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B. Introduction

1. Mechanical models for time-dependent stress—-straino

relationships
The concepts of viscoelasticity (and some of the

) can be introduced simply in terms of two

mechanical models

basic components,

a spriog ip which stress (force) is
linearly related to strain

(extension)
F = E a

where F is the force, E is the

elastic constant of the spriong,
and a is extension. {The nomen-
clature follows Bland).

ip which stress is linearly
related to time Tate of change

of extension
da

A

F = U JA¢

a dashpot

To illustrate these models and combipnations of them, let us

suppose that a step-function of applied force 1is used

Fw
fo
+
and inquire as to the resulting extension or strain.
. Extension Force com-
del
Mode® . Extepsiol computed for puted for
specified specified
force extension
copi ol
privg
F..,E_ F:ECLJ
f o = F/E
. t This is the basic model
- used in elementary
- elasticity theory.
AN,
LY
F=N\ T

[_-j er o= —\—[F A‘t"
This is the basic model

t used for viscous fluid
theory.

- ¥



Vil.Doedl (Cul.y ‘

Model Extension

Maxwell Solid (iﬁ

ﬁﬁl
o /E

Voigt Solid
al®)

/e

"Standard Linear
Solid"

Extension, for Force, for
specified force specified
extension

F ! ‘el 2 2
a=g+?\”ﬁ:‘k W E 3T It

Note the implication that extensior

increases without limit,.

This model has been used for
long-time stresses such as post-
glacial uplift by Gutenberg and
others. See Walcott, 1970,

Jour. Geoph. Res. v. 75, p. 394l.

Application to earthquake
recurrence times: Bonafede, 1982,

da
e *‘ES‘QA{' =S\F‘H' F=Ba +1\ 3%

This model has found favor with
short-period phenomena such as
seismic wave propagation (for
example, Collins, 1960,
Geophysics, v. 25, p. 483).

This more versatile (but more
complex) model includes all of
the preceding as special cases.

Comment here conterning the terms viscous, viscoelastic, etc.

—-
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2. Linear vs non-linear viscoelasticity

In all theories ot viscoelasticity, we consider stress-
strain relationships of the form
F (o3 et) =0
where ¢ and & aré stress and strain, respectively. Elasticity
theory as used in earlier sections is the special case,
(e =0
Linear viscoelasticity (or elasticity) theory is

the special case in which we require that F involve only

first powers of stress and strain, excluding terms like

2
i
o & € o
The differential equations do remain linear, however, if

terms appear of the form

A%
5"' e T

The advantages of retaining a linear theory, so long

as it can accommodate the observations, include

1) The mathematics is usually simpler.

2) Lipear transforms such as Fourier and Laplace*can be used.
3) Effects are additive and commutative. We can apply forces
in any time sequence and obtain the same final result,
i.e. the process is commutative. The additive statement

may be put: If stress ¢ produces strain &, and

stress O. produces strain €. , then stress o 4+ ol will

1
produces suyrain &, + &,

-

The property of superposition is often taken as
the defiping criterion for linearity; see for example
Savage and Hasegawa (1967).

A practical implication of livnearity {Aki aod Richards, p.
168) is that a wave may be analysed or synthesized into its

Fourier components, each of which can be studied separately.
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3. Elementary seilsmic wave propagation in ap attenuating medium

Preceding sections have assumed the simplest possible
stress-strain relationship, namely Hooke's Law ip which stress
compovnents are linearly related to strain components.

The stringency of this assumption can be relaxed ipn various
ways, as touched upon in section IIl.A.5. The theory of finite
strain, for example, permits the stress-strain relationship to
include higher powers than the first, or ¢ross products (which
means that the corresponding theory has become non-linear
elasticity).

In the present section, we extend Hooke's Law to ivclude
time-dependent stress-strain relationship. This does pot
mean that we must give up linear elasticity, with all its

advantages of superposition, Fourier analysis, etc.

The consequences for wave propagation may be summarized

as follows:

1) The most significant effect is a frequency-dependent

attenuation of the wave as it travels, usually represented

by an amplitude multiplying factor

- ot P
e -

where D is the path distance and « is the attenuation
coefficient. )

Experimental data suggest that « is freguency dependent,
and that lipear dependence upon fregquency is a good
approximation in many earth materials over a wide frequency

range,

Since a transient waveform contains many frequencies,

it follows that the transient waveform will change shape

as it preopagates.
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2) The propagation velocity is also frequency-dependent.

The effect is second order so the measured travel
times will bot usually be affected significantly.
However, the cumulative effect ob pulse shape for
a trahsient waveform can be very significant.

If velocity depends upen frequency, then we have
dispersidn. We will call this "material dispersion”
to distinguish it from "geometrical dispersion” such

as we ancountered in section V.

A practical counsequence of this effect for
earthquake seismology and the composition of the
deep interior arises when we attempt to compare
velocities computed at short periods (vbody waves)
from velocities cowmputed at long periods (surface
waves and pormal modes of oscillation). As noted
by Dziewonski (1979), the relative difference between
velocities at a period of 1 hour and 1 second is of

the order of 1% apd must be considered very significant.

Ip the present section, we limit our attenticn to
(1) plane waves propagating in:the x-direction (to avoid
unnecessary complications in arriving at the underlying
principles), and (2) a single freguency, ¥.

We will demonstrate that both the atten . wuation factor
and the velocity must depend upobt the attenu ation constants
as well as the elastic coonstants.

In subsequent sectioobs, we will consider transient
signals which include many freguencies. Since the attenuation
constants and the elastic constants will, in geveral, be
frequency-dependent, it will follow that the attenuation factor
and the velocity must also Dbe freguency-dependent. We will
find further that their dependences upon frequency wust be
related to each other (so intimately that one can ip principle

be computed from the other), in order to satisfy the condition

of causality.
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We start by reviewing one-dimensional sipgle-freguency
wave propagation ib a purely elastic medium.

For either elastic or apnelastic medium, we have a
one-dimensional eguation of motion

>u >0
4

:Tt”'_ > A 3V
. ——
and a one-dimensional definition of strain e; - 4

X

The elastic case diverges from the anelastic case at

the stress-strain relatiooship. For the elastic case, we have
= E€&
leading to
L
d > "E}u'z—
9,.(‘:1' &X

This has a general sclution

U\:"FOT:};';: withvo:lj-‘fi

of which a particular example might be

A = WU, Coa W (%-{5;>

We observe that thgeg§plitude is independent of distance
and that the velocity does not depend explicitly upon freguency
(although it is possible that E or d might do so, in which

case velocity would also}.

The avnelastic case uses a differant stress-strain

I‘elatlonstllp, fOI‘ exalllple

el @

td

oR

Ton § =

ﬂ‘\‘ﬁ“

whiech upon substitution gives
1
- (E3LE
( Y Sx

aia
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Let us seek a trial solution of the form
— ol X fwlt - _;)

u:uoé -

which suitably represents an attepuating wave, We substitute

and find, after some tedious algebra,

ol _‘*i‘to;{:,

v
| .
v V& —— T Tad
d cos — Vo
corresponding to Kolsky's equations 18 and 17. We note that
for E2 = O these reduce to the elastic-medium results above.

For small attenuation, we c¢an use the stapndard series

expansions,
. = X- - -~
Sin X x1'¥
cos X* -
3 x -
(1% = A

. 2
and fiond that, accurate to terms 1D 6 ’

S'L
W S[\-’”*”j
rAY ¥

@T‘ [H-f;gl*"]

b

Iy

V

Discussion:
Recalling that % is a measure of the degree of anelasticity

(% - O in the elastic case), we observe that attepuation depends

upon it to the first order butvelocity only to the second order.

If 5’ is independent of frequesncy, then it follows that
V is independent of frequency and < is proportional to w+l.

If we wished to express the attenuation in terms of Q

rather than , then using o
i%—itmn 55 — gﬂ

we conclude that the attenuation term has the form
‘,JK

6"‘27&

which agrees with Aki apnd Richards, p. 169.

Alterpative derivation: Minster,p.l168, reference in VII.A.L.
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C. Altermative (but equivalent) parameters which may be

used to represent the attenuating properties of a medium

1. Complex wvalues for velocities or elas tic constants

Basically, we require a mathematical model which
describes a time lag or phase shift between stress and strain,
This cap be accomplished by makipng into complex guantities

one or more of the followipng:

elastic comnstants
velocities
wave numbers

{even frequencies)

The problem is analogous to an electrical circuit ip which
the direct-current resistance, V = RI, is generalized to

an alterpating-current impedance, v = 2I with Z = R + iX.

For example, suppose that the stress is sinusoidal

and that the strain lags behind it by a phase angle ¢f
fwt
o = 6. €
La”f-f)

£ = & €

Thus we cap write

Cy’; ‘Y EE

with

We note that El is the constant applicable to the purely
elastic situation where E2 = 0. Thus it is called the dynamigc

wodulus, and E2 is called the dynamic loss.

In sectiopn VII.E.3, we will show that E; and .E, are
pot independent quantities, and that knowledge of one over the

entire frequency range will define the other.
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As another exawmple,

one-dimensional plane wa

(cont)

suppose we wished to describe a

ve with an attenuation factor,

— XX (w(t = %)
U (&)t) = (4a e g

We observe that this can be written as

((wE -k

ux,t) = u, €

if we simply define a complex wavenumber

ways.

Bl —— ¢ oL (e
c (W

The same result can be achieved ip maby other

For example, White (1966, p. 95) replaced elastic

constants with

A —> A + ¢ Sl N

G > A v s AT

leading to stress-strain relationships like

{(Note:

?’.
£ - i),;+c S%Q@H(“)j GX(LJL
XS -
sgn(x) = +#1 if x>0 apnd = -1 if x< 0.
When we look at the Fourier transforwms, we see that
this term is required to keep strain and stress

as real funmctions of time)
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This approach leads to complex velocities (see for e
If we consider shear velocity

xanple

Yamakawa apnd Sato, 1964).

for illustration (compreSSional velogcity proceeds in the
same way), then
Yo
. *
¥ Pud + ¢ H («)
_ N
w —_—
VS (_ ) 2
- \/?’

Vi
}A(le \ 4 ¢ "‘::
=[“‘5‘ [ ”i)

\
| w
Elastic Qs

velocity (Q will be intro-

v duced in pnext
5 section)

Vo

- o
\/S @ = Ve [‘ * Q¢

¢

This feoermulation is widely used in attenuated surface

Schwab and Kpnopoff (1972,p.146) show that the

layered media can still be used for

wave studies.
Haskell watrix method for
attenuating media with mioor modifications if we introduce

complex velocities,

__E._- 2 _.1—'.- { AL _'1_'_ = Lﬂ'ﬂz‘
P AT & 4
_J.-— = _.J— -k B ——-L’" Z,-glg"
g B Rp
___}_.. - _l__ — < C_b --L—' = ZCI C?—
C C, Oo
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2. Differential operator representation

A quite gepneral formulation of the stress strain relationship

for linear fupctions 1is

N € 5T
. L -
aod"+ 'Qt >t N

(Kolsky, 1960, eq. 1ll.
Hunter, 1960, eq. 38.
Bland, 1960, eq. 86;
Alfrey and Gurney, 1958, eg. 36}.

This may be abbreviated
?o”-Qé_

>
Poag+a, 5377

= -
G * by + b < "

Comparing it with the complex modulus representation, we

see the equivalence,

b, & (cd b+ @ by +-

F w +{ Bl =

oz
a, 4-&(@)0\( + Q’“’) a, + -
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We note that all of the mechanical models in Section VII.B

are described by differential equations of this form:

9o _ L, 9€
Maxwell solid: a, o+ a, 3 T ' 3E
Voigt solid: Q, 0 = b, e +5 :3"3__
Standard linear Q.o+ Q 20" _ b, &+ b, %3;
solid: ° "ot '
: e e
I g 271, 20 4TS

equation 9.1}):

Simplified equations such as these may be useful in _
matching experimental results over a limited frequencf
range, but none of them is universally useful. Kolsky,
page 68, notes that the standard linear solid is‘mucb

more satisfactory for wave propagation than either the
Maxwell or Voigt solid. The basic question is, how wide

is the frequency spectrum associated with the source; if

it is not too wide, then it may be possible to adjust the
constants in one of the simpler models to give satiéfactory

agreement with observations,

Experimental results can of course be matched as cléself
as desired by taking enough terms in P and Q, but the
mathematics quickly becomes impo'ssible._ What is eciuivalent,
the model may be rgeneraliz-éd by taking a large number of
Voigt or Maxwell :"elemnnts in series or parallel, each with
its own characteristi constant (Kolsky, p. 69; Bland, p. 7).
‘The viscoelastic behaviour is then defined in terms of a-
distribution function of retardation times (using Voigt
models in ser¥s) or relaxation times (using Maxwell models

in parallel). o .
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3, Q; the Specific Dissipation Function

References:

Aki and Richards, p. 168

rameter used 1io geophysics to describe

The most common pa
y with the Q" for an electrical

attepuation is Q. By avnalog

often used to specify the sharpness of a resopant

circuit,

circuit, we define Q for anelastiecityc=as

d ip takipng a specimen through

Energy dissipate
lete stress cycle

2w one comp

red elastic energy per unit vol
te stress cycle.

Q Maximum sto ume
during one comple

Q is sometimes called Specific Dissipation

The recigrocal of

Function.
Q is relate

d to other modes of representing attenuation as:

£
complex elastic modulus: A = - S = = = 2
CQ 1=} TT’
attepuation coefficient: -~ = o
- ALR
logarithmic decrement: A = 2w LS
Lo

Comment: Exploration seismologists prefer to express
attepuation in db/cycle, as for example 0.2 db/cycle.
Numerically, attevuation in db/cycle is about 27/Q.

Persong who wish to see attepuation discussed 1D

117 et seqg in

Comment:
an exploration context should see p.

Anstey, N., 1977, Seismic interpretation, the physical
aspects: IHRDC, 625 pp.
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Let us derive the last two relationships for the

case of a damped harmonic wave with displacement u:l

u=Ce "% cos (kx-wt+ (3],

At a fixed time, the displacement may be graphed as:

A

Unless the damping is excessively heavy {so that the peaks:
do not occur exactly at the peaks of the cosine funection),
the peaks occuf: at |

kx; = some constant, say K, and

k.X2='K+2.Tr;

so that the logarithmic decrement becomes
L ",
A= .
‘dCX\dXL)
= ﬂ,y\ [e.

_ =
B,
T XC where ¢ is the propagation
L velocity.

But since the peak stored elastic energy is proportional
to (displacemerﬁ:)z, we have '

ZII/Q = (u-lz - u22)/u12 =1 - (uz/ul)z = 1 - e"‘2A

which, for small A , may be expanded in series
to yield

2
Q ™
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VvII.C.3 {cont)

It should be noted that there are several definitiowns

for Q@ and that they are not all eguivalent. Aki and Richards
p. 168 discuss it; see also O'Connell and Budiansky, 1979.

Matters are further complicated because a particular

earth material will have different wvalues of Q for
- compressional waves, CN
- shear waves Qp
- Rayleigh waves (Qp
- losses in pure cc>m'p::'ession(59#k

_ losses in pure shear (QP

and in a layered or otherwise inhomogeneous medium ther

be an effective Q3
The following relationships are given by Jordan (p. 8,
in Dziewonski and Boschi, 1980):

-1 -1
Qﬁ } 6?)‘\ -1
qan <[
1 4 " +- 4= N
o :D *’;A *

(Note the introduction of Qil = 1/Q as a more fundamental

quantity thap Q itself; this usage is increasingly common).
Ipn many earth materials, losses in pure compression

are often much smaller than losses in pures shear,

-\ -1
< Q
QA .
In that case, if we take for illustration
we see from the above that

J-.—:O‘?_.S
which implies %7 % Koo,

-

—1

-\ 4
QOL - E]’QF

e will

T will give expressions for this in VII.G.k4.
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4, Creep function and relaxation function of Boltzmannb

This approach was first set forth by Boltzmano (1876)
on the basis of linear superposition, and it remains a
satisfactory starting point from a physical point of view.

We assert that the mechanical behaviour of a material
is a function of its entire previous loading history, and
that if a material is subjected to a pumber of separate defor-
mations, the subséquent behaviour of the specimen cau be cal-
culated by a simple addition of the effects which would be
produced when the deformations took place singly.

In the limit, we can break an arbitrary force function
into small increments and express the result as a summation
or integral.

If the deformation is three-dimensiopnal, then both
shear and dilatational strains will occur; the effects of

these must be treated separately.

An elementary creep function, % (t)s
Suppose that we apply a step function of stress to

a body, 0’(4:)

%

. < t

(For example, suppose we pull on one end of a bar

and measure the elongation:

Ty

o= oz Rt

a
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The resulting strain will arise from three causes:

(1) elastic, where E is apn elastic constant
T H(&-
e

(2) lobg term viscous flow, if any

L (k) RETY :
n

(3) creep, approaching a finite strain at ‘infipite time

(elastic plus
creep, without

viscous flow)

T

£ - % [\ A \{J(ab-—'ta)] H@:-*o)

where ‘P (t) is a positive, monotonically ipbecreasing function -

with

\P(aﬂ finite.



An elementary relaxation functiowo, Fglt).
Suppose that we apply whatever stress is necessary to

produce and maintain a step function in strain

€®

GL{) = éo H ('b't)

where @(t) is a positive, monotonically increasing function,

s Ee [1- @) HES

o t® £ I

Generalization to an arbitrary ioput time function.
Consider, for example, the strain produced by the

following stress input:

st AL, At

|
|
|
|
|
Z
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Measured at to, the contributions from the stress increments are

Fe@) = ba ot BT AR

_+ -25t)
+ Q)OE_ + KSOE ¥ ({%
Ty
d/ multiply by dt(1/dt) and integrat

= &7 J

to
ol | 0 v @@t
with 5 (4 = _jﬁg

<, .
J o p @o_i) 4%

We can use similar arguments for the relaxation function,

arriving at the "Boltzmaonn formulation of the law of

superposition":

—

O:(fo) + f o ¥ (Y dt

—

E &)

’é sty - EW __jg‘kt) ¢t 4T



VII.C.4 (cont)
where we have changed the upper limit from

to to <@ since both of the functions are O for negative

values of their arguments.

The creep and relaxation functions are interrelated,

as may be seen by taking Laplace transforums (Minster, p. 162)

= g =
L+s Pl - 5
We note that the integrals are of the form of

convdution integrals:

o}

&+ VY

G pit,-v 4t
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VII {cont)
D. Seismic¢ pulse propagatioun,

the causality and l1inearity conditioons

and an introduction to -

1, An example to illustrate the consequences of

failing to satisfy causality
Let us consider a agne-dimensional plane wave

propagating as
Lk twlE 7 TA)

and let us take V=constant and o

W
. -

T a2aY

Assuming the signal is a pulse, we will need ab integral

over frequency.

we can call the waveform £(0,t) which

At distance x=0,

a Fourier transform F(O,w).

will have
e waveform will have attenuated by

At distance x, th

ap amount — Joo!
—i= X

C

apd will have beeD phase shifted by anp amount

-1 %
6’ Y
the waveform at x will be the
ol X AIRE.

so that ipnverse Fourier transform
- Tav s gw+
e e Flwe du

£y - I)% £

a linear function of fregquency,



VII.D.1 {(cont)}

As a specific example, let us take f£(0,t) = g}t) with

trapsform F(O,w) = 1. Using symmetry properties,
@ _ WX
\ ( -2y A
P — ) € cos w0 (V)
o

This is a standard integral of the form

QX ax . s
Jﬂ o Cos bX SX T oL~
O
hence
X

! #ﬂ_ﬂ,,—ﬂ—*’"‘_"_ppﬂ—_fi
O v ) (¢-%)

At a fixed X=X, this looks like

F&, D

t= L/@

We cbserve that this has pon-zero value even for t = - 00,
which is obviously impossible for a source impulse which
occurs at t = O,

This illustrates a "pnonw-gausal" solution, ove in
which the effect appears before the cause happens. The
requirement that:po effect can appear before the cause

happens is called the requirement of "causality".



11

we ol

vII.D.1 {cont)

The introduction of causality leads to the requirement
.that velocity be frequency-dependent, i.e. dispersion is
required.

The following two examples show computations with and
without causality. The first example is a model study obn
plexiglass; circles are observational data points. (;{) shows
the computed results without causality condition, whereas (i&)
shows the same resiults with it,

with observations as well a causal time signal (Hunter, 1960).

o)
T

o
(4]
T

(i)}

PARTICLE VELOCITY (v/¥on?

G ] <] o

o} t :
_2 o 2 4
. TIME —units of kx

Fig. 10. Comparison of theoretical and experimental pulse shapes for perspex.

(i) Symmetric theoretical pulse neglecting variation of phase velocity with in:.qu.ency.
(ii) Theoretical pulsg obtained numerically by Kovsky [1936] including variation of

phase velocity with [requency. )
O Experimental results for perspex at ¥ = §00 em, with hx = 30 us (KoLskY, {19561).

Related to this is the following figure which displays
cumulative degradation of the waveform following multiple

transits of a highly-attenuating rod:

Fig. 8. Oscillograph cecord of dispiacement, of end of polymethyl methacrylute
rod 46 ¢m long end 1.25 cm diameter when 5 mg charge of lead azide has been

Astnnated at opposite end. (Period, of timing wave 500 microseconds.)

producing much better agreement

L)
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The second example is from Wuenschel (1965) apnd shows
waveforms taken at various depths in a drill hole through
the Pierre Shale in Colerado. "A'"shows the signal observed
at a depth of 91 feet. This signal is then used to predict
the signhal to be expected at a depth of 491 feet., This is
shown in "B" as computed without causality and ip "C" as
computed with causality; the actual signal observed at 491
feet is shown as a solid line ipn both cases.

It can be seen that the use of a frequency-dependent

velocity is required to produce satisfactory agreement.

A

—
[

AN

T~ 03¢ OBSERVED

— 01323

—_— ————— -,

\.- PAEDICTED USING AMP. ATTM. ONLY

— O0TOZS

401 OBSEAVED Ly

g, 3. Comparisen between predicted and observed pulse waveforms. Rec.ord T.

-
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VII.D (cont)
2. Summary of causality and linearity condition requirements
Discussions of seismic wave attepuation often lead into

discussions of three common assumptions:

(1) The attepuation process is linear.

I discussed this and cited references in VII.B.2. Aki and
Richards put it (p. 171): The indirect aevidence for retaining
lipearity is simply that it has led to self-consistent results
in so many careful analyses of seismic data.

It should be poted, however, that some physical models for

attepuation are non-livear, as for example solid friction model.

(2) Q is independent of frequency.

Sipee the attepuation constant is given by

i
A = 2vYa&

this is eguivalent to the assumption that o is proportional

to freguency to the first power.

We will return to this io connection with observational
data, section VII.H. Current cousensus is that, ip the seismic
frequency band, Q is either coostant or only weakly dependent
on fregquency.

It should be poted that a constant-@ atteouation factor
introduces unexpected difficulties into mathematical models

of attepuation. ~We shall see some of these in section VIL.F.

(3) Caunsality must be satisfied.

"Causality" describes the reguirement that av effect
eannct happeu before its cause has taken place. In the context
of seismic wave propagation, we cab say that if the signal
from a source at r=0 propagates with a velocity V and 1if the
signal is O prior to t=0, then the received signal must be
0 prior to &t - r/V.

We shall see that impocsition of causality leads to

two results:
1) Velocity is dependent upon freguency, i.e. dispersion exists.

2) The attenuation coefficient and the velocity are interrelated,

and in fact knowledge of either one over all frequencies

suffices to compute the other.



VII. (cont)

£. Interrelationships between attepuation and velacity
imposed by the causality condition
1. A digression oo the Hilbert Travnsform and its
geophysical applications**
a) Basic relationships

The Hilbert transform of f(t) is

a
%l?(ﬁj ) N H;EJZE. d7°
v -t
~ep

which is upusual among transforms in that one time function
is transformed into another time function. We note also that
the integrand has a singularity at ¥ = t, so we may have to
take the "principal part" of the integral, 5

-

The transform operation can be expressed as a convolutiop

—1
- Fo % (52
as can be seen by substitution inte the gemeral formula
for convolution. Taver et al, eq 15, give a sampled-data
version of this formula.
In the Fourier transform domain, if F(w) is the

transform of f(t), then the transform of f'{(t) is
1 . . (w)
Ew= ¢

This reveals a simple physical interpretation for the
Hilbert transform, namely a 90° phase shift of all frequency
components in the original signal. {The "sgn(w)" is required

to provide convergence of the integral for negative W) .

%% References cited in this section are given in section VIL.A.3J.

-
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VII.E.lalcont)

Some sample Hilbert transform pairs (Bracewell,p.Z?Z;Ansell,App
£{t) £rit)
S T ces T
g o Swe (ot *15)
ol ot
cos € -
: A
Ces P costat*”z
-
5\t LS
! s T ~1)
dsmt _%_CCO
xLCa*+IQ
yiat e
G

We surmise that a seismic signa

Hilbert transform may undergo some dramati

examples from Pilant, p. 91.

We can generalize

to a constant phase shift of ad.

S ces @ -

if ¢ is a phase delay, or +

1 which is converted to its

¢ changes. Show

from a constant phase shift of +T /2

The result (Pilant, p. 92) 1is

§'y s d

if ¢ is a phase advance

(Aki and Richards, P. 158 bottom). We epcounter phase delay

nce when a body wave touches

ip attenuation, and phase adva

a caustic.

€)



Example of:

1) A convenient source waveform, with three adjustable
parameters.

(For this example, a 20hz pulse, the parameters used were

¥m = 20 hz
Yy =3
Vo= 0°)

2) Hilbert transform of a function, right side.

(Source: Langston and Lee, BSSA v. 73, 1983, p. 1851)

S(t) = e @~ cos(2wfur + v)

H[S(t)] = —e~ =" sin(2xfnr + ¥)

S (M H{S(T))
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We can proceed further by carrying out the integration in

w in previous equation, Pilant 9—36.

f®: —~f4>tc)¢n fé’ T smuty e

ergence of the integrand by multiplying

- .
e w, and then letting oL ~=y O

where we handle the div

by the convergence factor,

The appropriate standard integral peeded here (Dwight 863.1)

m

—ax
P -
Q -+ M
o

hence

-t’,f \
= ‘

.Jﬂ é; Su\ E;(g .2] - (ﬁ E) oL > -{,-f
Fopl)dY :

{ T

gl TR (= .
_p0 '

where P means the principal part. ™is is the final

Hilbert transform paLr,

£{t) <7 £1(t)

result for the

Note that the Hilbert transform is still a function of L. .

Comment on the "privcipal part",

The intent here is to ivtegrT
t'=t from. both sides. The argument

P of the integration.

ate close to but not gquite

up to the singularity at

is that the integrand 1is infinite-positive on one side and

infinite-negative oD the other, so that the integral cancels

out over this tiny range

assume f(t') to be & constant).

of integration (forwhich we may



VII.E.la({cont)

Several methods are available for computing the Hilbert
transform. Cerveny {(1976) and Choy and Richards (1975) discuss
these. Lipn and Kosloff give an FFT computational scheme.

The simplest approach is via equation (2). We start from
given f(t) and compute (perhaps using Fast Fourier Transform)
F(w):FR(w)+iFI(w). "The usual requirements exist to keep f(t)
real, namely FR is even in w and FI is odd.

We nmext multiply by i to give 90° phase shift and by

sgn(w) to achieve a real function for f1{t):
Flw = ¢ s F®
. LF el ¢ DR S ()
= =Tz

and take the ipverse transform to obtain f£'{t).

Comment: Choy and Richards p. 59 and A¥i apnd Richards p. 158
state that the above steps may be stated: Compute F(w),
interchange the real and imaginary parts (with a sign
change for fthe resulting real part usiog my sign convention
or for the resulting imagipary part using opposite), and
inverse transform.

It doesn't look gquite so simple to me. It looks like
there has toqbe an additional sign change for negative
frequencies due to the sgn(w) above. If we are using the
FFT with sample points 1 to N , then the procedure would
seem to be:

1) Compute FR and FI for sample points 1 to N+1.

2} Compute Fﬁ and Fi for the travsformed function as

! N
- X
! - -1 Ny sceH
?%L - bﬁ. L

3) Take the inverse FFT to get £0t).
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(omit this page from lecture, but retain for reference):

Proof of the transform relationship: Let us accomplish this

by taking the ivverse transform of { T sgmwd
Fr{w) = i sgo(w) F(w) = Fl&) €

and show that it equals f£'(t) as given above.

@ L g;s;ﬂua fwt
1 - __i_ - F (W) € odw U)
fw- L)
Haﬁb [wT
ok = —— f Ll FW E d (2)
I e
@ 4 —t‘,w‘t\ \ [w‘t’
= — j‘ ¢ sgn (@ [{H’CDG it | ¢ dw @
piei - s
o s
= = N g wlttt) It
- 1t Sun W
p -féw L)
12 b0



VII.E.¥ cont)
t)) Motivation (see Lith and Kosloff for other geophysical exampl
Application l: Determine the envelope of a waveform.
We can subjectively construct the envelope of a

seismic or other waveform. For example,

The technique here considered provides an objective

way to do this, where the desired result may otherwise

be difficult to arrive at. Farnbach treats this.

Application 2: Determine instantaneous amplitude, phase,
and frequency of a signal,

Taner et al focus on this application.

Application 3: Compute the effect on a signal of shiftivg

all frequency components by a constant phase, say ﬂ7£
This situation ocgurs in several seismic

applications: seismic pulses reflected at angles
beyond the c¢ritical, waves propagating through
a caustic (focussing region), surfacde waves on a
spherical earth passing through the antipodal (1800)
points and 360° points. See Choy and Richards.

Application 4: To compute elementary seismograms, it is
necessary to kbnow the Hilbert transform of the
source—time function (Cerveny, Jour. Geoph., V.

Lhé, 1979, p. 137}).

Application 5: The Hilbert transform appears in the
Kramers-Kronig ("dispersion") relations which we
develop in the following section, ip connection with
our attempt to create causal functions.

Application 6: The WKBJ method of Chapmanp (1978) for
computing synthetic seismograms includes application.

for Hilbert transforms.

Application 7: Interpretation of magnetic anomalies

(Mohan et al, 1982).
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¢) The Hilbert transform in "complex envelope" analysis

For further discussion, see
Farnbach, 1975 Kirlin et al, 1984

Taper and others, 1979. Hailey and Kirlin, 1984.

_ Robertsob and Nogamil 8h.
They c1€% references toé%ghérlfaterature such as

electrical engineering.
Bracewell, p. 268

As noted under (a) above, our goal is to come Uup with

an envelope to a given waveform. This eonvelope will have

an instantaneous amplitude, instantaneous phase, and instantaneous -
frequency.

Taner et al call the instantaneous amplitude the "reflection

streongth". He makes the obvious peint that its peak does not

necessarily coincide with -the peak of the waveform,

The instantaneous frequency should be more precise as

a measurement of frequency thab the usual process of measwng
times between peaks and converting to frequency.
or '

Definition: The "complex trace" (Taner et al),
the "complex eovelope" (Farobach), orT

the "apalytic signal” (Bracewell) is defined as

cm- f0 T otSfw

where - is appropriate using wmy choice of signs for

the Fourier transform (Farnbach; Bracewell) and + is

-] . X .
appropriate for the opposite choice (Taner et agg- .

(pilant; aki and Richards) .

From this, we <¢an compute (I will use = sign 1in above) the

- instantaneous amplitude V
- z I i] -
Fot] tw + 79 |

Per Julian (oral, 1979), if our original signal had
been pnarrow-band filtered, the instantaneous amplitude '

peak gives arrival time of the peak hence group velocity

vs freguency.



VII. E..1 {(cont)

-~ instantaneous phase

A -f'®
{Q; On \ ———
e +(®

- instantaneous frequency

e

3t 13
Jf' ‘
55 - £ 3t

o ()=

!

-
z {
F+ f
Direct computation of the complex trace is particularly simple.

(®

Since

-w.b
T dw

\ _
| Fwe
~0
=
o f (ressm@ ) €

—t0

T

!

£y

o Pt
- senw] FW € Aw
D:\r_‘E)EJF e

Thus to compute F(t) from f£(t),

1) Obtain the transform F(w) of f(t).
2) Multiply by 2 fer positive frequencies and O for pegative
frequencies, or;
If using DFT, multiply by 2 for indices 1 to N/2
and multiply by O for indices N/2 + 1 to N

3) Take inverse Fourier transform.
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The following figure from Farnbach

signal and its complex envelope.

reproduced here) shows the improvement i

shows a seismigc

A following Figure 4 (not

np defivning arrival

time of a signal using the compleXx envelope.

s{Y)

-10 0 10 20 3o
t sec

js(Hi|

t sec
pP
|
-10 ] 10 20 30 40
t sec
Fir. 3 A seismic signal and its complex envelope: (a) Real signal, (b envelope. (¢) angle function.



VII.E.L(a)} (cont)

A use for the analytic signal
Reference: Arditty et al, p. 322 in 1982 SEG Annual Meeting Abstrac

They are concervned with sorting out various wave types

in a seismic logging tool.measurement: I guote:

In order to study these different waves we have computed for
each trace its analytic signal and decomposed it into is
module (Modulus?), ipstaotaneous phase,and instantaneous
frequency. Each serves a different purpose.

The module-section allows us to study the amplitude variatior
in terms of wave types, lithology variation, and travel time.

The instavmtanecus phase section is useful to follow
coherent signal ipn zones where it is difficult to point an arrival
by its amplitude. It is also a check to avoid phase shift in
automatic picking.

The instantaneous freguency =ction gives information on the
frequency variation ip terms of lithology and travel time. Ir
the energy of a specific arrival is not a good criterion to pick
the arrival, the freguency display may be used to distinguish

between different modes of propagation.

These are interesting comments. I should try the methods

on some synthetic waveforms.



VlL, “rpvuey
d) Hilbert transform in synthetic seilismograms

Cerveny (1976) states that 1ip asymptotic ray theory

we are called on to deal with
Flw = Fwem xr FES T

This formulation appeared above. T haven't yet worked

out how it emerges in ray theory.

Inp my lecture notes on Chapman's WKBJ method for
synthetic seismograms (section X.N), I make extensive

use of Hilbert transforms.

While the point is discussed in more detail
in the next subsection, it should be noted that passage
of a ray through a turning point involves a 90° phase
shift which equates to a Hilbert transformation.

The following reference on page 97 shows the
formulas by which to achieve this. Basically one
computes the signal just above the turning point on
the way down, multiplies it by the phase factor which
they give in equation 34, and state that this equals
the signal on the way up.

Hill, N., and P. Wuenschel, 1985, Numerical modeling
of refracation arrivals in complex areas:
Geophysics, v. 50, p. 90-98.



VIL. E. lcont}
e) Hilbert transform at a caustic
Choy and Richards (1975} give a physical explanation
of what is happening. I don't fully grasp their argument, but
it seems to rely on the proposition that over a receding portion

of a travel time branch created by a caustic, the cross-sectional

area SA change sign from + to - upon crossing the caustic.
1
Sipce the amplitude is proportiocnal to §A?, we are left with
1
a phase shift of (-1)° = i.
A ¢ B
4+
} 4
C
A

This apparently occurs also for PP,S5, where the travel time
is mini-max (maximum for small changes along the ray path, and
minimum for small changes perpendicular to it). The

above examples appear to apply te the receding branches of

P, S, and PKP.

Choi and Hron (1981) show that the phase shift due to
caustics is intimately related to the occurrence of turving
points along the ray. They derive an expression relatiog this

phase shift to the bumber of turning points.
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VII.E.l e {cont)
Butler (1979) vnoves that the waveforms fo

correspond favorably to Hilbert—transformed S wavef

The following figure shows

top - S
Hilbert-tran sformed S
ed at twice the s-distance

center -
bottom -~ S35 as cbserv

29 Mar. 1965 i3 Oct. 1969
"—\/\\//v\/ﬁxd MAT

£=62.3°

Az=3322°
W hot W

A=131F

Az=337.5°

25 Oct. 1965 S s

and 55 for three earthquak
from the source and at nearly
er trace for each event Uiustrates the effect o
to imitate the effect of the SS caustic.

Fic. 2. Recordings of S
ruuzhly twice the distance
Spper trace). The cent
ihe 5 wave (upper trace}

r 5SS do indeed

oOIrmSs .

es where the station recording SS {lower trace} is
the same azimuth as the station recording direct
f applying a Hilbert transform to



VII.E.l (cont)

f) Wide-angle seismic reflections

Inp section IV,..B.3, we noted that wide-angle
reflections may produce total reflection with a
frequency-independent phase shift. The discussion above
in section VII.F.2(b) was along these lines. We noted
also that this effect can be viewed as a complex reflection
coefficient.

Two papers which covsider this problem for
seismic exploration are Levy and Oldenburg (1982) and
Ulrych and Walker (1982). They point out that if €
symbolizes the phase of the complex reflection coefficient,

then an input waveform w(t) emerges following reflection as

Cos € w® + swm € OH{“\@‘S

They interpret this to mean that upon reflection, "the
positive frequencies ip w(t) are advanced by €& aond the negative
frequenoies are retarded by é .

We showed in the earlier section, for the special
case € = T/, that the altered waveform will differ
considerably from the input waveform. If w(t) is delta-like,
the output will have an emergent portion of significant
amplitude at times preceding those expected from geometrical
ray computations,

(The gist of their papers is to seek a method for
deconvolviong wavé?orms which have undergone this kind of

modification).
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VII.E (cont)
2. The Kramers-Kronig dispersion relationships

Sources of alternative derivations:

My derivation follows Collins, Mathematical Methods
for Physicists and Engineers, Reinhold Publ. Co. p. 222.

Aki and Richards, p. 173, have a derivation which T
find hard to follow.

Van Kampen (Jour. Physique, v. 22, 1961, p. 179) has
a good general derivation,.

Mathews and Walker, Mathematical Methods of Physics,
W. A. Benjamin Ce¢., p. 129, have a derivation.

Elmore and Heald, Physics of Waves, McGraw Hill, p 443
have a derivation based on a limiting process which I
think is gquestionable.

Pilant p. 329 and Aki and Richards p. 173

have totally different derivations. Aki and Richards

couch the argument in the special context of wave
propagation with complex wave number,
.g(w) - .._(_’_('J..—-w + L K(E‘J)
C(w)

from which they derive the result that velocity and

attenution must be. related as

W o o W=

C’j‘@’ c(e2



VII. E.2 (continued].

The topic we consider here in connection with the
interdependence of velocity and attenuation for waves propagating
in an anelastic medium actually has wide applicability and
generality. The subject is sometimes referred to simply as
"the dispersion relations"ﬁ It occurs in exactly identical
mathematical form (with different physical interpretation for the
parameters) in

- wave propagation in anelastic media

- electromagnetic waves in conducting didlectrics

- scattering of puclear particles

- time and frequency domain respeonse of electrical networks

- magnetic materials
We can illustrate intuitively the nature of the problem in

the following way. Suppose we have freguency-~dependent

attenuation of a propagating seismic wave. At distance r
v 4 X
fle- D R +<E
] Vv

E(u) = Fa(wed F\I@”

l 1
we have a pulse

with transform

After propagating to a distxce Ty each frequency component has

been attenuated by a factor
— e, W ("L-ﬂ)

€

so that the transEBrm at r, will be
2 — g (D

F;-(gg = 7% () &

Taking the inverse transform of this will give us the waveform
at T, but in general this inverse transform will be non-zero
for -~ Lt L oeo . This violates causality ('"po output
before the input") because a signal appears at r, before it
appears at ry-

To satisfy chusality, we must shift the phases of the
Fourier componentsFat T, in such a way as to achieve perfect
cancellation for all times prior to t—r2/V. It turns out
that this requires that V depend upon frequency also, and

in a very specific way.

*#4 term applied to any ipntegral relationship between the

real and imagipnary parts of a function of a complex variable.
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viLL. E, 2 \Cconiy

The gquestion we consider is, if f(t) has the property

that it is O for pegative t, what does this imply about the

properties of the transform F(w) = FR(w) + iFI(w)?
We assert first that if £f(t) has the above property, then '
F(w) is apalytic ip the lower half of the w-plane (i.e.

with w = wp + iwp, that wI<$ 0). {Comment: This applies with

the normal sign conventiocn for the Fourier transform pair. Aki

apd Richards use the reverse copvention, in which case the

jies to the upper half of the w-plane).
o _,,;EwR-»in]-k’H:

F (W = jﬂ 4’&9 € .
—2 :

we see that the lower limit can be replaced by 0, and that

statement app

Writing

the assertion is true.
We now copnsider the contour,

CWr

~— C

We can apply Cauchly's Theorem (Churchill, p- g0) which says that

for any point interior to the curve C, withio aod on which f(w)

is analytic, we cap write

- P ()

_o
}:%3%9 - ;LTrd Lb)"cdd
C

dw

where the contour is taken 1o the counterclockwise direction.



For the present problem, we find

ame F(w) = j 4‘”[ f

infinite small
semi-circle semi-circle
For the small semi-circle, F—@9> o~ F:(U%)

L&
o~ Lo = e

g ’ =S R
___//:E;L——~—" (ﬂLU - re t.Aé

—

f - | = 1w Flod
=0

hence finally

L]

-IPM
FT(PUQ):: — 7 - o~ o

e
-
Note: The - sign arises because I used the conventiconal defipnition
of Fourier transform, with the - sign iv the exponent of

the Forward Fourier Transform,

Aki apd Richards, who use the opposite definition,
correctly obtain a + sign here.

Two authers who use the conventional definifion as T
read them, vet who obtain a + sign here are Collins (book
referenced above) and Lee and Solomon, 1978, Jour. Geoph.
Res. v, 83, p. 3398. I dop't see how these can be correct
unless I have wmisread them.

Note: "Pr" mean prioncipal value, i.,e., we integrate almost
up to v from beoth sides.

The remaining step is obtained by breaking F(w) into

its real and imagimary parts:

—

Fg.@)a) vi Fp W =

Y Reldri Fe(ed
R
‘"'j‘f Ea /- We

e —ev



Vil. es (GODTY -

Separating real and imaginary parts, Wwe find finally that

y @ ) Fr () A w
R
—e
Frd"")
|
TI:L Lw.) = ---—- P/LJ\ - Wa

which agrees with Collins except that he gets opposite signs

(which I thiok is incerrect).

If we recall from the previous section that £(t) has

a Hilbert transform £1(t) given by,

-;tt lt‘
-leC)=—_;;: O g -t

—

we see that FR(WO) and FI(WO) are a Hilbert transform pair.

An alternative form of the above can be written by

takivg note of the fact that Fﬁ is an even function of w

and FI is an odd fupnctioo. Upon substitution, this yields

< Fﬁ(ﬁﬂ c}
\ _n L eWw
FECOREE =
tA —tu

=

etc, which cap be combined to give with

Fe (w)
C&“) - ,,— f;l g- ch

Ry,
-LUU

FT_:_ QAJ.) : Lw‘ FA,

which again differs from Lee and Solomon eq. B3, for example

by having opposite signs for both expressions.



VII. {(cont)

F. Proposed attepuation-dispersion pairs to satisfy causality

l. Introduction

Two separate but inter-related topics enter into the

following discussion:

a) If we impose causality, as seems physically plausible,
then the preceding considerations require that
velocity and attenuation constant be inter-dependent,

that is, computable one from the other,

b) If the attepnuation constant is frequency-dependent, then

velocity must also be frequency-dependent.

If indeed the velocity is dependent upon frequency, then
we are in the presence of "material dispersion", to be
distinguished from "geometric dispersion" as discussed in
section V,

As a specific example of the practical problems arising,
we note that the frequencies differ by several orders of
magunitude between earthquake short-period body waves and
long-period surface waves and free oscillations. Thus, the
velocity structure of the earth computed by these metheds
can be expected to display discrepancies,

We note also that attenuation tends to be significantly
greater for shear type seismic waves (S waves; Love waves)
than for compressional waves,. Thus the frequency-dependence

of velocity will be greater for shear waves,

A central experimental consideration lies in the
frequency dependence of the attenuation constant, since this

governs the resulting frequency dependence of velocity.

As we noted inTan earlier section, the argument is usually

expressed in the quéétion, does Q@ depend upon frequency (and

if so, how?} or is Q independent of freguency.
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VII.F.1 {cont)

In the previous section, WwWe demanstrated the following:

(t) with Fourier transform F(w) is

If a time function T
the

then the real and imaginary parts of

0 for negative T,
the Hilbert transforus

transform are related by being

(iv frequency) of each other.

Expressed 1ip terms of wave propagation, the absorption

coefficient and the velocity must both depend uponD freguencys

ndence of the absorption coefficient is

If the fregquency depe
ency dependence of the velocity

specified, then the frequ

can be computed.
is a linear function of

For the specific case that &
the following

fruency hence Q is independent of frequency,

relationship emerges:

C (w L) _“_"1,3
o = L F
C:Lpﬁ) jfti (.U)L

This is usually attributed to Futterman (1962) but the

same result emerges from other types of analysis.
In application, oD®e usually takes W, as some
reference frequency (l hz is common for earthguake
seismology) and computes other velocities with reference to it.

Some problems arise in this formula for very large
or very small freguencies. The usual way out of this is
following Futteman, that it applies only over

to assert,
the seismic band of freguencies.



VIL.F. (cont)
2. Futtermav attenuation dispersion pair
I will present here a Futterman-~type derivation of
the dispersion relations between attenuation and velocity.

This follows Aki and Richards, p. 173,

The final result of the abnalysis as Futterman

gave it was (Savage, 1976):

For any frequency in the seismic bavnd, we take Q to be almost
constant. A low frequency cutoff W is defined

to be much lower than any frequencies in the seismic band:

] * %

\/P C ) Q,\ (78
HASE I — ?@b (&a)

oomr = C T i)

o Ef— Qmﬁ‘)

+ -
B&; . 57T.... (Euler's constant, emerging

from one of the integrals)

"¢" is the velocity at a very high freguency, Wii we cannot
extend it to infipnite freguency because Q would beacome

negative, but we will take 1t above the pass band of the

-

instrumentation.

-

#%To reconcile this with the expression ovn preceding page,

note that for small x,

L~ L%
e &

Ty wdeomegohE
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VvII. F.2(cont)

The argument as presented by Aki and Richards seems

a little ad hoc to me, but essentially they claim that for

one—dimensional plane waves . we can represent the effect of

propagating through a distamnce X a5

Pl =5 T e

with i::QK)uQ - & 65
o
and g = & [:Ei;; - C;j]

Note that I have accepted their sign convention for the

Fourier transform pair, ip order to follow their derivation.

The ad hoc¢ portion appears to be the introductiocn of

€ oo ? the limiting value of velocity at infinite frequency.
Lee and Solemon do something equivalent to it

If we grant both of these points, then we cap write

JL?} F:(“9 = —xX(WwX + o C(y) '1><

They establish as abp extension that the real and imaginary

parts of log F(w) are also Hilbert trapsform pairs {(p. 174%;

I shall not repeat it), leading finally to
|

(W = H Ew CE\@)vZ)
w[m ) c\l s Lo

The second of these is the more important. It can be written out:
w);k)'
\ ) V7. S. a& L A‘“
Wl — -~ | = W
clw Coe m —d



ViIi.F.2 {(cont)

At this point, some subtle arguments enter. They may be
followed best in Aki apd Richards, p. 172. They center arouvnd the
proposition that the relationship we used in section 2 above, that

attepuation with distance cab be represented by
w X

T Q.
€

which implies that

W g ] =R

Con

cannot be satisfied by any @ which is completely independent
of frequency.
Op the other hand, experimental data suggest that Q@ is

essentially indepevndent of frequency over the seismic band.

The approach takeo, therefore, as suggested by Azimi et al (1968)
is to inmtroduce a term, 1 + o w, where chyis such that
the second term 1is negligible over ceismic frequencies, not
becoming sigpnificant until w is very large.

The implications of this are that

oA,
—

rtd,

A A, D/_\ ,lﬂ_
B T 22
S

< (D)

> 1.0
}
S ?_f_‘_.-ﬁ/«(;‘;)

ciw Coo T

Thus the ratio of -phase velocities at two different frequencies

ip the seismic band can be written

Cld L )

e an——

C oD TQ

They discuss this in counsiderable detail, arriving later at

the same result from another line of reasoning.
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VII.F. Lcont)

3, A guided tour through other attenuation-velocity

dispersion pairs

(a) For overviews of the various approaches, try:

Aki and Richards, p. 167-185.

Kjartansson, 1979
Lee and Scloton, 1978 Appendix B; 1979 p. 72

Mavko, 1979
Liu, Anderson, and Kanamori, 1976

(b) Dispersion relatiocns may be presented either ip the

frequency domain using Kramers-Kronig relations, or in

the time domain using Boltzmann creep (or relaxation)

functions.
For any given frequency dependence of Q, both lead

to the same dispersion relations.

{(¢) Nearly all approaches are pased upon "constant Q"

models, i.e. models in which Q is independent of fregquency.

Most constant-Q models Tun into mathemati

and are forced to either
(1) assume Q is constant only

band, and has other behaviour outside of 1t

(Futterman, 1962;

or
(2) assume Q is almost constant but net quive

(strick, 1967,1970;

(a) A few approaches use exactly-constant Q but they lead

tic dispersion relaticos (Kjartansson, 19793

e
(o) Co = C(w)

to some exXoc

¥ -rr MC—J) 2%
dk@ ~ T

He started the analysis from the creep function

ical difficulties,

within the seismic freguency



VII.F.3 (cont)

(e) In all of these approaches, the reader must be on guard
against concealed assumptions that Q is very large compared

to 1; such approximations would invalidate the results for

small-Q wmaterials like soils.

(f) Amopg the Futterwan-type theories, we may note the

following starting points for dependence of attenuation
on frequency

|

—_— Z(T.V

Futterman, 1962 K (w) = C'Lo CQ&@ *
¢, w b ?‘C‘Vof

Azimi et al,1968 X (w)* |1 o) Qe | €,

Azim%tc%%ose 02 so that it remains insigpnificant in the
seismic fregquevncy band; they simply make explicit some of

the high fregquency conditions which Futterman introduces

empirically.

(g) Among creep type theories, the most widely used one is

based upon abv experimental creep function of Lomnitz (1957):

P = @ I (14

which leads to (Lee and Solomon, 1979}

vey -y h‘+)mi‘~’], b X
V@’) L{ a W‘.‘LthQ ?’z

y = N ConSTA T

For large Q, this approximates to the earlier expression,

XEéQ, = | i QN\(EiL)
Ylws)

For a comparison between Lomnitz and Futterman theories,

see Savage and 0'Neill (1975). Jeffreys (1958) proposed a

generalization of Lomnitz function which leads to frequency-

dependent Q: @ L{); %)—:Q +a@¢_‘]
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VII.F.3 {cont)

(h) For perspective obn theories usinog frequency—dependent Q,

see Lee and Solomon, 1979, p. 73.

(i) savage (létter, 12/82) comments that he doesn't like
formulations of Futterman or of Strick because they are
essentially mathematical inveotions. Lomnitz theory, on
the other hand, is based ob real physics and ties together

two previously unrelated phenomepna, creep and attenuation.

(j) A third approach uses a simple mechanical model, for -

example the standard linear solid (section VII.B.1):
- (— ot
o+ 0 = Mg(é—f ’é 6’) N

but invokes a statistical distribution of such effects with
different time coonstants ’ﬁi,Qj? to approximate to a
constant-Q situation. For this approach, see Liu et al

(1976); Wielandt (1975);

(k) Current research oo attenuation emphasizes the frequency
-1 . .
dependence of Q (peaks in the kilchertz range; sSee pe

} and the role of pore fluids

(m) Strick (several papers) has developed an elaborate

three-parameter dispersion model, starting from

. s
attenuation constant o (.u{) ~ e/ .

where s is less thapn 1.0 but "may be arbitrarily close to it".
So far as I know, Strick's work 1is sound and valid.
0pn the other hand, it starts from apn ad hoc assumption (above)
rather than any physical model. It gets quite complicated and
leads to kind of -precursor which he calls a “"pedestal”
(Strick, 1970).
Pilant is a colleague of Strick; his book centaions '

an alternative presesntation of some of the material.



VIi.kM. 5 Lconty

(o) Lamb (1962) tried a starting point that

Yi
attenution constant o ) oW

and examined the consequences. No one seems to have liked this.



but I rather prefer

This Kjartansson paper is a good omne,

Note

}, section V.G.b.

a more unifed approach of Muller (1983

Vol [T ) - P

L, A dispersion—attenuation pair derived from a creep fupmctio

The classic creep function for this kipnd of apalysis is

In (H—a'*ﬂ

given by Lomnitz (1956):
f
V- L1+ ¢

where MO, g, and a are constants, and a is a freguency much

greater thap the sample rate. Unlike almost all other avalyses
which are based oD ad hoc assumptions about frequency-dependence
of attenuation {Futterman, for example), Lompitz' formulation
was based upoD actual experiments oD trapsient creep 1D

rock at low stress levels.

Despite this, T shall follow Kjartanssop (1979 ) because
1) he presents an alternative creep function which includes
Lomnitz' Tesult as a special or limiting case (p. L7453),
2) he develops his tneory in comprehensive fashion, and
3) his theory yields a Q whioh is exactly independent
of frequeuncy, and
4) he escapes from the artificial and arbitrary high and

1ow freguency cutoffs which Futterman aud others are

forced to iptroduce.

We starti with a creep fupction which plots as & straight

1ine on a log-log plot,

vy ~ £ 70

arguing that a frequency—independent Q implies that the less
per cycle is independent of the time scale of oscillation.
For later convevnience 10 interpreting the rTesults, we introduce

some constants 2 ¥
\

t
Q’U—’)r: —-""'Mo PR (%o)

+ >0

where 1% is the gamma function (essentially 1.0 for present
purposes), t, is an arbitrary reference time, and Mo has the

dimensions of & modulus in the stress-strain relationship.
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Reviewiong (and slightly rewriting) the results from
VII.C.4 op creep and relaxation functions and converting to
the symbeols of Kjartansson, we have c¢reep function v o(t)

and relaxation function { (t) iv expressioos like

[= 2]
o) + § P c(B-pde

E €t

-0
L otty = €ty - J Pw el dr
~ -
elastic
terms

and if we omit the elastic¢ terms and use the abbreviations

. Jd W

sw= v =
. - &Y
mp = P o

the relationships can be written as convolutions

s mibp ¥ e(®

E®

Hi

s % oo

S mtp * s

with transforws

2w = M B
£l = s

N (W S ()
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VII.F.4 (cont)
Starting from asssumed creep function,

2 & 2 U
s(d = t
(D M, N(i+2Y¥) -6- (4:0

take Fourier traonsform to get

. -2 \
oo v LW
SL@" —Ffi—o(w‘ o

use last relaticoship on preceding page to get

1y
&

‘ -—
™ U%) = :é(ﬁD - 22

and take the inverse transform and integ

_2 ¥

D (t
v mn w)

Since
strain as
1/Q = tap S/

Taking the phase angle as the exponent in M(w),

t
2 (&)

_ | "‘___‘_. N___.l_-——
r= oot (@F e

and Q is exactly indepeundent of frequendy.

or

we differentiate to get

+>4

2 F
(w — €
M, ) = Mo,
rate to Zget

( + >0

Q is related to the phase angle between stress and

we have

for large @



VII.F.4 (cont)
Next we can write ocne-dimensional wave propagation io

such a medium as

((wt -kx)
U (X,'t’) = €

wen Ro7 e [M{u)j

9

or expressed in the form

_wx o cw (= Zio
U = € €

. / () X
we find following substitution -k x = - (ﬂ“( + )

\ [ (w
or Q,ZI_"_—7 = L4
“¥ Vi ¢

that, separating real and imaginary parts, we require

wb’
cac | )

Wo

—

< = t«(%]’) Som () ¢

Mo Cow \E O
with CO oot ‘J? /

(I have verified these).

#If clarxification of this step is required, see Aki

and Richards p. 178.
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VII.F.L4 (cont)

If the source waveform is an impulse, then the impulse

response is a function b(t) whose transform B(w) is obtained

eiwt ipn the expression above,

|.—r
0 ro.
2 (2] [tn T vl s

simply by omitting the

B(w = €

Kjartanssoon is unable to perform the inverse integration to

get b(t) apalytically (it can

goes through some scaling argument

be dopne oumerically), but he
s leading to the conclusion
1 % \P

[}

where 7 is pulse width, T is travel time, A is pulse

amplitude and

\ )
y ——— 2+ T
(é ]—-ﬂ' Q\

The proportionality cap be written that the pulse width is

Tt
= Ry —
i C (@) 2

where C(Q) depends only op Q and is fact nearly independent

of Q@ for Q » 20._

He shows numerous eXxamples of how pulse shape for

the impulse response changes with distance and with time.

AN ENTIRELY DIFFERENT ROUTE,

description.

NOTE THAT WE ARE BACK, BY
TO A CARPENTER-TYPE OPERATOR AND A g* = T/Q

yielding



VII.F.4 (cont)

Finally, we may tie this back into a Futtermaun type

operator as follows, simultaneously demonstratiog the
approximations in Futtermwan theory and displaying the

Kjartansson theory as more generally applicable,.

-1 . .
For large Q, we can replace tan with its argument so

A ORE

T"&

and the expression for velocity becomes

J
Lo

(He also gives a simplified expression, eq 41, for the

transform B(w).)

Making use of the general principles that

dn X

X = €
& PR
and e = ' + e + zjt@ *+
) z
w e that w
e see | N _L[—‘— Q’“\Eﬂ+‘-
:E;_ - |+ ;Fa L\ llda) -+ . A

The first two terms are identically the Futterman result,
and we see that the condition for its wvalidity rests oD

the stipulatioo that the third term be pegligible, or
l J%« . z < |
jﬁf& Wi

for all frequencies of interest,
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VII. (cont)
G. Practical computation technigues for introducing

attepuation into synthetic seismogram computations.

1, Introduction

In this section, we present several versions of

an "attenuation filter"”. The idea is that we solve the

synthetic seismogram_problem for a purely elastic case, and

then pass the resulting waveform through a filter which will
simulate the effect of atteonuation,
We will derive the filter for plane waves,. For

spherical or other wave types, we will handle the complications

elastic part of the problem and then use the
Te illustrate this point

only for the
plane wave attenuation filter.

suppose that we have waves spreading cutward in a uniform

medium from a point source:

Ry —7
) T o

Re—7

We observe the signal at distance Rl and wish to predict

the signal at distance R2. Then

. R\ B (R,-R, B

'P(R-z, +) = = ""(Ru%) * ( R
o R

where h(x,t) is the impulse response of the attenuation filter,,

whose transform is the transfer function of the filter, H(x,w).
For all of the following discussion, we will take as

the startiog point a transfer function of the form:
_lMi —_— L LI

il
— ZaN N W)
H(xw = & e
Nearly everyopne seems to agree on this. The absolute value sigp

is needed to keep n{x,t) real.
The important complication in the above lies in the

dependence of velocity on frequency. This is required to

obtain a causal system (i.e., h(t) O for negative t).




VII.c.2{(a) (cont)

Our startiog point is Futterman's relationship given

in earlier sectiovns,

-
v@=V [1- =3 b x ‘3”7]

where [ = .577216 Euler's constant
and where

w

a "low frequency cutoff", namely some frequency well

o
below the lowest freguency of interest, below which we
assume that no absorption exists.
VO = a reference or stapdard velocity at which no absorption
exists
£ it

We now substitute this value for V(w) into the travsfer
function given iv section 1 above,. Ip the process, we impose
the following conditions:

— the attepnuation can be igpnored from O0<w < W

- the transfer function must satisfy the complex conjugate
condition,

H(W) = H*(—W)
in order to keep the impulse response real.

The fivoal result is the traosfer function
l | \w))

|t % : "DME—"&AGTI

— ~Lw Ty A °

2] Y% °

Hw) = € c

] > We

1,0 T
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VII.G (cobnt)

2. The

Futterman velocit

a) Derivation of the freguency

Carpenter itteouation operator based on the

y-frequency relatioonship

-domain version of

the Carpenter operator

steps were

- 5

- S8

_ copvert the ¢t

- take the inverse Fou

Carpenter's pape

to obtain

(copy ip my file).

Fur
frequency
operator.

however,

Io a 1966 paper by E.W. Carpenter, the following

achieved:

tart from the transfer function from the previous page
tute for V{(w) the velocity-frequency relationship

ubsti
n VII.F)

given by Futterman (see sectio
ime scale from real time to
1 arrival time at the observing station
domain

time startivg

from the signa
rier transform to get a time-
attenuation operator, which cab then be convolved with

the observed signal to incorporate attenuation effects.

r is difficult to read and 1o fact difficult

since it was an internal British government document

ther, I prefer to use the Carpenter operator iv the

domain directly rather than using the time domainp

This approach does introduce somée complications,

which I will treat ip section (b} below.



