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Abstract

The main breakthrough in Seismology during the last ten years, is related to the
emergence and development of more and more sophisticated imaging techniques, usually
named seismic tomography, at different scales from the local scale up to global scale of
the Earth. These progresses have been made it possible by the rapid developments in
seismic instrumentation, in electronics, and by the extensive use of massive computation
facilities. However, most global tomographic models are suffering severe limitations due to
the imperfect data coverage and theoretical approximations. It is usually assumed that the
propagating elastic medium is isotropic, which is shown to be a poor approximation. We
show in this paper how to take account of anisotropy of Earth’s materials. Its influence on
the phase of 3 component seismograms is explored. The consequence is that, by including
other geological constraints, we are able to map not only the temperature heterogeneities
but also the flow field within the convecting mantle. The complete tomographic technique
which includes the resolution of a forward problem and of an inverse problem, is described.
It is important to emphasize the fact that in order to check the reliability of a tomographic
model, it is necessary to calculate the errors and the resolution associated with the model,
by considering the structure of the data space (errors and correlations), the parameter
space (@ posteriori errors, covariance function, resolution). However, despite the increasing
quality of seismograms provided by modern digital networks (GEOSCOPE, IRIS, ...), the
lateral resolution of global is limited to about 1000km and the intallation of ocean bottom
observatories constitutes a new challenge for the next century. The recent theoretical
developments can be now applied to data in order to use the complete information provided
by seismic waveform and to get new insight into anisotropic and anelastic parameters
within the Earth, but other solid materials. '

1 Introduction

Two kinds of waves, P- and S-waves can propagate inside an elastic medium. For several
decades, the main thrust of seismologists was to retrieve reference spherically symmetric Earth
models. However, due to the improvement of instruments and measurement techniques, some
lateral heteogeneities were evidenced ( Knopoff, 1972). More than ten years ago, the first global
three-dimensionnal tomographic models of P- and S-waves, were published (Woodhouse and
Dziewonski, 1984; Dziewonski, 1984; Nakanishi and Anderson, 1984; Nataf et al., 1984, 1986).
Since that time, many new tomographic models were published, and a large family of tech-
niques was made available. This important progress was made possible by the extensive use of
computers which can handle very large datasets and by the availability of good quality digital
seismograms recorded by seismic networks such as the International Deployment of accelerom-
eters (Agnew et al., 1976), the Global Digital Seismograph Network ( Peterson et al., 1977) and
more recently GEOSCOPE (Romanowicz et al., 1984) and IRIS (Smith, 1986). However, most
of tomographic techniques only make use of the phase information in seismograms and very
few of the amplitude, even when one works on seismic waveform ( Woodhouse and Dziewonski,
1984). It can be shown (see for example Montagner, 1996), from a theoretical and practical
point of view, that it is much easier to explain the phase of seismic signals than their amplitude.
Therefore, global tomographic models have been improved over years by an increase in the num-
ber of data and by more general parameterizations, now including anisotropy (Radial anisotropy
in Nataf et al. (1986); general slight anisotropy in Montagner (1986a) Montagner and Tanimoto
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(1990, 1991) and to a less extent anelasticity (Tanimoto, 1989; Roult et al.,

icz, 1991). However, there is still a major step to perform, in taking a com)

amplitude anomalies in the most general case. There were some attempts to dc

scale ( Tanimoto, 1984b; Wong, 1989) and on a regional scale, following the works €T
(1988a,b). But, from a practical point of view, it induces inverse problems of very . ¢ size
and it makes it necessary to limit the parameter space to its isotropic part. We show how to
take account of seismic anisotropy. Contrarily to the common belief, the anisotropy is not a
second order effect and its neglecting can induce some bias on seismic velocities Vp and Vs. The
practical implementation of the inverse problem is presented as well as how we can take account
of errors on data and how to calculate the resolution and a posteriori covariance functions of
parameters. Finally, some geodynamic applications will be shown.

2 Anatomy of seismograms

2.1 Progress in instrumentation

Seismology is an observational field which is based on the exploitation of recordings of the
displacement (or acceleration) of the Earth induced by earthquakes. It is a very old field since
the first Chinese seismoscope dates back one century before Christ. But much progress on
seismic instrumentation was done during the last century, though the principle of a seismometer
did not change dramatically. It is based on the relative movement of a mass coupled to the
Earth motion through a spring or a pendulum (Figure 1). Such a system is characterized
by a natural oscillation frequency. However, due to the existence of permanent seismic noise
particularly large between 1s. and 10s., there were, for a'ong time, two different fields in
seismology: the short period seismology devoted to periods smaller than 1s and long period
seismology for periods longer than 10s.

Vertical Seismometer " Horizontal Seismometer

N\

Figure 1: The basic principle of a vertical -
seismometer with its mass, its spring and
damping system



With the development of electronics and force-feedback systems, this gap was filled in the
eighties and it is now possible to record the 3 components of seismic displacement, to increase
the dynamic range of seismometers as well as their frequency range from 0.Ls. up to 1000s. A
negative feedback loop enables to apply a force proportional to the inertial mass displacement
in order to cancel its relative motion. This approach extends the bandwidth and the linearity
of the seismometer. Since the development of STS1 of Streckeisen and Wielandt (1982), a
new generation of seismometers applying this simple principle, came up. They share common
characteristics: they are now light (less than 1 kilogram), have a low power consumption and
are very sensitive, robust and reliable. They can detect seismic displacement much smaller
than the interatomic distance (10~°m) in the seismic frequency band. An example of such a
recent seismometer is presented in figure 2 {Cacho, 1996). It is designed to operate in very
hostile environments such as planet Mars and sefloor, and it is planned to be used for planetary
exploration (Lognonné et al., 1998) and for future ocean bottom stations {Montagner et al.,
1998). -

WsYr Mock-up of one axis sensor

X Displacement transducers
Fixed structure

Feedback coil / magnet
Pivot

Moving structure

§_ Equilibrium mechanism

|--| 1 cm
Inertial mass Spring

Figure 2: A modern broadband seismometer with its feedback system (Cacho, 1996)

The quality of seismograms is no longer related to intrinsic qualities of seismometers but pri-
marily largely dependent on the noise level of the station. A correct station must display a noise
level between the low noise model and the high noise model of Peterson (1994). The seismic
noise is minimum in the period range 20-100s, and at very short periods below 1s. These 2
ranges are separated by the microseismic peak which is due to the complex interaction between
fluid Earth (ocean and atmosphere) and solid Earth. The existence of this peak explains why
there were traditionnally 2 fields in seismology. It is only since the development of broadband
seismometers with a high dynamic range (> 128dB], that both fields have been merged into
one field, the broadband seismology.
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" Figure 3: Broadband seismic noise between 0.1s and 1,000s, recorded in SSB (Continental GEO-

SCOPE station) and on the sea floor during the Sismobs-OFM experiment in may 1992 (Montagner
et al., 1994).
The 2 continuous lines correspond to the low-noise and the high-noise models (Peterson, 1994).

Broadband 3-component high dynamic seismometers have been installed in more than 200
stations around the world. Their deployment, the definition of a standard format (SEED)
and the free availability of data are coordinated through the FDSN (Federation of Digital
Seismograph Networks, Figure 4). It is worthwile to notice that the whole community of
seismologists accepted to share their data. However, despite these international efforts, there
are still many areas at the surface of Earth devoided of broadband seismic stations. These
regions are primarily located in southern hemisphere and more particularly in oceanic areas
where no island is present. Therefore, an international effort is ongoing, coordinated through
I.O.N. (International Ocean Network) in order to promote the installation of geophysical ocean
bottom observatories in order to fill the enormous gaps in the station coverage (Suyehiro et al.,

1995).
FDSN stations in 1998

© FDSN stations
Q GEOQSCOPE stations

Figure 4: Distribution of the broadband standardized stations of FDSN network



2.2 Body waves, surface waves and normal modes

A seismic record is characterized by its natural complexity, locking like a "chaotic” series of
wiggles, well above seismic noise. The basic job of a seismologist will consist in unraveling the
succession of impulsive arrivals, and to distinguish the body waves from the following complex
dispersed wavetrains, the surface waves. Figure 5 shows an example of 3-component broadband
seismograms for an earthquake located in Chile, of magnitude 7.3 recorded in the GEOSCOPE
station of Canberra in Australia. The horizontal component seismograms (North-South and
East-West) have been rotated into longitudinal and transverse components, in order to separate
different kinds of body waves and surface waves. The seismic noise can be quantitatively
assessed by considering the level of unexplained signal before the first arrival of P-waves. Most
of the largest impulses can be explained by reflected or refracted waves at the major seismic
discontinuities, i.e. the surface of the Earth (PP, SS, SSS, PS), the core-mantle boundary (Pdiff,
SKS, ...) at 2900km depth and the ICB (inner core boundary). The nomenclature of all these
body waves is explained in figure 6, and is reflecting the propagation history of waves in the 3
main layers of the Earth, i.e. the mantle, the outer core and the inner core.

Chii, 30 Juillet 1995, Lotitude: 24.16 S, Longitude: 70.69 W, Profondeur: 20km, Magnitude: 7.3
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Figure 5: Example of 3-component broadband seismogram recorded in the GEOSCOPE station '
CAN, for a Chilean Earthquake of magnitude 7.3



Figure 6: Seismic rays through the Earth: explanation of the nomenclature

Surface waves are arriving after body waves, and are the most energetic waves at large distances
and at long periods. Figure 7 shows seismograms for the same earthquake as in figure 5, but for

a longer and low pass filtered time series (T>100s). Two kinds of surface waves are observed:
Love waves on the transverse component corresponding to SH- guided waves, and Rayleigh
waves on the vertical and longitudinal components resulting from the complex coupling of P-

and SV- waves. Their group velocities are approximately 4.3km/s for Love waves and 4km/s

for Rayleigh waves.
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Figure 7: Low pass-filtered (T>100s) seismogram recorded in the GEQOSCOPE station
CAN for the same earthquake as in figure 5.



When considering even longer time series (more than one day) following very large earthquakes
(magnitude larger than 7), it is possible\__t}o_dis_play the free oscillations of the Earth. Figure
Ra shows an example of 2 days of record at the Santa Cruz station (California) of the large
Kurile earthquake which occurred in october 94. The spectrum calculated for the first 3 hours
of record on 3 components (Figure 8b) does not present any specific characteristics. It is
primarily reflecting the convolution of the source time function with the transfer function of
the Earth between the epicenter and the station. But, if we calculate the spectrum on a 36
hours time series (Figure 8c), very narrow peaks are come up. They can be explained by the
constructive interference between stationary waves traveling in opposite directions. These well
defined frequencies are named ecigenfrequencies, and are characteristics of the structure of the
Earth as well as sounds are characteristics of a string of guitar. They constitute the base of
the Earth spectroscopy. The modes on the transverse component (toroidal modes related to
Love waves and SH waves) are different from the ones visible on the vertical and longitudial
component (Spheroidal modes related to Rayleigh waves resulting from the coupling between
P and SV waves). We will briefly review how the eigenfrequencies and the corresponding
eigenfunctions can be calculated in a spherically symmetric reference Earth model.



Figure 8: Spectra of the seismograms corresponding to 2 different time series, of the Kuriles
Earthquake, Oct. 94, recorded at the station Santa Cruz in California. 8a: 2 days time series.
8b: spectrum for the first 3 hours of the record. 8c: spectrum for the first 36 hours
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2.3 Normal Mode Theory

The basic equation which governs the displacement u(r,t) is the elasto-dynamics equation:

dzu,-

o :Zaij,j+f8i+fEi (1)
J

fsi et fgi represent respectively the whole ensemble of applied inertial and external forces
(see Woodhouse and Dahlen (1978) for a complete description of all terms). Generally, by
neglecting the advection term, this equation is written in a simple way:

(Poatt — Ho)u(r, t) = f(rs,t) (2)

where H is an integro-differential operator and f expresses all forces applied to the sourve
point in rg at time t. We assume that f is equal to 0 for t < 0. In the elastic case, there 1s
a linear relationship between o¢;; and the strain tensor €x. i = 2k Lijki€ki (+ terms related
to the initial stress). I is a 4**-order tensor. By using the different symmetry conditions
Cijir = Ljint = L = Triijy the tensor I' is shown to have 21 independent elastic moduli.
When we are looking for the free oscillations of the Earth, we assume that f = 0. The solution
u(r,t) of the equation (2) can be calculated for a spherically symmetric non rotating reference
Earth model Mo, associated with the operator Ho, according to the equation:

poduu(r,t) = Hpu(r,1) (3)

The eigenvalues of the operator Ho are equal to —ponw? where 4w, is the eigenirequency char-
acterized by 2 quantum numbers n and ¢, respectively termed radial and angular orders. The
corresponding eigenfunctions 2uf(r,t) are dependent on 3 quantum numbers n, £, m, where
m is the azimuthal order, with the following property —? < m < {. Therefore, for a given
eigenfrequency nw calculated in a spherically symmetric Earth model, 2£ 4 1 eigenfunctions
can be defined. The eigenfrequency nw; is said to be degenerated, with a degree of degeneracy
2¢ + 1. There is a complete formal similarity with lhe calculation of the energy levels of the
atom of hydrogen in quantum mechanics.

The eigenfunctions ,uj(r,t) of the operator Ho are orthogonal and normalized. The displace-
ment ,u}(r,t) associated with the mode =, ¢, m can be written:

Ul (r,t) = D Y0, §)em (4)

where

nDE = nUL’(T)r + nv:?(r)vl + nwf(r)(_r X Vl) (5)
where U, Ve, and W, are the radial eigenfunctions of spheroidal and toroidal modes.
Y;*(8, ¢) are spherical harmonics normalized according to Edmonds (1960) and V is the surface
gradient operator on the unit sphere.
The important point is that the basis of functions defined by equation {4) is complete. That
involves that any displacement at the surface of the Earth can be expressed as a linear combi-
nation of these eigenfuctions:

u(r,t) = Y. naftauy(r,t)

n,fm
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Therefore, these eigenfunctions can be used for calculating the displacement at any point r, at
time t, due to a point force system F at point rg and a step time function, which is a good
starting model for earthquakes. The solution of the equation, pgd;u(r,t) = Hou(r,t) + F is
given by:

o8yl —nwgt
e

3 (aug.Fs (6)

u(r, t) = E _nu;n(r)

n,t,m n¥e

The source term (,uj*. F)g can be replaced, by using Green’s theorem by:
(nu:‘.F)s - (M : 6)5

where M and ¢ are respectively the seismic moment tensor and the deformation tensor. Both
tensors are symmetric. Since the equation (6) is linear in M, it can be easily generalized to
more complex spatial and temporal source functions, and can be rewritten:

u(r,t) = G(r,rs,t,ts)M(rs, ts)

where G(r, s, t,ts) is the Green operator of the medium. The normal mode theory is routinely
used for calculating synthetic seismograms at long periods (T' > 40s.) and the agreement
between synthetic and observed seismograms is quite good, as is shown in figure 9.
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Figure 9: Observed and synthetic seismograms calculated for the Chile earthquake of July 95
in the GEOSCOPE station Canberra.

However, it can be seen that some frequency dependent time shift is still present between the
observed and synthetic seismogram. The goal of seismology is to explain this anomaly: that
means that some of the hypotheses considered for calculating the synthetic seismograms are
insufficient. The simplest way to explain the time delay consists in removing the assumption

11



that the Earth is spherically symmetric, or in other words that there are lateral heterogeneities
between the source and the receiver. The next issue consists in characterizing these lateral
heterogeneities. Since the agreement between synthetic and observed seismogram 1s correct at
long periods, we can reasonably infer that the amplitude of heterogeneities is small. Behind the
surface wave train, a long coda is usually observed, interpreted as scattered waves. However,
when filtering out the periods shorter than 40s., this coda wave vanishes, which means that
the scattering effect is only present in the shallowest regions of the Earth (primarily the crust)
but that it is probably negligible at largest depths. Therefore, we make the hypothesis that
the scale of lateral heterogeneities is large compared with the wavelength. A second hypothesis
which has to be discussed, is the isotropic nature of the Earth materials. Actually it 1s a poor
assumption, because seismic anisotropy can be undoubtedly observed at different scales.

3 An anisotropic Earth

3.1 Seismic anisotropy at all scales

Different geophysical fields are involved in the investigation of the manifestations of anisotropy
of Earth materials: mineral physics and geology for the study of the microscopic scale, and
seismology for scales larger than typically one kilometer. The different observations related to
anisotropy, at different scales are reviewed in Montagner (1998).

e Microscopic scale.

The different minerals present in the upper mantle are strongly anisotropic (Peselnick et al.,
1974). The difference of velocity between the fast axis and the slow axis is larger than 20%
for olivine the main constituent of the upper mantle. Other important constituents such as
orthopyroxene or clinopyroxene are anisotropic as well (> 10%) (see Anderson, 1989, Babuska
and Cara, 1991 for reviews). However, some other constituents such as garnet, display a cubic
crystallographic structure which presents a small anisotropy. Consequently, the petrological
models which are assemblages of different minerals are less anisotropic than pure olivine. The
amount of anisotropy is largely dependent on the percentage of these different minerals and on
the mechanisms which align the crystallographic axes according to preferred orientations. For
example, the anisotropy of the pyrolitic model, mainly composed of olivine and orthopyroxene
(Ringwood, 1975), will depend on the relative orientation of the crystallographic axes of different
constituents (Christensen and Lundguist, 1982). However, through the mechanisms of lattice
preferred orientation, its anisotropy can be larger than 10% (Montagner and Anderson, 1989a).
For competing petrological models such as piclogite ( Anderson and Bass, 1984, 1986), where the
percentage of olivine (respectively garnet) is smaller (resp. larger), the amount of anisotropy is
smaller (about 5%). Therefore, at microscopic scales, we can conclude that earth materials in
the upper mantle are strongly anisotropic, but that the anisotropy tends to decrease as depth
is increasing.

At slightly larger scales, the scale of rock samples, several studies of anisotropy were under-
taken. Dunite, which is almost pure olivine, displays a large anisotropy (Peselnick and Nicolus,
1978). Moreover, this anisotropy is coherent in whole massifs of ophiolites over several tens
of kilometers (Nicolas, 1993; Vauchez and Nicolas, 1991). Some attempts have been under-
taken to numerically model seismic anisotropy within convecting cells (Ribe, 1989). At larger
wavelengths, anisotropy is also present and can be investigated from seismic observations.

12



e Macroscopic scale: . ‘
Different and independent seismic datasets make evident that the effect of anisotropy is not

negligible for explaining the propagation of seismic waves inside the Earth. From a seismological
point of view, there is no longer doubt that the upper mantle is anisotropic. The early evidence
was the discrepancy between Rayleigh and Love wave dispersion {Anderson, 1961; Aki and
Kaminuma, 1963) and the azimuthal dependence of P, velocities (Hess, 1964). Azimuthal
variations are now well documented for different areas in the world for body waves and surface
waves.

For body waves, this kind of informations results from the investigation of the splitting 1n
teleseismic shear waves such as SKS (Vinnik et al., 1984; 1989a,b; 1991; 1992), ScS [Ando,
1984; Fukao, 1984) and S (Ando et al., 1983; Bowman and Ando, 1987). Since these pioneering
papers, many studies have confirmed the existence of splitting of S-waves. These waves are
shown to provide an excellent lateral resolution, if we restrict to the deep upper mantle (i.e.
below crust). And among these different observations, the splitting information derived from
SKS is the less ambiguous and has been extensively used in teleseismic anisotropy investigations
(Silver and Chan, 1988; Vinnik et al., 1989a,b; Ansel and Nataf, 1989; Silver, 1996; ...). The
drawback of this technique is that it is almost impossible to locate at depth the anisotropic
area.

Surface waves are also well suited for investigating the upper mantle anisotropy. Two kinds
of observable anisotropy can be considered: The radial anisotropy which results from the dis-
crepancy between Love and Rayleigh waves, also named the ”polarization” anisotropy or radial
anisotropy. In order to remove this discrepancy, it is necessary to consider a transversely
isotropic model with a vertical symmetry axis. This kind of anisotropy is characterized by
5 elastic parameters plus density (Anderson, 1961). However, Levshin and Ratnikova (1984)
showed that lateral heterogeneity can lead to a Rayleigh-Love discrepancy and that we must be
cautious about the interpretation of this discrepancy in terms of anisotropic model. On a global
scale, Nataf et al. (1984; 1986) have derived by the simultaneous inversion of Rayleigh and
Love wave dispersion, the geographical distributions of S-wave anisotropy at different depths
assuming transverse isotropy with vertical symmetry axis.

The second kind of observable anisotropy is the azimuthal anisotropy which was directly derived
from the azimuthal variation of phase velocity. It was observed for the first time on surface waves
in Nazca plate by Forsyth (1975). Several global and regional models have been derived for both
kinds of anisotropy (Mitchell and Yu, 1980; Montagner, 1985). Tanimoto and Anderson (1985)
obtained a global distribution of the Rayleigh wave azimuthal anisotropy at long periods. On a
regional scale, several tomographic investigations report the existence of azimuthal anisotropy
in the Indian Ocean (Montagner, 1986a; Debayle and Lévéque, 1998), in the Pacific ocean
(Suetsugu and Nakanishi, 1987; Nishimura and Forsyth, 1987, 1988), in the Atlantic ocean
(Silveira et al., 1998), in Africa (Hadiouche et al., 1989) and in Central Asia (Griot et al.,
1998a,b). Lévéque and Cara (1985), Cara and Lévéque (1988) used higher mode data to display
anisotropy under the Pacific Ocean and North America down to at least 300km.

However, the ”polarization” anisotropy (or radial anisotropy) and the azimuthal anisotropy
are two different manifestations of a same phenomenon: the anisotropy of the upper mantle.
Montagner and Nataf (1986) derived a technique which makes it possible to simultaneously
explain these two forms of seismically observable anisotropy. The principles of this technique
will be described in section 3.2, for the most general case of anisotropy (at the condition that it
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is weak). The method can be slightly simplified by introducing only one symmetry axis (7 in-
dependent anisotropic parameters) and it was coined "Vectorial tomography” (Montagner and
Nataf, 1988). It was applied to the investigation of the Indian Ocean (Montagner and Jobert,
1988) and of Africa (Hadiouche et al., 1989). These different investigations showed that, para-
doxically, @ parameterization with anisotropy requires less parameters than o parameterization
with only isotropic terms. Contrarily to body waves, surface waves enable to locate at depth
anisotropy but, so far, its lateral resolution (several thousands kilometers) is very poor.
Finally, anisotropy has not only an effect on the phase of seismograms, but also on its amplitude.
Due to the coupling between surface wave modes, one of the less ambiguous effect is the fact
that Love waves can be present on the vertical and the radial components (Park and Yu, 1993).
It can be also displayed from the observations of polarization anomalies too large to be explaind
by deviations due to isotropic heterogeneities (Laske and Masters , 1998; Larson et al., 1998).
Therefore, seismic anisotropy cannot be considered as a second order effect. 1t i1s present at
different scales and at different depths. We note that it tends to decrease as wavelength 1s
increasing, from 20% at microscopic scale down to 1 — 2% at very large wavelengths. Several
conditions must be fulfilled in order to observe anisotropy at long period and large wavelength.
The material must be microscopically anisotropic, there must be some efficient mechanism of
preferred orientation, which aligns fast axis (or slow axis) of minerals in the flow field. There
must be in addition an efficient strain field, with a long wavelength coherency, for spatial
wavelengths Ag such that Ag > X (where X is the wavelength of the wave). This kind of
condition is usually encountered in many areas all around the world. Body wave anisotropy
and surface wave anisotropy can be related in the simple case of anisotropy characterized by a
horizontal symmetry axis ( Montagner et al., 1999).

We will now explain how to simultaneously explain the different observations of surface wave
anisotropy, radial anisotropy and azimuthal anisotropy.

3.2 First order perturbation theory in the plane case

We will only consider the propagation of surface waves in the plane case, but it can be easily
extended to the spherical Earth (Montagner, 1996). In the simple plane case {(fundamental
modes, no coupling between branches of Rayleigh and Love waves), the frequency shift, for a
constant wavenumber k can be written:

1 (w|ET T Ejuy)
2w {uglpoluk)

where E and T are respectively the deformation and the elastic tensors, |ug) the eigenfunctions
as defined in equation (4), where k is corresponding to the multiplet of the 3 quantum numbers
(n,£,m). Let us follow the same approach as Montagner and Nataf (1986) for calculating éw|z,
where we consider the propagation of the fundamental modes of Love and Rayleigh waves in
an arbitrarily stratified half- space in which a right-handed Cartesian coordinate system (x, v,
z) is defined on figure 10:

(7)

5w|k = —
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X (Nofth)

Figure 10: Definition of the Cartesian coordi-

v k nate system (z,y, z) used in the calculations.
V¥ is the azimuth with respect to North of the
y (East) wavevector.

The half-space is assumed to be homogeneous and may be described by its density p(z) and its
4th-order elastic tensor I'(z) with 21 independent elastic coefficients. All these parameters are
so far supposed independent of z and y coordinates (z is the vertical component). This condition
will be released in the next section. The unperturbed medium is assumed isotropic with an
elastic tensor [p(z). In that medium, the two cases of Love and Rayleigh wave dispersion can
be successively considered.

The unperturbed Love wave displacement is of the form:

—~W(z)sin ¥
u(r,t) = W(z)ocos U | exp(i[k(z cos ¥ + ysin ¥) — wi]) (8)

where W(z) is the scalar depth eigenfunction for Love waves, k is the horizontal wave number,
and ¥ is the azimuth of the wave number & measured clockwise from the North.
The unperturbed Rayleigh wave displacement is of the form:

V(z)cos ¥
u(r,t) = | V(z)sim¥ | exp(i[k(zcos ¥ + ysin ¥) — wt]) (9)
iU(z)

where V(z) and U(z) are the scalar depth eigenfunctions for Rayleigh waves. The associated
strain tensor e(r,t) is defined by:

€;(r,t) = 1/2(ui; + u;;) (10)

where , j denotes the differentiation with respect to the j-th coordinate. The medium is per-
turbed from Ig(2) to I'o(2z) + «(z), where v(z) is small compared to To(z) but quite general
in the sense that there is no assumption on the kind of anisotropy. This means that we are
in the approximation where we can still consider quasi-Love modes and quasi-Rayleigh modes
(Crampin, 1984). From Rayleigh’s principle, the first order perturbation 6C(k) in phase velocity
dispersion is (Smith and Dahlen, 1973, 1975):
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C Jo° YigkiCij €
oC(k) = 27 [ poukUZdzdz (11)
where u; and ¢,; are respectively the displacement and the strain for the unperturbed half-space
and the asterisk denotes complex conjugation.
Now because of the symmetry of the tensors y(z) and ¢, we use the simplified index notation c¢;;
and ¢; for the elements 7;;, and ¢;, but we must take account of the number n;; of coefficients
;i for each ¢;;. The simplified index notation for the elastic tensor ~iju 1s defined n a

coordinate system (z,,zq,x3) by:

fi=j3= p=1
ifk=I=> ¢=k
ifidj= p=9—1—7
fktl=> ¢g=9—-k-!
This kind of transformation enables to relate the 4%* order tensor [' (3x3x3x3) to a matrix
¢ (6x6). The same simplified index notation can be applied to the components of the strain
tensor ¢;;, transforming the 2" order tensor ¢ (3x3) into a vector with 6 components. However,
it is necessary to be careful, because to a given ¢,y corresponds several ¥;jui, and 75 must be
replaced by n,,6,,, where ny, is the number of ;i giving the same cp,. Therefore, the equation
(25} expressing Rayleigh’s principle can be rewritten as:

C fo E)i,‘ M Cig€i€] (13)
2w? f57 pouguidz

(12)

Yijkt —F Cpq

5C(k) =

We only detail the calculations for Love waves.

e Love waves.
By using previous expressions for u(r,¢) (9) and €;(r,t) (10}, the various expressions of strain

are:

(&g = —1cosWsinWiW
¢ = tcosUsinWiW
€3 = 0

| e = 1/2cos U W’ (14)
€s = —1/2sinU W’

| &g = 1/2(cos® ¥ —sin® W) kW

E

where W' = %‘f-. In table 1, the different terms njc;je;€; are given. We note that when c;;¢;€;
is a purely imaginary complex, its contribution to 6C(k, ¥) is null. When all the contributions
are summed, the different terms cos® ¥ sin' ¥ are such that k +/is even, which is not surprising
in the light of the reciprocity principle. Therefore, each term can be developed as a Fourier
series in ¥ with only even terms. Finally it is found:

5CL(]C, ‘IJ) = & /0 dz{kzwg[g(cu + Cqy — 2(312 + 4666] + WIZ[E(C‘M + C55)]

2w? Lo

1
+ cos 20 W’z[-Q—(c44 — cs5)} — sin 20 W'eys
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—cos 4W¥ k2W2[%(c11 + €2 — 2e12 — 4c66)] (15)
1
+sin4¥ kng[i(Cze — ¢16)]}

In the particular case of a transversely isotropic medium with a vertical symmetry axis (also
named radial anisotropic medium), we have: ¢y = ¢ = 04, ¢z = 8C, c12 = 6(A — 2N),
€13 = C23 — fSF, Cq4 = C55 = 5L, Cee = N and €14 = C24 = C15 = €35 = C16 — Cz6 — 0. The lOCEll
azimuthal terms vanish and the previous equation (15) reduces to:

1 12

§CL(k, ¥) = /D°° (w2 +

= 5T T8L)dz (16)

Therefore, the same expressions as in Takeuchi and Saito (1972, p. 268) are found in the case of
radial anisotropy. The 0 — ¥ term of equation (15) corresponds to the averaging over azimuth
¥, which provides the equivalent transversely isotropic model with vertical symmetry axis by
setting:

N = %(Cn + cx2) — %Cm + %Css

6L = %(044 + ¢55)

If we call C;; the elastic coefficients of the total elastic tensor, we can set:

N = PV.szy = é(cn + Caa) — icu + %Ces

L = pViy = 3(Caa + Css)

According to equation (15), the first order perturbation in Love wave phase velocity 6Cy(k, U
can then be expressed as:

1
2Co, (k)

5CL(k, ¥) = [L1(k) + La(k) cos 20 + Ly(k)sin 20 + La(k) cos 4¥ + Ls(k)sin 4% (17)

where

ngkg = L [P(W?6N + Br6L)dz
Ly(k) = & 5° —Go(%r)dz

Ly(k) = £ f5° ~G(%r)dz

Ly(k) = & [5° —E..W?dz

Ls(k) = £ f5° —E,.Wdz

e Rayleigh waves.
The same procedure holds for the local Rayleigh wave phase velocity perturbation éCg, starting
from the displacement given previously (Montagner and Nataf, 1986).

1
§Cr(k,¥) = m[Rl(k) + Ry(k) cos 2¥ + Ra(k)sin 2@ + R4(k) cos 4¥ + Rs(k)sin4¥ (18)
R

where
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Ro(k) = [5° p(U? + V?)dz
Ri(k) = & [ [V29.6A + 45 8C + 2L.6F + (Y —U)2.6L]dz
Ry(k) = & J5°[V2.B. + WY g+ (¥ -U)?Gldz
(k) = & [°[V2.B, + 35 H, + (¥~ U)2.G,]dz
(k) = & [§° Ec.V?dz
Ry(k) = & f5° E.Vdz
The 13 depth-dependent parameters A,C, F, L, N, B, B, H. H, GG, E., E, are linear com-

binations of the elastic coefficients C;; and are explicitly given as follows:

Rs
R,

Constant term ( 0 ¥ -azimuthal term: independent of azimuth)

A= PV;%H = %(Cu + Caa) + 41012 + %Css
C = png = 033

F= %(013 + 023)

L= pVS2V = %(044 + Cls)

N =pV¥ = H{Cu 4+ Cs) — 102 + :Ces

2 ¥ -azimnuthal term:

sin 2W
C11 — Caz) B, = Cig+ Cae
Css — Caa) G, = Cs4
Cis — Caa) H, = Cs

@]
>3
Itle

= O W
oo o0
ol
to|¢—lm|s-lu||-i
——

4 ¥ -azimuthal term:

cos 4W sin 4V
E.= 3(Ci1 + Cy2) — 1C - %Css E, = 3(Ci6 — Cas)

where indices 1 and 2 refer to horizontal coordinates (1: North; 2: East) and index 3 refers
to vertical coordinate. p is the density, Vpp, Vpy are respectively horizontal and vertical P-
wave velocities, Vs, Vov horizontal and vertical S-wave velocities. We must bear in mind that
A,C, L, N anisotropic parameters can be retrieved from measurements of the P- and S- wave
velocities propagating perpendicular or parallel to the axis of symmetry. Some of the previous
combinations were already derived in the expressions that describe the azimuthal dependence
of body waves (see Crampin et al. (1984) for example) in a weakly anisotropic medium.

pVE = A+ B.cos2V + B,sin2¥ + £ cos4¥ + E; sin 4W

pV3 = N — E, cos4¥ — E,sin 49
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pVie = L + G cos2¥ + G, sin 2

Therefore, the equations (17) and (18) define the forward problem in the framework of a first
order perturbation theory. We will see in the next section how to solve the inverse problem.
That means that, ideally, surface waves have the ability for providing 13 elastic parameters,
which emphasizes the enormous potential of surface waves in terms of geodynamical and petro-
logical implications. However, from a practical point of view, data do not have the resolving
power for inverting for so many parameters. Montagner and Anderson (1989a) proposed to use
constraints from petrology in order to reduce the parameter space. Actually, they found that
some of these parameters display large correlations independent of the petrological model used.
Two extreme models were used to derive these correlations, the pyrolite model (Ringwood,
1975) and the piclogite model (Anderson and Bass, 1984, 1986; Bass and Anderson, 1984). In
the inversion process, the smallest correlations between parameters of both models are kept.
This approach was already followed by Montagner and Anderson (1989b) to derive an average
reference earth model. These simple linear combinations of the elastic tensor components were
first displayed by Montagner and Nataf (1986) and they enable to describe in a simple way the
two seismically observable effects of anisotropy on surface waves, the ”polarization” anisotropy
(Schiue and Knopoff, 1977) and the azimuthal anisotropy (Forsyth, 1975).
In conclusion, the 0-¥ term corresponds to the average over all azimuths and involves 5 inde-
pendent parameters, A, C, F, L, N, which express the equivalent transverse isotropic medium
with vertical symmetry axis (more simply named radial anisotropy). The other azimuthal
terms (2-¥ and 4-¥) depend on 4 groups of 2 parameters, B, G, H, E respectively describing
the azimuthal variation of A, L, F, N.
The other important point in these expressions is that they provide the partial derivatives
for the radial and azimuthal anisotropy of surface waves. These partial derivatives of the
different azimuthal terms with respect to the elastic parameters can be easily calculated by
using a radial anisotropic reference Earth model, such as PREM (Dziewonski and Anderson,
1981). The corresponding kernels and their variation at depth are detailed and discussed
for the fundamental mode in Montagner and Nataf (1986). The partial derivatives of the
eigenperiod ¢7; with respect to parameter p, %% can easily be converted into phase velocity
partial derivatives by using:

poCc,  Cp 0T

E(E;)T =-UT 5};‘)&:
For example, the parameters G. and G, have the same kernel as parameter L (related to Vsy )
as shown by comparing R;, R; and Ra . The calculation of kernels shows that Love waves are
almost insensitive to Vsy and Rayleigh waves to Vggy. Rayleigh waves are the most sensitive
to SV-waves. However, as pointed out by Anderson and Dziewonski (1982), the influence of
P-waves (through parameters A and C) can be very large in an anisotropic medium. The
influence of density is also very large for Love and Rayleigh waves, but as shown by Tekeuchi
and Saito (1972), it is largely decreased when seismic velocities are inverted for, instead of
elastic moduli and density. We will now show how to implement such a theory from a practical
point of view, and how to design a tomographic technique in order to invert for the 13 different
anisotropic parameters, which arise as well in the plane case as in the spherical case.
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Table 1: Calculation of the various c;;¢;¢; for Love waves, with the simplified index notation.
a=cos¥;, f=smnV¥

n IJ Ci; €€y

1111 cuazﬁz.kQWz
1|22 szazﬁz.kzwz
1133 0

2112 —cpp0? BEERWE
2|13 0

2|23 0

2| 24 0

4114 c1a(—10? ).
415 crs(ia?B). Y
4|16 | cra(—af)(a® — p7).50°
4 | 24 caa(—1a?B). B
4125 cas(—tarf3?). B
4(26| cas(aB)(a? — B7).EH2
4|34 0

4135 0

4136 0

4|44 casa® 2

8 | 45 cas(—af). 2=

8 | 46 | cas(—ia)(a? — p7). 1
455 ess 3712
8|56 | cse(iB)(a?®— ﬁZ).%W’
4166 | ces(a® — 575
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4 Tomography of anisotropy

Tomography is a generic term used by seismologist for naming a technique able to image the
3D structure of an object. The object is usually illuminated by a large number of ray and its
structure is recovered by an inversion procedure. A good description of this object means that
we can find its correct location in space and its physical properties (amplitude and spectral
content). A tomographic technique necessitates to solve at the same time, a forward problem
and an inverse problem. By using the results of the previous section, we will successively
consider how to set the forward problem, and how it is used to calculate the partial derivatives
of data with respect to parameters, for retrieving a set of parameters.

4.1 Forward problem

We have first to define the data space d and the parameter space p. We assume that a functional
g relating d and p can be found such that:

d = g(p), where d is the set of data (which samples the data space), and p the set of parameters.
Data Space: d

The basic dataset is made of seismograms u(t). We can try to directly match the waveform in
the time domain, or we can work in the Fourier domain, by separating phase and amplitude on
each component:

u(t) = /oo Ai(w)e'®t=*dy

The approach consisting in fitting seismic waveform is quite general but, from a practical point
of view, it does not necessarily correspond to the simplest choice. In a heterogeneous medium,
the calculation of amplitude effects makes it necessary to calculate the coupling between dif-
ferent multiplets, which is very time consuming. When working in Fourier domain, we can
consider different time windows and separately match the phase of different seismic trains,
body waves and surface waves. We showed in Figure 9 an example of data seismogram and
synthetic seisnograms obtained by normal mode summation with the different higher modes.
The fundamental wavetrain is well separated from other modes at large epicentral distance.
The part of the seismogram corresponding to higher modes is more complex and shows a mix-
ing of these modes in the time domain. Therefore, from a practical point of view, the fitting
of the fundamental mode wavetrain will not cause any problem and has been widely used in
global mantle tomography.

The use of higher mode wavetrain and the separation of overtones is much more difficult. The
first attempts were performed by Nolet (1975), Cara (1978), Okal and Bong-Jo (1985) and Dost
(1990) by applying a spatial filtering method. Different techniques based on waveform inversion
of fundamental and higher-mode surface waves were also designed in the following years (Lerner-
Lam, 1983; Nolet, 1990; Lévéque et al., 1991). Unfortunately, all these techniques can only be
applied to areas where dense arrays of seismic stations are present, i.e. in North America and
Furope. By using a set of seismograms either recorded in one station but corresponding to
several earthquakes located in a small source area, Stutzmann and Montagner (1993) showed
how to separate the different higher modes. A similar approach was recently followd by Van
Heijst and Woodhouse (1998). This technique might be easily applied as well, to seismograms
originating from one seismic source recorded in an array of stations. Since it is necessary to fit
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higher mode wave packet, it is shown that it is necessary to recalculate the eigenfunctions at
each iteration of the inversion process. We only detail in this paper the technique which was
designed for fitting the fundamental mode wavetrain and the reader is referred to Stutzmann
and Montagner (1993, 1994) and Van Heijst and Woodhouse (1998) for recovering the higher
mode dispersion properties.

We take advantage of the fact that, according to the Fermat’s principle, the phase velocity
perturbation is only dependent to second order on path perturbations, whereas amplitude per-
turbation are dependent, at first order, to these perturbations, which implies that the eigenfunc-
tions must be recalculated at each iteration. Therefore, the phase is a more robust observable
than the amplitude. The amplitude A(w) depends in a complex manner upon seismic moment
tensor, attenuation, scattering, focusing effects, station calibration and near-receiver structure
whereas the phase ¢(w) is readily related to lateral heterogeneities of seismic velocity and
anisotropic parameters. The dataset that we will consider, is composed of propagation times
{or phase velocity measurements for surface waves) along paths: d = {ﬁ .

The second important ingredient in any inverse problem is the structure of the data space. It
is expressed through its covariance function (continuous case) or covariance matrix (discrete
case) of data Cy. When data d; are independent, Cy is diagonal and its elements are the square
of the errors on data oy,.

On the other hand, the phase of a seismogram at time ¢ is decomposed as follows: ¢ = k.r+ ¢y,
where k is the wave vector, ¢/ is the initial phase which is the sum of several terms: ¢o =
do + bs + ¢, b5 is the initial source phase, @ is related to the number of polar phase shifts,
ér is the instrumental phase. ¢ can be measured on seismograms by Fourier transform. We
usually assume that ¢s is correctly given by the centroid moment tensor solution. For a path
between epicenter S and receiver R with an epicentral distance A, the phase ¢ is given by:

b= 22t dot b5+ (19)
obs
or A R d
L w _ Wwas
S $0= T T [E CIT.0.9) (20)

Where the integral is understood between the epicenter E and the receiver R. Following the
results of the previous section, different approximations are implicitly made when using this
expression of the phase:

e large angular order £ > 1, but not too large (scattering problems). From a practical point of
view, that means that measurements are performed in the period range 50s. < T < 300s.

e geometrical optics approximation: If A is the wavelength of the surface wave at period T', and
Ag the spatial wavelength of heterogeneity: Ag > A = CT = AsR2000km.

e slight anisotropy and heterogeneity: %g <« 1. According to Smith and Dahlen (1973) for the
plane case (equations 18 and 19), the local phase velocity can be decomposed as a Fourier series
of the azimuth ¥:

6C(T,6,9)

C(T.0,9) = Ag + A; cos 2¥ + A, sin 2V + Az cos4¥ + Agsin4¥ (21)

Each azimuthal term A;(T, 8, ) can be related to the set of parameters p; (density + 13 elastic
parameters).
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pi 0CY\ 6pil(F) . .00 | 92
+(55P_i)j-—-13i sin(25¥) AR (22)

However, many terms in equation (22) are equal to zero since all parameters are not present in
each azimuthal term. Following the approach of Snieder (1996), the approximations that have
been made, mean that the perturbed medium is at the same time smooth and weak.

Parameter space: p(r)
It is quite important to thoroughly think of the structure of the parameter space. First of all,

it is necessary to define which parameters are required to explain our dataset, and how many
physical parameters can be effectively inverted for, in the framework of the theory that is
considered. For example, if the Earth is assumed to be elastic, laterally heterogeneous but
isotropic, only 3 independent physical parameters, Vp, Vs and density p (or the elastic moduli
A, 4 + p) can be inverted for. In a transversely isotropic medium with a vertical symmetry axis
(Anderson, 1961; Takeuchi and Saito, 1972), the number of independent physical parameters is
now 6 (5 elastic moduli + density). In the most general case of a weak anisotropy, 14 physical
parameters (13 combinations of elastic moduli + density) can be inverted for. Therefore, the
number of ”physical” parameters p; is dependent on the underlying theory which is used for
explaining the dataset.

Once the number of "physical” independent parameters is defined, we must be able to define
how many "spatial” (or geographical) parameters are required to describe the 3D distributions
pi(r, 0, ¢). That is a difficult problem because the number of "spatial” parameters which can be
reliably retrieved from the dataset is not necessarily sufficient to provide a correct description
of pi(r,0,¢). The correct description of p;(r,f,¢) is dependent on its spectral content: For
example, if p;(r, 8, @) is characterized by very large wavelengths, only a small number of spatial
parameters is necessary, but if p;(r,f,#) presents very small scale features, the number of
spatial parameters will be very large. In any case, it is necessary to assess the range of possible
variations for p;(r,8, ¢) in order to provide some bounds on the parameter space. This is done
through a covariance function of parameters in the continuous case (or a covariance matrix for
the discrete case). These a priori constraints can be provided by other fields in geoscience,
geology, mineralogy, numerical modeling...

Consequently, a tomographic technique must not be restricted to the inversion of parameters
p = {pi(r,8,4)} that are searched for, but must include the calculation of the final covariance
function (or matrix) of parameters C,. That means that the retrieval of parameters is contingent
to the resolution and the errors of the final parameters and is largely dependent on the resolving
power of data (Backus and Gilbert, 1967, 1968, 1970).

Finally, the functional g which expresses the theory relating the data space to the parameter
space is also subject to uncertainty. In order to be completely consistent, it should be necessary
to be able to define the domain of validity of the theory and to assess the error o7 associated
with the theory. Tarantola and Valette (1982) showed that the error o is simply added to the
error on data og.

23



4.2 Inverse problem

The equation (22) expressing the first order perturbation theory of the forward problem in the
linear case, can be simply written:

d=Gp

where G is a matrix (or a linear operator) composed of Fréchet derivatives of d with respect to
p, which has the dimensions ny x n, (number of data x number of parameters). This matrix
usually is not square and many different techniques in the past have been used for inverting G.
In any case, the inverse problem will consist in finding an inverse for the functional g, that we
will write =1, notwithstanding the way it is obtained, such that:

p=g '(d)

Different strategies can be followed to invert for the 3D-models p(r), because the size of the
inverse problem is usually enormous in practical applications. For the example of mantle to-
mography, a minimum parameter space will be composed of 13 (+density) physical parameters
multiplied by 30 layers, in dividing the mantle into 30 independent layers. If geographical distri-
butions of parameters are searched for up to degree 36 (lateral resolution around 1000km), that
implies = 600, 000 parameters. The problem is still very hard to handle from a computational
point of view. A simple approach for solving this problem consists in dividing the inversion
procedure into 2 steps (see Montagner, 1996) for a description of this approach).

To solve the inverse problem, different algorithms can be used. The most general algorithm
has been derived by Tarantola and Valette (1982):

p—po = (GC7'G+CH'GCr(d - g(p)+ G(p — po))
= (G (Cy+ GCpW G~ (d — g(p) + G(p ~ Po)) (23)

where C; is the covariance matrix of data, Cy, the covariance function of parameters p, and
(7 is the Frechet derivative of the operator g at point p(r). This algorithm can be made more
explicit by writing it in its integral form:

p(r) = po(r) + % | dr'Con (r,¥)Gile)(S7)is (24)

with S{J‘ = Cd.’j + fV dridrsg G.;(I‘]_)Cpo(l‘l,rg) G,-(rz)

and F; = d; — g;(p + fy d” G;(=”)(p(") — po(r”))

This algorithm can be iterated and enables to solve slightly non-linear problems, which is the
case for the inversion at depth. In case of a large dataset, Montagner and Tanimoto {1990)
showed how to handle the inverse problem by making a series expansion of the inverse of matrix
S. One of the advantage of this technique is that it can be applied indifferently to regional
studies or global studies. In case of imperfect spatial coverage of the area under investigation, it
does not display ringing phenomena commonly observed when a spherical harmonics expansion
is used (Tanimoto, 1985).

The a posteriori covariance function is given by:

Cyp = Cpo — Cpe GT(Cy + GC,, GT)'GCy = (GTeta+ Chyt (25)
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The choice of the parameterization is also very important and different possibilities can be
considered:

e Discrete basis of functions: For a global study, the natural basis is composed of the spherical
harmonics for the horizontal variations. For the radial variations, polynomial expansions can
be used (see for example Dziewonski and Woodhouse, (1987) for Tshebyshev polynomials).
Another possibility is to divide the Earth into cells of various size according to the resolution
one can expect from the path coverage. The cell decomposition is valid as well for global
investigations as for regional studies.

¢ Continuous function p(r). In that case, we directly invert for the function. However, the
number of parameters is infinite and it is necessary to define a covariance function of parameters
Cp(r,1r’). For the horizontal variations, we can use a Von Mises distribution (Fisher, 1953;
Montagner, 1986b) for initial parameters po(r):

cos Appr — 1

L‘Z

cor

Coo(r, 1) = ap(r)op(r') exp

where L., is the correlation length which will define the smoothness of the final model. This
kind of distribution is well suited for studies on a sphere and is asymptotically equivalent to a
Gaussian distribution when L., < a (a radius of the Earth). When different azimuthal terms
distributions are searched for, it is possible to define cross-correlated covariance functions of
parameters C,, ,.(r,1r’), but it can be assumed that the different terms of the Fourier expan-
sion in azimuth correspond to orthogonal functions, so the cross-correlated terms outside the
diagonal can be taken equal to zero.

For the inversion at depth, since the number of physical parameters is very large, it is difficult to
assume that physical parameters are uncorrelated. Then, the different terms of the covariance
function €, between parameters p; and p; at radii r; and r; can be defined as follows:

(ri=r;)?
Cr1p2(TirT5) = Opy Oy Cpypp 77873 (26)
Where (, », is the correlation between physical parameters p; and p; inferred for instance from
different petrological models (Montagner and Anderson, 1989a) and L,;,, L., are the radial
correlation lengths which enable to smooth the inverse model. The resolution R of parameters
can be calculated as well. 1t corresponds to the impulsive response of the system:

p=g'd=g 'gp' =Rp
If the inverse problem is perfectly solved, R is the identity function or matrix. However, the
following expression of resolution is only valid in the linear case (Montagner and Jobert, 1981):

R =C,,GT(Cs+ GCp, GT)™1G = (GTC4G + Cp)1GTCIG (27)

It is interesting to note, that the local resolution of parameters is imposed by both the corre-
lation length and the path coverage, contrarily to the Backus-Gilbert (1967, 1968) approach,
which primarily depends on the path coverage. But the effect of a damping factor in order
to smooth the solution, is equivalent to the introduction of a simple covariance function on
parameters weighted by the errors on data (Ho-Liu et al., 1989). When the correlation length
is chosen very small, the algorithms of Backus-Gilbert (1968, 1970) and Tarantola and Valette
(1982) are quite equivalent.
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By considering the a posteriori covariance function and the resolution, it is possible to assess
the reliability of the hypotheses made about the independence of parameters. For example
Tanimoto and Anderson (1985) and Montagner and Jobert (1988) showed that there is a trade-
off between azimuthal terms and constant term in case of a poor azimuthal coverage. For the
inversion at depth Nataf et al. (1986) display as well the trade-off between physical parameters
Vey, Vv, &, ¢ and 7 when only Rayleigh and Love wave 0 — ¥-terms are used in the inversion
process.

4.3 Practical implementation.

The complete anisotropic tomographic procedure has been implemented for making different
regional and global studies. From petrological and mineralogical considerations, Montagner
and Nataf (1988) and Montagner and Anderson (1989a,b) showed that the predominant terms
of phase velocity azimuthal expansion are the 0-¥ and 2-W for Rayleigh waves, and 0-¥ and
4-¥ for Love waves. Montagner and Nataf (1988) showed that the best resolved parameters are
L = pVé,, N = pV¥y and G,, G,, E,, E, which respectively express the azimuthal variations
of VSV and VSH-

Another important point emphasized by Montagner and Jobert (1988) and Montagner and
Tanimoto (1991) is the importance of shallow layers (oceanic - continental crusts, bathymetry -
topography, sedimentary thicknesses...) on phase velocity. In order to avoid the deep structure
to be biased by an improper account of shallow layers, it is necessary to correct phase velocity
measurements along each path. This correction is not negligible, and contrarily to the common
belief, it tends to increase the amplitude of lateral heterogeneities below the crust.

This technique has made it possible to simultaneously explain the ”Rayleigh-Love discrepancy”
and the azimuthal anisotropy, firstly displayed in the Nazca plate by Forsyth (1975). However,
the main limitation of this technique applied to the fundamental mode of surface waves is
that the radial resolution is limited to the first 500km of the upper mantle. In order to go
further, it is necessary to use seismic waves sensitive to deeper structure. Multiple reflected 5-
waves and surface wave overtones are good candidates for doing that. The first approach using
body waves obtained by normal mode summation was followed by Nolet and Kennett (1978),
Tanimoto (1990), Su and Dziewonski (1991, 1992) and Woodward and Masters (1991a,b) and
many others in the nineties. On the other hand, Stutzmann and Montagner (1993, 1994) showed
how to generalize the 2-step tomographic technique to higher modes for retrieving the global
structure down to the CMB (Core-Mantle Boundary).

4.4 Geophysical applications

The number of applications of seismic tomography is very large. Seismic tomography is the
most efficient approach to visualize, at the same time, seismic velocities and anisotropy het-
erogeneities, which can, in turn be related to temperature, flow directions and petrological
anomalies. Therefore, the different fields interested in seismic tomography are geodynamics,
gravimetry, geochemistry and tectonics. We will briefly review what kind of information can
be provided by tomographic models.
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AUM model (Montagner and Tanimoto, 1991)
VS Velocity: Radial cross-section 30 deg.
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Figure 11: Two examples of tomographic images obtained by simultaneous inversion of isotropic
parameters and anisotropic parameters (Model AUM of Montagner and Tanimoto, 1991).
Cross-sections are taken at 30° North.

Top: SV-wave velocity. Since most velocity anomalies reflect temperature anomalies, the color
scale reflects hot and cold regions at this depth. The isolines are separated by 1%.

Bottom: £. In terms of interpretation, warm colors reflect the radial or sub-radial flow (up-
welling or downwelling), and cold colors are related to horizontal or sub-horizontal flow.
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¢ Geodynamics

The most popular application of large-scale tomographic models is the understanding of mantle
convection. Seismic velocity anomalies can be converted, under some assumptions, into tem-
perature anomalies, density anomalies but also into chemical or mineralogical heterogeneities.
Since Hager et al. (1985), numerous studies have been devoted to the correlation between
3D seismic velocity structure, the dynamic topography, the geoid and the gravimetric anoma-
lies. The main advantage of anisotropy measurements is to provide the principal directions
of the strain rate tensor, which are related to flow directions (Anderson, 1989). Therefore,
the simultaneous use of seismic velocity and anisotropy heterogeneities enables to spatially
locate temperature and petrological heterogeneities, and their directions of flow. Montagner
and Nataf (1988) present a method for inverting a local symmetry axis. Montagner and Jobert
(1988), and Hadiouche et al. (1989) have been able to plot the 3D-distribution of this axis,
respectively in the Indian ocean and in Africa. Montagner (1994) presents what can seismic
global tomographic models tell us about mantle convection and what robust features can be
drawn from the different available models.

Most tomographic models agree, that down to about 300km, the deep structure is closely
related to plate tectonics and continental distribution. Simultaneously to the SV-wave velocity,
3 anisotropic paramaters are well resolved: the ¢ parameter expresses the relative variation of
Vsy versus Vg, providing the tendency for the flow to be rather radial or horizontal, and the
G, ¥s parameters express the azimuthal variation of Vsy. Figure 11 presents 2 vertical cross-
sections for Vsy (figure 11a) and ¢ (figure 11b) from model AUM (Montagner and Tanimoto,
1991), which illustrates the most robust features of the upper mantle models published so far.
In the upper depth range (down to 200km), plate boundaries are slow: ridges and back-arc
areas are slow, shields are fast and seismic velocity in oceanic areas is increasing with the
age of the seafloor. The comparison between figure 11a and 11b, shows that both maps are
poorly correlated. That suggests that they are conveying independent, but complementary
information.

Figures 12 display horizontal cross-sections at 200km depth for Vsy, £ and GG parameter. The
amplitude of SV-wave azimuthal anisotropy (G parameter) presents an average value of about
2% below oceanic areas (Figure 12c). It can be noted a good correlation between seismic
azimuthal anisotropy and plate velocity directions given by Minster and Jordan (1978). At
the stage of interpretation in terms of mantle convection, it is important to consider these 3
maps simultaneously. For example, the existence of a maximum in radial anisotropy in the
depth range 200-300km below shields suggest that the root of shields is located in this depth
range, whereas some fast velocity anomalies are still present below some continents ( Montagner,
1998; Babuska et al., 1998). As depth is increasing, the amplitude of heterogeneities is rapidly
decreasing, some trends tend to vanish, and some distinctive features come up: Fast ridges are
still slow but slow ridges are hardly visible and back-arc regions are no longer systematically
slow. Large portions of fast ridges are offset with respect to their surface signatures. Below
300km of depth, a high velocity body below western Pacific can be related to subducting slabs.
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Figure 12: Two examples of tomographic images obtained by simultaneous inversion of isotropic
parameters and anisotropic parameters (Model AUM of Montagner and Tanimoto, 1991).
Top: SV-wave velocity at 200km depth.

Middle: £ = N/L — 1 radial anisotropy at 200km depth.

Bottom: SV-wave azimuthal anisotropy expressed by parameter G at 200km. It can be noted a
good correlation between directions of maximum velocity and tectonic plate velocity directions.
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In order to enable a quantitative comparison with other geophysical observables, tomographic
models are usually expanded in spherical harmonics according to:

e e v

I!'ﬂ'm:r m=l

f(r,6,8) = Z 3T e (r)Y(8,¢)

=0 m=—!

where r, 0, ¢ are the spherical coordinates at r and ¥;"(6,¢) is the spherical harmonic of
angular order £ and azimuthal order m. Another important parameter is the power spectrum
Py(r), which provides the amplitude of anomalies at different degrees £ at different depths r.
In the first 300-400km of depth, the power spectrum regularly decreases with decreasing wave-
length. This decrease can be described by a [~! law ( Tanimoto, 1990). At greater depth, in
the transition zone, degree 2 (Masters ef al., 1982) and to a less extent, degree 6 distributions
become predominant. It is also found that degree 4 of radial anisotropy (Roult et al., 1990;
Montagner and Tanimoto, 1991) is the most important degree for this parameter. A simple flow
pattern with 2 upgoing and 2 downgoing large-scale flows can be invoked to simply explain the
predominance of these different degrees (Montagner and Romanowicz, 1993). Therefore, below
the apparent complexity of plate tectonics, mantle convection is surprisingly simply organized
in the transition zone. Between 400 and 1000km, these large-scale flows are not independent
from the circulation in the first 400km but are related to the most tectonically active zones (fast
ridges and slabs). This simple flow pattern, usually called degree 2 pattern, is also present in
the lower mantle but offset with respect to the one in the transition zone. However, the nature
of the power spectrum in the lower mantle is still subject of controversy (Su and Dziewonski,
1992).

It is also suggested that tomographic degree 6 is not independent of the deep degree 2 but
might be a consequence of this simple flow pattern (Cazenave et al., 1989; Montagner and
Romanowicz, 1993). Since the hotspot distribution displays a large degree 6 (Richards and
Hager, 1988), the good correlation between hotspot and seismic degrees 6 favors an origin of
most of hotspots in the transition zone. However, 2 superplumes in Central Pacific and Central
Africa have their origin in the lower mantle. As shown by Vinnik et al. (1997) in the Pacific
Ocean, these superplumes might feed other plumes, by a branching effect in the transition
zone. The same branching effect was evidenced below the lithosphere in Africa (Hadiouche
et al., 1989), where the plume below the Horn of Africa is feeding other small plumes in
western Africa. However, a complete understanding of the structure of plumes is still missing.
The application of new techniques based on the scattering effects of plumes on surface waves
( Capdeville et al., 1999) or body waves ( Ying and Nataf, 1998) should provide some answers to
this difficult issue.

There seems to be a global decoupling in the mantle, between upper structure and lower struc-
ture around 800-1000km (Montagner, 1994), or around 1700km (van der Hilst and Karason,
1999), but there is some radial continuity of seismic velocity in the whole mantle in some places
where slabs are present, and for 2 superplumes in central Pacific and Africa. All these issues are
still subject of vigorous debate and call for more reliable tomographic models in the transition
zone. However, there is a good consensus to say that the mantle cannot be divided into inde-
pendent convecting cells but is characterized by imbricated convection, where different scales
coexist and where exchange of matter is possible.

e Other applications in Geochemistry, Tectonics and Petrology
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There are some attempts to make a quantitative comparison between the major-element chem-
istry of basalts erupted at mid-ocean ridges (MORB) and upper mantle shear wave velocity
(Humler et al., 1993). The main advantage of this approach is that it can provide a way for
locating at depth the reservoirs displayed by geochemists. For instance, it is found a strong
correlation between basalt chemistry and seismic velocity at depths 100-170km, for lateral wave-
lengths of 1,000- 2,400km, supporting a common thermal origin for the 2 types of signal. This
kind of simple approach can be easily generalized to other types of geochemical parameters
such as isotopic elements.

Seismic profiles have long been used to infer the mineralogy of the mantle (Birch, 1952). The
competing petrological models for the upper mantle and transition zone are pyrolite (Ringwood,
1975) and piclogite (Anderson and Bass, 1984, 1986). So far, the isotropic seismic velocities
can be explained down to 400km by a pyrolite model, but in the tramsition zone, indiffer-
ently by pyrolite or piclogite. Montagner and Anderson (1989a) investigated the correlations
between anisotropic parameters for realistic mineralogical and petrological models of the up-
per mantle. They show that the anisotropic parameters involved in a radiallly anisotropic
medium A,C, F,L, N are strongly correlated but that the 8 other anisotropic parameters
B, B, G, G, H, H,, E,, E, involved in azimuthal anisotropy are less correlated. A complete
exploitation of 3D anisotropic tomographic models has not yet been done. This kind of ap-
proach might provide in the next future some important constraints on mineralogy in the deep
mantle.

The strain field near the surface is probably different from the deep one and could also be rejated
to the strain field prevailing during the setting of materials. This shallow anisotropy could be
very useful for understanding the strain field respomnsible for surficial tectonics. For example,
seismic anisotropy could be used for explaining geological observations, such as mountain range
building or more generally continental deformation. Such an application is attempted by Vinnik
et al. (1989a,b; 1992), Silver and Chan (1988, 1991) and Silver (1996) by using anisotropy
derived from SKS splitting. The poor lateral resolution of large scale anisotropic tomography
can be considered as a strong limitation in continental areas. This technique can only be
efficiently applied to areas where large scale strain and stress fields are implied. By applying this
technique to Central Asia, Griot et al. (1998a,b) were able to discriminate between 2 extreme
models of deformations, the heterogeneous model of Avouac and Tapponnier (1993) and the
homogeneous model of England and Houseman (1986). They show that the heterogeneous
model is in better agreement with observations in the first uppermost 200km of depth, whereas
the homogeneous model better fits the deep anisotropy below 200km. This result provides a
rough estimate on the thickness of the continental lithosphere.

All these examples show that that anisotropic tomography is still largely unexploited by the
community of Earth scientists and will constitut an invaluable source of information and inspi-
ration.

5 Conclusions
We have presented in this paper some basic first-order asymptotic theories which make it

possible to derive anisotropic tomographic models. It was also shown that the phase information
can be more easily interpreted in terms of structural parameters than the amplitude information.
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That is the reason why seismologists primarily worked on the phase of seismograms rather than
on its amplitude. This fundamental distinction between phase and amplitude results from the
Fermat’s principle (or Rayleigh’s principle) which states that the propagation time (directly
related to phase) is stationary to second order with respect to path perturbations, contrarily
to the amplitude of waves. By applying the anisotropic technique to setsmic data which makes
use of the full potential of the 3 component seismograms, seismologists are able to image not
only temperature anomalies but also to map the flow of matter in the Earth mantle.

The next steps will consist in taking a simultaneous account of phase and amplitude of seismic
waves. By using new theoretical developments ( Cléuvde and Lognonné, 1997), it will be possible
to calculate synthetic seismograms 1in complex @ priori laterally heterogeneous media and to
make a direct comparison with seismic waveform in time domain. And it will be possible
to correctly assess the effect of scattering on seismograms. Notwithstanding these theoretical
improvements, it should be desirable to increase the lateral resolution of tomographic models,
in order to obtain images in a broad spatial scale range. This will be done, firstly, by installing
broadband networks at smaller scale (wavelengths smaller than 1000km), and secondly by
implementing an ocean seismic network, which will provide a better coverage of the whole
Earth by seismic waves.
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