give uny bound of the partial derivaty of
 with respect to t, in the case where Dyp =0 and D?p # 0. The nert lemma proves that in fact {17.5) and
resp. {17.7) hold even in this case, with F replaced by any function G* fresp. G~ ), where G* satisfies
17.2. In particular +f F is continuous everywhere then (17.5) and (1 7.7) are satisfied everywhere.

Lemma 17.8 Let us assume that F is admissible, end G and G~ two continuous functions satisfying
17.2. A continuous function u is a viscosity subsolution (resp. supper-solution} at point {to,xo0) of (17.4)
if and only if it satisfies (17.5) and

3
éf(to,xo) — GT(D*p(to, %o}, Dip(ts, Xa), %o, t0) < 0 (17.9)
(resp. it satisfies (17.7) and

a
o (to,%0) = G™(D¥plte, x0), Diplto, Xo), %o, to} 2 0 (17.10)

An tmmediat consequence of this lemma is that if F is admissible and continous, and u a viscosity

subsolution (resp. supper-solution), then (17.5) (resp. (17.7)) holds even if the gradient is nutl.

Proof lt is clear that if (17.9) holds then (17.6) holds. Let us prove the reciproque: Let « be a continuous
function satisfying (17.5) and {17.6). Let also > be a C? function such that (2o, Xo} is astrict local maximurm
of % — . We have to prove that for any continuous G satisfying condition 17.2, if Dip(tg,x0) = 0 and
D2p(tn, xo) # 0, (17.9) holds. {The others cases are immediat).

Let us consider the function . {t, x,y) = u{t,x) — @it,¥) — P-{—_eﬂ Since (tg, Xp) i5 @ maximum point
of u —, one proves easily that there exists a sequence (£, %, ¥, } of local maximum points of ¥, converging
to (tg, X0, Xp). X. fixed, ¢ is twice differentiable with respect to y, and has a local maximum for y = y,,
therefore one has

4(xe ~ ¥ )Ixe = yeP

D‘f’ﬂf(tiay'e) = ¢ H

and .
sz(te,yc) > —?(413‘:5 - yi|21d - 8(x, — yc) @ (X, —¥,))

Two cases:
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17.1. DEFINITION AND MAIN PROPERTIES.

L. Deg(t.,y,) =0, thenx, = y,.
Now, fixing y = y,, ¥ has a local maximum at x, with respect to the x variable, using (17.6) we get
B¢
vy ti? < 0
¢ (b ¥e) <

and since D?yp(t,,y,) > 0, for any continuous G+ satisfying 17.2, G* (D%p(t,,¥.),0,¥. .t} > 0, thus

Ay
Bt Lo ¥d S GTDPe(ty ). 0,y )
and letting € tends to zero, by continuity of G, we deduce that (17.9} holds at point {#0, Xo).
2. Deg(te,y,) # 0. We remark that (¢.,%,) is 4 maximum point of
]4

(t,%x) = u(t,x) ~ plt,x — (x — y)) - l";iy-

Then using (17.5), we have

Gy

5 < F(D*o(te,y,), Dolte, ¥ ), ¥ te) € GHD?0(te,¥.), Dplte, ¥ )  ¥orte)

Letting e tends to zero, and using the continuity of G* we conclude that {17.9) holds at point (tg, Xo).

]

Lemma 17.9 If u satisfies the subsolution (resp. the supersolution) definition 17.5 for any C° function
@ of the form p(x,t) = f(x) + g(t), then if is a subsolution (resp. ¢ supersolution).

Proof Let ¢(x.t) be a C}® function such that u ~ ¢ attains its maximum at (Xo,fo). We wish to show
that (17.5) is satisfied. Without loss of generality, we may assume that the origin is at (xg,to)}, so that
{x0,t0) = (0, 0). By Taylor formula, we can write

P, 1) = o + bt+ <p, x> +ct’+ <OQx, x- +t <q, x>~ +o(]x?| + 19,
where e = p(0), g = %(&(U), &(0)), etc.. We then set

RN Sy Bt

f(x) = a+ <p,x=~ + <Qx, x> +e|x|* + ¢[gl|x]*

and
gty = bt + i—gltg +et’ +ot?,
so that
w(x, 1) = Fx) + g(t) — (elqlix]> + e, <q, % +e([x[* + 7)) + o x| + £7).

£
Since, by Cauchy-Schwartz inequality, |q|{x|* + J;—’it? +1& =g, x>> 0, we have p(x,t) < f(x) + ¢(¢) for
(x,t) small enough. Thus, in a neighborhood of 1, u(¢,x) — (x,#) > u(t,x} — f(x) — g(t}. This means

that » — f — ¢ attains its maximum at 0 and therefore, by assumption,
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1. if Dg(0) = D{f + g}(0) # 0 then by (17.5)
L9 () < DS +9)(0). DU +9)(0),0,0)

Noting that 2t (0) = 22(0), D2(f + 9)(0) = D?p(0) — 2:|ql/d and D(f + g)(0) = Do(V), we
finally obtain

¢/
o (0) < F(D*(0) — 2ela1d, Dg(0),0,2).
We let £ — 0, use the continuity of F with respect to X and conclude.

2. if Dp(0) = D{f + g)(0) = 0 then by (17.9),
a(f +
29 (0) < G+ (DS + 9)(0), DS +9)(0),0.1)
Then letting £ — 0, use the continuity of G, vields (17.9} with .

The same proof applies with obvious adaptations to the suppersolution property. ]

Exercise 17.1 Let F be admissible. Show that, in the definition of the viscosity solutions (associated with
%;3 = F(D%u, Du,x,t)), we can enforce further the test function f to belong to any class C of C? functions
having the following property: For any x € RY and any quadratic form @, there exists © € C such that

F¥) = Qy) +olly - x)%).
(Indication: use the order 2 Taylor expansion of ©.)

The next two propositions show that the notion of viscosity solution is a generalization of the concept of

“classical” solution.

Proposition 17.10 Let F(A,p,x,t) be admissible and continuous everywhere, and u be a classical, (i.e.

C? with respect to x and C' with respect to t), solution at point (xo,to) of

%!ﬂ:-(t,x) = F(D%u, Du,x, t).

Then u i3 a viscosity solution at this point,

Proof: Wedo the case where Du # 0 at point (o, Xo}. {The other case, Du(ty, xo} = ¢ and D?u{ty, x0) =
0, is imediat). Let ¢ be a C**(R"™ x R* — IR) function such that (f, %o} is a global maximum point of
u — o, that is

u(to, Xo) — w(to, Xp) > uit, x) - ¢t x).

We want to prove that

%-‘;3 < F{D%, Dy, x, 1). (17.11)

We have

u(t,x) - u(tO!XU) < @(tﬂ X) - #3(30»7(0)-
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Thus, by Tayloer expansion of order 1,

(t - to)g—t:(to, Xo)+ *DU(tQ,XQ),X — Xp» +O((X - Xg)) + O(t - tg)) < (1712)

Ao
{t ~ to) 5 (t0, %0)+ <Diplto, Xo), X = X0 -
Setting x = xp, taking ¢ > tp and ¢ < ty and letting ¢ — ¢y, we get

a a
a—?(to,xo) = Bi:(to,xo)-

Setting x — xg = €y, and letting £ — 0, we get
Vyl '<Du(t01 X(]), y>'£ '<D(p(t03 xﬂ) Y-

Thus Du(ty,x0) = Dglte,xe). We now take ¢t = #; and do a Taylor expansion in x of order 2 of the
inequality

u(to, x} — u(to. %) < plta, x} — (%0, Xo).
We obtain

<D*u(to, xq)(x — Xp), (X ~ Xo )= <<Dp(ta, X0 ) (X ~ Xo), (X — X0 )> +0((x — x0)?),

which yields
D2u(ty, x0) < D?p(t, %o}

Thus,
dg du 2 2
E(to,xo) = E;(toaxo) = F{D*ulto, xe), Dufto, x0), X0, t0) < F{D(to, Xa}, Dyita, Xo), Xo, ).

We deduce that u is a subsolution and we prove in the same way that u also is a supersolution. ]

Proposition 17.11 Let F(A4, p,x,t) be admissible and continuous everywhere. Let u(t,x) be C* in x and
C' in t and assume that u is a viscosity solution of ‘f}—‘; = F{D%u, Du,x,t). Then u is a classical solulion
of the same equation.

Proof : We assume that u is a viscosity solution, and is €2 at point {3, %g). We note Dy = (%;5, Du) €
ERE~+!. By Taylor formula,

u(t,x) = u(ty, xp )+ -<lju(tq,x0),(t—tg,x—xa)>- + -<ﬁ2u(t0,x0)(tgto,xfxo), {t—tg, x—xg)> +of|x—xo|* +|t—to}").
For ¢ € IR we set
@e = ulty, Xo )+ <Du, (t—to, % — Xp)> + <(Dulty, x0) + £Id)((t — to,x — Xo), (t — g, X — Xo )= .

Then, (tg,%0) is a local maximum of u — ., and a local maximum of ¢, — u. Since F is continuous and
u is a viscosity solution at point (#5,%g), we have by lemma 17.8, at this point, (with Gt = F),
Ju Dy
ot~ ot

< F(D%pe, D, Xa, ta) = F(D*u + £Id, Du, %y, 1)
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ou_ 8-
ot~ ot
Letting £ — 0, we obtain

> F(D*¢_., Dy, %o, t0) = F(D’u — eld, Du, %o, to).

aa—t:(tD,X()) = F(DZH,DU,XU,tQ).

17.2 Application to mathematical morphology.
Consider the dilation of a function ug{x) by balls with radii ¢, that is

u(t,x) = sup up(x+y), u(0,x) = to(x).
yeB(0,)

In that case, we have shown that at points (¢,x) where u(t,x) is C', we have %—‘t‘ = |Du|. Let us now show
that this same equation is satisfled in the viscosity sense by u at all points. The following theorem and
proofs are immediately generalizable to dilations or erosions by an arbitrary convex set.

Theorem 17.12 The function u defined by u(t, x) = suPycpy up(x + y) is a viscosity solution of

%}z = | Dul, 1(0,x) = up(x) (17.13)

Proof : We shall use the fact that u satisfies the recursive property

u(t,x) = sup u(t —h,x+y). (17.14)
[¥[<h

Let ¢ € C®(RY x IR*). Let {t9,Xo) a local maximum point of u — . In order to prove that ¢ is a

subsolution of the equation (17.13) we have to prove that

o]
5 (ta, %0) = Dl (t0, %a) < 0.
We have, for A and y small enough,

u(to — h,xo + ¥} — w(ta — b, %0+ ¥) < ulto, X0} — w(to, %o).

We deduce that

sup u(ts — h,Xo + ¥) < u(to,Xo) — w{to, o) + sup w(tg — h, %o +¥)
lyl<h I¥l<h

and, using (17.14),

u(ty, xo) < ulte,Xo) — @lto, X0} + ks‘lp @lto —h,xq +¥).
yi<h

Thus

wito, Xo) < sup p(to — h, X0+ ¥)-
[ <h
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Subtracting p{to — h, x0) on both sides, we get

@{to, %) — p{to — b, xg) < |5}1P (w{to — h,x0 +¥) — @(to — b, %p)).
yl<h

Dividing by k and letting A tends to 0 yields

&
s (to-x0) = |Dii(to,x0) < 0.

Thus # is a subsolution and we prove in the same way that it is a supersolution of (17.13). (W]

17.3 Approximation theory of viscosity solutions

In the following, we consider for simplicity a slightly less general kind of equation for which the second
member is independent of ¢, that is

g—:(t,x) — F(D?u(t, x), Dult,x),x) = 0. (17.15)

F{A,p,x) is assumed to be admissible (Definition 17.1}. For such equations, we can expect that the
operator S; : up —+ u(x,t) can be approximated by the iteration of a single operator T}, that is, (T,)" = 5,
in some sense as nh — t. Of course, we have exactly Sy = {5,)" if t = nh. Now, we are concerned with
operators Ty, with a definition plainer than S,. To be precise, we have in mind precisely the same scaled
“inf sup” operators which have been considered in the preceding chapter of this book {Chapters 11-15).
We shall now list some very reasonable properties which T) must have if it is asked to have the same
structure as S, when A — 0. It is immediately checked that those properties are true for the scaled
“inf sup” operators we have just mentioned.

Definition 17.13 We say that a family of eperators Ty, h > 0 is uniformly consistent with Fquation 17.15
if for every C°, Lipschitz function u we can assert that

if Du(x) # 0, (Thu)(x) - u(x) = hF(D?u, Du, X} + ox (), (17.16)

where the convergence of ox(h) is uniform for x in every compact set K contained in the set {x, Du{x) #
0}. {That is ox{h) < C, klh|, for a constant C, g depending only of u and K.}

if Du(x) = 0, |{Thu){x) — u{x)] < AG(D%u,0,x) + ox(h) (17.17)

for a continuous functions G, with G(0,0,x) = 0, and, where the convergence of o(h) is uniform for x in

every compact set.

Definition 17.14 We say that a family of operators Ty, h > 0 satisfies & uniform local comparison prin-
ciple if for every L and all L-Lipschitz functions v and v such that u(y) > v(y) on a disk D{(x,r)} \ {x}

deprived of its center, we can assert that
(Thu){x) > (Tho}(x) — o(h), (17.18)

where the function o(h) only depends upon the Lipschitz constant L and r.
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Definition 17.15 If Ty, h > 0, is a family of operators consistent with Equation 17.15, We cell ap-
proximate solutions of {17.4) with initial condition un{x) the functions up(t,x) defined for every h > 0
by

Yn € N, wup{nh,x) = (T7uo)(x),

Vi € [{n ~ DR, nbf, up(t,x) = up{(n — 1)h,x).

Proposition 17.16 (Convergence) Let (Ty,)u>o be a family of operators uniformly consistent with (17.15),
satisfying o uniform comparison principle and commuting with the addition of constants (Tp(u + C) =
Thu+ C). Assume that a sequence of approzimate L-Lipschitz solutions up, converges uniformly on every
compact sel to a function u. Then u is o viscosity solution of (17.4).

Before starting with the proof, let us state an obvious but useful lemma.

Lemma 17.17 Let v be a sequence of continuous functions converging uniformly on e disk D(x,r) to a
function v. Assume that T is a strict mazimum point for v on D(x,r). Let x; be a mazimum point of vy,
on D{x,r). Then x, tends to x as k = +00.

Proof of Proposition 17.16 Without risk of ambiguity, we shall write u, instead of us,. Let D =
D{(x,t),7} be a disk and (s,y) a C* function such that (u — ¢){s,y) attains its strict maximum on
D at (t,x). Without loss of generality, we can assume by Lemma 17.9 that (t,y) = f{y) -+ g{t). Since
ur — @ ~+ u - uniformly on D, we know by Lemma 17.17 that a sequence (%, tp) of maxima of un — ¢
on D converges to (x,1).

Thus we have in particular

up((np — 13h,y) — p((ne — DR, Y) < ualts, xn) — @{tn, xa). (17.19)

Assume that nph < ¢, < (ny + 1)h. Assume first that ¢, # nxh. Then, by Definition 17.15, we know
that %\f(th,xh) = 0. Since  is C™° then we can write

Pty Xp) = p(nph,xp) + olh).

This relation still holds if ¢, = nyh.
In addition, by Definition 17.15 again, we have un(ty,xn) = us(nnh, %n). Therefore we deduce from
the inequality (17.19) that

un{(nn — Dk, y) —@((nn — 1R, y) < un(nph,xn) — plnnh, xi) + olh).
for every y such that {y,(ny — 1}h) € D and therefore
ufl((nh - l)haY) S uh(nhhy xh) - l1‘9(71.’1"!1)(’1) + P((nfa - l)hsy) + O(h‘)

for h small enough (i.e. & large enough) and every y € D(x,%). Applying on both sides T}, and using the

local comparison principle and the commutation of T), with the addition of constants,

Thlun((ne — Dk, D)xn) € us(nah, x5) ~ @{nah,x0) + (Toe({ng — 1)R), J{xn) +o(h).
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17.4. UNIQUENESS OF VISCOSITY SOLUTIONS.

Since w(t,y) = F(y) + g(t} and Tr(u{(n, — 1)h), )(x) = u(nyh,x), we get
0 < —f(xn) — g(nnh) + To f{xp) + gl{ny ~ 1)R) + ofh),

where we have used again the commutation of T; with the addition of constants.

Let us first assume that D f(x) # 0. By the uniform consistency assumption {17.16), since for A small
enough D f{x,) # 0,

(Tuf)(xa) = f(xi) + hF{D? f(xz), Df(x),%n) + o(h).
Thus
g(nuh) — g({ng, — 1) < hF(D? f(x4), D f(xn),xn) + o(h).

Dividing by h, letting £ — 0 so that (xp,nyh) = (x,t) and using the continuity of F, we get

%9 6) < F(D? $x), D (), ),

that is to say

8 2
5 (8 < F(D*6(x), De(x), x).
We treat now the case where D f(x) = 0 and D?f(x) = 0. The uniform consistency vields

,(Thf}(xh) — f(xz)

- | £ GD?foxu), DI (xn). x) + o(1)

The right term, by continuity of G, tends to zero, when A tends to 0. Thus
A
=) <0
5 (1) <

Thus u is a subselution of Equation (17.15) and we prove in exactly the same way that it is a super-
solution and therefore a viscosity solution. O

17.4 Uniqueness of viscosity solutions.

Theorem 17.18 Unigueness.

We consider an admissible function F, up and vy two continuous and bounded functions of RY . Assume
that ug and vy are defined on the hypercube [0, 117, and subsequently extended to (7 = [—1, 1] by symmetry
across the coordinate hyper-planes and then periodized. Assume that so is x = F(A,p,x, ).

If u and v are continuous and viscosity solutions of

Z—? = F(Du, Du,x,t) (17.20)

with initial conditions respectively uo and vp. Then,

sup  u(t,x) —z(t,x) < sup up(x)— vp{x) (17.21)
XeRY tefit xXe Ry

As consegquence, if ug = vy then u(t,x) = v(t,x) for all x and t.
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Theorem 17.19 “Theorem on Sums”. (revisited). [Crandal-Ishii-Lions Theorem 8.3]

Let u and v be continuous functions of R x RY, and ¢ be twice differentiable function of R* x RY.
Set wit,x,y) = ult,x) — v(t,y) — $(t, x — ¥}, suppose that (to,xp,¥,) s a local mazimum of w. Then,
there exist two sequences of points (t,,X,) and (sn,¥,) converging respectively towards (t,%xq) and (t,¥,),
and two sequences of twice differentigble functions of (R x RYM): u, and vy, such that

(tn,Xn) is a locel mazima of v — u,, and

Sun

(E:Duszun) - (ayD¢(t01x01YO)sX) (1722)
(8n,¥n) 8 a local mazima of vp — v, and
(Zn. Dy, D) = (5, Do(t0, X0,¥0), ) (17.28)

with X and Y € S(R™), such that

if D?@{te, %0, ¥) Z0: X £ ¥ (17.24)

if D*d(tg, %0, ¥g) =0: X <0and ¥ >0 (17.25)
. A

and with a—b= E(tg,x{,,yﬂ). (17.26)

Lemma 17.20 Set ¢{t,x — y) = (4e)"Lx — ¥|* + At, with € and ) two positive numbers. We consider
equation (17.20), where F' is assumed to be admissible. Let u and v be continuous and some viscosity
solutions of (17.80) with initial condition uy and vo. Set w(t,x,¥) = ul(t,x) — v(t,y) — &(t,x y). If
(to,x,¥) 45 a local mazima of w then to = 0.

proof Let us assume #; > 0, we want to obtain a contradiction by using the theorem of the sums, and
the fact that u and v are viscosity solutions. We have for some %’f(tg,xo —¥o) = A >0, Doltg, %0 —yo) =
e~ xo—¥o 2 {Xo—y,) = p. There exists two sequences of points (¢,,%,) and (s, ¥,,} converging respectively
towards (¢,%q) and {t,¥,), and two sequences of twice differentiable functions of (R* x RN): u, and vy,
and X,¥, a ~ b= Asuch that

(tn,Xn) is a local maxima of u — u,, and (%,Dun, D%u,) = (a,p, X) (17.27)
. . Oug 2
(3n,¥,) is a local maxima of v, — v, and (E' Du,, D%u,) = (b,p,Y) (17.28)

Two cases :

1. if p # 0, then for n large enough, Du, # 0. Then, since u is a viscosity solution of {17.20), {17.27)
implies

Oun

ot

Letting n tends to oo, and using the continuity of F when its second argument is not zero, we obtain

(tn,Xn) < F(Du,(tn,%0), Dun{ts, xn), Xn, to)

o s F(.‘Y,}),X{},to) (1729)
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17.4. UNIQUENESS OF VISCOSITY SOLUTIONS.

Similarly with v,, {17.28) implies

du
a—:(tn,xn) < F(D%un(tn, Xa), Dva(tn, Xn)y Xn,tn)

And at the limit
b> F(Y,p, xg.20) (17.30)
(17.29) and (17.30) gives A = a — b < 0, which is a contradiction.

2. if p =0, then X9 = yy. In that case D¢ = 0, then X < 0 and ¥ > 0. We define fn(t,x) =
un(t, X)+ <X (%, — X}, X — x>, and #,(t, x) = u, (¢, X)+ <Y (X, — %}, X, — x>. We then have

{tn,Xn) is a local maxima of « — i, and (%‘f,pﬁn,ozan) -+ (a,0,0) (17.31)
. : _ B o o .
($n,¥,) is a local maxima of 3, — v, and (W.Dvﬂ,D ) -+ (5,0,0) (17.32)

By (17.9) we have, since F is admissible, for a continuous function G satisfying 17.2:

%’L'L'tg'{tm xn) < G(Dz'&n(tmxn)s Dﬁ-n(tmxn):xnrtn)
and 80
%(in,xn) > ~G(D%n(tn, %n), Dinltn, Xn), Xny tn)

Letting n tends to oo, one obtains a < 0 and & > 0, which is again in contradiction with a—b = A > 0.

O

Proof of Theorem 17.18 We consider w(t,x,¥) = u(t,x} — v(t,y) — ¢{t,x — y), with ¢ given in
the preceding lemma. Since v and v are assumed to be bounded, w tends to —co when ¢ increases.
The periodicity of u, and v with respect to x insures existence of a maxima of w for a point (x,y,t) €
RN x RN x R*. According to lemma 17.20, t = {, so we have

ult,x) vt y) — (e x —y[' = M) < sup  {(uo(x) —wo(y)) — (46) ' |x — ¥]")
X,yCRN

Letting A tend to {}, we finally get

u{t,x) —v(t,x) < sup (wp(x) — vo(x))
Xe RN
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Chapter 18

Curvature equations and iterated
contrast invariant operators

18.1 Main curvature equations for image processing

In this chapter, we study the convergence of contrast invariant operators to equations of the kind

%1—‘ = | Du|8(curviu)), (18.1)

or, in dimension N, of the kind

g—? = | Du| (k1 (u), ko (1), ..on—1 (), (18.2)

where 3 is a continuous real function nondecreasing with respect to its variables and &y, ..., kv—; denote
the principal curvatures of the level surface of u. In other terms, they are the eigenvalues of the restriction
of D?u to the plane orthogonal to Du (Proposition 5.15).

We shall deduce from the convergence results for approximate solutions the existence of viscosity
solutions to these equations, wherever approximate solutions 1w, have been constructed. There are other
methods for proving existence of viscosity solutions (the so called “vanishing viscosity” method, and the
Perron method). Now, we shall obtain, besides existence, a proof that the main iterated contrast invariant
operators considered in the preceding chapters converge to equations of the kind (18.2). Let us list the
main examples we have in mind : this will orient us as for the assumptions we shall make on 3. In

dimension 2, we have put in evidence as relevant for image processing the equations

ad
3—1: = |Dulcurv{u) (18.3)
and 9
8—1: = |Dujcurv(u)§, {18.4)
as well as variants like 3
8—1: = | Du|(curv(u}t)s {18.5)
which correspond to affine erosions. In dimension 3, we shall be concerned with
Ju :
= |Duleurv(z) = | Du|{x (u) + x2(u)), (18.6)

ot
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which is the classical “mean curvature motion”, important because it arises as a limit of iterated median
filters (Theorem 12.2). What we'll state also applies to variants, like
du
Gt
an equation which performs a less destructive smoothing of the 3D images than the mean curvature

motion. Finally, let us mention the Gaussian curvature motion, as a particularly important equation in
3D : it performs an affine invariant smoothing (see Theorem 21.8), and can also be used in movie smoothing

= jDujeurv(y) = | Dul min{x; {u), k2(uw)}, {18.7)

because of its galilean invariance (Chapter 23) :

O — |Dulsgn(ss () (s (Wra(a)) ). (189

In the next section, we shall fix a common formal framework for these equations.

Figure 18.1: Scale-space based on iterations of the median filter. From left 1o right and up to down : eriginal shape, the
size of the disk used for the median, and the result of the iterated median filter for an increasing number of iterations.

EE

Figure 18.2: Comparison of the iterated median filter and of the curvature motion. Numerically, the iterated median filter
and the curvature motion are very close, when the curvatures of the level lines are not too smail. Indeed, the iterated median
filter converges towards the viscosity solution of the curvature maotion. Left : simple shape smoothed by a finite difference
scheme of the curvature motion, middle : smoothing by a median filter a the same scale, right : difference between left and
middle images. The difference is not larger that one pixel width.

18.2 Contrast invariance and viscosity solutions

Tn this section, we check that the contrast invariance requirement for the solutions of the equations con-
sidered in the preceding chapters is compatible with the concept of viscosity solution.
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Lemma 18.1 Equations (18 4-18.5-18.8-18.8-18.6-18.7) can be written as %—‘t—‘ = F{D%u, Du) where F{A, p)
is an admissible function (see definition 17.1) of A and p and satisfies

where Du# 0 F{D(g(u)), D{g(w))) = ¢/ (v}F(Du, D) (18.9)
for any C? nendecreasing function ¢ and any C? function v, and where

where Du = 0 and D% = (), F(D%(g(w)), D(g(x))) = F{0,0) =0 (18.10}
Proof 1If Du # 0, we know that curv{g(u)) = curv{u) and ;(g(u}) = x;(u) (Proposition 5.12). Thus

F(D*(g{u)), D{g(u)) = | D(g()|B(r (g(w)), .on_1{g(u))) =
9' ()| DulB(ky (), ...on -1 (u)) = ¢' () F(D*u, Du),

as announced. Let us now consider the case of the mean curvature equations when Du = 0. We only treat
the case of the mean curvature motions (18.3) and (18.6), the case of (18.7) being similar. In that case,
F(A,p) = Tr(A) - A(}%(, Ts[)p and therefore F({0,0) = 0.

In addition, if we take A = D¥(glu}) = ¢'{(u}D%u + ¢"(v)Du ® Du and D*w = Dy = 0, we have
Dig(u)) = 0 and D?*(g(u)) = ¢'(u)D?u = 0, so that we immediately obtain F(D?*(g(u}), D(g{u))) = 0,
when Du = 0 and D?u = 0. a

Proposition 18.2 If u is a wiscosity solution of one of the equations (18.4-18.5-18.8-18.3-18.6-18.7) and
¢ & continuous nondecreasing function, then g(u) also is a viscosity solution of the same eguation.

Proof Let us first assume that g is C* and strictly increasing and set for commodity f = g~*. Let {t,x)
be a local strict maximum of g{u) —. Then {t,x) also is a locat strict maximum of u—g (¢} = u — f(2).
Since f(w) is C'*°, and u a viscosity subsolution, we deduce that if D{f(p))(t,x) # &

AL (x) < PO D 0, DL ),

which yields by Lemma 18.1

PO 924.%) < FAFD D)t ),

and. taking into account that f' > 0,

%4, %) < F(D*, Dy)(t,x)
at
And if D(f(¢)) =, and DX(f()) = 0
% < 0 and so %(t,x) <0

Thus, g{u} is a viscosity subsolution and, in the same way, a viscosity supersolution. Let us now consider
the case where g is not C* and increasing. In this case, we replace g(s) by g-(s) = #:(s) * (1 + £s)g{s),
where 1 is a compactly supported € real function such that fﬁ =1, > 0. It is easily seen that g,
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converges uniformly on every compact subset of R to g, is C* and satisfies g, > e. If (t,x) is a local strict
maximum of g(u) — ¢, we deduce from Lemma 17.17 that we can find a sequence (e, X} = (t,x) of local
maxima of g, () — . Thus when Dy(t,x)} # 0, so is D(te, %} for € small enough, and then

a
T lterxe) < F(D?plte, xe), Diplte, x:),

and if Dg(t,x) = 0, and D?p(t,x) = 0, using lemma (17.8) for a continuous function G such that
GH(0,0) =10,

a

22 (tex2) < G (D% pltes %), Dilte %0
and in both cases by passing to the limit as ¢ — 0 and using the continuity of F" in the first case, and

of G* in the second case, we conclude that g(u) is a viscosity subsolution. The same arguments apply of
course for proving that g{u) is a viscosity supersolution. O

18.3 Uniform continuity of approximate solutions

Lemma 18.3 Let B be a family of structuring elements in R™ and T its associated operator Tu(x) =
inf pe g SUPyex4p (Y). If u is a Lipschitz function with Lipschitz constant L, then so is Tu.

Proof Same as Lemma 7.5 and the joint Remark 7.4 a

Lemma 18.4 Assume that there exist a continuous real function, k{t) sotisfying k(0) = 0 and such that
for nh < t, ((T)™(L\2))(0) < Lk(t) and ((Th)"(—L[z|))}(0) > —Lk(t). Assume that the operators Ty are
monotone, and commute with the addition of constants and with translations. Then for every L-Lipschitz
Junction ug, one has —Lk(t) < ({Th)™ug)(x) — up(x) < LE(2).

Proof Since the operators T, commute with translations, we can prove the statements in the case of

% = 0 without loss of generality. Since up is L-Lipschitz, we have
—Lix] < uo(x) — u(0) < LIx|

Applying (T})", using its monotonicity and its commutation with the addition of constants and taking the
value at 0,

(Th)™(=Lx))(0) < {(Tn)"ua)(0) — uo(0} < ((Tw)"(£Lx))(0),

that is, by assumption if nh < ¢,

—Lk(t) < ((Tn)"u0)(0) — ua(0) < LE(t).

Lemma 18.5 Let ug(x) be a lipschitz function on RY. Let T be a family of operutors satisfying the
assumptions of Lemmas 18.8 and 18.4 with o function k(t) satisfying k(t) < t* for some a > 0 if t 1s small
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enough. Then the approzimate solutions up(x,t) associated with T}, are uniformly equicontinuous when we

restrict t to the set nh. More precisely, for alln,m € IN and oll x,y in RY,
fun(x, ph) — ue(y, mh)l < Lix — y| + k{|n — m|k). (18.11)

As a consequence, we can extract sequences uy, , with hy, — 0, which converge uniformly on every compact
subset of RN x R,

Proof Since by definition up(x) = ((T})"ug){x), the result is a direct consequence of Lemmas 18.3 and
18.4 : By the first mentioned lemma, [us(x,nh) — up(y,nh)| < Lix — y| and by the second one applied
with ()"~ ™,

[un(x,nh) — up(x, mb) = J{(Te)™ ™ur(, mh})ix) — uy(x,mh)| < k(|n — m|h).
In order to end with the argument, we simply notice that
lun(x,nh) — un(y, mh)| < lun(x,nh) — un(y, nh)i + [us(y, nk) — up(y, mh)|.

Consider the linear interpolation of u,

t—nh L — &
iy (%, t) = hn up(x,(n+1)h) + m-—-}1)i~—-u;,(3w:, nh).
It is easily checked that
k{h
iy, 8) = nly, )| < e sl <= 5 for = 5] < b

and

faly, &) —ily, s)l < k(2 — si) for [t ~ 5| = h.
Thus, by the same argument as above, we conclude that the family of functions @, is uniformly equicontin-
uous on all of RY x [0, +oo). In addition, ix(x,0) = ue{x) is fixed. We can therefore apply Ascoli-Arzela
Theorem {[]) which asserts that under such conditions, the family of functions @ (x,t) has subsequences
converging uniformly on every compact of R x [0, +00} towards a uniformly continucus function u(x, ).
Same conclusion holds for we{x, ). |

18.4 Convergence of iterated median filters to mean curvature
motion

We prove here one of the main practical and theoretical results of this book : the iterated median filters

converge to the mean curvature motion equation.

Lemma 18.6 (median filter) Let k be a radial, nonnegative, compactly supported bounded function and
kn(y) = rl_vh(%) the associated scaled function. Assume, without loss of generality, that the support
of ky is B(0,h) and consider the weighted median filter associated with ky, Thulx) = medg, u(x). Set
vo(x) = vo{|x|) = volr) = Lr. Then, if nh? <1,

(Tr)(0) < L2t
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B(x,h}

Figure 18.3: Illustrating the inequality (18.12).

Proof Let us first estimate Thv(r) when v(x) = v(|x|) = v{r) is any radial nondecreasing function. To
this aim, let x be such that |x| = r. By the triangular inequality, the sphere with center 0 and radius
72 + A7 divides the ball B = B(x, A} into two parts such that

measg, ({y, |yl = Vr2 + h2} N B — x) < measg, ({y,ly] € Vr? + B2} N B - x). (18.12)

As a consequence, v being nondecreasing, we have
medy, v < v{/r? + A?). (18.13)

Let us set for brievety fu(r) = V12 + A2 and raga{r) = fn(rs), ro = r. Then we obviously have from
(18.13) and the monotonicity of Th
(TRv)(r) < vlra(r))- (18.14)

.. . . . . . 2 2
In addition, since v/7% + h? < r+-h? and r, is an increasing sequence, we obtain 7,41 < rn+§';—" < rn+2"70
and therefore
nh?
rh <4+ —. (18.15)
2r

Let us assume that nh? < ¢. Taking into account that v is a nondecreasing function, (18.14-18.15) yield
t
(Tiv)(r) Svlr + 5-) (18.16)

Since (T7v)(r) is a nondecreasing function of r, we deduce that (TPv)(r) < v(v20) i r < \/g Thus, if
v(r) = Lr, we have for nh? <t

(T7e)(0) < L2t

as announced.

Theorem 18.7 Convergence of iterated weighted median filter. Let ky be as in Lemma 18.6 and set again
(Thu){x) = meds, u. Let up be a Lipschitz function defined on RY¥. Then the approzimate solutions uy

converge to ¢ viscosity solution u of the ussociated equation %lt‘- = F(D%u, Du,x) = cp|Duleurv(u).
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Proof We know (Theorems 11.3-12.2) that the weighted median is consistent in any dimension with
the equation g—‘f‘ = F(D?u, Du) = ¢;|Duleurv(y). Bounds for the result of the iterated filter (Th)™ ap-
plied to +L|x| and —L|x| have been computed in Lemma 18.6, so that the assumption of Lemma 18.4
is true. In addition, we know that med) is monotone, satisfies a local comparison principle (Relation
17.18), commutes with translations and the addition of constants. Thus, we can apply Lemma 18.5 which
asserts that if wp is a Lipschitz function, then a subsequence of wu, converges uniformly on compact sets
of MY » Rt to a function u. In addition, by Proposition 17.16, u is a viscosity solution of the equation
f,—:‘ = F(D?u, Du,x) = ¢ Duleurv(u). Since by Theorem 17.19, this solution is unique, we deduce that
all of (T )"up converges to u. We have thus proved both existence of a viscosity solution and convergence

of the iterated median filter. (W

18.5 Convergence of iterated affine invariant operators to affine
invariant curvature motion

The most important case in dimension 2 for which we analyze convergence of iterated contrast invariant
filters is the equation ‘t’,—‘; = |Dul{curv{u))}, which is associated with affine invariant inf-sup operators

Thu(x) = infpec g sup . where B is a family of structuring elements invariant by every linear

yex+ndn u(y)
transform of R? with determinant 1. We also set

STyu(x) = sup inf u
nu(x) Sup Jdnf, (y)

ISyu(x)= inf supw
wu(x) BeB.+Xy ye%u(w
where, here again, the relation s = A¥ is imposed. SI; is understood as an “affine erosion” of u and IS,
as an “affine dilation” and we also consider the alternate scheme : SI,(/S,z) Denoting by Ty one of the
schemes S5y, §I) or SI, 18}, we set

up(x, (0 + 1)A) = Thup(x, nh)

up (%, 0) = wp{x)

Theorem 18.8 There exists a constant cg > U such that if ug(x) is any Lipschitz function on R?, then
un(x,nh) tends uniformly on every compact set to u(x,t), where u(x,t) is the unique viscosity solution of
Ou

5 = [Dulg(eurv(u) (12.17)

where g(r} = cp(r™)s if Tp=5I,
= e¢plrt) if 1, =8I
= ep(r)s i Tu=S5I IS,

IERE T

Theorem 18.8 is somehow a consequence of theorem 15.4, which states a consistency result for the
schemes Sfy, IS5, SI,IS,. In order to achieve the proof of Theorem 18.8, we need to check that the
assumptions of Lemma 18.4 are satisfied.
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CHAPTER 18. CURVATURE EQUATIONS AND ITERATED CONTRAST INVARIANT OPERATORS
A
=
VT
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Figure 18.4: Affine invariance of (AMSS). We check the affine invariance of the affine and morphologicai scale space
{AMSS). A simple shape (top-left) is smoothed using a finite differences discretization of (AMSS) followed by thresholding
(bottom-left}. We apply on the same shape an affine transform, with determinant equal to 1, (top-tight}, then the same
smoathing process {middle-right}, and finally the inverse of the affine transform (down-right). The final results of both
processes are experimentally equal.

¢ ¢

Figure 18.5: Checking the affine invariance of an affine "inf-sup”. We display the final outcomes of the same comparison
process as in Figure 18.4, with an affine “infsup”. The chosen structuring set is an approximately affine invariant ses 1B of
49 ellipses. all with same area. This implementation is heavy and proves to be less affine invariant as the one obtained by a
finite difference scheme. This is due to grid effects.

Lemma 18.9 Let B be a family of subsets of R? invarient by SL(R?). Assume that the convez hull of
each element B of IB is contained in o rectangle with area a®. Set for any real function v defined in R”.

Twe(x) = inf ~ sup v(y)-
vent Bix
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18.5. CONVERGENCE OF ITERATED AFFINE INVARIANT OPERATORS TO AFFINE INVARIANT
CURVATURE MOTION

ah

ahl 2

Figure 18.6: Nlustration of the proof of the inequality {?7).

Consider the redial function v(x) = v(|x|) = v(r) = Lr. Then fornh < t,

(TP){(0) < Lat + 2av/1).

Proof We first assume that v(x) = v(|x|) = v{r) is an arbitrary radial nondecreasing function and
estimate (T]v)(r}. Let x = (r,0). By assumption, we can enclose any of the elements B of h3 B by a
rectangle Ry, with area A¥a2. By the Euclidean invariance of IB, we can choose this rectangle to have its
sides parallel to the axes, and by the SL?(R?) invariance of B we can further choose B in such a way
that its side parallel to the z-axis has length ah and the other one a?h¥. Since B C Ry, we have

Thv(x) < sup v(y} £ sup wiy}
X+B X+Ha

Thus
Thv(x) < v({r + %)2 +a’h)t) (18.18)

We set for conciseness f,,(r) = {(r + %)2 + agh)% and rnop1(r) = fulra), ro = r. Notice that Thv is a
radial nondecreasing function, so that we can replace v by Thv in (18.18). By the monotonicity of T}, we
obtain

(TR} (r) < vlra(r) (18.19)

In addition, since (r* + e)% <r+ 2176 for all r,e > 0, we have for h <1
2 2 1, 241 2 2, 1 1, 2
N < +ahr+a’h+ 70 )2 < (r+20°h+ahr}z <r+ 2—(26 h+ ahr).
r

Finally,

il

h
fulr) < v +ah+ e {18.20}
r
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CHAPTER 18. CURVATURE EQUATIONS AND ITERATED CONTRAST INVARIANT OPERATORS

Thus rney = folra) € ra +ah + 9:—" <1, +ah+ “%", because r,, is an increasing sequence. Finally,
ra < r+n(ah + 22} and, by (18.19),

(TPe)(r} < v(r + niah + a’h

b-

r

Let us assume that nh < ¢. Then ,

(TFv)(r) < vlr + (a + St).
Considering that the minimum value of r & r + (a + é) is attained at v/2, we finally obtain
(TPo)(r) < v{20vE + at)
if r < ay/t. Thus if v(r) = Lr, we obtain
(TPv)(0) < L(at + 2aV/7)

for nh < t, as announced. a
Proof of Theorem 18.8 By Theorems 15.4 and 15.7, the operators T}, are consistent with their correspond-
ing partial differential equations ‘3)—;‘ = F(D*u, Du) and satisfy a uniform local maximum principle. Being
contrast invariant, they commute with the addition of constants. Thus, by Proposition 17.16, if a sequence
of approximate L-Lipschitz solutions uy, converges uniformly on every compact set to a function u, then
u is a viscosity solution of {17.4).

Now, since by Lemmas 18.5 and 18.9 the approximate solutions uy are equicontinuous on every compact
set of R x Rt and therefore have subsequences which indeed converge to a function » on every compact
subset of RY x IRt. Thus,  is a viscosity solution. In addition, we know that a viscosity solution is unique
(Theorem 17.18). Thus the limit © does not depend on the particular considered subsequence. Thus the
whole sequence uy, converges to u. So we have fully proven both the existence of a viscosity solution and
the convergence of the iterated Thup to it, under the assumption that the initial function ug is Lipschitz. O

18.6 Solutions of curvature equations for nonsmooth initial im-
ages

Preceeding sections give existency and uniqueness of solution (in sense of viscosity) to the curvature
equations when the initial image is continuous. Curvature equations yield contrast invariant operator
defined on continuous function. Then, using the theorem 8.15 yields to two unique contrast invariant
extensions to semi-continuous images: one in case of upper semi continuous initial images, the other in
case of lower semi-continuous images.

Existence and uniqueness in the case of upper or lower semi-continuous images is then a immediat
consequence of this Theorem.
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Chapter 19

A snake from A to Z...

19.1 An active contour model

Let us consider an edge as a curve located mostly on high gradient points. Indeed, in some cases, boundaries
of objects induce some discontinuities in the gray level, resulting in high gradient. The aim of the active
contour methods is to find such edge around an initial curve given e.g. by hand. The curve is moved from
its original location until it maximizes the amount of gradient along its path.

This can be formulated as an optimization problem. We choose a function g from R? into R repre-
senting for each point x a penalty for the curve to pass by the point x. Ideally, g has to be chosen small
when the magnitude of the image gradient is large. E.g. one could choose

9= W+

Given an image /, and an initial curve Cy = x¢(s), we want to find a curve ¢ = x(s) that minimizes
the following energy:

L
E(C) = jﬂ g(x{s))ds (19.1)

around xg, where s is the arc length and L the total length of the curve .

In all the following, we will assume g to be differentiable with respect to x.
Proposition 19.1 Let C(t) = x(¢,s] the curve resulting from u gradient descent of the energy (19.1).
While C(t} is regular and denoting by n its normal, C(t) satisfies the following equation

ax(t, s)
ot

= g(x(1, 8)}Curv(x(t, s)in(t, s) — (Vg{x{t,5)}).n)n (19.2)

and x(0, 5) = xq(s) that is (C{0) = Cy)

Proof Let us first change the parameterization of the curve €' so that its length is not a parameter of the
energy. We parameterize the curve with z € [0,1]. We have ds = |x'(z)|dz, where ' denotes the derivate
with respect to z. Thus

E(C) = [O g(x(2)) %' ()| dz
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CHAPTER 19. A SNAKE FROM A TO Z...

Then,
1
E(C +dC) - E(C) :/ Vg(x(z))|x'{z)|dx(z)dz +/ (:rc(z))1 E ; dx'(z)dz + o(|dC])
0
Integrating by parts the last integral, we have
1 1 ]
B(C +dC) - EC) = /n Valx(2))|x'(z)|dx(z}dz —fo (Vg(x(z))x'(z))%%dx(z]dz

1
—/0 g(x{z))Cure(x(z))|x'(z)Indx(z)dz + o(|dC])

The two first integrals can be merged so that E{(C + dC) — E(C) =

1 1
/n {(Vo(x(2)).n)|x'(z)ndx(z)dz —j(; g(x(z)}Curv(x(2))|x'(2)|Indx(2)dz + of|dC])

The intrinsic sealar product between two vectorial functions f and h defined on the curve x(z) is given by

1
fa= [ Flxtz)g(x(2))ix'(2)dz

So that
E(C + dC) — E(C) = dC . {(Vg{x(z)).n)n — g(x(z))Curv(x(2))n} + of|dC])
We therefore have
VE(C) = (Vg(x(2)).m)n — g(x(2))Curv{x(z))n
As consequence the gradient descent is described by the following equation

Bxg£ z) = —(Vg(x{t, z)).n)n + g{x(z)}Curv(x(z})n

(]

Unfortunately, there is no guaranty that such an evolution yields a regular curve for all t. In fact, it is
in general false, since topological changes can appear.

19.2 Study of the Active Contour Equation

We study in this section the following equation

du

5 glDulcurv(u) — Dg.Du {19.3)

Admissibility of the equation and uniqueness of solutions. Given a vector p of IR?, we denote by
p* a vector orthogonal to p and with norm equal to 1. We define the function F from SM(R?) x R* %
R? x RY into R by

F(A,p,x,t) = g(x)}A(p*, p*) — Dg(x)p
Equation 19.3 can be obviously write as

% = F(D%u, Du,x,t}

It is easy to check that F is admissible {see Definition 17.1). As consequence Theorem 17.18 ensures

uniqueness of viscosity solutions of 19.3 for any Lipschitz initial condition.
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18.2. STUDY OF THE ACTIVE CONTOUR EQUATION

Existence of solutions by approximation. Let us now construct a approximation scheme to the
solution of equation (19.3). Even if it is possible to construct a family of structuring elements having as
asymptotic behavior the two terms in the right part of the equation (19.3}, it is simpler to consider for
each term one family of structuring elements and to alternate their corresponding filters. To be noted

that, due to g, the equation is not invariant by translation. As consequence, the families of structuring
elements are depending on x.

Approximation of —DgDu. We consider the family made of a single element:
Byu{x} = {{-h'Dg}}
We then have, for each point where u is C?:

{Spul(x) = Beil?f(x)}srz% ulx +y) = u(x — A2 Dg) = u(x) — h?Dg{x)Du(x) + O(h%)| D u(x)|

The consistency is in fact uniform on any compacts K where u is C? ; there exists a O{h*, K) that does
not depend on x where
(Spu)(x) — u(x) = —A?Dg(xx) Du(x) + Ok (hY)

Approximation of g|Duleurv(u}. We consider the structuring elements of the median filter {See
Chapter 10):
B (x) = Brsg{xm ={B; B C B{0,6¢{x)h) and meas(B} > n(6g(x)h)*/2}
We set

Spu)(x) = sup inf w(x+y¥)
( h ) BEB;(X)yEB

Thanks to Theorem 11.3, we immediately have, on any compact K where u is €% and where [Du| £ 0,
(Shu)(x) —u(x) = h¥g(x)| Du(x}jcurv(u)(x) + O (h*)
and on any compact K of IR?,
(Shu)(x) — u(x) = Ok (A*)| D% u(x)|
Alternating the two filters. Weset T, = 5, 5. 5} is an inf-sup operator, with uniform consistency.
In addition, its asymptotic is continuous, that is that we have
{SLui(x) — u(x} = R g{x} Du(x)lcurv{u)(x) = A2 F{D*u, Du, x)

for a continuous function F with respect to its arguments. (g is assumed to be derivable}. So that, the

Lemma 15.5 insures that we have for any compact set K where |Du{x)| £ 0
(Thu)(x) — u(x) = K2 {g(x) Du(x)eurv(u) (x) — Dgix)Dw(x)} + O (hH)

And on any compact K:
(Thu)}(x) —w(x) = O (W) D?u(x)]

As consequence the filter T, is uniformly consistent (see Definition 17.16) with equation 19.3.
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Construction of the approximate solutions. We consider an K-Lipschitz initial function uy. We

then define up(t,x) for every £ > 0 by
vne N, up(nh,x) = (Tfuo)(x),

¥t € [(n — 1)h,nhj, uplt,x) = up{{n — 1}h,x).
Since Sy, and S'(h) are “inf-sup” operator they transform any K-.Lipschitz function into a K-Lipschitz

function (See Remark 7.4). We therefore have that for all ¢, u,{t,x} is K-Lipschitz.

Uniform continuity in ¢ of the approximate solutions. Let us bound operator Ty by two
isotropic and translation invariant operators. Let €, be the upper bound of g and €'z the upper bound of
|Pgl. For any K-Lipschitz function u, one has

u(x) ~ Kh*|Dgl < (Sau)(x) = u{x — h*Dg) < u{x) + Kh*Dg|
u(x) — Kh2Cy < (Shud(x) < u(x) + Kh*Cy
Then due to the fact that S} {u + ¢) = 5}{u) + ¢ for any constant ¢, we also have
(Shu) — Kh*Cy < Thu = S} Spu < (Shu) + Kh2Ca (19.4)

Let us consider v(y) = K|x — y}. The family B} (x) of structuring elements of the filter Sj, is made
of the subsets of the disk of center 0 and radius 6g(x)h < 6Cih. For any B € Bg,x), there exists
B' € By, such that

. W= inf 3
}lgfﬂv(x y) ylgﬂ,v(x ¥)

So that
(Stu)(x)= sup inf u{x—y)< sup inf w(x-y)
" ) BGB'ﬁy(x)h es BEBEclh yes
That is
¥x, (Shv)(x) < (Mec,rv)(X) {19.5)

with M the median filter, as defined in Chapter 10. Similarly, for w(y) = —KIx - y|, we have
vx, (Mo, nw)(x) < (Shw)(x) (19.6)
We deduce from (19.5), (19.6) and (19.4) the following inequalities
(Twv)(x) < (Mcuno)(x) + KR2Cy (Meeynw)(x) — KRGy < (Thw)(x) (19.7)
By monoteny of Ty and of the median operator, we thus have for all n € IV, and for all x € R?,
(TPo}(x) € (M, v)(x) + nKRCo (ME, aw)(x) — nKR*Cy < (TPw)(x) (19.8)
Now, since ug 15 Lipschitz, one has

u(x) — Klx — y| € uly) € u(x) - K[x -yl
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19.3. CURVE EVOLUTION AND IMAGE EVOLUTION

So
u(x) + (TRw)(x) < (Tu)(x) < u(x) + (T]v)(x)

Using (19.8), we obtain
(Mo, 0)(x) = nKRACy < (TPu)(X) = u(x) < (M p0) (%) + nKh2Cy
Lemma 18.6 tells us that for A small enough and for nk? < t, one has
(Mg nv)(x) < LVt

for some constant L depending only on €. Similar inequality obviously holds for w, so that for A small
enough
Wi, ¥n;nh? < ¢ —(EVI+ KCot) < TPu —u < +{LVE+ KOot)

This yields the uniform continuity in ¢ of the approximate solutions.

Convergence of the approximate solutions toward viscosity solutions. The operator T}, is
monotone (and therefore satisfies the uniform local maximum principle), is uniformly consistent to (19.3)
and commutes with the addition of constant. Its associated approximate solutions b — w,{¢, x) is uniformly
in k Lipschitz in x and Holderian in ¢ for any initial Lipschitz function. So a sub-sequence of the sequence
h — w, is uniformly converging on every compact set towards a function w(¢,x). Thus, by Proposition
(17.16), we obtain that u is a viscosity solution of (19.3). In others words, we get the existence of a viscosity
solution for any initial Lipschitz function, and that the iteration of the operator T}, converges toward this
solution. We therefore have prove:

Theorem 19.2 We consider a derivable function g from IR® into R satisfying
ACY, Cy, such that ¥x,0 < g(x) < €y and |Dg(x)| < Cy

Then for any Lipschitz function ug, there exists an unique viscosity solution u(2,x) of

% = F(D%u, Du,x,t) = g|Duleurv(u) — Dg.Du  u(0,%) = up(x)

In addition, u(t,x} is Lipsehitz in X and holderian in t.

Moreover, when h tends to 0 and nh? — t, (Tug)(x) converges towards uit, x).

19.3 Curve evolution and Image evolution

Assume that u(t,x) viscosity solution of (19.3) is C? around point {{,%g) and Du(te, xp) # 0. Then, for
some t; > #q, there exists x(t} a unique C' function satisfying for t € [tg, 1], u(t,x(t)} = u(ty,Xo) and

such that 9% is colinear to Duft, x). x(t) is the normal flow {(see Definition (6.6)).

x fu Du

B —(ﬁw)(t,x(t)) = geurv(ujn — Dgn (19.9)

where n is the gradient of u direction, that is the normal of the level line passing through the considered
point.
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Parametrizing the level line of level u(ts, %p) arcund point {to,Xa) by x(t,8) so that x(¢,0) = x{t).
We deduce that x(t,s) satisfies the Active contour evolution equation (19.2). Therefore the following
proposition holds:

Proposition 19.3 Let u(t,x) a viscosity solution of
O
Ot
Assume that v is C? around point (o, Xo), and that Dulto,x) # 0. Then, the level line x(t,s) passing

= F(D*u, Du,x,t) = gl Dujcurv(uv - Dg.Du

through this point satisfies locally around the point:

Bx(t, s)
Bt

The curve evolution equation and the image evolution equation are so strongly related.

= g(x(t, 8)}Curv(x(z, s))n(t, s) — (Vg(x(t,s)).n)n

We now consider the operator T, which associates to any Lipschitz function uo, u(t,.) the viscosity
solution of {19.3) with initial condition ug. It is clearly a monotone operator. According to Lemma 18.2,
T; is also constrast invariant.

Proposition 19.4 The monotone and contrast invarient image operator Ty, defined on Lipschitz function,
defines a unique set operator T, on defined on the set of the compact sets. We have in addition, for any
Lipschitz function u:

X T {u) = Ty (Xaw)

Proof Let us use the Evans-Spruck extension (see Section 8.3). We consider the family of functions F
made of the Lipschitz functions on which we apply any continuous and increasing change of contrast. The
family F is obviously stable under contrast change. The levelsets of the functions of F is the set of the
compacts. Since T; is contrast invariant and is defined on Lipschitz functions, it is also defined and a
monotone contrast invariant operator on F. According to the Evans-Spruck Theorem (see Section 8.3),
we know that it defines an unique monotone set operator T such that

N Te(u) = Te(An(u))
This means that T; modifies the level sets of u independantly from each others. 0O
The snake algorithm...

Given a closed curve ¢ = ¢fs). The curve C surrounds a compact set X of R?®. We define the
generalized “curve” evolution of € by the fellowing algorithm:

Step 1 We construct a function ug so that:

L] Xouo =X

» ug is Lipschitz or differ from a Lipschitz function by a continuous and increasing contrast change.

Such a function u can e.g. be obtained by considering the signed distance function to the set X.
That is |u(x)} = tdist(x,C).

Step 2 We construct the viscotity solution u(#,x) of equation (19.3) with initial condition .
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19.4. IMPLEMENTATION.

Step 3 We set X (1) = You(t,.) and C(t) = X (t) N X (t)=. (That is C{t) is the boundary of X(t).)

According to all preceding considerations, the algorithm is valid. That is it defines for any curve C and for
any t £ 0 an unique set of points C{¢). C(#) is independant from the choice of the intermediate function
u. And it corresponds to a generalization of the equation {19.2). However, the so defined C{t) is not
necessarly a curve of JR?. It is therefore difficult to check if the energy estimated on C{t) is decreasing.
Conjecture

We conjecture that Yu Lipschitz,

E,(t) = limsup g{x)dx

e—0 /).ceﬂﬂ,u[f,x}e]—s‘e[

is o decreasing function of t. We conjecture alse that for any analytic functions g,
Et) = f gt
XeC(t)

is finite and is a decreasing function of ¢.

19.4 Implementation.

We consider an image I. We choose the function g decreasing with respect to the magnitude of the gradient
of I. That is g large where the gradient of T is small, and conversely. If one expects to have large gradient
at the edges of f, then one can consider that g is small one the edges of I.

Let us now first make a simple heuristical study of the equation.

% = g|Dulcurv{u) — Dg.Du

The first term is the well known mean curvature motion. As we have seen, its tends to shrink the level
line towards points. The speed of this motion is related to the amplitude of g. At edge, g is small and
thus the motion is slow down, but do not stop.

The second term is the erosion term. It tends to move the level lines towards the edges (see figure
77), creating, by that, shocks around edges. However, in contrary to the first term, on flat zones it is
inactive. Even worse, due to noise, little gradient of I will induces non negligeable variation of amplitude
of g, resulting in non negligeable Dg with random like direction. In others words, on flat zone, one can
expect to have creation of small shocks, with random shapes.

¥(x) u(x)

* x

Figure 19.1: Convection term of the active contour equation. ‘The convection term of the active contour equation tends to

create shocks aroung values where g is small. Indeed, the level lines of u are moved in the direction opposite to the gradient
of g.

More precisely, we have:
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N/

Figure 19.2: A difficulty : the local minima of the active contour energy. Left image: assume that g is null on the shape
(drawn in bold) and that the initial contour is the line #0. From the initial line to the contour of the shape, the intermediate
state #1 consisting of the convex hult of the polygon shows a smaller energy than the intermediate state #2 {drawn on the
right). This itlustrates the difficulties arising with such an equation when we wish to land the active contour onto concave
parts of the desired contour.

near an edge The first term moves the level line slowly across the edge. The second term moves the level
line towards the edge. Their effect are opposit and therefore a balance between the two terms needs

to be found so that the second term wins.

far from an edge The first term moves the level line fastly. The second term attract the level line towards
little oscillation of the image creating little shocks. Here again, a balance between the two terms

needs to be found so that the first term wins.

Even if the equation, does not show any scale parameter between the two terms, a weight between the
two terms is in fact hidden in the choice of the function g. Finding a function g that makes the correct
balance both near an edge and far an edge is somehow complex and in anycase non-generic.

Assuming such a balance could be find, relying on the single (weighted) mean curvature motion to
shrink the level line is not good. Indeed, a weighted mean curvature motion will never modify a convex
level line to a general non-convex one. That is starting with a circle, it is impossible to recover e.g. a star,
see Figure (19.2).

To cope this problem, we have added, in our experiments, an extra term to the equation, yielding the
balance between now three terms more complex to fix. This term is a classical erosion with the same

weight than than the curvature motion. So that we have applied

% = giDul{curv(u) — 1) — Dg.Du

We have chosen for the function g: g(x) = o2/(o2 4 |DI(x)[*), with o2 the estimated variance of the
noise and texture around the object. So that g is between 0 and 1. Our scheme is the following:

" (x) = u(x) + dig(x)(Ei () (x) + Ma(u)(x} — u"(x)) + dt|Dg(x)I(Fr (u") (x — Dgx)) — u”(x)

Where E denotes the erosion, and A the median filter. The scheme is not contrast invariant, hut satisfies
the maximum principle, provided dt|Dg(x)| < 1 and dtg(x) < 1. Figure 77 illustrates the extraction of
the bird shape on a textured background.

Exercise 18.1 Construction of enother inf-sup scheme converging towerds viscosity solution of the equa-
tion (19.3). We consider the following family of structuring elements:

B, = {B; B C B(-Vgh®, k) and meas(B) > wh?/2}
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19.4. IMPLEMENTATION.

Figure 19.3: Silhouette of a bird by active contour. Left: original image, middle: initial contour, right: final contour
(steady state of the snake equation).

Figure 19.4: Active contour with topalogical change Top, left: original image, middle: initial contour, right: intermediate
state. Down, left and middle: successive intermediate states, down-right: final contour (steady state). Original image is "Vue
d'esprit 3", by courtesy of e-on seftware.
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CHAPTER 19. A SNAKE FROM A TO Z...

And we define
Thu(x) = iof ;‘é‘;“(" +¥)
1. Interpret the operator Ty, as o shifted median filter.
2. Show that T, is uniformily consistent with equation (19.3).

3. Show that the iteration of Ty yields towards viscosity solutions of (19.3).
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Chapter 20

Scale spaces and Partial Differential
Equations

20.1 What basic principles must obey a scale space?

In this chapter, we introduce an abstract framework, the “scale space”, which at the end boils down, from
the algorithmic viewpoint, to iterated filtering. This framework will make it easier to classify and model the
possible asymptotic behaviors of iterated filtering. We define a “scale space” as an abstract family of image
smoothing operators T}, depending on a scale parameter ¢. Given an image uo(x), (Tiug){x) = u{t,x) is
the “image uo analyzed (in fact : smoothed) at scale +”. Formal, but natural and classical, assumptions
on the smoothing process foliow.

The pyramidal structure. We assume that the output at scale ¢ can be computed from the out-
put at a scale t — h for very small k. This is natural, since a coarser view of the original picture is likely
to be deduced from a finer one without any dependence upon the original picture. By that way the finest
picture smoothing is the identity. T; is obtained by composition of “transition filters”, which we denote
by Tisn e

Definition 20.1 We shall say that o scale space is pyramidal if

Tivn = Doy Ty, To=lId. (20.1)

A strong version: of the pyramidal structure assumption is the semigroup property
Definition 20.2 We shall say that a scale space is recursive if
Ty = Id, Ty o Te{u) = Toxe(ue) on RY, for all s, >0 and v in F. (20.2)

If the recursivity is satisfied, T} can be deduced from the n-times iteration of T,/,,. Let us continue
with an intuitive requirement which is called in image processing " causality”. Since the visual pyramid is
assumed to yield more and more global information about the image and its features, it is clear that when
the scale increases, no new feature should be created by the scale space : the image at scale t”>t must be

simpler than the image at scale t. Furthermore, the operators (or transition filters) Tyy,; are assurmed



CHAPTER 20. SCALE SPACES AND PARTIAL DIFFERENTIAL EQUATIONS

Figure 20.1: A muitiscaled world ... This series of images is an experiment in the relative stability of perception of objects
seen at different distances. Each photograph has been taken in a park by stepping forward and taking each snapshot at a
much closer distance than the former one. We display by a rectangle in each image the part of the object which has been
photographed in the next image. As one can appreciate, when getting closer, the visual aspect of objects changes and new
structures arise. Thus, the computing of primitives in an image is always a scale-dependent task, quite dependent on the
distance to objects. When we look at a certain distance at an object, we do not perceive the too much finer structure : for
instance, leaves cannot be seen in the two first photographs. We do not see them either in the two last ones, since we got too
close ! Muitiscale smoothing tries to emulate this physical and perceptual fact by defining a smoothing of a digital image at
different scales which gets rid of the finer structures, but minimally modifies the image at scales above the desired scale.
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20,1, WHAT BASIC PRINCIPLES MUST OBEY A SCALE SPACE?
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The scale-space visual pyramid

Figure 20.2: Tke scale-space visual pyramid : perception is thought of as a flow of images passing through transition
operators Ty .. These operators receive an image previously analysed at scale s and deliver an image analysed at a larger
scale t. The scale ¢t = 0 corresponds to the original percept. In this simple model, the perception process is irreversible (no
feedback from coarse scales 1o fine scales).

to act “locally”, that is, to look at a small part of the processed image. In other terms, (Tiys rup)(x)
must essentially depend upon the values of ue(y) when y lies in a small neighborhood of x. We condense
the locality and the simplification assumptions in a local comparison principle : if an image u is locally
brighter than ancther v, then this order must be conserved some time by the analysis (prevalence of local
order on global order).

Definition 20.3 A scale space satisfies the Local Comparison Principle | #f for all v and v such that
u(y} > v(y) for y in a neighborhood of x and y # x, then for h small enough we have

(Teaneu)(x) 2 (Tipn,v)(x)
and if for oll u and v such that Yy € RN, u(y) > v(y), then
Yx,¥h > 0, (Tepneud(x) > (Tepnvi(x), {20.3)

In order to propose a classification of scale spaces, we finally need some assumption stating that a very
smooth image must evolve in a smooth way with the scale space, As we shall prove, it is enough to make
this assumption for quadratic functions. From the mathematical viewpoint, the next assumption implies
the existence of an infinitesimal generator for the semigroup 7} (see {?], [?]). In this chapter, we shall
denote for clarity the scalar product between two vectors of JRY by <x, y»=x.y = Z;\' Ty

Definition 20.4 Let u(y) = § <A(y —x),y — x> + <p,y — x> +c be a quadratic form of RY.
(A = D?u(x) is a n » n matriz, p = Du(x) a vector of RN, ¢ = u(x) a constunt.)
We shall say that a scale space is regular if there ezists a function F(A4,p,x,c.t), continuons with

respect to A, such that
(Tyanu—uj(x) S F

5 (4,p,x,¢,1) when h—0. (20.4)
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CHAPTER 20. SCALE SPACES AND PARTIAL DIFFERENTIAL EQUATIONS

Since we shall in the following constantly assume that the considered scale spaces are pyramidal, regular,
and satisfy the local comparison principle, it is opportune for this set of basic properties to be given a

single name.

Definition 20.5 We call causal any scale space which satisfies the Local Comparison Principle and

is pyramidal and regular.

Exercise 20.1 Consider the extrema killer operator defined in Seection 7.4, Ty where t denotes the area
threshold. Show that the family (Ty)ier+ 15 pyromidal, satisfies the global comparison principle, but not
the local comparison principle. Show that the family is, however, regular at t =90 and more precisely,

F{A,p,0)=0, ifp#0.

As we shall prove in the next section, the causality assumption is enough to imply that the scale space
is governed by a partial differential equation.

20.2 Why Scale Spaces are governed by PDE’s

Theorem 20.6 If a scale space T; is causal, (that is, pyramidal, regular and satisfying the local comparison

principle), then there ezists a function F' such that
((Tyynen — u)/h)(x) = F(D*u(x), Du(x), u{x), x, } (20.5)

as h tends to 0F for all u and x where u is C%. In addition, F' is o continuous and non-decreasing function

with respect to its first argument, that is
If A> A, for the ordering of symmetric matrices , {20.6)
then, F(4,p,c,x,t) > F(A p,c,x, 1))

Once this theorem is proved, the classification of all iterated nonlinear low pass filtering {or, in other
words, of all scale spaces) will be reduced to the classification of all interesting functions F. In dimension
2, these real functions have nine arguments. This number, however, will be drastically reduced when we
impose obvious and rather necessary and useful invariance properties to the associated scale space. After
the proof, we shall list these properties and give the resulting classification of “interesting” functions F.

Proof of Theorem 20.6 Let w(x) = } <Ax, x> + <p,x> +¢ be a quadratic form of RN, We have
assumed, by regularity, that (Tiypsw — w)(x)/h converges towards F(4,p,x, ¢, t) when h tends to zero,
for a function F, continuous with respect to its first argument. Let u be a function of Y into JR such that
u is C2 at point x. We shall prove that (20.5) is true for u at point x for the same function F introduced
in the regularity assumption. Since u is C? at X, we write

1 Yy
u(y) = u(x)+ <Du,y — x> +§ <(DPuly - x), ¥y — x> +oilx — ¥1%),

\orking version subject 1o errors, enly for personal use. No diffusion authorized. All right reserved. (Version: 15/07/2000)



20.2. WHY SCALE SPACES ARE GOVERNED BY PDE'S

where Du and D?u mean Du(x) and D?u(x) respectively. We define, for £ > 0, the quadratic forms

QT (y) = u(x)+ <Du,y - x> +% ~(DPu)(y — x),y — x> +%E(X —y)?

Q™) = ux)+ <Du,y = %= +3 <(D)ly ~ %),y — x> —c(x - 3"
When y # x and |y — x| is small enough,
Q¥ <uly) <@ (y)
Then using the local comparison principle {Definition 17.18),
TrntQ (%) < Tegnau(x) < Topn Q@ {x).

Therefore, using Q% (x) = u(x) = Q~(x),

(T Q@7 HX) = @ (X) < (Ten gu)(%) — u(x) < (Tegn,e @ )x) — QT (x),
We divide by k, and let & tend to zero. Since T} is regular, we obtain

lim (Te4ra@7)(x) - Q7 (x) < liminf (Tigpn,cte)(x) — u(x)

h—0 h A0 h S
limsup {Teyn eu)(x) — u(x) < lim (Trn @ )y) — Q7 (y)
h—+0 h h—=0 h

Thus

F(Du — eId, Du,u,x,t) < lihm i(t]lf (i, e)(x) — ux) <
—

h
L sup Tt 260 = (x)

< F(DPu + eld, Du, u, %, t)
=0 h

When ¢ tends to zero, using again the fact that T} is regular (continuity of F* with respect to its first

argument), we obtain
e, Fexr) ()~ u(x) _

D2
Lim. - F(D*u, Du,u,x,t)

We now prove that F' is nondecreasing with respect to its first argument. Setting now for any vector p
and any matrices 4 > A,

1 1
QT (y) =+ <p.y — x> +5 Ay = x)y - x- +oe(x - v,

) I 1 .
Q) =ct <py —x- +5 <Ay - x)y —x~ —5e(x - ¥)4,
and applying, as above, the local comparison principle to @+ and @~ around x, the regularity and letting
£ — 0, we obtain F(4,p,¢,x,t) > F(4,p, ¢, x, t). a

In the next section, we shall start drawing consequences from askable invariance properties for a scale
space. We shall immediately impose, and always assume in the following, a basic one. Any smoothing
process should leave untouched the constant functions and, a little more generally, should not be altered
by the addition of a constant.
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CHAPTER 20. SCALE SPACES AND PARTIAL DIFFERENTIAL EQUATIONS

Definition 20.7 We shall say that a scale space T, 44y, is invariant by grey level translation if
Tye41(0) = 0, Ty ypnfu + C) = Teasn (1) + € for any u and any constant C. (20.7}

This axiom is equivalent, in the case where Ty ;45 is a linear filter, defined by T} spntt = u * ¢, to

f o(z)de = 1.
Let us state the conseguence on F.

Proposition 20.8 Let T} be a causel scale space, invariant by grey level translation. Then its associated
function F(A,p,x,c,t} does not depend on c.

Proof Let C be an arbitrary real number. Consider the quadratic form u(y) = i <Ay - x),y —x~
+ <p,y — x> +c. By the regularity assumption (20.4},

(Tiano{u+ C) — (u+ C))(x)
h

Using the grey level translation invariance (20.7) and again (20.4}),

—+ F{A,p,x,c+ C,t} when h—0. (20.8)

Trane 0~ (s ONx) _ Tienalw) +C —u X, p(a,p,x,c.t) (20.9)

when h — 0. Combining (20.8) and (20.9), we obtain
F{d,p,x,e+C,t)= F(4,px.c,1).

u]
Because of the assumed commutation of T: with the addition of constants, we shall remove in the following
the c-dependence of F.

20.3 Why multiscale analyses compute viscosity solutions.

In this section, we prove that the concept of viscosity solution is the right concept for defining solutions
of partial differential equations associated with a scale space. In one sentence, if T} is a causal scale space
then Tyup is the viscosity solution of the equation

g—‘t‘ = F(D%u, Du,t) (20.10)

which is canonically associated with the scale space. To be precise, we shall prove the following theorem.

Theorem 20.9 Let T} be a scale space which is causal and commutes with grey level tranlations u — u+C'.
We also assume that u(t,x) = (Tiug){x} is a bounded uniformly continuous function on [0, +00] x RY.
Assume finally that the function F{A,p,x,1} associated with Ty by the regularity assumption is continuous
with respect to t. Then u(t,x) = Tiug(x) is a viscosily solution of Equation (20.10).

We have taken the assumption that 2(t,x) = (Tyuge}(x) is uniformly continuous, i.e.
u(t,x) - u(s,¥)| < F((E - )"+ (x = ¥)*) (20.11)

for some nondecreasing nonnegative continuous real function f.
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20.3. WHY MULTISCALE ANALYSES COMPUTE VISCOSITY SOLUTIONS.

Exercise 20.2 Show if (£0.11} holds, then there erists another nonnegative nondecreasing continuous
Sfunction h such that
(2, x} — u(s, y)| < Allt — ¢']) + A{]x - ¥|) (20.12)

Show that if u is bounded, then we can assume that h is itself uniformly continuous end bounded.

Lemma 20.10 Let f(x), §{t) be two O™ Jurvtions and u(t, x) a wniformly «ontinuous function such that,
for somer >0,

flx)y+ g(t) < ult,x) (20.13)

on B{{to,xg),7). Then there exist two continuous functions f{x) and g(t) which coincide with f and § on
B((to,Xa),7} and satisfy a global comparison relation with u,

F(x) + g(t) < uit,x). (20.14)

Proof Without loss of generality, we can assume that B{{ty,xg),r} = B(ts,r)} x B(xg,r). By the result
of Exercise 20.2, we can assume that (20.12) holds. We then associate with every t € R its projection p(#)
on the interval B{ty, ) and its distance to the interval, jt — p(¢}|. In the same way, we associate with every
x € RY its projection p(x) on the ball B(xg,r) and its distance to the ball, |x — p(x)|. We then simply
set
g(t) = lp(t)) — hllt — p(1))
and
F(x) = Fp(x)) = hllx — p(x)}).

Then f(x} + g(t) simply coincides with f(x) + (t) on Bltp, r) x B(xg,r). Let us show that {20.14) holds.
By the uniform continuity assumption on u,

ult,x} = u{p(t), p(x)) — kit — p(t)]) — h{lx — p(x)}.

By (20.13) and the definition of f and g we then obtain

u(tx) 2 f(p(x)) + §(@(t) — (1t — p(8)] = h{lx — p(x}]) = g(t) + F(x),

which yields {20.14). O

Proof of Theorem 20.9 In order to prove that u(t, x) = T;{ug)(x) is a viscosity solution of (20.10),
we only to check that u is a viscosity subsolution of {20.10), the supersolution property being shown
in the same way. Let (to,Xo) in [0,00] x BY be a strict local maximum point of u — ¢ where ¢ is in
C (RN % [0,T)) for any T < co. (We denate by C° the set of C'° bounded functions). We need to show
that

8 2
£(f0=xo) = F(D (to, xo0), Dd{tg, xq), X0, 2) < 0. {20.15)

Without loss of generality, we may assume that u(tg,Xo) = ¢(20,Xo). Without loss of generality again,
we may assume by Lemma 17.9 that ¢ is of the form ¢(¢,x) = f(x)+g{t) where g(to) = 0, f{xg} = u(to. %)
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CHAPTER 20. SCALE SPACES AND PARTIAL DIFFERENTIAL EQUATIONS

and f is in C° (™), g is in C>{[0,oc[}. By Lemma 20.10 we can assume {w.lo.g.) that the inequality
between u and ¢ is global, i.e. u < ¢ on [0,00] x RV, Let h > 0. We set u(t) = u(t,.) for alt functions
w on RN %[0, c0[. We have u(t) < ¢(t), then u(to — b, x)} < ¢(to — h,x) for all & < to and x. Using the
global comparison principle (20.3), we obtain

Tig 10 -n(u(to — R))(Xa) € Tig to—n{d(to — h))(x0)

Now, by the commutation of T; with the addition of constants and since o(t, x) = f{x) + g(t) we have

Tioto—r(ulto — ) (%o} € Ttg,to—n(#(ta — R))(%0) < Tig to-r{f)(X0} + glto — A}
We deduce that

ufty, %0) — (Tig to—n(f)(x0) + glto —h)) <0
Since u(tg, xo) = ¢{to,Xo) and then

glto) — glto — B) € Tig0-n(f)(x0) — f(x0)
Then,
(g(to) — glto = 1))/ < (Teg to—n(f)(Xa) — f(xa)})/P
and letting h go to 0, using (i), we recover

%%(to - h) - F(D2f(xD),Df(X0),Xg,tn - h) S 0

Using the facts that ¢ and g are in C° in a neighborhood of (tg, xo) and that F is continuous with respect
to ¢, letting h tends to zero, we finally deduce

%9 40) - F(D1 (0}, DS (x0) x0,8) < 0

and (iii) is shown since B¢/0t(to, x0) = ¢'(to) and D¢(tg, xp) = D f(xq) for le] = 1, 2. We conclude
that Tyu is the unique viscosity solution of (20.10). a

20.4 Scale space and invariance properties

In this section, we shall do a first classification of the admissible functions F, depending ¢n the invariance

assumptions made on the associated scale space.

20.4.1 Geometric invariance axioms

We shall first list a series of axioms which traduce the invariance of scale space with respect to the respective
positions of the percipiens and perceptum in the image generation process. This leads us to define more
and more precisely which functions F are admissible for a general purpose, and therefore invariant, scale

space. We define the translation operator 7z by :
(rg.u)(x) = u(x —2) (20.16)

where z is in RY.
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Definition 20.11 We shall say that the scale space is translation invariant if
Towni(ry u) = 7y (Tyyn, ) for all y in RY, t>0, h>0. (2017

Proposition 20.12 Let T; be e ceusal and transiation invarient scale space. Then its associated function
F{A,p,x,c,t} does not depend on x.

Proof Consider the quadratic forms u(y} = § <Ay}, ¥~ + <p,y> +c and ~xu(y) = 1 <Aly—-%),y—x=
+ <p, ¥ — x> +c. By the regularity assumption (20.4},

(Tegnu —u)(0)

s - F(A,p,0,c,t) when h = 0. {20.18)

and
(Tt+h,r.(1‘xlt) — mxu)(x)
h

On the other hand, by the translation invariance {20.17),

— F{A,p,x,c,t) when h—0. (20.19)

(Than,e(rxu) — mxu)(x) - ((Tt+h,tu —u){x),  (Tegnu—u)0)
h = ixX h )_ h

Combining {20.18, 20.19, 20.20} we obtain

(20.20)

F(A,p,x,c,t) = F(A4,p,0,c,t).

If R i3 an isometry of JRY, we denote by Ru the function Ru(x) = u(Rx).

Definition 20.13 We shall say that a scale space T, is Buclidean invariant if for every isometry R
of RV,
RTippa = Tipn R (20.21)

Lemuma 20.14 If a translation invariant causal scale space is Fuclidean invariant (isotropic), then its

associated function F' satisfies for every linear isometry R € OV,

F(RA'R,Rp,t) = F(A,p,t) (20.22)

Proof Let us first recall the chain rales :
D*uoR) =t R(DPuc R)R, D{ucR)=! RDuoR. (20.23}

We have Tyyp R = RT;ps;. We apply this refation to a quadratic form « such that D%u(x) = A4,
Du(x) = p and deduce

T!.t.fl_f(Ru) = R(Tg+h,¢’u-), that is, T{_}.h‘f(" [} R) = (TH;,_fu) o

Differentiating this relation with respect to h at h = 0, which is licit by the regularity of the scale space,

we get
a d

:9E|h=c_1(Tf+h'f(ﬂ o R){z)} = ﬁu.:o(((ﬂ“"u) o R)(x)).

F. Guichard, J-M. Morel, fmage sterative smoothing and PDE's 213



-

CHAPTER 20. SCALE SPACES AND PARTIAL DIFFERENTIAL EQUATIONS

Using on both sides the regularity formula (20.5) and taking into account that, by the chain rules (20.23),
D?(Ru) =t RAR and D(Ru) =' Ru, we obtain

F('R(D*uo R)R,! RDuo R,t) = F(D%u, Du,t) o R,

which yields
F(RAR! Rp.t) = F(A,p,t).

Relation (20.22) follows by changing B into *R. 0

20.4.2 Contrast invariance
Definition 20.15 We shall say that o scale space is contrast invariant if

goTivne=Tiyneog, {20.24)

for any nondecreasing continuous function g from R into K.

We now seek for a relation traducing for F the “contrast invariance”.
Lemma 20.18 [f a causal scale space is contrast invariant, then its associated function F satisfies
F(pA + Ap @ p, up, t) = pF(A, p,t), (20.25)
for every real values A, p, every symmetric matriz A and every two-dimensional vector p.

By p® p we mean the tensorial product, or in a more intuitive way, the matrix product p'p, where p
is thought of as a column matrix, that is

2
p&p= P PPN ] )

hpw-- P%v

Proof By taking g(s) = 0, and g(s} = s + C, we see that the scale space is invariant by grey level
translations. Thus, by Proposition 20.8, F{4,p,x,c,t) does not depend on ¢. We have by contrast
invariance Ty py 09 = go Tiyne. We apply this relation to an arbitrary quadratic form u such that
D?u(x) = A, Du{x) = p and to an arbitrary C? function g. We deduce that

Tiyntlgou)=ge (Titn.eu).

Differentiating this relation with respect to h at h = 0 (which is licit by Theorem 20.6), we get

o
-671_|!;=U(Tt+h't(g o u)(x)) = %Lh:()(g [s] (Tt+h,£u)(x))- (2026)

Using Formula (20.5) on both sides of (20.26), we deduce that

F(D*(g(w)}, Diglu}). x,t) = ¢'(w)F(D*w, Du,x,8).
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By the chain rule,

D*(g(u}) = ¢'(u)D%u + " (u)Du ® Du, D{g(u)) = g'(u) Du.

Thus, considering that Du = p, D®u = A, h(u), h'(u), h”(u) can take arbitrary values, we obtain {20.25). O

20.4.3 Scale invariance : How to fix a relation between scale and space

This subsection is devoted to a study of the effect of the scale invariance ariom, and more generally of
the affine invariance on the scale space, in order to establish a normalized link between scale and space.
We shall assume, for auoiding spurious cases, that the scole space is not cyclic, that is, T, = T, implies
t = s. This is no serious restriction for a scale space ! In fact, we shall need no other assumption on
the family T;, except for the scale invariance assumptions which follow. So all statements to come will
be true for any scale invariant one to one family of operators Ty, which depend upon o scale parameter.
The consequences of the scale/space normalization results are therefore wide and can be stated as a general
principle, according to which, “the relation between scale and space can be normalized”, and more precisely
normalized so that t' = At if we denote by t the scale parameter before zooming with a factor X and t' the
smoothing scale after zooming.

In order to perform such a scale/space normalization, we need to state the scale invariance in a more
precise way : we need some technical regularity assumptions on the scale relation. Define Hy(x) = Ax for
any x € RV,

Definition 20.17 We shall say that a family of operators Ty is scale invariant if for any positive \ and
t, there exists t' > 0 such that H Ty = T, Hy and if, in addition, (¢, A} 5 differentiable with respect to A
at A =1, and the function ¢{t) = 6t'/3A(t,1) is continuous and positive for t > 0.

Definition 20.18 We say that o fomily of operators T is scale invariant if there erists u rescaling
Junction t'(t, ), defined for any A >0 and t > 0, such that

H\Ty = T,H, (20.27)

and, more generally :
HyTy o = Th s H. (20.28)

where we note t' = §'{t,A) and s’ = ¢'(s, X). In addition, {'(,)) is assumed to be differentiable with respect
to A at A =1, and the function ¢(t) = Ot' /@A(t, 1) is continuous and positive for t > ().

Remarks. In fact, (20.28) implies (20.27) and must be considered as a slightly stronger form which will
make easier our classification of scale invariant scale spaces in the following chapters. Now, as we shall
see in Section 20.4.3, (20.27) is enough to ensure a normalization of the function #{#, A}. We cannot fix a
priori the form of t because it can vary in concrete examples of scale spaces. We shall prove in Section
20.4.3 that it can be “normalized”, which means that we always can, by an adequate rescaling of any scale

space, set t' = Af.
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The scale invariance means that the result of the scale space T; is independent of the size of the an-
alyzed features : this is very important in “natural images”, since the same object can be photographed
at very different distances and therefore at very different scales. Thus, it is essential for the stability of
shape analysis that the result of an analysis of this object should not yield a different “shapes” at different
distances. Thus, the sequence of the shapes obtained by scale space must be independent of the (a priori
unknown) size of the object in the picture. Of course, we cannot impose ¢’ = ¢ because scale of smoothing
and scale of the image are covariant, as can be appreciated by considering the examples of linear filtering
and the heat equation.

The assumption g(t) = 8t'/8A(t,1) > 0 can be interpreted by looking at the relation H,\Ty = T, H,
when the scale X increases, i.e. when the size of the image is reduced before analysis by T;. Then, the
corresponding scale before reduction is increased. In more informal terms, we can say that the scale of
analysis increases with the size of the picture. This is a natural assumption, and satisfied by all classical
meodels. The continuity and differentiability assumptions on t' are also satisfied by all classical models and
seem natural. Notice that no condition has been imposed on the relation between t' and (2, A).

In order to fix ideas, let us examine which function ' is associated with several classical scale spaces. In
the case of the basic morphological operators, dilation and erosion, it is easily seen that t'(£,A) = At. In
the case of the heat equation and of the mean curvature motion equation, one has (¢, A) = A*t.

Finaily, we state a general invariance axiom which implies the euclidean and the scale invariances, and
also the invariance of the scale space under any orthographic projection of a planar shape. Combining
those transformations leads to an arbitrary linear transform A of the plane. Set, for any such transform,

Af(x) = f(Ax). With the same formalism as for scale invariance, we get :

Definition 20.19 We shall say that a family of operators Ty is affine invariant if it is scale invariant
and if the associated function (¢, A) can be extended into & function t'(t, A), defined for every t > 0 and
any linear application A of RN with det{4) # 0, and satisfying

t'(t,A) = t'(¢, Ald)

and, for every A, s >t > 0,
ATy p = Tiu 4, {20.29)

where we note ' = t'(t, A) and s’ = t'(t, A).

This relation means that the result of the scale space T} is independent of the distance and orientation in
space of the analyzed planar image. Indeed, any affine map u — Au can be interpreted as the anamorphosis
of a planar image u when it is presented to the eve at any distance large enough with respect to its size
and with an arbitrary orientation in space.

The fact that the scale-space function t'(¢, A) can be e priori different for each scale space looks
mysterious. We shall fix it in the next lemma by proving that we can, without loss of generality, impose
all scale spaces to have the same scale-space function. It may be anyway convenient to keep a different one
from the normalized one we propose here. Now, as we shall see in the chapters devoted to the identification
of all scale spaces of a certain kind, the next lemma is an essential tool to perform this identification, which
will then be made “up to a rescaling”.
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Lemma 20.20 (Normalization of scale.)

(i) Assume that t — T is e one to one, scale invariant, family of operators acting on real functions
defined in R™ and satisfying Ty = Id. Then there exists an increasing differentiable rescaling function
o 1 [0,00] = [0,00], such that t'(t,A) = e~ Yo (t}A). If we set S, = To-1(p, we then have t'(t,A) = A for

the rescaled analysis.

(i) Assume that the family of operators Ty is affine invariant. Then the function t'(t, B} only depends
on t and |detB]: t'(t, B) = t'(t,|detBI*™) and is increasing with respect to t. Moreover, there exists an
increasing differentiable rescaling function o : [0, 00] =+ [0, 00, such that t'(t, B) = ¢~ (a(t}|det B|Y™) and
if we set S; = T,o1yyy we have t'(t, B) = t|detB|YY for the rescaled analysis.

Before proving this lemma, we shall state a very useful consequence : the characterization of affine invariant
scale spaces by a simple relation regarding their associated function F.

Lemma 20.21 /f a causel scale space is affine invariant, then, after the adequate renormalization yielded
by Lemma 20.20, its associated funciion F satisfies

F(BA'B, Bp,t) = |detB| ¥ F(A, p,|detB| ¥ ¢). (20.30)

for any linear map B. If a causal scale space is scale invariant, then, after the adequate scale renormal-

ization {Lemma 20.20), its associated function F satisfies
F{u? A, up,t) = pF(A,p, pt). (20.31)
Proof We have Ty ) 1B = BT\ (p1n) ae, where A = |detB|#. We apply this relation to a quadratic form
u such that D?u(x) = A, Du(x) =p:
Tion t(Bu) = B{Ts(iqny,aet), that is, Tyip{uo B) = (e ryacu) o B.

Differentiating with respect to b at h =0 on both sides yields

a a

ﬁ{h:o(THh'f(u o B}) = %M:O(TA(HM,MU) o B}).

Taking into account that D% (ue BY =' B(D?ue B8)F and [H{Bu) =' B(Duo B) and using Formula (20.5),
we get
F('B(D%uoc B)B.! B(Duo B),t) = AF(D?uc B, Du o B, M),

which yields

F(*BAB Bp,t) = |det B|~ F(A,p, |detB|¥1).

The relation {20.30) follows by changing B into 'B. The second part of the lemma is obtained by replacing
in the preceding proof B by ply, where Iy is the identity of RV, ]
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Proof of Lemma 20.20. We directly prove (ii), and will then say how to simplify the proof of (i) in
order to get (1). First we notice that for any linear transforms B and € and any ¢ one has the semigroup
property

t'(t, BC) =t ('(t, B),C). (20.32)

Indeed, we have BCTy(; geny = TiBC = BTy, 5,C = BCTpwe,B).0) The map which associates T; with
t being one to one, we deduce {20.32). Next, we show that

#'(t, A) is increasing with respect to t. {20.33}

Let us prove that ¢(¢, A) is one to one with respect to ¢ for any A. Indeed, if not, there would be some 4
and some (s,t) such that #'(t, A) = '(5, 4). Thus Trd = ATy = ATyqy.4y == T, A and therefore t = 3
because T, is one to one. Notice that this implies, in particular, that

£(0,4) =0 (20.34)

Indeed, ATy 4y = To4 = A. Thus Ty (g a) = fd = T, and therefore #'(0, 4) = 0. As a consequence, since
t'(¢, A) is nonnegative (by definition), one to one, and continuous with respect to ¢, we can deduce that it
is increasing with respect to t.

Let us now show that t'(f, A) satisfies

t'(t,R) =t for any orthogonal transform R. {20.35)

Iterating the formula of (20.32) we have
(¢t R)..., R), R), R) = t'(t, R)

Remark that there is a subsequence of (R™),ewv tending to fd. (Indeed, there is a subsequence Rne
which converges to some H, orthogonal, because the orthogonal group is compact. Therefore, the sub-
sequence K™+~ converges to Id.) Since there exists a subsequence of A" tending to Id and since
# is continuous we have for this subsequence lim#'(¢, R") = ¢'(t,Jd) = t. Assume by contradiction
that t'{t,R) = " with © < ¢ Then t'(#(t,R),R) = t'(t",R) < t'(t, R) = ¢ and by recursion,
¢, R?) = (W@ R)...R),R),R) < t" <t This yields a contradiction. Thus #{t,R} > ¢
We prove the converse inequality in the same way and we obtain t'it,R)=t.

We note that any linear transform B of JR™ can be obtained as a product of orthogonal transforms and
of linear transforms of the kind A{A): (z,Za...,zn} = (AZ1, £, ..., Tn) where Als nonnegative. We only
need to make a singular value decomposition [?} of B: B = H{DRa, where Ry and R both are orthogonal
transforms and D is a transform of the kind {z;,z>...,2n} — {MT1, AaTa, ..., AwEN) Where A; are non
negative. Now, it is clear that D itself can be decomposed as D = A(/\l)RQA(/\Q)RQ—I.--R_NA()\N)RK{I
where R; is the orthogonal transform: (zy,.., i, TN} = (Ziy..., T1...,zn) which exchanges ) and ;.
Using Relation (20.32), #'{t, R;) = t {which comes from (20.35)}, the singular value decomposition and the
obvious relation A(A3A(A2) = A(X Ag), we obtain that t' only depends on t and [det{B)| = Ar...An. S0
we can write

#(t, B) = t'(t, |detB'/™).
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Using (20.32) and (20.33), we have
F(E ) = ¢ (8 (8 1), ) (20.36)

for any positive A and p. Differentiating this relation with respect to g at p = 1 yields

at’ at at’
A(rﬁ(t, Ay = ﬁ(t, A)ﬁ(“) (20.37)

We consider the function ¢(t) = %(t, 1), which is positive by assumption. We then choose ¢ such that
po' =a (20.38)

in such a way that
i
o(t) = cap( | ds/s(0).
1

Let us finally set
Glz,y) = t'(=, %)

a(zx)
, so that
t(t, X)) = G{t,o(t)A).

By (20.37) and (20.38) and the differentiability assumption on ¢’ (Definition 20.18),

8G, . _ar, oy . ot
a—z(l‘,y) = 5((3?, m.:r(;r)) - B"X(z,

y )yo’(x) _
olz)’ o{z)?

Thus G(x,y) = 8{y) for some differentiable nondecreasing function 3. We obtain
', A) = 3(e(t)A). (20.39)

Returning to the definition of ¢{¢) and using (20.38), we have ¢(t) = g—g(t, 1) = g{t)3'(a(t)) = d{t)o' ()T {a(1)).
Dividing both sides by ¢(#), we obtain
(B(o(t)))
ot
Integrating this last relation between 0 and ¢ yields 3(c{t)) = ¢ + 8(c(0)). Now, by {20.34), t'(0,A) = 0.
This implies by (20.39) that 3(o(0)) = 0 and therefore 5 = o *, so that

= 1.

t(t,A) = o Aa ().

In order to complete the proof, we set 5; = Ty, and we prove that the affine invariance is true for 5
with #'(¢, A) = At. We have

SfB = To’“(t)B = BTtJ(’g—l(t)!A, = BTa—lll\g(g—ltf)}) =

BI“.,—I(A!) - BSA(.

Proof of (i). The proof of the first item of the scale normalization lemma is identical to the proof of
the second, which we have just performed. We only need to replace “B” and “C” by A, u everywhere, 0O
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20.5 First application : axiomatization of linear scale space

We shall now deduce from Theorem 20.6 a characterization of the heat equation 8u/8t = Au as the
unique linear and isotropic scale space. As a consequence for image smoothing models, linearity and
contrast invariance are incompatible, and we obtain an explanation for the coexistence of (at least) two
different schools in image processing : contrast invariant mathematical morphology on the one side and
classical linear scale spaces (convolution with gaussians) on the other side.

Theorem 20.22 Let T; be a causal, translation invariant scale space defined on a space of functions F
having the following having the following property P :
Forallx € RY,pe R" and A symmetric N x N matriz, there isu € F such that Du(x) = p, Du(x) = A.
If the operators T;, are linear und Euclidean invariant, then (up to a rescaling t' = h(t)), the function
ult,x} = {Tyup)(x} is the solution of the heat equation

Au/ot — Au=0in BY x [0,00[, u(0,.) = up() in RY. {20.40)

Exercise 20.3 Our aziomatic for cousal scale spaces assumes that Tyup is well defined when ug 15 a
quadratic form. Now, we have defined the solution of the heal equation in Chapter 2 only when ug is
bounded. One can show that this solution is easily extended to quadratic forms with the same convolution
formula, u(t) = Gy *uq. Skow, by using the fact that G,(x) has exponential decay at infinity, that ult,x) =
Gy % up is well defined and C™ when there exist C and k > 0 such that

luo(x)] < C(1+ [x|%).

Show that u(t,x) is then a classical solution of the heat equation.

Proof. Since the scale space is translation invariant in space, we know that F(A,p,x,c,t) = F(A,p,et)
does not depend on x and since it is invariant with respect to grey level translations, F(A,p,e,t) =
F(4,p,t) does not depend upon ¢ {(Propositions 20.8 and 20.12). Since, if u is any C? function, by
Theorem 20.6, F(D?u, Du,t) = limp_o(Tiqnst — u)/h, we deduce from the linearity of Tiyn,: that Fis
linear in v and therefore satisfies

F(rD¥u + sD%u,rDu + sDv,t) = rF(D*u, Du,t) + sF(D%v, Dv, t).

for any real numbers r and s and any C? functions ¥ and v. In the arguments which follow, we fix ¢
and we therefore omit to mention it and write F(A,p) instead of F(A4,p,t), etc.. Since the values of
D, Dv, D%, D*u are by Property P arbitrary and can be independentiy taken to be 0, we obtain for any
vectors p,p' and symmetric matrices A, 4' that

FirA +sA' rp+sp) = rF{4,p) + sF(A",p")

and F(A,p) = F(4,0} + F(0,p).

Thus we can set F{4,p) = F\(p) + Fa{A) and Fy and F are linear. From the invariance of the scale space
by linear isometry, we also obtain F{!RAR.® Rp) = F(4,p) for any isometry R of RV.
Taking 4 = (1, we deduce from the preceding relations that Fi (Rp) = Fi(p) and therefore Fi(Rp) = Fi(p)
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for any isometry R. Since F} is linear, this is only possible if Fy(p) = 0 for any p. Thus F(4,p) = F»(A).
By the isometry invariance again, we have F3{'RAR) = F2(A) for any isometry R and any symmetric
matrix A. Since every symmetric matrix can be diagonalized in an orthonormal basis and every pair
of orthonormal bases can be exchanged by an isometry, we see that % only depends on the eigenvalues
AL, An of 4. Thus we can write Fa(A} = Fy(Ay, .., Ay). Since the eigenspaces can also be exchanged
by isometries, F3(Ar,..,A,) must be invariant under any permutation of the eigenvalues. Thus F only
depends on the symmetric functions of the eigenvalues.

Now, the only linear symmetric function of n variables is, up to multiplicative constant, the sum. Thus
F>{A) only depends (linearly} on the trace of 4 and therefore Fy(A) = ¢ trace(A) for some constant ¢.
We conclude that F(D%y, Du) = cAu. Since F must be increasing in A, the constant ¢ is nonnegative.
We now remember that all of this argument has been made with the omission of the t-dependence of F.
Thus our real conclusion is F(D%u, Du, t) = c{t)Au for some continuous nonnegative function c(t). Doing
the rescaling ¢'(t) defined by 8t'(t)/8t = c(t), we again obtain a heat equation du/dt' - Au = 0. O

20.5.1 Further invariance properties of the linear scale space.

We now list some invariance properties of the operator Tyug = Gy *ug. These properties follow immediately
from the properties of Gy, so that we essentially leave them as exercises to the reader.

Exercise 20.4 Prove, by using the convolution formula, that The linear scale space is scale invarignt.
More precisely, for any homothety Hy, A > 0, one has H\T, = Ty H), with

th =A%, (20.41)
Proue that the scale space also ts isotrepic, i.e.
Ty{Rug) = R(Tyuo)
for any isometry R of R™ . {Use the fact that if R is o Hnear isometry, then Gi(Bx) = Gi(x).

Lemma 20.23 The scale space defined by the heat equation (20.40) is invariant by grey level translations,

but not contrast invariant.

Proof : Let du/dt = Au and u = h(v), where h is a C7 nondecreasing funetion. Then
R'(v)dufdt = k' (1) Av + h"(v)| Dyl?

If the equation were contrast invariant, then v would satisfv d2/8¢ = Av. Combining these equations
vields A" (v){Dv|* = 0, and since v is arbitrary, A" = 0. Thus, the equation is only invariant under affine

transforms of the grey level scale. d
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20.5.2 Non causal linear scale-spaces

It is important to notice that the axioms we have considered can be weakened and that, in particular, other
linear scale-spaces can be derived from slightly different principles. As an instance of axiomatics leading
to the heat eguation but also to other convolution kernels let us mention that E.J. Pauwels, P. Fiddelaers,
T. Moons, and L.J. Van Gool have explored linear operators T satisfying the recursivity assumption as
well as the scale invariance. They proved in [303] the following theorem

Theorem 20.24 [Pauwels and al. 941 N=2. Assume that T} is recursive, and that Teug = ks o ug, for a
continuous function k, from IR® into R. If T; satisfies also the scale invariance, commutes with grey level

transiations and rotations, then k, is of the form
(= s
k()= [ Jolre)exp(—cp®tlpdp  with r = I,
0

where a > 0 and Jy is the zeroth order Bessel function,

2m
Jolz) = 21—71_/ exp(—ix cos(f))dd
[

We obtain that scale-invariance reduces the possible linear and recursive scale-spaces to a family with
only one free parameter a.

Choosing & = 2 leads to the gaussian kernel which is, as we have seen, the unique linear scale-space
satisfying also the local maximum principle.

For a > 2, ky is sometimes negative, then contredicts the comparison principle.

For a < 2, k; violates the locality condition included in the local maximum principle. Roughly speaking,
this is due to the fact that the function k; does not decrease fast enough to zero when |x| tends to infinity.
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Figure 20.3: Hyperdiscrimination of textures by nonlinear scale space. According to Julesz' theory of textons, textures
are discriminable to the human perception if their average behaviour in terms of "texton” density is different. As shown in
its mathematical formalization, proposed by C. Lopez, some of the texton densities can be interpreted as densities of the
positive and negative parts of the image curvature at different scales. In this remarkable experiment, C. Lopez proved that
one of the simplest contrast invariant scale spaces beats by far the human discrimination performance. From left to right
and up-down :

L-an original preattentively undiscriminable texture pair. The central square of the image is made of rotated *10's” and the
rest of rotated "5’s”. Those patterns are different, but have the same number of bars, angies, etc.

2-curvature motion applied to the original up to some scale 3-negative part of the curvature at the same scale 4-positive part
of the curvature at the same scale 5-multichannel segmentation of the multiimage made of the curvatures 6-negative part of
the curvature at scale 0. Asseen in 2, 3, 4 and 3, this nonlinear scale space permits to diseriminate easily the undiscriminable

Lextures.
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Figure 20.4: An euclidean invariant filter and a non-euclidean one. The left, frame contains simple shapes that can be
deduced from each other by rotations. The middle image is the closing of the left image by a horizontak rectangle of size
62 pixels. This non euclidean filter produces different results, depending on the shapes orientations. The right image is the
closing of the left image by a circle of radius 4 pixels (same area up to the pixe! precision as the rectangle used in the middle
image). This filter is euclidean, therefore the resulting shapes can also be deduced from each other by rotations.

Figure 20.5: The heat equation is not contrast invariant. This experiment shows that the linear scale-space is not contrast
invariant. First row : original image. Second row : two different contrast changes have been applied to this image. Third
row @ a convolution by a gaussian is applied to both images of the second row. Fourth row : the inverse contrast change is
applied to the images of the third row. If the linear scale-space were contrast invariant, these images should be equal : this
is not the case, since the difference (displayed in the fifth row) is not null.
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Figure 20.6: Same geometric figures, different evolutions under smoothing. Ist row : four T-junctions that ooly differ by
the grey-level order between the three regiens.

2nd row : result of a smocthing by the AMSS model. We see that two different evolutions are possible : if the regions of the
image keep the same order, then the geometric evolution is identical. If, instead, a non monotone contrast change has been
applied, the evolutions differ.

3rd row : result of a smocthing by the linear scale-space : all of the T-junctions give different evolutions. The evolution
depends on the gray-level values of the three level sets, and not only on their order.

4rd row : quantization of the 3rd row in order to display the shapes of some level lines.
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Figure 20.7: Contrast invariance of the affine morphological scale space (AMSS). First row : original image. Second row
: two contrast changes applied to the original. Third row : AMSS applied to both images of the second row, by the finite
difference scheme (FDS) explained in Chapter 24. Fourth row : inverse contrast change applied to the filtered images. A
visual check shows that they are almost identical. Bottom image : numerical check by taking the difference of the images in
the fourth row. Compare with the same experiment performed with the linear scale space, Figure 20.5.
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Chapter 21

All contrast invariant and affine scale
spaces

21.1 The two dimensional case

In this section, we give a characterization of two-dimensional contrast invariant scale spaces as “curvature
evolution equations”. We prove that if a two-dimensional scale space 7} is causal and invariant by isometries
and contrast changes {(contrast invariance), then it obeys an equation of the kind

% = | Du|G(curv(u}, t). (21.1)

How to choose G 7 If we impose affine invariance and reverse contrast invariance for T}, that is, Ti(—u) =
—Tiu, then there is a single equation left : the so called Affine Morphological Scale Space (AMSS),

‘g—‘t‘ = (curv(u))?|Dul.

This study can be generalized to any dimension. For simplicity, we first treat “A la main” the case of

dimension 2, because the computations are in that case more intuitive.
By Theorem 20.6, we were led to study scale space models defined by a partiat differential equation

g—? = F(D%u, Du,u,z,1), (0} =up

where ug is the image to analyze (the datum), u(t) is the image analyzed at scale ¢t and F(A,p,c.x,t)
depends on a symmetric 2*2 matrix A, a two-dimensional vector p, a constant ¢, a point of the plane r
and a real positive scale ¢{. If we assume

» The translation invariance, then F does not depend upon x (Proposition 20.12}.

* The invariance by translation of grey level u — u + €, then F does not depend upon ¢ {Proposition
20.8).

* The isotropy, that is, the euclidean invariance assumption, then we obtain a further constraint on F,
which is given by Lemma 20.14: F satisfies, for every linear isometry R € OV,

(2022)  F{RA'R,Rp,t) = F(A,p,t)



-

o

CHAPTER 21. ALL CONTRAST INVARIANT AND AFFINE SCALE SPACES

» The contrast invariance : we know by Lemma 20.16 that it implies
(20.25)  F(pA + Ap@p.upt) = pF(A,p,1),

for every real values A, u, every symmetric matrix 4 and every two-dimensional vector p. By p®@p we
mean the tensorial product, or in a more intuitive way, the matrix product p'p, where p is thought of as a
column matrix. In dimension 2, this yields
i e ]
mp2 B3|

We shall now draw from Relations (20.22) and (20.25) a huge reduction of F', which will appear
to depend upon only two real parameters &,1(A,p) and @ 2(4,p). These parameters are defined by

p®p=[

considering the rotation matrix
1
R, = — [ P P2 } )
pl L -2 P
R, has been chosen so that it sends Tﬁ[ onto the unit vector e, =* (1,0}, that is

Ryp = |ples. (21.2)
Then we set
i tp _ | 811 @12
o P s = [ By den ] : (21.3)

An easy computation yields (setting p~ = (—pz,p1), a vector orthogonal to )]

_ 1 A(p,pt

G2 = W((Pf - phars +mpe(azs ~a11)) = %}', (214)
_ 1 A(p*, pt
dz,2 = W(ax,lpﬁ — 281 2p1p2 + 02‘211"';}) = '"‘gplpr)v (21.5)

Lemma 21.1 If F{A,p,t) satisfies (20.22) and (20.25), then there is a function G, depending on three
real variables only, such that

F(A,p,t) = |plG(é1.1,81,2,1). (21.6)

Of course, we must always keep in mind that 4 represents D%u and p represents Du so that the result
above and the calculations below, though purely algebraic, have a differential geometry interpretation. In

particular, we have
D
dg2( Dy, Du) = div(!D—Zl) = curv{u) and
Dut

Dy

Exercise 21.1 Interpretation of anticurv(u). Show that anticurv{u)(x) can be interpreted as the curva-

él,g(Dzu, DU) — d-l\’(

} = anticure(u),

ture of the gradient lines of u. Those lines are the lines tangent to the gradient of u at every point. They
form a bunch of lines orthogonal to the isolevel lines of .
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21.1. THE TWO DIMENSIONAL CASE

Proof of Lemma 21.1 We first use (20.25), setting u = I%T' Thus
A P
F{Arps t) = |pFF(--— + AP@}D, _1t)
Ipl {pl
for any real value A. Then, we apply (20.22) with R =* R,

A

F(A,p.t) = IplF(Rp(lpl

)!Rp + z\R,,(p@p)iRp,el, t),

for any real number A. It is easily checked that

200
Rwens, = M 0]

Thus, by (21.3),

a1+ Apt? &
Fp g =g Gt B Ty

for any A. Consequently, we see that £’ only depends upon g and @1,2, which proves the assertion (21.6).
]

Lemma 21.2 The function G only depends upon @ » and t.

Proof Here we use the fact that F(A, p,t) is a nondecreasing continuous function with respect to A (one
of the conclusions of Theorem 20.6). Recall that by Relations (21.4) and (21.5),
. Alp.pt)

1.2 — ——V 5

Ipl®

Apt.pt)
[Pl
A vector p # 0 being fixed, let us consider two matrices A and B such that 4 > B. We have

Alp,pt) Alpt,ph)
e* 7 1P

H

az 2 =

F(d,pt) = G( ot

In order to simplify notations, we set as above @z, = T;—lgfl(p—',pﬂ, by = #B(pi,p*), dry =

#A(pJ‘,p), by s = ﬁgB(pL,p), and analogs for @11 and by ;. Since the system (p, p1) is orthonormal,
one has A > B if and only if for every pair of real numbers (z,y),
(@11 — bu1)a” + 212 — by p)ey + (G22 = bap)y® > 0 (21.7)

We fix &a.2 — & 2 = £ > 0 and we notice that if —by 4 is chosen large enough in correspondence of arbitrarily
fixed values of @ 1, &2, b1.» and ¢, then {21.7) is satisfled for every {z,y). Thus F(A,p,t) > F(B,p,t)
and therefore

Gl&1,2,822,8) > Gbya, e —&,1),
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CHAPTER 21. ALL CONTRAST INVARIANT AND AFFINE SCALE SPACES

this relation being true for every &, 2, by, dzz and e. Wecanlet ¢ + 0 in the last inequality, since F' is

continuous with respect to A. It follows that
Gla12, d2.2,t) Z Glbr 2,822, 1),

for any value of the three variables. Thus G only depends on its second and third argument. O
We can summarize what we have proved in the following thecrem.

Theorem 21.3 If a two-dimensional scale space Ty is causal and invariant by isometries and contrast

changes, then if obeys an equation of the kind

g—;t = | Du|G{curv(u), t), (21.8)

where G is nondecreasing and continuous with respect to its first argument.
We have not vet used the scale and affine invariances. This is to come now.

Theorem 21.4 Let T; be a causal, isotropic constrast invariant scale space. Assume that it is, in addition,
seale invariant (that is, invariant with respect to zooms) and nermalized according to Lemma 20.20. Then
ifs equation is

du

i | Dut| B{tcurv{u)) (21.9)

where 3 is o nondecreasing continuous function.
If we impose a full affine invarignce to the scale space and assume again that the scale is nermalized
(Lemma 20.20), then its eguation is

au

— = 21.10
Y = IDuly(teurv(u), (21.10)

where for some positive constants C and D, v(s) = Cst ifs> 0, v(s) = —D|s|§ if s < 0. Conversely,
this equation defines an affine inveriont scale space.

Remark 21.5 In order to have ' = D, it is enough to impose the "reverse controst inveriance”, which

extends the contrast invariance Tiynt 0 g = g0 Teyn; to nondecreesing contrast functions g.

Proof. By Lemma 20.21, if a causal scale space is affine invariant, then, after the adequate renormalization

{Lemma, 20.20), its associated function F' satisfies
F{BA'B, Bp,t) = |detB|% F(A, p,|detB|1t). (21.11)

for any linear map B. We first apply Relation (21.11) to the case of a zoom B = efd. Then

< Alept, cpt)

fa9(BA'B, Bp) = f22(* A, cp) = @2,2(
|ep/®

) =caza(d, pl.

Thus, by relation (21.11},
clp|Gleia a4, p), 1) = c|p|G(@2,2(A, p), ct).
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£21.2. GENBRAL FORM OF CONTRAST INVARIANT SCALE-SPACE EQUATIONS IN DIMENSION N.

Since this relation holds for arbitrary values of 4, p, ¢, t, we have for any ¢, sand ¢t > 0, G(es, t) = G(s,ct).
Choosing ¢ = £71, we get

G(s, t) = G(st,1) = B{st}
for a continuous nondecreasing function 5. This proves the first statement of the theorem. Let us now

pass to the general affine invariance. In order to identify the power %, we only need to express the affine

invariance in the particular case of orthogonal affinities with determinant 2,
A0
B =5 5]

Indeed, every linear map of the plane is a product of isometries and such affinities and we already have
fully used the invariance by isometries. We first compute

Ala a
tn_ 11 412
BAB= [ a2 A 2ay J '

Bp = (Ap1, %)-

Therefore, using (21.5),

2 _ g
Goa(' BAB, Bp) = “11P2 2a1,0p1P2 j‘lﬂ-.-lfh ‘ (21.12)
(A%pf + A=?p3)%
We know that F(A,p,t) = f(tds (4, p t))|pl. Plugging this relation into the affine invariance relation
(21.11) yields

|Bp|3(tar2(BA' B, Bp)) = |p|3(tds2(4,p))- (21.13)

We impose py =0, py = 1, az» = 1, so that from {21.12) and (21.13) follows
11
IAIB(F) = B(#),

which achieves the proof. ]

21.2  General form of contrast invariant scale-space equations in
dimension N.

We do the same general assumptions on the considered scale spaces as in the preceding section : we
consider a scale space defined by an equation 8u/8t = F{D%u, Du,t) and we assume that F{A.p,t)is
nondecreasing with respect to 4, that is F{4,p,t) > F(B,p,t) if 4 > B {comparison principle). The
considered Fs will always be continuous with respect to A, at least for p # 0. Qur aim is to deduce from
the contrast invariance the general form of the function F in dimension N. We shali prove that if we

assume also the isometry invariance, then the scale space is described by an equation

Su
— = ey An_1, [ Dul, t
ot G, dnon, [Dult)
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whete Ay, ..., Aw_1 are the principal curvatures of the level hypersurfaceof uand G is a real function defined

on RN x [0, +00[x[0, +00 which is symmetric with respect to (A1, .., An—1), positively homogenous with
respect to (A1, ..., Aw—1,| Dt} and nondecreasing with respect to each A{1 < i< N~ 1) for all ¢ in [0, +oo].
The main axiom which we introduce in this section is the contrast invariance, Ty oh = hoTg forallt > 0,
where h is any nondecreasing real function. In the calculations below, we shall forget the {-dependence of
F because it does not change calculation and results and write F(A. p) instead of F(A,p,t). By Lemma
20.16, the function F associated with a contrast invariant scale space satisfies {Relation (20.25))

F{pA + Ap®p,up,t) = pF(A,p,t), (21.14)

for all real values A, p > 0, every symmetric matrix A € §V and every vector p € RN . Taking A = 0, this
yvields in particular that F is positively homogeneous,

F(pA,up) = pF(A,p) forall u>0,4€8", pe R, p#0. (21.15)
(In particular, F(0,0) = 0). Now, provided (21.13) holds, the contrast invariance reduces to
F(A+Mp®pp)=F(A,p)foral Ae R, A€ S¥,pe RY,p#0. (21.16)
If N = 1, this implies that F depends only on p and in view of (21.15), F is necessarily given by
F{A,p)=ap™ +bp~ forsome a,be R, {21.17)

where p* = maz(p,0) and p~ = min(p,0). Less trivial situations occur if N > 2, an assumption which
we make in all that follows. If p € IR”, we denote by Q, the matrix of the projection onto the hyperplane
pt orthogonal to p.

Theorem 21.6 {Giga, Goto [?]) Let T, be a scole space satisfying the contrast invariance. Then the
associated F satisfies

F(A,p) = F(Q,AQ,,p) forall A€ S™, pin RY, p#0, (21.18)

where Q, is the projection matriz, Qp = In — pw p/|p*.

Proof of Theorem 21.6. In order to show (21.18), we fix p in RY p # 0 and we select a co-
ordinate system such that p = [p|{0,...,0,1), in which case Q,AQ, becomes A" = (aij1<ijenw where
ey =a; if 1 <4,j <N -1, al; = 0 otherwise and p& p = IpI? (8w idwili<ij<n- (As usual, we set
der = 0 if k # | and 8y = 1 otherwise.) Relation (21.16) implies that F(A,p) does not depend on
ann. Set M =a}  +..+akn_, and I = ely + (M/e - e)Onibnj)i<ij<n- One easily checks that
Q,AQ, < A+ 1, and A < Q,AQ, + I.. Using F(4,p) = F{B,p)if A > B, and letting ¢ tend to zero, we

obtain, since F does not depend on eny and is continuous for p # 0, F{A,p) = F(Q,AQ,,p). O

We need to introduce some notations. Since (F,AQ, leaves invariant (Rp)*t (for p # 0 fixed) and
(2, AQ, vanishes on Rp, Q,AQ, admits N real eigenvalues which include 0 and (o1, .., @p—1) which are
the real eigenvalues of the restriction of QpAQ, to (Rp)". We set, where |p| #0, A= a;/|p| for each i
between 0 and N —1. When 4 = D2y and p = Du, the ); are by Proposition 5.15 the principal curvatures
of the level hypersurface of u. If N = 2, by Definition 5.11, Ay = tr(Q,AQ,}/|p| = curv{u).
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21.53. AFFINE MORPHOLQGICAL SCALE SPACES (N > 3).

Corollary 21.7 Let N > 2. Let Ty be a scale space satisfying the contrast and the euclidean invariance,
then

F(A,p) = pIG{A1, - An—t ), (21.19)
forall AesSV, pe RY . p£0,

for some continuous function G defined on RN ~1x[0), +00] whick is symmetric with respect to (Ary - Awv-1)
and nondecreasing with respect to each A; (1 <i< N —1).

Proof of Corollary 21.7. By Lemma 20.14 the function F' associated with the scale space satisfies
F('RAR!Rp) = F(A,p) forall A€ §¥ pe RY, p£0, Re OV, (21.20)

where O™ denotes the group of orthogonal transforms of J2Y , that is the linear transforms preserving the
euclidean and therefare satisfying R~ =t R,

The first step consists in showing that for p # 0 fixed, (21.20) implies that F is a function of
(A1, ..;An—1). In order to do so, we consider the subgroup of OV defined by those transforms R that
leave p invariant ie. Ap = p so that ‘RpR™! = p. Then, clearly (, and R commute and thus (21.20)
implies that F(*RQ,AQ,R Rp) = F(Q,AQ,, Ap} = F(Q,AQ,,p). There therefore is a function G
such that F(A4,p) = Gi(M,....An=1,p), where {X1,...,Any_1) are the eigenvalues of Qpdl,. Let R
in OY and ¢ =' Rp. We notice that QLRARQ, =' RQ,AQ,R. We deduce that QRLRARQ, and
(pAQ, have the same eigenvalues. Thus, by using the euclidean invariance (21.20) again, F(4,p) =
F{'RAR! Rp) = Gylar,...,an—1,q). Thus F only depends on the modulus of p and therefore we can
write F{4,p) = Gi{a1,...,an_1,|p|). We use again {21.15), which vields

Grlpat, ., uoy—y, plpl} = pGi (a1, ., an_i, il

Choosing g = |p|~!, we obtain F{4,p) = |pIG1{c1/|pl, -, an_1/|pl.1) = |p|G{A1, .., Av_1). In addition,

'

(¢ is a symmetric funetior 7 L LA 1 o0 ‘nee Fis oo + (G is clearl* -~ - | creasing with

respect toeach A; for 1 </ <.V — . 0O

21.3 Affine morphological scale spaces (N > 3).

Theorem 21.8 (N > 2). LetT; be an affine and contrust invariant scale space satisfying Ty(—u) = Ti(u).

Assume that it is renormalized according to Lemma 20.20. Then its associated equation is

o .
LTI | ST DoY) (2121)

1<i<N -1 1<i<N =1

where the A; are the mean curvatures of the level hypersurface, sgn(X;) denotes the sign of A; and H is
defined by
HN-1)=-H(-(N-1)=1 and Vi€ Z, li| AN -1, H{E=0

In other terms, H is equal to zero if all the A; have not the same sign.
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Proof We begin by using the result of Corollary 21.7. The contrast and euclidean invariances imply that

the scale space is associated an equation

fu 2
i F(D%u, Du, t)
with
F(A,p,1) == [piG(Ar, o Av1,8),

and @ is symmetric with respect to the X;. If p # (1, we have set ; = ]“-I'j[, where a; are the eigenvalues
of the restriction of A to the hyperplane orthogonal to p, p~ {(see Corollary 21.7). In order to simplify the

proof, we prefer to use here a more general form for the function £
F(Arpst} :Gl(alu"':an«h!p'Jt) (2122)

Of course, [p|G(A1, ..., An—1,t) is a particular instance of such a function ;. Since the restriction of A to
the hyperplane p* is a symmetric matrix, we can choose a set of orthogonal vectors e1,...,en—1 such that
a; = Ales,e;). (0 <i< N —1). Notice that each e; is orthogonal to p. Then, in order to have a complete
basis of RY, we set ey = p/ip|. Let B;, (for 1 <i < N — 1), be the linear transform from R" into R"
defined by

Biler, s iy n—1,en) = (e1, ., Be, . en—y, 87 en),
for # € IR, so that det(B;) = 1. By (20.30) in Lemma 20.21, applied with B = By,
F(A,p.t) =GB 02, .yan_1, 874 pl, 1)
By choosing 8 = |a,|~!/* we obtain
F(A,p,t) = G(sgn{on), a2, ...,an_1, |al|15|p|,t).
Iterating the same argument with B = B;fori =2toi=N -1 vields

F(4,p,t) = G(sgnlar), . sgnlana)ipl | [ st o). (21.23)

BTN =1

We now use again the scale invariance relation (20.30) in Lemma 20.21 and lernma 20.20, which yields
F(3%4, 8p,t) = BF(4,p, Bt)

and therefore

G(sgnla), ., sgnlon-1), 808" [ ailt.t) = 8G(sgnior), .sgnlan—i)ilpl  J] e, 80).

1<i<N—1 1<i<N—1

We deduce that

871G (sgnfar), s sgnlon—1), 880l [[ lailt,t87Y) = Glsgnlon), . sgnlan—o),lpl  J[  ladd®.t).
L<i<N =1 1<i<N -1

Setting 4 = ¢, we obtain

F(A.p,t} = t7'G(sgnlay), ..., sgnian—1), t"|pl H EAERS
1<i<N—1
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21.3. AFFINE MORPHQLOGICAL SCALE SPACES (N > 3).

=G (tVlpt [ laslt sgn(au), ., sgnlaw-i)).-
1<i<N -1

Now, by the contrast invariance relation {20.25) in Lemma 20.16, we also have
F(B7'A, 7' p,t) = B F(4,p,1),

so that
sei(87 el JT 17 'adlt, ) =Gl T aul?,.).

L<i<N -1 1< N—1

o
Choosing 3 = (t"V|p| [Micicn- lag|2)) ¥*7, the function F is reduced to a power function

F(A,p,t) = t ¥t |p| 757 | H a;| ¥ G (1, sgn(an), ., sgnlan 1))
1<i<N -1

=¥ p7| J] al ¥ Hi(sgn(an), ., sgnlan-1)
1<i<N—I
for some function H;. Sinee A; (= a;/|p|), we finally obtain

Flapty = tF=perpi R T As Hi(sgn(), - sgn(in-1)),
1IN -1
which yields
FlA,p,t)= |p|t%"ﬁ' H IAiJWJJr_l Hy(sgn(A1), ..., sgn{An_1)).
1€ N =1

Now, H; must satisfy some properties : Since T, is invariant by rotation, H; must be symmetric with re-
spect to its variables. Because of the term ([, ... v, |)\,-|N1T , we are allowed to set H(sgn(A,),...,sgn(Anv_)) =
0 if some A; vanishes. If all A; are nonzero, Hlfs;;n{/\l), <, 8gn{Any_1)}) therefore only depends on the num-
ber of A;’s which are negative and therefore upon the sum : ¥, ., n_; 85gn():)). Thus

Hi(sgn()snsgn(in )} = H( Y sgni()y)).
1SN -1

It is finally easy to see, by changing » into —u and using the assumption Ty{—u) = —T;{u) and the regula-
rity relation (20.4), that H satisfies H(i) = —H(—i}. At last, we know that H is a nondecreasing function,

since F' is nondecreasing with respect to A.

To summarize, we have

Flapty=plt¥ T v H( Y sgn(r)), (21.24)
1<i<N -1 1<i<N -1
where H is a nondecreasing real function such that H{i) = —H({-1).

the case N =2.
In that case. ¥ — 1 = 1 and we deduce from (21.24),

1 toptoa
F(d,p,t) = t¥pl{— A= Eyys,
ol inl’ Il
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L L
Returning to the scale space equation, we have p = Du, A = D*u and curv(u) = ]ﬁrDzu(%ﬂ, ﬁ,iu[), 50

that the associated scale space equation is

%;f = F(D%, Du,t) = |Du|{curv(u))}.

We retrieve, as was to be expected, the equation (18.4).

The case N = 3.
The equation we obtain is

9
8—‘: = |Dult} [\ 2ot H (sgn(3y) + sgn(da))

where A, and Ay are the principal curvatures of the level surface. Their product is nothing but the Gauss
curvature G(u) of the level surface of u, so that we can write

du

%= |Dult]|G(u)| ¥ H (sgn(A1) + sgn(Xa))

Sinee sgn(A1) + sgn{Az) can only take three values : -2, 0, 2, and using H(-2) = —H(2), we can write
H(2)=-H{-2)=b>0 H0)=a and lal < &

Now, F{A, Du,t) must be nondecreasing with respect to A and therefore with respect to the curvatures
Ay and As. It is easy to check, by taking particular values for A; and Ay that a must be equal to 0. Indeed,
if we choose two pairs of A; : (—1,a) and (&, ), for some e real and positive, then F' must be larger for
the second pair than for the first one, so that

aH(0) < a?H(2)

Letting o tend to 0, we obtain H(0) = e < 0. By choosing the two pairs (—a, o) and (—a, 1) we obtain
in the same way H(0) = a > 0. Thus a = . The consequence is that when the principal curvatures have
opposite signs, then F(A, Du,t) is equal to zero. At last, we obtain, up to a multiplicative constant for
the second member, the equation

% = sgn{A;) }Du[t%((G(u))ﬂ% {21.25)

where o1 stands for sup(0, z). This equation describes the unique multiscale analysis in dimension 3 which
is both affine and contrast invariant and satisfles Ty (u) = —T)(—u).

The case of arbitrary dimension N. The same argument as dimension 3 is easily extended in any
dimension and yields Equation (21.21), where H is defined by

HN-1)=-H(-(N-1))=1 andVie Z, [i|# N—-1, H{E=0

In other terms, H is equal to zero if all the A; have not the same sign. m
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Chapter 22

Scale spaces of shapes

22.1 All shape scale spaces.

In this section, we shall list four principles which a shape scale space (identified with a curve scale space)
should satisfy. We shall prove that a shape scale space must, according to these principles, be a curvature
motion equation whose form is slightly more general than the intrinsic heat equation. For some of the
principles discussed here, it will be useful to consider both a Jordan curve and the bounded set X sur-
rounded by the Jordan curve. So we call shape or silhouette any bounded closed set X whose boundary is
a Jordan curve of J2. We denote by T;(X) the shape of X analysed at scale t. We call shape scale space
any family of operators (Ty},»0 acting on shapes and set X(t) = T3(X).

As in Chapter 20, we suppose that the operators T} satisfy a pyramidal assumption, T, = T} ,T,. We
now consider a translation in the shape analysis framework of the other basic assumptions made for image
scale space. The next assumption is an adaptation to shape analysis of the local comparison principle.

We denote by B{x,r) the open disk with center x and radius r, and for a shape X, by X the boundary
of X. Assume that X and Y are two compact shapes and that for some x € 8Y and some r > 0, one has
XN B(x,r} C Y NB(x,r). Assume further that the inclusion is strict in the sense that X and Y only
meet possibly at x. Then we shall say that the shape X is included in shape Y around x.

Definition 22.1 We say that T, satisfies the [Shape local inclusion principlel , if for all X and
Y subsets of IR* such that X is included in Y around x, then for h small enough, Te n(X) N B(x,r) €
T (Y) N Bix, ).

This axiom has two aspects : First, it implies that the value of Ty, ({X) for k small, at any point
%, is determined by the behaviour of X near x. Second, taking two shapes X C Y, it implies for r large
enough that Ty (X)) C Tiyp (Y}, that is, a Global inclusion principle. Both preceding principles
allow, as we shall see, to localize the shape analysis process in space and scale. In order to totally specify
a scale space, we only need, as we shall prove, to say what the scale space makes of very simple shapes.
We add two principles which state what happens to disks. Thanks to the local inclusion principle, disks
will appear as the “basis” on which every more complex shape can be decomposed : When we know what

happens to disks in scale space, we can deduce the destiny of every other shape !
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Figure 22.1: Local Inclusion Principle (Definition 22.6).

[Isotropy]l Let D = D(x,1/r) be a disk with curvature 1/r and center x. Then ek (D) is a disk with
radius p(¢, b, 1/r) and center X.

(Regularity] For all ¢,r, A > 0, function fi —+ p{t, h, 1/r) is differentiable with respect to hat h =10 and
the derivative g{¢,1/r) = gﬁ(t,o, 1/r) is continuous with respect to 1/r and has a limit g(¢,0) as r — oo.

The last assumption, that g(¢,0) exists, is no serious restriction in view of the next lemma.

Lemma 22.2 The function g(t, k) = %ﬁ(t,o, k) is nondecreasing with respect to x.

Proof Letr > #, set 0 = (0,0) and & = (r - ',0) and consider the disks D = D(0,r) and D’ = D{a,r'),
which are tangent at x = (r,0). By the isotropy principle, Tt 4. £ is a disk with center O and radius
pit,h, Ly and T s4n D" a disk with center o and radius p(t, A, 1). By the shape local inclusion principle,
the second disk is contained is the first, which implies r* — p(t, h, ) > r — p(¢, , 1). Dividing this relation
by h and letting A — 0 vields by the regularity assumption

1. dp 1 dp 1, _ 1

1

Setting k' = ri and k£ = + we obtain

k' > k= glt, ) > glt, k).

The last shape preserving principles which we shall consider here are the scale invariance and the afline
invariance of the shape scale space. Define AX = { Ax,x € X} for any linear map A.

[Affine invariancel. There exists a C! function ¢'(2, A} > 0 defined for any A and ¢ > 0, such that
ATy Ayets, Ay = Tes A In case where we restrict this last relation to homotheties, we shall say that
the scale space is scale invarient. By using Lemma 20.20, we can always take £'{t, A) = ¢.|det Al up to
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a rescaling, so that we finally write.

AT, laet Az pdet Az = Tra A (22.1)

Let x(s) be a curve parameterized by length. We recall that in Definition 6.1 we have defined an
intrinsic curvature vector Curvx(s)). The modulus of the curvature vector can be interpreted as the
inverse of the radius of the osculatory circle to the curve at x{s). The curvature is zero if the radius is
infinite. When Curvx(s) # 0, the intrinsic normal vector n(x){s) = T%:%;E)LI has norm one and can be
defined in more geometric terms as the unit vector normal to the curve and pointing towards the concavity
of the curve.

Theorem 22.3 (i} Let T; be o shape scale space satisfying the four shape enalysis principles (pyramidal
architecture, shape local inclusion, isotropy and reqularity). Consider an initial Jordan curve %o(s). Then
at each point (t,s) around which x(t,s) = (Tyxo){s) is differentiable with respect to t and C? with respect
to an euclidean paremeter s, x{t,s) satisfies @ curvature equation

%(i, ) = g(t, |Curvx{(t, s)|)n(t, s). (22.2)
where k — g(t, k) is a nondecreasing function,

{ii) If in addition the scale space is affine invariant, then the equation of the scale spoce is

ox

ot (¢, 8) = (t\Curvx(t,s)Uén(t,s). (22.3)
With obvious abbreviations, we shall write this last equation
Ix

e (t.Curv(x)}%n(x) (22.4)

and call it Affine Scele Space (A.5.5.)

Proof The proof of (i) is essentially identical to the proof of Theorem 20.6 : Instead of inserting locally
the image function between two quadratic forms, we shall insert locally the curve s — x(¢, s} between two
circles (surosculator and subosculator) for which we know the infinitesimal evolution by the isotropy and
regularity principles. Denote by X (t) the compact plane set whose boundary is the curve x(¢, 8}. Let x bea
point of this curve. We shall also when convenient denote this point by x(¢). Let us consider a subosculatory
and a surosculatory disk to the curve at x. One is the closed disk D' with radius r = ;1—5 and the other one
the closed disk D with radius r = K%rs and both are tangent to the curve x(Z,s) at x. (In the case where
k = {1, we simply take for D’ the half plane tangent to the shape at x containing [? . This does not alter
what follows). Let B(x,r) be a disk with r small enough so that DNB(x,r) C X(¢)NB{x,r} C D'NB{x,r}
and @D, 8D and the curve x(¢, s) only meet at x inside B(x,r). Applying the local inclusion principle,
we deduce that
Toan{DIN Blx,7) C Tion (X)) N B{x, ) C Toyn(DIN B{x, 7).

Thus, denoting by x(t + h) the point of 87,4, (X} such that x(f + k) — x(t, s} is parallel to n(x(t, s}), we
obtain

plthyk —€) = p(t, 0,k —€) < (x(t+ )~ x(8)).0(x(t)} < p(t, b, s + €} — p(t,0,6 +€)
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Dividing by k and passing to the inf- and sup-limits when h tends to 0 yields

ap o x(t + h) — x(2)

a(t,(),n, -6 < hgln_;gf e n(x(t)} € X
. x(t + h) — x(t) @ '
lil"flj;lp — n(x(t) < ah(z,ﬂ,ﬁ +€)

By the regularity principle, k — gﬁ(t,o, &) is continuous. Passing to the limit when € tends to 0,

20 im0 = gt [Curex(t)), (22.5)
which yields Equation 22.2 because by assumption ﬂ’;ﬂ is colinear to m(x(t)).

(ii) After renormalization, we can use the identity
Tevn e Dr = DaTiemia e .

, where Dy, = Afd. We deduce that the function p of the basic principle must satisfy p(t,h,%) =
%p(z\t, Ah,1/r) After differentiation with respect to h at 0, we obtain .

g{t, As) = g(At, s}

for any ¢ > 0, A > 0 and 5§ € /R, Changing t in ¢/X and taking X = 1/t we get g(#,5) = g(1,¢s) = B(ts}, 8
being defined as A(z) = g(1,z). Let us now use the full affine invariance. After renormalization, we can
use the identity Tj4n s A = ATi1n s, where A is the linear transform with determinant equal to 1,

(&4) = (e, 3), A>0

Let us apply the identity Ttyn+AD = ATy 45D to the unit disk D = D(0, 1).Consider the point zo = (1,0)
on the boundary of I2. The velocity by Ti of = is (—3(t),0), and this velocity is transformed by A into
—AA(1). Since AD is an ellipse with curvature A at point Azg, the velocity of Az is (—8(t-2%),0). So we
obtain A(t.X%) = A3(t). Taking t = 1, we get 3(z) = a.z}/? with{a = 5(1)). |

22.2 From curve motion to image motion and viscosity solutions.

Theorem 22.4 If u is a viscosity solution of
?9—1: = | Du|F{curv{u))
end if x(t) is @ O {in time and space) level line of u, then this level line alse is a classical solution of
?9—3: = F{Curv{x))n .
Lemma 22.5 Let uit,x) be a continuous function whose isolevelset C(t) = 8{x, u(x) > A} = &{x,u(x) <

A}, is, for some level A and some interval of time around to, a finite union of disjoint closed C™° Jordan

curves. Then there exists € > 0§, a C™ function (¢, x) and a continuous non decreasing contrast change .
g, such that
o o> glu), for all [ty — €, to + ¢] and x € RZ, \

o (s, Xo) = ute, xo),

o C(t) is a isolevelset of buth g(u) and p for t € [tg — €,20 + €]
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Proof of lemma 22.5 We consider for x € R?, (t,x) = d{(t,x), C(#)), where d denotes the signed
Hausdorff distance, i.e.

o d{{t,x),C(t)) > 0 if x is surrounded by C{t)
e d{(t,x),C()) < 0 otherwise

Then, there exists ¢ such that for all ¢ € [ty — ¢, 25 + €] and for all x such that |d((2,x), C(t)}] < e, ¥{t,x)
is a "™ function. We can extend v into a C* function on R x R?, ¢. By Lemma $.12, we can find a
continuous and nondecreasing function g such that » > g(u) and ¢ = g{u) on C(t) for all t € [tg— €, g +¢].
{Notice that Lemma 8.12 is stated for functions defined on R, but still holds for functions defined in a

closed subset of ", without any change.) ]

Proof of theorem 22.4 We apply lemma 22.5 and the fact that u is a viscosity solution. We deduce
that
dg

B S Fleurv(@))iDyl

Let us consider the noymal flow x(t} associated with (2, x), satisfying therefore the relation (6.6),

=G e
Since the level lines of g{u) and ¢ coincide for £ € [ty — €,10 + €], we have curvi{y) = eurv{u) = Curv(x).
Thus,
%-D‘P £ F(Curu(x))| D¢y,
which yields,
Z—J:.n < F{Curv(x)).

We get the converse inequality by similar arguments.

In the following, our purpose is to define an image evolution by handling separately all level lines of
the initial image. The level lines evolution is defined by e.g. the intrinsic heat equation, see chapter 77
or any curve scale space ensuring the existence of a smooth curve evolution. We need to define a kind of

image » for which all iso level sets {x,u{x) = A} are uniquely described as finite unions of Jordan curves.

Definition 22.6 We say that o curve scale-space satisfies a uniferm local comparison principle, if there
is a function h(r,€) > 0 satisfying the following condition:
Let c; and cy any two Jordan curves which con be locally parameterized as graphs y = f1(z), y = f+{z),
—r <x <r end such that
1> fi(2) 2 falz) et z v

for every —r < x < r. Then the evolution of c; and ¢z by the curve scale-space Ty defines locally two
graphs for t < h{(r,e) end —r/2 < x <r/2: y = filt,x), y = f2(t, z) such that

fl{tvx) > f?(t\I)'

il
23
wl=

Remark 22.7 The Grayson evolution and the affine shortening (respectively G(s) = s and G(s)
satisfy this property. See [154], lemma %2, page ?%, [17] lemma ??, page ¥7
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Definition 22.8 We consider a curve eveolution equation

ox = G(Curv(x))n, (22.6)

at

and its associated function evolution equation
g—? = | Du|Gleurv(u)) = F(D*u, Du) (22.7)

where G is o non-decreasing confinuous function and F is edmissible (Definition 17.1). (Note that the
admissibility implies that r(G(1/r) is bounded for r around 0).
We say that {22.6) is e smoothing scale-space, if we can assert that

1. Every closed Jordan curve with finite length Xo(s) evolves by (22.6) into a C* closed Jordan curve
x(t, ) such that x{0,s) = xo(s).

2. The curve map xo(.) = x(t,.} is continuous for the Hausdorff distance,

3. satisfies the global shape inclusion principle

{. and the uniform shape local inclusion principle.

Definition 22.9 We define a class T of subsets of R* which we call “regular” sets. A regular set is a
closed subset of IR® whose boundary is a locally finite union of disjoint closed C? Jordan curves. If c is
a Jordan curve we denote by Int(c) the unigue closed bounded subset of R? whose boundary isc. If X
belongs to T has no unbounded connected component, we can write

X =Uk, (Int(ci) \ Uj‘zlinteriorlnt(c,-‘j)) , (22.8)

where the inder i runs over all connected components of X, the index j € {1,...,1;} runs over oll bounded

connected components of the complementary sel to the i-th connected component (its holes). If X has an

unbounded connected component, then X° has no unbounded connected component and satisfies (22.8).
We associate with T the class F of continuous functions u such that X\u belongs to T for every A

ezcept a finite number of them which we call critical levels. The functions of F will be called “regular”.

Example 22.10 [tis easily seen that a periodic Morse function, that is, a C? function such that det D?u(x) #

0 for all x, is an instance of regular function.

Definition 22.11 We consider a smoothing curve scale-space ¢ — c{t), as defined in Definition (22.8].
For every set in T, if X satisfies:

X =uk, (Int(c;) \Uj‘zlinteriorlnt(ci.j)) ,

we set
Ty(X) = Ub; (Int(ei(8))\ u;-zlinterioﬂnt(c,-,j(t))) ,

where c;(£) and c; ;(t) denote the curves evolved at time t by the curve scale-space.
If X € T has an unbounded component, we set Ty{X) = (T,(X))°.
We also set T(®) = @ and therefore T(R?) = R*.

Lemma 22.12 T; is monotone.
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22.2. FROM CURVE MOTION TO IMAGE MOTION AND VISCQSITY SOLUTIONS.

Proof If X C Y, then each external Jordan curve of a connected component of ¥ is enclosed by an
exterior Jordan curve of a connected component of X and each internal Jordan curve of X is enclosed by
an internal Jordan curve of Y. Since the evolution by a smoething scale-space preserves the inclusion of
curves, we easily deduce the announced statement. 0

Definition 22.13 Let u € F be a reguler function. We call level line evolution of u the unique monotone
functional extension T to F of the set evolution T, given by Proposition 7.9. We then have

(1) If u is K —Lipschitz, then T{(u) is equal almost everywhere to a K — Lipschitz function.

(1) T(Xhu) = X5 (T(u)), a.e and for almost every A € R such that X is not critical for u.

(it} As a consequence, Ty is recursive: Tipp = .7y for all ¢, t' > 0.

Proof (i) By Exercise 8.5, we know that T}(u) is obtained from u by a sup-inf operator, so that the
Lipschitz constant of u is preserved.

(i1) Let Ao ¢ {A1, ..., A} critical levels of u, that is levels for which Xyu is not in 7. As A tends to Ag, Yu
tends to A, u locally for the Hausdorff distance. (Each Jordan curve of the boundary of Xyu tends to a
corresponding curve of the boundary of Xy,u). By Definition 22.8.2, we then have

Te{Aau) = T{ Xy, u)

locally for the Hausdorff distance. Since we can choose an increasing sequence X; — Mg of non critical
values for u, we then have by (22.13.ii) To( X, u) = X, (Tiu), a.e. By passing to the limit and using (4.1.ii)
we obtain

Te(Xpu = lim X, (Tou) = (] (D) = Xy (Tiu) ae.

Ak—+Ap

(iii} Obvicus consequence of (i) and the pyramidality of the curve scale-space. ]

Lemma 22.14 Letuw and v € F be two regular functions such that u(y) > v(y) for every y € D(x, ")\ {x}.
Then there is some hy > 0 such that for all b < ho, (Thud(x) > (Tyv)(x). In other terms the level line

evolution T, satisfies the local comparison principle.

Proof The set operator T, satisfies by definition the shape local inclusion principle {Definition 22.8.3),
By, comparing the level [ines of u and v in the disk D(x,r), it is easily checked that the function operator

T} inherits a local comparison principle. ]

Lemma 22.15 (i) Let G be o function associated with e smoothing curve scele-space (Definition 22.8).

Then, for every C° increasing radial function ¢ we have for t = 0 and when DQ(x) # 0

E@E%:@ﬁ_ﬂomﬂmawm@u»

{ii) The same result is true for any O N F function f.
(#i) Let f be o O™ N F function such that f(x) = 0 for all x € D(xp,r). Then

i L)) = fOx0)

t—0 t
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Remark 22.16 We choose the above functions in F, so that their evolution by the curve scale-space is
imediately described by the evolution of their level lines.

Proof of Lemma 22.15 (i) This is an easy computation which we leave as exercise.
(ii) Consider a €™ function f, such that Df(xo} # 0. It is easily seen that we can find a radial function
vi (X} such that

vie(Xo) = f(x0),  Dvac(Xo) = Df(xo),  curv(vsc}(xo) = curv(f(xo) £ ¢)

and, in addition,
U-e(x) < f(x) < Uc(x}

in a neighborhood D(xp,r). By lowering r if necessary we can assume by the implicit function theorem
that for every A € [v(xo) — 77, v{Xo) + 11| and 5 small enough, the level lines ¢y, c with level A of v, and f
respectively satisfy the assumptions of Definition (22.6). (The same applies to the level lines of f and v_,.

Thus, for t < h(r, €) the inclusion of level lines of vy, and f is preserved for all levels close to Ao = f(xg).
We deduce that in a neighborhood of xq, say D{xy,r/4) we have

Th(v—e)(xﬂ) < Th(f){xﬂ) < Th{ve)(xﬂ)-
Substracting f(xq) = v4.(Xg), dividing by h and letting A — 0 we deduce from (1) that

G((curv(f))(xo) — ) < liminf Ig(il(xoz_—f(i‘ﬂ

< limsup M[%L(XO) < G((curv(f))(xo0) +¢).
h—+0

We conclude by letting € — 0 and using the continuity of G.

(iii) No level line of f meets D{(xg,r). Since the evolution by the curve scale-space is continuous for the
Hausdorff distance, we deduce that for t < #(r), no level line of f{t) = T¢(f) meets I}(xo,7/2). Thus
F(£)(xg) =0 for ¢ < to{r). u

Theorem 22.17 We consider a smoothing curve scele-space %f = G{Curv(c))n, as defined in Definition
(22.8) and its unique ectension T; to the set of reqular function F. Let ug € F. Then u(t,x) = Ty (up){x)
is viscosity solution of

%—l: = |Du|Gleurv{u)).

Proof In order to prove that u(t, x) = T¢(ug){x) is a viscosity solution of (20.10), we only to check that
is a viscosity subsolution of (20.10), the supersolution property being shown in the same way. Let {tn,Xq)
in [0,00] x R™ be a strict local maximum point of u — ¢ where ¢(t,x} = f(x) + g{t) where f is regular,
C*(R?) and equal to a quadratic form in a neighborhood of xg, and g is C™*{iR). By Exercise 17.1,
we are allowed to do this restriction on test functions. By Lemma 17.8, it is enough to show that when
Df(xo) #0

%(to,)ﬂ)) — | D flxp)iGleurv{ f){xq)) < 0. (22.9)
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and when D f(xg) = 0 and D?f(xg) = 0,

%?‘(to,x.;]) i-'. 0. (2410)

By Lemma 20.10 we can assume (w.l.o.g.) that the inequality between u and ¢ is global, i.e. u < ¢ on
[0,00] x RY. Let h > 0. We set u(t) = u(,.) for all functions u on IR™ * [0, 00]. We have u(t) < ¢(#),
then u(tg — h,x} < ¢ty — h,x) for all k < ¢y and x. Using the monotonicity of T, (Definition 22.13), we
obtain

Tu(ulto — h))(x0) < Tu(g{to — h))(xq)

Now, by the commutation of T with the addition of constants and since ¢{t,x) = f({x) + g{t) we have
Th{ufto ~ A))(x0) < Th(dlto — ~)) (%o} < Tu(f)(x0) + glto — h).

We deduce that
ulte, o) — (Th(f)(x0) + g{ta — h)) <0

Sinee uity, xg) = ¢(tg,Xg) and then

glto) — glta — h) < Tp(f)(xa) — flxo)

Then,
(glta) — g{to — 1)) /A < (Th(f)(x0) — f(x0))/H

If D f(xq) # 0 then letting A go to 0, using (i}, we recover
dg
Bz (fo = R) = IDF)iGeurv(f)(x0)) < 0

By letting h tends to zero, we conclude.
If Df{xg) = ¢ and D? f(x) = 0 then by the assumption on f we know that f is zero on a neighborhood
of xp, and by Lemma 22.15.(iii) we deduce that for A small enough, |Tx(f}(x0) — F{xo)| = 0. ]
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Chapter 23

Movie Scale-spaces.

This chapter is concerned with the axiomatic characterization of the multiscale analyses {1} }:5o of movies.
We shall formalize a movie as a bounded function ug(z, y,4) defined on IR?, where x and y are the spatial
variables and @ the time variable. We note x = (z,y,8).

As in the preceding chapters, we assume that T} is causal {Definition 20.5), Translation invariant
(Definition 77?) and invariant by grey level tramslation (Definition 20.7). Therefore, as shown in
Chapter 20, there exists T} ; such that Ty = T} T, for all £ > 5 > 0. And,

{(Tan, et — u)/ R} (x) = F(D u(x), Du(x),t)

as A tends to 07 for all v and x where © is C?. The properties of F' are the same as in chapter 20, that is,
F(A,p,t) is nondecreasing with respect to its first argument, F(A, p,t) is continuous at all points where
p # 0. But, now F has ten scalar arguments.

Finally, we assume that the equation

% = F(D%u, Du,t)

a unique viscosity solution u{zx, y,8,1), (this will of course be checked a posteriori for the models we derive).

23.1 Geometrical axioms for the movie scale-space.

Let us first define the geometrical axioms for the multiscale analysis of movies. All axioms considered in
chapter 20 make sense, but we need to specify them in order to take into account the special role of time
(7). {For example, we shall not consider invariance by spatio-temporal rotations as an essential property...)
This will change a little the assumptions on geometrical invartance. As usual we will denote for any affine
operator C' of IR%, by C'u the function Cu(x) = u{Cx).

The first property states that the analysis be invariant under all linear transforms of the spatial plane
IR* « {0}. That is, when we apply the same affine transform on each image of the movie.

Definition 23.1 We skall say that a movie scale-space T; is affine invariant f, for any linear map B of
the form
a b
e d
0

=S

0
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there exists t'(t, B) such that B(Tyq pyu) = Ti(Bu), and B(Ty (s 8).0(e,m)%) = Tr,a(Bu).

We also state a weaker property than the affine invariance, by restricting the invariance to the rotations
of the two first coordinates, and the homotheties.

Definition 23.2 We shall say that a movie scale-space T, is euclidean invariant if for any linear map

acos(b) —asin(b) 0
A=| asin(b) acos(h) O
0 0 1
there exists a scale ¥'(¢, A} such that A(Ty; ayu) = Ty(Au) and ATy v o) = Tia(An)

Note that the # is the same for the two definitions 23.1 and 23.2. It establishs the link between the
space dimension and the scale. Since in the following either the affine or the Euclidean invariance will be
considered, we shall always have this link. We now establish the link between time and scale, by considering
the homotheties with respect to time 6. ( We accelerate or decelerate uniformly the movie.)

Definition 23.3 For any e in IR* we define by S, the linear map S.(x,y,8) = (z,y,¢0) We shall say
that a movie scale-space Ty is time scale invariant if there exists t”(t,e) such that

Se(Terir,eytt) = Te(8ete) and Se(Terp.ey 0 (e,e) ) = Tes(Sets)

Of course, the function t" can be different from the function t' of definitions 23.1 and 23.2.

Now, we want to state the scale invariance, as done in chapter 20.4. We begin by noticing that the
combination of the affine (or Euclidean) invariance and the time scale invariance implies invariance with
respect to homotheties of IR®. That is, setting H, = XId, we have for some function 7(t, A) :

Hy(Tyqeayu) = Ti(Haw)

So, for scale invariance we could impose that the function 7 is differentiable with respect to A and that
d7/8A(t,1) is continuous and positive. Now, we prefer to obtain the scale-invariance assumption by using
the affine and time scale invariances,

Lemma 20.20 implies that ¢ is a function only of ¢ and of the determinant of B. Then, setting
A = det(B), we assume that t'(t, A) is differentiable with respect to A at XA = 1, and that the function
gl(t) = %(t, 1) is continuous for ¢ > 0. We assume the same thing for the time: We assume that t"(t, e} is
differentiable with respect to e at e = 1, and that A{t) = %‘%(t, 1) is continuous. For the scale normalization
we must impose in addition that at least one of g(t} or h(#) is positive for ¢ > 0. If we assume g(t) > 0,
then the scale normalization is established with respect to spatial variables. And, by an easy adaptation

of Lemma 20.20, we deduce that we can normalize the relation between t, B and ¢’ so that
t' = (det(B)) ¢ (23.1)
Thus the affine invariance is reduced to the property :

F(BA'B, Bp,t) = |det{ B} F(A, p, t|det(B}|?) (23.2)
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If now we assume h(t) > 0, then the scale normalization is established with respect to time. And then
time scale invariance is reduced to

F(S,AS.,S.p,t) = eF(A,p,et) {23.3)

Of course, since these assumptions imply a re-normalisation, we can not assume both. In the following, we
shall assume that at least one of the two conditions is achieved. We then state the regular scale invariance
axiom -
Definition 23.4 We shall say that a scale-space T} satisfying the Affine or Buclidean invarignee and the
time-secale invariance is scale-invariant if

(i) t'(t,\) is differentiable with respect to A at A = 1, and g(t) = g—‘;(t, 1) is continuous for t > 0

(it} t"(t,e) is differentiable with respect to e at e = 1, and h{t) = %(t, 1) is continuous for t > 0.

{(is) One of the function g or h is positive, and the other one is continuous at t = 0.

{iv) t = T; is injective.

(where t' and t" are these defined in 23.1 or 23.% and 23.3).

For the last “geometrical axiom” we assume that the analysis is invariant under “travelling” : a motion

of a whole single picture with constant velocity v does not alter the analysis. We denote by B, the galilean
translation operator,

By )0(2, 4,8} = u(z — val, y — v, 0,6)

In fact B, is an affine operator,

1 ¢ vy
Bu:(u,‘r),,) = 0 1 Uy
090 1

Definition 23.5 We shall sey that a mowie scale-space is Galilean invariant if for any v and t, there
exists t*(t, B, ) such that

By(Ti-u) = Ti(Bou), and Bu(Ti- 0100 (s,00%) = Tt,5(Bou)
t*(¢, B_,) = t(t, B,), and t* is nondecreasing with respect to 1.

The second part means that reversing time should not alter the analysis. Let us simplify the definition.
By using Lemma 20.20(i), we have

(7 (¢, By), Be} = " (¢*{t, B,), B_,) = t*(1, B, B_,) = t*{t,Id) = ¢.
Repeating the argument of the step (ii} of the proof of the Lemma 20.20, we deduce from this relation that
t*(t, B(v)) = t. Thus the Galilean invariance reduces to the simpler relation (to which we give the same
name)
B.iTiu) = Ty(Bu) & F(!B,AR, ! Byp,t) = F(4d,p,t) YAdin §' pe R {23.4)
Finally, we state the morphological property, {as in definition 20.24):

Definition 23.6 We shall say that a movie scale-space is contrast invariant if for any monotone and
continuous function h from R into R, Tih{u) = h{Tiu)

We have scen in lemma 20.16 that this implies
F(}L‘4+/\p OQP:#PJ) = IU‘F("'Lp't)) (235)

for every real values A, p, every symmetric matrix 4 and every three-dimensional vector p.
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23.2 Optical flow and properties for a movie scale-space.

The aim of this section is not to do a exhaustive list of the technigues for optical flow estimation, but
from general considerations we will remark that lot of methods involve a step of smoothing, which could
be modelized by a scale-space. In parallel, we will notice that the contrast and the Galilean invariances
are not only compatible but somehow justified by the aim of estimating an optical flow. This will make
more clear what motivated the choice of the properties stated in the preceding section.

The notion of optical flow has been introduced in the studies of human preattentive perception of
motion. The optical flow associates with each point of the movie, a vector representing the optical velocity
of this point. We shall denote by v the optical flow vector ( v = (vz,vy) is in IR? ), and by v the vector
(vx,vy,1). So that if Af is the time interval between two frames, x + v(x)A# denotes the point x shifted
by v(x) in the next frame.

The classical definition involves a conservation assumption, which generally is that the points move
with a constant gray level (u : the gray level value). From a discrete point of view, we are looking for v(x)
such that {[128, 147, 7, 180, 387],...)

u(x + v{x)A8) = u(x) + o{Af) & Duv =10 {(23.6)

This leads us to compare the gray level value from one frame to the next and to associate the points which
have the same intensity. Considering that the single value u(x) is not a reliable information because of
the many perturbation in capturing the image, the images are often smoothed before doing this matching,
Of course, it would be possible to use an image scale-space, that is to smooth each frame independently.
But, we might probably do better by smoothing the whole movie, with interactions between the different
frames. Following the idea of Marr, Hildreth, Koenderink, and Witkin many authors proposed to use the
convolution by the 3D Gaussian function G, (the 3D heat equation}. And, then they check :

(G # u)(x + v(x}A0) = (G * u)(x) (23.7)

where * denotes the convolution operator. The main problem of this formulation is that it is not equivalent
for two movies u and # representing the same object with different constant velocity. For example, consider
that the movie @ is an accelerated version of u, i(z,y,9) = u(r,y,26) = u(A4x). Set v, (resp. va) the
velocity at the point x in the movie u (resp. at the point Ax in the movie &#). We have vy = 2v;. Now,
after the smoothing, using the formula (23.7}, vo must satisfy

(Ge# ulAN(x + vaAf) = (Gy + u(4.))(x) (23.8)

And, we easily see that since in general (G * u(A.}) # (G: * u)(A.), after a such smoothing we shall not
always obtain with formula (23.7), vo = 2v,. Indeed, in the two cases, the smoothing is not done in the

same way : because this linear smoothing is not Galilean invariant. Therefore a such smoothing implies

some perturbation into the estimation of the velocities.

Adelson and Bergen [3], and Heeger {169] propose in order to avoid such problem, to design “oriented
smoothing”. Such an approach yields more Galilean invariance, even if, of course, we cannot exactly
recover all the directions. (It would involve an infinite number of filters !}

Let us note also that the equation (23.6} is contrast invariant. Indeed one can apply a change of
contrast for the entire movie : change u into @ = g({u), where g is strictly monotonous function from R
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into B, then the equation (23.6) with 4 is strictly equivalent to the equation with u :
u(x + v{x)A0) = ulx) < (g(u)){x + v(x)A8) = (g(x))(x)

for any strictly monotonous change of contrast g.

It is important that this property be conserved after a smoothing of the movie u. Once more if we
apply the linear smoothing defined by the convolution by the 3D Gaussian kernel, we lost this property.
Indeed :

(Ge *u)(x + v(x)AF) = (G4 * u)(x) is not equivalent to

(G (gu))(x + v(x)A8) = (G  (9{u))){x)

except for some specific change of contrast, or kind of motion. In order to keep the equivalence after
smoothing it is necessary that the scale-space be contrast invariant as it has been defined in the preceding
section.

As well known, the conservation law (23.6) only gives the component of the optical flow in the direction
of the spatial gradient. The other component remains indeterminated. The usual approach to determine
the optical flow then involves balance between the conservation law and some smoothing constraint on the
flow. Since it is not our subject here, we refer to the papers of Barron and al [42], Snyder [361], Nagel
[275], Nagel and Enkelmann [7]...

First, we can remark that most of the approaches involve derivatives of the intensity of the movie, that
by itself can justify the fact to smooth the movie before.

Secondly, the question occurs to know whether of not it is possible to smooth the movie so that
resulting trajectories (this needs to be defined, but at least say the level surfaces, since due to conservation
law trajectories are embedded within them) wilt be smoothed as well.

In conclusion, optical flow approaches often lead back to the problem of the definition of a smoothing.
And we do not know a priori how much we have to smooth : the degree of smoothing is a free scale
parameter. This indicates that a multi-scale analysis must be applied. In addition we have seen that the
conservation law justifies the contrast and the Galilean invariances for the scale-space.

23.3 The axioms lead to an equation.
We are now going to introduce some useful notation.

1. We denote by Vu = (42, g—;,()) the spatial gradient of the movie u{x,y,8). When Vu # 0, we

associate with Du = (52, 9% 2%} the two normal vectors e' and e defined by
¥
fo g By e (SO Dulu(Bup Oupy,
T |Vult By oz’ T |Vu||Du| 9z 89" Gy 897 8z dz

When Vu is not equal to zero, {Du,e*, e} is an orthonormal basis of F#*. To be noted that et is

spatial, that is it does not have a temporal component.

2. Again when Vu # {1, we then define

[ = (D%u)(e”,e™), Uy = (Du)et, e ), Iy = (D?u){et, e™).
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Then T, is the second derivative of » in the direction Dut, T3 in the direction of Du®, and Ty the

cross derivative in both directions.

3. Then, the spatial curvature curv{u) is given by

I

[Vl

curv{u} =

4. The gaussian curvature G{u) is given by

[Ty -3
Glu)———7—
At last, we introduce the “apparent acceleration”, as a normalized ratius between the gaussian
curvature and the spatial curvature : given by

G(w 1Dul' _ |Dul,
curv{u) [Vu|? | Vul

accel(u) =

]_'*2
(T3 = 52)/19
1

Theorem 23.7 Let o multiscale analysis T be causal (as defined in theorem 20.6), translation, Euclidean,
Galilean, and constrast invariant. Then, there exists o function F such that T; is governed by the equation
du
% =
(for the ezact meaning of “governed by”, we refer to the theorem 20.10.)
If in addition, T; is affine, time-scale and time invariant then the only possible scale-space equations

|Vu| Fleurv(u), accel{u},t) (23.9)

are
(AMG) 2—:‘ = |Vul cm"v(u)l_g‘1 { sgncurviu))accel (1))t {23.10)
for some g €]0,1, or
(q=0) g—’: = |Vu|eurv(u)¥ (23.11)
(g=0) %;ﬁ = |Vueurv(u) ¥ (sgn{accel{w)curv(u))* {23.12)
{lg=1} a—j = |Vu.ﬂsgn(curv(u))(sgn(curv(u))accel(u))"’ (23.13)

In the above formulae, we use the convention that the power preserves the sign, that is a? = |a|*sgn{a).

And we set =t = sup{0, ).

Remark. Before begining with the proof of the theorem, let us notice that the terms appearing in
equation (23.10) are not defined everywhere. Indeed, we can write curv{u) only when |Vu| # 0, and
accel(u) only when Vu # 0 and Ty # 0 (then curv(u) # 0}. So, we must specify what happens when one
of these conditions does not hold. Equation {23.10} is equivalent to

du -8 L=t
5= [Vu| 0, 7 (T, — [3)7H| Duf?
By continuity, when I'; tends to zero, we set % ={.

The case Vu = 0 is more problematic. We distinguish three cases :
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23.3. THE AXIOMS LEAD TO AN EQUATION.

e If g < 1/4, the right hand side ot the equation is continuous and we obtain, when Vu tends to zero,

du

5 =0

e In the case ¢ = 1/4, which is a limit case, Vu does not appear in the equation. Now, the definitions
of I'1, I'y,... depend on the direction of Vu. We have in this case

ou
a
where, (I} T3 — I'3) is the determinant of D%u restricted to the orthogonal plan to Du. If |Du| # 0,
this determinant is defined independently of the I';, and the formulation makes sense. Now, if |Du|

tends to 0, by continuity we have % = 0.

|Du) 3"\ Ty —~ T2)4+

* At last, if ¢ > 1/4, Equation {23.10) has singularities since the right hand side of this equation may
tend to infinity when Vu tends to zero.

Let us now set the obtained relation between space, time and scale.

Corollary 23.8 Let A be an affine transform of the coordinates

b 0
d 0 foranya, b, ¢, d, ec R
0 e

(== w R =]

and let p=+/ad — be. Then, the multiscale analysis defined by equation (23.10) satifies A(Tru) = T,(Au)
with
r(4,1) = (ptF9 20y (23.14)

We see in relation (23.14), that q is a parameter which represents the respective weights between
space variables and time variables in the equation. For example, by taking ¢ = 0, we remove the time
dependance in the equation and we obtain the purely spatial affine and constrast invariant scale-space (or‘
a slight variant). On the other side by taking ¢ = 1, we remove the space dependance of the scale : we
obtain the equation (23.13). At last, by taking q = %, we impose an homogeneous dependance in time
and space. T = pe? t = {det{4)%) ¢ In that case, by formulating the equation with G{u) the gaussian

curvature of u, we obtain

o
a—‘t‘ = | Dul(G(u)h)* (23.15)
which is the unique contrast and 3D affine invariant scale-space as described in chapter 21.8.
Let us before begining the proof of the theorem give a hint on the kind of smoothing the equation
{23.10) should do on a movie. Let us decompose this equation into two parts
du power cwer. Y+
i | V| curo(u)Pome™ (sgn{eurv{u)taccel (u)P**" )
The first term curv(u)?®™#" is roughly a term of spatial diffusion, and then tends to remove objects when
t — oo. It’s quite close from the diffusion term of affine and contrast invariant scale-space of static images.
The second term aceel(u)... can be seen as the speed of this spatial diffusion. The bhigger is accel,
faster the spatial diffusion is executed. As we shall see in the following the differential operator accel

can be interpreted as some kind of acceleration of objects in the movie. So, we can conclude that the
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equation will smooth {and then remove ) faster the ebject with big acceleration, than object with low
acceleration. Therefore we can expect that this will produce a discrimination between trajectories (smooth
and unsmooth).

Proof of Theorem 23.7 The proof is essentially based on algebraic calculations. Its main ingredient
is that the terms |Vucurv{u) and |Du(*G(u) = |Vu|lcurv(u)accel(u) are affine covariant of degree 2,2,0
and 2,2,2, with respect to the coordinates {x,y,8).

Since the proof is quite long and technical, we refer to [7]. a

23.4 Optical flow and apparent acceleration.

In this section, we shall give to aceel(u) a cinematic interpretation as an “apparent acceleration”. As
pointed before, the conservation law related to the optical flow fixes only the component of the flow in the
direction of the spatial gradient.

First, we shall see that the model (23.10) and the definition of accel(x) can be associated with a special
choice for the other component the apparent velocity. This choice corresponds to the a priori assumption
that only objects in translation are observed. In other terms, accel{u) gives the correct estimate of the
acceleration of objects when they are in translation motion. Secondly, we will establish a formula that
provides an estimation of acce! without any calculating of the apparent velocity.

In all this section, we work only at points where Vu # 0.

What are the possible velocities 7 We define the optical flow ©(z,y,8} as a function from R} into
IR? representing the velocity of the point {x,y) at time 8. As before, we add a third compenent to the
flow, which will always be equal to 1 : v(z,y,6) = (¥(z,y,8),1). We denote by W the set of “possible”
velocity vectors

W= {v=(71) for all #in R? } (23.16)

Assuming the conservation law, the optical flow is a vector of W which is orthogonal to Du, therefore
when Du # 0, it belongs to the set V.
D
V={v,= [Dul pet —e¥) forallpe R} (23.17)
[Vul
All v, have their component in the direction of Vu fixed to wl—;J“—l. We have one free parameter u left. It
corresponds to the component of the velocity vector in the spatial direction orthogonal to Vi, that is by
definition : et. In the next paragraph, we define u so that accel(u) is an apparent acceleration.

Definition 23.9 Definition of the “velocity vector”. When Vu and curviu) # 0, we define the “velocity
vector”: Viby
_ |Duj

Iy | +
Lmihad gl - 23.1
\Vui( e e”) ( 8)

ry
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23.4. OPTICAL FLOW AND APPARENT ACCELERATION.

Then, if we set v; = (V.Vu)/|Vul {resp. 1o = (V.e')/|e|), the component of V in the direction
{resp. orthogonal direction) of the spatial gradient Vu, we have:

g S |Dy| >
V| 77 V4T

v = (23.19)
Proposition 23.10 Let ;j' be an orthonormal basis of the image plane. Consider a picture in translation
motion with velocity o = (v™,vY) : u(z,y,8) = w(r — foa vE(Bdd, y — fﬂg v¥{#)df). Then, at every poinis
such that Vu £ 0 and curv(u) # 0, 7 satisfles the explicit formula

(T, 1y=V

In other terms, the definition {23.9) of the flow V is exact for any translation motion.

The definition of the optical flow that fixes one component of the flow corresponds to say that points
move on their space-time level surface (gray-level does not change). Fixing the other component as we do
with the definition 23.9 is to make the choice of a travelling direction on the space-time level surface. With
the definition 23.9, we choose the direction which does not change the orientation of the spatial gradient.

level ine an it of hime
alter,

Figure 23.1: Accerding 10 the optical flow definition, all above drawn velocity vectors are possible, since they allow the
moving point to remain on the same level surface. One possibility to get rid of this ambiguity is choose as velocity the
direction which does not change the crientation of the spatial gradient.

Of course, in general, the velocity vector V is not equal to the real velocity for others motions than
the translations, but we shall consider it, for any tvpe of movement. In others words we make for a point
a choice of trajectory along the the iso-surface it belongs.

We shall now look for simpler expressions and interpretation of accel{w). The next proposition shows
that first, accel can be seen as an apparent acceleration and second as a curvature in space-time of our
cheice of trajectories along iso-surface.

Proposition 23.11 1. accel as an apparent acceleration. For all points such that Vu # 0 und curv{u) #
0, let V = (v, v,.1) be the velocity vector defined as above (23.9), and vy ils component in the direction

of the spatial gradient.
_Du _ ‘1%4"_‘5,3“1 %)
D6~ YUt e
= —((Dn).V) = ~{D(V.Vu).V) (23.20)

accel(u) =

This formula' shows that accel(u) is the ecceleration in the direction of —Viu. As vy the component

1We denote by %ﬁ the variation of f along the trajectory of the considered point ( = ((Df). V) where V is the velocity

of the point). This is generally different from %Hi which is the partial variation of f with respect to 8.
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of the velocity in the spatial grudient direction is called the “apparent” velocity, accel(u) can be called the
“apparent acceleration”.
2. Let V be the “velocity vector” defined in Definition 23.18, then

2
accel(u) = D'V, V) (23.21)
IVul
Proof of proposition 23.11 The proof is just some simple calculations. )

Discretization of the apparent acceleration. We shall prove some equalities allowing a robust
computation of the term accel(u). As we have seen before, the “possible velocity™ vectors are in W. They
also must be orthogonal to the gradient of the movie Du, and therefore lie in V We will first obtain a
formula for accel{u) that involves a minization over the vectors of V, and secondly we will extend this

minimization over the vectors of W.
Lemma 23.12 Whenever the spatial gradient Vu and the spatial curvature curv(u) are not equal to zere,

|Vu|(sgn{curv(u)) accel(w))™ = minyey| (D) (v, v)| (23.22)

Proof Let us recall that the set V is the set of the vectors
| Dy
Ve = 5, (bet — )

We have
2 | Duf? 2
(D*u)vu.vy,) = W(FW = 2Tu+T3) = P(p),
where P(u) is a polynomial of degree 2 in u. When |Vu| and curv(u), (and therefore I'1) are not equal to
zero the extremum of P(p) is reached when g = T'2/T'y, that is when v, = V. Thus the extremum value

of P(p) is |Vu|aceel{x}, by proposition (23.11). We obtain
extvey(DPu)(v,v) = |Vujaccel (u),

where by extycyp we denote the finite extremal value in V.

Assume first that curv(u) and aceel(u) have the same sign. This implies that the second order coefficient
and the extremum of the polynomial have the same sign. Thus the expression (D?u){v,v) has the same
sign for all v € V. This yields |Vu|(sgn(curvi{u)) accel(u)) = minvey|(D?ul(v, v)|.

If now, curv(u) and accel{u) have opposite signs then (Vu|(sgn{euru(u)) accel(u))t = 0. And
P(p) is equal to zero for at least one vector v of V. Thus, for this vector, [{(D?u)(v,v)| = 0, and
minyey (D?u)(v,v)| = 0. So (?7) is still satisfied. 0

From a numerical viewpoint, the minimization on the set of vectors V is not easy. Indeed, first, the
direction of the gradient of the movie is quite unstable because A#, the time interval between two images,
can be large.

We will restrict W to the vectors that stand in a ball B(0, R} for an arbitrary R that can be chosen large
enough. In others words, we will only consider bounded possible velocities, which is not a real restriction
in pratice.
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Lemma 23.13 Let Vu and curv(u) be not equal to zero, and v be C?, then the expression
1
miﬂv.—:w(m(}u(x - vAf) — u(x)}] + |lu(x + vA8) — u(x)]}) (23.23)

converges towards |Vul(sgn{curv(u)) accel{u))t when A8 tends to zero.

Proof Due to the fact that v € W are assumed to be bounded, we have that vA# tends to 0 as A8 tends
to 0. As consequence, we can restrict the proof to the case where u is a quadratic form without loss of
generality.
So, let u be a quadratic form : u(x} = JA{x,x) + p.x + ¢, and define
F(v,h) = (Ju(x — vh) — u(x)] + [u(x + vh) — u(x)|)/h?
We have
p.v

1 .
Fv,h) == 524 (v, v + |ph—" + %A(v,vﬂ (23.24)

Let w € V be a vector which minimizes the min in (23.22), w € V then w.p = (), thus (23.24) becomes
Fw, h) = |A(w, w)|
Therefore
}{irr})(minvaF(v,h)) < Flw, k) = |Vu|(sgn(curv{u)) accel{u))* {23.25)
-
Moreover minyew F(v, h) exists for every h and is bounded. We denote by vy, a vector of ¥ such that
F(vy, h) = minvew F(v, h). Since F(vy, k) is bounded and F(vy, h) > 2){p.v;,)/ k|, we necessarly have
l(p-vn)t = O(h) {23.26)

Let decompose v, into two vectors : v, = vi + hvf such that vj is orthogonal to p, and (23.26) leads
that |vi| is bounded when h tends to zero. As before, we have
Fva,h) 2 {A(va, vi)l 2 [4{(viy +vE), (Vi + Vi)l =
[A{vi vir) + 2RA(viE, vE) + APA(VE, avE))

Since |viil is bounded, we get limy_o F(vi,h) > {A(vir,vi)| Now, v is in V then |A(vi, vi) >
minyey|A(v,v)|, so

lim (minyew F{v, h)) = lim F{v,, h)

h—0 h—4a
» minvey]|A(v,v) = |Vu|{sgn{curv(u)) accel(u))* {(23.27)

(23.25) and (23.27) conclude the proof of the proposition. a

In addition to a quantization problem, if we wish to recover an “acceleration” interpretation of the
term “accel” we need somehow to make appearing in the formulation of accel the velocities before and
after the considered point.

Lemina 23.14 Let u be C?, Vu and curv{u) nof zero, then
minvew (Ju(x — vAE) —u(x)] + [ul{x + vAd) — ul{x)]} = {23.28)

minv, v ewl(|u(x — vpA8) ~ ul(x)| + Ju(x + v, A8) — u(x)| + AB[(Vu.(vy — v )|} + o AF™)
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Proof First, we remark by taking vs = v, that the first part is larger than the second part of the
expression.
(lu(x — vph) — u(x)| + ju(x + vah) — w(x){ + b|Vu.(vs — va}l)

2 2
= - KD + B (DR vl + D) + (DR va)
+h|Du.(ve — vo)|) + o{h?)

(1(D2u)(vs, V)| + |(D*u)(Va, Va) ) + o{h?)

IV

h?
2
> minvew(|(D2u)(v,v)|) + o(h?)

= minvew(|[u(x — vh) — u{x)| + fulx + vh) — u(x)|) + o{h?)

by Proposition 23.13. c

Interpretation. We deduce from all of these propositions an explicit formula for the apparent acceler-

ation
|Vul(sgn{curv{u)) accel(u))t = (23.29)

1
minvh‘vnewm(iu(x — v A8) — u(X)] 4 |u(x + v AR — u(x)| + A8 Vu.(vy — v, )f) + o(1)

Of course for numerical experiments, we shall not compute the minimum for all vectors in W, but
only for the vectors on the grid. We have two differents parts in the second term : The first part is the
variations of the grey level value of the point x, for candidate velocity vectors : vy between 8 — A8 and
8 (velocity before 8), and v, between § and 8 + Af (velocity after 8). These variations must be as small
as possible, because a point is not supposed to change its grey level value during its motion. The second
part is nothing but the “acceleration”, or the difference between vy and v, in the direction of the spatial

gradient |Vu|.

23.5 Destruction of the non-smooth trajectories.

Since trajectories are included into the spatio-temporal gray-level surfaces (level surfaces), it is interesting
to look at the evolution of such surfaces. According to the equation, the surfaces move (in scale) at each
point with a speed in the direction of Vu given by cuw(u)l_?‘L (sen{curv(u))accel (u)?)*. (We do not
consider the case where g = 0 that corresponds to a pure spatial smoothing).

Therefore any level surfaces that corresponds to an uniform motion does not move in scale (it is a
steady state for the equation AMG). Such surfaces are straight in one direction of the space-time.

We see also that parts of the surfaces where the curvature and the operator accel have opposite signs
do not move as well. Then if we take example of a uniform circle under acceleration, the level surface
corresponding to the circle moves only in one of its side.

More geometrically the smoothing can only occur at points where the level surface is strictly convex
or strictly concave. We can give an intuitive hint of why the smoothing is stopped on saddle points. This
property of the model AMG, comes directly from the contrast invariance and the causality. They imply
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On this line, accel = 0

because the spacial gradient is
eury <0 arthogonal to the scceleration.
acoeh
-
Direction of the
spatial gradient.
accel and curv have opposit wceel and curv have seme
signs * no smoothing : sighs : smoothing

Figure 23.2: The AMG mode! erodes a circle in acceleration only on one side. Indeed, when the curvature and the
acceleration have opposite signs, the evolution in scale is zero. (see the AMG equation).

a independent and continuous motion of level surfaces that makes that two level surfaces ean not cross
them-selves. Now as shown in the picture 23.5, we can bound non-convex and non-concave part of surfaces
by straight surfaces that have no evolution, and then easily see why such parts does not move.

As a consequence, we can not expect from a such modelization to obtain a smoothing of the trajectories.
Non-smooth trajectories are not really smoothed by the model but are simply destroyed. Let us take an
example. In figure 23.5, we display a oscillatory trajectory (in gray). The limit of a smoothing of this
trajectory should be a straight trajectory. Now using the same argument as in the preceding paragraph
the gray surface can not cross the white surface which has no evolution. Therefore the gray surface can
not become straight, because it should have to cross the white one. A such trajectory is shrunk by the
AMG model and disappears at a finite scale of smoothing (see figure 23.5).

We conclude that the assumptions we made for our model are incompatible with the notion of smoothing
trajectories. Indeed non-straight trajectories are not more and more smoothed, but are more and more
removed. And by consequence a small perturbation in a straight trajectory might imply a destruction of
this trajectory although it would have been kept without the perturbation.

23.6  Conclusion.

We have seen that there exists an unique affine, contrast and Galilean invariant scale-space for movies,
the AMG. This model does a spatial smoothing with a speed depending on the spatial curvature and an
apparent acceleration. The larger is the acceleration the larger is the speed of smoothing. Therefore, as
shown on the experiments it has a strong denoising property since the noise does not generally generate
regular trajectories.

Now we have seen that the properties asked to the scale-space are compatible with the definition of the
optical flow. In the sense that the definition of the optical tlow satisfies as well the contrast, the affine, and
the Galilean invariance. But, the contrast invariance added to the causality (that edefines the scale-space)

is incompatible with the notion of smoothing trajectories. In others terms, non-smooth level-surfaces {on
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L) 8
¥ ¥
x "
The smoothing at point 40 can nol The smoothing can not also deplace
deplace the levet surfnce, in -x the level surface, in x direction.
direclion

Figure 23.3: Saddle points of level surfaces remain steady by the AMG model. Indeed, our scale-space can be seen as
a motion in scale of gray level-surfaces {isophotes). The level-surfaces that are straight in time correspond 1o a uniform
translation and are not changed by the smoothing. Therefore, the two thin cylindric level-surfaces drawn left and right in the
figures above do not move in scale. Now, by the inclusion principle, two level surfaces can never cross during the evolution in
scale. Since, as displayed in the picture, it is possible to squeeze any surface saddle point between two such steady cylinders,
it follows that saddle points do not move in scale as wetl. This property is readable in the scale space equation : at saddle
poinis, the positive part of the product of the curvature and of the acceleration is zero.

Figure 23.4: The level-surface in gray cannot become straight : it would have to cross the white level-surface which is
invariant by the scale space. Now, during the smoothing process, the level-surface in gray will be eroded on its ¢convex part,
and will eventually disappear at a fixed scale : it cannot converge to any steady surface since all of them are straight in time.
Thus, trajectories that are contained in the grey level surface end being removed from the movie.
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which are contained the trajectories by definition of the optical flow) are more shrunk than smoothed. In
fact the AMG model as to be seen as a riddle that progressively remove non-smooth trajectories.

Figure 23.5: The affine, morphological, galilean (AMG) model used for image sequence restoration {extraction of coherent
trajectories). Above : three successive images extracted from a synthetic sequence, made of salt and pepper noise, plus
some squares placed at random locations. In addition, a little black square in uniform motion has been added in the whole
sequence. Bottom : resulting images at calibrated scale 500p {scale at which a spatio-temporal sphere of 500 pixels disapears
by AMG). Only the little black square remains, as it has a coherent motion.
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Figure 23.6: AMG model (Affine, Morphological, Galilean) used for image sequence “denoising”. Above : three successive
images extracted from a sequence. Second row : resulting images at calibrated scale 100 pixels (scale at which a spatiotemporal
sphere of 100 pixels disapears). Third row : Some noise has been added to the original sequence (25% of the pixels are
corrupted). Bottom : resulting images at scale 100,
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Chapter 24

Numerical Implementations.

24.1 Digital level sets and curves.

Depending on the expected precision of the level set or level curve representation, there exists different
strategies concerning their extraction. We address here the simplest, by considering a pixel precision. For
a higher precision, a model of interpolation between pixel values can be chosen. Candidates of such models
stand e.g. in Shannon interpolaton, Lipschitz interpolation, bi-linear interpolation, etc...

We consider the digital image as a array which associates to each pixel a gray level value.

The level sets. The upper or lower level set of level A can be simply obtained by thresholding the
image at the level A. The upper level set is the set of the pixels that have a gray level higher or equal to
A. (And conversely for the lower).

The Connected components of level sets To extract the connected components of the leve} sets,
we have first to define what is meant by connected. As well known, there exist two kinds of connectivity
in a square-based grid : The 4-connectivity and the 8-connectivity {(see figure 24.1).

One can arbitrary choose one or the other, being aware that this choeice violates the symmetry uw — —u.

Choosing the 8-connectivity for the upper level sets, means in fact considering the digital image as
an upper semi-continuous function. This function is constructed by putting the gray level value of each
pixel to all the point enclosed in it and by setting the pixel boundaries to the sup of the adjacent pixels
values. Similarly, choosing the 4-connectivity for the upper level sets, vields to a lower semi-continuous
representation of the image.

Once the choice of connectivity is done, extracting the connected composants of the level sets is strait-

i
|

L

L Ll

Figure 24.1: Connectivity on a grid. Left, 4-connectivity that is each pixel is connected to the ones directly
up, left, right and down. Right, 8-connectivity.
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ghforward.

The level lines extraction. The level lines are defined as the connected components of the boundaries
of upper the level sets. Assuming that the connected components of the level sets have been extracted,
one has then just to follow their boundaries.

Note that the boundaries of connected components of a level sets are of two kinds. There is in one
hand the exterior envelop, in the other hand there are the boundaries that envelop the holes of the level
set {if it has some).

Assume that we follow one of boundary (exterior or a hole) of the set, in a way so that the set is located
on the left when facing the path direction. The path can be followed without ambiguity until a junction.
In case of 4-connectivity (resp. 8), the most left (resp. right) direction of the junction should be chosen.

24.2 Median Filter

General median filter

Many different digital implementations of the median filter have been proposed. If we forget problem
of time computation, the simplest implementation is as follow:

Given a mask (support of the measure) with a odd number of pixels: 2N +1, the median value at pixel
pis the “N? largest value among the pixel in the mask centered at p. Note that partial sorting, using e.g.
quick-sort, can provide such a value. More clever ways to extract the median value, with a limited number
of comparaisons, have been proposed depending on the chosen mask.

median filter on a disk

The problem is to approximate adequatly a disk by a mask made of pixels. One strategy is to use a
weighted median filter. We define the weight of a pixel as the area of the intersection of the pixel itseld
and the disk. Then the median value is the smallest value such that the sum of the weight of the pixels
with smaller value passes 50% of the total weight.

In case of binary images, (or shapes), as remarked in Chapters 2 and 3, the weigthed median filter is
equivalent to a linear convolution with the weighted masked followed by a threshold. Figure 24.2 illustrated
this fact with a Gaussian weighted median filter.

Implementing the median filter using the mean curvature motion...

In any cases, the median filter suffers two drawbacks:

First, it is too local to catch small curvature. Indeed, it is impossible to make the distinction between
a straight line and a slightly curved line if one looks locally and with a pixel precision.

Second, it generates quantized evolutions due to the quantization of space (pixels) and of the gray
levels.

As we have seen, iterated median filter converges towards viscosity solution of the curvature motion,
One can therefore consider to use the curvature motion equation as an implementation of an “ideal” median
filter.

24.3 Extrema Killer : Maxima and Minima Killer.

The “Extrema Killer” has been formaly defined in section 7.4. lts formal definition involve an infinite set

of structuring elements, which makes its formal definition not in practical use. We have shown that it

Working version subject to errors, only for personal use. No diffusion authorized. All right reserved. (Version: 15/07/2000)



2{.3. EXTREMA KILLER : MAXIMA AND MINIMA KILLER.

T
“ ;
"
“ \ !

Figure 24.2: ”Gauss convolution+threshold=median”. A convelution with a gaussian followed by a thresheld yields a
weighted median filter. The alternate iterations on a binary shape of the linear smoothing and of a 1/2 threshold emulate the
mean curvature motion. Left : original picture, then, result of the convelution with a small gaussian kernel, in continuation
threshold at the mid-level of the blurred image, right : result after few iterations of this alternate process.

effect is just to remove the small (in area) connected components of the upper level sets for the maxima
killer { and lower level sets for the minima killer}.

Therefore an idea to implement the maxima killer it is then to start at local maxima and to go down
until the area is achieved. Going down means to add adjacent pixels to a stack starting a the local
maximum. The stack represents then a region of pixels which could be interpreted as a local “mountain” if
the gray levels are interpreted as altitudes... Now, problem occurs when the stack meets an saddle points.
An saddle point can be where two “mountains” meets. And the stack of the two “mountains” should
be added, which would mean that the stack corresponding to each local maxima should be computed in
parallel.

A strategy to avoid that is then to stop the increase of the stack when it meets an saddle point, that is
in other words, when an adjacent pixel to the stack has a larger value than the min value of the pixels in
the stack. The pixels in the stack are then set to this min value, correponding to the value of the saddle
point. As consequence the saddle peint is no more a saddle point, and these pixels will continue to be
treated later, see Figure 24.3

An implementation of the maxima killer is then as follow:
1. Choose a connectivity 4 or 8 and an area A {(number of pixels).

2. Start from a local maximurm pixel. (The value of the pixel is larger or equal to its neighbors, and at
least strictly larger than one of them). Let A be its gray level. Initialize a stack with this pixel.

3. Among the neighbor pixels of all pixels of the stack, choose the one that has the largest value. Add
it to the stack.

F. Guichard, J-M, Morel, fmage tterative smaoothing and PRE's 265



-

CHAPTER, 24. NUMERICAL IMPLEMENTATIONS.

a) b) @) )

ST

Saddle point
- Asked area

Figure 24.3: Extrema killer implementation. This figure illustrates the implementation of the maxima killer for one
dimensional image. (As described in the text, the algorithm is similar in dimension two). The size asked is displayed in
bottom. The algorithm starts with a locai maxima, a). And, it goes down in gray level until either the size is achieved or a
saddle point is touched. In both case, the pixels are set to the achieved gray level value, b). In the shown case, the area is
not achieved, but it will be so, when the next maxima will be treated, c} and d). The minima kitler works symmetrically,

4. If this pixel has a value less than X, set A to its value, else goto &
5. If the stack is smaller than A goto 3.

6. Set all pixels of the stack to the value A. Empty the stack.

7. If it remains a local maxima pixel not treated, find it and goto 2.

The symmetrical implementation will perform the minima killer. The extrema killer made of an maxima
and a minima killer defines in fact two possible filters depending on which of the maxima or the minima
killer is done first. A symmetrical version of the extrema killer can be found in [256, 266

24.4 Finite Difference Scheme (FDS) for the Curvature Motion
and AMSS.

We shall consider the classical discrete representation of an image u on agrid u; ; = u(f,j), with1 <i < N,
1< j < N . The image is the union of the squares centered at the points (i, j), and the brightness in each
square is constant : w; ;. Each one of the squares is called pizel (for “picture element”}.

24.4.1 Case of Mean curvature motion.

We start with the “Mean curvature motion” equation (M.C.M.) given by

du Wity — QUslyley + win
T [Vulourv(n) = 225 it bk Bt L

2 2
ul + ul

In order to discretize this equation by finite differences we shall introduce an explicit scheme which
uses a fixed stencil of 323 points to discretize the differential operators. For simplicity, we assume that the
spatial increment Az is the same in the x-axis and the y-axis. We approach the first derivatives u. and

i, in a point (4, j) of the lattice by using the following linear scheme:

2ripy g — o) F U1 g4l — Yicl el T Uiklj—i — Bi-1j-1 +O(A?)
- 4Azx

(ug)ij =
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Ad A2 A3

Al [ —4A0 | Al

A3 A2 Ad

Figure 24.4: A 3x3 stencil

uij41 ~ Uij-1) + Uitl,j+1 = Yitl,5—1 b Uim] j41 = Ui-) j-1
4Ar

Vil = ()5 + (uy)i ) ¥
When {Vu| £ 0, we can denote by £ the direction orthogonal to the gradient of », one easily sees that
|Vufeuru(u) is equal to uge. Defining 6 as the angle between the horizontal axe and the gradient, we have

(ugliy = + O(Az?)

€= (—sinf,cos8) = (——L_ Y= anq
\/uﬁ +ul \/ui +ul
uge = sin’ (Brez, — 25in(8) cos(8)uz, + cos?(B)uy,. (24.1)

We want to write ug; as a linear combination of the values of u on the fixed stencil 3+3. Of course, the
coefficients of the linear combination may depend on £. Because the direction of the gradient (and then £)
is defined modulo #, by symmetry we must assume that the coefficients of points symmetrical with respect
to the central point are the same (see figure 24.4).

In order to be consistant, we must find Ag, A1, As, Az, Ag, such that

(u&),"j = (*’4)\011,5‘]' + /\1(ui+1,j + ui_l,j) -+ Ag(ui!j+1 + 'ui'jtl)

Ax?
+/\3(u,-_1‘_,_1 + uf+1|1+1) —+ /\4('&1’-1‘_;.,«.1 + 11,‘+1_J‘_1)) + OAz? (‘24.2)

We write N

Azt
Uip1; = Ui + A.’E(u;)i_j + T(U.xz)id' + OAxS,
and the same relation for the other points of the stencil. By feeding (24.2) with these relations and by

using relation {24.1), we ebtain four relations between our five coefficients

M(8) = 2Xo(8) —sin® @

Az(6) = 220(0) — cos 8

A3(8) = —Ap(8) + 0.5(sinBcosf + 1)
A(8) = —Ap(F) + 0.5{—sinfcosh + 1)

(24.3)

There remains one degree of freedom for our coefficients given by the choice of Ag{4). We shall choose
Ap{8) following the stability and geometric invariance criteria. Denoting by w); an approximation of
u(idz, jAx, nAt) we can write our explicit scheme as

ul T = ul; + Atlug): (24.4)
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. : . 1 . 1
Note that this scheme can be rewritten as u?}'l = Yo i=_1 QUL j4 Wherethe e satisfy 3 p ;| Grp =
1

The following obvious lemma shows a general condition to have L™ stability in this kind of schemes:

Lemma 24.1 Let ¢ finite difference scheme given by

1
T(u)ij = 9 OkilithjH
ki=~1
where g satisfy Ei,azun oxy = 1. Then the scheme satisfies L™ stability if and only if oy > 0 for
any k1.

Proof. 1f a;,; > 0for any k,1, set min = infi j{u:;}, max = sup; ;{u; ;} and take a point (i,7). Then
L™ stability follows from the inequality:

1 1 1
min = Z o an < Z o gtk gt = (Tudiy < Z g [TNGT = MAT
ki=—1 ki=—1 kd=—1
On the other hand, if there exists ag, 1, < 0 then choosing u and (f,7) such that %iikg,j41, = MiN and

Uitk j+1 = maz for any other k,I, we obtain

1
(Tu)i; = E QU AT + Oy 1o TN = MOAT + g, 1o {Min — maz) > max
ktko d#lo

And therefore L stability is violated.
[m]

Following this lemma, in order to have L™ stability in the scheme (24.4) we must seek for Ag such that
ALy Ag, Az, A > 0 and (1~ %&) > 0, Unfortunately, because of the relations between our coefficients, it is
impossible to obtain these relations, except for particular values of = (0,%,%,..). Indeed, We remark
that for 8 in {0, 5],

/\1 > 1\2 and /\3 > Al

But ..
A2{8) > 0 = Xo(8) > CDSQ( )
Aa(B) > 0= Al(6) < 1_15'“1_(3)2@

So, we cannot find Aq(#) satisfying both inequalities, since

cos?(8) S 1= sin(f) cos(d)
2 - 2

1—sin(9) cos(# .
M we obtain

Then, if we choose Aq(8) > izw} we have A (8) very negative. If we take Ap(f} <
A2 (#) very negative. We prefer to choose Ag between both functions, and then to have A; and A4 negative,
but slightly. {see figure 24.5)

On the other hand, we impose to Ay the following geometrical requirements
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Search of the optimal Xq

0.5 T T T T T

0.5 — cos?(@) + cos?(§) —
0.45 - cos(8)/2 — |

(1 — sin(#) cos(#)}/2 —
0.4 4
Ao(8)

0.35 ]
0.3 - —
0.25 L . .

Figure 24.5: The middle curve represents the choice of the function Ay of formula 24.6. The upper function
represents the smallest possibility for achieving for all angles A > 0, the lower one represent the largest
possibility for achieving Ay > 0. Therefore, it is not possible to satisfy both conditions. We then have
chosen the simplest trigonometric function which is in between these two constraints.

g

{i}. Invariance by rotation of angle I

T
Mo(6+ ) = Xo(6)
(ii). Pure diffusion in the case § =0, %, ...
Ao(0) = 0.5
This condition implies that A2(0) = A3(0) = A4(0) =0

i

{iii). Pure diffusion in the case § = § 5%

"0(%) =0.25

This condition implies that Ai(%) = A (T} = A(F) =0

{iv). Symmetry with respect to the axes i+j and i-j,

Nl = ) = dol8)

We remark that by the above conditions it is enough to define the function Ay(6) in the interval {0, I
because it can be extended by periodicity elsewhere.
We have tested two choices for the function Ag(f) using as basis the trigonometric polynomials. The

first one corresponds to an average of the boundary functions:

cos?(8) + 1 — sin(f)cos(P)

Ao() = 1
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As we shall see this choice is well-adapted to the “affine curvature motion” equation. However, if we
extend this function by periodicity, the extended function is not smooth at I. If we seek for a smooth
function for Ag(#), we must impose Aj(0) = AG(§) = 0. The simplest polynomial, of degree as small as
possible, satisfying the above conditions, and between both houndary functions is

Jo(BY) = 0.5 — cos? (#) sin®(9) (24.6)

We deduce the other A’s values using (24.3}. For instance with the above choice of Ag(8) we have

MGE r:osz(ﬂ)(cos2 (9 - sinQ{G))

%a(8) = sin’ (6) (sin® (6) ~ cos*(9))

A3(9) = cos (9) sin® (8} + 0.5 5in(8) cos(#)
Ag(8) = cos2(8) sin®(#) — 0.5sin(f) cos(f)

When [Vu| = 0, the direction of the gradient is not known. Therefore the diffusion term ug is not
defined. We choosed to replace this term by half the laplacian. (The laplacian corresponds to the sum of
the two second derivative in orthogonal directions, whereas the diffusion term ug is the second derivaty
in one). However others possibilities will be considered in section 24.4.5. So the FDS scheme for the mean
curvature motion is, (iterations start with «® as initial function)

Where |Vu| < T,

ut = g Ar{tirn g+ tion,g) + et e+ uigo)
(2o i1 F Ut 1) + (o4 b Bity 1))
Otherwise,
n+l 1 At
u =u" +§F{ 4/\0UEJ+U;+1J+U; 1J+u1]+1+’u11 1)

| L )
\_g‘f: lias to be chosen as L ge as possible i order to rednee rhe number of

iterations. However, there is a natural upper bound of 5. Indeed, denoting s this step, and considering

The iteration step scale

the following image u?; = 0 for all 4, j, except for i = j = 0 where we set u§ o = 1. Then second formula
yields ufy, =1 — 2% s, The point {(0,0) should not become smaller than its neighbors, and so uho =0
which yields s > 1/2.
Experimentaly we have noticed that if we impose
At < 1
Ax? — 27

(24.7)

then the algorithm has a good behaviour and remains stable in the sense that there exists experimentally
a (small with respect to 255) € > 0 such that for any n € IV and (i, j},

-we+mf,1{uu} <u”, < S“Pu{“;}}"'f

The threshold on the spatial gradient norm : T}, has been fixed experimentally to 6 for 0 to 255

images.
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Figure 24.6: Curvature motion finite difference scheme and scale calibration. Image filtered by curvature motion at scales
L, 2, 3, 4, 5. In order 10 give a sound numerical meaning to the scale, a calibration of the numerical scales {number of
iterations) is made in such a way that a disk with radius ¢ shrinks to a point at scale ¢.

Figure 24.7: Curvature motion finite difference scheme applied on each level set separately, at scales 1, 2, 3, 4, 5. The
processed image is then reconstructed by the threshold superposition principle. In contrast with the same scheme directly
applied on the image, this scheme yields a fully contrast invariant smoothing. However, a comparison with Figure 24.6 shows
that the resulting images are very close to each other. This shows that the contrast invariance is almost achieved when
applying the finite difference scheme directly on the image. The experiment makes sense if the original image is of good
quality, that is relatively smooth and with no strong oscillations. In that case, it can be considered as a distance function
to each one of its own level sets. As we shall see in Figure 24.16, if the initial image is noisy, the difference between both
methods can be huge.

24.4.2 Case of the AMSS model.

We will use the ideas developed in the above section. We rewrite the AMSS equation as:

Q’f
at

We remark that |Vu[Pcurv(u) = |Vu|?uge where £ corresponds to the direction orthogonal to the gradient.

= (|Vul*curv(u))¥ = (U tgg — QU lylgy + uluy, )3 (21.8)

Therefore, in order to discretize this operator, it is enough to multiply the discretization of uge presented
in the above section by |Vul’. We choose Ag{8) given by [24.5) because it corresponds to a trigonometric
polynomial of degree two and then multiplying it by |Vu|? the coefficients n; = |Vu|*A;, i = 0,1,2,3,4, are
polynomials of degree two with respect to u, and u,. Indeed, we obtain for 8 € [0, %]
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Figure 24.8: Iterated median filter with approximately calibrated scales 1, 1.5, 2, 2.5, 3.

1
(IVulPuge)i; = —x(—‘iﬂoui‘j + (i g+ wimt,5) TRty + Wi jo1)
+0a(tic g ot + i 1) + paltbio1 e + s 1)) + OAz?
where 1jg. 71, T2, 713, 7 are given by

o = 0.25(262 + ul — uguy)
m = 0.5(2ul — ul —uguy)
nm = 0.5(u5 — g ly)

n2 = 0.25(u? + uguy)

ng = 0.25(uy — usuy)

Finally, the finite difference scheme for the A M.S.5. equation is
1
iyt =l + AVEPuge); (24.9)
We have tested this algorithm and we have noticed that in this case the condition for the experimental
stability {in the sense presented in the above subsection) is
A
a1
Az? — 10
Remark. The finite difference schemes presented above are consistent and we conjecture the conver-
gence. Contrast invariance are obtained asymptotically by taking a little time step Af. The experimental
results presented in figures 77 and 77 have heen obtained by using these schemes with Az =1 and At=10.1
in the case of mean curvature motion and At = 0.01 in the case of affine curvature motion. One has to
take At that small because unless experimental stability is achieved with At < 0.1, the experimental affine

invariance experimentally needs At < 0.05 (see 24.11).

24.4.3 Numerical normalization of scale.

(or Relation between scale and the number of iterations).
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The case of the curvature motion. Setting the inter-distance between pixel Az to 1, the scale achieved
with N iterations is simply N/At. Now, the scaling is arbitrary.

A good way to normalize the scale is to define the scale by the radius of a disapearing circle. The
boundary of such a circle move at a speed equal to the curvature that is the inverse of the radius. We have

for a disk of radius R(t}
dR(t) 1
dt ~  R(t)
which yields
1
S (R(0) - RY(t)) = ¢

the disk disappears in scale, when F(t) = 0 that is at scale ¢ = R?(0)/2. This last relation gives the scale
normalization: In order to achieve the normalized scale T (at which any disks (or any shapes included
in) of radius less or equal to T has disapeared), we have the equation scale ¢t = T7%/2, and the number of
iterations needed equal to

N =T2/2AL

The case of AMSS We can perform similar caleulations. The radius of an evolving disk satisfies

dR(t) 1
dt ~  R(t)}

which yields
3

4

The disappearing time is therefore t = %Rg. As for the curvature motion, we define the normalized scale

(R3(0) — R3(1)) = ¢

T at which any disks of radius less or equal to T" has disappeared. In order to achieve scale 7', the number
of iteration needed is
3 4
)
N

24.4.4 The Evans Spruck extension and contrast invariance.

Both schemes (M.C.M and A.M.5.8) presented above are only asymptotically contrast invariant. But,
numerically they are net. Indeed, we have seen that a contrast operator can not create new gray level,

Now, starting with a binary image u° and applying a scheme defined by such formula
"= AL

we can not be sure that " is also a binary image.

A natural idea to overcome this problem is the following. Starting with a binary image: apply the
scheme until the expected scale is achieved, then binarize the obtained image (just thresholding). This of
course works only for binary images, however the Evans Spruck extension (see section 8.3) gives us the
key to extend this to general images.

The contrast invariance can be fully obtained, by applying the process of each level set separatly. The
procedure is then the following :

We start with a image up and we construct its version at scale ¢ : w(t, x).
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Initialization : set u(t,x) = 0,¥x,¢
For each A, in increasing order

» Set u{x) the caracteristic function of the level set A of ug. {that is equal to 1 inside the leve]

set, 0 outside.)
» Apply on v the MCM or AMSS FDS-scheme until scale £. This yields the images w(t, .).

» Set u(t,x) = A at each point (t,x) where w(t,x) > 0.5

with respect to the simple FDS scheme, this clearly multiplies the number of needed computation, since
the AMSS or MCM have to be solved for each level ! However, The resulting images are more closed to
the theoritical solutions of these equations.

Note that explained in chapter 7, the extension is not unique. The preceding scheme corresponds to
the w.s.c. extension. One could also use the L.s.c extension for which the last step has to be changed into

» Set u(t,x) = A at each point (t,x) where w(t,x) > 0.5.

Of course, these two extensions differ. This can be easily seen in case of image that differs when
considered as u.s.c. and L.s.c. An example, is the chesshoard image (see figure24.9). The image data does
not say anything about the value of the function at the borders and corners. If the image is considered as
w.6.c. then the borders values is white, conversely it would be black when considered as l.s.c. In pratice,
the FDS does not care about the borders and corners values, since it is to rough.

However, making the Evans Spruck extension of the FDS scheme in fact implies an implicit choice for

these values.

Figure 24.9: The chessboard dilemna. Left: chessboard image. Next: result with the finite difference scheme (FDS,
Chapter 24) of the curvature motion, applied up to a fixed scale. The creation of a new gray level proves that the scheme is
not fully contrast invariant. Indeed, by Proposition 7.4, a contrast imvariant operator does not create new levels. The new
observed gray level corresponds to an average of the existing ones, black and white. The next two images are obtained by the
Evans-Spruck extension of the curvature motion, first under the assumption that the image is u.s.c. and second under the
l.s.c. assumption. Thus, the schemes are in both cases fully contrast invariant and are extensions of the curvature motion as
specified in Theorem 8.15.

24.4.5 Problems at extrema.

For the M.C.M or the A.M.S.S. oceurs the problem to define numerically the equation when [Vu| = 0. For
the first the right part of the equation is simply not defined, for the second by continuity, one could set
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|Vu“|2ug‘£)§ ; = 0. Now, numerically, this would implies that isolated black or white pixels will not change
!

As a consequence, the MCM and AMSS finite difference schemes have a slightly bad behaviour at
extrema. In the figure 24.10, we added to the image a strong salt and pepper noise. On a such image
more than a quarter of the pixels are local extrema. The extra-diffusion produced on these points by the
laplacian (as suggested in the preceding sections) gives strange structures. We show some ways to avoid
this spurious behavior :

o One can first zoom by 2 the image by duplicating pixels. This however multiplies by 16 the number
of computations.

» One can first remove extrema that should anyway theoritically disappear.

¢ One can use the Evans-Spruck extensions. This multiplies then the number of computations by the
initial number of gray-level. (e.g. 256).

24.4.6 Conclusion on finite difference schemes.

We have seen that standard finite difference schemes can not handle properly the invariance properties
satisfied by the equations.

1. There is no finite difference scheme that insures the monotonicity. This leads to slightly oscilatory
solutions.

2. It is not fully contrast invariant. We see appearance of a slight blur around edges. And, spurious
diffusion around the extrema. Extrema problem can be handle by treating them in a different way :
that is flattening them immediately by applying the extrema killer first.

In order to be fully contrast invariant, the only way we know is then by applying the equation to the
characteristic functions of all the fevel sets. This multiplies the total computation by the number of
different gray level in the original image (often 256 1).

Now, as shown in figure 24.10, standard scheme with combination with the extrema killer might give
results “good enough” for some applications.

3. The worse drawback is in fact the affine invariance, {or the Euclidean invariance for the curvature
motion}). Since the scheme works on a grid, motion of the level curves is quantized to square steps.
As consequence : we can not garanty the affine invariance and a motion proporticnal to the curvature
power one third.

The only way to cope this problem is to go out of the grid, which is the aim of the section 24.6.

24.5 Curve evolution.

Given a list of points x{n} approximating in a polygonal way a curve, we would like to define the curvature
evolution of it. As we have seen, the curvature evolution is equivalent to an intrinsic heat equation on the
curve itself.
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Figure 24.10: Various implementations of curvature motion on a noisy image. Middle : scale 2, Right : scale 3. From top
to bottom : finite difference scheme (FDS), then FDS applied on the image previously zoomed by a factor 2, FDS applied
on the image after its extrema have been "killed” (the reference area is given by the area of the disk vanishing at the desired
scale), FDS applied separately on each level set, with application of the threshold superposition principle. Time computations
on a Pentium 200, for achieving scale 3, and per millions of pixels, are respectively from above to below : 23.75 3, | mn 32s,
24.1 5. 10 ming The third srheme offers a gond compromise hetwesn time computation and results
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Figure 24.11: Finite difference scheme for AMSS. Left : Original noisy image of letters, middle : same image without the
extrema with area less than 80 pixels (extrema killer). Right : result of AMSS at calibrated scale 4.

As seen, in chapter 2, the convolution by a Gaussian can be weil approximated by the iteration of
a symunetric and positive kernel. Denoting by s the arc length. We choose the simple following kernet:
k{0} = 0.5, k(—D) = 0.25, k(D) = 0.25 and k(s) = 0 everywhere else. D is a distance parameter controlling
the precision of the scheme. The smaller it is the better, but higher number of iterations is then needed.
We set:
x(t+1,.) = k x x(¢,.)

That is, the point number n is changed by

(x(t,n+1) —x(t,n)} (x{t,n—~1)—x{t,n))
f(t,n+ 1) —x(t,n)|  Ix{t,n —1) ~ x(t,n)|

x(t+1,n) =x(t,n)+0.25% D« ( )
Numerical stability problems might happen when two consecutive points have a small distance between
them (typically smaller than D). One way is to keep one point every two that are too close to each other.
This scheme has been used to generate Figure 3.6.2.
Fo be noted that this simple scheme is very rough. For better precision, one can still implement the
classical convolution by the gaussian kernel and iterate it with re-parametrization of the curve. This scheme
can be extended to the affine shortening by replacing the arc length by the affine arc length. Obtaining

that way an monotonous and affine invariant scheme seems to be quite difficult,

24.6 Affine Plane Curve Evolution Scheme.

The idea here is to go with the curve evolution instead of going with the image evolution. In a sense,
we go in the converse way than Osher and Sethian idea. Indeed, they proposed in order to simulate the
evolution of a curve by the curvature motion to make evolving its distance function by the image version of
the equation. Here we do the other way around : we extract all level lines of the image. We then compute
their evolutions by the affine shortening. And, at last reconstruct an image out of them. This image is
then the AMSS evolution of the original.

To be noted that since the curves are extracted from an digital image, they are initialy embeded into
the image grid. We can therefore represent each curve by a polygone. Secondly, the affine shortening will

be executed by alternating an affine erosion and an affine ditation.
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A fast algorithm

In general, the affine erosion of X is not simple to compute, because it can be strongly non local. However,
if X is convex, then it has been shown in [265] that it can be exactly computed in linear time. In practice,
¢ will be a polygon and the exact affine erosion of X —whose boundary is made of straight segments and
pieces of hyperbolae— is not really needed ; numerically, a good approximation by a new polygon is enough.
Now the point is that we can approximate the combination of an affine erosion plus an affine dilation of
X by computing the affine erosion of each convez component of e, provided that the erosion/dilation area

is small enough.

The algorithm consists in the iteration of a four-steps process :

1. Break the curve into convex components. This operation permits to apply the affine erosion
to convex pieces of curves, which is much faster (the complexity is linear) and can be done simply in
a discrete way. The main point is to take into account the finite precision of the computer in order

to avoid spurious (small and almost straight) convex components only due to numerical artifacts.

2. Sample each component. At this stage, points are removed or added in order to guarantee an
optimal representation of the curve that is preserved by step 3.

3. Apply discrete afffine erosion to each component.

4. Concatenate the pieces of curves obtained at step 3. This way, we obtain a new closed curve

on which the whole process can be applied again.

The curve has to be broken at points where the sign of the determinant
di = [Piy Py, PiPiga]
changes. Numerically, we use the formula
di = (5 — zic) Wi — ¥e) ~ (¥ — ¥ (Tirt — ) (24.10)

Since we are interested in the sign of d;, we must be careful because the finite numerical precision of the

computer can make this sign wrong. Let us introduce the relative precision of the computer
gp = max{z > 0, (L.0@ =) & 1.0 =0.0}. (24.11)

In this definition, @ (resp. &) represent the computer addition (resp. substraction), which is not as-
sociative. When computing d; using (24.10), the computer gives a result cf,— such that !d; — Jt-l < ey,
with

€ = &g ( Tz = i by |+ lwsl) + (2] + lzeDlyirr — ol

£ = vieal (i + ) + (il + e Dz =il ).

in practice, we take £¢ a little bit larger than its theoretical value to overcome other possible errors (in
particular, errors in the computation of e;). For four-bytes C float numbers, we use £9 = 10~7, whereas
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the thecretical value {that can be checked experimentally using (24.11)) is e = 2-2* ~ 5.96 10~%. For
eight-bytes C double numbers, the correct value would be gy = 2753 ~ 1,11 10-16

The algorithm that breaks the polygonal curve into convex components consists in the iteration of the
following decision rule :

1. ¥ |d;| < e;, then remove F, {which means that to new polygon to be considered from this point is
PoPy P Py Py y)

2. If itii+1| S €iyr, then remove Pi+1

3. If d; and d;.; have opposite signs, then the middle of 7, P4, is an inflexion point where the curve
must be broken

4. If d; and di+1 have the same sign, then increment §

This operation is performed until the whole curve has been visited. The result is a chained (looping)
list of convex pieces of curves.

* Sampling

At this stage, we add or remove points from each polygonal curve in order to ensure that the Euclidean
distance between two suceessive points lies between ¢ and 2¢ (¢ being the absolute space precision parameter
of the algorithm).

# Discrete affine erosion
This is the main step of the algorithm : compute quickly an approximation of the affine erosion of scale
o of the whole curve,

The first step consists in the calculus of the “area” A; of each convex component 7 = Png...Pi_l,

given by
1 n—2
i, — I pi pipi
4= 3" (AP PR
i=1
Then, the effective area used to compute the affine erosion is
g .
Te = Max { —,mm.»‘lj} .
8"

We restrict the erosion area to o, (which is less than ¢ in general) because the simplified algorithm for affine
erosion (based on the breaking of the initial curve into convex components) may give a bad estimation of
the continuous affine erosion+dilation when the area of one component is less than the erosion parameter.
The term o/8 is rather arbitrary and guarantees an upper bound to the number of iterations required to

achieve the final scale.

Once o, is computed, the discrete erosion of each component is defined as the succession of each middle
point of each segment [AB)] such that

1. A and B lie on the polygonal curve
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2. A or B is a vertex of the polygonal curve
3. the area enclosed by [AB] and the polygonal curve is equal to o

These points are easily computed by keeping in memory and updating the points A and B of the curve
plus the associated chord area.

Notice that if the convex component is not closed (which is the case if the initial curve is not convex},

its endpoints are kept.

e Jteration of the process
To iterate the process, we use the fact that if E; denotes the affine erosion plus dilation operator of
area o, and h = (h;) is a subdivision of the interval {0, H] with H = T'/w and w = 3 (%)2/3

are going to show further,

, then as we

Efny—noywrz © By —nyyors © -0 Bgnon, )32 (Co) — cr

as || = max; h;4y — hi — 0, where ¢r is the affine shortening of co described above by (13.1).

» Comments
The algorithm takes a curve (closed or not) as input, and produces an output curve representing the
affine shortening of the input curve {it can be empty if the curve has disappeared) . The parameters are

¢ T, the scale to which the input curve must be smoothed

e £, the relative spacial precision at which the curve must be numerically represented {between 107°
and 102 when using four bytes C float numbers).

» 1, the minimum number of iterations required to compute the affine shortening (it seems that n = 5

is a good choice). From n, the erasion area ¢ used in step 3 is computed with the formula

a-Ti/8
gt = =
T
Notice that thanks to the o/8 lower bound for o, the effective number of iterations cannot exceed
4n.

e R, the radius of a disk containing the input curve, used to obtain homogeneous results when pro-
cessing simultaneously several curves. The absolute precision ¢ used at step 2 is defined by ¢ = RHe..

The algerithm has linear complexity in time and memory. and its stability is ensured by the fact that
each new curve is obtained as the set of the middie points of some particular chords of the initial curve,
defined themselves by an integration process (an area computation). Hence, no derivation or curvature

computation appears in the algorithm.
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Figure 24.12: Affine scale space of a *hand” curve, performed with the alternate affine erosion-dilation seheme. (scales 0,

1,20, 400). Experiment : Lipnel Moisan.
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L' convergence, 32

L), norm, 32

LE norm, 32

T, 203

T.s, 203

F set of functions, 81

T set of subsets of R, 81
B, 91

y 205

accel, 250

affine distance to a plane set, 137

affine erosion or dilation, 149

affine intrinsic heat equation, 79

affine invariance of a scale space, 214

affine invariance of Matheron operator, 149

affine lenght, 79

affine scale-space of shapes, 237

affine structuring element. 139

Aff e, Mo phol wical. .ad Gao'lilean Tuvariint Scale-

space for movie, 250
alternate schemes, 156
AMG, see Affine, Morphological, and Galilean In-
variant Scale-space for movie

AMSS, 225
existence of viscosity solutions, 189
uniqueness of viscosity solutions, 181

AMSS - Affine Morphological Scale Space, 170

AMSS 3-D, 231

anti-curvature, 226

Apparent acceleration, 250, 256

approximate solutions, 178

approximation of the L! space by the space of

continuous functions, 33

approximation theory for the mean curvature mo-
tion, 187
asymptotic behavior, 120, 121
arbitrary dimension, 130
Catte-Dibos scheme, 127
median filter, 124

canny edges detector, 43
causal, 206
characteristic points, 75
classical solution, 170
consistency with an equation, 177
contrast change, 35, 59, 81
contrast invariance, 212
contrast invariant, 81
contrast invariant classes of functions, 55
convergence

L, 32

uniform, 32
convergence lemma towards viscosity solutions.,

178

convolution, 34
curvature, 70
curvature equations, 225
curvature equations for curve, 78
curve

definition, 67

Jordan, 67

PDE, 78

Differential operators
Apparent Acceleration
Interpretation, 252
Apparent acceleration
Definition, 250

Working version subject o errors, only for personal use. No diffusion authorized. All right reserved. {Version: 15/07/2000)



INDEX

differential operators
anti-curvature, 226
curvature, 70
divergence, 71
gradient, 29, 70
laplacian, 29
principal curvatures, 73

divergence, 71

edge, 43

edge detection, 43

elliptic differential operator, 169

euclidean invariance, 211, see Isotropic

euclidean norm, 29

euclidean parameterization of a curve, 67

Evans Spruck extension, 95

Evans-Spruck extension for periodic functions and
sets, 96

extrema of curvature, 75

family of image smoothing operators, 203
function
gaussian, 34
pseudo-radial, 39
raclial, 39
semi-continuous, 62, 97
weight, 111
function operator, 81
function operators
dilation, 104
erosion, 104
functions F, 206
fundamental theorem, 206

Galilean invariance, 247

gauss function, see gaussian kernel
Gaussian Curvature, 251

gaussian kernel, 34

geometric invariance axioms, 210
Giga Goto theorem, 230

global inclusion principle, 235
gradient, 70

Grayson theorem, 77

grey level translation invariance, 208

heat equation, 34

existence and uniqueness of solutions, 31

image extension, 31
image reconstruction from the level sets, 56
implicit function theorem, 72
infinitesimal generator, 205
inflexion points, 75
Intrinsic heat equation, 76
Invariance
Galilean, 247
isotropic, 119
isotropy, 236

Jordan curve, 67
k-measure, 111

L¢ space of functions, 31
L% space of functions, 31
L2 space of functions, 31
ls.c, 97
laplacian, 29
mean value, 29
Lax formula, 106
level] line, 70
level sets, 55
linear smoothing, 29
local comparaison principle, 145, 177, 205
locality Lemma, 146
localization lemma for affine invariant operators,
146

lower median operator, 113

Matheron operators, 91
Matheron theorem, 92
mean curvature, 134
mean curvature motion
existence of viscosity solutions, 187
uniqueness of viscosity solutions, 181
mean value, 29

median
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function operator, 112
set operator, 111
upper & lower, 113
value, 115
median
function operator, 112
median value, 111
median value of a function = in a set B, 117
monotone operator, 81
multiscale features, 76

nonnegative matrix, 169
norm
set semi-norm, 106
normal flow, 78
normalisation of scale, 213
normalization of scale Lemma, 215

operator

“supinf”, 92

consistency, 177

contrast invariance

definition, 81

function, 81

isotropic, 119

local comparaison principle, 177

monotone, 81

set, 81

translation invariance, 91
Optical flow

Conservation law, 248

Generalities, 248

parabolic equation, 169
parameterization of a curve, 67
PDE
affine and contrast invariant N-D, 231
AMSS, 225
curvature equations, 225
curvature equations for curve, 78
curvature equations N-D, 230
heat equation, 34
intrinsic heat equation, 76

Lax formula, 106
principal curvatures, 73
projection matrix, 230
pseudo inverse of nondecreasing function, 60
pseudo-radial function, 39

prramidal structure. 203

radial function, 39
recursivity, 203
example, 105
regular, 205
regularity, 236
rescaled operator, 120
rescaling, 214
rescaling function, 213

scalar product, 29
scale invariance, 213
scale space theory and edge detection, 43
Scale-space
Galilean Invariance, 247
Movie
Axioms, 245
Equations, 250
scale-space, 203
affine invariance, 214
causal, 206
contrast invariance. 212
euclidean invariance, 211
grey level translation invariance, 208
local comparaison principle, 205
regular, 205
scale invariance, 213
translation invariance, 211
Schwartz class, 34
semicontinuous functions, 97
set monotone operator, 81
set of structuring elements IB, 92
set operator, 81
set operators
closing, 103
dilation (D;), 103
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erosion (£;), 103

opening, 103
Shape local inclusion principle, 235
Shape preserving principles, 235
Shape scale-space, 235
smoothing kernel, 39
solution

viscosity, 17

contrast invariance, 185

special affine invariance, 137
structuring element, 103
supinf operator, 92

tensor product, 212

threshold function, 83

Time scale invariance, 246
transition filters, 203
translation invariance, 91, 211

u.s.¢, 97

uniform censistency, 177

uniform continuity of approximate solutions, 186
uniform convergence, 32

uniform local comparaison principle, 177
uniqueness of viscosity solutions, 181

upper median operator, 113

upper semi-continuous function {u.s.c.), 93

Velocity vector, 252
viscosity solution, 170

viscosity solution and contrast invariance, 185
weight function, 111

zero-crossings of the laplacian, 44
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