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Interfacial Studies

Interfaces play a critical role in commercially important areas such as corrosion

control, composite material strength, lubrication, oil recovery, fuel cells, polymers
and catalysis.

OBTAIN MOLECULAR LEVEL INF ORMATION
FROM BURIED INTERFACES

INTERFACE

Conventional surface diagnostics (e.g. XPS, Auger, SEM, etc.) have limited
penetration depth.

-UHY is not suited for the study of liquid/solid, liquid/liquid and high
pressure gas/solid interfaces.

Conventional optical spectroscopies (e.g. FTIR, ATR, etc.) lack ability
to differentiate interface from bulk.

Second-order nonlinear optical (e.g. Sum-frequency generation) spectroscopy, as a
new and unique tool, possesses long penetration depths and intrinsic interface
specificity.



Sum Frequency Generation Spectroscopy

P=yWE+y®:EE+y®:EEE+...

«  Illuminate sample with laser beams having photon frequency wl and w2.

«  Photons with frequencies wl and w2 interact with materials at the interface and
produce new photons with frequency w3.

«  Collect sum frequency photons (w3) as a function of input photon frequency (wl).

tunable IR (®,) optical filter
! N

2,

/o
thin substrate layer A _ 0

e

liquid, gas or solid

sum frequency
(0 + 0 = 0,)
1 2 3

visible beam
(w,)

"

ptical prism
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«  Sum frequency generation is only allowed at the interface.
IR-visible sum-frequency generation enables one to identify species and their

structures at interfaces.



The SFG Optical Set-up at ExxonMobil
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BRIEF THEORETICAL
BACKGROUND
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SFG in Total Internal Reflection Geometry

Three layer geometry
Example: ssp polarization configuration
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SEG in Total Internal Reflection Geometry (Continued)

Applying the above relationships to a prism geometry:
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SFG signal is enhanced by 2-3 order of
magnitudes at the critical angle.
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Probing Two Interfaces in One Material

Rotating
Mirror

Probing
Polymer/Solid Interface

SF photon | el . Detector
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G
; I Es((.uﬂ) =3 (F;zz%%) Lyy(&B)nyzLyy(w“s)Lzz(Mf)Ey(a)ms)Ez (u)tr)
Probing n Provide Index of Reflection of
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Index of Reflection —» Density



Improved Sensitivity and Resolution

SFG Intensity (arb. units)

SFG Intensity (arb. units)
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Improved Sensitivity and Resolution: Interfacial Molecular
Orientation of a Self Assembled Layer
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» The Splitting Between the In-Plane and Out-of-Plane Stretch of the CH3 Moiety was Detected.
» Using this Single Spectrum the Tilt Angle Can be Accurately (<10%) Determined.

Yeganeh et. al. Vacuum Society, 1995, Technical Digest



Application of SFG to Lubrication

. Obtaining a better understanding of how the adsorption of lubricity additives
determines lubricity in fuels.

- Does a particular additive adsorb onto the surface?
- What is the relationship between surface coverage and friction
coefficient?

It is essential to study the adsorption of friction modifiers in-situ at liquid/solid
interfaces.



In-situ Adsorption of an Additive from Solution onto
an Iron Oxide Surface
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AdsoLPtion of a Friction Modifier on an Iron Oxide
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 Adsorption onto iron oxide was observed in-situ.
«  The structure at ~3005 cm’! is assigned to an olefinic -CH in the molecular

backbone of the additive .
Yeganeh et. al. QELS, 1999, Technical Digest



Adsorption Isotherm of a Friction Modifier and Its Friction

Coefficient
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« In boundary lubrication, performance of a lubricity additive (i.e. friction coefficient
and the wear) depends on its adsorption process.



High Frequency Reciprocating Rig (HFRR)*
High Frequency Friction Machine

LOADING ARRANGEMENT
I (Nermai Force)

BALL SPECIMEN W
FLAT SPECIMEN %

ROLLER
HOLD-DOWN >
LUBRICANT BATH // OSCILLATING DRIVE
LUBRICANT LEVEL = _—
{when usad)
FRICTION FOACE _ \ @ .
TRANSDUCER

“a///////// /%% 7

STROKE LENGTH
{2 strokes = 1 cycle)

FiG. 1 Reciprocating Test-—Schematic Diagram

* 1SO, Determination of Lubricity of Diesel Fuel by High Frequency Reciprocating Rig (HFRR) Test,
ISO Provisional Standard, TC22/SC7N595, 1995.



Fractional Film Defects Model (background) :

In the classical theory of boundary lubrication:

» A friction modifier reduces wear and friction by generating layers adsorbed on a solid surface that
reduce the total area of solid-to-solid contact (Hardy, 1920)

« Friction modifier performance improves with increasing bulk concentration. (Bircumshaw, 1925)

» Kingsbury (1958) and Rowe (1966) introduced the concept of residence time of an adsorbed

molecule on solid surfaces
« Jahanmir and Beltzer (1986) extended this concept to the fractional film defects model

metal

},A._W‘/\L WL

T Am metal base lubricant

additive l,

Pm Ar
An = Ama+ Amb fp is the base lubricant (solvent) friction coefficient (i.e., at 9 = 0)

6= A and f, is the additive friction coefficient (i.e., at 8 =1).

Ar ) *S. Jahanmir and M. Beltzer, Journal of Tribology, 108, 109 (1986).




Fractional Film Defect Model

Friction Coefficient
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Summary

» We have used sum-frequency generation (SFG) spectroscopy with High Frequency
Reciprocating Rig (HFRR) to investigate the adsorption of a friction modifier to an iron
oxide substrate and its relationship to friction reduction.

« Our results demonstrate a strong correlation between the adsorption of
friction modifier and the reduction in friction coefficient.



Application of SFG to Aqueous/Solid Oxide

« Many important applications and processes are linked to aqueous solution/ solid oxide
interfaces:

- Adsorption from an aqueous solution
- Aqueous Corrosion

Understand the interaction between water and a solid at the interface



Surface-Induced Ordering or Disordering of Interfacial Water
Molecules

SFG Intensity (arb. units)
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The variation of the signal intensity with pH of the solution is related to the
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interfacial charge density.
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+ H H .
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If the pH of an aqueous solution exceeds the IEPS, the surface is negatively
charged and if it is below the IEPS it is positively charged.



Surface With Higher OH Number Density Generates Stronger
E-Filed in an Aqueous Solution
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* SFG Was Used to Determine the Relative Surface Hydroxyl Number Density



SFG Was Used to Determine the [EPS

4000 p

3500 | Substrate is Negatively]
Charged

3000 f

2500 |

2000 F

1500 :

Water SFG Amplitude (A1 +A2)

1000 F

500 |

10 12 14

o The marked minimum in the water signal strengths at pH of ~8 is assigned to a

surface charge density of zero.
« This result indicates that the IEPS of our surface is ~8.

Yeganeh et. al. PRL, 83, 1179 (1999)

27



Orientation of Water dipoles at a Liquid/Oxide Interface
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Water dipoles at a liquid/solid interface flip by 180° when the pH of the aqueous solution

crosses the isoelectric point of the surface (IEPS).



Summary

« We have demonstrated that the interfacial water SFG signal intensities depend strongly
on the total hydroxyl number density at the interface.

« We have shown that the water dipole flips by 180° when the pH of the solution crosses
the IEPS of the substrate.

« The dependence of the SFG signal intensities on total charge density was used to
determine the IEPS of non-conductive, low surface area materials.



Application of SFG to Polymer Surfaces and Interfaces

« Many polymer properties and applications are closely related to the interfacial compositon

and structure:
- Adhesion
- Lubrication

« Molecular level information about the chemical composition and the structure of polymer is

essential
-polymer surfaces
-solid/polymer and liquid/polymer interfaces



Kinetic of Photo-degradation of Polystyrene Surface
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The surface of polystyrene degrades within ~40 minutes.

(Zhang et. al. Langmuir, 16, 4528 (2000))



Probing Two Interfaces : Polystyrene as a Model System

Interfacial Molecular Orientation:
Solid/polymer vs. Air/polymer

N

w

Optical Prism

Polymer/solid
Interface

Polymer/air
Interface

Spin Coated Polymer

J
2800 2900 3000 3100
Frequency (cm-1)

« The surface structure of polymer (e.g polystyrene) at the polymer/air interface is
drastically different than that at the polymer/solid interface.
K. Gautam et. al., PRL in press

In collaboration with K. Gautam, D. Schwab and A. Dhinojawala



Polymer/Air and Polymer/Solid Interfaces Can Be Detected and
Studied With the Same Film

n 0.4 0
0.5
PS/Sapphire interface
0.3+ — $00030303...(Before Plasma)

N ’ -  800030306X...(Aftet Plasma)

S PS/Air Interface
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G
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* SFG is capable of detecting and examining TWO "lo:‘ » .

interfaces on a single film
* Plasma alters the molecular structure of the polymer/
air interface (Zhang et. al. Langmuir, 16, 4528 (2000)).

poly mer

In collaboration with K. Gautam, D. Schwab and A. Dhinojawala optical prism




Polymer/Air and Polymer/Solid Interfaces: Packing Density

Y U ——— e e e RV

0.4

SFEG intensity (arb.units)

The index of reflection of polymer film is higher at the solid/polymer than at the
polymer/air interface.

- Molecules are closer packed at a solid/polymer interface
+ Confirmed by neutron reflectometry

In collaboration with K. Gautam, D. Schwab and A. Dhinojawala




Summary

* Polymer surfaces and interfaces can be inspected using SFG Spectroscopy
* Surface Photo-degradation of PS is completed within 40 minutes

* Molecular arrangement of PS at the air/polymer interfaces is drastically different than
the polymer/solid interface.



Normal Alkane: Bulk, Surface and Interface

« N-alkanes are one the most fundamental building blocks of lipids, surfactants,
liquid crystals, polymers and fuels.

« N-alkanes have shown rich physical properties:
+ BULK
Rotator Phase: Some n-alkanes exhibit an intermediate phase

between crystalline and isotropic liquid. (Muller R. Soc. 1932, Sirota, JCP, 1893)

+ SURFACE
Surface Freezing: The surface of liquid n-alkane freezes at about 3
degrees above the bulk solidification temperature. (Wu PRL, 199X)

+ INTERFACE:
The behavior of n-alkane at solid/alkane interfaces is relatively

unexplored.
- Monolayer alkane on substrates (Fuhrmann; Surface Science 1999)

- MD calculations (Xie, PRB 1993)



Sum Frequency Generation (SFG) Probes

Solid/Solid and Solid/Liquid Interfaces

SAMPLE GEOMETRY

Visible Beam
Tunable IR Sum Frequency Beam

Optical Prism
(Solid Substrate)

IR-vis. SFG is a vibration probe sensitive to molecular compositions and
structure at interfaces.



Variation of SFG Spectra of C21/AI1203 Interface
With Temperature
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Spectral Sensitivity to Substrate Treatment

Substrate Treatment:
@® None
® (C6H5)COOH
® CF3(CF2)6(CH2)2SiCi3
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Similar variations were observed with water and OTS treatments.



Spectral Change Was Observed in All Polarization and

Resonance Features: Shift in Fermi Resonance Freq.
C21: PPP Polarization
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Similar Changes were observed for C23, C22, C25 and a (1:1) mixture of C23
and C25 alkanes.
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Spectral Change Was Observed in All Polarization and

Resonance Features: CH2 and CH3 Symmetric Stretches
0.6 -

0.5-
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0.3

SFG Intensity
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2840 2860 2880 2900
Frequency (cm-1)

* Position of the symmetric CH2 resonance (or its relative phase) dramatically varies
with temperature.
» Amplitude of the CH3 symmetric stretch reduces at the R-X bulk transition temperature.



Variation of SFG Intensity of C21/AI1203 Interface
With Temperature
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« No hysteresis at solid-liquid transitions (40 C) was observed.
- One degree of super cooling was detected at 32 C.
« The sudden changes in the interfacial SFG intensities at 32 C and 40C

represent changes in molecular structure/arrangement.




Molecular Arrangement: Above Melting Point
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Molecular Arrangement: Below Melting Point

 Distinct spectral features:
-The symmetric stretch of the CH3 group is only detectable in
ssp polarization.
-The asymmetric stretch of the CH3 group is only detectable in
sps polarization.
-The intensity of the CH3 symmetric stretch is greater than
the asymmetric stretch.

* For a hydrocarbon molecule with ONLY one CH3, these structural features
strongly suggest that the methyl group is perpendicular to the interface.

An n-alkane molecule possesses two CH3 groups, thus, a more complex model
must be adopted.



Molecular Arrangement Below m.p.: The Model for

Macroscopic Second Order Susceptibility, Xijk

« SFG signal intensity is proportional to |Xijk|2.
» How to calculate Xijk of an n-alkane?
- Start with a single C-H hyperpolarizability (B;,) and calculate the
CH3 hyperpolarizability (o) using:
alj k - nJ%J)(“”)(J m)(kP >ﬁnmp

+ C,. symmetry : ( Bz » By = Byy. @re non zero elements )
+ Additive hy perpolarizability model
+ Euler transformation coordinates




Molecular Arrangement Below m.p.: The Model for
Macroscopic Susceptibility, Xijk (Continued

Calculate o for each CH3 in n-alkane frame using following Euler parameters

4 Z PHI=90
Rotate about Z

ﬁ

> Y

Theta
Rotate about x’

> Y
X\

PSI=270 Rotate about



Molecular Arrangement Below m.p.: The Model for
Macroscopic Susceptibility, Xijk (Continued

Define : o®ff,; = o', + a?; for the molecule.

Calculate X;,; from o, using:

Xk n,%,p<f.n><j.m><k.p>ag%p

Intensitv=lri2 Calculation|
€ ry=\x > Sym. Stretch SSP Results
. . ||| Asym. Stretch SPS
o & LAsym. stretch ssP
£
. oO.B
\\\\\\ LI'- ’l
& |

For © close to zero (when the c-c plane is perpendicular to the surface) all
experimentally observed conditions are satisfied.



Several Models Were Tested

* Other tested models:

- The n-alkane molecule was allowed to stand vertically at various
tilt angles.

- A unit cell with two n-alkanes at various orientations

None of the above models could explain the experimental observations

» Comparison with previous studies:

- MD calculations: Four layers of n-alkane molecules oriented parallel
to the substrate (Xia et. al. PRB, 48, 11313 (1993))

- Monolayer on graphite: n-alkane molecules organize in lamella with the
chains oriented parallel to the lattice axis within the basal plane of
graphite (Hansen et. al. PRL 83, 2362 (1999))

- Monolayer on SiO2: Monolayer consists of densely “frozen” alkanes
oriented normal to the interfaces. (Merkl et. al., 79, 4625 (1997))

- Liquid n-alkane on quartz and ZrO2: n-alkane lies flat with a significant
amount of trans-gauche defects. (quartz:Sefier et. al. CP Lett. 235, (347)
(1995); ZrO2: Hatch et. al. unpublished results)



Summary

» We have used IR-visible sum frequency generation spectroscopy to examine
the structural behavior of n-alkanes at n-alkane/Al,O; interfaces.

* We have observed two phase transitions:
- The first transition occurs at the bulk solidification temperature with

no detectable super cooling or heating;
- The second transition occurs at the bulk crystalline-rotator transition
temperature with super cooling.

« Our polarization dependence measurements reveal that in both the crystalline
and rotator phases, the n-alkane molecule lies down on the substrate with its

C-C plane perpendicuiar to the substrate plane.

l}_J



