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The role of oscillations in some nonlinear
problems

Yves Meyer

Abstract The still image compression standard which is being developed
under the name of JPEG-2000 (Section 2) is a technological challenge which
relies on some advances in pure mathematics. This interaction between image
processing and functional analysis also benefits partial differential equations.
Indeed new estimates on wavelet coefficients of functions with bounded varia-
tion (Theorem { and 8) imply new Gagliardo-Nirenberg inequalities (Section
7) and lead to a better understanding of blowup phenomena for solutions of
some nonlinear evolution equations (Sections 10 to 13).

1 Introduction

Explaining the performances of JPEG-2000 requires a model for still images.
Among several models, the one on which this discussion is based was pro-
posed by Stan Osher and Leonid Rudin (Section 3). In this model, an image
f is decomposed into a sum of two pieces u and v. The first piece is aimed
to model the main features in f. The second one takes care of the textured
components (Section 5), of the noise, and of what is unorganized.

In the Osher-Rudin model, the first component u is assumed to be a
function with bounded variation (Section 4). Then the efficiency of wavelet
based algorithms will be related to new estimates on wavelet coefficients of
functions with bounded variations (BV'). These estimates were discovered by
Albert Cohen, Ronald DeVore, Ingrid Daubechies, Wofgang Dahmen, Pencho
Petrushev and Hong Xu (Theorem 4 in Section 6 and Theorem 8 in Section
7). New Gagliardo-Nirenberg inequalities will then be obtained in Section 7.
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Albert Cohen, Ron DeVore and Guergana Petrova went one step further
(Section 9). They proved that wavelet coefficients of functions in LY(R™) had
some remarkable properties. This was much against the general feeling that
wavelet analysis would be inefficient if it was used for Banach spaces which
did not admit an unconditional basis. Let me confess that it was my own
belief. Moreover Albert Cohen, Ron DeVore and Guergana Petrova found
a spectacular application of their theorem. This concerns the Boltzmann
equation and more precisely the “averaging lemma” of P.L. Lions and Ron
DiPerna (Section 9).

Gagliardo-Nirenberg inequalities (Section 7) will manifest again in study-
ing nonlinear evolution equations. Qur first example will be the nonlin-
ear heat equation for which blow up in finite time has been established for
some smooth and compactly supported initial conditions. However there
is no blowup when this inital condition is sufficiently oscillating and some
Gagliardo-Nirenberg estimates will tell us why it is so and how these oscilla-
tions should be measured.

These successes led us to believe that the same was true for Navier-Stokes
equations. We guessed that an oscillating initial condition should provide us
with a solution which is global in time. In other words, the solution should
not blow up and moreover the qualitative properties of the initial condition
should be preserved under the evolution. This line of research started with
some preliminary results by M. Cannone and F. Planchon and culminated
with a beautiful theorem by Herbert Koch and Daniel Tataru. The Banach
space which is used by Koch and Tataru for modeling the oscillations of the
initial condition is exactly the same as the one we introduced for modeling
textured components of images (Section 12).

2 Wavelets and still image compression

Let us begin with some examples of technological applications of wavelets.
The first example is extracted from the web page of the Pegasus company
(http://www.jpg.com). It reads the following:

Pegasus Imaging Corporation has partnered with Fast Mathematical Al-
gorithms & Hardware Corporation and Digital Diagnostic Corporation to



develop new wavelet compression technologies designed for applications in-
cluding medical imaging, fingerprint compression, video compression, radar
imaging, satellite imaging and color imaging.

Pegasus provides wavelet compression technology for both medical and non-
medical application. Pegasus’ wavelet implementation has reccived FDA
market clearance for medical devices.

This software is the only FDA-approved lossy compression software for image
processing. Recent clinical studies have shown that the algorithm is com-
prehensively superior to other similar compression methods. It is licensed
to multiple teleradiology developers and medical clinics including the Dutch
software vendor Applicare Medical Imaging and the UK telecom giant British
Telecom.

The second advertisement comes from a company named “Analog De-
vices”. It reads:

Wavelet compression technology is the choice for video capture and editing.
‘The ADV601 video compression IC is based on a mathematical breakthrough
known as wavelet theory...This compression technology has many advantages
over other schemes. Common discrete schemes, like JPEG and MPEG, must
break an image into rectangular sub-blocks in order to compress it... Natu-
ral images highly compressed with DCT schemes take on unnatural blocky
artifacts... Wavelet filtering yields a very robust digital representation of a
picture, which maintains its natural look even under fairly extreme compres-
sion. In sum ADV601 provides breakthrough image compression technology
in a single affordable integrated circuit.

A third success story tells us about the FBI and fingerprints. It says:

The new mathematical field of wavelet transforms has achieved a major
success, specifically, the Federal Bureau of Investigation’s decision to adopt
a wavelet-based image coding algorithm as the national standard for digitized
finger-print records... ”

The interested reader is referred to a paper by Christopher Brislawn in
the Notices of the AMS, November 1995, Vol 42, Number 11, pages 1278-
1283 or to the remarkable web site of Christopher Brislawn [3].

Our next advertisement for wavelet-based image compression is coming
from the celebrated Sarnofl Research Center. It reads:



A simple, yet remarkably effective, image compression algorithm has been
developed, which provides the capability to generate the bits in the bit stream
in order of importance, yielding fully hierarchical image compression suitable

for embedded coding or progressive transmission...

Finally the last example will concern the upcoming JPEG-2000 still image
compression standard. While the JPEG committee is still actively working,
il is very likely that the JPEG-2000 standard will be based on a combination
of wavelet expansion {the choice of the filter is not fixed, and could include
biorthogonal filters such as the 9/7, as well as 2-10 integer filters) and trellis
coding quantization. Applications range from Medical imagery, client/server
application for the world wide web, to electronic photography and photo and
art digital libraries.

These examples are showing that still image compression is a rapidly de-
veloping technology with far reaching applications.

A last remark concerns denoising by soft thresholding. This technique
has been created and analyzed by David Donoho and his collaborators [16].
Donoho explains in IEEE spectrum (October 1996, pp. 26-35) what he is
doing:

Ridding signals and images of noise is often much easier in the wavelet do-
main than in the original domain... The procedure works by taking the
wavelet coefficients of the signal, setting to zero the coeflicients below a
certain threshold... Wavelet noise removal has been shown to work well
for geophysical signals, astronomical data, synthetic aperture radar, digital

communications, acoustic data, infrared images and biomedical signals...

3 Some u + v models for still images

Why do wavelet algorithms perform better than Fourier methods in image
compression? One answer to this problem relies on an axiomatic model pro-
posed by Osher and Rudin (among others). This model is named a u + v
model.

We start with the superficial approach that a black and white analog im-
age on a domain (2 can be viewed as a function f(zy,z2) = f(z) belonging to



the Hilbert space H = L*({2). The grey level of our image at a given pixel z
1s precisely f(z). The energy of such an image is, by definition, f, |f(z)|*dz.
It is obvious that an arbitrary such function f(z) in H is far from being a
natural image or something looking similar but this hot issue will be clarified
now. Indeed our main problem will be to try to understand how an image
differs from an arbitrary L? function.

In a v + v model, images f(z) € H are assumed to be a sum of two
components u(z) and v(z). The first component u(z) is modeling the ob-
jects or features which are present in the given image while the v(z) term
1s responsible for the texture and the noise. But the textures are often lim-
ited by the contours of the objects and u(z) and v(z) should be coupled by
some geometrical constraints. These constraints are absent from most of the
u(z) + v(z) models.

In the Osher-Rudin model, the u(z) component is assumed to be a func-
tion with bounded variation. We want to detect objects delimitated by con-
tours. Then these objects can be modeled by some planar domains Dy, ..., D,
and the corresponding contours or edges will be modeled by their boundaries
aDy,...,0D,.

In this model, the function u(z) is assumed to be smooth inside Dy, ..., D,
with jump discontinuities across the boundaries 8D, ...,8D,. However we
do not want to break an image into too many pieces and the penalty for a
domain decomposition of a given image will be the sum of the lengths of
these edges 0D,,...,0D,.

But this sum of lengths is indeed one of the two terms which appear in
the BV norm of u(z). The other one is the L! norm of the gradient of the
restriction of u to the interior of the domains D, ..., D,. The BV norm of
a function f(z) is defined as the total mass of the distributional gradient of
f(x) and we will return to this definition in the next section.

In the Osher-Rudin model, v(z) will be measured by a simply minded
energy criterion which says that j|v||; is sufficiently small. In Section 5, a
new model which is taking care of the textured components will we proposed.
In this model v can have a large energy but needs to be oscillating.

For the reader’s convenience, some basic facts about functions with bounded
variations are listed in the following section.



4 Functions with bounded variations

Assuming n > 2, we say that a function f(z) defined on R™ belongs to BV if
(a) f(z) vanishes at infinity in a weak sense and (b) the distributional gradi-
ent of f(z) is a bounded Radon measure. The BV norm of f is denoted by
||fllsv and defined as the total mass of the distributional gradient of f(z).
The condition at infinity says that the convolution product fx¢ should tend
to 0 at infinity whenever ¢ is a function in the Schwartz class.

A second and equivalent definition reads the following:

Definition 1 A function f(z) belongs to BV(R™) if it vanishes at infinily
in the weak sense and if there exists a constant C such that

[ U+ -f@z<cnl,  ver (@.1)

We now return to functions defined on the plane. An example of a func-
tion in BV is given by the indicator (or characteristic) function xg of a
domain E delimited by a rectifiable Jordan curve E. The BV-norm of xg
is the length [g of the Jordan curve 9F.

The co-area identity tells us that any positive function in BV can be writ-
ten as a convex combination of some normalized indicator functions. These
normalized indicator functions should belong to the unit ball of BV and are
therefore defined as (lg)~!xg. They are called “atoms”.

This remarkable “atomic decomposition” clarifies the relevance of BV in
modeling geometrical features: the atoms are the objects to be detected.

5 Modeling textures

The goal of this section is to address the issue of modeling textures by func-
tion spaces. We return to the Osher-Rudin model for representing images
and we want to discuss the v component of our image. This v component
both contains the textured components of our image and an additive noise.
We will offer three choices for modeling these textured components.



Our first choice will be the Besov space £ = B! (see Definition 2, Sec-
tion 7). If wavelet analysis [27] is being used, then this Besov space admits
a trivial characterization which reads as follows.

Lemma 1 Let 2'¢(2z ~k),j € Z,k € Z* 4y € F, be an orthonormal
wavelet basis of L*(R?*) where F is a finite set consisting of three analyz-
ing wavelets belonging to C* and compactly supported. Then a generalized

function f belongs to B}™ if and only if its wavelet coefficients belong to
[(Z3 x F).

This lemma is extremely attractive since it nicely relates the functional
norm in BZ"* to D. Donoho’s wavelet shrinkage (see Section 2).

Wavelet shrinkage is a denoising algorithm which consists in putting to
zero all wavelet coefficients which are less than a given threshold. Wavelet
shrinkage will wipe out the v component of an image whenever its BZ!**-
norm is less than the threshold. Both the textured component and the noise
are meeting this requirement. They will disappear in a wavelet shrinkage.
In other words, Donoho’s algorithm will treat the textured components of
an image as being noise. We will return to this point at the end of this section.

Some slightly smaller Banach spaces F and G are also providing some
efficient modeling for textures or oscillating patterns in an image.

The space I consists of generalized functions f which can be written as
[=091+dg,  g,€BMO, j=12 (5.1)

The norm of f in F is defined as the infimum of the sums of the BMO norms
of g and g; and this infimum is computed over all possible decompositions
of f.

This Banach space F will be met again when Navier-Stokes equations will be
studied. Let us observe that BAMO is a space of locally integrable functions,
modulo constant functions. These floating constants will disappear in (5.1).

The Banach space G has a similar definition where BMO is replaced by
L*=.



Lemma 2 We have
BV c L*(R)CcGCFCBl™ (5.2)

We are now coming to the heart of this section and we will study the
relevance of our function spaces in texture modeling. It is given by the
following remark

Lemma 3 Let f,, n > 1, be a sequence of functions with the following three
properties

(a) there ezists a compact set K such that the supports of fa,n =1 are
contained in K

(b) there ezists an exponent ¢ > 2 and a constant C such that || fullq < C
(¢) the sequence f, tends to 0 in the distributional sense.

Then || fu|lc tends to 0 as n tends to infinity.

This lemma tells the following. If our sequence f, is developing impor-
tant oscillations, then ||f.|lc tends to 0 (which obviously implies the same
property for the two other norms).

Let us observe that Lemma 3 is wrong if ¢ = 2. Indeed if ¢(z) is any
smooth and compactly suppported function, then f,(z) = np(nz) is an ob-
vious counter-example.

Lemma 3 can be quantified. The following theorem describes a collection
of functions f(z) such that the G-norm of exp(iw.z)f(z) decays as |w|™
when |w| tends to infinity.

Theorem 1 Let us assume that f € L™ and that a constant C exists such
that the BV -norm of f(z) on any ball B of radius R does not ezceeds CR.
Then

{ exp(iw-w)f(w)lle < Cfwl. (5.3)

The second requirement on f means that the two measures p; = 9f/0z;,J

1,2 should satisfy the celebrated Guy David condition saying that |e|(B) £
CR for any ball B with radius R. This space M of measures will be met

8



agaln 1n Section 12.

If textures are modeled as above, then Donoho’s denoising algorithm
named “wavelet shrinkage” will both erase the textures and the noise. This
is exactly what Lemma 3 and Theorem 1 are telling. Let us now challenge
Donoho’s algorithm and define a “Fourier shrinkage” as the following nonlin-
ear algorithm. One is given a small positive threshold 1 and one writes the
Fourier expansion of a given function f. Then one only retains the terms for
which |ex| > 7 in this expansion and this provides f,.

If f represents an image which contains geometrical features, textured el-
ements and some additive noise and if a “Fourier shrinkage” is applied to f,
then this noise will be wiped out while must of the textured components will
be kept. Extracting texture from noise is wished in image processing. Does
that mean that “Fourier shrinkage” performs better than “wavelet shrink-
age”? It is not clear since a “Fourier shrinkage” would more seriously damage
the BV component u than a “wavelet shrinkage” does.

6 Fourier series vs. wavelet series: expan-
sions of BV functions

For the sake of simplicity, let us first study periodic functions in BV. Let
flzy,z2) be a function of two real variables which is 27-periodic in each
variable. We then abbreviate in saying that f(z) is 2m-periodic. Let us
write the Fourier series of f(z) as f(z) = >,z clky, k2 )exp(ik.z) with &k =
(k1,k2). Let us assume that f(z) belongs to BV on [0,27]2. Then we already
know that ¢(k) belongs to {*. For such functions, Jean Bourgain proved the
following

Theorem 2 There exists a constant C' such that for any 2mw-periodic fune-
tion f(z) in BV(R?), we have

D Bk + D)™ < Cllfllsv (6.1)

keZ?

This estimate complements 3 [e(k)|? < co and these two results obvi-

ously follow from a sharper estimate given by
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> s <Clifllsv (6.2)

j=0
where s; = (Eg;s|k|<23+1 |o(k)[?)!/2.

This is a mixed {!({?) estimate on Fourier coefficients of a BV func-
tion. It is optimal in the sense that there exists a function in BV for
which 37 |e(k)[? = oo for any p < 2. An example is given by flz) =
lz|"*(log|z|)~2¢(z) where ©(z) is any smooth function which vanishes when
|| > 1/2 and is identically 1 around the origin. Then the Fourier coefficients
e(k) of f(z) can be estimated by |c(k)| ~= |k|~!(log|k|)~? which obviously im-
plies 37 |c(k)|P = oo as announced. The sorted Fourier coeflicients of this
function behave as n~'/%(logn)~2. This counter-example shows that nothing
better than {* can be expected inside the dyadic blocks of the Fourier series
expansion of a function f(z) in BV.

Now (6.2) can be rewritten as a Besov norm estimate. Indeed let A;(f)
denote the dyadic blocks of the Fourier series expansion of f(z). For defining
A,;(f) we only retain the frequencies k € I'; in the Fourier expansion of f
where T; is the dyadic annulus defined as {k[2/ < |k| < 2/*'}. We then
obviously have f{z) = co+ .o Aj(f) and our next theorem reads:

S 1A (Dl < Cllfllav (6.3)

0
This theorem will be further improved. This improved version is not us-
ing a Fourier series expansion any more and we can therefore give up the
periodic setting and switch to the space BV(R?) and to a Littlewood-Paley

analysis.

Let us start with a compactly supported smooth function ¥ with enough
vanishing moments such that the Fourier transform ¥ of ¢ satisfies

DwETH) =1, lf=1 (6.4)

Next we write ¢; = 2%¢(27z). Finally Aj(f) is the convolution product f*i;.

10



With these notations (6.3) can be generalized to all exponents p in (1,2].
Indeed the following theorem is an easy consequence of the co-area identity.

Theorem 3 There exists a constant C such that, for every function f in
BV(R?), and for every exponent p with 1 < p < 2, we have

400
S 2 ALy < ol llav (6.5
with s = =1+ (2/p) and C, < C/(p — 1).

Corollary 1 If f(x) belongs to BV(R?), and if ¥i(z) = 27¢(2z — k),
J € Z,k € Z* is an orthonormal wavelet basis of L*(R?), where the three
wavelets 1 are smooth and localized as in Lemma 1, then the corresponding
wavelet coefficients c(j, k) =< f,¢;r > satisfy

YOl BIPYP < Cltp - Dlifilav, 1<p<? (6.6)
k

M

Corollary 2 With the same notations as above, we have
(2.2 1eli, P < C/(p = D)lIfl15v (6.7)
ik

Corollary 3 With the same notations, let us assume ||f|gy < 1. For each
integer m, let Ny, be the cardinality of the set on indices (j, k) such that
le(g, k) > 27™. Then

No4 ..+ 2N, <Clm+1) (6.8)

It means that for most m’s we have ¥,, < C2™ since the average of
27" N, is O(1).

Indeed one has N,, < C2™ for all m. Keeping the notation of Theorem
3, the sharp estimate N,, < C2™ will be rephrased in the following theorem

Theorem 4 Let iy, A € A, be a two-dimensional orthonormal wavelet basis

of class C* with a rapid decay at infinity. Then for every f in BV(R?), the
wavelet coefficients ¢\ =< f, ¢y >, A € A belong to weak I'(A).

11



This theorem was proved by A.Cohen et al. [9] in the Haar system case.
The general case was obtained by the author and the best reference is [36].

In other words, if ¢y =< f,¥x > and if the |ey|,A € A, are sorted out
by decreasing size, we obtain a non-increasing sequence c; which satifies

¢t < C/n for 1 < n. This decay of the sorted wavelet coefficients was an-
nounced by S. Mallat in his book [25].

If f is the indicator function of any smooth domain, an easy calculation
shows that ¢* > C/n which led me to believe that Theorem 4 was optimal.
This issue will be addressed in the next section.

7 Improved Gagliardo-Nirenberg inequalities

New Gagliardo-Nirenberg inequalities will now be proved using theorem 4
and wavelet methods. This is the first outstanding application of wavelet
techniques inside mathematics. This success story was so encouraging that
we thought that better estimates might exist.

Then A. Cohen and his collaborators met our challenge and improved on
Theorem 4. This will lead us to Theorem 8 and to more refined Gagliardo-
Nirenberg inequalities.

But let us return to the Sobolev embedding of BV into L*(R?).

The estimate ||f]lz < C||fllgv is obviously consistent with translations
and dilations. Indeed, for any positive a and f.(z) = af(ar), we have
|l fallz = [1f]l2 and similarly || follBv = || fllsv. But this estimate is not consis-
tent with modulations: if M, denotes the pointwise multiplication operator
with exp(iwz), then M, acts isometrically on L? while | M, fligv blows up

as |w| when |w| tends to infinity.

For addressing this invariance through modulations, let us introduce an
adapted Besov norm.

Definition 2 Let B be the Banach space of all tempered distributions f(zx)
for which a constant C ezists such that

12



| <figap>|<C (7.1)

when g(z) = exp(—|z|?), gap = ag(a(z — b)), a > 0, b € R
The infimum of these constants C is the norm of f in B and is denoted

by |1 fl|-

It is easily proved that this Banach space coincides with the space of
second derivatives of functions in the Zygmund class. Therefore B is the
homogeneous Besov space B of regularity index -1 which was already
used for modeling textures.

We then have

Theorem 5 There erists a constant C such that for any f in BV(R?) we

have
Fll2 < CUAlsvILA] (7.2)

and || f| is the weakest norm obeying the same scaling laws as the L? or
BV norm for which (7.2) is valid.

To better understand this theorem, let us stress that we always have
Iflle £ ||fllgv and the ratio || f||/||f||zv between these norms is denoted by
B and is expected to be small in general. Then (7.2) reads

£l < B2 £llsv (7.3)

which yields a sharp estimate of the ratio between the L? norm and
the BV norm of f. Moreover 32 in (7.3) is sharp as the example of
f(z)=exp(iwz)w(x) shows. Indeed if |w| tends to infinity and w(z) belongs
to the Schwartz class, then || f||; is constant, || f]|c = |w|7H|f|ls, and finally
| fllBv = |w|||w]|i. In this example G is of the order of magnitude of |w|=?
which corresponds to 3/% o |w|™L.

The proof of (7.2) is straightforward. One uses the following trivial esti-
mate on sequences

Y lenl? < 2llenlicollnenlloo (7.4)
n=1

13
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Then one applies Theorem 4 to an orthonormal wavelet basis of class
C2. For concluding the proof, it suffices to make the following observation:
if ¢ denotes the non increasing rearrangement of the wavelet coefficients
fe{ A )[ X € A, then ||nc?|[o is precisely the norm of ¢()) in the weak I' space.

Let us observe that (7.2) is an interesting improvement on the celebrated
Gagliardo-Nirenberg estimates. These estimates read in the two-dimensional
case

D7 fll, < CUD™ FI-) (N lle) ™7 (7.5)
where 1 < p,q,r < 00, j/m<o<landl/p—j/2=0c(l/r—m/2)+

(1-a)/q. |
The notation || D? f||, means sup{||0°f||»; || = 7}

For comparing our new estimate to (7.5), we will assume m = 2, 5 =
1, p =2 and r = 1. This either implies s = 1 or ¢ = oco. In the first case,
(7.5) easily follows from the embedding of BV into L?. In the second case
(7.5) is weaker than (7.2). Indeed the L* norm which is used in (7.5) is
replaced in (7.2) by a much weaker one.

Theorem 5 generalizes to any dimension n > 2. It then reads

[ Fllnsm-1 < CUFEN S )™ (7.6)

where ||f||o is now defined as the optimal constant C' for which one
has | < f.gap > | < C with gop = agfa(z —b)),a > 0,5 € R”, and
g(z) = exp(—|z|?). In other words |\ f||o is the norm of f in the homogeneous

n—1},c0

Besov space Beo

Every function with a bounded variation belongs to L7 and it is natural
to ask the following question: what would happen if a function f both belongs
to BV and to L? for some ¢ > n* where n* = 257

One guesses that this size estimate on a BV function should imply im-

proved regularity. That is what the following theorem is telling.

The Lebesgue space L? is contained inside the larger space C~# when
3 = —n/q. Then the theorem we have in mind reads the following

14



Theorem 6 If 0<s<1/p,1<p<2andf ==L then

1 flless < CIFIFERAN (7.7)
where ||| stands for the norm of f in the homogeneous Besov space BZ% .

The proof of Theorem 6 still relies on Theorem 4 and wavelet techniques.

Returning to L? norms, we unsuccessfully tried to prove the following
theorem

Theorem 7 In any dimension n > 1, let us assume that a function f both
belongs to BV and to the homogeneous space B_''*. Then we have

I£ll2 < CUL ALV (7.8)

where || f||c is norm of f in the Besov space B_1'>.

The Besov norm of f can be defined as the optimal constant C for which
one has | < f,g,5 > | < Ca*™,a > 0,b c R". Let us observe that BV is
contained in L? if and only if n = 2. In other words when n =1 or n > 2,
the assumption f € Bl complements f € BV and both are needed to get.
an L? estimate.

The proof of this theorem requires new estimates on wavelet coefficients
of BV functions which are sharpening Theorem 4. Indeed Albert Cohen,
Wolfgang Dahmen, Ingrid Daubechies and Ron DeVore proved the following
theorem

Theorem 8 In any dimension n > 1, let us assume v < n — 1 where v is a
real exponent. Then for f € BV(R™) and A > 0, one has

S 2 <oxfllev (7.9)

{le(s,k)[> A2~}

where ¢(7, k fRn )20 (2z — k) dz

It is easily seen that this estimate is false when v = n — 1. If one returns
to the two-dimensional case, it is clear that Theorem 8 implies Theorem 4.
Indeed (7.9) is Theorem 4 when v = 0. But Theorem 8 is saying more and it

15



is not difficult to construct sequences ¢(j, k) belonging to weak-{' for which
(7.9) is not fulfilled. For instance pick & € {0,1) and let F; be a sequence
of finite sets of integers of cardinality N; & 2%7. Then the sequence defined
by ¢(j, k) = 2% for k € F; will belong to weak—!" but does not fulfil (7.9)
when v = a.

Knowing Theorem 8, the proof of Theorem 7 is an excercise.

8 Improved Poincaré’s inequality

The standard Poincaré’s inequality reads as follows: If 2 is a connected
bounded open set in the plane with a Lipschitz boundary 0f2, then there
exists a constant C = Cq such that for every f in BV () we have

[ 1#(@) = ma( P de < Uty 8.)
Here mgq(f) denotes the mean value of the function f over {1

Such an estimate cannot be true in R™ for n > 3 since BV is not lo-
cally embedded in L?. However there exists an improvement on Poincaré’s
inequality which (a) is valid in any dimension and (b) is sharpening the stan-
dard one in the plane.

We need a Banach space C~1(Q) for measuring the oscillations of a func-
tion f on Q. Once more the Besov space B will be used. The first
definition reads: f € C~1(Q) iff f is the restriction to {} of some distribution
belonging to BZ*.

Here is an equivalent definition. We write f € C7}(Q) if f = AF where
F is the restriction to Q of a function G defined on R™ and belonging to the
Zygmund class. The Zygmund class is defined by the classical condition that
a constant C should exist such that

IG(z +y) + Gz —y) —2G()| < Cly| z,yeR” (8.2)

The norm of fin C™!(Q) is denoted by || f||. and is defined as the infimum
of these constants C. This infimum is computed over all extensions G of F'
such that f = AF on .

16



The improvement we have in mind is valid in any dimension and reads
as follows:

Theorem 9 Let  be a connected bounded open set in R™. Let us assume
that Q) has a smooth boundary O). With the preceding notations, there exists
a constant U = Cq such that, for every function [ both belonging to BV (1)
and to C~1(Q), we have

[ 1#() = ma(pF de < CUslaviL (5.3

Let us insist on the fact that BV(f2) is not contained in C~(Q). A

counter-example is given by f(z) = |2[~"*!(log|z|)~? when § is the ball
lz] < 1/2.

For proving Theorem 9, one introduces local coordinates on some annular

neighbourhood R of 09 defined by z =y +tv, 2 € R,y € 80, ¢ € (—n,7).
We have denoted by v the interior unit vector at to A0 at y. Let us extend
f into F as follows: F(y+ tv) = & f(y + tv) where + is the sign of 1.
Finally Theorem 7 is applied to this new function F', once it has been cut by
a convenient cut-off function.
The key fact which enters in the proof of Theorem 9 is that this odd extension
operator is both continuous with respect to the Besov norm and the BV
norm. An even extension operator would also be fine for the BV norm but
certainly not for our Besov norm.

9 Wavelet coefficients of integrable functions

Albert Cohen et al. proved that wavelet coeflicients of functions in L'(R"™)
have some interesting and important properties.

This work was motivated by a striking discovery by P.L. Lions and R.
DiPerna [15]. Lions and DiPerna observed that some velocity averages arising
in the context of Boltzmann equation are more regular than expected. More
precisely they proved the following theorem

Theorem 10 Let () be a bounded open subset of R™ and f(z,v), z € R* v ¢
2 be any function satisfying the following two properties
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(¢) e L*(R™x Q)
(b) v.V.f € L}(R™x Q)

Then the “velocity average”
f(:c):Lf(m,v)dv (9.1)

belongs to the Sobolev space H'/*(R™)

This was later sharpened by M. Bézard {1]. Finally Ronald DeVore and
Guerguana Petrova [14] proved the following

Theorem 11 If 1 <p< oo and if
(a) f € LP(R™ x Q)
(b)) vV f € LP(R" x )

then the velocity average f(x) belongs to the homogeneous Besov space B)P(R™)
where s = inf(1/p, 1 — 1/p).

When p = 2 this is exactly the Lions-DiPerna theorem.

The proof of Theorem 11 has been simplified by A. Cohen and we will
follow his presentation.

A. Cohen writes

g(z,v) = f(z,v) + 0.V f(2,v) (9-2)

and denotes by f(z) the velocity average defined by (9.1). Finally A.Cohen
studies the linear operator T which maps g(x,v) on f(z).

A partial Fourier transformation in z gives

A

9(6,v) = (L + .6 (&,0) (9.3)
Then Plancherel identity and standard calculations yield
| F(@)lire < CllgllLz(rexa) (9.3)
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and 7' maps L*(R" x ) into H'?(R™). This is the Lions-DiPerna theorem.

Moreover the uniform boundedness in v of (1 +7v.£)~! as a multiplier of

FL'(R") implies that T' maps L'(R™ x Q) to L'(R™).

In order to prove Theorem 11, it then suffices to use the real interpolation
method of Lions and Peetre and show that B>? is the interpolation space

between H'/? = lef *2 and L'. Since all Besov spaces admit trivial charac-
terizations by size properties of wavelet coefficients, it remains to study the
wavelet coefficients of functions in L!. We now concentrate on that task.

The normalization which will be used is the following. We write v for
¥(2’z — k) and the wavelet coefficients of f are now c¢(A) =< f, 4, >. They
are indexed by A = Z x Z" x F where F is a finite set with cardinality
2" ~ 1. Next we denote by @ the corresponding dyadic cube defined by
2’z — k € [0,1)". The theorem on wavelet coefficients of L'(R™) functions
says the following:

Theorem 12 For any real exponent v larger than 1, there exists a constant
C = C,» such that for f in L'(R™) and for 7 > 0, one has

Yoo @ <o sl (9.4)

{le(A)>7lQA}

In other words the wavelet coefficients ¢()), A € A, belong to to a weighted
weak-1' space where the weighting factor is [@.]”. Theorem 12 yields the
required interpolation theorem we were looking for. Moreover Theorem 12
complements Theorem 8. Indeed Theorem 12 can be applied to the gradient
of a BV function and the normalizations are adjusted in such a way that
Theorem 12 corresponds to v > n in Theorem 8.

10 The role of oscillations in some nonlinear
PDE'’s

For a number of nonlinear evolution equations, blowup may happen even if
the initial condition is smooth and compactly supported. It is clear that
such a blowup needs to be defined with respect to some functional norm
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and that some norms might become infinite when t — to while other would
remain bounded. Proving that some strong norm does not blowup as long
as a weaker norm remains under control is quite interesting but often rather
hard. Such 0-1 laws will be at the heart of our discussion and we will con-
struct weak norms which do control stronger ones. Our favourite example
is the nonlinear heat equation. For Navier-Stokes equations the occurence
of an eventual blowup is still an open problem. The nonlinear Schrédinger
equation will also be treated. In these first two examples the weaker norm
which will be used is denoted by ||.||. and || f||« is small when f is oscillating.
If the nonlinear Schrodinger equation is being excluded, the main message of
this chapter is the following slogan: blowup does not happen when the initial
condition is oscillating.

This assertion is easily proved for the nonlinear heat equation and was
already known in the case of the Navier-Stokes equations, as both Peter Con-
stantin and Roger Temam told me. We will later on return to their sharp
comments.

What is completely new is that Besov spaces are manifesting again (The-
orems 16 and 19). Exactly as it happened when we were modeling textures,
an oscillating pattern is defined as a function which has a small norm in a
Besov space with negative regularity index. If the initial condition is such
an oscillating pattern, the corresponding solution does not blow up.

As often in mathematics, a discovery raises new problems. Here we want
to find the sharpest theorem in the direction given by these heuristic consid-
erations. It means measuring oscillations with the weakest norm. In the case
of Navier-Stokes equations, the best result was obtained by Herbert Koch
and Daniel Tataru [24].

The space they used is no longer a Besov space and is defined as the
collection of functions or vectors ug that can be written as ug = 01 f1 +02f2 +
dsfs where f;, j = 1,2, 3 belong to the John and Nirenberg space BMO. This
Koch and Tataru space is one of the spaces which were used for modeling
textures.
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11 A first model case: the nonlinear heat
equation

Our first model case will be the following heat equation

where u = u(z,1) is a real valued function of (z,¢), z € R®and t > 0.

In the following calculation, u is assumed to be a classical solution to
(11.1) with enough regularity and with appropriate size estimates. All LP-
norms will be finite by assurmption and all integrations by parts will be le-
gitimate.

Multiplying (11.1) by » and integrating over R® yields % ||u||2 = —2||Vu||2 +
2||u||4 which means that the evolution will depend on the competition be-
tween |jul|3 and [|Vull2.

This remark paves the way to the following theorem.

Theorem 13 (J. Ball, H A. Levine and L. Payne). Ifug is ¢ smooth com-
pactly supported function which does not vanish identically and if

]' 2
[Vuollz < E”“O”:;

then the corresponding solution of (11.1) blows up in finite time: there exists
a finite Ty such that ||u(.,t)|2 is unbounded as t reaches Tp.

(11.2)

Theorem 13 raises the following problem: does there exist a function
space norm ||.||« and a positive 5 with the following properties

(@) [I£1IF < CIV AN £l
(then (11.2) would say that |[f||. is large)

{b) if ug is smooth and compactly supported and if ||uo||. < 7, then there
exists a global (in time) smooth solution u(z,t) to (11.1) (no blowup)

() I1Alle = [Lfll if fa(z) = Af(Az)
(d) |[fli« ts small if f is oscillating?
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Let us comment (c). If u(z,t) is a solution to (11.1), so are ux(z,t) =
Au(Az, A2t) for every positive A. If p # 3, the LP-norm is not invariant under
these rescalings and a condition like |[uol|, < n for some small 7 is not rele-
vant for a global existence of the corresponding solution to (11.1). Indeed by
a convenient rescaling of the initial condition up, this smallness requirement
can be reached. This remark explains condition (c).

The simplest norm fulfilling (c) is the L* norm for which F.Weissler [40]
proved the following.

Theorem 14 For a positive constant 1, the condition ||ug||s < n implies the
existence of a global solution u(z,t) € C([0,00), L3(R%)) to (11.1).

Uniqueness was proved by F. Weissler inside a Banach space Y which
is smaller than the “natural space” C([0,00), L3(R?)). This smaller space is
defined by imposing the following condition on u(z,1)

12 ||u(., )loo < 1 (11.3)

Let us denote the heat semigroup by S(t). Then imposing this growth condi-
tion on the linear evolution S(f)uy is equivalent to saying that uo belongs to
our old friend B!, This is not a restriction since this Besov space contains

L3

In her thesis, Elide Terraneo constructed a striking counter-example show-
ing that uniqueness of solutions u(z,t) to (11.1) in C([0, 00), L}(R?)) could
not be expected in general [39]. This explains the role of (11.3).

This situation sharply contrasts with what happens for Navier-Stokes
equations. T. Kato proved the analogue of Theorem 14. Kato’s proof is
close to Weissler’s approach and (11.3) is playing a very important role
in the construction. For quite a long time, uniqueness of Kato’s solutions
v(z,t) € C([0,00), L*(R%) was an open problem. Finally uniqueness was
proved by Giulia Furioli, Pierre-Gilles Lemarié-Rieusset and Elide Terraneo
without assuming (11.3). The interested reader is referred to {20] or [28].

Theorem 14 says that ||. |5 fulfils (b). Moreover one has || f||Z < [V f[l21l f|ls
but these two answers to our program are far form being optimal ones. In-
deed the L? norm can be replaced by a much weaker one for which (d) holds.
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This weaker norm is a Besov norm. The relevance of Besov norms in (a) is
explained by the following Gagliardo-Nirenberg inequality.

Lemma 4 For any function f belonging to the homogeneous Sobolev space
H', we have

1£13 < CIVAlLlifIle (11.4)

where B is the hormogeneous Besov space B!,

Lemma 4 suggests that the weak norm || f||. fulfilling (a) to (d) might be
the Besov norm ||f||5. This Besov norm is the weakest one since B is
the largest function space whose norm is translation invariant and fulfils (c).
We do not know if it is the case but the following theorem gives an example
of a norm fulfilling (a) to (d).

Theorem 15 Let ||.||. denote the norm in the Besov space Bs_lﬂ’oo. Then
there exists a positive constant n such that if the initial condition up satisfies
up € L? and ||lug|l. < n then the corresponding solution of the nonlinear heat
equation will be global in time and belongs to C([0,00), L3(R?)). Morcover
there exists a constant C such that

[l < Clluolle, ¢ >0 (11.5)

The homogeneous Besov space By Y22 peeds to be defined. We start
with ¢(z) = (2m)~"2exp(—|z|*/2) and let S; be the convolution operator
with 2% (27z), 7 € Z. Then we have

Definition 3 f belongs to BG_I/Z'oo if and only if a constant C ezists such that
1S;(Flle < C2/2, j € Z. The optimal C being the norm of f in By /%,

Theorem 15 is not optimal but it improves on Theorem 14. On one hand,
LP c B c pobee (11.6)

and these embeddings are provided by Bernstein’s inequalities. On the other
hand, Theorem 15 is consistent with the guess that the oscillating character
of the initial condition implies the global (in time) existence of the corre-
sponding solution. Indeed one can easily check that

| cos(wa)p(z)ll. < Clwl™2llle (11.7)
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as |w| tends to infinity. When |w| is large enough, then the smallness re-
quirement is met and the corresponding solution is global in time. A last
observation concerns scale invariance. The norm in By /2% has the same
invariance as the L* norm does and this invariance is consistent with the one
we found in the nonlinear heat equation.

The experience we gained on this specific example will now be used to
attack the much more difficult Navier-Stokes equations.

12 The Navier-Stokes equations

We now consider the Navier-Stokes equations decribing the motion of some

incompressible fluid. The fluid is assumed to be filling the space and there

are no exterior forces. Then the Navier-Stokes equations read as follows
&= Av—(v.V)v—Vp

Vw=10 (12.1)

v(z,0) = vg

Here v = (v1,vz,v3), v; = vi(z,t), £ € R3¢ > 0, the pressure is a scalar
and the Navier-Stokes equations are a system of four equations with four
unknown functions v, vs,vs and p.

The notation Vp means the gradient of the pressure, V.v means 0iv; +
Oyvy + G3v3. Moreover (v.V)v = v101v + v20;v + v303v which is a vector,

If the velocity v(x,t) is not a smooth function of , then multiplying some
components of v with derivatives of some other components might be impos-
sible. That is why (v.V)v should be rewritten as 8, (viv) + 02(vzv) + 93(vsv)
which makes sense whenever v is locally square integrable.

Navier-Stokes equations have some remarquable scale invariance proper-
ties. First they commute with translations in z and ¢t > 0. Moreover if the
pair v(z,1), p(z,t) is a solution of (12.1) and if for every A > 0 we dilate this

solution into on0) = 2l v
valz, 1} = Au(rz, A%t
{ pa(z,t) = A2p(Az, A*t) (12.2)
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then (vi,py) is also a solution to the Navier-Stokes equations. The initial
condition is replaced by
va(z,0) = Avg(Az) (12.3)

We observe that this scale invariance is exactly the same as the one we met
in the non-linear heat equation.

The problem we want to address is the possible blowup of solutions in
finite time. We are aiming to attack this problem by following the same
heuristic approach as in the nonlinear heat equation setting. Our guess is
the following: if the initial condition is (everywhere) oscillating, then the
corresponding solution to Navier-Stokes equations should be global in time.
Moreover this global solution will keep for ever some additionnal qualitative
regularity of the initial condition. For instance an initial condition which
is C* and is sufficiently oscillating will lead to a global solution which will
also be C* in the time-space variables. Such a result seems inconsistent.
Indeed a function cannot at the same time be smooth and oscillating. How-
ever this objection disappears if the smoothness assumption is not given a
quantitative form while the oscillations are defined by a specific threshold 5
and by imposing |fuo|l. < n. Here ||f||. is 2 norm which is small whenever
f is oscillating. This norm might be one of the norms which has been used
in image processing in order to model textures. In other words, we are now
assuming that our initial condition vy is a function which has a small norm
in a function space containing generalized functions. The norm of a func-
tion f in such a function space takes advantage of the oscillating character
of f. At the same time our vp may be extremely large in function spaces
like the Holder or Sobolev spaces. We will denote by B a Banach space of
smooth functions. For instance B can be the Sobolev space H™ or the usual
C™, m > 1.

Conjecture Let ||.||. be one of the norms which has been used in image
processing in order to model textures. Then there exists a positive n such
that if vg is smooth and satisfies the following two conditions V.vy = 0, and
lvoll« < 7, then the corresponding solution of the Navier-Stokes equations
belongs to C([0, c0), B).

Notice that we are not requiring that ||vg||p be small. This conjecture
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will be our guideline in this chapter and the best result will be Theorem 19
which combines a deep theorem by Herbert Koch and Daniel Tataru [24] and
a nice observation by Pierre-Gilles Lemarié-Rieusset and his team [21].

As Roger Temam pointed out, the first result along these lines has been
proved by H. Fujita and T. Kato in 1964 [19]. It reads the following

Theorem 16 Let HY/*(R®) denote the usual homogeneous Sobolev space.
Then there exists a positive constant n such that if vo belongs to H'Y(R?)
and fulfils

Vap=0 (12.4)

lvollgrrzsy < 1 (12.5)

then there ezists a unique global solution v € C([0,00), H'(R®)) to the
Navier-Stokes equations.

As Roger Temam observed, this theorem is specially attractive if ||vo|| gr1/2
is much smaller than [|vg)iz:. This is often the case since the first Sobolev
norm is less demanding than the second one. Indeed in this situation, we do
not pay too much for getting a global solution since the norm with which the
initial condition is measured is weaker than the H' norm in which the global
existence is proved. The following lemma tells us when || f|| z1/2 is small while

| £z is large.

Lemma 5 There exists a constant C such that

1fllgie S CVIS BN Nla (12.6)

where B is the homogeneous Besov space 32_1/2’00.

The weak norm will be much smaller than the square root of the strong
norm when our Besov norm is small. Does this Gagliardo-Nirenberg estimate
mean that B, /2% is the space which needs to be used in our heuristic ap-
proach? It cannot be so since the Besov space B which is used does not enjoy
the right scaling property. Indeed f(z) and fi(z) = Af(Az) do not have the
same norm in B. However the homogeneous space ||vg||g1/2 is enjoying this
scale invariance. But an oscillating initial condition has a large norm in this

Sobolev space. We can conclude in saying that the Fujita-Kato theorem does
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not meet our expectations.

The Fujita-Kato theorem should be compared to a second theorem proved
by Y. Giga and T. Miyakawa [22]. These mathematicians are focusing on
the vorticity field w = curl(v). Since u is divergence free, the mapping v — w
1s an isomorphism for most of the function spaces which are being used in
analysis. The inverse mapping is provided by The Biot-Savart law which
reads

—4rv(z,t) = /11;33 |z — y| 73 (z — y) x w(z,t)dy (12.7)

In other words, the mapping w — v is smoothing of order 1 and any func-
tional estimate on the vorticity field implies a corresponding estimate on the
velocity field.

The motivation of Giga and Miyakawa was twofold. They wanted to
model vorticity filaments in order to understand the evolution of such fila-
ments. These vorticity filaments appear in numerical simulations of Navier-
Stokes equations. At the same time Giga and Miyakawa wanted to construct
some self-similar solutions to the Navier-Stokes equations. In order to achieve
these goals, they modeled these vorticity filaments with the Guy David space
of Radon measures pp which was already met in Section 5.

Definition 4 A Radon measure satisfies the Guy David condition if and only
if a constant C exists such that, for every ball B with radius R, we have
1Ll(B) < CR (12.8).

This Guy David space will be denoted by M. It is a dual space and will
always be equipped with its weak™ topology. In other words, C([0, 00}, M)
will always refer to the weak™ topology.

Giga and Miyakawa proved the following theorem [22]

Theorem 17 There exists a (small) positive number n such that whenever
the initial condition wo(x) satisfies div wy = 0 together with the size condition
(12.8) with C < 7, there ezists a solution w(x,t) € C([0,00), M) to the
Navier-Stokes equation which agrees with this initial condition. Moreover
there ezists a constant C such that the corresponding velocity v satisfies

2o (s )]l < C (12.9)
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The Biot-Savart law enables us to lift this theorem from vorticities to
velocities but we are not going to be more precise about the Banach space
I' describing these corresponding velocities. This space is a dual space, its
norm is compatible with the scaling properties of the Navier-Stokes equa-
tions and it contains functions which are homogeneous of degree —1 which
permitted to Giga and Miyakawa to build self similar solutions to the Navier
Stokes equations. Seven years later, Marco Cannone and Fabrice Planchon
proposed an other construction of self-similar solutions. We will later on ex-
plain their approach. However the I-norm of Giga and Miyakawa does not
enjoy the crucial property that oscillating functions have small norms. That
is why we still want to improve on their theorem.

Some progress was made by M. Cannone, F. Planchon. The norm in the
Sobolev space H!/? which was used by Kato can be replaced by a weaker
norm which is the Besov norm in the homogeneous space B, = By (1=8/q),00
whenever 3 < g < oo. More precisely we have

Theorem 18 There ezists a positive constant 1y such that whenever the ini-
tial condition vy satisfies, for some q € [3, 00),

V=0 (12.10)
vo € L3(R% and |lvol|B, < 74 (12.11)

then the corresponding solution to Navier Stokes equations belongs to
C(10,00), L*(R?)) and is unique.

The homogeneous Besov space B; is defined exactly the same way as in
the special case ¢ = 2 (see Theoremn 15). We let ¢ be a function in the
Schwartz class S(R®) such that [p,¢(z)dz = 1. Then p;(z) = 2¥p(?z)
and S; denotes the convolution operator with ¢;(z). Finally a function or a

distribution f belongs to the homogeneous Besov space B, *'* if and only if
15;(Hlle < €25 € Z.

One should observe that this result does not contain the theorem obtained
by Giga and Miyakawa. Indeed the function space used by these authors is

not contained inside any space By, 3 < g < oo.

F. Planchon made the following remarks. The Banach spaces B, are
increasing with ¢ in such a way that the conditions (12.9) seem to be less
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demanding as ¢ grows. However the positive constant 5, which appears in
(12.9) tends to 0 as ¢ tends to infinity. Therefore comparing these distinct
conditions is a delicate matter.

In this direction of large values of ¢, a main breakthrough was achieved by
Herbert Koch and Daniel Tataru [24] who treated the limiting case ¢ = co.
As it is often the case, L*™ should be replaced by the John and Nirenberg
space BMO. Moreover the regularity exponent o which is 1 — 3/q tends to
1 as g tends to infinity and these remarks pave the way to the following
definition

Definition 5 We denote by B = B,, the Banach space consisting of all
generalized functions f which can be written as f = O1gy + ... + Osgs where
95,7 =1,2 and 3 belong to BMO.

The norm in B, is the infimum of the sum of the three BMO norms.

As usnal H™ will denote the standard Sobolev space. Then a combination
between the Koch-Tatar theorem {24] and a nice remark by Pierre-Gilles
Lemarié-Ricusset [21] reads as follows

Theorem 19 There exists a positive constant n such that the conditions (a)
lvolis < n together with (b) vo € H™ and (¢) V.ug = 0 imply the existence
of a global solution v of the Navier-Stokes equations. This solution belongs
to C([0, 00), H™(R?)).

As it might be guessed, the Koch and Tataru space contains all the pre-
vious Besov spaces which were used in Theorem 18. One also should observe
that the Koch and Tataru space is exactly the one which was used for mod-
eling the two-dimensional textures. Moreover the Koch and Tataru theorem
implies the Giga-Miyakawa result. It is indeed a simple exercise to check
that A='(¢1) belongs to BMO whenever p satisfies the Guy David condition.
Here A = (—A)/2,

Before ending this section, we would like to say a few words about the
proof of the Koch and Tataru theorem. It follows the general organization
which was pioneered by Kato and Weissler. That is to say that the Navier-
Stokes equations are rewritten as an integral equation. This is achieved by
solving the linear heat equation. Let S(¢) denote the heat semigroup. We
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have S(t)[f] = f « ®(t) where ®(t) = £32®(z/+/t) and ®(x) is the usual
gaussian fonction. Then we obtain

v(t) = S(t)vo + 1L /t S(t—r1) 23: O;vv(r)dT (12.12)

Here TI denotes the Leray-Hopf projector on divergence free vector fields. In

other words
O(f1, for f3) = (6 — Rio,0 — Ra0,0 — Rso) (12.13)

where 0 = Ry fi+ Ry f2+ Rsfa. It implies that II acts boundedly on all spaces
which are preserved by the Riesz transforms Ry, Rz and Hs.

Two points should be made. First the pressure p(z,t) has disappeared
from the Navier-Stokes equations and next the initial condition has been in-
corporated inside (12.12). Indeed the kernel of the Leray-Hopf operator is
precisely the collection Vp of curl-free vector fields.

We then rewrite (12.13} in a more condensed way as
v =g+ B{v,v) (12.14)

where v is viewed as a vector inside some function space X and g is a given
vector in X. All functions are defined on R® x (0, 00). The difficult part of
the proof is the construction of this Banach space X to which a Picard fixed
point theorem will be applied.

In the Koch and Tataru proof X is defined as follows.

Definition 6 The Banach space X consists of all functions f(z,t) which
are locally square integrable on R® x (0,00) and which satisfy the following
condition

1fllx = sup 1125 (s t)loo + sup (| Bz, B)|™ / | Pdydt)? < oo
Q(z,R)

As usual B(z, R) denotes the ball centered at © with radius R whale Q{z,R)
is the Carleson box B(z, R) x [0, R?*]. The supremum is computed over all
such Carleson bozes and the right hand side is the norm of f in X.
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Two facts need to be proved. First the function g in (12.14) should belong
to X. Next the bilinear operator B{v,v) should act boundedly from X x X
to X.
The first fact is an easy consequence of the characterization of BMO by
Carleson measures. This characterization can aiso be interpreted as a char-
acterization of BM O by size conditions on wavelet coefficients. The second
part of the proof is much deeper and the reader is referred to the beautiful
paper by Koch and Tataru [24].

13  The nonlinear Schrodinger equation

We now consider the nonlinear Schrodinger equation which obeys the same
scaling laws as the two preceding nonlinear PDE’s. There are indeed two such
equations depending on a + sign. The Schrodinger equations with critical
nonlinearity are the following evolution equations:

{ 1%+ Au = efulu (13.1)
u(z,0) =up, z€R?te]0,00) ‘
where € is either -1 or 1 and 4 = u(z,t) is a complex valued function defined
on R® x (0,00). If X is any positive scale factor, then, for every solution
u(z,t) of (13.1), Adu(Az,A*t) is also a solution of (13.1) for which the initial
condition is Aup(Az). Therefore it is not unnatural to expect some similarities
with both the nonlinear heat equation and the Navier-Stokes equations.

More precisely we might follow Kato and Fujita and expect (13.1) to be
well posed for the critical Sobolev space H'/2(R?). Cazenave and Weissler [5]
proved that it was the case under a smallness condition on the norm of the
initial condition in H'/2(R?®). Fabrice Planchon [38] extended this theorem
and replaced the smallness condition ||ug| g2 < 1 by a weaker requirement
which reads {[ug||. < n where the norm |}.|l. is the homogeneous Besov norm

. plf2
in B2/ >,

Theorem 20 With the preceding notations, there exists a positive constant
n such that for every initial condition vy in HY}R?) satisfying ||uol. < 7,
there exists a solution u(.,t) to the Scrodinger equation (13.1) which belongs
to C([0, 00); H'2(R?)).
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This theorem should be compared to Theorem 18. Indeed keeping the
same notations as in Theorem 18, the Besov space which is used is B.
Moreover this theorem implies the existence of many self-similar solutions to
the nonlinear Schrédinger equation. Such solutions were previously proved
to exist by Cazenave and Weissler {6] under much more restrictive regularity
assumptions.
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