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Distinctive Features of Molecular
Desorption from metal surfaces using
femtosecond laser excitation

1. Higher desorption yield

2. Nonlinear yield dependence on

~ laser fluence

3. High vibrational energy content
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4. Picosecond response time for the
»
desorption process.
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Methods of Measurement of
(picosecond) Response Time

Two- pulse Correlation

¢ Simple in concept

o Complex in real experiment,
particularly involving samples in
UHYV systems

e With two pulses, further
complicates avoiding unwanted
effects due to beam profile
variations (from alignment) and
self-focusing from optical
elements



Methods of Measurement of
(picosecond) Response Time

Changing width of excitation pulse

o Very simple with regenerative

~ amplifier system

e No additional optical elements

o Can monitor pulse width using
FROG (and beam profile with CCD
Camera.)

Changing pulsewidth comes with
frequency chirping, and the theoretical
work of D.A. Micha and Z. Yi (Chem
Phys Letts, 1998) predicts that ...



Optical Control of desorption yields
using frequency chirped light pulses

Optical control of yields of CO photodesorbed from Cu({001) by
chirped light pulses: density matrix theory and calculations
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Fig. 4. Posilive and negative chirping effects on photodesorption yields.

e Negatively chirped (frequency
decreasing) pulses more effective in
desorption than positively chirped
pulses

¢ ~ 40% effect for 10% chirp
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Our Experimental Setup
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Our data for CO/Pt(111)

(100 counts ~ a few times 10> ML)

Signal vanishes at pulse width > 500 fsec
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Chirped pulse excitation:
Negative chirp

and Positive Chirp
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Expected enhan’cement (negative over
positive chirp at 1.5% chirp): 5-8 %



Our Results on CO Desorption from

Pt(111) compared with previous
studies

o high desorption yields? Yes

e nonlinear dependence on fluence?
Yes

o subpicosecond response time? Yes

opredicted effects due to frequency
chirping not observed.

Experimentally, our CO/Pt results are

very similar to the CO/Cu results (PRL
96, NIST)

(In fact, all the (diatomic) systems
studied so far behave rather similarly.)



How do these electrons, transiently at
elevated temperatures, affect the
desorption of molecules from surfaces?

Two (related) physical pictures have
been proposed:

1.

2.

DIMET (Desorption Induced by
MULTIPLE Electronic
Transition) : Make connection to
the well-known DIET process,
enhanced by multiple transitions
within a short time due to the high
density of hot electrons.

Electronic Friction Model: Make
connection with vibrational
lifetime of molecules on surfaces —
much shorter on metallic surfaces,
attributed to energy exchange by
electron-hole pair generation.



The CO/Pt(111) system compared with
the CO/Cu(100) system

e One molecule, two metallic surfaces
e The relevant parameters:
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Yet, the desorption results are similar:
e desorption at a few mJ/cm’ fluence
e same power dependence (n=8+-1)



.

id iE

eyl

DIMET or Electronic Friction?

Appear to favor electronic friction
because:

e Desorption result similar even

~ though the hot electron energy
distribution likely to be very
different for Cu and Pt.

o Experimentally, the vibrational

lifetimes of CO on Pt and CO on Cu
are the same (about 2 ps).



Femtosecond desorption of NH3/ND3
from Pt (111)
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e No subpicosecond time dependence
e No isotope effects
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Femtosecond desorption of NHi/ND;

from Pt (111)
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e No subpicosecond time dependence
e No isotope effects



Conclusions

e CO/Pt similar to CO/Cu
(but not to CO/Ru!)

e NH; (ND3)/ Pt - ‘mostly thermal’
e Electronic Frictional Model is a
good description of the process
Questions for future:
Why only diatomics?
Can desorption process be controlled by

chirped pulses with much higher chirp
rate?






