

!

abdus salam international centre for theoretical physics

SMR/1238-15

ADRIATICO RESEARCH CONFERENCE on

LASERS IN SURFACE SCIENCE

11-15 September 2000

Miramare - Trieste, Italy

Surface states at a graphite monolayer on Pt(111) studied by multi-photon photoelectron spectroscopy

Y. Matsumoto the Graduate University for Advanced Studies Kanagawa, Japan

Surface states at a graphite monolayer on Pt(111) studied by multi-photon photoelectron spectroscopy

D. Ino, I. Kinoshita, N. Takagi, and Y. Matsumoto The Graduate University for Advanced Studies (Sokendai), Hayama

> Adriatico Research Conference on Lasers in Surface Science 11-15 September 2000 ICTP, Trieste, Italy

Surface States and Image Potential States at Pt(111)

3PPE from clean Pt(111)

I.Kinoshita, et al., Chem. Phys. Lett., 229, 445 (1996).

Graphene on Pt(111)

How are surface states on clean Pt(111) affected by a graphite monolayer? Cf. Xe, heptane/Ag(111) etc.

STM image (1000 Å × 1000 Å) T.A.Land et al. Surf. Sci. 264 (1992) 261

J.C.Bottger, Phys. Rev. B55 (1997) 11202

Experimental

Sample preparation [Graphite/Pt(111)]

- 1. Pt(111) cleaning
- Ar+ ion sputtering
- Annealing
- O₂ treatment
- 2. C₂H₄ dose @110K
- 3. Annealing to 900K or 1100K

The processes of 2 and 3 are repeated to obtain high coverage.

Image potential states

Binding energies of the image states:

a = 0.012

$$E_e - hv = \Phi - E_b(n)$$
$$= \Phi - \frac{0.85 \text{eV}}{(n+a)^2}$$

$$= \Phi - \frac{1}{(n+a)^2}$$
 $E_e = 6.93 \text{eV} (n=1) \quad \cdots \quad \mathbf{B}$
 $E_e = 7.55 \text{eV} (n=2) \quad \cdots \quad \mathbf{C}$
 $E_b (n=1) = 0.83 \text{eV}$
 $E_b (n=2) = 0.21 \text{eV}$
 $\Phi_{\text{grp}} = 4.81 \text{eV} \quad \text{cf. } 4.7 \text{eV for Bulk graphite}$
 $(\Phi_{\text{Pt(111)}} = 5.98 \text{eV})$

Angle-Resolved 3PPE & Dispersion

Peak Energy vs. Photon Energy

$$E_A = 0.29 \text{ eV}, E_B = \frac{2.55}{100} \text{ eV}, E_C = \frac{2.55}{100} \text{ eV}$$

above E_F

3PPE from clean & Graphite covered Pt(111) surfaces

Calculations: Crystal-induced surface state

Numerical integration of the Schrödinger equation

The wave function in the sp-band gap:

$$\psi = e^{qz} \cos(\frac{G_0}{2}z + \delta)$$

The wave function outside the crystal is numerically integrated.

Potential energy:

 $z_1 < z$: image potential

 $0 < z < z_1$: liner form connected with the image potential at $z = z_1$

Both wave functions are matched smoothly at the half an interplaner distance from the surface.

Crystal-induced surface state:

 \Rightarrow clean Pt(111): -0.13 eV from E_F

 \Rightarrow Graphene / Pt(111): +0.77 eV from E_F (graphene layer at 3.7 Å, inner potential 14.5 eV with respect to E_{vac}

Coverage Dependence of 3PPE Spectra

The Particle-in-a-round-box model

- 2. Take the lineshape at 1 ML as a reference.

 The peak energy and the width
 - ⇒ The peak energy and the width
- 3. Least-squares fitting of the spectral lines (< 1 ML) with

I (x) = const
$$\int_{c1}^{w} \frac{1}{2\pi} \frac{\gamma}{(x-c/r^2) + (\gamma/2)^2} \frac{1}{\sqrt{\pi} w} Ewp \left[-\frac{(r-a)^2}{w^2} \right] dr$$

Island size distributions of graphene

Summary

- 1. Three peaks are observed by three-photon photoemission from the graphene/ Pt(111) surface.
- The higher two peaks: image-potential states for n=1,2 \Rightarrow Local work function = 4.81 eV.
- The lowest peak: an unoccupied *sp*-derived surface state of Pt(111) modified by graphene.
- 2. The binding energy of the image-potential state (n=1) at graphene/Pt(111) depends on the coverage of graphene.
- Using a particle-in-a-box model, the size distributions of graphene islands are estimated.
- 3. Photoemission from the σ^* state is missing. Why?