

the

abdus salam international centre for theoretical physics

SMR1237/6

School on Mathematical Problems in Image Processing

(4 - 22 September 2000)

Visual Learning and Gibbs Reaction-Diffusion

S.C. Zhu

Computer and Information Science Department Ohio State University Columbus, OH 43210-1277 United States of America

Visual Learning and Gibbs Reaction-Diffusion

Song-Chun Zhu Computer and Information Science Department Ohio State University

Motivation

The input image

The restored image

- How to compute or restore the background image?
- How to represent clutter–structured noise?
- \bullet Applications: Image segmentation, ATR ...

We assume:

$$\mathbf{I}^{\mathrm{obs}} = \mathbf{I} + \mathbf{I}^n$$

 \mathbf{I}^{obs} is the input image, \mathbf{I}^n is the noise image, and \mathbf{I} is the image to recover.

By Bayes Theory:

$$p(\mathbf{I}|\mathbf{I}^{\text{obs}}) \propto p(\mathbf{I}^{obs}|\mathbf{I})p(\mathbf{I})$$

$$= p(\mathbf{I}^{n}|\mathbf{I})p(\mathbf{I})$$

$$= p(\mathbf{I}^{n})p(\mathbf{I})$$

We assume $p(\mathbf{I}^n|\mathbf{I}) = p(\mathbf{I}^n)$ for a given environment.

An example of buildings An example of trees

Given a set of training images, such as trees,

$$\mathbf{I}_1, \mathbf{I}_2, ..., \mathbf{I}_M$$

We assume these images are random samples from an unknown distribution $p_{true}(\mathbf{I})$. The goal of viusal learning is to estimate a distribution $p(\mathbf{I})$ which we call the **MODEL** so that $p(\mathbf{I})$ is as close to $p_{true}(\mathbf{I})$ as possible.

Questions:

- How to estimate $p(\mathbf{I})$?
- ullet How to measure the distance between $p(\mathbf{I})$ and $p_{true}(\mathbf{I})$?

How to estimate $p(\mathbf{I})$?

The estimation iterates in three steps:

- 1. Select a set of features $S = \{F_1, F_2, ..., F_n\}$, we can measure the statistics $\mu_1^{obs}, \mu_2^{obs}, ..., \mu_n^{obs}$ extracted by $F_1, F_2, ..., F_n$ and averaged over $\mathbf{I}_1, \mathbf{I}_2, ..., \mathbf{I}_M$
- 2. $p(\mathbf{I})$ is constrained to reproduce the observed statistics so that as far as the features $\{F_1, F_2, ..., F_n\}$ are concerned, we cannot distinguish $p(\mathbf{I})$ from $p_{true}(\mathbf{I})$.
- 3. The distance between $p(\mathbf{I})$ and $p_{true}(\mathbf{I})$ is measured by summing the distance between μ_K^{obs} and μ_K^{syn} for those $F_K \notin S$.

The whole process is guided by a minimax entropy theory.

The Minimax entropy model - (Zhu, Wu, Mumford 1996)

$$p(\mathbf{I}; \Lambda, S) = \frac{1}{Z} e^{-U(\mathbf{I}; \Lambda, S)}$$

with potential function

$$U(\mathbf{I}; \Lambda, S) = \sum_{i=1}^{n} \sum_{(x,y)} \lambda_i (F_i * \mathbf{I}_{(x,y)})$$

- $S = \{F_1, F_2, ..., F_n\}$
- $\Lambda = {\lambda_1(), ..., \lambda_n()}, \lambda_i()$ is approximated by a piecewise-constant function a vector.

Gibbs distribution of images

The learned potential functions,

$$a(1 - \frac{1}{1 + (|\xi|/b)^{\gamma}})$$

$$U(\mathbf{I}; \Lambda, S) = \sum_{i=1}^{n_d} \sum_{(x,y)} \phi_i(F_i * \mathbf{I}_{(x,y)}) + \sum_{i=n_d}^n \sum_{(x,y)} \psi_i(F_i * \mathbf{I}_{(x,y)}).$$

Diagram for removing clutters.

Computation

Minimizing the potential by gradient descent,

$$\mathbf{I}_{t} = \sum_{i=1}^{n_{d}} F_{i}^{-} * \phi_{i}'(F_{i} * \mathbf{I}) + \sum_{i=n_{d}+1}^{n} F_{i}^{-} * \psi_{i}'(F_{i} * \mathbf{I})$$

$$\mathbf{I}_{0} = \mathbf{I}^{obs}, \quad F_{i}^{-}(x, y) = -F_{i}(-x, -y).$$

Generalizing the divergence

$$\operatorname{div} = F_1^- * + F_2^- * + \dots + F_n^- *$$

$$\vec{V}_{(x,y)} = (\phi_1'(), ..., \phi_{n_d}'(), \psi_{n_d+1}'(), ..., \psi_n'())$$

$$\mathbf{I}_t = \operatorname{div}(\vec{V})$$

Stochastical diffusion-the Langevin equation

$$\boxed{ \begin{aligned} d\mathbf{I}_t &= -\nabla U(\mathbf{I})dt + \sqrt{2T(t)}dw_t \\ w(x,y,t) &\sim N(\mu(x,y),|t|), \qquad dw_t = \sqrt{dt}N(0,1). \end{aligned}}$$

Proposition

Under mild conditions on U, the Langevin equation approaches a global minimum of U at a low temperature.

Previous work

1. Reaction-diffusion for pattern formation.

— Turing 1952, Murray 1981, Turk 1991, Witkin and Kass 1991

Let A(x, y, t), B(x, y, t) be chemical concentration,

$$\frac{\partial A}{\partial t} = D_a \Delta A + R_a(A, B)$$

$$\frac{\partial B}{\partial t} = D_b \Delta B + R_b(A, B)$$

- $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ is for diffusion.
- $R_a(A, B), R_b(A, B)$ are for the reaction. e.g.,

$$R_a(A, B) = A * B - A - 12$$

 $R_b(A, B) = 16 - A * B$

Pattern formation by Gibbs reaction-diffusion

synthesized leopard blobs and zebra stripes.

2. Anisotropic diffusion

— Perona and Malik 1990, Nitzberg and Shiota 1992.

$$\mathbf{I}_t = \operatorname{div}(c(x, y, t)\nabla \mathbf{I}), \qquad \mathbf{I}(x, y, 0) = \mathbf{I}_o.$$

e.g.

$$\mathbf{I}_t = \nabla_x (\frac{1}{1 + (\mathbf{I}_x/b)^2} \mathbf{I}_x) + \nabla_y (\frac{1}{1 + (\mathbf{I}_y/b)^2} \mathbf{I}_y)$$

It minimizes

$$U(\mathbf{I}) = \int \int \psi(\nabla_x \mathbf{I}) + \psi(\nabla_y \mathbf{I}) \ dx dy,$$

The potential function for diffusion,

$$\phi(\xi) = a(1 - \frac{1}{1 + (|\xi|/b)^{\alpha}})$$

Clutter Removal by GRADE

the input image

the restored image

the input image the restored image

Image Restoration by Anisotropic Diffusion

Perona-Malik anisotropic diffusion

Problems with previous methods:

- Why applying the chemical/physical equations to image processing?
- The design and choice of the equations is subjective.
- The reaction terms are unstable/unbounded.

Advantages:

- Reducing PDE design to statistical modeling.
- Learning and verifying the PDE for a given application.